Sample records for eclipsing binary pulsar

  1. State-change in the "transition" binary millisecond pulsar J1023+0038

    NASA Astrophysics Data System (ADS)

    Stappers, B. W.; Archibald, A.; Bassa, C.; Hessels, J.; Janssen, G.; Kaspi, V.; Lyne, A.; Patruno, A.; Hill, A. B.

    2013-10-01

    We report a change in the state of PSR J1023+0038, a source which is believed to be transitioning from an X-ray binary to an eclipsing binary radio millisecond pulsar (Archibald et al. 2009, Science, 324, 1411). The system was known to contain an accretion disk in 2001 but has shown no signs of it, or of accretion, since then, rather exhibiting all the properties of an eclipsing binary millisecond radio pulsar (MSP).

  2. Hidden slow pulsars in binaries

    NASA Technical Reports Server (NTRS)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  3. Birth of millisecond pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Bailyn, C. D.

    1988-01-01

    It is argued here that accretion-induced collapse of white dwarfs in binaries can form millisecond pulsars directly without requiring a precursor low-mass X-ray binary stage. Ablation of the precollapse binary companion by the millisecond pulsar's radiation field, a process invoked to explain some of the characteristics of the recently discovered eclipsing millisecond pulsar, can then yield isolated neutron stars witout requiring an additional stellar encounter.

  4. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2014-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6397 at 10cm, for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system.

  5. Physical implications of the eclipsing binary pulsar

    NASA Technical Reports Server (NTRS)

    Wasserman, Ira; Cordes, James M.

    1988-01-01

    The observed characteristics of the msec pulsar P1957+20, discovered in an eclipsing binary by Fruchter et al. (1988), are considered theoretically. Model equations for the stellar wind and optical emission are derived and used to estimate the effective temperature and optical luminosity associated with wind excitation; then the energy levels required to generate such winds are investigated. The color temperature of the pulsar-heated stellar surface calculated under the assumption of adiabatic expansion is 1000-10,000 K, in good agreement with the observational estimate of 5500 K.

  6. High-energy emission from the eclipsing millisecond pulsar PSR 1957+20

    NASA Technical Reports Server (NTRS)

    Arons, Jonathan; Tavani, Marco

    1993-01-01

    The properties of the high-energy emission expected from the eclipsing millisecond pulsar system PSR 1957+20 are investigated. Emission is considered by both the relativistic shock produced by the pulsar wind in the nebula surrounding the binary and by the shock constraining the mass outflow from the companion star of PSR 1957+20. On the basis of the results of microscopic plasma physical models of relativistic shocks it is suggested that the high-energy radiation is produced in the range from X-rays to MeV gamma rays in the binary and in the range from 0.01 eV to about 40 keV in the nebula. Doppler boost of the emission in the radiating wind suggests the flux should vary on the orbital time scale, with the largest flux observed roughly coincident with the pulsar's radio eclipse.

  7. Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Alak; Loeb, Abraham, E-mail: akr@tifr.res.in, E-mail: aloeb@cfa.harvard.edu

    We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The shortmore » temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.« less

  8. X-rays from the eclipsing pulsar 1957+20

    NASA Technical Reports Server (NTRS)

    Fruchter, A. S.; Bookbinder, J.; Garcia, M. R.; Bailyn, C. D.

    1992-01-01

    The detection of soft X-rays of about 1 keV energy from the eclipsing pulsar PSR1957+20 is reported. This high-energy radiation should be a valuable diagnostic of the wind in this recycled pulsar system. Possible sources of the X-ray emission are the interstellar nebula driven by the pulsar wind, the interaction between the pulsar and its evaporating companion, and the pulsar itself. The small apparent size of the X-ray object argues against the first of these possibilities and suggests that the X-rays are produced within the binary.

  9. Observations of the Eclipsing Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Bookbinder, Jay

    1990-12-01

    FRUCHTER et al. (1988a) HAVE RECENTLY DISCOVERED a 1.6 MSEC PULSAR (PSR 1957+20) IN A 9.2 HOUR ECLIPSING BINARY SYSTEM. THE UNUSUAL BEHAVIOR OF THE DISPERSION MEASURE AS A FUNCTION OF ORBITAL PHASE, AND THE DISAPPEARANCE OF THE PULSAR SIGNAL FOR 50 MINUTES DURING EACH ORBIT, IMPLIES THAT THE ECLIPSES ARE DUE TO A PULSAR-INDUCED WIND FLOWING OFF OF THE COMPANION. THE OPTICAL COUNTERPART IS A 21ST MAGNITUDE OBJECT WHICH VARIES IN INTENSITY OVER THE BINARY PERIOD; ACCURATE GROUND-BASED OBSERVATIONS ARE PREVENTED BY THE PROXIMITY (0.7") OF A 20TH MAGNITUDE K DWARF. WE PROPOSE TO OBSERVE THE OPTICAL COUNTERPART IN A TWO-PART STUDY. FIRST, THE WF/PC WILL PROVIDE ACCURATE MULTICOLOR PHOTOMETRY, ENABLING US TO DETERMINE UNCONTAMINATED MAGNITUDES AND COLORS BOTH AT MAXIMUM (ANTI-ECLIPSE) AS WELL AS AT MINIMUM (ECLIPSE). SECOND, WE PROPOSE TO OBSERVE THE EXPECTED UV LINE EMISSION WITH FOS, ALLOWING FOR AN INTIAL DETERMINATION OF THE TEMPERATURE AND DENSITY STRUCTURE AND ABUNDANCES OF THE WIND THAT IS BEING ABLATED FROM THE COMPANION. STUDY OF THIS UNIQUE SYSTEM HOLDS ENORMOUS POTENTIAL FOR THE UNDERSTANDING OF THE RADIATION FIELD OF A MILLISECOND PULSAR AND THE EVOLUTION OF LMXRBs AND MSPs IN GENERAL. WE EXPECT THESE OBSERVATIONS TO PLACE VERY SIGNIFICANT CONTRAINTS ON MODELS OF THIS UNIQUE OBJECT.

  10. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2013-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).

  11. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2014-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).

  12. Formation of a 'planet' by rapid evaporation of a pulsar's companion

    NASA Technical Reports Server (NTRS)

    Rasio, F. A.; Shapiro, S. L.; Teukolsky, S. A.

    1992-01-01

    A model based on the binary configuration of the PSR1829-10 pulsar (Bailes et al., 1991) is used to show that the formation of a binary pulsar with a planet-size companion, large original separation, and small eccentricity could result from the rapid evaporation of a much more massive binary companion by the pulsar's radiation. Such an evaporation process is known to be taking place in at least two other binary pulsars: PSR1957 + 20 (Fruchter et al., 1990; Ryba and Taylor, 1991) and PSR1744 - 24A (Lyne et al., 1990). It is shown here that, about one million years ago, the companion mass and binary separation could have been comparable to those currently observed in the eclipsing binary pulsar PSR1957 + 20.

  13. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2011-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  14. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2012-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  15. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2012-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  16. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2011-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  17. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2013-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  18. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  19. Keck spectroscopy of millisecond pulsar J2215+5135: a moderate-M

    DOE PAGES

    Romani, Roger W.; Graham, Melissa L.; Filippenko, Alexei V.; ...

    2015-08-07

    We present Keck spectroscopic measurements of the millisecond pulsar binary J2215+5135. These data indicate a neutron-star (NS) massmore » $${M}_{\\mathrm{NS}}=1.6\\;{M}_{\\odot }$$, much less than previously estimated. The pulsar heats the companion face to $${T}_{D}\\approx 9000$$ K; the large heating efficiency may be mediated by the intrabinary shock dominating the X-ray light curve. At the best-fit inclination i = 88 $$^o\\atop{.}$$ 8, the pulsar should be eclipsed. Here, we find weak evidence for such eclipses in the pulsed gamma-rays; an improved radio ephemeris allows use of up to five times more Fermi-Large Area Telescope gamma-ray photons for a definitive test of this picture. If confirmed, the gamma-ray eclipse provides a novel probe of the dense companion wind and the pulsar magnetosphere.« less

  20. Low-radio-frequency eclipses of the redback pulsar J2215+5135 observed in the image plane with LOFAR.

    PubMed

    Broderick, J W; Fender, R P; Breton, R P; Stewart, A J; Rowlinson, A; Swinbank, J D; Hessels, J W T; Staley, T D; van der Horst, A J; Bell, M E; Carbone, D; Cendes, Y; Corbel, S; Eislöffel, J; Falcke, H; Grießmeier, J-M; Hassall, T E; Jonker, P; Kramer, M; Kuniyoshi, M; Law, C J; Markoff, S; Molenaar, G J; Pietka, M; Scheers, L H A; Serylak, M; Stappers, B W; Ter Veen, S; van Leeuwen, J; Wijers, R A M J; Wijnands, R; Wise, M W; Zarka, P

    2016-07-01

    The eclipses of certain types of binary millisecond pulsars (i.e. 'black widows' and 'redbacks') are often studied using high-time-resolution, 'beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of two weeks - six months, we find preliminary evidence that the eclipse duration is frequency dependent (∝ν -0.4 ), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.

  1. The SUrvey for Pulsars and Extragalactic Radio Bursts - I. Survey description and overview

    NASA Astrophysics Data System (ADS)

    Keane, E. F.; Barr, E. D.; Jameson, A.; Morello, V.; Caleb, M.; Bhandari, S.; Petroff, E.; Possenti, A.; Burgay, M.; Tiburzi, C.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C.; Jankowski, F.; Johnston, S.; Kramer, M.; Levin, L.; Ng, C.; van Straten, W.; Krishnan, V. Venkatraman

    2018-01-01

    We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsars and fast radio bursts. We report on the observational set-up, data analysis, multiwavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR J1306-40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR J1421-4407 is another binary millisecond pulsar; its orbital period is 30.7 d. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of 10-5.

  2. CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES.

    PubMed

    Wadiasingh, Zorawar; Harding, Alice K; Venter, Christo; Böttcher, Markus; Baring, Matthew G

    2017-04-20

    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R 0 . We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R 0 ~ 0.15-0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R 0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R 0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  3. CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES

    PubMed Central

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.

    2018-01-01

    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167

  4. Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries

    NASA Technical Reports Server (NTRS)

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.

    2017-01-01

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  5. Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus

    2017-04-20

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curvesmore » and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.« less

  6. Nature and evolution of the eclipsing millisecond binary pulsar PSR1957 + 20

    NASA Technical Reports Server (NTRS)

    Kluzniak, W.; Ruderman, M.; Shaham, J.; Tavani, M.

    1988-01-01

    A model in which a millisecond pulsar may be able to evaporate a very light companion by a particular component of its energetic radiation is applied to the recently discovered 1.6-ms pulsar PSR1957 + 20. Pulsar turn-on in the very low-mass X-ray binary follows a stage of mass transfer dominated by an evaporative wind from the surface of the companion. The wind is driven by a large MeV gamma-ray flux powered by an accretion dynamo. That source of radiation ceases when it is replaced by that from the millisecond pulsar, which has been spun up by accretion.

  7. Orbital variability in the eclipsing pulsar binary PSR B1957+20

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Fruchter, A. S.; Taylor, J. H.

    1994-01-01

    We have conducted timing observations of the eclipsing millisecond binary pulsar PSR B1957+20, extending the span of data on this pulsar to more than five years. During this time the orbital period of the system has varied by roughly Delta P(sub b)/P(sub b) = 1.6 x 10(exp -7), changing quardratically with time and displaying with time and displaying an orbital period second derivative of P(sub b) = (1.43 +/- 0.08) x 10(exp -18)/sec. The previous measurement of a large negative orbital period derivative reflected only the short-term behavior of the system during the early observations; the orbital period derivative is now positive. If, as we suspect, the PSR B1957+20 system is undergoing quasi-cyclic orbital period variations similar to those found in other close binaries such as Algol and RS CVn, then the 0.025 solar mass companion to PSR B1957+20 is most likely non-degenerate, convective, and magnetically active.

  8. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2010-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution).

  9. Discovery of the Orbit of the X-ray pulsar OAO 1657-415

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto; Grunsfeld, John M.; Prince, Thomas A.; Bildsten, Lars; Finger, Mark H.; Wilson, Robert B.; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.

    1993-01-01

    Timing observations of the 38 s accreting X-ray pulsar OAO 1657-415 made with the BATSE large-area detectors on the Compton Gamma Ray Observatory have revealed a binary orbit with an X-ray eclipse by the stellar companion. From the pulsar mass function fx(M) = 11.7 +/- 0.2 solar masses and the measured eclipse half-angle theta(e) = 29.7 +/- 1.3 deg, we infer that the stellar companion is a supergiant of spectral class B0-B6. If the companion can be identified and its orbital velocity measured, the neutron star mass can be constrained. Both intrinsic spin-up and spin-down of the pulsar were measured during our observation.

  10. Orbital period variability in the eclipsing pulsar binary PSR B1957+20: Evidence for a tidally powered star

    NASA Technical Reports Server (NTRS)

    Applegate, James H.; Shaham, Jacob

    1994-01-01

    Recent observations indicate that the eclipsing pulsar binary PSR B1957+20 undergoes alternating epochs of orbital period increase and decrease. We apply a model developed to explain orbital period changes of alternating sign in other binaries to the PSR B1957+20 system and find that it fits the pulsars observations well. The novel feature of the PSR B1957+20 system is that the energy flow in the companion needed to power the orbital period change mechanism can be supplied by tidal dissipation, making the companion the first identified tidally powered star. The flow of energy in the companion drives magnetic activity, which underlies the observed orbital period variations. The magnetic activity and the wind driven by the pulsar irradiation results in a torque on the spin of the companion. This torque holds the companion out of synchronous rotation, causing tidal dissipation of energy. We propose that the progenitor had a approximately 2 hr orbital period and a companion mass of 0.1-0.2 solar mass, and the system is evolving to longer orbital periods by mass and angular momentum loss on a timescale of 10(exp 8) yr.

  11. X-ray observations of black widow pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentile, P. A.; McLaughlin, M. A.; Roberts, M. S. E.

    2014-03-10

    We describe the first X-ray observations of five short orbital period (P{sub B} < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124–3653, J1810+1744, and J2256–1024—are 'black-widow' pulsars, with degenerate companions of mass <<0.1 M {sub ☉}, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing 'redback' with a near Roche-lobe filling ∼0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256–1024, show significant orbital variability while PSR J1124–3653 shows marginal orbital variability.more » The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038.« less

  12. X-RAY SPECTROSCOPY OF THE HIGH-MASS X-RAY BINARY PULSAR CENTAURUS X-3 OVER ITS BINARY ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, Sachindra; Ali, Zulfikar; Paul, Biswajit, E-mail: snaik@prl.res.in

    2011-08-20

    We present a comprehensive spectral analysis of the high-mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as {approx}40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high-energy cutoff and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by themore » presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2-3 with a significant increase in the line equivalent widths. However, the continuum flux at the corresponding orbital phase is estimated to be lesser by more than an order of magnitude. Similarities in the changes in the iron line flux and equivalent widths during the dips and eclipse segments suggest that the dipping activity in Cen X-3 is caused by an obscuration of the neutron star by dense matter, probably structures in the outer region of the accretion disk, as in the case of dipping low-mass X-ray binaries.« less

  13. HST images of the eclipsing pulsar B1957+20

    NASA Technical Reports Server (NTRS)

    Fruchter, Andrew S.; Bookbinder, Jay; Bailyn, Charles D.

    1995-01-01

    We have obtained images of the eclipsing pulsar binary PSR B1957+20 using the Planetary Camera of the Hubble Space Telescope (HST). The high spatial resolution of this instrument has allowed us to separate the pulsar system from a nearby background star which has confounded ground-based observations of this system near optical minimum. Our images limit the temperature of the backside of the companion to T less than or approximately = 2800 K, about a factor of 2 less than the average temperature of the side of the companion facing the pulsar, and provide a marginal detection of the companion at optical minimum. The magnitude of this detection is consistent with previous work which suggests that the companion nearly fills its Roche lobe and is supported through tidal dissipation.

  14. Timing and searching millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2010-04-01

    Timing the dozen pulsars discovered in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution). We also request time for performing observations for a new deeper than ever search for millisecond pulsars in a subset of suitable clusters. This revamped search (as well as the requested timing observations) will exploit the new back-ends (APSR and DFB4) now available at Parkes.

  15. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications formore » models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.« less

  16. Timing and searching millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew

    2009-10-01

    Timing the dozen pulsars discovered in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution). We also request time for performing pilot observations for a new deeper than ever search for millisecond pulsars in a subset of suitable clusters. This revamped search (as well as the requested timing observations) will exploit the new back-ends (APSR and DFB4) now available at Parkes.

  17. The High Time Resolution Universe pulsar survey - X. Discovery of four millisecond pulsars and updated timing solutions of a further 12

    DOE PAGES

    Ng, C.; Bailes, M.; Bates, S. D.; ...

    2014-02-15

    Here, we report on the discovery of four millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) pulsar survey being conducted at the Parkes 64 m radio telescope. All four MSPs are in binary systems and are likely to have white dwarf companions. Additionally, we present updated timing solutions for 12 previously published HTRU MSPs, revealing new observational parameters such as five proper motion measurements and significant temporal dispersion measure variations in PSR J1017-7156. We discuss the case of PSR J1801-3210, which shows no significant period derivativemore » $$\\dot{P}$$ after four years of timing data. Our best-fitting solution shows a $$\\dot{P}$$ of the order of 10 -23, an extremely small number compared to that of a typical MSP. But, it is likely that the pulsar lies beyond the Galactic Centre, and an unremarkable intrinsic $$\\dot{P}$$ is reduced to close to zero by the Galactic potential acceleration. Furthermore, we highlight the potential to employ PSR J1801-3210 in the strong equivalence principle test due to its wide and circular orbit. In a broader comparison with the known MSP population, we suggest a correlation between higher mass functions and the presence of eclipses in ‘very low mass binary pulsars’, implying that eclipses are observed in systems with high orbital inclinations. We also suggest that the distribution of the total mass of binary systems is inversely related to the Galactic height distribution. Finally, we report on the first detection of PSRs J1543-5149 and J1811-2404 as gamma-ray pulsars.« less

  18. How I Learned to Stop Worrying and Love Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell Cassady

    Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby producing sinusoidal variations in perceived brightness as they orbit. These nascent eclipsing binaries are embedded in the hearts of star-forming emission nebulae, and therefore provide a unique snapshot into the formation and evolution of massive binaries and stellar nurseries. We next examine a large sample of B-type eclipsing binaries with intermediate orbital periods. To achieve such a task, we develop an automated pipeline to classify the eclipsing binaries, measure their physical properties from the observed light curves, and recover the intrinsic binary statistics by correcting for selection effects. We find the population of massive binaries at intermediate separations differ from those orbiting in close proximity. Close massive binaries favor small eccentricities and have correlated component masses, demonstrating they coevolved via competitive accretion during their formation in the circumbinary disk. Meanwhile, B-type binaries at slightly wider separations are born with large eccentricities and are weighted toward extreme mass ratios, indicating the components formed relatively independently and subsequently evolved to their current configurations via dynamical interactions. By using eclipsing binaries as accurate age indicators, we also reveal that the binary orbital eccentricities and the line-of-sight dust extinctions are anticorrelated with respect to time. These empirical relations provide robust constraints for tidal evolution in massive binaries and the evolution of the dust content in their surrounding environments. Finally, we compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, lucky imaging, high-contrast photometry, and common proper motion. We combine the samples from the various surveys and correct for their respective selection effects to determine a comprehensive nature of the intrinsic binary statistics of massive stars. We find the probability distributions of primary mass, secondary mass, orbital period, and orbital eccentricity are all interrelated. These updated multiplicity statistics imply a greater frequency of low-mass X-ray binaries, millisecond pulsars, and Type Ia supernovae than previously predicted.

  19. EVOLUTION OF TRANSIENT LOW-MASS X-RAY BINARIES TO REDBACK MILLISECOND PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn

    2015-11-20

    Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that themore » abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.« less

  20. The High Time Resolution Universe Pulsar Survey - XII. Galactic plane acceleration search and the discovery of 60 pulsars

    NASA Astrophysics Data System (ADS)

    Ng, C.; Champion, D. J.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B. W.; van Straten, W.; Tiburzi, C.; Eatough, R. P.; Lyne, A. G.

    2015-07-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ≈0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244-6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09 and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.

  1. Parkes radio searches of Fermi gamma-ray sources and millisecond pulsar discoveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camilo, F.; Kerr, M.; Ray, P. S.

    In a search with the Parkes radio telescope of 56 unidentified Fermi-Large Area Telescope (LAT) gamma-ray sources, we have detected 11 millisecond pulsars (MSPs), 10 of them discoveries, of which five were reported by Kerr et al. We did not detect radio pulsations from six other pulsars now known in these sources. We also describe the completed survey, which included multiple observations of many targets conducted to minimize the impact of interstellar scintillation, acceleration effects in binary systems, and eclipses. We consider that 23 of the 39 remaining sources may still be viable pulsar candidates. Furthermore, we present timing solutions and polarimetry for five of the MSPs and gamma-ray pulsations for PSR J1903–7051 (pulsations for five others were reported in the second Fermi-LAT catalog of gamma-ray pulsars). Two of the new MSPs are isolated and five are inmore » $$\\gt 1$$ day circular orbits with 0.2–0.3 $${M}_{\\odot }$$ presumed white dwarf companions. PSR J0955–6150, in a 24 day orbit with a $$\\approx 0.25$$ $${M}_{\\odot }$$ companion but eccentricity of 0.11, belongs to a recently identified class of eccentric MSPs. PSR J1036–8317 is in an 8 hr binary with a $$\\gt 0.14$$ $${M}_{\\odot }$$ companion that is probably a white dwarf. PSR J1946–5403 is in a 3 hr orbit with a $$\\gt 0.02$$ $${M}_{\\odot }$$ companion with no evidence of radio eclipses.« less

  2. Parkes radio searches of Fermi gamma-ray sources and millisecond pulsar discoveries

    DOE PAGES

    Camilo, F.; Kerr, M.; Ray, P. S.; ...

    2015-09-02

    In a search with the Parkes radio telescope of 56 unidentified Fermi-Large Area Telescope (LAT) gamma-ray sources, we have detected 11 millisecond pulsars (MSPs), 10 of them discoveries, of which five were reported by Kerr et al. We did not detect radio pulsations from six other pulsars now known in these sources. We also describe the completed survey, which included multiple observations of many targets conducted to minimize the impact of interstellar scintillation, acceleration effects in binary systems, and eclipses. We consider that 23 of the 39 remaining sources may still be viable pulsar candidates. Furthermore, we present timing solutions and polarimetry for five of the MSPs and gamma-ray pulsations for PSR J1903–7051 (pulsations for five others were reported in the second Fermi-LAT catalog of gamma-ray pulsars). Two of the new MSPs are isolated and five are inmore » $$\\gt 1$$ day circular orbits with 0.2–0.3 $${M}_{\\odot }$$ presumed white dwarf companions. PSR J0955–6150, in a 24 day orbit with a $$\\approx 0.25$$ $${M}_{\\odot }$$ companion but eccentricity of 0.11, belongs to a recently identified class of eccentric MSPs. PSR J1036–8317 is in an 8 hr binary with a $$\\gt 0.14$$ $${M}_{\\odot }$$ companion that is probably a white dwarf. PSR J1946–5403 is in a 3 hr orbit with a $$\\gt 0.02$$ $${M}_{\\odot }$$ companion with no evidence of radio eclipses.« less

  3. Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary.

    PubMed

    Main, Robert; Yang, I-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H

    2018-05-01

    Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as 'interstellar lenses' to localize pulsar emission regions 1,2 . Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts 3-5 . As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants 6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the 'black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow 7-9 . During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses 10 .

  4. Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary

    NASA Astrophysics Data System (ADS)

    Main, Robert; Yang, I.-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H.

    2018-05-01

    Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as `interstellar lenses' to localize pulsar emission regions1,2. Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts3-5. As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the `black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow7-9. During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses10.

  5. A Study of Cen X-3 as Seen by INTEGRAL

    NASA Astrophysics Data System (ADS)

    La Barbera, A.; Baushev, A.; Ferrigno, C.; Piraino, S.; Santangelo, A.; Segreto, A.; Orlandini, M.; Kretschmar, P.; Kreykenbohm, I.; Wilms, J.; Staubert, R.; Coburn, W.; Heindl, W. A.

    2004-10-01

    We present a preliminary analysis of 14 observa- tions (Science Windows SCW) of the eclipsing High Mass X ray Binary Pulsar Cen X 3 taken during the Galactic Plane Scan (GPS) with INTEGRAL. The source was detected in 4 SCWs by JEM-X for a total exposure time of 8.7 ksec and in 11 SCWs by ISGRI for a total exposure time of 23.8 ksec. The study of the pulse profile is reported. The 10 70 keV spec- trum is also described. The results are compared with those from previous X ray missions. Key words: pulsars, individual: Cen X 3; stars: neu- tron stars; X rays: binaries.

  6. 2FGL J1311.7-3429 JOINS THE BLACK WIDOW CLUB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romani, Roger W.

    2012-08-01

    We have found an optical/X-ray counterpart candidate for the bright, but presently unidentified, Fermi source 2FGL J1311.7-3429. This counterpart undergoes large-amplitude quasi-sinusoidal optical modulation with a 1.56 hr (5626 s) period. The modulated flux is blue at peak, with T{sub eff} Almost-Equal-To 14, 000 K, and redder at minimum. Superimposed on this variation are dramatic optical flares. Archival X-ray data suggest modest binary modulation, but no eclipse. With the {gamma}-ray properties, this appears to be another black-widow-type millisecond pulsar. If confirmation pulses can be found in the GeV data, this binary will have the shortest orbital period of any knownmore » spin-powered pulsar. The flares may be magnetic events on the rapidly rotating companion or shocks in the companion-stripping wind. While this may be a radio-quiet millisecond pulsar, we show that such objects are a small subset of the {gamma}-ray pulsar population.« less

  7. PRS J0045-7319: A massive SMC binary

    NASA Astrophysics Data System (ADS)

    Bell, J. F.

    1994-04-01

    The existence of X-ray binary systems shows that neutron stars are found in orbit around massive stars. Before these systems enter the mass accretion phase, one would expect the neutron star might be detectable as a radio pulsar. The discovery of PSR B1259-63 by Johnston et al. (1992, Astrophys. J. Lett, 387, L37), which is in orbit around the Be star SS2883, provided the first evidence for such systems. PSR J0045-7319 was discovered in a systematic search of the Magellanic Clouds for radio pulsars by McConnell et al. (1991, Mon. Not. R. Astron. Soc., 249, 645). Its dispersion measure of 105 pc/cu cm assures its association with the Small Magellanic Cloud making it the only known pulsar in the SMC. The discovery of regular Doppler shifts of the pulse period of PSR J0045-7319 implies that the pulsar is in a highly eccentric 51-day binary orbit, making it the most luminous binary pulsar known (Kaspi et al., 1993, submitted to Astrophys. J.). The observed Keplerian orbital parameters show that the companion mass is greater the 4 solar mass. Optical observations of the field reveal a 16th magnitude, 11 solar mass, B1 main-sequence star, which we conclude is the pulsar's companion. The timing observations imply that this pulsar has not been spun up by accretion from the companion. This suggests that, like the PSR B1259-63 binary system, the PSR J0045-7319 system is a progenitor of an X-ray binary system. At periastron the pulsar approaches to within six stellar radii of the companion.

  8. A RADIO PULSAR SEARCH OF THE {gamma}-RAY BINARIES LS I +61 303 AND LS 5039

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virginia McSwain, M.; Ray, Paul S.; Ransom, Scott M.

    2011-09-01

    LS I +61 303 and LS 5039 are exceptionally rare examples of high-mass X-ray binaries with MeV-TeV emission, making them two of only five known '{gamma}-ray binaries'. There has been disagreement within the literature over whether these systems are microquasars, with stellar winds accreting onto a compact object to produce high energy emission and relativistic jets, or whether their emission properties might be better explained by a relativistic pulsar wind colliding with the stellar wind. Here we present an attempt to detect radio pulsars in both systems with the Green Bank Telescope. The upper limits of flux density are betweenmore » 4.1 and 14.5 {mu}Jy, and we discuss the null results of the search. Our spherically symmetric model of the wind of LS 5039 demonstrates that any pulsar emission will be strongly absorbed by the dense wind unless there is an evacuated region formed by a relativistic colliding wind shock. LS I +61 303 contains a rapidly rotating Be star whose wind is concentrated near the stellar equator. As long as the pulsar is not eclipsed by the circumstellar disk or viewed through the densest wind regions, detecting pulsed emission may be possible during part of the orbit.« less

  9. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  10. Suzaku observation of the eclipsing high mass X-ray binary pulsar XTE J1855-026

    NASA Astrophysics Data System (ADS)

    Devasia, Jincy; Paul, Biswajit

    2018-02-01

    We report results from analysis performed on an eclipsing supergiant high mass X-ray binary pulsar XTE J1855-026 observed with the X-ray Imaging Spectrometer (XIS) on-board Suzaku Observatory in April 2015. Suzaku observed this source for a total effective exposure of ˜ 87 ks just before an eclipse. Pulsations are clearly observed and the pulse profiles of XTE J1855-026 did not show significant energy dependence during this observation consistent with previous reports. The time averaged energy spectrum of XTE J1855-026 in the 1.0-10.5 keV energy range can be well fitted with a partial covering power law model modified with interstellar absorption along with a black-body component for soft excess and a gaussian for iron fluorescence line emision. The hardness ratio evolution during this observation indicated significant absorption of soft X-rays in some segments of the observation. For better understanding of the reason behind this, we performed time-resolved spectroscopy in the 2.5-10.5 keV energy band which revealed significant variations in the spectral parameters, especially the hydrogen column density and iron line equivalent width with flux. The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments.

  11. GMRT discovery of PSR J1544+4937: An eclipsing black-widow pulsar identified with a Fermi-LAT source

    DOE PAGES

    Bhattacharyya, B.; Roy, J.; Ray, P. S.; ...

    2013-07-29

    Using the Giant Metrewave Radio Telescope, we performed deep observations to search for radio pulsations in the directions of unidentified Fermi-Large Area Telescope γ-ray sources. We report the discovery of an eclipsing black-widow millisecond pulsar, PSR J1544+4937, identified with the uncataloged γ-ray source FERMI J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hr compact circular orbit with a very low mass companion (Mc > 0.017M ⊙). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in the eclipse ingressmore » phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Finally, using the radio timing ephemeris we were able to detect γ-ray pulsations from this pulsar, confirming it as the source powering the γ-ray emission.« less

  12. GMRT DISCOVERY OF PSR J1544+4937: AN ECLIPSING BLACK-WIDOW PULSAR IDENTIFIED WITH A FERMI-LAT SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, B.; Roy, J.; Gupta, Y.

    2013-08-10

    Using the Giant Metrewave Radio Telescope, we performed deep observations to search for radio pulsations in the directions of unidentified Fermi-Large Area Telescope {gamma}-ray sources. We report the discovery of an eclipsing black-widow millisecond pulsar, PSR J1544+4937, identified with the uncataloged {gamma}-ray source FERMI J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hr compact circular orbit with a very low mass companion (M{sub c} > 0.017M{sub Sun }). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in themore » eclipse ingress phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Using the radio timing ephemeris we were able to detect {gamma}-ray pulsations from this pulsar, confirming it as the source powering the {gamma}-ray emission.« less

  13. Photometry of AM Herculis - A slow optical pulsar

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W. C.; Krzeminski, W.

    1978-01-01

    Multicolor photometry of the X-ray binary AM Her suggests that the red component of the optical flux is closely related to the source of optical circular polarization in the system. It is concluded from the periodic modulation of flux in the U through R bands, which is particularly well-defined when plotted as color curves, that the primary and secondary minima are neither eclipses by a secondary star nor eclipses by a hot spot. It is suggested that the primary minimum in the visual light curve is the eclipse of a region of intense optical emission in the magnetic field near the surface of a degenerate dwarf by that dwarf itself.

  14. A NEW CLASS OF NASCENT ECLIPSING BINARIES WITH EXTREME MASS RATIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Maxwell; Stefano, Rosanne Di, E-mail: mmoe@cfa.harvard.edu

    2015-03-10

    Early B-type main-sequence (MS) stars (M {sub 1} ≈ 5-16 M {sub ☉}) with closely orbiting low-mass stellar companions (q = M {sub 2}/M {sub 1} < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-massmore » pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI {sub refl} ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M {sub 2} ≈ 0.8-2.4 M {sub ☉} (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI {sub 1} = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.« less

  15. Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system.

    PubMed

    Maxted, Pierre F L; Serenelli, Aldo M; Miglio, Andrea; Marsh, Thomas R; Heber, Ulrich; Dhillon, Vikram S; Littlefair, Stuart; Copperwheat, Chris; Smalley, Barry; Breedt, Elmé; Schaffenroth, Veronika

    2013-06-27

    Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breton, R. P.; Kaspi, V. M.; McLaughlin, M. A.

    The double pulsar PSR J0737-3039A/B displays short, 30 s eclipses that arise around conjunction when the radio waves emitted by pulsar A are absorbed as they propagate through the magnetosphere of its companion pulsar B. These eclipses offer a unique opportunity to directly probe the magnetospheric structure and the plasma properties of pulsar B. We have performed a comprehensive analysis of the eclipse phenomenology using multi-frequency radio observations obtained with the Green Bank Telescope. We have characterized the periodic flux modulations previously discovered at 820 MHz by McLaughlin et al. and investigated the radio frequency dependence of the duration andmore » depth of the eclipses. Based on their weak radio frequency evolution, we conclude that the plasma in pulsar B's magnetosphere requires a large multiplicity factor ({approx}10{sup 5}). We also found that, as expected, flux modulations are present at all radio frequencies in which eclipses can be detected. Their complex behavior is consistent with the confinement of the absorbing plasma in the dipolar magnetic field of pulsar B as suggested by Lyutikov and Thompson and such a geometric connection explains that the observed periodicity is harmonically related to pulsar B's spin frequency. We observe that the eclipses require a sharp transition region beyond which the plasma density drops off abruptly. Such a region defines a plasmasphere that would be well inside the magnetospheric boundary of an undisturbed pulsar. It is also two times smaller than the expected standoff radius calculated using the balance of the wind pressure from pulsar A and the nominally estimated magnetic pressure of pulsar B.« less

  17. Pulsars as Calibration Tools and X-Ray Observations of Spider Pulsars

    NASA Astrophysics Data System (ADS)

    Gentile, Peter Anthony

    We present the polarization pulse profiles for 29 pulsars observed with the Arecibo Observatory by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) timing project at 2.1 GHz, 1.4 GHz, and 430 MHz. These profiles represent the most sensitive polarimetric millisecond pulsar profiles to date, revealing the existence of microcomponents (that is, pulse components with peak intensities much lower than the total pulse peak intensity). Although microcomponents have been detected in some pulsars previously, we are able to detect new microcomponents for PSRs B1937+21, J1713+0747, and J2234+0944. We also present rotation measures for 28 of these pulsars, determined independently at different observation frequencies and epochs, and find the Galactic magnetic fields derived from these rotation measures to be consistent with current models. These polarization profiles were made using measurement equation template matching, which allows us to generate the polarimetric response of the Arecibo Observatory on an epoch-by-epoch basis. We use this method to describe its time variability, and find that the polarimetric responses of the Arecibo Observatory's 1.4 and 2.1 GHz receivers varies significantly with time. We then describe the first X-ray observations of five short orbital period (PB < 1 day), gamma-ray emitting, binary millisecond pulsars. Four of these--PSRs J0023+0923, J1124-3653, J1810+1744, and J2256-1024--are "black-widow" pulsars, with degenerate companions of mass 0.1 solar mass, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing "redback" with a near Roche-lobe filling 0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256-1024, show significant orbital variability while PSR J1124-3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038. We also describe X-Ray observations of three "redback" pulsars taken with the XMM-Newton X-Ray telescope, and cover at least one orbit for each source. We had previously analyzed data for one of these sources, PSR J2215+5135, taken with the Chandra X-Ray Observatory . These new observations also show orbital variability in PSR J2215+5135's X-Ray lightcurve, including an X-Ray minimum near superior conjunction, and the increased sensitivity allows us to see two clear features away from superior conjunction. For the other two sources, PSRs J1622-0315 and J1908+2105, we do not detect enough counts to constrain the X-Ray orbital variability. The spectra for each of these sources showed significant hard X-Ray emission, and were therefore not well described by thermal models. We report power-law indices from these fits in the range of 1.28 to 2.0. These spectral properties are consistent with intrabinary shock emission.

  18. Relativistic spin precession in the double pulsar.

    PubMed

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-04

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  19. Pulsar searching and timing with the Parkes telescope

    NASA Astrophysics Data System (ADS)

    Ng, C. W. Y.

    2014-11-01

    Pulsars are highly magnetised, rapidly rotating neutron stars that radiate a beam of coherent radio emission from their magnetic poles. An introduction to the pulsar phenomenology is presented in Chapter 1 of this thesis. The extreme conditions found in and around such compact objects make pulsars fantastic natural laboratories, as their strong gravitational fields provide exclusive insights to a rich variety of fundamental physics and astronomy. The discovery of pulsars is therefore a gateway to new science. An overview of the standard pulsar searching technique is described in Chapter 2, as well as a discussion on notable pulsar searching efforts undertaken thus far with various telescopes. The High Time Resolution Universe (HTRU) Pulsar Survey conducted with the 64-m Parkes radio telescope in Australia forms the bulk of this PhD. In particular, the author has led the search effort of the HTRU low-latitude Galactic plane project part which is introduced in Chapter 3. We discuss the computational challenges arising from the processing of the petabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including the potential pulsar-black hole binaries. We show that under a linear acceleration approximation, a ratio of ~0.1 of data length over orbital period results in the highest effectiveness for this search algorithm. Chapter 4 presents the initial results from the HTRU low-latitude Galactic plane survey. From the 37 per cent of data processed thus far, we have re-detected 348 previously known pulsars and discovered a further 47 pulsars. Two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar (MSP) with a heavy white dwarf companion while its short spin period of 5 ms indicates contradictory full-recycling. PSR J1757-27 is likely to be an isolated pulsar with an unexpectedly long spin period of 17 ms. In addition, PSR J1847-0427 is likely to be an aligned rotator, and PSR J1759-24 exhibits transient emission property. We compare this newly-discovered pulsar population to that previously known, and we suggest that our current pulsar detection yield is as expected from population synthesis. The discovery of pulsars is just a first step and, in fact, the most interesting science can usually only be revealed when a follow-up timing campaign is carried out. Chapter 5 focuses on the timing of 16 MSPs discovered by the HTRU. We reveal new observational parameters such as five proper motion measurements and significant temporal dispersion measure variations in PSR J1017-7156. We discuss the case of PSR J1801-3210, which shows no significant period derivative after four years of timing data. Our best-fit solution shows a period derivative of the order of 10 to the power -23, an extremely small number compared to that of a typical MSP. However, it is likely that the pulsar lies beyond the Galactic Centre, and an unremarkable intrinsic period derivative is reduced to close to zero by the Galactic potential acceleration. Furthermore, we highlight the potential to employ PSR J1801-3210 in the strong equivalence principle test due to its wide and circular orbit. In a broader comparison with the known MSP population, we suggest a correlation between higher mass functions and the presence of eclipses in 'very low-mass binary pulsars', implying that eclipses are observed in systems with high orbital inclinations. We also suggest that the distribution of the total mass of binary systems is inversely-related to the Galactic height distribution. We report on the first detection of PSRs J1543-5149 and J1811-2404 as gamma-ray pulsars. Further discussion and conclusions arise from the pulsar searching and timing efforts conducted with the HTRU survey can be found in Chapter 6. Finally, this thesis is closed with a consideration of future work. We examine the prospects of continuing data processing and follow-up timing of discoveries from the HTRU Galactic plane survey. We also suggest potential improvements in the search algorithms aiming at increasing pulsar detectability.

  20. Eclipsing cataclysmic variables. Deep eclipses in H0928+501. YY Draconis, the whirling dervish. New x ray pulsar candidates from HEAO-1

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph

    1993-01-01

    The status report covering the period from 1 June 1992 to 31 May 1993 is included. Areas of research include: (1) eclipsing cataclysmic variables; (2) deep eclipses in H0928+501; (3) YY Draconis, the Whirling Dervish; and (4) new x ray pulsar candidates from HEAO-1.

  1. Multiwavelength Observations of the Redback Millisecond Pulsar J1048+2339

    DOE PAGES

    Deneva, J. S.; Ray, P. S.; Camilo, F.; ...

    2016-05-26

    In this paper, we report on radio timing and multiwavelength observations of the 4.66 ms redback pulsar J1048+2339, which was discovered in an Arecibo search targeting the Fermi-Large Area Telescope source 3FGL J1048.6+2338. Two years of timing allowed us to derive precise astrometric and orbital parameters for the pulsar. PSR J1048+2339 is in a 6 hr binary and exhibits radio eclipses over half the orbital period and rapid orbital period variations. The companion has a minimum mass of 0.3 M ⊙, and we have identified a V ~ 20 variable optical counterpart in data from several surveys. The phasing ofmore » its ~1 mag modulation at the orbital period suggests highly efficient and asymmetric heating by the pulsar wind, which may be due to an intrabinary shock that is distorted near the companion, or to the companion's magnetic field channeling the pulsar wind to specific locations on its surface. Finally, we also present gamma-ray spectral analysis of the source and preliminary results from searches for gamma-ray pulsations using the radio ephemeris.« less

  2. Discovery of a Second Millesecond Accreting Pulsar: XTE J1751-305

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Swank, J. H.; Strohmayer, T. E.; intZand, J. J. M.; Marshall, F. E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery by the RXTE PCA of a second transient accreting millisecond pulsar, XTE J1751-305, during regular monitoring observations of the galactic bulge region. The pulsar has a spin frequency of 435 Hz, making it one of the fastest pulsars. The pulsations contain the signature of orbital Doppler modulation, which implies an orbital period of 42 minutes, the shortest orbital period of any known radio or X-ray millisecond pulsar. The mass function, f(sub x) = (1.278 +/- 0.003) x 10 (exp -6) solar mass, yields a minimum mass for the companion of between 0.013 and 0.0017 solar mass depending on the mass of the neutron star. No eclipses were detected. A previous X-ray outburst in June, 1998, was discovered in archival All-Sky Monitor data. Assuming mass transfer in this binary system is driven by gravitational radiation, we constrain the orbital inclination to be in the range 30 deg-85 deg and the companion mass to be 0.013-0.035 solar mass. The companion is most likely a heated helium dwarf. We also present results from the Chandra HRC-S observations which provide the best known position of XTE J1751-305.

  3. Timing of Five PALFA-discovered Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Stovall, K.; Allen, B.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Ferdman, R.; Freire, P. C. C.; Hessels, J. W. T.; Jenet, F.; Kaplan, D. L.; Karako-Argaman, C.; Kaspi, V. M.; Knispel, B.; Kotulla, R.; Lazarus, P.; Lee, K. J.; van Leeuwen, J.; Lynch, R.; Lyne, A. G.; Madsen, E.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Scholz, P.; Siemens, X.; Stairs, I. H.; Stappers, B. W.; Swiggum, J.; Zhu, W. W.; Venkataraman, A.

    2016-12-01

    We report the discovery and timing results for five millisecond pulsars (MSPs) from the Arecibo PALFA survey: PSRs J1906+0055, J1914+0659, J1933+1726, J1938+2516, and J1957+2516. Timing observations of the five pulsars were conducted with the Arecibo and Lovell telescopes for time spans ranging from 1.5 to 3.3 years. All of the MSPs except one (PSR J1914+0659) are in binary systems with low eccentricities. PSR J1957+2516 is likely a redback pulsar, with a ˜ 0.1 {M}⊙ companion and possible eclipses that last ˜10% of the orbit. The position of PSR J1957+2516 is also coincident with a near-infrared source. All five MSPs are distant (\\gt 3.1 kpc) as determined from their dispersion measures, and none of them show evidence of γ-ray pulsations in a fold of Fermi Gamma-Ray Space Telescope data. These five MSPs bring the total number of MSPs discovered by the PALFA survey to 26 and further demonstrate the power of this survey in finding distant, highly dispersed MSPs deep in the Galactic plane.

  4. The atmospheric structures of the companion stars of eclipsing binary x ray sources

    NASA Technical Reports Server (NTRS)

    Clark, George W.

    1992-01-01

    This investigation was aimed at determining structural features of the atmospheres of the massive early-type companion stars of eclipse x-ray pulsars by measurement of the attenuation of the x-ray spectrum during eclipse transitions and in deep eclipse. Several extended visits were made to ISAS in Japan by G. Clark and his graduate student, Jonathan Woo to coordinate the Ginga observations and preliminary data reduction, and to work with the Japanese host scientist, Fumiaki Nagase, in the interpretation of the data. At MIT extensive developments were made in software systems for data interpretation. In particular, a Monte Carlo code was developed for a 3-D simulation of the propagation of x-rays from the neutron star through the ionized atmosphere of the companion. With this code it was possible to determine the spectrum of Compton-scattered x-rays in deep eclipse and to subtract that component from the observed spectra, thereby isolating the software component that is attributable in large measure to x-rays that have been scattered by interstellar grains. This research has culminated in the submission of paper to the Astrophysical Journal on the determination of properties of the atmosphere of QV Nor, the BOI companion of 4U 1538-52, and the properties of interstellar dust grains along the line of sight from the source. The latter results were an unanticipated byproduct of the investigation. Data from Ginga observations of the Magellanic binaries SMC X-1 and LMC X-4 are currently under investigation as the PhD thesis project of Jonathan Woo who anticipated completion in the spring of 1993.

  5. The low-frequency radio eclipses of the black widow pulsar J1810+1744

    NASA Astrophysics Data System (ADS)

    Polzin, E. J.; Breton, R. P.; Clarke, A. O.; Kondratiev, V. I.; Stappers, B. W.; Hessels, J. W. T.; Bassa, C. G.; Broderick, J. W.; Grießmeier, J.-M.; Sobey, C.; ter Veen, S.; van Leeuwen, J.; Weltevrede, P.

    2018-05-01

    We have observed and analysed the eclipses of the black widow pulsar J1810+1744 at low radio frequencies. Using LOw-Frequency ARray (LOFAR) and Westerbork Synthesis Radio Telescope observations between 2011 and 2015, we have measured variations in flux density, dispersion measure, and scattering around eclipses. High-time resolution, simultaneous beamformed, and interferometric imaging LOFAR observations show concurrent disappearance of pulsations and total flux from the source during the eclipses, with a 3σ upper limit of 36 mJy ( < 10 per cent of the pulsar's averaged out-of-eclipse flux density). The dispersion measure variations are highly asymmetric, suggesting a tail of material swept back due to orbital motion. The egress deviations are variable on time-scales shorter than the 3.6 h orbital period and are indicative of a clumpy medium. Additional pulse broadening detected during egress is typically < 20 per cent of the pulsar's spin period, showing no evidence of scattering the pulses beyond detectability in the beamformed data. The eclipses, lasting ˜ 13 per cent of the orbit at 149 MHz, are shown to be frequency-dependent with total duration scaling as ∝ ν-0.41 ± 0.03. The results are discussed in the context of the physical parameters of the system, and an examination of eclipse mechanisms reveals cyclotron-synchrotron absorption as the most likely primary cause, although non-linear scattering mechanisms cannot be quantitatively ruled out. The inferred mass-loss rate is a similar order of magnitude to the mean rate required to fully evaporate the companion in a Hubble time.

  6. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    PubMed

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  7. Distance Estimation for Eclipsing X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Paul, B.; Raichur, H.

    2006-06-01

    Recent interest in eclipsing binaries as distance indicators leads naturally into direct distance estimation for X-ray pulsars by combination of pulse arrival times, radial velocities, X-ray eclipse duration, and spectra. Optical light curves may help in some cases by measuring tides and irradiation, although dynamical tides in eccentric systems limit light curve usefulness. Pulse arrivals give an absolute scale and also orbit shape and orientation, which may be poorly known from radial velocities. For example, orbital eccentricity of 0.09 is known from Vela X1 pulse arrivals, although optical velocities are too noisy to measure eccentricity accurately. Combined pulse and optical velocity data give mass information. A lower limit to sin i from eclipse duration sets a lower limit to R2, and for the general eccentric case. A mass ratio sets lobe size and thus an upper limit to R2, so boxing R2 within a narrow range may be possible. T2 can be assessed from spectra so EB distance estimation can work if magnitude is known in one or more standard bands such as B or V. Realistic distance uncertainties are explored. In regard to new observations, Vela X-1 was observed by RXTE over about nine days in January 2005, including an eclipse of about 3.5 days. We extracted the light curves with time resolution 0.125 s. Spin period measurements by the Chi square criterion show Doppler variation with orbital phase and mean spin period 283.5 s. Pulse profiles of that period were averaged in sets of 10 at 138 phases. Cross correlation for the first 40 pulses show the expected Doppler arrival time variation. As the Vela X-1 pulse period is large compared to light travel time across the orbit, the pulses are already phase connected. Support is by U.S. National Science Foundation grant 0307561.

  8. 1974: the discovery of the first binary pulsar

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    2015-06-01

    The 1974 discovery, by Russell A Hulse and Joseph H Taylor, of the first binary pulsar, PSR B1913+16, opened up new possibilities for the study of relativistic gravity. PSR B1913+16, as well as several other binary pulsars, provided direct observational proof that gravity propagates at the velocity of light and has a quadrupolar structure. Binary pulsars also provided accurate tests of the strong-field regime of relativistic gravity. General relativity has passed all of the binary pulsar tests with flying colors. The discovery of binary pulsars also had very important consequences for astrophysics, leading to accurate measurement of neutron star masses, improved understanding of the possible evolution scenarios for the co-evolution of binary stars, and proof of the existence of binary neutron stars emitting gravitational waves for hundreds of millions of years, before coalescing in catastrophic events radiating intense gravitational wave signals, and probably also leading to important emissions of electromagnetic radiation and neutrinos. This article reviews the history of the discovery of the first binary pulsar, and describes both its immediate impact and its longer-term effect on theoretical and experimental studies of relativistic gravity.

  9. Binary pulsar evolution: unveiled links and new species

    NASA Astrophysics Data System (ADS)

    Possenti, Andrea

    2013-03-01

    In the last years a series of blind and/or targeted pulsar searches led to almost triple the number of known binary pulsars in the galactic field with respect to a decade ago. The focus will be on few outliers, which are emerging from the average properties of the enlarged binary pulsar population. Some of them may represent the long sought missing links between two kinds of neutron star binaries, while others could represent the stereotype of new groups of binaries, resulting from an evolutionary path which is more exotic than those considered until recently. In particular, a new class of binaries, which can be dubbed Ultra Low Mass Binary Pulsars (ULMBPs), is emerging from recent data.

  10. Study of the eclipse region of the redback millisecond pulsar J1431-4715

    NASA Astrophysics Data System (ADS)

    Miraval Zanon, A.; Burgay, M.; Possenti, A.; Ridolfi, A.

    2018-01-01

    We report on the rotational, astrometric and orbital parameters for PSR J1431-4715, and we also present a preliminary analysis of the eclipsing region. This pulsar was discovered in the High Time Resolution Universe survey and it belongs to the class of “redback” systems. The minimum estimated mass for the companion of J1431-4715 is, indeed, 0.13 M⊙. Thanks to multi-frequency observations, obtained at the 64 m Parkes radio telescope, we note that the magnitude and the duration of the eclipse delay depend upon the observing frequency.

  11. Orbital variability of the PSR J2051-0827 binary system

    NASA Astrophysics Data System (ADS)

    Doroshenko, O.; Löhmer, O.; Kramer, M.; Jessner, A.; Wielebinski, R.; Lyne, A. G.; Lange, Ch.

    2001-11-01

    We have carried out high-precision timing measurements of the binary millisecond pulsar PSR J2051-0827 with the Effelsberg 100-m radio telescope of the Max-Planck-Institut für Radioastronomie and with the Lovell 76-m radio telescope at Jodrell Bank. The 6.5-yrs radio timing measurements have revealed a significant secular variation of the projected semi-major axis of the pulsar at a rate of dot xequiv d(a1 sin i)/dt = (-0.23+/- 0.03)x 10-12, which is probably caused by the Newtonian spin-orbit coupling in this binary system leading to a precession of the orbital plane. The required misalignment of the spin and orbital angular momenta of the companion are evidence for an asymmetric supernova explosion. We have also confirmed that the orbital period is currently decreasing at a rate of dot Pb=(-15.5 +/- 0.8)x 10-12 s s-1 and have measured second and third orbital period derivatives d2Pb/dt2=(+2.1 +/- 0.3)x 10-20: s-1 and d3Pb/dt3 =(3.6 +/- 0.6)x 10-28: s-2, which indicate a quasi-cyclic orbital period variation similar to those found in another eclipsing pulsar system, PSR B1957+20. The observed variation of the orbital parameters constrains the maximal value of the companion radius to Rc: max ~ 0.06: Rsun and implies that the companion is underfilling its Roche lobe by 50%. The derived variation in the quadrupole moment of the companion is probably caused by tidal dissipation similar to the mechanism proposed for PSR B1957+20. We conclude that the companion is at least partially non-degenerate, convective and magnetically active.

  12. The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Qian, S. B.; Wang, S. M.; Sun, L. L.; Wu, Y.; Jiang, L. Q.

    2018-03-01

    Aims: We aim to find more eclipsing multiple systems and obtain their parameters, thus increasing our understanding of multiple systems. Methods: The extraneous eclipses on the Kepler binary light curves indicating extraneous bodies were searched. The binary light curves were analyzed using the binary model, and the extraneous eclipses were studied on their periodicity and shape changes. Results: Three binaries with extraneous eclipses on the binary light curves were found and studied based on the Kepler observations. The object KIC 5255552 is an eclipsing triple system with a fast changing inner binary and an outer companion uncovered by three groups of extraneous eclipses of 862.1(±0.1) d period. The KIC 10091110 is suggested to be a double eclipsing binary system with several possible extraordinary coincidences: the two binaries share similar extremely small mass ratios (0.060(13) and 0.0564(18)), similar mean primary densities (0.3264(42) ρ⊙ and 0.3019(28) ρ⊙), and, most notably, the ratio of the two binaries' periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC 11495766 is a probable triple system with a 120.73 d period binary and (at least) one non-eclipse companion. Furthermore, very close to it in the celestial sphere, there is a blended background stellar binary of 8.3404432 d period. A first list of 25 eclipsing multiple candidates is presented, with the hope that it will be beneficial for study of eclipsing multiples.

  13. Binary and Millisecond Pulsars.

    PubMed

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  14. Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey

    NASA Astrophysics Data System (ADS)

    Knispel, B.; Eatough, R. P.; Kim, H.; Keane, E. F.; Allen, B.; Anderson, D.; Aulbert, C.; Bock, O.; Crawford, F.; Eggenstein, H.-B.; Fehrmann, H.; Hammer, D.; Kramer, M.; Lyne, A. G.; Machenschalk, B.; Miller, R. B.; Papa, M. A.; Rastawicki, D.; Sarkissian, J.; Siemens, X.; Stappers, B. W.

    2013-09-01

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of ≈17, 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop s-1. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (≈420 pc cm-3). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  15. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej

    2014-02-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levelsmore » in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.« less

  16. KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gies, D. R.; Matson, R. A.; Guo, Z.

    2015-12-15

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars amongmore » this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.« less

  17. Unique Stellar System Gives Einstein a Thumbs-Up

    NASA Astrophysics Data System (ADS)

    2008-07-01

    Taking advantage of a unique cosmic coincidence, astronomers have measured an effect predicted by Albert Einstein's theory of General Relativity in the extremely strong gravity of a pair of superdense neutron stars. The new data indicate that the famed physicist's 93-year-old theory has passed yet another test. Double Pulsar Graphic Artist's Conception of Double Pulsar System PSR J0737-3039A/B CREDIT: Daniel Cantin, DarwinDimensions, McGill University Click on image for more graphics. The scientists used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to make a four-year study of a double-star system unlike any other known in the Universe. The system is a pair of neutron stars, both of which are seen as pulsars that emit lighthouse-like beams of radio waves. "Of about 1700 known pulsars, this is the only case where two pulsars are in orbit around each other," said Rene Breton, a graduate student at McGill University in Montreal, Canada. In addition, the stars' orbital plane is aligned nearly perfectly with their line of sight to the Earth, so that one passes behind a doughnut-shaped region of ionized gas surrounding the other, eclipsing the signal from the pulsar in back. "Those eclipses are the key to making a measurement that could never be done before," Breton said. Einstein's 1915 theory predicted that, in a close system of two very massive objects, such as neutron stars, one object's gravitational tug, along with an effect of its spinning around its axis, should cause the spin axis of the other to wobble, or precess. Studies of other pulsars in binary systems had indicated that such wobbling occurred, but could not produce precise measurements of the amount of wobbling. "Measuring the amount of wobbling is what tests the details of Einstein's theory and gives a benchmark that any alternative gravitational theories must meet," said Scott Ransom of the National Radio Astronomy Observatory. The eclipses allowed the astronomers to pin down the geometry of the double-pulsar system and track changes in the orientation of the spin axis of one of them. As one pulsar's spin axis slowly moved, the pattern of signal blockages as the other passed behind it also changed. The signal from the pulsar in back is absorbed by the ionized gas in the other's magnetosphere. Pulsars, first discovered in 1967, are the "corpses" of massive stars that have exploded as supernovae. What is left after the explosion is a superdense neutron star that packs more than the mass of our Sun into the size of an average city. Beams of radio waves stream outward from the poles of the star's intense magnetic field and sweep around as the star rotates, as often as hundreds of times a second. The pair of pulsars studied with the GBT is about 1700 light-years from Earth. The average distance between the two is only about twice the distance from the Earth to the Moon. The two orbit each other in just under two and a half hours. "A system like this, with two very massive objects very close to each other, is precisely the kind of extreme 'cosmic laboratory' needed to test Einstein's prediction," said Victoria Kaspi, leader of McGill University's Pulsar Group. Theories of gravity don't differ significantly in "ordinary" regions of space such as our own Solar System. In regions of extremely strong gravity fields, such as near a pair of close, massive objects, however, differences are expected to show up. In the binary-pulsar study, General Relativity "passed the test" provided by such an extreme environment, the scientists said. "It's not quite right to say that we have now 'proven' General Relativity," Breton said. "However, so far, Einstein's theory has passed all the tests that have been conducted, including ours." Breton, Kaspi and Ransom worked with Michael Kramer of the Jodrell Bank Observatory at the University of Manchester in Great Britain; Maura McLaughlin of West Virginia University and the NRAO; Maxim Lyutikov of Purdue University and other colleagues in Canada, the U.S., France and Italy. The researchers presented their work in an article in the July 4 issue of Science. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  18. Eclipsing Pulsar Promises Clues to Crushed Matter

    NASA Image and Video Library

    2017-12-08

    NASA image release August 17, 2010 Astronomers using NASA's Rossi X-ray Timing Explorer (RXTE) have found the first fast X-ray pulsar to be eclipsed by its companion star. Further studies of this unique stellar system will shed light on some of the most compressed matter in the universe and test a key prediction of Einstein's relativity theory. Known as Swift J1749.4-2807 -- J1749 for short -- the system erupted with an X-ray outburst on April 10. During the event, RXTE observed three eclipses, detected X-ray pulses that identified the neutron star as a pulsar, and even recorded pulse variations that indicated the neutron star's orbital motion. To view a video of this pulsar go here: www.flickr.com/photos/gsfc/4901238111 To read more click here Credit: NASA/GSFC NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  19. EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knispel, B.; Kim, H.; Allen, B.

    2013-09-10

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channelsmore » and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.« less

  20. The Green Bank North Celestial Cap Pulsar Survey. III. 45 New Pulsar Timing Solutions

    NASA Astrophysics Data System (ADS)

    Lynch, Ryan S.; Swiggum, Joseph K.; Kondratiev, Vlad I.; Kaplan, David L.; Stovall, Kevin; Fonseca, Emmanuel; Roberts, Mallory S. E.; Levin, Lina; DeCesar, Megan E.; Cui, Bingyi; Cenko, S. Bradley; Gatkine, Pradip; Archibald, Anne M.; Banaszak, Shawn; Biwer, Christopher M.; Boyles, Jason; Chawla, Pragya; Dartez, Louis P.; Day, David; Ford, Anthony J.; Flanigan, Joseph; Hessels, Jason W. T.; Hinojosa, Jesus; Jenet, Fredrick A.; Karako-Argaman, Chen; Kaspi, Victoria M.; Leake, Sean; Lunsford, Grady; Martinez, José G.; Mata, Alberto; McLaughlin, Maura A.; Noori, Hind Al; Ransom, Scott M.; Rohr, Matthew D.; Siemens, Xavier; Spiewak, Renée; Stairs, Ingrid H.; van Leeuwen, Joeri; Walker, Arielle N.; Wells, Bradley L.

    2018-06-01

    We provide timing solutions for 45 radio pulsars discovered by the Robert C. Byrd Green Bank Telescope. These pulsars were found in the Green Bank North Celestial Cap pulsar survey, an all-GBT-sky survey being carried out at a frequency of 350 {MHz}. We include pulsar timing data from the Green Bank Telescope and Low Frequency Array. Our sample includes five fully recycled millisecond pulsars (MSPs, three of which are in a binary system), a new relativistic double neutron star system, an intermediate-mass binary pulsar, a mode-changing pulsar, a 138 ms pulsar with a very low magnetic field, and several nulling pulsars. We have measured two post-Keplerian parameters and thus the masses of both objects in the double neutron star system. We also report a tentative companion mass measurement via Shapiro delay in a binary MSP. Two of the MSPs can be timed with high precision and have been included in pulsar timing arrays being used to search for low-frequency gravitational waves, while a third MSP is a member of the black widow class of binaries. Proper motion is measurable in five pulsars, and we provide an estimate of their space velocity. We report on an optical counterpart to a new black widow system and provide constraints on the optical counterparts to other binary MSPs. We also present a preliminary analysis of nulling pulsars in our sample. These results demonstrate the scientific return of long timing campaigns on pulsars of all types.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn

    Millisecond pulsars (MSPs) are thought to originate from low-mass X-ray binaries (LMXBs). The discovery of eclipsing radio MSPs, including redbacks and black widows, indicates that evaporation of the donor star by the MSP’s irradiation takes place during the LMXB evolution. In this work, we investigate the effect of donor evaporation on the secular evolution of LMXBs, considering different evaporation efficiencies and related angular momentum loss. We find that for widening LMXBs, the donor star leaves a less massive white dwarf than without evaporation; for contracting systems, evaporation can speed up the evolution, resulting in dynamically unstable mass transfer and possiblymore » the formation of isolated MSPs.« less

  2. Acceleration by pulsar winds in binary systems

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Gaisser, T. K.

    1990-01-01

    In the absence of accretion torques, a pulsar in a binary system will spin down due to electromagnetic dipole radiation and the spin-down power will drive a wind of relativistic electron-positron pairs. Winds from pulsars with short periods will prevent any subsequent accretion but may be confined by the companion star atmosphere, wind, or magnetosphere to form a standing shock. The authors investigate the possibility of particle acceleration at such a pulsar wind shock and the production of very high energy (VHE) and ultra high energy (UHE) gamma rays from interactions of accelerated protons in the companion star's wind or atmosphere. They find that in close binaries containing active pulsars, protons will be shock accelerated to a maximum energy dependent on the pulsar spin-down luminosity. If a significant fraction of the spin-down power goes into particle acceleration, these systems should be sources of VHE and possibly UHE gamma rays. The authors discuss the application of the pulsar wind model to binary sources such as Cygnus X-3, as well as the possibility of observing VHE gamma-rays from known binary radio pulsar systems.

  3. Binary and Millisecond Pulsars.

    PubMed

    Lorimer, Duncan R

    2005-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5. Supplementary material is available for this article at 10.12942/lrr-2005-7.

  4. The Orbit and Position of the X-ray Pulsar XTE J1855-026: An Eclipsing Supergiant System

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Mukai, Koji; White, Nicholas E. (Technical Monitor)

    2002-01-01

    A pulse timing orbit has been obtained for the X-ray binary XTEJ1855-026 using observations made with the Proportional Counter Array on board the Rossi X-ray Timing Explorer. The mass function obtained of approximately 16 solar mass together with the detection of an extended near-total eclipse confirm that the primary star is supergiant as predicted. The orbital eccentricity is found to be very low with a best fit value of 0.04 +/- 0.02. The orbital period is also refined to be 6.0724 +/- 0.0009 days using an improved and extended light curve obtained with RXTE's All Sky Monitor. Observations with the ASCA satellite provide an improved source location of R.A.= 18 hr 55 min 31.3 sec, decl.= -02 deg 36 min 24.0 sec (2000) with an estimated systematic uncertainty of less than 12 min. A serendipitous new source, AX J1855.4-0232, was also discovered during the ASCA observations.

  5. An X-ray excited wind in Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Day, C. S. R.; Stevens, Ian R.

    1993-01-01

    We propose a new interpretation of the behavior of the notable X-ray binary source Centaurus X-3. Based on both theoretical and observational arguments (using EXOSAT data), we suggest that an X-ray excited wind emanating from the O star is present in this system. Further, we suggest that this wind is responsible for the mass transfer in the system rather than Roche-lobe overflow or a normal radiatively driven stellar wind. We show that the ionization conditions in Cen X-3 are too extreme to permit a normal radiatively driven wind to emanate from portions of the stellar surface facing toward the neutron star. In addition, the flux of X-rays from the neutron star is strong enough to drive a thermal wind from the O star with sufficient mass-flux to power the X-ray source. We find that this model can reasonably account for the long duration of the eclipse transitions and other observed features of Cen X-3. If confirmed, this will be the first example of an X-ray excited wind in a massive binary. We also discuss the relationship between the excited wind in Cen X-3 to the situation in eclipsing millisecond pulsars, where an excited wind is also believed to be present.

  6. Probing the properties of the pulsar wind via studying the dispersive effects in the pulses from the pulsar companion in a double neutron-star binary system

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Cheng, K.-S.

    2017-12-01

    The velocity and density distribution of e± in the pulsar wind are crucial distinction among magnetosphere models, and contain key parameters determining the high-energy emission of pulsar binaries. In this work, a direct method is proposed, which might probe the properties of the wind from one pulsar in a double-pulsar binary. When the radio signals from the first-formed pulsar travel through the relativistic e± flow in the pulsar wind from the younger companion, the components of different radio frequencies will be dispersed. It will introduce an additional frequency-dependent time-of-arrival delay of pulses, which is function of the orbital phase. In this paper, we formulate the above-mentioned dispersive delay with the properties of the pulsar wind. As examples, we apply the formula to the double-pulsar system PSR J0737-3039A/B and the pulsar-neutron star binary PSR B1913+16. For PSR J0737-3039A/B, the time delay in 300 MHz is ≲ 10 μ s-1 near the superior conjunction, under the optimal pulsar wind parameters, which is approximately half of the current timing accuracy. For PSR B1913+16, with the assumption that the neutron-star companion has a typical spin-down luminosity of 1033 erg s-1, the time delay is as large as 10 - 20 μ s-1 in 300 MHz. The best timing precision of this pulsar is ∼ 5 μ s-1 in 1400 MHz. Therefore, it is possible that we can find this signal in archival data. Otherwise, we can set an upper limit on the spin-down luminosity. Similar analysis can be applied to other 11 known pulsar-neutron star binaries.

  7. Candidates of eclipsing multiples based on extraneous eclipses on binary light curves: KIC 7622486, KIC 7668648, KIC 7670485 and KIC 8938628

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Qian, Sheng-Bang; He, Jian-Duo

    2017-02-01

    Four candidates of eclipsing multiples, based on new extraneous eclipses found on Kepler binary light curves, are presented and studied. KIC 7622486 is a double eclipsing binary candidate with orbital periods of 2.2799960 d and 40.246503 d. The two binary systems do not eclipse each other in the line of sight, but there is mutual gravitational influence between them which leads to the small but definite eccentricity of 0.0035(0.0022) associated with the short 2.2799960 d period orbit. KIC 7668648 is a hierarchical quadruple system candidate, with two sets of solid 203 ± 5 d period extraneous eclipses and another independent set of extraneous eclipses. A clear and credible extraneous eclipse is found on the binary light curve of KIC 7670485 which makes it a triple system candidate. Two sets of extraneous eclipses with periods of about 390 d and 220 d are found on KIC 8938628 binary curves, which not only confirm the previous conclusion of the 388.5 ± 0.3 triple system, but also indicate new additional objects that make KIC 8938628 a hierarchical quadruple system candidate. The results from these four candidates will contribute to the field of eclipsing multiples.

  8. Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior

    NASA Astrophysics Data System (ADS)

    Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.

    2018-03-01

    Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.

  9. Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Stromhmayer, T. E.

    2010-01-01

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .

  10. Alternancia entre el estado de emisión de Rayos-X y Pulsar en Sistemas Binarios Interactuantes

    NASA Astrophysics Data System (ADS)

    De Vito, M. A.; Benvenuto, O. G.; Horvath, J. E.

    2015-08-01

    Redbacks belong to the family of binary systems in which one of the components is a pulsar. Recent observations show redbacks that have switched their state from pulsar - low mass companion (where the accretion of material over the pulsar has ceased) to low mass X-ray binary system (where emission is produced by the mass accretion on the pulsar), or inversely. The irradiation effect included in our models leads to cyclic mass transfer episodes, which allow close binary systems to switch between one state to other. We apply our results to the case of PSR J1723-2837, and discuss the need to include new ingredients in our code of binary evolution to describe the observed state transitions.

  11. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg{sup 2} region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity ( L {sub X} ) of the pulsars ranges from 10{sup 34} to 10{sup 37} ergmore » s{sup −1} at 60 kpc. All of the Chandra sources with L {sub X} ≳ 4 × 10{sup 35} erg s{sup −1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).« less

  12. The magnetic fields, ages, and original spin periods of millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Camilo, F.; Thorsett, S. E.; Kulkarni, S. R.

    1994-01-01

    Accurate determination of the spin-down rates of millisecond pulsars requires consideration of the apparent acceleration of the pulsars due to their high transverse velocities. We show that for several nearby pulsars the neglect of this effect leads to substantial errors in inferred pulsar ages and magnetic fields. Two important ramifications follow. (1) The intrinsic magnetic field strengths of all millisecond pulsars lie below 5 x 10(exp 8) G, strengthening an earlier suggestion of a 'gap' between the magnetic field strengths of millisecond pulsars and of high-mass binary pulsars such as PSR B1913+16, which are thought to have been formed by mass transfer in low-mass and high-mass X-ray binaries, respectively. This result suggests that the magnetic field strengths of recycled pulsars are related to their formation and evolution in binary systems. (2) The corrected characteristic ages of several millisecond pulsars appear to be greater than the age of the Galactic disk. We reconcile this apparent paradox by suggesting that some millisecond pulsars were born with periods close to their current periods. This conclusion has important implications for the interpretation of the cooling ages of white dwarf companions, the birthrate discrepancy between millisecond pulsars and their X-ray binary progenitors, and the possible existence of a class of weakly magnetized (B much less than 10(exp 8)G), rapidly rotating neutron stars.

  13. A State Change In The Missing Link Binary Pulsar System Psr J1023+0038

    DOE PAGES

    Stappers, B. W.; Archibald, A. M.; Hessels, J. W. T.; ...

    2014-07-01

    We present radio, X-ray, and γ-ray observations which reveal that the binary millisecond pulsar / low-mass X-ray binary transition system PSR J1023+0038 has undergone a transformation in state. Whereas until recently the system harbored a bright millisecond radio pulsar, the radio pulsations at frequencies between 300 to 5000MHz have now become undetectable. Concurrent with this radio disappearance, the γ-ray flux of the system has quintupled. We conclude that, though the radio pulsar is currently not detectable, the pulsar mechanism is still active and the pulsar wind, as well as a newly formed accretion disk, are together providing the necessary conditionsmore » to create the γ-ray increase. The system is the first example of a transient, compact, low-mass γ-ray binary and will continue to provide an exceptional test bed for better understanding the formation of millisecond pulsars as well as accretion onto neutron stars in general.« less

  14. Envelopes in eclipsing binary stars

    NASA Technical Reports Server (NTRS)

    Huang, S.

    1972-01-01

    Theoretical research on eclipsing binaries is presented. The specific areas of investigation are the following: (1) the relevance of envelopes to the study of the light curves of eclipsing binaries, (2) the disk envelope, and (3) the spherical envelope.

  15. Star Cluster Buzzing With Pulsars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes as a supernova at the end of its life. The pulsars in Terzan 5 are the product of a complex history. The stars in the cluster formed about 10 billion years ago, the astronomers say. Some of the most massive stars in the cluster exploded and left the neutron stars as their remnants after only a few million years. Normally, these neutron stars would no longer be seen as swiftly-rotating pulsars: their spin would have slowed because of the "drag" of their intense magnetic fields until the "lighthouse" effect is no longer observable. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) However, the dense concentration of stars in the cluster gave new life to the pulsars. In the core of a globular cluster, as many as a million stars may be packed into a volume that would fit easily between the Sun and our nearest neighbor star. In such close quarters, stars can pass near enough to form new binary pairs, split apart such pairs, and binary systems even can trade partners, like an elaborate cosmic square dance. When a neutron star pairs up with a "normal" companion star, its strong gravitational pull can draw material off the companion onto the neutron star. This also transfers some of the companion's spin, or angular momentum, to the neutron star, thereby "recycling" the neutron star into a rapidly-rotating millisecond pulsar. In Terzan 5, all the pulsars discovered are rotating rapidly as a result of this process. Astronomers previously had discovered three pulsars in Terzan 5, some 28,000 light-years distant in the constellation Sagittarius, but suspected there were more. On July 17, 2004, Ransom and his colleagues used the GBT, and, in a 6-hour observation, found 14 new pulsars, the most ever found in a single observation. "This was possible because of the great sensitivity of the GBT and the new capabilities of our backend processor," said Ingrid Stairs, a professor at the University of British Columbia in Vancouver. The processor, named, appropriately, the Pulsar Spigot, was built in a collaboration between the NRAO and the California Institute of Technology. The processor, which generates almost 100 GigaBytes of data per hour, allowed the astronomers to gather and analyze radio waves over a wide range of frequencies (1650-2250 MegaHertz), adding to the sensitivity of their system. Eight more observations between July and November of 2004 discovered seven additional pulsars in Terzan 5. In addition, the astronomers' data show evidence for several more pulsars that still need to be confirmed. Future studies of the pulsars in Terzan 5 will help scientists understand the nature of the cluster and the complex interactions of the stars at its dense core. Also, several of the pulsars offer a rich yield of new scientific information. The scientists suspect that one pulsar, which shows strange eclipses of its radio emission, has recently traded its original binary companion for another, and two others have white-dwarf companions that they believe may have been produced by the collision of a neutron star and a red-giant star. Subtle effects seen in these two systems can be explained by Einstein's general relativistic theory of gravity, and indicate that the neutron stars are more massive than some theories allow. The material in a neutron star is as dense as that in an atomic nucleus, so that fact has implications for nuclear physics as well as astrophysics. "Finding all these pulsars has been extremely exciting, but the excitement really has just begun," Ransom said. "Now we can start to use them as a rich and valuable cosmic laboratory," he added. In addition to Ransom, Hessels and Stairs, the research team included Paulo Freire of Arecibo Observatory in Puerto Rico, Fernando Camilo of Columbia University, Victoria Kaspi of McGill University, and David Kaplan of the Massachusetts Institute of Technology. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The pulsar research also was supported by the Canada Foundation for Innovation, Science and Engineering Research Canada, the Quebec Foundation for Research on Nature and Technology, the Canadian Institute for Advanced Research, Canada Research Chairs Program, and the National Science Foundation.

  16. The Unusual Binary Pulsar PSR J1744-3922: Radio Flux Variability, Near-Infrared Observation, and Evolution

    NASA Astrophysics Data System (ADS)

    Breton, R. P.; Roberts, M. S. E.; Ransom, S. M.; Kaspi, V. M.; Durant, M.; Bergeron, P.; Faulkner, A. J.

    2007-06-01

    PSR J1744-3922 is a binary pulsar exhibiting highly variable pulsed radio emission. We report on a statistical multifrequency study of the pulsed radio flux variability which suggests that this phenomenon is extrinsic to the pulsar and possibly tied to the companion, although not strongly correlated with orbital phase. The pulsar has an unusual combination of characteristics compared to typical recycled pulsars: a long spin period (172 ms); a relatively high magnetic field strength (1.7×1010 G); a very circular, compact orbit of 4.6 hr; and a low-mass companion (0.08 Msolar). These spin and orbital properties are likely inconsistent with standard evolutionary models. We find similarities between the properties of the PSR J1744-3922 system and those of several other known binary pulsar systems, motivating the identification of a new class of binary pulsars. We suggest that this new class could result from: a standard accretion scenario of a magnetar or a high magnetic field pulsar; common envelope evolution with a low-mass star and a neutron star, similar to what is expected for ultracompact X-ray binaries; or accretion induced collapse of a white dwarf. We also report the detection of a possible K'=19.30(15) infrared counterpart at the position of the pulsar, which is relatively bright if the companion is a helium white dwarf at the nominal distance, and discuss its implications for the pulsar's companion and evolutionary history.

  17. Measuring the Number of M Dwarfs per M Dwarf Using Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Shan, Yutong; Johnson, John A.; Morton, Timothy D.

    2015-11-01

    We measure the binarity of detached M dwarfs in the Kepler field with orbital periods in the range of 1-90 days. Kepler’s photometric precision and nearly continuous monitoring of stellar targets over time baselines ranging from 3 months to 4 years make its detection efficiency for eclipsing binaries nearly complete over this period range and for all radius ratios. Our investigation employs a statistical framework akin to that used for inferring planetary occurrence rates from planetary transits. The obvious simplification is that eclipsing binaries have a vastly improved detection efficiency that is limited chiefly by their geometric probabilities to eclipse. For the M-dwarf sample observed by the Kepler Mission, the fractional incidence of eclipsing binaries implies that there are {0.11}-0.04+0.02 close stellar companions per apparently single M dwarf. Our measured binarity is higher than previous inferences of the occurrence rate of close binaries via radial velocity techniques, at roughly the 2σ level. This study represents the first use of eclipsing binary detections from a high quality transiting planet mission to infer binary statistics. Application of this statistical framework to the eclipsing binaries discovered by future transit surveys will establish better constraints on short-period M+M binary rate, as well as binarity measurements for stars of other spectral types.

  18. The first eclipsing binary catalogue from the MOA-II data base

    NASA Astrophysics Data System (ADS)

    Li, M. C. A.; Rattenbury, N. J.; Bond, I. A.; Sumi, T.; Bennett, D. P.; Koshimoto, N.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Evans, P.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yonehara, A.

    2017-09-01

    We present the first catalogue of eclipsing binaries in two MOA (Microlensing Observations in Astrophysics) fields towards the Galactic bulge, in which over 8000 candidates, mostly contact and semidetached binaries of periods <1 d, were identified. In this paper, the light curves of a small number of interesting candidates, including eccentric binaries, binaries with noteworthy phase modulations and eclipsing RS Canum Venaticorum type stars, are shown as examples. In addition, we identified three triple object candidates by detecting the light-travel-time effect in their eclipse time variation curves.

  19. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri; hide

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.

  20. Research in astrophysical processes

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin A.

    1994-01-01

    Work completed under this grant is summarized in the following areas:(1) radio pulsar turn on and evaporation of companions in very low mass x-ray binaries and in binary radio pulsar systems; (2) effects of magnetospheric pair production on the radiation from gamma-ray pulsars; (3) radiation transfer in the atmosphere of an illuminated companion star; (4) evaporation of millisecond pulsar companions;(5) formation of planets around pulsars; (6) gamma-ray bursts; (7) quasi-periodic oscillations in low mass x-ray binaries; (8) origin of high mass x-ray binaries, runaway OB stars, and the lower mass cutoff for core collapse supernovae; (9) dynamics of planetary atmospheres; (10) two point closure modeling of stationary, forced turbulence; (11) models for the general circulation of Saturn; and (12) compressible convection in stellar interiors.

  1. Eclipsing binary stars with a δ Scuti component

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  2. The Binary Pulsar: Gravity Waves Exist.

    ERIC Educational Resources Information Center

    Will, Clifford

    1987-01-01

    Reviews the history of pulsars generally and the 1974 discovery of the binary pulsar by Joe Taylor and Russell Hulse specifically. Details the data collection and analysis used by Taylor and Hulse. Uses this discussion as support for Albert Einstein's theory of gravitational waves. (CW)

  3. Properties OF M31. V. 298 eclipsing binaries from PAndromeda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.-H.; Koppenhoefer, J.; Seitz, S.

    2014-12-10

    The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detachedmore » eclipsing binaries spectroscopically and determine the distance to M31.« less

  4. What we learn from eclipsing binaries in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Guinan, Edward F.

    1990-01-01

    Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.

  5. Eclipsing Stellar Binaries in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Li, Gongjie; Ginsburg, Idan; Naoz, Smadar; Loeb, Abraham

    2017-12-01

    Compact stellar binaries are expected to survive in the dense environment of the Galactic center. The stable binaries may undergo Kozai–Lidov oscillations due to perturbations from the central supermassive black hole (Sgr A*), yet the general relativistic precession can suppress the Kozai–Lidov oscillations and keep the stellar binaries from merging. However, it is challenging to resolve the binary sources and distinguish them from single stars. The close separations of the stable binaries allow higher eclipse probabilities. Here, we consider the massive star SO-2 as an example and calculate the probability of detecting eclipses, assuming it is a binary. We find that the eclipse probability is ∼30%–50%, reaching higher values when the stellar binary is more eccentric or highly inclined relative to its orbit around Sgr A*.

  6. GBM Observations of Be X-Ray Binary Outbursts

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  7. Black hole/pulsar binaries in the Galaxy

    NASA Astrophysics Data System (ADS)

    Shao, Yong; Li, Xiang-Dong

    2018-06-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.

  8. A novel mechanism for creating double pulsars

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1992-01-01

    Simulations of encounters between pairs of hard binaries, each containing a neutron star and a main-sequence star, reveal a new formation mechanism for double pulsars in dense cores of globular clusters. In many cases, the two normal stars are disrupted to form a common envelope around the pair of neutron stars, both of which will be spun up to become millisecond pulsars. We predict that a new class of pulsars, double millisecond pulsars, will be discovered in the cores of dense globular clusters. The genesis proceeds through a short-lived double-core common envelope phase, with the envelope ejected in a fast wind. It is possible that the progenitor may also undergo a double X-ray binary phase. Any circular, short-period double pulsar found in the galaxy would necessarily come from disrupted disk clusters, unlike Hulse-Taylor class pulsars or low-mass X-ray binaries which may be ejected from clusters or formed in the galaxy.

  9. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Rawls, M. L.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less

  10. VizieR Online Data Catalog: Parameters of 529 Kepler eclipsing binaries (Kjurkchieva+, 2017)

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, D.; Vasileva, D.; Atanasova, T.

    2017-11-01

    We reviewed the Kepler eclipsing binary catalog (Prsa et al. 2011, Cat. J/AJ/141/83; Slawson et al. 2011, Cat. J/AJ/142/160; Matijevic et al. 2012) to search for detached eclipsing binaries with eccentric orbits. (5 data files).

  11. A1540-53, an eclipsing X-ray binary pulsator

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Pravdo, S. H.; Saba, J. R.

    1977-01-01

    An eclipsing X-ray binary pulsator consistent with the location of A1540-53 has been observed. The source pulse period was 528.93 + or - 0.10 s. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 + or - 3 deg and the 4-hour transition to and from eclipse suggest an early-type giant or supergiant primary star.

  12. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  13. Radial Velocities of 41 Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  14. A1540-53, an eclipsing X-ray binary pulsator

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Saba, J. R.; Serlemitsos, P. J.

    1977-01-01

    An eclipsing X-ray binary pulsator consistent with the location of A1540-53 was observed. The source pulse period was 528.93 plus or minus 0.10 seconds. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 deg plus or minus 3 deg and the 4 h transition to and from eclipse suggest an early type, giant or supergiant, primary star.

  15. A Photometric Study of the Eclipsing Binary Star PY Boötis

    NASA Astrophysics Data System (ADS)

    Michaels, E. J.

    2016-12-01

    Presented here are the first precision multi-band CCD photometry of the eclipsing binary star PY Boötis. Best-fit stellar models were determined by analyzing the light curves with the Wilson-Devinney program. Asymmetries in the light curves were interpreted as resulting from magnetic activity which required spots to be included in the model. The resulting model is consistent with a W-type contact eclipsing binary having total eclipses.

  16. A spectrum synthesis program for binary stars

    NASA Technical Reports Server (NTRS)

    Linnell, Albert P.; Hubeny, Ivan

    1994-01-01

    A new program produces synthetic spectra of binary stars at arbitrary values of orbital longitude, including longitudes of partial or complete eclipse. The stellar components may be distorted, either tidally or rotationally, or both. Either or both components may be rotating nonsynchronously. We illustrate the program performance with two cases: EE Peg, an eclipsing binary with small distortion, and SX Aur, an eclipsing binary that is close to contact.

  17. ARECIBO PALFA SURVEY AND EINSTEIN-HOME: BINARY PULSAR DISCOVERY BY VOLUNTEER COMPUTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knispel, B.; Allen, B.; Aulbert, C.

    2011-05-01

    We report the discovery of the 20.7 ms binary pulsar J1952+2630, made using the distributed computing project Einstein-Home in Pulsar ALFA survey observations with the Arecibo telescope. Follow-up observations with the Arecibo telescope confirm the binary nature of the system. We obtain a circular orbital solution with an orbital period of 9.4 hr, a projected orbital radius of 2.8 lt-s, and a mass function of f = 0.15 M{sub sun} by analysis of spin period measurements. No evidence of orbital eccentricity is apparent; we set a 2{sigma} upper limit e {approx}< 1.7 x 10{sup -3}. The orbital parameters suggest amore » massive white dwarf companion with a minimum mass of 0.95 M{sub sun}, assuming a pulsar mass of 1.4 M{sub sun}. Most likely, this pulsar belongs to the rare class of intermediate-mass binary pulsars. Future timing observations will aim to determine the parameters of this system further, measure relativistic effects, and elucidate the nature of the companion star.« less

  18. The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.

    2003-03-01

    We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive.

  19. The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry

    DOE PAGES

    Steffen, J. H.; Quinn, S. N.; Borucki, W. J.; ...

    2011-10-01

    We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASA's Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary (0.424±0.017M circle-dot) and the orbital parametersmore » of the binary about the central star.« less

  20. Curious properties of the recycled pulsars and the potential of high precision timing

    NASA Astrophysics Data System (ADS)

    Bailes, Matthew

    2010-03-01

    Binary and Millisecond pulsars have a great deal to teach us about stellar evolution and are invaluable tools for tests of relativistic theories of gravity. Our understanding of these objects has been transformed by large-scale surveys that have uncovered a great deal of new objects, exquisitely timed by ever-improving instrumentation. Here we argue that there exists a fundamental relation between the spin period of a pulsar and its companion mass, and that this determines many of the observable properties of a binary pulsar. No recycled pulsars exist in which the minimum companion mass exceeds (P/10 ms) M ⊙. Furthermore, the three fastest disk millisecond pulsars are either single, or possess extremely low-mass companions ( Mc ˜ 0.02 M ⊙), consistent with this relation. Finally, the four relativistic binaries for which we have actual measurements of neutron star masses, suggest that not only are their spin periods related to the companion neutron star mass, but that the kick imparted to the system depends upon it too, leading to a correlation between orbital eccentricity and spin period. The isolation of the relativistic binary pulsars in the magnetic field-Period diagram is used to argue that this must be because the kicks imparted to proto-relativistic systems are usually small, leading to very few if any isolated runaway mildly-recycled pulsars. This calls into question the magnitude of supernova kicks in close binaries, which have been usually assumed to be similar to those imparted to the bulk of the pulsar population. Finally, we review some of the highlights of the Parkes precision timing efforts, which suggest 10 ns timing is obtainable on PSR J1909-3744 that will aid us in searching for a cosmological sources of gravitational waves.

  1. The Green Bank Northern Celestial Cap Pulsar Survey. II. The Discovery and Timing of 10 Pulsars

    NASA Astrophysics Data System (ADS)

    Kawash, A. M.; McLaughlin, M. A.; Kaplan, D. L.; DeCesar, M. E.; Levin, L.; Lorimer, D. R.; Lynch, R. S.; Stovall, K.; Swiggum, J. K.; Fonseca, E.; Archibald, A. M.; Banaszak, S.; Biwer, C. M.; Boyles, J.; Cui, B.; Dartez, L. P.; Day, D.; Ernst, S.; Ford, A. J.; Flanigan, J.; Heatherly, S. A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Kondratiev, V. I.; Leake, S.; Lunsford, G.; Martinez, J. G.; Mata, A.; Matheny, T. D.; Mcewen, A. E.; Mingyar, M. G.; Orsini, A. L.; Ransom, S. M.; Roberts, M. S. E.; Rohr, M. D.; Siemens, X.; Spiewak, R.; Stairs, I. H.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.

    2018-04-01

    We present timing solutions for 10 pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program during an analysis of drift-scan data. Following the discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high-precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930‑2301, a pulsar with a nulling fraction lower limit of ∼30% and a nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557‑2948 is an isolated, 44 ms pulsar that has been partially recycled and is likely a former member of a binary system that was disrupted by a second supernova. The paucity of such so-called “disrupted binary pulsars” (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 ms pulsar in a 44-day orbit with a low-mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr.

  2. Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate

    NASA Astrophysics Data System (ADS)

    Kim, Chunglee; Perera, Benetge Bhakthi Pranama; McLaughlin, Maura A.

    2015-03-01

    The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate R_g among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on R_g using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (˜2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain R_g=21_{-14}^{+28} Myr-1 at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be 8^{+10}_{-5} yr-1 at 95 per cent confidence. Within several years, gravitational-wave detections relevant to NS-NS inspirals will provide us useful information to improve pulsar population models.

  3. Artificial Intelligence in Astronomy

    NASA Astrophysics Data System (ADS)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  4. Eclipsing binary stars in the era of massive surveys First results and future prospects

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Athanasios; Catelan, Márcio; Ramos, Rodrigo Contreras; Drake, Andrew J.

    2017-09-01

    Our thinking about eclipsing binary stars has undergone a tremendous change in the last decade. Eclipsing binary stars are one of nature's best laboratories for determining the fundamental physical properties of stars and thus for testing the predictions of theoretical models. Some of the largest ongoing variable star surveys include the Catalina Real-time Transient Survey (CRTS) and the VISTA Variables in the Vía Láctea survey (VVV). They both contain a large amount of photometric data and plenty of information about eclipsing binaries that wait to be extracted and exploited. Here we briefly describe our efforts in this direction.

  5. Development of Pulsar Detection Methods for a Galactic Center Search

    NASA Astrophysics Data System (ADS)

    Thornton, Stephen; Wharton, Robert; Cordes, James; Chatterjee, Shami

    2018-01-01

    Finding pulsars within the inner parsec of the galactic center would be incredibly beneficial: for pulsars sufficiently close to Sagittarius A*, extremely precise tests of general relativity in the strong field regime could be performed through measurement of post-Keplerian parameters. Binary pulsar systems with sufficiently short orbital periods could provide the same laboratories with which to test existing theories. Fast and efficient methods are needed to parse large sets of time-domain data from different telescopes to search for periodicity in signals and differentiate radio frequency interference (RFI) from pulsar signals. Here we demonstrate several techniques to reduce red noise (low-frequency interference), generate signals from pulsars in binary orbits, and create plots that allow for fast detection of both RFI and pulsars.

  6. The X-ray eclipse of the LMC binary CAL 87

    NASA Technical Reports Server (NTRS)

    Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.

    1993-01-01

    ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.

  7. VizieR Online Data Catalog: OGLE eclipsing binaries in LMC (Wyrzykowski+, 2003)

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.

    2003-09-01

    We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive. (2 data files).

  8. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsingmore » binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.« less

  9. Theory of High-Energy Emission from the Pulsar/Be Star System PSR 1259-63. I. Radiation Mechanisms and Interaction Geometry

    NASA Astrophysics Data System (ADS)

    Tavani, Marco; Arons, Jonathan

    1997-03-01

    We study the physical processes in the system containing the 47 ms radio pulsar PSR B1259-63 orbiting around a Be star in a highly eccentric orbit. This system is the only known binary where a radio pulsar is observed to interact with gaseous material from a Be star. A rapidly rotating radio pulsar such as PSR B1259-63 is expected to produce a wind of electromagnetic emission and relativistic particles, and this binary is an ideal astrophysical laboratory to study the mass outflow/pulsar interaction in a highly time-variable environment. Motivated by the results of a recent multiwavelength campaign during the 1994 January periastron passage of PSR B1259-63, we discuss several issues regarding the mechanism of high-energy emission. Unpulsed power-law emission from the PSR B1259-63 system was detected near periastron in the energy range 1-200 keV. The observed X-ray/soft γ-ray emission is characterized by moderate luminosity, small and constant column density, lack of detectable pulsations, and peculiar spectral and intensity variability. In principle, high-energy (X-ray and gamma-ray) emission from the system can be produced by different mechanisms including (1) mass accretion onto the surface of the neutron star, (2) ``propeller''-like magnetospheric interaction at a small pulsar distance, and (3) shock-powered emission in a pulsar wind termination shock at a large distance from the pulsar. We carry out a series of calculations aimed at modeling the high-energy data of the PSR B1259-63 system throughout its orbit and especially near periastron. We find that the observed high-energy emission from the PSR B1259-63 system is not compatible with accretion or propeller-powered emission. This conclusion is supported by a model based on standard properties of Be stars and for plausible assumptions about the pulsar/outflow interaction geometry. We find that shock-powered high-energy emission produced by the pulsar/outflow interaction is consistent with all the characteristics of the high-energy emission of the PSR B1259-63 system. This opens the possibility of obtaining for the first time constraints on the physical properties of the PSR B1259-63 pulsar wind and its interaction properties in a strongly time-variable nebular environment. By studying the time evolution of the pulsar cavity, we can constrain the magnitude and geometry of the mass outflow as the PSR B1259-63 orbits around its Be star companion. The pulsar/outflow interaction is most likely mediated by a collisionless shock at the internal boundary of the pulsar cavity. The system shows all the characteristics of a binary plerion being diffuse and compact near apastron and periastron, respectively. The PSR B1259-63 system is subject to different radiative regimes depending on whether synchrotron or inverse-Compton (IC) cooling dominates the radiation of electron/positron pairs (e+/- pairs) advected away from the inner boundary of the pulsar cavity. The highly nonthermal nature of the observed X-ray/soft γ-ray emission from the PSR B1259-63 system near periastron establishes the existence of an efficient particle acceleration mechanism within a timescale shown to be less than ~102-103 s. A synchrotron/IC model of emission of e+/- pairs accelerated at the inner shock front of the pulsar cavity and adiabatically expanding in the MHD flow provides an excellent explanation of the observed time-variable X-ray flux and spectrum from the PSR B1259-63 system. We find that the best model for the PSR B1259-63 system is consistent with the pulsar orbital plane being misaligned with the plane of a thick equatorial Be star outflow. The angular width of the equatorially enhanced Be star outflow is constrained to be ~50° at the pulsar distance, and the misalignment angle is >~25°. We calculate the intensity and spectrum of the high-energy emission for the whole PSR B1259-63 orbit and predict the characteristics of the emission near the apastron region based on the periastron results. The mass-loss rate is deduced to be approximately constant in time during a ~2 yr period. Our results for the Be star outflow of the PSR B1259-63 system are consistent with models of the radio eclipses near periastron. The consequences of our analysis have general validity. Our study of the PSR B1259-63 system shows that X-ray emission can be caused by a mechanism alternative to accretion in a system containing an energetic pulsar interacting with nebular material. This fact can have far-reaching consequences for the interpretation of galactic astrophysical systems showing nonthermal X-ray and γ-ray emission. We show that a binary system such as PSR B1259-63 offers a novel way to study the acceleration process of relativistic plasmas subject to strongly time variable radiative environments.

  10. Gamma rays from hidden millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.

  11. Binary millisecond pulsar discovery via gamma-ray pulsations.

    PubMed

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-07

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  12. The OGLE Collection of Variable Stars. Over 450 000 Eclipsing and Ellipsoidal Binary Systems Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.

    2016-12-01

    We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.

  13. The Search for Bright Variable Stars in Open Cluster NGC 6819.

    NASA Astrophysics Data System (ADS)

    Talamantes, Antonio; Sandquist, E. L.

    2009-01-01

    During this research period data was taken for seven nights at the 1m telescope at Mt. Laguna Observatory for the open cluster NGC 6819. For four of the nights data was taken using a V-band filter. For the three nights remaining nights the data was taken using an R-band filter. Photometry was done using the ISIS image subtraction package. Six new variable stars were located using these techniques. These variable types include a pulsating variable, five detached eclipsing binaries. Of the detached eclipsing binaries, three are near the cluster turnoff and two in the blue straggler region(and one of these has total eclipses). Nine previously known variables(six contact binaries, two detached eclipsing binaries and one near-contact binary) were also studied.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groot, Paul J., E-mail: pgroot@astro.ru.nl

    In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometricmore » light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.« less

  15. The early-type multiple system QZ Carinae

    NASA Astrophysics Data System (ADS)

    Mayer, P.; Lorenz, R.; Drechsel, H.; Abseim, A.

    2001-02-01

    We present an analysis of the early-type quadruple system QZ Car, consisting of an eclipsing and a non-eclipsing binary. The spectroscopic investigation is based on new high dispersion echelle and CAT/CES spectra of H and He lines. The elements for the orbit of the non-eclipsing pair could be refined. Lines of the brighter component of the eclipsing binary were detected in near-quadrature spectra, while signatures of the fainter component could be identified in only few spectra. Lines of the primary component of the non-eclipsing pair and of both components of the eclipsing pair were found to be variable in position and strength; in particular, the He ii 4686 emission line of the brighter eclipsing component is strongly variable. An ephemeris for the eclipsing binary QZ Car valid at present was derived Prim. Min. = hel. JD 2448687.16 + 5fd9991 * E. The relative orbit of the two binary constituents of the multiple system is discussed. In contrast to earlier investigations we found radial velocity changes of the systemic velocities of both binaries, which were used - together with an O-C analysis of the expected light-time effect - to derive approximate parameters of the mutual orbit of the two pairs. It is shown that this orbit and the distance to QZ Car can be further refined by minima timing and interferometry. Based on observations collected at the European Southern Observatory, La Silla, Chile.

  16. Eclipsing Binaries in Open Clusters

    NASA Astrophysics Data System (ADS)

    Southworth, John; Clausen, Jens Viggo

    2006-08-01

    The study of detached eclipsing binaries in open clusters can provide stringent tests of theoretical stellar evolutionary models, which must simultaneously fit the masses, radii, and luminosities of the eclipsing stars and the radiative properties of every other star in the cluster. We review recent progress in such studies and discuss two unusually interesting objects currently under analysis. GV Carinae is an A0 m + A8 m binary in the Southern open cluster NGC 3532; its eclipse depths have changed by 0.1 mag between 1990 and 2001, suggesting that its orbit is being perturbed by a relatively close third body. DW Carinae is a high-mass unevolved B1 V + B1 V binary in the very young open cluster Collinder 228, and displays double-peaked emission in the centre of the Hα line which is characteristic of Be stars. We conclude by pointing out that the great promise of eclipsing binaries in open clusters can only be satisfied when both the binaries and their parent clusters are well-observed, a situation which is less common than we would like.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.

    Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the H{alpha} absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M{sub 1}more » = 0.283 {+-} 0.064 M{sub sun} and M{sub 2} = 0.274 {+-} 0.034 M{sub sun}, making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.« less

  18. Time Series Observations of the 2015 Eclipse of b Persei (not beta Persei) (Abstract)

    NASA Astrophysics Data System (ADS)

    Collins, D. F.

    2016-06-01

    (Abstract only) The bright (V = 4.6) ellipsoidal variable b Persei consists of a close non-eclipsing binary pair that shows a nearly sinusoidal light curve with a ~1.5 day period. This system also contains a third star that orbits the binary pair every 702 days. AAVSO observers recently detected the first ever optical eclipse of A-B binary pair by the third star as a series of snapshots (D. Collins, R. Zavala, J. Sanborn - AAVSO Spring Meeting, 2013); abstract published in Collins, JAAVSO, 41, 2, 391 (2013); b Per mis-printed as b Per therein. A follow-up eclipse campaign in mid-January 2015 recorded time-series observations. These new time-series observations clearly show multiple ingress and egress of each component of the binary system by the third star over the eclipse duration of 2 to 3 days. A simulation of the eclipse was created. Orbital and some astrophysical parameters were adjusted within constraints to give a reasonable fit to the observed light curve.

  19. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. B.; Luo, C. Q.; Fu, J. N.

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with amore » value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.« less

  20. New Light Curves and Analysis of the Overcontact Binaries PP Lac and DK Sge

    NASA Astrophysics Data System (ADS)

    Sanders, S. J.; Hargis, J. R.; Bradstreet, D. H.

    2004-12-01

    As a by-product of the ongoing work with the Catalog and AtLas of Eclipsing Binaries database (CALEB; Bradstreet et al. 2004), several hundred eclipsing binary systems have been identified that have either unpublished or poor quality light curves. We present new V & Rc light curves for the overcontact systems PP Lac and DK Sge, both chosen because their deep eclipses (peak-to-peak amplitudes of nearly 0.7 mag) help constrain the light curve modelling. Data were obtained using the 41-cm telescope at the Eastern University Observatory equipped with an SBIG ST-10XME CCD. PP Lac (P= 0.40116 d) is a W-type contact binary with only one previously published light curve (Dumont & Maraziti 1990), but the data are sparse and almost non-existent at primary eclipse. Modelling of these data gave varying results; the published mass ratios differ by nearly 0.3. Our data confirms the noted differing eclipse depths but we find the primary eclipse to be total. We present a new light curve solution using Binary Maker 3 (Bradstreet & Steelman 2002) and Wilson-Devinney, finding the mass ratio to be well-constrained by the duration of total eclipse. A period study will be presented using previously existing and newly derived times of minimum light. DK Sge (P=0.62182 d) appears to be an A-type contact binary with no published light curve. The eclipses are partial, with the primary eclipse being deeper by about 0.08 mag. The maxima show evidence of a slight asymmetry, although the light curve appears to be repeatable over the 1 month of observations. We present the first light curve solution using Binary Maker 3 and Wilson-Devinney, but have limited mass ratio constraints due to the absence of radial velocity data. A period study will be presented using previously existing and newly derived times of minimum light.

  1. On the development and applications of automated searches for eclipsing binary stars

    NASA Astrophysics Data System (ADS)

    Devor, Jonathan

    Eclipsing binary star systems provide the most accurate method of measuring both the masses and radii of stars. Moreover, they enable testing tidal synchronization and circularization theories, as well as constraining models of stellar structure and dynamics. With the recent availability of large-scale multi-epoch photometric datasets, we are able to study eclipsing binary stars en masse. In this thesis, we analyzed 185,445 light curves from ten TrES fields, and 218,699 light curves from the OGLE II bulge fields. In order to manage such large quantities of data, we developed a pipeline with which we systematically identified eclipsing binaries, solved for their geometric orientations, and then found their components' absolute properties. Following this analysis, we assembled catalogs of eclipsing binaries with their models, computed statistical distributions of their properties, and located rare cases for further follow-up. Of particular importance are low-mass eclipsing binaries, which are rare, yet critical for resolving the ongoing mass-radius discrepancy between theoretical models and observations. To this end, we have discovered over a dozen new low-mass eclipsing binary candidates, and spectroscopically confirmed the masses of five of them. One of these confirmed candidates, T-Lyr1-17236, is especially interesting because of its uniquely long orbital period. We examined T-Lyr1-17236 in detail and found that it is consistent with the magnetic disruption hypothesis for explaining the observed mass-radius discrepancy. Both the source code of our pipeline and the complete list of our candidates are freely available.

  2. A possible additional body in eclipsing binary system HS 2231+2441

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Shliakhetska, Ya. O.; Romanyuk, Ya. O.

    2016-12-01

    Analysis of the light curves of eclipsing binary systems HS 2231+2441, obtained with the 36-cm telescope, is made. In processing the photometric data on eclipses by method of timing, obtained evidence for the existence of a third body in the system.

  3. Strong binary pulsar constraints on Lorentz violation in gravity.

    PubMed

    Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico

    2014-04-25

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  4. Astronomers Discover Fastest-Spinning Pulsar

    NASA Astrophysics Data System (ADS)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar discovered in 1982. For reference, the fastest speeds of common kitchen blenders are 250-500 Hz. The scientists say the object's fast rotation speed means that it cannot be any larger than about 20 miles across. According to Hessels, "If it were any larger, material from the surface would be flung into orbit around the star." The scientists' calculation assumed that the neutron star contains less than two times the mass of the Sun, an assumption that is consistent with the masses of all known neutron stars. The spinning pulsar has a companion star that orbits it once every 26 hours. The companion passes in front of the pulsar, eclipsing the pulsar about 40 percent of the time. The long eclipse period, probably due to bloating of the companion, makes it difficult for the astronomers to learn details of the orbital configuration that would allow them to precisely measure the masses of the pulsar and its companion. "If we could pin down these masses more precisely, we could then get a better limit on the size of the pulsar. That, in turn, would then give us a better figure for the true density inside the neutron star," explained Ingrid Stairs, an assistant professor at the University of British Columbia and another collaborator on the work. Competing theoretical models for the types and distributions of elementary particles inside neutron stars make widely different predictions about the pressure and density of such an object. "We want observational data that shows which models fit the reality of nature," Hessels said. If the scientists can't use PSR J1748-2446ad to do that, they are hopeful some of its near neighbors will yield the data they seek. Using the GBT, the astronomers so far have found 30 new fast "millisecond pulsars" in the cluster Terzan 5, making 33 pulsars known in the cluster in total. This is the largest number of such pulsars ever found in a single globular cluster. Dense globular clusters of stars are excellent places to find fast-rotating millisecond pulsars. Giant stars explode as supernovae and leave rotating pulsars which gradually slow down. However, if a pulsar has a companion star from which it can draw material, that incoming material imparts its spin, or angular momentum, to the pulsar. As a result, the pulsar spins faster. "In a dense cluster, interactions between the stars will create more binary pairs that can yield more fast-rotating pulsars," Ransom said. The great sensitivity of the giant, 100-meter diameter GBT, along with a special signal processor, called the Pulsar Spigot, made possible the discovery of so many millisecond pulsars in Terzan 5. "We think there are many more pulsars to be found in Terzan 5 and other clusters, and given that the fast ones are often hidden by eclipses, some of them may be spinning even faster than this new one," Ransom said. "We're excited about using this outstanding new telescope to answer some important questions about fundamental physics," he said. In addition to Hessels, Ransom and Stairs, the research team includes Paulo Freire of Arecibo Observatory in Puerto Rico, Victoria Kaspi, of McGill University, and Fernando Camilo, of Columbia University. Their report is being published in Science Express, the online version of the journal Science. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The pulsar research also was supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the Quebec Foundation for Research on Nature and Technology, the Canadian Institute for Advanced Research, the Canada Research Chairs Program, and the National Science Foundation..

  5. Evidence for a planetary mass third body orbiting the binary star KIC 5095269

    NASA Astrophysics Data System (ADS)

    Getley, A. K.; Carter, B.; King, R.; O'Toole, S.

    2017-07-01

    In this paper, we report the evidence for a planetary mass body orbiting the close binary star KIC 5095269. This detection arose from a search for eclipse timing variations amongst the more than 2000 eclipsing binaries observed by Kepler. Light curve and periodic eclipse time variations have been analysed using systemic and a custom Binary Eclipse Timings code based on the Transit Analysis Package which indicates a 7.70 ± 0.08MJup object orbiting every 237.7 ± 0.1 d around a 1.2 M⊙ primary and a 0.51 M⊙ secondary in an 18.6 d orbit. A dynamical integration over 107 yr suggests a stable orbital configuration. Radial velocity observations are recommended to confirm the properties of the binary star components and the planetary mass of the companion.

  6. On the period determination of ASAS eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Mayangsari, L.; Priyatikanto, R.; Putra, M.

    2014-03-01

    Variable stars, or particularly eclipsing binaries, are very essential astronomical occurrence. Surveys are the backbone of astronomy, and many discoveries of variable stars are the results of surveys. All-Sky Automated Survey (ASAS) is one of the observing projects whose ultimate goal is photometric monitoring of variable stars. Since its first light in 1997, ASAS has collected 50,099 variable stars, with 11,076 eclipsing binaries among them. In the present work we focus on the period determination of the eclipsing binaries. Since the number of data points in each ASAS eclipsing binary light curve is sparse, period determination of any system is a not straightforward process. For 30 samples of such systems we compare the implementation of Lomb-Scargle algorithm which is an Fast Fourier Transform (FFT) basis and Phase Dispersion Minimization (PDM) method which is non-FFT basis to determine their period. It is demonstrated that PDM gives better performance at handling eclipsing detached (ED) systems whose variability are non-sinusoidal. More over, using semi-automatic recipes, we get better period solution and satisfactorily improve 53% of the selected object's light curves, but failed against another 7% of selected objects. In addition, we also highlight 4 interesting objects for further investigation.

  7. The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.

    2004-03-01

    We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog is accessible from the OGLE Internet archive.

  8. Spin-powered Pulsars in the CTA Era

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2016-04-01

    What can CTA do for the study of isolated and binary neutron stars? Are the recent Crab observations the vanguard of numerous strong pulsed detections in the CTA era? Will the typical pulsar show only the tail of the Fermi spectrum? Or will we be tantalized by a handful of new unusual sources? I review our current HE picture and suggest that pulsar binaries represent a new TeV frontier.

  9. Swings between rotation and accretion power in a binary millisecond pulsar.

    PubMed

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  10. Long-term eclipse timing of white dwarf binaries: an observational hint of a magnetic mechanism at work

    NASA Astrophysics Data System (ADS)

    Bours, M. C. P.; Marsh, T. R.; Parsons, S. G.; Dhillon, V. S.; Ashley, R. P.; Bento, J. P.; Breedt, E.; Butterley, T.; Caceres, C.; Chote, P.; Copperwheat, C. M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Kilkenny, D.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Sahman, D. I.; Vučković, M.; Wilson, R. W.

    2016-08-01

    We present a long-term programme for timing the eclipses of white dwarfs in close binaries to measure apparent and/or real variations in their orbital periods. Our programme includes 67 close binaries, both detached and semi-detached and with M-dwarfs, K-dwarfs, brown dwarfs or white dwarfs secondaries. In total, we have observed more than 650 white dwarf eclipses. We use this sample to search for orbital period variations and aim to identify the underlying cause of these variations. We find that the probability of observing orbital period variations increases significantly with the observational baseline. In particular, all binaries with baselines exceeding 10 yr, with secondaries of spectral type K2 - M5.5, show variations in the eclipse arrival times that in most cases amount to several minutes. In addition, among those with baselines shorter than 10 yr, binaries with late spectral type (>M6), brown dwarf or white dwarf secondaries appear to show no orbital period variations. This is in agreement with the so-called Applegate mechanism, which proposes that magnetic cycles in the secondary stars can drive variability in the binary orbits. We also present new eclipse times of NN Ser, which are still compatible with the previously published circumbinary planetary system model, although only with the addition of a quadratic term to the ephemeris. Finally, we conclude that we are limited by the relatively short observational baseline for many of the binaries in the eclipse timing programme, and therefore cannot yet draw robust conclusions about the cause of orbital period variations in evolved, white dwarf binaries.

  11. Massive eclipsing binary candidates

    NASA Technical Reports Server (NTRS)

    Garrison, R. F.; Schild, R. E.; Hiltner, W. A.

    1983-01-01

    New UBV data are provided for 63 southern OB stars which are either identified in the survey by Garrison, Hiltner, and Schild as having double lines or are known from Wood et al. to be eclipsing binaries. Twenty of the stars are known eclipsing variables. Four stars, not previously known as eclipsing, have both spectroscopic evidence of duplicity and significant photometric variations. Several additional stars have a marginally significant spread in V magnitude.

  12. Be/X-Ray Pulsar Binary Science with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  13. Gamma-rays from the binary system containing PSR J2032+4127 during its periastron passage

    NASA Astrophysics Data System (ADS)

    Bednarek, Włodek; Banasiński, Piotr; Sitarek, Julian

    2018-01-01

    The energetic pulsar, PSR J2032+4127, has recently been discovered in the direction of the unidentified HEGRA TeV γ-ray source (TeV J2032+4130). It is proposed that this pulsar forms a binary system with the Be type star, MT91 213, expected to reach periastron late in 2017. We performed detailed calculations of the γ-ray emission produced close to the binary system’s periastron passage by applying a simple geometrical model. Electrons accelerated at the collision region of pulsar and stellar winds initiate anisotropic inverse Compton {e}+/- pair cascades by scattering soft radiation from the massive companion. The γ-ray spectra, from such a comptonization process, are compared with the measurements of the extended TeV γ-ray emission from the HEGRA TeV γ-ray source. We discuss conditions within the binary system, at the periastron passage of the pulsar, for which the γ-ray emission from the binary can overcome the extended, steady TeV γ-ray emission from the HEGRA TeV γ-ray source.

  14. Neutron stars and millisecond pulsars from accretion-induced collapse in globular clusters

    NASA Technical Reports Server (NTRS)

    Bailyn, Charles D.; Grindlay, Jonathan E.

    1990-01-01

    This paper examines the limits on the number of millisecond pulsars which could be formed in globular clusters by the generally accepted scenario (in which a neutron star is created by the supernova of an initially massive star and subsequently captures a companion to form a low-mass X-ray binary which eventually becomes a millisecond pulsar). It is found that, while the number of observed low-mass X-ray binaries can be adequately explained in this way, the reasonable assumption that the pulsar luminosity function in clusters extends below the current observational limits down to the luminosity of the faintest millisecond pulsars in the field suggests a cluster population of millisecond pulsars which is substantially larger than the standard model can produce. Alleviating this problem by postulating much shorter lifetimes for the X-ray binaries requires massive star populations sufficiently large that the mass loss resulting from their evolution would be likely to unbind the cluster. It is argued that neutron star formation in globular clusters by accretion-induced collapse of white dwarfs may resolve the discrepancy in birthrates.

  15. Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations

    DOE PAGES

    Pletsch, H. J.; Guillemot, L.; Fehrmann, H.; ...

    2012-12-07

    We present that millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such “recycled” rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. Lastly, the pulsar is in a circular orbit with an orbital period ofmore » only 93 minutes, the shortest of any spin-powered pulsar binary ever found.« less

  16. VizieR Online Data Catalog: Kepler Mission. VII. Eclipsing binaries in DR3 (Kirk+, 2016)

    NASA Astrophysics Data System (ADS)

    Kirk, B.; Conroy, K.; Prsa, A.; Abdul-Masih, M.; Kochoska, A.; Matijevic, G.; Hambleton, K.; Barclay, T.; Bloemen, S.; Boyajian, T.; Doyle, L. R.; Fulton, B. J.; Hoekstra, A. J.; Jek, K.; Kane, S. R.; Kostov, V.; Latham, D.; Mazeh, T.; Orosz, J. A.; Pepper, J.; Quarles, B.; Ragozzine, D.; Shporer, A.; Southworth, J.; Stassun, K.; Thompson, S. E.; Welsh, W. F.; Agol, E.; Derekas, A.; Devor, J.; Fischer, D.; Green, G.; Gropp, J.; Jacobs, T.; Johnston, C.; Lacourse, D. M.; Saetre, K.; Schwengeler, H.; Toczyski, J.; Werner, G.; Garrett, M.; Gore, J.; Martinez, A. O.; Spitzer, I.; Stevick, J.; Thomadis, P. C.; Vrijmoet, E. H.; Yenawine, M.; Batalha, N.; Borucki, W.

    2016-07-01

    The Kepler Eclipsing Binary Catalog lists the stellar parameters from the Kepler Input Catalog (KIC) augmented by: primary and secondary eclipse depth, eclipse width, separation of eclipse, ephemeris, morphological classification parameter, and principal parameters determined by geometric analysis of the phased light curve. The previous release of the Catalog (Paper II; Slawson et al. 2011, cat. J/AJ/142/160) contained 2165 objects, through the second Kepler data release (Q0-Q2). In this release, 2878 objects are identified and analyzed from the entire data set of the primary Kepler mission (Q0-Q17). The online version of the Catalog is currently maintained at http://keplerEBs.villanova.edu/. A static version of the online Catalog associated with this paper is maintained at MAST https://archive.stsci.edu/kepler/eclipsing_binaries.html. (10 data files).

  17. Modeling the Effects of Asynchronous Rotation on Secondary Eclipse Timings in HW VIr Binaries

    NASA Astrophysics Data System (ADS)

    Clancy, Padraig

    2018-01-01

    HW Vir binaries are post common envelope binaries consisting of a hot subdwarf and red dwarf, with light curves dominated by primary eclipses, a strong reflection effect, and secondary eclipses. They have orbital periods ranging from a few hours to half a day and are generally thought to be tidally locked; most studies assume both synchronous rotation and zero eccentricity when modeling HW Vir light curves and radial velocities. Their stable eclipse timings are frequently used in O-C studies to look for the presence of circumbinary objects, measure evolutionary changes in the orbital period, and even constrain the component masses through Roemer delay measurements of the secondary eclipse. While most systems are probably tidally locked or close to it, even slightly asynchronous rotation could theoretically shift the orbital phase of the reflection effect. Here we investigate how asynchronous rotation might affect measurements of secondary eclipse timings by generating thousands of synthetic light curves with a range of reflection effect phases, fitting eclipse timings, and creating O-C diagrams.

  18. A 110-ms pulsar, with negative period derivative, in the globular cluster M15

    NASA Technical Reports Server (NTRS)

    Wolszczan, A.; Kulkarni, S. R.; Middleditch, J.; Backer, D. C.; Fruchter, A. S.; Dewey, R. J.

    1989-01-01

    The discovery of a 110-ms pulsar, PSR2127+11, in the globular cluster M15, is reported. The results of nine months of timing measurements place the new pulsar about 2 arcsec from the center of the cluster, and indicate that it is not a member of a close binary system. The measured negative value of the period derivative is probably the result of the pulsar being bodily accelerated in our direction by the gravitational field of the collapsed core of M15. This apparently overwhelms a positive contribution to the period derivative due to magnetic braking. Although the pulsar has an unexpectedly long period, it is argued that it belongs to the class of 'recycled' pulsars, which have been spun up by accretion in a binary system. The subsequent loss of the pulsar's companion is probably due to disruption of the system by close encounters with other stars.

  19. THE TIMING OF NINE GLOBULAR CLUSTER PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Ryan S.; Freire, Paulo C. C.; Ransom, Scott M.

    2012-02-01

    We have used the Robert C. Byrd Green Bank Telescope to time nine previously known pulsars without published timing solutions in the globular clusters (GCs) M62, NGC 6544, and NGC 6624. We have full timing solutions that measure the spin, astrometric, and (where applicable) binary parameters for six of these pulsars. The remaining three pulsars (reported here for the first time) were not detected enough to establish solutions. We also report our timing solutions for five pulsars with previously published solutions, and find good agreement with other authors, except for PSR J1701-3006B in M62. Gas in this system is probablymore » responsible for the discrepancy in orbital parameters, and we have been able to measure a change in the orbital period over the course of our observations. Among the pulsars with new solutions we find several binary pulsars with very low mass companions (members of the so-called 'black widow' class) and we are able to place constraints on the mass-to-light ratio in two clusters. We confirm that one of the pulsars in NGC 6624 is indeed a member of the rare class of non-recycled pulsars found in GCs. We have also measured the orbital precession and Shapiro delay for a relativistic binary in NGC 6544. If we assume that the orbital precession can be described entirely by general relativity, which is likely, we are able to measure the total system mass (2.57190(73) M{sub Sun }) and companion mass (1.2064(20) M{sub Sun }), from which we derive the orbital inclination (sin i = 0.9956(14)) and the pulsar mass (1.3655(21) M{sub Sun }), the most precise such measurement ever obtained for a millisecond pulsar. The companion is the most massive known around a fully recycled pulsar.« less

  20. The binary nature of PSR J2032+4127

    DOE PAGES

    Lyne, A. G.; Stappers, B. W.; Keith, M. J.; ...

    2015-05-22

    PSR J2032+4127 is a γ-ray and radio-emitting pulsar which has been regarded as a young luminous isolated neutron star. However, its recent spin-down rate has extraordinarily increased by a factor of 2. Here we present evidence that this is due to its motion as a member of a highly-eccentric binary system with an ~15–M⊙ Be star, MT91 213. Timing observations show that, not only are the positions of the two stars coincident within 0.4 arcsec, but timing models of binary motion of the pulsar fit the data much better than a model of a young isolated pulsar. MT91 213, andmore » hence the pulsar, lie in the Cyg OB2 stellar association, which is at a distance of only 1.4–1.7 kpc. The pulsar is currently on the near side of, and accelerating towards, the Be star, with an orbital period of 20–30 yr. Finally, the next periastron is well constrained to occur in early 2018, providing an opportunity to observe enhanced high-energy emission as seen in other Be-star binary systems.« less

  1. Algorithms for searching Fast radio bursts and pulsars in tight binary systems.

    NASA Astrophysics Data System (ADS)

    Zackay, Barak

    2017-01-01

    Fast radio bursts (FRB's) are an exciting, recently discovered, astrophysical transients which their origins are unknown.Currently, these bursts are believed to be coming from cosmological distances, allowing us to probe the electron content on cosmological length scales. Even though their precise localization is crucial for the determination of their origin, radio interferometers were not extensively employed in searching for them due to computational limitations.I will briefly present the Fast Dispersion Measure Transform (FDMT) algorithm,that allows to reduce the operation count in blind incoherent dedispersion by 2-3 orders of magnitude.In addition, FDMT enables to probe the unexplored domain of sub-microsecond astrophysical pulses.Pulsars in tight binary systems are among the most important astrophysical objects as they provide us our best tests of general relativity in the strong field regime.I will provide a preview to a novel algorithm that enables the detection of pulsars in short binary systems using observation times longer than an orbital period.Current pulsar search programs limit their searches for integration times shorter than a few percents of the orbital period.Until now, searching for pulsars in binary systems using observation times longer than an orbital period was considered impossible as one has to blindly enumerate all options for the Keplerian parameters, the pulsar rotation period, and the unknown DM.Using the current state of the art pulsar search techniques and all computers on the earth, such an enumeration would take longer than a Hubble time. I will demonstrate that using the new algorithm, it is possible to conduct such an enumeration on a laptop using real data of the double pulsar PSR J0737-3039.Among the other applications of this algorithm are:1) Searching for all pulsars on all sky positions in gamma ray observations of the Fermi LAT satellite.2) Blind searching for continuous gravitational wave sources emitted by pulsars with non-axis-symmetric matter distribution.Previous attempts to conduct all of the above searches contained substantial sensitivity compromises.

  2. Einstein observations of selected close binaries and shell stars

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Koch, R. H.; Plavec, M. J.

    1984-01-01

    Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.

  3. Mass-Luminosity Relations for Rapid and Slow Rotators.

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2006-08-01

    Comparing the radii of eclipsing binaries components and single stars we have found a noticeable difference between observational parameters of B0V-G0V components of eclipsing binaries and those of single stars of the corresponding spectral type. This difference was confirmed by re-analysing the results of independent investigations published in the literature. Larger radii and higher temperatures of A-F eclipsing binaries can be explained by synchronization of such stars in close systems that prevents them to rotate rapidly. So, we have found that the mass-luminosity relation based on eclipsing binary data cannot be used to derive the initial mass function of single stars. While our current knowledge of the empirical mass-luminosity relation for intermediate-mass (1.5 to 10 m[*]) stars is based exclusively on data from eclipsing binaries, knowledge of the mass-luminosity relation should come from dynamical mass determinations of visual binaries, combined with spatially resolved precise photometry. Then the initial mass function should be revised for m>1.5m[*]. Data were collected on fundamental parameters of stars with masses m > 1.5.m [*]). They are components of binaries with P > 15^d and consequently are not synchronised with the orbital periods and presumably are rapid rotators. These stars are believed to evolve similarly with single stars, so these data allow us to construct mass-luminosity and other relations that can more confidently be used for statistical and astrophysical investigations of single stars than so called standard relations, based on data on detached main-sequence double-lined short-period eclipsing binaries. Mass-luminosity, mass-temperature and mass-radius relations of single stars are presented, as well as their HR diagram.

  4. A New Parameterization of the Shapiro delay and improved tests of general relativity in binary pulsars

    NASA Astrophysics Data System (ADS)

    Freire, Paulo; Wex, Norbert

    In this talk, we present a re-parameterization of the Shapiro delay as observed in the timing of radio pulses of binary pulsars. We express the Shapiro delay as a sum of harmonics of the orbital period of the system, and use the harmonic coefficients as the main parameters of a much improved description of the effect. This includes a superior description of the constraints on the masses and orbital inclination introduced by a measurement of the Shapiro delay. In some cases (which we discuss) this leads to dramatically improved parametric tests of general relativity with binary pulsars.

  5. The 1982 ultraviolet eclipse of the symbiotic binary AR Pav

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Cowley, A. P.; Ake, T. B.; Imhoff, C. L.

    1983-01-01

    Observations with the International Ultraviolet Explorer (IUE) of the symbiotic binary AR Pav through its 1982 eclipse show that the hot star is not eclipsed. The hot star is associated with an extended region of continuum emission which is partially eclipsed. The eclipsed radiation is hotter near to its center, with a maximum temperature of about 9000 K. The uneclipsed flux is hotter than this. UV emission lines are not measurably eclipsed and presumably arise in a much larger region than the continuum. These data provide new constraints on models of the system but also are apparently in contradiction to those based on ground-based data.

  6. Period analysis of the eclipsing binary AI Dra

    NASA Astrophysics Data System (ADS)

    Zasche, P.; Uhlář, R.; Svoboda, P.

    2010-03-01

    The eclipsing binary system AI Dra reveals changes of its orbital period. These variations could be described as a result of orbiting the eclipsing pair around a common center of mass with two unseen companions with the periods about 18 and 43 years together with a steady period increase. Fourteen new minima observations were carried out by the authors.

  7. Spin-down of radio millisecond pulsars at genesis.

    PubMed

    Tauris, Thomas M

    2012-02-03

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.

  8. Gamma rays from pulsar wind shock acceleration

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1990-01-01

    A shock forming in the wind of relativistic electron-positron pairs from a pulsar, as a result of confinement by surrounding material, could convert part of the pulsar spin-down luminosity to high energy particles through first order Fermi acceleration. High energy protons could be produced by this mechanism both in supernova remnants and in binary systems containing pulsars. The pion-decay gamma-rays resulting from interaction of accelerated protons with surrounding target material in such sources might be observable above 70 MeV with EGRET (Energetic Gamma-Ray Experimental Telescope) and above 100 GeV with ground-based detectors. Acceleration of protons and expected gamma-ray fluxes from SN1987A, Cyg X-3 type sources and binary pulsars are discussed.

  9. CCD Times of Minima of Selected Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Zejda, Miloslav

    2004-12-01

    682 CCD minima observations of 259 eclipsing binaries made mainly by author are presented. The observed stars were chosen mainly from catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.

  10. Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Zhang, Hui; Wang, Songhu; Zhou, Ji-Lin; Zhou, Xu; Wang, Lingzhi; Wang, Lifan; Wittenmyer, R. A.; Liu, Hui-Gen; Meng, Zeyang; Ashley, M. C. B.; Storey, J. W. V.; Bayliss, D.; Tinney, Chris; Wang, Ying; Wu, Donghong; Liang, Ensi; Yu, Zhouyi; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu

    2015-04-01

    The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,000 light curves in the i band were obtained during the observation season lasting from 2008 March to July. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb-Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore, the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis, and a locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence method. The primary and secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.

  11. DID THE ANCIENT EGYPTIANS RECORD THE PERIOD OF THE ECLIPSING BINARY ALGOL-THE RAGING ONE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jetsu, L.; Porceddu, S.; Lyytinen, J.

    The eclipses in binary stars give precise information of orbital period changes. Goodricke discovered the 2.867 day period in the eclipses of Algol in the year 1783. The irregular orbital period changes of this longest known eclipsing binary continue to puzzle astronomers. The mass transfer between the two members of this binary should cause a long-term increase of the orbital period, but observations over two centuries have not confirmed this effect. Here, we present evidence indicating that the period of Algol was 2.850 days three millennia ago. For religious reasons, the ancient Egyptians have recorded this period into the Cairomore » Calendar (CC), which describes the repetitive changes of the Raging one. CC may be the oldest preserved historical document of the discovery of a variable star.« less

  12. The fidelity of Kepler eclipsing binary parameters inferred by the neural network

    NASA Astrophysics Data System (ADS)

    Holanda, N.; da Silva, J. R. P.

    2018-04-01

    This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 eclipsing binary detached obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cos ω and e sin ω, but orbital inclination is clearly underestimated in neural network tests.

  13. The fidelity of Kepler eclipsing binary parameters inferred by the neural network

    NASA Astrophysics Data System (ADS)

    Holanda, N.; da Silva, J. R. P.

    2018-07-01

    This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 detached eclipsing binaries obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light-curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cosω and e sinω, but orbital inclination is clearly underestimated in neural network tests.

  14. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    PubMed

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. Copyright © 2015, American Association for the Advancement of Science.

  15. Probing the Milky Way electron density using multi-messenger astronomy

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane

    2015-04-01

    Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.

  16. Analysis of 45-years of Eclipse Timings of the Hyades (K2 V+ DA) Eclipsing Binary V471 Tauri

    NASA Astrophysics Data System (ADS)

    Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    V471 Tau is an important detached 0.521-day eclipsing binary composed of a K2 V and a hot DA white dwarf star. This system resides in the Hyades star cluster located approximately 153 Ly from us. V471 Tau is considered to be the end-product of common-envelope binary star evolution and is currently a pre-CV system. V471 Tau serves as a valuable astrophysical laboratory for studying stellar evolution, white dwarfs, stellar magnetic dynamos, and possible detection of low mass companions using the Light Travel Time (LTT) Effects. Since its discovery as an eclipsing binary in 1970, photometry has been carried out and many eclipse timings have been determined. We have performed an analysis of the available photometric data available on V471 Tauri. The binary system has been the subject of analyses regarding the orbital period. From this analysis several have postulated the existence of a third body in the form of a brown dwarf that is causing periodic variations in the system’s apparent period. In this study we combine ground based data with photometry secured recently from the Kepler K2 mission. After detrending and phasing the available data, we are able to compare the changing period of the eclipsing binary system against predictions on the existence of this third body. The results of the analysis will be presented. This research is sponsored by grants from NASA and NSF for which we are very grateful.

  17. Hydrodynamic Interaction between the Be Star and the Pulsar in the TeV Binary PSR B1259-63/LS 2883

    NASA Astrophysics Data System (ADS)

    Okazaki, Atsuo T.; Nagataki, Shigehiro; Naito, Tsuguya; Kawachi, Akiko; Hayasaki, Kimitake; Owocki, Stanley P.; Takata, Jumpei

    2011-08-01

    We have been studying the interaction between the Be star and the pulsar in the TeV binary PSR B1259-63/LS 2883, using 3-D SPH simulations of the tidal and wind interactions in this Be-pulsar system. We first ran a simulation without pulsar wind nor Be wind, while taking into account only the gravitational effect of the pulsar on the Be disk. In this simulation, the gas particles are ejected at a constant rate from the equatorial surface of the Be star, which is tilted in a direction consistent with multi-waveband observations. We ran the simulation until the Be disk was fully developed and started to repeat a regular tidal interaction with the pulsar. Then, we turned on the pulsar wind and the Be wind. We ran two simulations with different wind mass-loss rates for the Be star, one for a B2 V type and the other for a significantly earlier spectral type. Although the global shape of the interaction surface between the pulsar wind and the Be wind agrees with the analytical solution, the effect of the pulsar wind on the Be disk is profound. The pulsar wind strips off an outer part of the Be disk, truncating the disk at a radius significantly smaller than the pulsar orbit. Our results, therefore, rule out the idea that the pulsar passes through the Be disk around periastron, which has been assumed in previous studies. It also turns out that the location of the contact discontinuity can be significantly different between phases when the pulsar wind directly hits the Be disk and those when the pulsar wind collides with the Be wind. It is thus important to adequately take into account the circumstellar environment of the Be star, in order to construct a satisfactory model for this prototypical TeV binary.

  18. The new eclipsing magnetic binary system E 1114 + 182

    NASA Technical Reports Server (NTRS)

    Biermann, P.; Schmidt, G. D.; Liebert, J.; Tapia, S.; Strittmatter, P. A.; West, S.; Stockman, H. S.; Kuehr, H.; Lamb, D. Q.

    1985-01-01

    A comprehensive analysis of E 1114 + 182, the first eclipsing AM Herculis binary system and the shortest-period eclipsing cataclysmic variable known, is presented. The time-resolved X-ray observations which led to the system's recognition as an AM Her system with a roughly 90 minute orbital period are reported. The current optical photometric and polarimetric ephemeris and a description of the system's phase-modulated properties are given. The detailed photometric eclipse profile and the highly variable spectroscopic behavior are addressed. This information is used to determine systemic parameters and derive new information on the line emission regions. The data put severe constraints on current torque models for keeping the binary and white dwarf rotation in phase.

  19. From YY Boo (eclipsing binary) via J1407 (ringed companion) to WD 1145+017 (white dwarf with debris disk) (Abstract)

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.

    2018-06-01

    (Abstract only) Several years ago by accident I observed YY Boo outside of an eclipse and was very surprised to see a short term periodic variation of about 0.1 mag. That was completely unexpected and it initiated an international campaign by amateurs to identify the cause of these variations. It turned out that YY Boo showed a pulsation period of about 88 min in addition to being an Algol type eclipsing binary. Hence it turned out that YY Boo has become a new member of a class of pulsating eclipsing binary systems with, at that time, the second largest amplitude after BO Her.

  20. Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Draconis at Lick Observatory.

    PubMed

    Doyle, L R; Dunham, E T; Deeg, H J; Blue, J E; Jenkins, J M

    1996-06-25

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  1. Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Draconis at Lick Observatory

    NASA Technical Reports Server (NTRS)

    Doyle, L. R.; Dunham, E. T.; Deeg, H. J.; Blue, J. E.; Jenkins, J. M.

    1996-01-01

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  2. COBRA: a Bayesian approach to pulsar searching

    NASA Astrophysics Data System (ADS)

    Lentati, L.; Champion, D. J.; Kramer, M.; Barr, E.; Torne, P.

    2018-02-01

    We introduce COBRA, a GPU-accelerated Bayesian analysis package for performing pulsar searching, that uses candidates from traditional search techniques to set the prior used for the periodicity of the source, and performs a blind search in all remaining parameters. COBRA incorporates models for both isolated and accelerated systems, as well as both Keplerian and relativistic binaries, and exploits pulse phase information to combine search epochs coherently, over time, frequency or across multiple telescopes. We demonstrate the efficacy of our approach in a series of simulations that challenge typical search techniques, including highly aliased signals, and relativistic binary systems. In the most extreme case, we simulate an 8 h observation containing 24 orbits of a pulsar in a binary with a 30 M⊙ companion. Even in this scenario we show that we can build up from an initial low-significance candidate, to fully recovering the signal. We also apply the method to survey data of three pulsars from the globular cluster 47Tuc: PSRs J0024-7204D, J0023-7203J and J0024-7204R. This final pulsar is in a 1.6 h binary, the shortest of any pulsar in 47Tuc, and additionally shows significant scintillation. By allowing the amplitude of the source to vary as a function of time, however, we show that we are able to obtain optimal combinations of such noisy data. We also demonstrate the ability of COBRA to perform high-precision pulsar timing directly on the single pulse survey data, and obtain a 95 per cent upper limit on the eccentricity of PSR J0024-7204R of εb < 0.0007.

  3. Search for A-F Spectral type pulsating components in Algol-type eclipsing binary systems

    NASA Astrophysics Data System (ADS)

    Kim, S.-L.; Lee, J. W.; Kwon, S.-G.; Youn, J.-H.; Mkrtichian, D. E.; Kim, C.

    2003-07-01

    We present the results of a systematic search for pulsating components in Algol-type eclipsing binary systems. A total number of 14 eclipsing binaries with A-F spectral type primary components were observed for 22 nights. We confirmed small-amplitude oscillating features of a recently detected pulsator TW Dra, which has a pulsating period of 0.053 day and a semi-amplitude of about 5 mmag in B-passband. We discovered new pulsating components in two eclipsing binaries of RX Hya and AB Per. The primary component of RX Hya is pulsating with a dominant period of 0.052 day and a semi-amplitude of about 7 mmag. AB Per has also a pulsating component with a period of 0.196 day and a semi-amplitude of about 10 mmag in B-passband. We suggest that these two new pulsators are members of the newly introduced group of mass-accreting pulsating stars in semi-detached Algol-type eclipsing binary systems. Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/231

  4. Full Phase Multi-Band Study of Eclipsing Binaries 1SWASP J061850.43+220511.9 and 2MASSJ07095549+3643564

    NASA Astrophysics Data System (ADS)

    Terheide, Rachel; Zhang, Liyun; Han, Xianming; Lu, Hongpeng

    2018-01-01

    We present full-phase VRI-band light curves for eclipsing binary 1SWASP J061850.43+220511.9, and full-phase BVRI-band light curves for eclipsing binary 2MASS J07095549+3643564. The observations were conducted using the 0.94-m Holcomb Observatory telescope located on Butler University Campus in Indianapolis, Indiana, and the 0.6-m SARA telescope located at the Cerro Tololo Inter-American Observatory in Chile. We obtained key system parameters for both eclipsing binaries. For 1SWASP J061850.43+220511.9, the period is 0.21482 ±0.00053 days compared to 0.21439 days from an older study (Lohr et. al), the system mass ratio is found as 2.50 and the system is classified as EW type. Similarly, for 2MASS J07095549+3643564, we obtained a linear ephemeris and a physical model for the first time. We found its period to be 0.22297 ±0.00032 days, as compared to 0.446092 days and 0.11152 days from previous research (Drake et. al 2014, Hartman et. al 2011). 2MASS J07095549+3643564 is classified as a W Uma type eclipsing binary.

  5. New Eclipsing Contact Binary System in Auriga

    NASA Astrophysics Data System (ADS)

    Austin, S. J.; Robertson, J. W.; Justice, C.; Campbell, R. T.; Hoskins, J.

    2004-05-01

    We present data on a newly discovered eclipsing binary system. The serendipitous discovery of this variable star was made by J.W. Robertson analyzing inhomogeneous ensemble photometry of stars in the field of the cataclysmic variable FS Aurigae from Indiana University RoboScope data. We obtained differential time-series BVR photometry during 2003 of this field variable using an ensemble of telescopes including the university observatories at ATU, UCA and joint ventures with amateur observatories in the state of Arkansas (Whispering Pines Observatory and Nubbin Ridge Observatory). The orbital period of this eclipsing system is 0.2508 days. The B-V light curve indicates colors of 1.2 around quadrature, to nearly 1.4 at primary eclipse. Binary star light curve models that best fit the BVR differential photometry suggest that the system is a contact binary overfilling the inner Roche Lobe by 12%, a primary component with a temperature of 4350K, a secondary component with a temperature of 3500K, a mass ratio of 0.37, and an inclination of 83 degrees. We present BVR light curves, an ephemeris, and best fit model parameters for the physical characteristics of this new eclipsing binary system.

  6. Investigation of Times of Minima of Selected Early-Type Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Mayer, Pavel; Wolf, Marek; Niarchos, P. G.; Gazeas, K. D.; Manimanis, V. N.; Chochol, Drahomír

    2006-08-01

    New precise times of minimum light for several early-type eclipsing binaries were obtained at three observatories. The changes of period of the following measured binaries are discussed: V1182 Aql, LY Aur, SZ Cam, FZ CMa, QZ Car, LZ Cen, V606 Cen, AH Cep and TU~Mus.

  7. Indoor Astronomy: A Model Eclipsing Binary Star System.

    ERIC Educational Resources Information Center

    Bloomer, Raymond H., Jr.

    1979-01-01

    Describes a two-hour physics laboratory experiment modeling the phenomena of eclipsing binary stars developed by the Air Force Academy as part of a week-long laboratory-oriented experience for visiting high school students. (BT)

  8. The Eclipsing Binary On-Line Atlas (EBOLA)

    NASA Astrophysics Data System (ADS)

    Bradstreet, D. H.; Steelman, D. P.; Sanders, S. J.; Hargis, J. R.

    2004-05-01

    In conjunction with the upcoming release of \\it Binary Maker 3.0, an extensive on-line database of eclipsing binaries is being made available. The purposes of the atlas are: \\begin {enumerate} Allow quick and easy access to information on published eclipsing binaries. Amass a consistent database of light and radial velocity curve solutions to aid in solving new systems. Provide invaluable querying capabilities on all of the parameters of the systems so that informative research can be quickly accomplished on a multitude of published results. Aid observers in establishing new observing programs based upon stars needing new light and/or radial velocity curves. Encourage workers to submit their published results so that others may have easy access to their work. Provide a vast but easily accessible storehouse of information on eclipsing binaries to accelerate the process of understanding analysis techniques and current work in the field. \\end {enumerate} The database will eventually consist of all published eclipsing binaries with light curve solutions. The following information and data will be supplied whenever available for each binary: original light curves in all bandpasses, original radial velocity observations, light curve parameters, RA and Dec, V-magnitudes, spectral types, color indices, periods, binary type, 3D representation of the system near quadrature, plots of the original light curves and synthetic models, plots of the radial velocity observations with theoretical models, and \\it Binary Maker 3.0 data files (parameter, light curve, radial velocity). The pertinent references for each star are also given with hyperlinks directly to the papers via the NASA Abstract website for downloading, if available. In addition the Atlas has extensive searching options so that workers can specifically search for binaries with specific characteristics. The website has more than 150 systems already uploaded. The URL for the site is http://ebola.eastern.edu/.

  9. Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems

    NASA Astrophysics Data System (ADS)

    Geist, Emily; Beaky, Matthew; Jamison, Kate

    2018-01-01

    In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.

  10. A Pulsar and White Dwarf in an Unexpected Orbit

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D motion of the pulsar (black solid lines; current position marked with diamond) in our galaxy over the past 1.5 Gyr. This motion is typical for low-mass X-ray binary descendants, favoring a binary-evolution model over a 3-body-interaction model. [Antoniadis et al. 2016]In the first model, the eccentric binary was created via adynamic three-body formation channel. This possibility is deemed unlikely, as the white-dwarf properties and all the kinematic properties of the system point to normal binary evolution.In the secondmodel, the binary system gains its high eccentricity after mass transfer ends, when the pulsar progenitor experiences a spontaneous phase transition. The authors explore two options for this: one in which the neutron star implodes into a strange-quark star, and the other in which an over-massive white dwarf suffers a delayed collapse into a neutron star. Both cases are deemed unlikely, because the mass inferred for the pulsar progenitor is not consistent with either model.In the third model, the system forms a circumbinary disk fueled by material escaping the proto-white dwarf. After mass transfer has ended, interactions between the binary and its disk gradually increase the eccentricity of the system, pumping it up to what we observe today. All of the properties of the system measured by Antoniadis and collaborators are thus far consistent with this model.Further observations of this system and systems like it (several others have been detected, though not yet confirmed) will help determine whether binary evolution combined with interactions with a disk can indeed explain the formation of this unexpectedly eccentricsystem.CitationJohn Antoniadis et al 2016 ApJ 830 36. doi:10.3847/0004-637X/830/1/36

  11. DEBCat: A Catalog of Detached Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Southworth, J.

    2015-07-01

    Detached eclipsing binary star systems are our primary source of measured physical properties of normal stars. I introduce DEBCat: a catalog of detached eclipsing binaries with mass and radius measurements to the 2% precision necessary to put useful constraints on theoretical models of stellar evolution. The catalog was begun in 2006, as an update of the compilation by Andersen (1991). It now contains over 170 systems, and new results are added on appearance in the refereed literature. DEBCat is available at: http://www.astro.keele.ac.uk/jkt/debcat/.

  12. A spectroscopic investigation of the eclipsing binary Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Balachandran, Suchitra

    1991-01-01

    The objectives were to examine, in detail, the spectra of the eclipsing binary Epsilon Aurigae taken with the IUE satellite telescope during the 1982 to 1984 eclipse. All of the low resolution spectra were analyzed and UV light curves are presented. The primary findings are as follows: (1) a constant eclipse depth from 1600 A to longer wavelengths and a sharp drop in the eclipse depth from 1600 to 1200 A; (2) the absence of large amplitude fluctuations in the UV as expected from a Cepheid primary; and (3) equal ingress and egress times in contradiction to that interpreted from visible light curves. The effects of these findings on the eclipse geometry are being studied.

  13. Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Shao, Lijing; Sennett, Noah; Buonanno, Alessandra; Kramer, Michael; Wex, Norbert

    2017-10-01

    Pulsar timing and laser-interferometer gravitational-wave (GW) detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF), which predicts nonperturbative scalarization phenomena for neutron stars (NSs). First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs) for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical) scalarization sets in during the early (or late) stages of a binary NS (BNS) evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.

  14. CCD Times of Minima of Faint Eclipsing Binaries in 2000

    NASA Astrophysics Data System (ADS)

    Zejda, Miloslav

    2002-06-01

    196 CCD minima observations of 122 eclipsing binaries made by the author in 2000 are presented. The observed stars were chosen from the catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.

  15. Observations, Roche Lobe Analysis, and Period Study of the Eclipsing Contact Binary System GM Canum Venaticorum

    NASA Astrophysics Data System (ADS)

    Alton, K. B.; Nelson, R. H.

    2018-06-01

    GM CVn is an eclipsing W UMa binary system (P = 0.366984 d) which has been largely neglected since its variability was first detected during the ROTSE campaign (1999-2000). Other than a single unfiltered light curve (LC) no other photometric data have been published. LC data collected in three bandpasses (B, V, and Rc) at UnderOak Observatory (UO) produced three new times of minimum for GM CVn. These along with other eclipse timings from the literature were used to update the linear ephemeris. Roche modeling to produce synthetic LC fits to the observed data was accomplished using binary maker 3, wdwint56a, and phoebe v.31a. Newly acquired radial velocity data were pivotal to defining the absolute and geometric parameters for this partially eclipsing binary system. An unspotted solution achieved the best Roche model fits for the multi-color LCs collected in 2013.

  16. PSR J0538+2817 As The Remnant Of The First Supernova Explosion in a Massive Binary

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-08-01

    It is generally accepted that the radio pulsar PSR J0538+2817 is associated with the supernova remnant (SNR) S147. The only problem for the association is the obvious discrepancy (Kramer et al. 2003) between the kinematic age of the system of ~30 kyr (estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar's proper motion) and the characteristic age of the pulsar of ~600 kyr. To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one (Kramer et al. 2003; Romani & Ng 2003). We propose an alternative explanation of the age discrepancy based on the fact that PSR J0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age. Our proposal implies that S147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S147. We use the existing observational data on the system PSR J0538+2817/SNR S147 to suggest that the progenitor of the supernova that formed S147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  17. Proper motion and secular variations of Keplerian orbital elements

    NASA Astrophysics Data System (ADS)

    Butkevich, Alexey G.

    2018-05-01

    High-precision observations require accurate modelling of secular changes in the orbital elements in order to extrapolate measurements over long time intervals, and to detect deviation from pure Keplerian motion caused, for example, by other bodies or relativistic effects. We consider the evolution of the Keplerian elements resulting from the gradual change of the apparent orbit orientation due to proper motion. We present rigorous formulae for the transformation of the orbit inclination, longitude of the ascending node and argument of the pericenter from one epoch to another, assuming uniform stellar motion and taking radial velocity into account. An approximate treatment, accurate to the second-order terms in time, is also given. The proper motion effects may be significant for long-period transiting planets. These theoretical results are applicable to the modelling of planetary transits and precise Doppler measurements as well as analysis of pulsar and eclipsing binary timing observations.

  18. Searching for planets around eclipsing binary stars using timing method: NSVS 14256825

    NASA Astrophysics Data System (ADS)

    Nasiroglu, Ilham; Goździewski, Krzysztof; Słowikowska, Aga; Krzeszowski, Krzysztof; Żejmo, Michal; Zola, Staszek; Er, Huseyin

    2018-04-01

    We present four new mid eclipse times and an updated O-C diagram of the short period eclipsing binary NSVS14256825. The new data follow the (O-C) trend and its model proposed in Nasiroglu et al. (2017). The (O-C) diagram shows quasi-periodic variations that can be explained with the presence of a brown-dwarf in a quasi-circular circumbinary orbit.

  19. Kepler Eclipsing Binary Stars. I. Catalog and Principal Characterization of 1879 Eclipsing Binaries in the First Data Release

    NASA Astrophysics Data System (ADS)

    Prša, Andrej; Batalha, Natalie; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Rucker, Michael; Mjaseth, Kimberly; Engle, Scott G.; Conroy, Kyle; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-03-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P 0), morphology type, physical parameters (T eff, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2/T 1, q, fillout factor, and sin i for overcontacts, and T 2/T 1, (R 1 + R 2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  20. Searching Planets Around Some Selected Eclipsing Close Binary Stars Systems

    NASA Astrophysics Data System (ADS)

    Nasiroglu, Ilham; Slowikowska, Agnieszka; Krzeszowski, Krzysztof; Zejmo, M. Michal; Er, Hüseyin; Goździewski, Krzysztof; Zola, Stanislaw; Koziel-Wierzbowska, Dorota; Debski, Bartholomew; Ogloza, Waldemar; Drozdz, Marek

    2016-07-01

    We present updated O-C diagrams of selected short period eclipsing binaries observed since 2009 with the T100 Telescope at the TUBITAK National Observatory (Antalya, Turkey), the T60 Telescope at the Adiyaman University Observatory (Adiyaman, Turkey), the 60cm at the Mt. Suhora Observatory of the Pedagogical University (Poland) and the 50cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian University in Krakow, Poland. All four telescopes are equipped with sensitive, back-illuminated CCD cameras and sets of wide band filters. One of the targets in our sample is a post-common envelope eclipsing binary NSVS 14256825. We collected more than 50 new eclipses for this system that together with the literature data gives more than 120 eclipse timings over the time span of 8.5 years. The obtained O-C diagram shows quasi-periodic variations that can be well explained by the existence of the third body on Jupiter-like orbit. We also present new results indicating a possible light time travel effect inferred from the O-C diagrams of two other binary systems: HU Aqr and V470 Cam.

  1. KMTNet Time-series Photometry of the Doubly Eclipsing Binary Stars Located in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hong, Kyeongsoo; Koo, Jae-Rim; Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk; Park, Jang-Ho; Kim, Hyoun-Woo; Lee, Dong-Joo; Kim, Dong-Jin; Han, Cheongho

    2018-05-01

    We report the results of photometric observations for doubly eclipsing binaries OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159, both of which are composed of two pairs (designated A&B) of a detached eclipsing binary located in the Large Magellanic Cloud. The light curves were obtained by high-cadence time-series photometry using the Korea Microlensing Telescope Network 1.6 m telescopes located at three southern sites (CTIO, SAAO, and SSO) between 2016 September and 2017 January. The orbital periods were determined to be 1.433 and 1.387 days for components A and B of OGLE-LMC-ECL-15674, respectively, and 2.988 and 3.408 days for OGLE-LMC-ECL-22159A and B, respectively. Our light curve solutions indicate that the significant changes in the eclipse depths of OGLE-LMC-ECL-15674A and B were caused by variations in their inclination angles. The eclipse timing diagrams of the A and B components of OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159 were analyzed using 28, 44, 28, and 26 new times of minimum light, respectively. The apsidal motion period of OGLE-LMC-ECL-15674B was estimated by detailed analysis of eclipse timings for the first time. The detached eclipsing binary OGLE-LMC-ECL-15674B shows a fast apsidal period of 21.5 ± 0.1 years.

  2. Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu; Lin, Chien-Cheng

    2017-02-01

    Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.

  3. Recent Minima of 171 Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Samolyk, G.

    2015-12-01

    This paper continues the publication of times of minima for 171 eclipsing binary stars from observations reported to the AAVSO EB section. Times of minima from observations received by the author from March 2015 thru October 2015 are presented.

  4. Light curve solutions of the eccentric binaries KIC 10992733, KIC 5632781, KIC 10026136 and their out-of-eclipse variability

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana; Vasileva, Doroteya

    2018-01-01

    We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 10992733 and KIC 5632781 undergo total eclipses while KIC 10026136 reveals partial eclipses. The components of the targets are G and K stars. KIC 10992733 exhibited variations which were attributed to variable visibility of spot(s) on asynchronously rotating component. KIC 5632781 and KIC 1002613 reveal tidally-induced features at periastron, i.e. they might be considered as eclipsing heartbeat stars. The characteristics of the periastron features (shape, width and amplitude) confirm the theoretical predictions.

  5. International Ultraviolet Explorer observations of the peculiar variable spectrum of the eclipsing binary R Arae

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E.; Kondo, Y.

    1983-01-01

    The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.

  6. FERMI STUDY OF 5–300 GeV EMISSION FROM THE HIGH-MASS PULSAR BINARY PSR B1259-63/LS 2883

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Yi; Wang, Zhongxiang; Takata, Jumpei

    2016-09-01

    We report the results from our detailed analysis of the Fermi Large Area Telescope data for the pulsar binary PSR B1259−63/LS 2883. During the GeV flares that occurred when the pulsar was in the periastron passages, we have detected a 5–300 GeV component at ≃5 σ in emission from the binary. The detection verifies the presence of the component that has been marginally found in previous studies of the binary. Furthermore, we have discovered that this component was marginally present even in the quiescent state of the binary, specifically the mean anomaly phase 0.7–0.9. The component can be described bymore » a power law with a photon index Γ ∼ 1.4, and the flux in the flares is approximately one order of magnitude higher than that in quiescence. We discuss the origin of this component. It likely arises from the inverse-Compton process: due to the interaction between the winds from the pulsar and its massive companion, high-energy particles from the shock scatter the seed photons from the companion to GeV/TeV energies. Based on this scenario, model fits to the broad-band X-ray to TeV spectra of the binary in the flaring and quiescent states are provided.« less

  7. Spectroscopic obit for the eclipsing binary IQ Persei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, A.

    1975-10-01

    Spectroscopic orbital elements are derived for the eclipsing binary IQ Per. Faint secondary lines are detected, and a mass ratio and individual masses are inferred. The components are found to be on the main sequence, and the system is detached. (auth)

  8. Analysis of Pulsating Components in the Eclipsing Binary Systems LT Herculis, RZ Microscopii, LY Puppis, V632 Scorpii, and V638 Scorpii

    NASA Astrophysics Data System (ADS)

    Streamer, M.; Bohlsen, T.; Ogmen, Y.

    2016-06-01

    Eclipsing binary stars are especially valuable for studies of stellar evolution. If pulsating components are also present then the stellar interior can be studied using asteroseismology techniques. We present photometric data and the analysis of the delta Scuti pulsations that we have discovered in five eclipsing binary systems. The systems are: LT Herculis, RZ Microscopii, LY Puppis, V632 Scorpii and V638 Scorpii. The dominant pulsation frequencies range between 13 - 29 cycles per day with semi-amplitudes of 4 - 20 millimagnitudes.

  9. New O-C Observations for 150 Algols: Insight to the Origins of Period Shifts

    NASA Astrophysics Data System (ADS)

    Hoffman, D. I.; Harrison, T. E.; McNamara, B. J.; Vestrand, W. T.

    2005-12-01

    Many eclipsing binaries of type Algol, RS CVn, and W UMa have observed orbital period shifts. Of these, many show both increasing and decreasing period shifts. Two leading explanations for these shifts are third body effects and magnetic activity changing the oblateness of the secondary, though neither one can explain all of the observed period oscillations. The first-generation Robotic Optical Transient Search Experiment (ROTSE-I) based in Los Alamos, NM, was primarily designed to look for the optical counterparts to gamma-ray bursts as well as searching for other optical transients not detected in gamma-rays. The telescope, consisting of four 200mm camera lenses, can image the entire northern sky twice in a night, which is a very useful tool in monitoring relatively bright eclipsing binaries for period shifts. The public data release from ROTSE-I, the Northern Sky Variability Survey (NSVS), spans one year of data stating in April, 1999. O-C data for 150 eclipsing binaries are presented using the NSVS data. We revisit work by Borkovits and Hegedüs on some third body candidates in several eclipsing binary systems using recent AAVSO and NSVS data. Some unusual light curves of eclipsing binaries produced from NSVS data is presented and discussed.

  10. Binarity and Variable Stars in the Open Cluster NGC 2126

    NASA Astrophysics Data System (ADS)

    Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila

    2018-04-01

    We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.

  11. The prospects of pulsar timing with new-generation radio telescopes and the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Stappers, B. W.; Keane, E. F.; Kramer, M.; Possenti, A.; Stairs, I. H.

    2018-05-01

    Pulsars are highly magnetized and rapidly rotating neutron stars. As they spin, the lighthouse-like beam of radio emission from their magnetic poles sweeps across the Earth with a regularity approaching that of the most precise clocks known. This precision combined with the extreme environments in which they are found, often in compact orbits with other neutron stars and white dwarfs, makes them excellent tools for studying gravity. Present and near-future pulsar surveys, especially those using the new generation of telescopes, will find more extreme binary systems and pulsars that are more precise `clocks'. These telescopes will also greatly improve the precision to which we can measure the arrival times of the pulses. The Square Kilometre Array will revolutionize pulsar searches and timing precision. The increased number of sources will reveal rare sources, including possibly a pulsar-black hole binary, which can provide the most stringent tests of strong-field gravity. The improved timing precision will reveal new phenomena and also allow us to make a detection of gravitational waves in the nanohertz frequency regime. It is here where we expect to see the signature of the binary black holes that are formed as galaxies merge throughout cosmological history. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  12. Precision timing measurements of PSR J1012+5307

    NASA Astrophysics Data System (ADS)

    Lange, Ch.; Camilo, F.; Wex, N.; Kramer, M.; Backer, D. C.; Lyne, A. G.; Doroshenko, O.

    2001-09-01

    We present results and applications of high-precision timing measurements of the binary millisecond pulsar J1012+5307. Combining our radio timing measurements with results based on optical observations, we derive complete 3D velocity information for this system. Correcting for Doppler effects, we derive the intrinsic spin parameters of this pulsar and a characteristic age of 8.6+/-1.9Gyr. Our upper limit for the orbital eccentricity of only 8×10-7 (68 per cent confidence level) is the smallest ever measured for a binary system. We demonstrate that this makes the pulsar an ideal laboratory in which to test certain aspects of alternative theories of gravitation. Our precision measurements suggest deviations from a simple pulsar spin-down timing model, which are consistent with timing noise and the extrapolation of the known behaviour of slowly rotating pulsars.

  13. A New Orbit for the Eclipsing Binary V577 Oph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffery, Elizabeth J.; Barnes, Thomas G. III; Montemayor, Thomas J.

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocitymore » by −2 km s{sup −1} is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov and Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.« less

  14. Pulsar-black hole binaries as a window on quantum gravity

    NASA Astrophysics Data System (ADS)

    Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.

    Pulsars (PSRs) are some of the most accurate clocks found in nature, while black holes (BHs) offer a unique arena for the study of quantum gravity. As such, PSR-BH binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the Square Kilometer Array (SKA) and Evolved Laser Interferometer Space Antenna (eLISA), the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the BH information paradox. We propose using timing signals from a PSR beam passing through the region near a BH event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a BH lead to an increase in the measured root-mean-square deviation of arrival times of PSR pulsar traveling near the horizon.

  15. Stellar Obliquity and Magnetic Activity of Planet-hosting Stars and Eclipsing Binaries Based on Transit Chord Correlation

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.; Berta-Thompson, Zachory; Sanchis-Ojeda, Roberto; Albrecht, Simon

    2018-04-01

    The light curve of an eclipsing system shows anomalies whenever the eclipsing body passes in front of active regions on the eclipsed star. In some cases, the pattern of anomalies can be used to determine the obliquity Ψ of the eclipsed star. Here we present a method for detecting and analyzing these patterns, based on a statistical test for correlations between the anomalies observed in a sequence of eclipses. Compared to previous methods, ours makes fewer assumptions and is easier to automate. We apply it to a sample of 64 stars with transiting planets and 24 eclipsing binaries for which precise space-based data are available, and for which there was either some indication of flux anomalies or a previously reported obliquity measurement. We were able to determine obliquities for 10 stars with hot Jupiters. In particular we found Ψ ≲ 10° for Kepler-45, which is only the second M dwarf with a measured obliquity. The other eight cases are G and K stars with low obliquities. Among the eclipsing binaries, we were able to determine obliquities in eight cases, all of which are consistent with zero. Our results also reveal some common patterns of stellar activity for magnetically active G and K stars, including persistently active longitudes.

  16. The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417

    NASA Astrophysics Data System (ADS)

    Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle

    2017-01-01

    Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D. L.; Bhalerao, V. B.; Van Kerkwijk, M. H.

    Most millisecond pulsars with low-mass companions are in systems with either helium-core white dwarfs or non-degenerate (''black widow'' or ''redback'') stars. A candidate counterpart to PSR J1816+4510 was identified by Kaplan et al. whose properties were suggestive of both types of companions although identical to neither. We have assembled optical spectroscopy of the candidate companion and confirm that it is part of the binary system with a radial velocity amplitude of 343 {+-} 7 km s{sup -1}, implying a high pulsar mass, M{sub psr}sin {sup 3} i = 1.84 {+-} 0.11 M{sub Sun }, and a companion mass M{sub c}more » sin {sup 3} i = 0.193 {+-} 0.012 M{sub Sun }, where i is the inclination of the orbit. The companion appears similar to proto-white dwarfs/sdB stars, with a gravity log{sub 10}(g) = 4.9 {+-} 0.3, and effective temperature 16, 000 {+-} 500 K. The strongest lines in the spectrum are from hydrogen, but numerous lines from helium, calcium, silicon, and magnesium are present as well, with implied abundances of roughly 10 times solar (relative to hydrogen). As such, while from the spectrum the companion to PSR J1816+4510 is superficially most similar to a low-mass white dwarf, it has much lower gravity, is substantially larger, and shows substantial metals. Furthermore, it is able to produce ionized gas eclipses, which had previously been seen only for low-mass, non-degenerate companions in redback or black widow systems. We discuss the companion in relation to other sources, but find that we understand neither its nature nor its origins. Thus, the system is interesting for understanding unusual stellar products of binary evolution, as well as, independent of its nature, for determining neutron-star masses.« less

  18. Three Dozen Pulsars Over a Dozen+ Years in Terzan 5

    NASA Astrophysics Data System (ADS)

    Ransom, Scott M.; Stairs, Ingrid; Hessels, Jason W. T.; Freire, Paulo; Bilous, Anna; Prager, Brian; Ho, Anna; Cadelano, Mario; Wang, David; Scott Ransom

    2018-01-01

    The massive and rich globular cluster Terzan 5 contains at least 37 millisecond pulsars -- the most of any globular cluster. We have been timing these pulsars in the radio since 2004 using the Green Bank Telescope, and the individual and combined properties have provided a wealth of science. We have measured long-term accelerations and "jerks" of almost all of the pulsars, allowing a unique probe of the physical parameters of the cluster, completely independent from optical/IR measurements. We have directly measured the absolute proper motion of cluster and see evidence for internal velocity dispersion. Numerous post-Keplerian (i.e. relativistic) orbital parameters are significant, allowing measurements or constraints on the neutron star masses for nine systems. Ensemble flux density, dispersion measure, and polarization measurements constrain the pulsar luminosity function and the interstellar medium. Finally, we observe many interesting properties of and long-term variabilty from several eclipsing systems.

  19. Low-mass Pre-He White Dwarf Stars in Kepler Eclipsing Binaries with Multi-periodic Pulsations

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Fu, J. N.; Liu, N.; Luo, C. Q.; Ren, A. B.

    2017-12-01

    We report the discovery of two thermally bloated low-mass pre-He white dwarfs (WDs) in two eclipsing binaries, KIC 10989032 and KIC 8087799. Based on the Kepler long-cadence photometry, we determined comprehensive photometric solutions of the two binary systems. The light curve analysis reveals that KIC 10989032 is a partially eclipsed detached binary system containing a probable low-mass WD with the temperature of about 10,300 K. Having a WD with the temperature of about 13,300, KKIC 8087799 is typical of an EL CVn system. By utilizing radial velocity measurements available for the A-type primary star of KIC 10989032, the mass and radius of the WD component are determined to be 0.24+/- 0.02 {M}⊙ and 0.50+/- 0.01 {R}⊙ , respectively. The values of mass and radius of the WD in KIC 8087799 are estimated as 0.16 ± 0.02 M ⊙ and 0.21 ± 0.01 R ⊙, respectively, according to the effective temperature and mean density of the A-type star derived from the photometric solution. We therefore introduce KIC 10989032 and KIC 8087799 as the eleventh and twelfth dA+WD eclipsing binaries in the Kepler field. Moreover, both binaries display marked multi-periodic pulsations superimposed on binary effects. A preliminary frequency analysis is applied to the light residuals when subtracting the synthetic eclipsing light curves from the observations, revealing that the light pulsations of the two systems are both due to the δ Sct-type primaries. We hence classify KIC 10989032 and KIC 8087799 as two WD+δ Sct binaries.

  20. The massive multiple system HD 64315

    NASA Astrophysics Data System (ADS)

    Lorenzo, J.; Simón-Díaz, S.; Negueruela, I.; Vilardell, F.; Garcia, M.; Evans, C. J.; Montes, D.

    2017-10-01

    Context. The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. Moreover, it has been identified as a spectroscopic binary, but existing data support contradictory values for its orbital period. Aims: We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. Methods: A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. We have developed our own program to fit four components to the combined line shapes. Once the four radial velocities were derived, we obtained a model to fit the radial-velocity curves using the Spectroscopic Binary Orbit Program (SBOP). We then implemented the radial velocities of the eclipsing binary and the light curves in the Wilson-Devinney code iteratively to derive stellar parameters for its components. We were also able to analyse the non-eclipsing binary, and to derive minimum masses for its components which dominate the system flux. Results: HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901 ± 0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569 ± 0.0000008 d. We derive masses of 14.6 ± 2.3 M⊙ for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M⊙ and 10.2 M⊙, and likely masses ≈ 30 M⊙. Conclusions: HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90M⊙, but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system. Based on observations obtained at the European Southern Observatory under programmes 078.D-0665(A), 082-D.0136 and 093.A-9001(A). Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  1. KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prsa, Andrej; Engle, Scott G.; Conroy, Kyle

    2011-03-15

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg{sup 2} field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID),more » ephemeris (BJD{sub 0}, P{sub 0}), morphology type, physical parameters (T{sub eff}, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T{sub 2}/T{sub 1}, q, fillout factor, and sin i for overcontacts, and T{sub 2}/T{sub 1}, (R{sub 1} + R{sub 2})/a, esin {omega}, ecos {omega}, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be {approx}1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.« less

  2. Properties of the observed recycle radio pulsars

    NASA Astrophysics Data System (ADS)

    Johnston, Simon

    1994-04-01

    Recent searches for pulsars have been highly successful in discovering recycle and binary pulsars, and we now know of approximately 25 recycled pulsars in the Galaxy and approximately 30 in globular cluster systems. These pulsars fall into four classes; those with high-mass stellar companions, with neutron star companions, with low-mass companions, and those whose evolutionary history has been affected by a companion since lost. There are two pulsars known to have high-mass stellar companions. Both systems contain approximately 10 solar mass B-star companions and have high eccentricities (e approximately 0.85). PSR B1259-63 has a spin period of 47 ms and an orbital period in excess of three years. In constrast, PSR J0045-7319 has a spin period close to 1 s and an orbital period of only 50 days. These systems originated from a binary system containing two massive stars. The supernova explosion (SN) creates the pulsar and is also responsible for the observed high eccentricity. There are five pulsars thought to have neutron star companions. All these systems have orbital eccentricities in excess of 0.2, and they fall into two classes. The first class contain the pulsars formed after the first SN, and which have been spun-up to approximately 50 ms periods during the giant phase of their companion star. This also reduces the orbital peirod to 0.3 day and the second SN induces the high eccentricity. The pulsars observed in the second class were born after the second SN and thus have periods more typical of the bulk of pulsars (greater than 250 ms). The bulk of the recycled pulsars have low-mass (probably white dwarf) companions. In general, these pulsars have very fast spin-rates (the 'millisecond' pulsars) and large apparent ages. The observed eccentricities are extremely small (less than 10-5). These pulsars are re-born as millisecond pulsars after accreting matter and angular momentum from their companion stars in their giant phase. The orbit is circularized during the accretion phase and, because the creation of the white dwarf is a non-violent event, the orbit remains circular.

  3. Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej

    Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary-to-primary light ratio regime of ~1-2% for the circumbinary host system Kepler-16. Semi-detached binaries are ideal targets to study the dynamical processes such as mass flow and accretion, and the associated thermal processes such as intensity variation due to distortion of the lobe-filling component and material inflow collisions with accretion disks. Overcontact binaries are very abundant, yet their evolution and radiative properties are poorly understood and conflicting theories exist to explain their population frequency and structure. In addition, we will measure eclipse timing variations for all program binaries that attest to the presence of perturbing third bodies (stellar and substellar!) or dynamical interaction between the components. By a dedicated, detailed, manual modeling of these sets of targets, we will be able to use Kepler's ultra-high precision photometry to a rewarding scientific end. Thanks to the unprecedented quality of Kepler data, this will be a highly focused effort that maximizes the scientific yield and the reliability of the results. Our team has ample experience dealing with Kepler data (PI Prsa serves as chair of the Eclipsing Binary Working Group in the Kepler Science Team), spectroscopic follow-up (Co-Is Mahadevan and Bender both have experience with radial velocity instrumentation and large spectroscopic surveys), and eclipsing binary modeling (PI Prsa and Co-I Devinney both have a long record of theoretical and computational development of modeling tools). The bulk of funding we are requesting is for two postdoctoral research fellows to conduct this work at 0.5 FTE/year each, for the total of 2 years.

  4. First photometric study of two southern eclipsing binaries IS Tel and DW Aps

    NASA Astrophysics Data System (ADS)

    Özer, S.; Sürgit, D.; Erdem, A.; Öztürk, O.

    2017-02-01

    The paper presents the first photometric analysis of two southern eclipsing binary stars, IS Tel and DW Aps. Their V light curves from the All Sky Automated Survey were modelled by using Wilson-Devinney method. The final models give these two Algol-like binary stars as having detached configurations. Absolute parameters of the components of the systems were also estimated.

  5. Featured Image: A Slow-Spinning X-Ray Pulsar

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    This image (click for a closer look!) reveals the sky location of a new discovery: the slowest spinning X-ray pulsar a spinning, highly magnetized neutron star ever found in an extragalactic globular cluster. The pulsar, XB091D (circled in the bottom left inset), lies in the globular cluster B091D in the Andromeda galaxy. In a recent study led by Ivan Zolotukhin (University of Toulouse, Moscow State University, and Special Astrophysical Observatory of the Russian Academy of Sciences), a team of scientists details the importance of this discovery. This pulsar is gradually spinning faster and faster a process thats known as recycling, thought to occur as a pulsar accretes material from a donor star in a binary system. Zolotukhin and collaborators think that this particular pairing formed relatively recently, when the pulsar captured a passing star into a binary system. Were now seeing it in a unique stage of evolution where the pulsar is just starting to get recycled. For more information, check out the paper below!CitationIvan Yu. Zolotukhin et al 2017 ApJ 839 125. doi:10.3847/1538-4357/aa689d

  6. Data Mining the Ogle-II I-band Database for Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Ciocca, M.

    2013-08-01

    The OGLE I-band database is a searchable database of quality photometric data available to the public. During Phase 2 of the experiment, known as "OGLE-II", I-band observations were made over a period of approximately 1,000 days, resulting in over 1010 measurements of more than 40 million stars. This was accomplished by using a filter with a passband near the standard Cousins Ic. The database of these observations is fully searchable using the mysql database engine, and provides the magnitude measurements and their uncertainties. In this work, a program of data mining the OGLE I-band database was performed, resulting in the discovery of 42 previously unreported eclipsing binaries. Using the software package Peranso (Vanmuster 2011) to analyze the light curves obtained from OGLE-II, the eclipsing types, the epochs and the periods of these eclipsing variables were determined, to one part in 106. A preliminary attempt to model the physical parameters of these binaries was also performed, using the Binary Maker 3 software (Bradstreet and Steelman 2004).

  7. Tidally Induced Pulsations in Kepler Eclipsing Binary KIC 3230227

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P ≈ 7.0 days) eclipsing binary with a very eccentric orbit (e = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M1 = 1.84 ± 0.18 M⊙, M2 = 1.73 ± 0.17 M⊙ and radii of R1 = 2.01 ± 0.09 R⊙, R2 = 1.68 ± 0.08 R⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l = 2, m = -2 prograde modes.

  8. PSR J1755-2550: a young radio pulsar with a massive, compact companion

    NASA Astrophysics Data System (ADS)

    Ng, C.; Kruckow, M. U.; Tauris, T. M.; Lyne, A. G.; Freire, P. C. C.; Ridolfi, A.; Caiazzo, I.; Heyl, J.; Kramer, M.; Cameron, A. D.; Champion, D. J.; Stappers, B.

    2018-06-01

    Radio pulsars found in binary systems with short orbital periods are usually fast spinning as a consequence of recycling via mass transfer from their companion stars; this process is also thought to decrease the magnetic field of the neutron star being recycled. Here, we report on timing observations of the recently discovered binary PSR J1755-2550 and find that this pulsar is an exception: with a characteristic age of 2.1 Myr, it is relatively young; furthermore, with a spin period of 315 ms and a surface magnetic field strength at its poles of 0.88 × 1012 G, the pulsar shows no sign of having been recycled. Based on its timing and orbital characteristics, the pulsar either has a massive white dwarf (WD) or a neutron star (NS) companion. To distinguish between these two cases, we searched radio observations for a potential recycled pulsar companion and analysed archival optical data for a potential WD companion. Neither work returned conclusive detections. We apply population synthesis modelling and find that both solutions are roughly equally probable. Our population synthesis also predicts a minimum mass of 0.90 M⊙ for the companion star to PSR J1755-2550 and we simulate the systemic runaway velocities for the resulting WDNS systems which may merge and possibly produce Ca-rich supernovae. Whether PSR J1755-2550 hosts a WD or a NS companion star, it is certainly a member of a rare subpopulation of binary radio pulsars.

  9. Light curve solutions of the eclipsing eccentric binaries KIC 8111622, KIC 10518735, KIC 8196180 and their out-of-eclipse variability

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana P.; Vasileva, Doroteya L.

    2018-02-01

    We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 8111622 and KIC 10518735 undergo total eclipses while KIC 8196180 reveals partial eclipses. The target components are G and K stars, excluding the primary of KIC 8196180 which is early F star. KIC 8196180 reveals well-visible tidally-induced feature at periastron, i.e. it is an eclipsing heartbeat star. The characteristics of the observed periastron feature (shape, width and amplitude) confirm the theoretical predictions. There are additional out-of-eclipse variations of KIC 8196180 with the orbital period which may be explained by spot activity of synchronously rotating component. Besides worse visible periastron feature KIC 811162 exhibits small-amplitude light variations whose period is around 2.3 times shorter than the orbital one. These oscillations were attributed to spot(s) on asynchronously rotating component.

  10. Studies of Binary Pulsar Evolution Through Hubble Space Telescope Imaging of White Dwarf Companions

    NASA Astrophysics Data System (ADS)

    Lundgren, S. C.; Foster, R. S.; Camilo, F.

    1995-12-01

    In observations of six binary millisecond pulsars with the Hubble Space Telescope, we have discovered white dwarf companions to PSRs J0034-0534, J1022+1001, and J1713+0747 and improved photometry on PSRs J1640+2224 and J2145-0750. The companion to PSR J2019+2425 was not detected down to m_I=25.4. For the five companions detected, effective temperatures were estimated for the colors measured. Two of the white dwarfs, J0034-0534 and J1713+0747, are among the coolest and oldest known. Using distance estimates to the pulsars, the absolute luminosities were determined. Constrains on the masses and cooling times were obtained from the luminosities and temperatures. The results for each pulsar were related to expectations based on models for white dwarf cooling, Roche lobe overflow in the preceding low-mass X-ray binary phase, and mass accretion rate/neutron star spin period relations. Precision pulsar astrophysics at the Naval Research Laboratory is supported by the Office of Naval Research. SL is supported by a post-doctoral fellowship through the National Research Council. FC acknowledges support from NSF grant AST 91-15103 and a fellowship under the auspices of the European Commission.

  11. Retrograde Accretion Discs in High-Mass Be/X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2017-01-01

    We have compiled a comprehensive library of all X-ray observations of Magellanic pulsars carried out by XMM-Newton, Chandra and RXTE in the period 1997-2014. In this work, we use the data from 53 high-mass Be/X-ray binaries in the Small Magellanic Cloud to demonstrate that the distribution of spin-period derivatives versus spin periods of spinning-down pulsars is not at all different from that of the accreting spinning-up pulsars. The inescapable conclusion is that the up and down samples were drawn from the same continuous parent population; therefore, Be/X-ray pulsars that are spinning down over periods spanning 18 yr are, in fact, accreting from retrograde discs. The presence of prograde and retrograde discs in roughly equal numbers supports a new evolutionary scenario for Be/X-ray pulsars in their spin period-period derivative diagram.

  12. Orbital Parameters for Two "IGR" Sources

    NASA Astrophysics Data System (ADS)

    Thompson, Thomas; Tomsick, J.; Rothschild, R.; in't Zand, J.; Walter, R.

    2006-09-01

    With recent and archival Rossi X-ray Timing Explorer observations of the heavily absorbed X-ray pulsars IGR J17252-3616 (hereafter J17252) and IGR J16393-4643 (hereafter J16393), we carried out a pulse timing analysis to determine the orbital parameters of the two binary systems. We find that both INTEGRAL sources are High Mass X-ray Binary (HMXB) systems. The orbital solution to J17252 has a projected semi-major axis of 101 ± 3 lt-s and a period of 9.7403 ± 0.0004 days, implying a mass function of 11.7 ± 1.2 M_sun. The orbital solution to J16393, on the other hand, is not unambiguously known due to weaker and less-consistent pulsations. The most likely orbital solution has a projected semi-major axis of 43 ± 2 lt-s and an orbital period of 3.6875 ± 0.0006 days, yielding a mass function of 6.5 ± 1.1 M_sun. The orbits of both sources are consistent with circular, with e < 0.2-0.25 and the 90% confidence level. The orbital and pulse periods of each source place the systems in the region of the Corbet diagram populated by supergiant wind accretors. J17252 is an eclipsing binary system, and provides an exciting opportunity to obtain a neutron star mass measurement.

  13. Observations of the eclipsing binary b Persei

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2015-01-01

    Dr. Robert Zavala (USNO-Flagstaff) et al. request V time-series observations of the bright variable star b Persei 7-21 January 2015 UT, in hopes of catching a predicted eclipse on January 15. This is a follow-up to the February 2013 campaign announced in Alert Notice 476, and will be used as a photometric comparison for upcoming interferometric observations with the Navy Precision Optical Interferometer (NPOI) in Arizona. b Per (V=4.598, B-V=0.054) is ideal for photoelectric photometers or DSLR cameras. Telescopic CCD observers may observe by stopping down larger apertures. Comparison and check stars assigned by PI: Comp: SAO 24412, V=4.285, B-V = -0.013; Check: SAO 24512, V=5.19, B-V = -0.05. From the PI: "[W]e wanted to try and involve AAVSO observers in a follow up to our successful detection of the b Persei eclipse of Feb 2013, AAVSO Alert Notice 476 and Special Notice 333. Our goal now is to get good time resolution photometry as the third star passes in front of the close ellipsoidal binary. The potential for multiple eclipses exists. The close binary has a 1.5 day orbital period, and the eclipsing C component requires about 4 days to pass across the close binary pair. The primary eclipse depth is 0.15 magnitude. Photometry to 0.02 or 0.03 mags would be fine to detect this eclipse. Eclipse prediction date (JD 2457033.79 = 2015 01 11 UT, ~+/- 1 day) is based on one orbital period from the 2013 eclipse." More information is available at PI's b Persei eclipse web page: http://inside.warren-wilson.edu/~dcollins/bPersei/. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and information on the targets.

  14. ECLIPSING BINARY SCIENCE VIA THE MERGING OF TRANSIT AND DOPPLER EXOPLANET SURVEY DATA-A CASE STUDY WITH THE MARVELS PILOT PROJECT AND SuperWASP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Scott W.; Ge Jian; De Lee, Nathan M.

    2011-08-15

    Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a massmore » of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M{sub 1} = 0.92 {+-} 0.1 M{sub sun}, we find M{sub 2} = 0.610 {+-} 0.036 M{sub sun}, R{sub 1} = 0.932 {+-} 0.076 R{sub sun}, and R{sub 2} = 0.559 {+-} 0.102 R{sub sun}, and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M{sub 1} = 1.163 {+-} 0.034 M{sub sun}, R{sub 1} = 2.063 {+-} 0.058 R{sub sun}) and a G-type dwarf secondary (M{sub 2} = 0.905 {+-} 0.067 M{sub sun}, R{sub 2} = 0.887 {+-} 0.037 R{sub sun}). We provide the framework necessary to apply this analysis to much larger data sets.« less

  15. Updated O-C Diagrams for Several Bright HW Vir Binaries Observed with the Evryscope

    NASA Astrophysics Data System (ADS)

    Corcoran, Kyle A.; Barlow, Brad; Corbett, Hank; Fors, Octavi; Howard, Ward S.; Law, Nicholas; Ratzloff, Jeff

    2018-01-01

    HW Vir systems are eclipsing, post-common-envelope binaries consisting of a hot subdwarf star and a cooler M dwarf or brown dwarf companion. They show a strong reflection effect and have characteristically short orbital periods of only a few hours, allowing observers to detect multiple eclipses per night. Observed minus calculated (O-C) studies allow one to measure miniscule variations in the orbital periods of these systems by comparing observed eclipse timings to a calculated ephemeris. This technique is useful for detecting period changes due to secular evolution of the binary, gravitational wave emission, or reflex motion from an orbiting circumbinary object. Numerous eclipse timings obtained over several years are vital to the proper interpretation and analysis of O-C diagrams. The Evryscope – an array of twenty-four individual telescopes built by UNC and deployed on Cerro Tololo – images the entire Southern sky once every two minutes, producing an insurmountable amount of data for objects brighter than 16th magnitude. The cadence with which Evryscope exposes makes it an unparalleled tool for O-C analyses of HW Vir binaries; it will catalogue thousands of eclipses over the next several years. Here we present updated O-C diagrams for several HW Vir binaries using recent measurements from the Evryscope. We also use observations of AA Dor, an incredibly stable astrophysical clock, to characterize the accuracy of the Evryscope’s timestamps.

  16. 1SWASP J200503.05-343726.5: A high mass ratio eclipsing binary near the period limit

    NASA Astrophysics Data System (ADS)

    Bin, Zhang; Shengbang, Qian; Zejda, Miloslav; Liying, Zhu; Nianping, Liu

    2017-07-01

    First CCD photometric light curves of the eclipsing binary system 1SWASP J200503.05-343726.5 are presented. Our complete light curves in V, R and I bands using the Bessell filter show an out-of-eclipsing distortion, which means that the components of the system may be active. The preliminary photometric solutions with a cool star-spot are derived by using the 2013 version of the Wilson-Devinney (W-D) code. The photometric solutions suggest that 1SWASP J200503.05-343726.5 is a shallow-contact eclipsing binary(f = 9.0 %) with a mass ratio of q = 1.0705 , which is very high for late-type binary systems near the period limit. The primary component is about 230 K hotter than the secondary component. Based on our new CCD eclipse times, the orbital period change was analyzed. According to O - C diagram, the orbital period of the 1SWASP J200503.05-343726.5 shows an increase at a rate of P˙ = + 5.43 ×10-8 days year-1. The period increase may be caused by mass transfer from the less massive component to the more massive one. This shallow-contact system may be formed from a detached short-period binary via orbital shrinkage because of dynamical interactions with a third component or by magnetic braking.

  17. The O-type eclipsing contact binary LY Aurigae - member of a quadruple system

    NASA Astrophysics Data System (ADS)

    Mayer, Pavel; Drechsel, Horst; Harmanec, Petr; Yang, Stephenson; Šlechta, Miroslav

    2013-11-01

    The eclipsing binary LY Aur (O9 II + O9 III) belongs to the rare class of early-type contact systems. We obtained 23 new spectra at the Ondřejov and Dominion Astrophysical Observatories, which were analysed with four older Calar Alto and one ELODIE archive spectra. A new result of this study is that the visual companion of LY Aur - the spectral lines of which are clearly seen in our spectra - is also an SB1 binary having an orbital period of 20.46d, an eccentric orbit, and a radial velocity semi-amplitude of 33 km s-1. The Hα line blend contains an emission component, which shows dependence on the orbital phase of the eclipsing system, with the strongest emission around the secondary eclipse. Revised elements of the eclipsing binary and the orbital solution of the companion binary are determined from our set of spectra and new light-curve solutions of the eclipsing pair. The mass of the primary of 25.5 M⊙ agrees well with its spectral type, whereas the secondary mass of 14 M⊙ is smaller than expected. From an O-C analysis of the minimum times of LY Aur that span more than 40 years, we found that the orbital period is decreasing, indicating the presence of interaction processes. The system is likely in a phase of non-conservative mass exchange. Based on spectral observations collected at the German-Spanish Observatory, Calar Alto, Spain; Dominion Astrophysical Observatory, Canada; Ondřejov Observatory, Czech Republic, and an archival Haute Provence Observatory ELODIE spectrum.

  18. Chromospheric activity of periodic variable stars (including eclipsing binaries) observed in DR2 LAMOST stellar spectral survey

    NASA Astrophysics Data System (ADS)

    Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang

    2018-05-01

    The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.

  19. Interfacing modeling suite Physics Of Eclipsing Binaries 2.0 with a Virtual Reality Platform

    NASA Astrophysics Data System (ADS)

    Harriett, Edward; Conroy, Kyle; Prša, Andrej; Klassner, Frank

    2018-01-01

    To explore alternate methods for modeling eclipsing binary stars, we extrapolate upon PHOEBE’s (PHysics Of Eclipsing BinariEs) capabilities in a virtual reality (VR) environment to create an immersive and interactive experience for users. The application used is Vizard, a python-scripted VR development platform for environments such as Cave Automatic Virtual Environment (CAVE) and other off-the-shelf VR headsets. Vizard allows the freedom for all modeling to be precompiled without compromising functionality or usage on its part. The system requires five arguments to be precomputed using PHOEBE’s python front-end: the effective temperature, flux, relative intensity, vertex coordinates, and orbits; the user can opt to implement other features from PHOEBE to be accessed within the simulation as well. Here we present the method for making the data observables accessible in real time. An Occulus Rift will be available for a live showcase of various cases of VR rendering of PHOEBE binary systems including detached and contact binary stars.

  20. Tidal Synchronization and Differential Rotation of Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Lurie, John C.; Vyhmeister, Karl; Hawley, Suzanne L.; Adilia, Jamel; Chen, Andrea; Davenport, James R. A.; Jurić, Mario; Puig-Holzman, Michael; Weisenburger, Kolby L.

    2017-12-01

    Few observational constraints exist for the tidal synchronization rate of late-type stars, despite its fundamental role in binary evolution. We visually inspected the light curves of 2278 eclipsing binaries (EBs) from the Kepler Eclipsing Binary Catalog to identify those with starspot modulations, as well as other types of out-of-eclipse variability. We report rotation periods for 816 EBs with starspot modulations, and find that 79% of EBs with orbital periods of less than 10 days are synchronized. However, a population of short-period EBs exists, with rotation periods typically 13% slower than synchronous, which we attribute to the differential rotation of high-latitude starspots. At 10 days, there is a transition from predominantly circular, synchronized EBs to predominantly eccentric, pseudosynchronized EBs. This transition period is in good agreement with the predicted and observed circularization period for Milky Way field binaries. At orbital periods greater than about 30 days, the amount of tidal synchronization decreases. We also report 12 previously unidentified candidate δ Scuti and γ Doradus pulsators, as well as a candidate RS CVn system with an evolved primary that exhibits starspot occultations. For short-period contact binaries, we observe a period-color relation and compare it to previous studies. As a whole, these results represent the largest homogeneous study of tidal synchronization of late-type stars.

  1. The prospects of pulsar timing with new-generation radio telescopes and the Square Kilometre Array.

    PubMed

    Stappers, B W; Keane, E F; Kramer, M; Possenti, A; Stairs, I H

    2018-05-28

    Pulsars are highly magnetized and rapidly rotating neutron stars. As they spin, the lighthouse-like beam of radio emission from their magnetic poles sweeps across the Earth with a regularity approaching that of the most precise clocks known. This precision combined with the extreme environments in which they are found, often in compact orbits with other neutron stars and white dwarfs, makes them excellent tools for studying gravity. Present and near-future pulsar surveys, especially those using the new generation of telescopes, will find more extreme binary systems and pulsars that are more precise 'clocks'. These telescopes will also greatly improve the precision to which we can measure the arrival times of the pulses. The Square Kilometre Array will revolutionize pulsar searches and timing precision. The increased number of sources will reveal rare sources, including possibly a pulsar-black hole binary, which can provide the most stringent tests of strong-field gravity. The improved timing precision will reveal new phenomena and also allow us to make a detection of gravitational waves in the nanohertz frequency regime. It is here where we expect to see the signature of the binary black holes that are formed as galaxies merge throughout cosmological history.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  2. Synthetic Survey of the Kepler Field

    NASA Astrophysics Data System (ADS)

    Wells, Mark; Prša, Andrej

    2018-01-01

    In the era of large scale surveys, including LSST and Gaia, binary population studies will flourish due to the large influx of data. In addition to probing binary populations as a function of galactic latitude, under-sampled groups such as low mass binaries will be observed at an unprecedented rate. To prepare for these missions, binary population simulations need to be carried out at high fidelity. These simulations will enable the creation of simulated data and, through comparison with real data, will allow the underlying binary parameter distributions to be explored. In order for the simulations to be considered robust, they should reproduce observed distributions accurately. To this end we have developed a simulator which takes input models and creates a synthetic population of eclipsing binaries. Starting from a galactic single star model, implemented using Galaxia, a code by Sharma et al. (2011), and applying observed multiplicity, mass-ratio, period, and eccentricity distributions, as reported by Raghavan et al. (2010), Duchêne & Kraus (2013), and Moe & Di Stefano (2017), we are able to generate synthetic binary surveys that correspond to any survey cadences. In order to calibrate our input models we compare the results of our synthesized eclipsing binary survey to the Kepler Eclipsing Binary catalog.

  3. B and V photometry and analysis of the eclipsing binary RZ CAS

    NASA Astrophysics Data System (ADS)

    Riazi, N.; Bagheri, M. R.; Faghihi, F.

    1994-01-01

    Photoelectric light curves of the eclipsing binary RZ Cas are presented for B and V filters. The light curves are analyzed for light and geometrical elements, starting with a previously suggested preliminary method. The approximate results thus obtained are then optimised through the Wilson-Devinney computer programs.

  4. An ultraviolet investigation of the unusual eclipsing binary system FF AQR

    NASA Technical Reports Server (NTRS)

    Dorren, J. D.; Guinan, E. F.; Sion, E. M.

    1982-01-01

    A series of seven low dispersion IUE exposures in ultraviolet and wavelength regions obtained on December 6, 1981 during the eclipse of the subdwarf, during egress, and out of eclipse is analyzed. These observations and the binary phase at which they were made are shown on a schematic representation of the V-band light curve obtained in 1975. The depth in V is 0.15 mag. The circles are IUE V magnitudes from FES measures obtained during the observing run. They indicate an eclipse depth some 0.05 mag lower than expected, possibly due to difficulties with the color term in the FES calibration. The eclipse depths of Dworetsky in U, B and V were assumed in the calculations.

  5. The Dynamic Radio Sky: An Opportunity for Discovery

    DTIC Science & Technology

    2010-01-01

    brown dwarfs, flare stars extrasolar planets signals from ET civilizations pulsar giant pulses, inter- mittant pulsars , magnetar flares, X-ray binaries...giant pulses from the Crab pulsar , a small number of dedicated radio transient surveys, and the serendipitous discovery of transient radio sources...transients. 3.1 Case Study: Rotating Radio Transients—A New Population of Neutron Stars The first pulsars were discovered through visual inspection of

  6. Russell Hulse, the First Binary Pulsar, and Science Education

    Science.gov Websites

    physics research. In 1977, Hulse changed fields from astrophysics to plasma physics and joined the Plasma discoverer of the first binary pulsar and co-recipient of the 1993 Nobel Prize in physics, will affiliate with The University of Texas at Dallas (UTD) as a visiting professor of physics and of science and math

  7. The 4U 0115+63: Another energetic gamma ray binary pulsar

    NASA Technical Reports Server (NTRS)

    Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.

    1985-01-01

    Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.

  8. Consolidated RXTE Observing Grants on Observation of Neutron Stars and Black Holes in Binaries

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Vaughan, Brian A.

    1998-01-01

    This final report is a study of neutron stars and black holes in binaries. The activities focused on observation made with the Rossi X-ray Timing Explorer. The following areas were covered: long term observations of accreting binary pulsars with the All-Sky Monitor (ASM); observations of Centaurus X-3 with the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE); observations of accreting pulsars with the PCA and HEXTE; studies of quasi-periodic oscillations (QPO); and investigations of accreting black-hole candidates.

  9. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  10. PSR J0538+2817 as the remnant of the first supernova explosion in a massive binary

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    It is generally accepted that the radio pulsar PSR J 0538 2817 is associated with the supernova remnant SNR S 147 The only problem for the association is the obvious discrepancy Kramer et al 2003 between the kinematic age of the system of sim 30 kyr estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar s proper motion and the characteristic age of the pulsar of sim 600 kyr To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one Kramer et al 2003 Romani Ng 2003 We propose an alternative explanation of the age discrepancy based on the fact that PSR J 0538 2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion that disrupted the binary system and that a much younger second neutron star not necessarily manifesting itself as a radio pulsar should be associated with S 147 We use the existing observational data on the system PSR J 0538 2817 SNR S 147 to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star so that the supernova explosion occurred within a wind bubble surrounded by a massive shell and to constrain the parameters of the binary system We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector

  11. A massive pulsar in a compact relativistic binary.

    PubMed

    Antoniadis, John; Freire, Paulo C C; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G

    2013-04-26

    Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M⊙) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M⊙ white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

  12. New Light-Time Curve of Eclipsing Binary AM Leo

    NASA Astrophysics Data System (ADS)

    Gorda, S. Yu.; Matveeva, E. A.

    2017-12-01

    We present 72 photoelectric and CCD times of minima of eclipsing binary AM Leo obtained mainly during at Kourovka Astronomical Observatory of the Ural Federal University in Russia. We obtained new values of period of 50.5 years and eccentricity of 0.28 of the orbit of the eclipsing pair around the mass center of the system AM Leo with the third body. These results have been received taking into account the times of minima taken from literature and obtained from to .

  13. EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary

    NASA Astrophysics Data System (ADS)

    Borkovits, T.; Albrecht, S.; Rappaport, S.; Nelson, L.; Vanderburg, A.; Gary, B. L.; Tan, T. G.; Justesen, A. B.; Kristiansen, M. H.; Jacobs, T. L.; LaCourse, D.; Ngo, H.; Wallack, N.; Ruane, G.; Mawet, D.; Howell, S. B.; Tronsgaard, R.

    2018-05-01

    We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp = 12.7 that contains an eclipsing binary (`EB') with PA = 3.59470 d and a second EB with PB = 0.61825 d. We have obtained followup radial-velocity (`RV') spectroscopy observations, adaptive optics imaging, as well as ground-based photometric observations. From our analysis of all the observations, we derive good estimates for a number of the system parameters. We conclude that (1) both binaries are bound in a quadruple star system; (2) a linear trend to the RV curve of binary A is found over a 2-year interval, corresponding to an acceleration, \\dot{γ }= 0.0024 ± 0.0007 cm s-2; (3) small irregular variations are seen in the eclipse-timing variations (`ETVs') detected over the same interval; (4) the orbital separation of the quadruple system is probably in the range of 8-25 AU; and (5) the orbital planes of the two binaries must be inclined with respect to each other by at least 25°. In addition, we find that binary B is evolved, and the cooler and currently less massive star has transferred much of its envelope to the currently more massive star. We have also demonstrated that the system is sufficiently bright that the eclipses can be followed using small ground-based telescopes, and that this system may be profitably studied over the next decade when the outer orbit of the quadruple is expected to manifest itself in the ETV and/or RV curves.

  14. Evolution of redback radio pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E.

    2017-02-01

    Context. We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). Aims: We look for similarities and differences with respect to solar composition donor stars, which we have extensively studied in the past. As a definite example, we perform an application on one of the redbacks located in a globular cluster. Methods: We performed a detailed grid of models in order to find systems that represent the so-called redback binary radio pulsar systems with donor star masses between 0.6 and 2.0 solar masses and orbital periods in the range 0.2-0.9 d. Results: We find that the evolution of these binary systems is rather similar to those corresponding to solar composition objects, allowing us to account for the occurrence of redbacks in globular clusters, as the main physical ingredient is the irradiation feedback. Redback systems are in the quasi-RLOF state, that is, almost filling their corresponding Roche lobe. During the irradiation cycle the system alternates between semi-detached and detached states. While detached the system appears as a binary millisecond pulsar, called a redback. Circumstellar material, as seen in redbacks, is left behind after the previous semi-detached phase. Conclusions: The evolution of binary radio pulsar systems considering irradiation successfully accounts for, and provides a way for, the occurrence of redback pulsars in low-metallicity environments such as globular clusters. This is the case despite possible effects of the low metal content of the donor star that could drive systems away from redback configuration.

  15. THE QUASI-ROCHE LOBE OVERFLOW STATE IN THE EVOLUTION OF CLOSE BINARY SYSTEMS CONTAINING A RADIO PULSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@iag.usp.br

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in amore » Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.« less

  16. PSR J1740-3052: a pulsar with a massive companion

    NASA Astrophysics Data System (ADS)

    Stairs, I. H.; Manchester, R. N.; Lyne, A. G.; Kaspi, V. M.; Camilo, F.; Bell, J. F.; D'Amico, N.; Kramer, M.; Crawford, F.; Morris, D. J.; Possenti, A.; McKay, N. P. F.; Lumsden, S. L.; Tacconi-Garman, L. E.; Cannon, R. D.; Hambly, N. C.; Wood, P. R.

    2001-08-01

    We report on the discovery of a binary pulsar, PSR J1740-3052, during the Parkes multibeam survey. Timing observations of the 570-ms pulsar at Jodrell Bank and Parkes show that it is young, with a characteristic age of 350kyr, and is in a 231-d, highly eccentric orbit with a companion whose mass exceeds 11Msolar. An accurate position for the pulsar was obtained using the Australia Telescope Compact Array. Near-infrared 2.2-μm observations made with the telescopes at the Siding Spring observatory reveal a late-type star coincident with the pulsar position. However, we do not believe that this star is the companion of the pulsar, because a typical star of this spectral type and required mass would extend beyond the orbit of the pulsar. Furthermore, the measured advance of periastron of the pulsar suggests a more compact companion, for example, a main-sequence star with radius only a few times that of the Sun. Such a companion is also more consistent with the small dispersion measure variations seen near periastron. Although we cannot conclusively rule out a black hole companion, we believe that the companion is probably an early B star, making the system similar to the binary PSR J0045-7319.

  17. Correlations among the parameters of the spherical model for eclipsing binaries

    NASA Technical Reports Server (NTRS)

    Sobieski, S.; White, J. E.

    1971-01-01

    Correlation coefficients were computed to investigate the parameters for describing the spherical model of an eclipsing binary system. Regions in parameter hyperspace were identified where strong correlations exist and, by implication, the solution determinacy is low. The results are presented in tabular form for a large number of system configurations.

  18. Precision of Times-of-Minima and the Detection of Low-Mass Third Bodies Orbiting Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Genet, R. M.; Smith, T. C.

    2004-12-01

    Low-mass third bodies orbiting eclipsing binaries are difficult to detect by way of periodic shifts in photometric times-of-minima because the observational precision of these timings are of the same order as the expected effects of any low-mass companions. We are implementing three approaches to increasing the precision of our times-of-minima. First, we are obtaining many times-of-minima by utilizing relatively low-cost, dedicated telescopes and CCD cameras (10- and 14-inch Meade LX-200 telescopes and SBIG ST7-XE cameras). Operating in a semiautomatic mode, we select an eclipsing binary system, based on its placement in the sky, and observe it all night long - usually many nights in a row. We choose binaries with short enough periods to assure us of obtaining a complete light curve (and hence an eclipse) every night we observe. Second, we are striving to increase the photometric precision of each observation through the use of multiple comparison stars (ensemble photometry). We are also, in conjunction with California Polytechnic State University, investigating other ways of increasing the photometric precision of these low-cost systems (see E. Sturm this conference). Finally, we are utilizing complete, as opposed to partial, light curves in our analysis. Information outside primary eclipses is gathered as a matter of course, and its use can improve precision. A total of 186 complete light curves were obtained at the Dark Ridge and Orion Observatories during the 2004 observing season on six eclipsing binaries (TZ Boo, V523 Cas, RW Com, V1191 Cyg, GM Dra, and V400 Lyr). Please see T. Smith and R. Genet (this conference) for preliminary results on V523 Cas (30+ complete light curves).

  19. Not an Oxymoron: Some X-ray Binary Pulsars with Enormous Spinup Rates Reveal Weak Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2018-05-01

    Three high-mass X-ray binaries have been discovered recently exhibiting enormous spinup rates. Conventional accretion theory predicts extremely high surface dipolar magnetic fields that we believe are unphysical. Instead, we propose quite the opposite scenario: some of these pulsars exhibit weak magnetic fields, so much so that their magnetospheres are crushed by the weight of inflowing matter. The enormous spinup rate is achieved before inflowing matter reaches the pulsar's surface as the penetrating inner disk transfers its excess angular momentum to the receding magnetosphere which, in turn, applies a powerful spinup torque to the pulsar. This mechanism also works in reverse: it spins a pulsar down when the magnetosphere expands beyond corotation and finds itself rotating faster than the accretion disk which then exerts a powerful retarding torque to the magnetic field and to the pulsar itself. The above scenaria cannot be accommodated within the context of neutron-star accretion processes occurring near spin equilibrium, thus they constitute a step toward a new theory of extreme (far from equilibrium) accretion phenomena.

  20. Supernova remnant S 147 and its associated neutron star(s)

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-07-01

    The supernova remnant S 147 harbors the pulsar PSR J 0538+2817 whose characteristic age is more than an order of magnitude greater than the kinematic age of the system (inferred from the angular offset of the pulsar from the geometric center of the supernova remnant and the pulsar proper motion). To reconcile this discrepancy we propose that PSR J 0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as its characteristic age. Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S 147. We use the existing observational data on the system to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  1. Refining Binary Pulsar B1913+16's Gravitational Wave Test via a VLBI Parallax Measurement

    NASA Astrophysics Data System (ADS)

    Weisberg, Joel; Deller, Adam; Chatterjee, Shami; Nice, David

    2018-01-01

    The orbital decay of binary pulsar B1913+16 provided the first evidence of gravitational waves as predicted by General Relativity, and ruled out numerous previously viable alternative gravitational theories (e.g., Taylor & Weisberg, APJ, 253, 908, 1982). The gravitational wave emission and resulting orbital decay manifest themselves as an orbital period derivative. Subsequent observations (e.g., Weisberg and Huang 2016, APJ, 829, 55) have greatly refined the precision of the orbital period derivative measurement. The accuracy of the experiment is currently limited by our knowledge of the relative galactic accelerations of the binary and solar system barycenters, which make another contribution to the observed orbital period derivative. The magnitude of these accelerations depend on various galactic constants and on the pulsar distance.As our knowledge of the Galaxy and its motions has improved, the pulsar's distance has become the largest remaining source of uncertainty in the experiment.Therefore, we conducted a series of astrometric measurements of PSR B1913+16 with the Very Long Baseline Array. We report the pulsar parallax and distance derived from these measurements, and use them to correct our observed orbital period derivative for the above galactic acceleration term, thereby providing a more accurate test of gravitational radiation emission from the system.

  2. The Late-type Eclipsing Binaries in the Large Magellanic Cloud: Catalog of Fundamental Physical Parameters

    NASA Astrophysics Data System (ADS)

    Graczyk, Dariusz; Pietrzyński, Grzegorz; Thompson, Ian B.; Gieren, Wolfgang; Pilecki, Bogumił; Konorski, Piotr; Villanova, Sandro; Górski, Marek; Suchomska, Ksenia; Karczmarek, Paulina; Stepień, Kazimierz; Storm, Jesper; Taormina, Mónica; Kołaczkowski, Zbigniew; Wielgórski, Piotr; Narloch, Weronika; Zgirski, Bartłomiej; Gallenne, Alexandre; Ostrowski, Jakub; Smolec, Radosław; Udalski, Andrzej; Soszyński, Igor; Kervella, Pierre; Nardetto, Nicolas; Szymański, Michał K.; Wyrzykowski, Łukasz; Ulaczyk, Krzysztof; Poleski, Radosław; Pietrukowicz, Paweł; Kozłowski, Szymon; Skowron, Jan; Mróz, Przemysław

    2018-06-01

    We present a determination of the precise fundamental physical parameters of 20 detached, double-lined, eclipsing binary stars in the Large Magellanic Cloud (LMC) containing G- or early K-type giant stars. Eleven are new systems; the remaining nine are systems already analyzed by our team for which we present updated parameters. The catalog results from our long-term survey of eclipsing binaries in the Magellanic Clouds suitable for high-precision determination of distances (the Araucaria Project). The V-band brightnesses of the systems range from 15.4 to 17.7 mag, and their orbital periods range from 49 to 773 days. Six systems have favorable geometry showing total eclipses. The absolute dimensions of all eclipsing binary components are calculated with a precision of better than 3%, and all systems are suitable for a precise distance determination. The measured stellar masses are in the range 1.4 to 4.6 M ⊙, and comparison with the MESA isochrones gives ages between 0.1 and 2.1 Gyr. The systems show an age–metallicity relation with no evolution of metallicity for systems older than 0.6 Gyr, followed by a rise to a metallicity maximum at age 0.5 Gyr and then a slow metallicity decrease until 0.1 Gyr. Two systems have components with very different masses: OGLE LMC-ECL-05430 and OGLE LMC-ECL-18365. Neither system can be fitted by a single stellar evolution isochrone, explained by a past mass transfer scenario in the case of ECL-18365 and a gravitational capture or hierarchical binary merger scenario in the case of ECL-05430. The longest-period system, OGLE LMC SC9_230659, shows a surprising apsidal motion that shifts the apparent position of the eclipses. This is a clear sign of a physical companion to the system; however, neither investigation of the spectra nor light-curve analysis indicates a third-light contribution larger than 2%–3%. In one spectrum of OGLE LMC-ECL-12669, we noted a peculiar dimming of one of the components by 65% well outside of the eclipses. We interpret this observation as arising from an extremely rare occultation event, as a foreground Galactic object covers only one component of an extragalactic eclipsing binary.

  3. An x-ray nebula associated with the millisecond pulsar B1957+20.

    PubMed

    Stappers, B W; Gaensler, B M; Kaspi, V M; van der Klis, M; Lewin, W H G

    2003-02-28

    We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.

  4. Millisecond radio pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Verbunt, Frank; Lewin, Walter H. G.; Vanparadijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  5. VizieR Online Data Catalog: Minima of 41 binaries from entire Kepler mission (Gies+, 2015)

    NASA Astrophysics Data System (ADS)

    Gies, D. R.; Matson, R. A.; Guo, Z.; Lester, K. V.; Orosz, J. A.; Peters, G. J.

    2016-06-01

    We embarked on a search for eclipse timing variations among a subset of 41 eclipsing binaries that were identified prior to the start of Kepler observations (see our first paper, Gies et al. 2012, cat. J/AJ/143/137). Our first paper documented the eclipse times in observations made over quarters Q0-Q9 (2009.3-2011.5). Now with the Kepler mission complete with observations through Q17 (ending 2013.4), we present here the eclipse timings for our sample of 41 binaries over the entire duration of the mission. The associated times given in our first paper were based upon UTC (Coordinated Universal Time) while the current set uses TDB (Barycentric Dynamical Time), and here we report the times in reduced Barycentric Julian Date (BJD-2400000 days). We used the Simple Aperture Photometry (SAP) flux except in the case of KIC04678873. The list of targets appears in Table1. The eclipse timing measurements were made in almost the same way as described in our first paper. Our measurements appear in Table2. (2 data files).

  6. A millisecond pulsar in an extremely wide binary system

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Janssen, G. H.; Stappers, B. W.; Tauris, T. M.; Wevers, T.; Jonker, P. G.; Lentati, L.; Verbiest, J. P. W.; Desvignes, G.; Graikou, E.; Guillemot, L.; Freire, P. C. C.; Lazarus, P.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Osłowski, S.; Perrodin, D.; Sanidas, S.; Shaifullah, G.; Smits, R.; Theureau, G.; Tiburzi, C.; Zhu, W. W.

    2016-08-01

    We report on 22 yr of radio timing observations of the millisecond pulsar J1024-0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869-0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, [M/H] = -1.0, Teff = 4050 ± 50 K) and that its position, proper motion and distance are consistent with those of PSR J1024-0719. We conclude that PSR J1024-0719 and 2MASS J10243869-0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives, which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main-sequence star are in an extremely wide (Pb > 200 yr) orbit. Combining the radial velocity of the companion and proper motion of the pulsar, we find that the binary system has a high spatial velocity of 384 ± 45 km s-1 with respect to the local standard of rest and has a Galactic orbit consistent with halo objects. Since the observed main-sequence companion star cannot have recycled the pulsar to millisecond spin periods, an exotic formation scenario is required. We demonstrate that this extremely wide-orbit binary could have evolved from a triple system that underwent an asymmetric supernova explosion, though find that significant fine-tuning during the explosion is required. Finally, we discuss the implications of the long period orbit on the timing stability of PSR J1024-0719 in light of its inclusion in pulsar timing arrays.

  7. REVIEWS OF TOPICAL PROBLEMS: Masses of black holes in binary stellar systems

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, Anatolii M.

    1996-08-01

    Mass determination methods and their results for ten black holes in X-ray binary systems are summarised. A unified interpretation of the radial velocity and optical light curves allows one to reliably justify the close binary system model and to prove the correctness of determination of the optical star mass function fv(m).The orbit plane inclination i can be estimated from an analysis of optical light curve of the system, which is due mainly to the ellipsoidal shape of the optical star (the so-called ellipticity effect). The component mass ratio q = mx/mv is obtained from information about the distance to the binary system as well as from data about rotational broadening of absorption lines in the spectrum of the optical star. These data allow one to obtain from the value of fv(m) a reliable value of the black hole mass mx or its low limit, as well as the optical star mass mv. An independent estimate of the optical star mass mv obtained from information about its spectral class and luminosity gives us test results. Additional test comes from information about the absence or presence of X-ray eclipses in the system. Effects of the non-zero dimension of the optical star, its pear-like shape, and X-ray heating on the absorption line profiles and the radial velocity curve are investigated. It is very significant that none of ten known massive (mx > 3M\\odot) X-ray sources considered as black hole candidates is an X-ray pulsar or an X-ray burster of the first kind.

  8. Null stream analysis of Pulsar Timing Array data: localisation of resolvable gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Goldstein, Janna; Veitch, John; Sesana, Alberto; Vecchio, Alberto

    2018-04-01

    Super-massive black hole binaries are expected to produce a gravitational wave (GW) signal in the nano-Hertz frequency band which may be detected by pulsar timing arrays (PTAs) in the coming years. The signal is composed of both stochastic and individually resolvable components. Here we develop a generic Bayesian method for the analysis of resolvable sources based on the construction of `null-streams' which cancel the part of the signal held in common for each pulsar (the Earth-term). For an array of N pulsars there are N - 2 independent null-streams that cancel the GW signal from a particular sky location. This method is applied to the localisation of quasi-circular binaries undergoing adiabatic inspiral. We carry out a systematic investigation of the scaling of the localisation accuracy with signal strength and number of pulsars in the PTA. Additionally, we find that source sky localisation with the International PTA data release one is vastly superior than what is achieved by its constituent regional PTAs.

  9. B-ducted Heating of Black Widow Companions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Nicolas; Romani, Roger W., E-mail: rwr@astro.stanford.edu

    The companions of evaporating binary pulsars (black widows and related systems) show optical emission suggesting strong heating. In a number of cases, large observed temperatures and asymmetries are inconsistent with direct radiative heating for the observed pulsar spindown power and expected distance. Here we describe a heating model in which the pulsar wind sets up an intrabinary shock (IBS) against the companion wind and magnetic field, and a portion of the shock particles duct along this field to the companion magnetic poles. We show that a variety of heating patterns, and improved fits to the observed light curves, can bemore » obtained at expected pulsar distances and luminosities, at the expense of a handful of model parameters. We test this “IBS-B” model against three well-observed binaries and comment on the implications for system masses.« less

  10. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  11. Evolution of vaporizing pulsars

    NASA Technical Reports Server (NTRS)

    Mccormick, P.

    1994-01-01

    We construct evolutional scenarios for LMXB's using a simplified stellar model. We discuss the origin and evolution of short-period, low mass binary pulsars with evaporating companions. We suggest that these systems descend from low-mass X-ray binaries and that angular momentum loss mainly due to evaporative wind drives their evolution. We derive limits on the energy and angular momentum carried away by the wind based on the observed low eccentricity. In our model the companion remains near contact, and its quasiadiabatic expansion causes the binary to expand. Short-term oscillations of the orbital period may occur if the Roche-lobe overflow forms an evaporating disk.

  12. The dynamical mass of a classical Cepheid variable star in an eclipsing binary system.

    PubMed

    Pietrzyński, G; Thompson, I B; Gieren, W; Graczyk, D; Bono, G; Udalski, A; Soszyński, I; Minniti, D; Pilecki, B

    2010-11-25

    Stellar pulsation theory provides a means of determining the masses of pulsating classical Cepheid supergiants-it is the pulsation that causes their luminosity to vary. Such pulsational masses are found to be smaller than the masses derived from stellar evolution theory: this is the Cepheid mass discrepancy problem, for which a solution is missing. An independent, accurate dynamical mass determination for a classical Cepheid variable star (as opposed to type-II Cepheids, low-mass stars with a very different evolutionary history) in a binary system is needed in order to determine which is correct. The accuracy of previous efforts to establish a dynamical Cepheid mass from Galactic single-lined non-eclipsing binaries was typically about 15-30% (refs 6, 7), which is not good enough to resolve the mass discrepancy problem. In spite of many observational efforts, no firm detection of a classical Cepheid in an eclipsing double-lined binary has hitherto been reported. Here we report the discovery of a classical Cepheid in a well detached, double-lined eclipsing binary in the Large Magellanic Cloud. We determine the mass to a precision of 1% and show that it agrees with its pulsation mass, providing strong evidence that pulsation theory correctly and precisely predicts the masses of classical Cepheids.

  13. EXPLORING A 'FLOW' OF HIGHLY ECCENTRIC BINARIES WITH KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Subo; Katz, Boaz; Socrates, Aristotle

    2013-01-20

    With 16-month of Kepler data, 15 long-period (40-265 days) eclipsing binaries on highly eccentric orbits (minimum e between 0.5 and 0.85) are identified from their closely separated primary and secondary eclipses ({Delta}t{sub I,II} = 3-10 days). These systems confirm the existence of a previously hinted binary population situated near a constant angular momentum track at P(1 - e {sup 2}){sup 3/2} {approx} 15 days, close to the tidal circularization period P{sub circ}. They may be presently migrating due to tidal dissipation and form a steady-state 'flow' ({approx}1% of stars) feeding the close-binary population (few % of stars). If so, futuremore » Kepler data releases will reveal a growing number (dozens) of systems at longer periods, following dN/dlgP {proportional_to} P {sup 1/3} with increasing eccentricities reaching e {yields} 0.98 for P {yields} 1000 days. Radial-velocity follow-up of long-period eclipsing binaries with no secondary eclipses could offer a significantly larger sample. Orders of magnitude more (hundreds) may reveal their presence from periodic 'eccentricity pulses', such as tidal ellipsoidal variations near pericenter passages. Several new few-day-long eccentricity-pulse candidates with long periods (P = 25-80 days) are reported.« less

  14. Correlations among the parameters of the spherical model for eclipsing binaries.

    NASA Technical Reports Server (NTRS)

    Sobieski, S.; White, J.

    1973-01-01

    Correlation coefficients have been computed to investigate the parameters used to describe the spherical model of an eclipsing binary system. Regions in parameter hyperspace have been identified where strong correlations exist and, by implication, the solution determinacy is low. The results are presented in tabular form for a large number of system configurations.

  15. Photoelectric observations of the long-period eclipsing binaries at Yonsei University Observatory

    NASA Technical Reports Server (NTRS)

    Nha, I. S.; Lee, Y. S.; Chun, Y. W.; Kim, H. I.; Kim, Y. S.

    1985-01-01

    A long term project (ten-years; 1982-92) for the photoelectric observation in the UBV passbands of selected eclipsing binaries with P 10 days has initiated at Yonsei University Observatory using 40-cm and 61-cm reflectors. The instrumentation used and the observation techniques and the reduction procedures applied to this investigation are described.

  16. DISCOVERY OF A RED GIANT WITH SOLAR-LIKE OSCILLATIONS IN AN ECLIPSING BINARY SYSTEM FROM KEPLER SPACE-BASED PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hekker, S.; Debosscher, J.; De Ridder, J.

    2010-04-20

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longermore » than 75 days.« less

  17. Eclipsing Binary V1178 Tau: A Reddening Independent Determination of the Age and Distance to NGC 1817

    NASA Astrophysics Data System (ADS)

    Hedlund, Anne; Sandquist, Eric L.; Arentoft, Torben; Brogaard, Karsten; Grundahl, Frank; Stello, Dennis; Bedin, Luigi R.; Libralato, Mattia; Malavolta, Luca; Nardiello, Domenico; Molenda-Zakowicz, Joanna; Vanderburg, Andrew

    2018-06-01

    V1178 Tau is a double-lined spectroscopic eclipsing binary in NGC1817, one of the more massive clusters observed in the K2 mission. We have determined the orbital period (P = 2.20 d) for the first time, and we model radial velocity measurements from the HARPS and ALFOSC spectrographs, light curves collected by Kepler, and ground based light curves using the Eclipsing Light Curve code (ELC, Orosz & Hauschildt 2000). We present masses and radii for the stars in the binary, allowing for a reddening-independent means of determining the cluster age. V1178 Tau is particularly useful for calculating the age of the cluster because the stars are close to the cluster turnoff, providing a more precise age determination. Furthermore, because one of the stars in the binary is a delta Scuti variable, the analysis provides improved insight into their pulsations.

  18. HII 2407: AN ECLIPSING BINARY REVEALED BY K2 OBSERVATIONS OF THE PLEIADES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Trevor J.; Hillenbrand, Lynne A.; Zhang, Celia

    2015-11-20

    The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M{sub ⊙} and R/R{sub ⊙} values with stellar evolutionary models. We also demonstrate that the system is likelymore » to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.« less

  19. Photometric Study of the Pulsating, Eclipsing Binary OO Dra

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Yan, Z. Z.; Luo, Z. Q.; Luo, C. Q.

    2014-12-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  20. Photometric study of the pulsating, eclipsing binary OO DRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component.more » A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.« less

  1. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is amore » Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Lauren N.; Sandquist, Eric L.; Jeffries, Mark W. Jr.

    As part of our study of the old (∼2.5 Gyr) open cluster NGC 6819 in the Kepler field, we present photometric (Kepler and ground-based BVR{sub C}I{sub C}) and spectroscopic observations of the detached eclipsing binary WOCS 24009 (Auner 665; KIC 5023948) with a short orbital period of 3.6 days. WOCS 24009 is a triple-lined system, and we verify that the brightest star is physically orbiting the eclipsing binary using radial velocities and eclipse timing variations. The eclipsing binary components have masses M{sub B} = 1.090 ± 0.010 M{sub ⊙} and M{sub C} = 1.075 ± 0.013 M{sub ⊙}, and radii R{sub B} = 1.099 ± 0.006 ± 0.005 R{sub ⊙} and R{sub C} = 1.069 ± 0.006 ± 0.013 R{submore » ⊙}. The bright non-eclipsing star resides at the cluster turnoff, and ultimately its mass will directly constrain the turnoff mass: our preliminary determination is M{sub A} = 1.251 ± 0.057 M{sub ⊙}. A careful examination of the light curves indicates that the fainter star in the eclipsing binary undergoes a very brief period of total eclipse, which enables us to precisely decompose the light of the three stars and place them in the color–magnitude diagram (CMD). We also present improved analysis of two previously discussed detached eclipsing stars in NGC 6819 (WOCS 40007 and WOCS 23009) en route to a combined determination of the cluster’s distance modulus (m − M){sub V} = 12.38 ± 0.04. Because this paper significantly increases the number of measured stars in the cluster, we can better constrain the age of the CMD to be 2.21 ± 0.10 ± 0.20 Gyr. Additionally, using all measured eclipsing binary star masses and radii, we constrain the age to 2.38 ± 0.05 ± 0.22 Gyr. The quoted uncertainties are estimates of measurement and systematic uncertainties (due to model physics differences and metal content), respectively.« less

  3. Observations of accreting pulsars

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Bildsten, Lars; Chakrabarty, Deepto; Wilson, Robert B.; Finger, Mark H.

    1994-01-01

    We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories.

  4. Shining Light on Quantum Gravity with Pulsar-Black hole Binaries

    NASA Astrophysics Data System (ADS)

    Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.

    2017-03-01

    Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting the effects of quantum gravity. With the success of aLIGO and the advent of instruments like SKA and eLISA, the prospects for the discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the black hole information paradox. We propose using timing signals from a pulsar beam passing through the region near a black hole event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a black hole lead to an increase in the measured root mean square deviation of the arrival times of pulsar pulses traveling near the horizon. This allows for a clear observational test of the nonviolent nonlocality proposal for black hole information escape. For a series of pulses traversing the near-horizon region, this model predicts an rms in pulse arrival times of ˜ 30 μ {{s}} for a 3{M}⊙ black hole, ˜ 0.3 {ms} for a 30{M}⊙ black hole, and ˜ 40 {{s}} for Sgr A*. The current precision of pulse time-of-arrival measurements is sufficient to discern these rms fluctuations. This work is intended to motivate observational searches for PSR-BH systems as a means of testing models of quantum gravity.

  5. Doubled-lined eclipsing binary system KIC~2306740 with pulsating component discovered from Kepler space photometry

    NASA Astrophysics Data System (ADS)

    Yakut, Kadri

    2015-08-01

    We present a detailed study of KIC 2306740, an eccentric double-lined eclipsing binary system with a pulsating component.Archive Kepler satellite data were combined with newly obtained spectroscopic data with 4.2\\,m William Herschel Telescope(WHT). This allowed us to determine rather precise orbital and physical parameters of this long period, slightly eccentric, pulsating binary system. Duplicity effects are extracted from the light curve in order to estimate pulsation frequencies from the residuals.We modelled the detached binary system assuming non-conservative evolution models with the Cambridge STARS(TWIN) code.

  6. Sizing up the population of gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick

    2017-12-01

    Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.

  7. Observation of the black widow B1957+20 millisecond pulsar binary system with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; De Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Gozzini, S. R.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; MAGIC Collaboration; Cognard, I.; Guillemot, L.

    2017-10-01

    B1957+20 is a millisecond pulsar located in a black-widow-type compact binary system with a low-mass stellar companion. The interaction of the pulsar wind with the companion star wind and/or the interstellar plasma is expected to create plausible conditions for acceleration of electrons to TeV energies and subsequent production of very high-energy γ-rays in the inverse Compton process. We performed extensive observations with the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) telescopes of B1957+20. We interpret results in the framework of a few different models, namely emission from the vicinity of the millisecond pulsar, the interaction of the pulsar and stellar companion wind region or bow shock nebula. No significant steady very high-energy γ-ray emission was found. We derived a 95 per cent confidence level upper limit of 3.0 × 10-12 cm-2 s-1 on the average γ-ray emission from the binary system above 200 GeV. The upper limits obtained with the MAGIC constrain, for the first time, different models of the high-energy emission in B1957+20. In particular, in the inner mixed wind nebula model with mono-energetic injection of electrons, the acceleration efficiency of electrons is constrained to be below ˜2-10 per cent of the pulsar spin-down power. For the pulsar emission, the obtained upper limits for each emission peak are well above the exponential cut-off fits to the Fermi-LAT data, extrapolated to energies above 50 GeV. The MAGIC upper limits can rule out a simple power-law tail extension through the sub-TeV energy range for the main peak seen at radio frequencies.

  8. Einstein@Home Finds a Double Neutron Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Have you been contributing your computer idle time to the Einstein@Home project? If so, youre partly responsible for the programs recent discovery of a new double-neutron-star system that will be key to learning about general relativity and stellar evolution.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The Hunt for PulsarsObserving binary systems containing two neutron stars and in particular, measuring the timing of the pulses when one or both companions is a pulsar can provide highly useful tests of general relativity and binary stellar evolution. Unfortunately, these systems are quite rare: of 2500 known radio pulsars, only 14 of them are in double-neutron-starbinaries.To find more systems like these, we perform large-scale, untargeted radio-pulsar surveys like the ongoing Pulsar-ALFA survey conducted with the enormous 305-m radio telescope at Arecibo Observatory in Puerto Rico. But combing through these data for the signature of a highly accelerated pulsar (the acceleration is a clue that its in a compact binary) is very computationally expensive.PSR J1913+1102s L-band pulse profile, created by phase-aligning and summing all observations. [Adapted from Lazarus et al. 2016]To combat this problem, the Einstein@Home project was developed. Einstein@Home allows anyone to volunteer their personal computers idle time to help run the analysis of survey data in the search for pulsars. In a recent publication led by Patrick Lazarus (Max Planck Institute for Radio Astronomy), the Einstein@Home team announced the discovery of the pulsar PSR J1913+1102 a member of what seems to be a brand new double-neutron-starsystem.An Intriguing DiscoveryLazarus and collaborators followed up on the discovery to obtain timing measurements of the pulsar, which they found to have a spin period of 27.3 ms. They measured PSR J1913+1102 to be in a 4.95-hr, nearly circular (e 0.09) binary orbit with a massive companion that, based on its properties, is most likely another neutron star. The team wasnt able to detect pulsations from the companion, but that could mean that its beam doesnt cross the Earth, or its very faint, or its simply no longer active as a pulsar.Orbital evolution of the six known double-neutron-star systems that will coalesce within a Hubble time, including J1913+1102 (black solid line). They move toward the origin as they lose energy to gravitational waves and approach merger. Shown are current positions (black dots), estimates of the positions when the compact binaries were formed (grey dots), and future evolution. [Lazarus et al. 2016]Lazarus and collaborators use their observations of the system to arguethat PSR J1913+1102 waslikely spun up (recycled) by accretion of matter from its companions progenitor. The companion then exploded in the second supernova of the system, providing a very small kick hence the low eccentricity of the system and resulting in the current double-neutron-starbinary we observe.Lessons from PSR J1913+1102Observations of compact binaries such as this one can reveal a wealth of information. Besides providing clues about how the binary evolved, precise timing measurements (now being made) will also allow powerful tests of general relativity.One of the measurements that may be possible by the end of this year will provide information about the orbital decay of the binary expected to continue for 0.5 Gyr until the system merges due to the emission of gravitational waves.In the meantime, you can bet that Einstein@Home will continue hunting for more systems like PSR J1913+1102 and its companion!CitationP. Lazarus et al 2016 ApJ 831 150. doi:10.3847/0004-637X/831/2/150

  9. Mildly Recycled Pulsars at High-Energies

    NASA Astrophysics Data System (ADS)

    Pellizzoni, A.

    2011-08-01

    Mildly recyled pulsars (MRP), conventionally defined as neutron star having spin period in the 20-100 ms range and surface magnetic field <1011 Gauss, probably rise from binary systems (disrupted or not) with an intermediate or an high mass companion. Despite their relatively low spin-down energies compared to the ``fully'' recycled millisecond pulsars (arising from common low mass X-ray binaries), nearby MRPs can be detected by deep X-ray observations and by timing analysis of the very long data span provided by gamma-ray space detectors. The discovery of peculiar timing and spectral properties, possibly transitional, of the MRPs can be of the utmost importance to link different classes of neutron stars and study their evolution.

  10. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.

    PubMed

    Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A

    2012-08-24

    Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations.

  11. High-Resolution Infrared Spectroscopic Observations of the Upper Scorpius Eclipsing Binary EPIC 203868608

    NASA Astrophysics Data System (ADS)

    Johnson, Marshall C.; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; McLane, Jacob; Sokal, Kimberly R.

    2017-06-01

    EPIC 203868608 is a source in the ~10 Myr old Upper Scorpius OB association. Using K2 photometry and ground-based follow-up observations, David et al. (2016) found that it consists of two brown dwarfs with a tertiary object at a projected separation of ~20 AU; the former objects appear to be a double-lined eclipsing binary with a period of 4.5 days. This is one of only two known eclipsing SB2s where both components are below the hydrogen-burning limit. We present additional follow-up observations of this system from the IGRINS high-resolution near-infrared spectrograph at McDonald Observatory. Our measured radial velocities do not follow the orbital solution presented by David et al. (2016). Instead, our combined IGRINS plus literature radial velocity dataset appears to indicate a period significantly different than that of the eclipsing binary obvious from the K2 light curve. We will discuss possible scenarios to account for the conflicting observations of this system.

  12. A model of V356 Sagittarii. [eclipsing binary star

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Caldwell, C. N.

    1978-01-01

    It is pointed out that V356 Sgr is an abnormal member of the Algol class of binaries. According to Popper (1955), the primary component is of spectral type B3V and is rotating rapidly, while the secondary is of type A2II and is rotating at least approximately in synchronism with the orbital motion. The system is either semidetached or quite near to being semidetached. The main anomalies are related to the ratio of eclipse depths, the very small reflection effect of the light curves, differences between the duration of the primary and the secondary eclipse, and the unusual characteristics of the primary eclipse. It is concluded that the lack of agreement between theory and observation can be due only to an important attribute of the binary which has not yet been incorporated into the theory. The peculiarities can most reasonably be explained in terms of a geometrically and optically thick disk which surrounds the primary component.

  13. VizieR Online Data Catalog: OGLE II SMC eclipsing binaries (Wyrzykowski+, 2004)

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszinski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.

    2009-03-01

    We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog with individual photometry is accessible from the OGLE INTERNET archive, at ftp://sirius.astrouw.edu.pl/ogle/ogle2/var_stars/smc/ecl . Regular observations of the SMC fields started on June 26, 1997 and covered about 2.4 square degrees of central parts of the SMC. Reductions of the photometric data collected up to the end of May 2000 were performed with the Difference Image Analysis (DIA) package. (1 data file).

  14. Timing Measurements and Their Implications for Four Binary Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Bailes, M.; Manchester, R. N.; Lyne, A. G.; Camilo, F.; Sandhu, J. S.

    1997-04-01

    We present timing observations of four millisecond pulsars, using data obtained over three years at the Australia Telescope National Facility (ATNF) Parkes and Nuffield Radio Astronomy Laboratory (NRAL) Jodrell Bank radio telescopes. Astrometric, spin and binary parameters are updated, and substantially improved for three pulsars, PSRs J0613-0200, J1045-4509 and J1643-1224. We have measured the time variation of the projected semimajor axis of the PSR J0437-4715 orbit due to its proper motion, and use it to constrain the inclination of the orbit and the mass of the companion. Some evidence is found for changes in the dispersion measures of PSRs J1045-4509 and J1643-1224. Limits are placed on the existence of planetary mass companions, ruling out companions with masses and orbits similar to the terrestrial planets of the Solar system for eight pulsars.

  15. Intra-binary Shock Heating of Black Widow Companions

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.; Sanchez, Nicolas

    2016-09-01

    The low-mass companions of evaporating binary pulsars (black widows and similar) are strongly heated on the side facing the pulsar. However, in high-quality photometric and spectroscopic data, the heating pattern does not match that expected for direct pulsar illumination. Here we explore a model where the pulsar power is intercepted by an intra-binary shock (IBS) before heating the low-mass companion. We develop a simple analytic model and implement it in the popular “ICARUS” light curve code. The model is parameterized by the wind momentum ratio β and the companion wind speed {f}v{v}{{orb}}, and assumes that the reprocessed pulsar wind emits prompt particles or radiation to heat the companion surface. We illustrate an interesting range of light curve asymmetries controlled by these parameters. The code also computes the IBS synchrotron emission pattern, and thus can model black widow X-ray light curves. As a test, we apply the results to the high-quality asymmetric optical light curves of PSR J2215+5135; the resulting fit gives a substantial improvement upon direct heating models and produces an X-ray light curve consistent with that seen. The IBS model parameters imply that at the present loss rate, the companion evaporation has a characteristic timescale of {τ }{{evap}}≈ 150 Myr. Still, the model is not fully satisfactory, indicating that there are additional unmodeled physical effects.

  16. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    NASA Technical Reports Server (NTRS)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  17. A Pulsar and a Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 keV appeared.Hong and collaborators were then left with the task of piecing together this strange behavior into a picture of what was happening with this binary system.The authors proposed model for SXP 214. Here the binary has a ~30-day orbit tilted at 15 to the circumstellar disk. The pulsar passes through the circumstellar disk of its companion once per orbit. The interval marked A (orange line) is suggested as the period of time corresponding to the Chandra observations in this study: just as the neutron star is emerging from the disk after passing through it. [Hong et al. 2016]Passing Through a DiskIn the model the authors propose, the pulsar is on a ~30-day eccentric orbit that takes it through the circumstellar disk of its companion once per orbit.In this picture, the authors Chandra detections must have been made just as the pulsar was emerging from the circumstellar disk. The disk had initially hidden the soft X-ray emission from the pulsar, but as the pulsar emerged, that component became brighter, causing both the overall rise in X-ray counts and the shift in the spectrum to lower energies.Since the pulsars accretion is fueled by material picked up as it passes through the circumstellar disk, the accretion from a recent passage through the disk likely also caused the observed spin-up to the shorter period.If the authors model is correct, this series of observations of the pulsar as it emerges from the disk provides a rare opportunity to examine what happens to X-ray emission during this passage. More observations of this intriguing system can help us learn about the properties of the disk and the emission geometry of the neutron star surface.CitationJaeSub Hong et al 2016 ApJ 826 4. doi:10.3847/0004-637X/826/1/4

  18. Primordial main equence binary stars in the globular cluster M71

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Mateo, Mario

    1994-01-01

    We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the implications of this on our estimates of the binary frequency in M71 and on the formation of blue stragglers.

  19. European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Babak, S.; Petiteau, A.; Sesana, A.; Brem, P.; Rosado, P. A.; Taylor, S. R.; Lassus, A.; Hessels, J. W. T.; Bassa, C. G.; Burgay, M.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Gair, J. R.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lee, K. J.; Lentati, L.; Liu, K.; Mingarelli, C. M. F.; Osłowski, S.; Perrodin, D.; Possenti, A.; Purver, M. B.; Sanidas, S.; Smits, R.; Stappers, B.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.; Verbiest, J. P. W.

    2016-01-01

    We have searched for continuous gravitational wave (CGW) signals produced by individually resolvable, circular supermassive black hole binaries (SMBHBs) in the latest European Pulsar Timing Array (EPTA) data set, which consists of ultraprecise timing data on 41-ms pulsars. We develop frequentist and Bayesian detection algorithms to search both for monochromatic and frequency-evolving systems. None of the adopted algorithms show evidence for the presence of such a CGW signal, indicating that the data are best described by pulsar and radiometer noise only. Depending on the adopted detection algorithm, the 95 per cent upper limit on the sky-averaged strain amplitude lies in the range 6 × 10-15 < A < 1.5 × 10-14 at 5 nHz < f < 7 nHz. This limit varies by a factor of five, depending on the assumed source position and the most constraining limit is achieved towards the positions of the most sensitive pulsars in the timing array. The most robust upper limit - obtained via a full Bayesian analysis searching simultaneously over the signal and pulsar noise on the subset of ours six best pulsars - is A ≈ 10-14. These limits, the most stringent to date at f < 10 nHz, exclude the presence of sub-centiparsec binaries with chirp mass M_c>10^9 M_{⊙} out to a distance of about 25 Mpc, and with M_c>10^{10} M_{⊙} out to a distance of about 1Gpc (z ≈ 0.2). We show that state-of-the-art SMBHB population models predict <1 per cent probability of detecting a CGW with the current EPTA data set, consistent with the reported non-detection. We stress, however, that PTA limits on individual CGW have improved by almost an order of magnitude in the last five years. The continuing advances in pulsar timing data acquisition and analysis techniques will allow for strong astrophysical constraints on the population of nearby SMBHBs in the coming years.

  20. V380 Dra: New short-period totally eclipsing active binary

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.

    2014-02-01

    In this study, first complete and standard BVR light curves and photometric analysis of the eclipsing binary system V380 Dra are presented. Photometric analysis result indicates that the system has components which are cool main sequence stars. In light and color curves, remarkable asymmetry is observed, especially after secondary minimum, which is believed to be a result of chromospheric activity in one or both components. O-C diagram of available small number of eclipse times, together with new eclipse timings in this work, exhibits no significant variation. Preliminary light curve solution shows that the secondary minimum is total eclipse. By using the advantage of total eclipse and mass-luminosity relation, it is found that the system has a possible mass ratio of q = 0.81. First estimation of masses and radii of primary and secondary components are M1 = 0.77 M⊙,M2 = 0.62 M⊙ and R1 = 0.93 R⊙,R2 = 0.77 R⊙, respectively.

  1. Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2018-06-01

    We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.

  2. Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit

    NASA Astrophysics Data System (ADS)

    Knispel, B.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Lazarus, P.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Eggenstein, H.-B.; Fehrmann, H.; Ferdman, R.; Hessels, J. W. T.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; van Leeuwen, J.; Lorimer, D. R.; Lynch, R.; Machenschalk, B.; Madsen, E.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Scholz, P.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Swiggum, J. K.; Venkataraman, A.; Wharton, R. S.; Zhu, W. W.

    2015-06-01

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M⊙ and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  3. A computer program for modeling non-spherical eclipsing binary star systems

    NASA Technical Reports Server (NTRS)

    Wood, D. B.

    1972-01-01

    The accurate analysis of eclipsing binary light curves is fundamental to obtaining information on the physical properties of stars. The model described accounts for the important geometric and photometric distortions such as rotational and tidal distortion, gravity brightening, and reflection effect. This permits a more accurate analysis of interacting eclipsing star systems. The model is designed to be useful to anyone with moderate computing resources. The programs, written in FORTRAN 4 for the IBM 360, consume about 80k bytes of core. The FORTRAN program listings are provided, and the computational aspects are described in some detail.

  4. Search for Pulsating Stars in the Open Cluster NGC 1502

    NASA Astrophysics Data System (ADS)

    Stęślicki, M.

    2006-04-01

    We present results of a variability search in the field of the young open cluster NGC 1502. We confirm that a beta Cephei suspect WEBDA 26 is indeed pulsating with a period of 0.09612 d and semi-amplitude of about 3 mmag in V. A new VI light curve of the bright eclipsing binary and cluster member SZ Cam was obtained. In addition, we found two new variable stars. One is an interesting eclipsing binary showing total eclipses, which can be used to derive the distance to the cluster once radial velocities of the components will be obtained.

  5. MM Herculis - An eclipsing binary of the RS CVn

    NASA Technical Reports Server (NTRS)

    Sowell, J. R.; Hall, D. S.; Henry, G. W.; Burke, E. W., Jr.; Milone, E. F.

    1983-01-01

    V, B and U differential photoelectric photometry has been obtained for the RS Canum Venaticorum-class eclipsing binary star MM Her, with the light outside the eclipse being Fourier-analyzed to study wave migration and amplitude. These, together with the mean light level of the system, have been monitored from 1976 through 1980. Observations within the eclipse have revealed eclipses to be partial, rather than total as previously thought. The geometric elements of the presently rectified light curve are forced on the pre-1980 light curves and found to be compatible. With these elements, and previously obtained double line radial velocity curves, new absolute dimensions of 1.18 solar masses and 1.58 solar radii are calculated for the hotter star and 1.27 solar masses and 2.83 solar radii for the cooler star. The plotting of color indices on the color-color curve indicates G2V and K2IV spectral types.

  6. A new study of the interacting binary star V356 Sgr

    NASA Technical Reports Server (NTRS)

    Polidan, R. S.

    1988-01-01

    Results on V356 Sgr from IUE and Voyager ultraviolet (500 to 3200 A) observations obtained in 1986 and 1987, primarily during 2 total eclipses are presented. The eclipse of Aug. 15, 1986 was fully covered with IUE low dispersion images and 9 hr of Voyager UVS data. The eclipse of Mar. 25, 1987 was covered with IUE low dispersion images and 1 high dispersion SWP image. During both eclipses the total strength of the emission lines is found to be invariant. An uneclipsed UV continuum is detected at wavelengths shorter than 1500 A. The high dispersion SWP spectrum reveals that the emission lines are extremely broad, almost symmetrical emissions with weak, slightly blue shifted absorption components. No evidence of carbon, C I, C II, C III, or C IV, is seen in the emission or absorption spectrum of V356 Sgr in eclipse. Models for this binary system are presented.

  7. PHYSICS OF ECLIPSING BINARIES. II. TOWARD THE INCREASED MODEL FIDELITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prša, A.; Conroy, K. E.; Horvat, M.

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures, and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but weremore » not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light travel time effects, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes the photon-weighted mode, the enhanced limb darkening treatment, the better reflection treatment, and Doppler boosting. Here we present the concepts on which PHOEBE is built and proofs of concept that demonstrate the increased model fidelity.« less

  8. Vulcan Identification of Eclipsing Binaries in the Kepler Field of View

    NASA Astrophysics Data System (ADS)

    Mjaseth, Kimberly; Batalha, N.; Borucki, W.; Caldwell, D.; Latham, D.; Martin, K. R.; Rabbette, M.; Witteborn, F.

    2007-05-01

    We report the discovery of 236 new eclipsing binary stars located in and around the field of view of the Kepler Mission. The binaries were identified from photometric light curves from the Vulcan exoplanet transit survey. The Vulcan camera is comprised of a modest aperture (10cm) f/2.8 Canon lens focusing a 7° x 7° field of view onto a 4096 x 4096 Kodak CCD. The system yields an hour-to-hour relative precision of 0.003 on 12th magnitude stars and saturates at 9th magnitude. The binaries have magnitudes in the range of 9.5 < V < 13.5 and periods ranging from 0.5 to 13 days. The milli-magnitude photometric precision allows detection of transits as shallow as 1%. The catalog contains a total of 273 eclipsing binary stars, including detached systems (high and low mass ratio), contact binaries, and triple systems. We present the derived orbital/transit properties, light curves, and stellar properties for selected targets. In addition, we summarize the results of radial velocity follow-up work. Support for this work came from NASA's Discovery Program and NASA's Origins of the Solar System Program.

  9. Revisiting the birth locations of pulsars B1929+10, B2020+28, and B2021+51

    NASA Astrophysics Data System (ADS)

    Kirsten, Franz; Vlemmings, Wouter; Campbell, Robert M.; Kramer, Michael; Chatterjee, Shami

    2015-05-01

    We present new proper motion and parallax measurements obtained with the European VLBI Network (EVN) at 5GHz for the three isolated pulsars B1929+10, B2020+28, and B2021+51. For B1929+10 we combined our data with earlier VLBI measurements and confirm the robustness of the astrometric parameters of this pulsar. For pulsars B2020+28 and B2021+51 our observations indicate that both stars are almost a factor of two closer to the solar system than previously thought, placing them at a distance of 1.39-0.06+0.05 and 1.25-0.17+ 0.14kpc. Using our new astrometry, we simulated the orbits of all three pulsars in the Galactic potential with the aim to confirm or reject previously proposed birth locations. Our observations ultimately rule out a claimed binary origin of B1929+10 and the runaway star ζ Ophiuchi in Upper Scorpius. A putative common binary origin of B2020+28 and B2021+51 in the Cygnus Superbubble is also very unlikely.

  10. VizieR Online Data Catalog: ASAS, NSVS, and LINEAR detached eclipsing binaries (Lee, 2015)

    NASA Astrophysics Data System (ADS)

    Lee, C.-H.

    2016-04-01

    We follow the approach of Devor et al. (2008AJ....135..850D, Cat. J/AJ/135/850) to analyse the LC from ASAS (Pojmanski et al., Cat. II/264, NSVS (Wozniak et al., 2004AJ....127.2436W, and LINEAR (Palaversa et al., Cat. J/AJ/146/101) and extract the physical properties of the eclipsing binaries. (3 data files).

  11. Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Van Eylen, Vincent; Winn, Joshua N.; Albrecht, Simon

    2016-06-01

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of the primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot-hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot-hot binaries, but not for hot-cool or cool-cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.

  12. ORBITAL CIRCULARIZATION OF HOT AND COOL KEPLER ECLIPSING BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eylen, Vincent Van; Albrecht, Simon; Winn, Joshua N., E-mail: vincent@phys.au.dk

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler . This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of themore » primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot–hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot–hot binaries, but not for hot–cool or cool–cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.« less

  13. Orbital evolution and search for eccentricity and apsidal motion in the eclipsing HMXB 4U 1700-37

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-09-01

    In the absence of detectable pulsations in the eclipsing high-mass X-ray binary 4U 1700-37, the orbital period decay is necessarily determined from the eclipse timing measurements. We have used the earlier reported mid-eclipse time measurements of 4U 1700-37 together with the new measurements from long-term light curves obtained with the all sky monitors RXTE-ASM, Swift-BAT and MAXI-GSC, as well as observations with RXTE-PCA, to measure the long-term orbital evolution of the binary. The orbital period decay rate of the system is estimated to be {dot{P}}/P = -(4.7 ± 1.9) × 10^{-7} yr-1, smaller compared to its previous estimates. We have also used the mid-eclipse times and the eclipse duration measurements obtained from 10-years-long X-ray light curve with Swift-BAT to separately put constraints on the eccentricity of the binary system and attempted to measure any apsidal motion. For an apsidal motion rate greater than 5 deg yr-1, the eccentricity is found to be less than 0.008, which limits our ability to determine the apsidal motion rate from the current data. We discuss the discrepancy of the current limit of eccentricity with the earlier reported values from radial velocity measurements of the companion star.

  14. Binary pulsars as probes of a Galactic dark matter disk

    NASA Astrophysics Data System (ADS)

    Caputo, Andrea; Zavala, Jesús; Blas, Diego

    2018-03-01

    As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.

  15. Period changes of the sample of eclipsing binaries with active chromospheres

    NASA Astrophysics Data System (ADS)

    Jableka, D.; Zola, S.; Zakrzewski, B.; Szymanski, T.; Kuzmicz, A.; de Villiers, S. N.; Zejda, M.; Koziel-Wierzbowska, D.

    2012-11-01

    In this work we present results derived from analysis of the O-C behaviour of ten eclipsing binary systems: AR Lac, CG Cyg, HP Aur, MM Her, RS CVn, RT And, SV Cam, V471 Tau, WW Dra and CF Tuc. It was proved on the basis of moments of minima compiled from the literature and new ones determined from recent observations, that these binaries show long term (19-91 years) modulations of their orbital periods, clearly visible in their O-C diagrams. Two possible explanations for this effect are considered: (1) the light-travel time effect due to the presence of a third body orbiting the eclipsing systems; (2) the Applegate mechanism predicting period modulation by changes in the distribution of angular momentum as a star goes through its activity cycles. It was found that in the case of four systems the existence of a third star, orbiting the binary, is a more plausible explanation of observations.

  16. Pulsar discoveries by volunteer distributed computing and the strongest continuous gravitational wave signal

    NASA Astrophysics Data System (ADS)

    Knispel, Benjamin

    2011-07-01

    Neutron stars are the endpoints of stellar evolution and one of the most compact forms of matter in the universe. They can be observed as radio pulsars and are promising sources for the emission of continuous gravitational waves. Discovering new radio pulsars in tight binary orbits offers the opportunity to conduct very high precision tests of General Relativity and to further our understanding of neutron star structure and matter at super-nuclear densities. The direct detection of gravitational waves would validate Einstein's theory of Relativity and open a new window to the universe by offering a novel astronomical tool. This thesis addresses both of these scientific fields: the first fully coherent search for radio pulsars in tight, circular orbits has been planned, set up and conducted in the course of this thesis. Two unusual radio pulsars, one of them in a binary system, have been discovered. The other half of this thesis is concerned with the simulation of the Galactic neutron star population to predict their emission of continuous gravitational waves. First realistic statistical upper limits on the strongest continuous gravitational-wave signal and detection predictions for realistic all-sky blind searches have been obtained. The data from a large-scale pulsar survey with the 305-m Arecibo radio telescope were searched for signals from radio pulsars in binary orbits. The massive amount of computational work was done on hundreds of thousands of computers volunteered by members of the general public through the distributed computing project Einstein@Home. The newly developed analysis pipeline searched for pulsar spin frequencies below 250 Hz and for orbital periods as short as 11 min. The structure of the search pipeline consisting of data preparation, data analysis, result post-processing, and set-up of the pipeline components is presented in detail. The first radio pulsar, discovered with this search, PSR J2007+2722, is an isolated radio pulsar, likely from a double neutron star system disrupted by the second supernova. We present discovery and initial characterisation using observations from five of the largest radio telescopes worldwide. Only a dozen similar systems were previously known. The second discovered radio pulsar, PSR J1952+2630, is in a 9.4-hr orbit with most likely a massive white dwarf of at least 0.95 M⊙. We characterise its orbit by analysis of the apparent spin period changes. This pulsar most likely belongs to the very rare class of intermediate-mass binary pulsars, from which only five systems were previously known. It is a promising target for the future measurement of relativistic effects. In the second half of this thesis, the emission of continuous gravitational waves from a Galactic population of neutron stars is studied. For the first time, realistic estimates of the statistical upper limit of the expected gravitational wave signal are obtained, improving previous estimates by about a factor of six. The simulation is used to obtain for the first time detectability predictions for these objects with ground based gravitational wave detectors and realistic blind searches. It is also shown how to improve possible searches by maximising the number of detections for a fixed amount of computation cycles.

  17. The Surface Brightness-color Relations Based on Eclipsing Binary Stars: Toward Precision Better than 1% in Angular Diameter Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczyk, Dariusz; Gieren, Wolfgang; Konorski, Piotr

    In this study we investigate the calibration of surface brightness–color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos whose absolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with amore » precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances (∼5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.« less

  18. The EB factory project. I. A fast, neural-net-based, general purpose light curve classifier optimized for eclipsing binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paegert, Martin; Stassun, Keivan G.; Burger, Dan M.

    2014-08-01

    We describe a new neural-net-based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as the Large Synoptic Survey Telescope. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together withmore » a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98% and a false-positive rate of 2% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes, including RR Lyrae, Mira, and delta Scuti. However, the classifier currently has difficulty discriminating between different sub-classes of eclipsing binaries, and suffers a relatively low (∼60%) retrieval rate for multi-mode delta Cepheid stars. We find that it is imperative to train the classifier's neural network with exemplars that include the full range of light curve quality to which the classifier will be expected to perform; the classifier performs well on noisy light curves only when trained with noisy exemplars. The classifier source code, ancillary programs, a trained neural net, and a guide for use, are provided.« less

  19. KIC 11401845: An Eclipsing Binary with Multiperiodic Pulsations and Light-travel Time

    NASA Astrophysics Data System (ADS)

    Lee, Jae Woo; Hong, Kyeongsoo; Kim, Seung-Lee; Koo, Jae-Rim

    2017-02-01

    We report the {\\text{}}{Kepler} photometry of KIC 11401845 displaying multiperiodic pulsations, superimposed on binary effects. Light-curve synthesis shows that the binary star is a short-period detached system with a very low mass ratio of q = 0.070 and filling factors of F1 = 45% and F2 = 99%. Multiple-frequency analyses were applied to the light residuals after subtracting the synthetic eclipsing curve from the observed data. We detected 23 frequencies with signal-to-noise ratios larger than 4.0, of which the orbital harmonics (f4, f6, f9, f15) in the low-frequency domain may originate from tidally excited modes. For the high frequencies of 13.7-23.8 day-1, the period ratios and pulsation constants are in the ranges of {P}{pul}/{P}{orb}=0.020{--}0.034 and Q = 0.018-0.031 days, respectively. These values and the position on the Hertzsprung-Russell diagram demonstrate that the primary component is a δ Sct pulsating star. We examined the eclipse timing variation of KIC 11401845 from the pulsation-subtracted data and found a delay of 56 ± 17 s in the arrival times of the secondary eclipses relative to the primary eclipses. A possible explanation of the time shift may be some combination of a light-travel-time delay of about 34 s and a very small eccentricity of e\\cos ω < 0.0002. This result represents the first measurement of the Rømer delay in noncompact binaries.

  20. Observational properties of pulsars.

    PubMed

    Manchester, R N

    2004-04-23

    Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.

  1. The High Time Resolution Universe

    NASA Astrophysics Data System (ADS)

    Bailes, Matthew; Possenti, Andrea; Johnston, Simon; Kramer, Michael; Burgay, Marta; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Stappers, Benjamin; Bates, Samuel

    2008-04-01

    The Parkes multibeam surveys heralded a new era in pulsar surveys, more than doubling the number of pulsars known. However, at high time resolution, they were severely limited by the analogue backend system, which limited the volume of sky they could effectively survey to just the local 2-3 kpc. Here we propose to use a new digital backend coupled with Australia's most powerful (16 Tflop) supercomputing cluster to conduct three ambitious surveys for millisecond and relativistic pulsars with the Parkes telescope. We hope to discover over 200 new millisecond and relativistic pulsars that will define the recycled pulsar period distribution, supply pulsars for the timing array and aid in our understanding of binary evolution.

  2. High-Precision Timing of Several Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Ferdman, R. D.; Stairs, I. H.; Backer, D. C.; Ramachandran, R.; Demorest, P.; Nice, D. J.; Lyne, A. G.; Kramer, M.; Lorimer, D.; McLaughlin, M.; Manchester, D.; Camilo, F.; D'Amico, N.; Possenti, A.; Burgay, M.; Joshi, B. C.; Freire, P. C.

    2004-12-01

    The highest precision pulsar timing is achieved by reproducing as accurately as possible the pulse profile as emitted by the pulsar, in high signal-to-noise observations. The best profile reconstruction can be accomplished with several-bit voltage sampling and coherent removal of the dispersion suffered by pulsar signals as they traverse the interstellar medium. The Arecibo Signal Processor (ASP) and its counterpart the Green Bank Astronomical Signal Processor (GASP) are flexible, state-of-the-art wide-bandwidth observing systems, built primarily for high-precision long-term timing of millisecond and binary pulsars. ASP and GASP are in use at the 300-m Arecibo telescope in Puerto Rico and the 100-m Green Bank Telescope in Green Bank, West Virginia, respectively, taking advantage of the enormous sensitivities of these telescopes. These instruments result in high-precision science through 4 and 8-bit sampling and perform coherent dedispersion on the incoming data stream in real or near-real time. This is done using a network of personal computers, over an observing bandwidth of 64 to 128 MHz, in each of two polarizations. We present preliminary results of timing and polarimetric observations with ASP/GASP for several pulsars, including the recently-discovered relativistic double-pulsar binary J0737-3039. These data are compared to simultaneous observations with other pulsar instruments, such as the new "spigot card" spectrometer on the GBT and the Princeton Mark IV instrument at Arecibo, the precursor timing system to ASP. We also briefly discuss several upcoming observations with ASP/GASP.

  3. PG0027 + 260 - An example of a class of cataclysmic binaries with mysterious, but consistent, behavior

    NASA Technical Reports Server (NTRS)

    Thorstensen, John R.; Ringwald, F. A.; Wade, Richard A.; Schmidt, Gary D.; Norsworthy, Jane E.

    1991-01-01

    This paper reports extensive optical observations on the PG0027 + 260 binary, carried out on August 1984 with the 1.3 McGraw-Hill telescope and Mark II spectrometer at Michigan-Dartmouth-MIT Observatory on Kitt Peak. It is shown that this object is an eclipsing novalike variable with an orbital period of 3.51 hr. The PG0027 + 260 displays several unexplained phenomena which are remarkably similar to those of the SW Sex, DW UMa, and V1315 Aql, which are eclipsing novalike stars with periods between 3 and 4 hrs. The eclipse of the PG0027 + 260 is modeled, and it is shown that, while the mean eclipse light curve is easy to match, there is no simple explanation for the variable depth.

  4. Optical polarization observations of epsilon Aurigae during the 2009-2011 eclipse

    NASA Astrophysics Data System (ADS)

    Henson, Gary D.; Burdette, John; Gray, Sharon

    2012-05-01

    Polarization observations of the unique eclipsing binary, Epsilon Aurigae, are being carried out using a new dual beam imaging polarimeter on the 0.36m telescope of the Harry D. Powell Observatory. This bright binary system has a 27.1 year period with an eclipse duration of nearly two years. The primary is known to be a pulsating F0 supergiant with the secondary a large and essentially opaque disk. We report here on the characteristics of the polarimeter and on the status of V-band observations that are being obtained to better understand the system's geometry and the nature of its two components. In particular, the characteristics of the secondary disk remain a puzzle. Results are compared to polarization observations from the 1982-1984 eclipse.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, J.; Tam, P. H. T.; Ng, C. W.

    PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25–50 years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR B1259–63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In thismore » paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.« less

  6. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  7. The 26.3-h orbit and multiwavelength properties of the `redback' millisecond pulsar PSR J1306-40

    NASA Astrophysics Data System (ADS)

    Linares, Manuel

    2018-01-01

    We present the discovery of the variable optical and X-ray counterparts to the radio millisecond pulsar (MSP) PSR J1306-40, recently discovered by Keane et al. We find that both the optical and X-ray fluxes are modulated with the same period, which allows us to measure for the first time the orbital period Porb = 1.097 16[6] d. The optical properties are consistent with a main-sequence companion with spectral type G to mid K and, together with the X-ray luminosity (8.8 × 1031 erg s-1 in the 0.5-10 keV band, for a distance of 1.2 kpc), confirm the redback classification of this pulsar. Our results establish the binary nature of PSR J1306-40, which has the longest Porb among all known compact binary MSPs in the Galactic disc. We briefly discuss these findings in the context of irradiation and intrabinary shock emission in compact binary MSPs.

  8. No tension between assembly models of super massive black hole binaries and pulsar observations.

    PubMed

    Middleton, Hannah; Chen, Siyuan; Del Pozzo, Walter; Sesana, Alberto; Vecchio, Alberto

    2018-02-08

    Pulsar timing arrays are presently the only means to search for the gravitational wave stochastic background from super massive black hole binary populations, considered to be within the grasp of current or near-future observations. The stringent upper limit from the Parkes Pulsar Timing Array has been interpreted as excluding (>90% confidence) the current paradigm of binary assembly through galaxy mergers and hardening via stellar interaction, suggesting evolution is accelerated or stalled. Using Bayesian hierarchical modelling we consider implications of this upper limit for a range of astrophysical scenarios, without invoking stalling, nor more exotic physical processes. All scenarios are fully consistent with the upper limit, but (weak) bounds on population parameters can be inferred. Recent upward revisions of the black hole-galaxy bulge mass relation are disfavoured at 1.6σ against lighter models. Once sensitivity improves by an order of magnitude, a non-detection will disfavour the most optimistic scenarios at 3.9σ.

  9. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, H.; Borkovits, T.; Rappaport, S. A.

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. Frommore » the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.« less

  10. Eclipsing Binaries with Possible Tertiary Components

    NASA Astrophysics Data System (ADS)

    Snyder, LeRoy F.

    2013-05-01

    Many eclipsing binary star systems (EBS) show long-term variations in their orbital periods which are evident in their O-C (observed minus calculated period) diagrams. This research carried out an analysis of 324 eclipsing binary systems taken from the systems analyzed in the Bob Nelson's O-C Files database. Of these 18 systems displayed evidence of periodic variations of the arrival times of the eclipses. These rates of period changes are sinusoidal variations. The sinusoidal character of these variations is suggestive of Keplerian motion caused by an orbiting companion. The reason for these changes is unknown, but mass loss, apsidal motion, magnetic activity and the presence of a third body have been proposed. This paper has assumed light time effect as the cause of the sinusoidal variations caused by the gravitational pull of a tertiary companion orbiting around the eclipsing binary systems. An observed minus calculated (O-C) diagram of the 324 systems was plotted using a quadratic ephemeris to determine if the system displayed a sinusoidal trend in theO-C residuals. After analysis of the 18 systems, seven systems, AW UMa, BB PEG, OO Aql, V508 Oph, VW Cep, WCrv and YY ERI met the benchmark of the criteria of a possible orbiting companion. The other 11 systems displayed a sinusoidal variation in the O-C residuals of the primary eclipses but these systems in the Bob Nelson's O-C Files did not contain times of minimum (Tmin) of the secondary eclipses and therefore not conclusive in determining the presents of the effects of a tertiary companion. An analysis of the residuals of the seven systems yields a light-time semi-amplitude, orbital period, eccentricity and mass of the tertiary companion as the amplitude of the variation is proportional to the mass, period and inclination of the 3rd orbiting body. Knowing the low mass of the tertiary body in the seven cases the possibility of five of these tertiary companions being brown dwarfs is discussed.

  11. The Green Bank North Celestial Cap Pulsar Survey: New Pulsars and Future Prospects

    NASA Astrophysics Data System (ADS)

    Lynch, Ryan S.; Swiggum, Joe; Stovall, Kevin; Chawla, Pragya; DeCesar, Megan E.; Fonseca, Emmanuel; Levin, Lina; Cui, Bingyi; Kondratiev, Vlad; Archibald, Anne; Boyles, Jason; Hessels, Jason W. T.; Jenet, Fredrick; Kaplan, David; Karako-Argaman, Chen; Kaspi, Victoria; Martinez, Jose; McLaughlin, Maura; Ransom, Scott M.; Roberts, Mallory; Siemens, Xavier; Spiewak, Renee; Stairs, Ingrid; van Leeuwn, Joeri; Green Bank North Celestial Cap Survey Collaboration

    2018-01-01

    The Green Bank North Celestial Cap pulsar survey is the most successful low frequency pulsar survey ever. GBNCC uses the Green Bank telescope to cover the full visible sky at 350 MHz. With the survey over 70% complete, we have discovered over 150 pulsars, including 20 MSPs and 11 RRATs. I will report on the current status of the survey and plans for its completion in the coming years. I will also report on several discoveries including: timing solutions for dozens of new pulsars; new high precision MSPs and their suitability for inclusion in pulsar timing arrays; a new relativistic double neutron star system; new pulsar mass measurements; proper motion measurements for several MSPs; a new mode changing pulsar; interesting new MSP binaries; nulling fraction analyses; and possible implications of the lack of any fast radio bursts in the survey so far.

  12. The Bursting Pulsar GRO J1744-28: the slowest transitional pulsar?

    NASA Astrophysics Data System (ADS)

    Court, J. M. C.; Altamirano, D.; Sanna, A.

    2018-06-01

    GRO J1744-28 (the Bursting Pulsar) is a neutron star low-mass X-ray binary which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: `missing link' systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known transitional pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of opportunity to test our understanding of these systems in an entirely unexplored physical regime.

  13. Neutron Stars and Black Holes Seen with the Rossi X-Ray Timing Explorer (RXTE)

    NASA Technical Reports Server (NTRS)

    Swank, Jean

    2008-01-01

    Astrophysical X-rays bring information about location, energy, time, and polarization. X-rays from compact objects were seen in the first explorations to vary in time. Eclipses and pulsations have simple explanations that identified the importance of X-ray binaries and magnetic neutron stars in the first decade of X-ray astronomy. The dynamics of accretion onto stellar and supermassive black holes and onto neutron stars with relatively low magnetic fields shows up as more complex variations, quasi-periodic oscillations, noise with characteristic frequency spectra, broad-band changes in the energy spectra. To study these variations, RXTE instruments needed to have large area and operational flexibility to find transient activity and observe when it was present. Proportional counters and Phoswich scintillators provided it in a modest mission that has made textbook level contributions to understanding of compact objects. The first seen, and the brightest known, X-ray binary, Sco X-1 is one of a class of neutron stars with low mass companions. Before RXTE, none of these had been seen to show pulsations, though they were hypothesized to be the precursors of radio pulsars with millisecond periods and low magnetic fields. RXTE's large area led to identifying coherent millisecond pulsars in a subset which are relatively faint transients. It also led to identifying short episodes of pulsation during thermonuclear bursts, in sources where a steady signal is not seen. The X-ray stage verifies the evolution that produces millisecond radio pulsars.Masses and radii of neutron stars are being determined by various techniques, constraining the equation of state of matter at nuclear densities. Accretion should lead to a range of neutron star masses. An early stage of superstrong magnetic field neutron stars is now known to produce X-ray and gamma-ray bursts in crust quakes and magnetic field reconnection releases of energy. Soft Gamma Repeaters, Anomolous X-ray Pulsars, and high magnetic field rotation-powered pulsars are all now called magnetars, because they have pulse periods indicating they are slowing down as they would with magnetic dipole radiation for a surface field above 5x1013 gauss. The accretion disk has been connected to the launching of radio jets from black holes, and even from neutron stars. Estimates of the angular momenta of black holes are being made from different approaches, modelling a high frequency oscillation that may be related to how close the inner part of the accretion disk is to the black hole, modelling the continua spectra of the X-ray emission, and modeling the emission of red-shifted iron that may be emitted from the accretion disk. These investigations require early discovery of the black hole transient with the All Sky Monitor on RXTE or other monitoring information, frequent extended observations, and coordinated observations with missions that give higher energy resolution, or radio and infrared information.

  14. Supermassive black hole binaries and transient radio events: studies in pulsar astronomy

    NASA Astrophysics Data System (ADS)

    Burke-Spolaor, S.

    2011-06-01

    The field of pulsar astronomy encompasses a rich breadth of astrophysical topics. The research in this thesis contributes to two particular subjects of pulsar astronomy: gravitational wave science, and identifying celestial sources of pulsed radio emission. We first investigated the detection of supermassive black hole (SMBH) binaries, which are the brightest expected source of gravitational waves for pulsar timing. We considered whether two electromagnetic SMBH tracers, velocity-resolved emission lines in active nuclei, and radio galactic nuclei with spatially-resolved, flat-spectrum cores, can reveal systems emitting gravitational waves in the pulsar timing band. We found that there are systems which may in principle be simultaneously detectable by both an electromagnetic signature and gravitational emission, however the probability of actually identifying such a system is low (they will represent much less than 1% of a randomly selected galactic nucleus sample). This study accents the fact that electromagnetic indicators may be used to explore binary populations down to the 'stalling radii' at which binary inspiral evolution may stall indefinitely at radii exceeding those which produce gravitational radiation in the pulsar timing band. We then performed a search for binary SMBH holes in archival Very Long Baseline Interferometry data for 3114 radio-luminous active galactic nuclei. One source was detected as a double nucleus. This result is interpreted in terms of post-merger timescales for SMBH centralisation, implications for 'stalling', and the relationship of radio activity in nuclei to mergers. Our analysis suggested that binary pair evolution of SMBHs (both of masses >108M circled bullet) spends less than 500Myr in progression from the merging of galactic stellar cores to within the purported stalling radius for SMBH pairs, giving no evidence for an excess of stalled binary systems at small separations. Circumstantial evidence showed that the relative state of radio emission between paired SMBHs is correlated within orbital separations of 2.5 kpc. We then searched for transient radio events in two archival pulsar surveys, and in the new High Time Resolution Universe (HTRU) Survey. We present the methodology employed for these searches, noting the novel addition of methods for single-event recognition, automatic interference mitigation, and data inspection. 27 new neutron stars were discovered. We discuss the relationship between "rotating radio transient" (RRAT) and pulsar populations, finding that the Galactic z-distribution of RRATs closely resembles the distribution of pulsars, and where measurable, RRAT pulse widths are similar to individual pulses from pulsars of similar period, implying a similar beaming fraction. We postulate that many RRATs may simply represent a tail of extreme-nulling pulsars that are "on" for less than a pulse period; this is supported by the fact that nulling pulsars and single-pulse discoveries exhibit a continuous distribution across null/activity timescales and nulling fractions. We found a drop-off in objects with emissivity cycles longer than 300 seconds at intermediate and low nulling fractions which is not readily explained by selection effects. The HTRU deep low-latitude survey (70-min. pointings at galactic latitudes |b| < 3.5 degrees and longitudes -80 degrees < l < 30 degrees) will be capable of exploring whether this deficit is natural or an effect of selection. The intriguing object PSR J0941-39 may represent an evolutionary link between nulling populations; discovered as an sparsely-pulsing RRAT, in follow-up observations it often appeared as a bright (10 mJy) pulsar with a low nulling fraction. It is therefore apparent that a neutron star can oscillate between nulling levels, much like mode-changing pulsars. Crucially, the RRAT and pulsar-mode emission sites are coincident, implying that the two emission mechanisms are linked. We estimate that the full HTRU survey will roughly quadruple the known deep-nulling pulsar population, allowing statistical studies to be made of extreme-nulling populations. HTRU's low-latitude survey will explore the neutron star population with null lengths lasting up to several hours. We lastly reported the discovery of 16 pulses, the bulk of which exhibit a frequency sweep with a shape and magnitude resembling the "Lorimer Burst" (Lorimer et al. 2007), which three years ago was reported as a solitary radio burst that was thought to be the first discovery of a rare, impulsive event of unknown extragalactic origin. However, the new events were of clearly terrestrial origin, with properties unlike any known sources of terrestrial broad-band radio emission. The new detections cast doubt on the extragalactic interpretation of the original burst, and call for further sophistication in radio-pulse survey techniques to identify the origin of the anomalous terrestrial signals and definitively distinguish future extragalactic pulse detections from local signals. The ambiguous origin of these seemingly dispersed, swept-frequency signals suggest that radio-pulse searches using multiple detectors will be the only experiments able to provide definitive information about the origin of new swept-frequency radio burst detections. Finally, we summarise our major findings and suggest future work which would expand on the work in this thesis.

  15. Pulsars

    NASA Astrophysics Data System (ADS)

    Stappers, Benjamin W.

    2012-04-01

    Pulsars can be considered as the ultimate time-variable source. They show variations on time-scales ranging from nanoseconds to as long as years, and they emit over almost the entire electromagnetic spectrum. The dominant modulation is associated with the rotation period, which can vary from slighty more than a millisecond to upwards of ten seconds (if we include the magnetars). Variations on time-scales shorter than the pulse period are mostly associated with emission processes and are manifested as giant pulses, microstructure and sub-pulses (to name a few). On time-scales of a rotation to a few hundred rotations are other phenomena also associated with the emission, such as nulling, moding, drifting and intermittency. By probing these and slightly longer time-scales we find that pulsars exhibit ``glitches'', which are rapid variations in spin rates. They are believed to be related to the interaction between the superfluid interior of the neutron star and the outer crust. Detailed studies of glitches can reveal much about the properties of the constituents of neutron stars-the only way to probe the physics of material at such extreme densities. Time-scales of about an hour or longer reveal that some pulsars are in binary systems, in particular the most rapidly rotating systems. Discovering and studying those binary systems provides vital clues to the evolution of massive stars, while some of the systems are also the best probes of strong-field gravity theories; the elusive pulsar-black hole binary would be the ultimate system. Pulsars are tools that allow us to probe a range of phenomena and time-scales. It is possible to measure the time of arrival of pulses from some pulsars to better than a few tens of nanoseconds over years, making them some of the most accurate clocks known. Concerning their rotation, deviations from sphericity may cause pulsars to emit gravitational waves which might then be detected by next-generation gravitational-wave detectors. Pulsars themselves can be used as the arms of a Galactic-scale gravitational-wave detector. Measuring correlated deviations in the arrival times of pulses from a number of pulsars distributed throughout the Galaxy could give rise to a direct detection of the stochastic gravitational-wave background, which is associated with the astrophysics of the early Universe-most likely from supermassive black-hole binary systems, but potentially also from cosmic strings. While they are famed for their clock-like rotational stability, some pulsars-in particular the more youthful ones-exhibit modulation in pulse arrival times, often called timing noise. It was recently demonstrated that in at least some cases this variability is deterministic and is associated with modulations in the pulsar emission properties and the spin-down rate. This breakthrough may lead to further improvements in the precision which can be achieved with pulsar timing, and enhance still further the ability to test theories of gravity directly and to make a direct detection of gravitational waves. I presented some of the history of what is known about the variations in pulsars on all these time-scales and reviewed some of the recent achievements in our understanding of the phenomena. I also highlighted how new transients associated with radio-emitting neutron stars are being discovered, and how other transient sources are being identified by the same techniques. These continued improvements have come about without new telescopes, but the next generation of very sensitive wide-field instruments will permit observational cadences which will reveal many new manifestations and will further revolutionise our understanding of this class of objects which have such high astrophysical potential.

  16. Observations of candidate oscillating eclipsing binaries and two newly discovered pulsating variables

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.

    2009-03-01

    CCD observations of 24 eclipsing binary systems with spectral types ranging between A0-F0, candidate for containing pulsating components, were obtained. Appropriate exposure times in one or more photometric filters were used so that short-periodic pulsations could be detected. Their light curves were analyzed using the Period04 software in order to search for pulsational behaviour. Two new variable stars, namely GSC 2673-1583 and GSC 3641-0359, were discov- ered as by-product during the observations of eclipsing variables. The Fourier analysis of the observations of each star, the dominant pulsation frequencies and the derived frequency spectra are also presented.

  17. MOST: A Powerful Tool to Reveal the True Nature of the Mysterious Dust-Forming Wolf-Rayet Binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, A.; Moffat, A. F. J.; Chené, A.-N.; MOST Collaboration

    2012-12-01

    The WR + O binary CV Ser has been a source of mystery since it was shown that its atmospheric eclipses change with time over decades, in addition to its sporadic dust production. However, the first high-precision time-dependent photometric observations obtained with the MOST space telescope in 2009 show two consecutive eclipses over the 29 day orbit, with varying depths. A subsequent MOST run in 2010 showed a somewhat asymmetric eclipse profile. Parallel optical spectroscopy was obtained from the Observatoire du Mont-Mégantic (2009 and 2010) and from the Dominion Astrophysical Observatory (2009).

  18. Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knispel, B.; Allen, B.; Lyne, A. G.

    2015-06-10

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M{sub ⊙} and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbitalmore » eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.« less

  19. Photometric study of the eclipsing binary GR Bootis

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Zhang, Y. P.; Fu, J. N.; Xue, H. F.

    2016-07-01

    We present CCD photometry and low-resolution spectra of the eclipsing binary GR Boo. A new ephemeris is determined based on all the available times of the minimum light. The period analysis reveals that the orbital period is decreasing with a rate of dP / dt = - 2.05 ×10-10 d yr-1 . A photometric analysis for the obtained light curves is performed with the Wilson-Devinney Differential Correction program for the first time. The photometric solutions confirm the W UMa-type nature of the binary system. The mass ratio turns out to be q = 0.985 ± 0.001 . The evolutionary status and physical nature of the binary system are briefly discussed.

  20. A New Binary Star System of EW Type in Draco: GSC 03905-01870

    NASA Astrophysics Data System (ADS)

    Barquin, S.

    2018-05-01

    Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988+-0.000001 d, amplitude of 0.34+-0.02 V Mag, primary minimum epoch HJD 2457994.2756+-0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.

  1. Sub-1% accuracy in fundamental stellar parameters from triply eclipsing systems

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej

    The current state-of-the-art level of accuracy in fundamental stellar parameters from eclipsing binary stars is 2-3%. Here we propose to use eclipsing triple stars to reduce the error bars by an entire order of magnitude, i.e. to 0.2-0.3%. This can be done because a presence of the third component breaks most of the degeneracy inherent in binary systems between the inclination and stellar sizes. We detail the feasibility arguments and foresee that these results will provide exceptional benchmark objects for stringent tests of stellar evolution and population models. The formation channel of close binary stars (with separations of several stellar radii) is a matter of debate. It is clear that close binaries cannot form in situ because (1) the physical radius of a star shrinks by a large factor between birth and the main sequence, yet many main-sequence stars have companions orbiting at a distance of only a few stellar radii, and (2) in current theories of planet formation, the region within 0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many hot jupiters are observed at such distances. Current theories of dynamic orbital evolution attribute orbital shrinking to Kozai cycles and tidal friction, which are long-lasting, perturbative effects that take Gyrs to shrink orbits by 1-2 orders of magnitude. This implies that, if a binary star system has a tertiary companion, it will be in a hierarchical structure, and any disruptive orbital encounters should be exceedingly rare after a certain period. The Kepler satellite observed continuously over 2800 eclipsing binary stars over 4 years of its mission lifetime. The ultra-high precision photometry and essentially uninterrupted time coverage enables us to time the eclipses to a 6 second precision. Because of the well understood physics that governs the orbital motion of two bodies around the center of mass, the expected times of eclipses can be predicted to a fraction of a second. When other physical processes interplay, such as apsidal motion, mass transfer or third body interactions, the times of eclipses deviate from predictions: they either come early or late. These deviations are called eclipse timing variations (ETVs) and can range from a few seconds to a few hours. Our team measured ETVs for the entire Kepler data-set of eclipsing binaries and found 516 that demonstrate significant deviations. Of those, 16 show strong interactions between the binary system and the tertiary component that significantly affects the binary orbit within a single encounter. This observed rate of dynamical perturbation events is unexpectedly high and at odds with current theories. We propose to study these objects in great detail: (1) to apply a developed photodynamical code to model multiple body interactions; (2) to fully solve orbital dynamics of these interacting bodies using all available Kepler data, deriving masses of all objects to better than 1%; (3) to measure the occurrence rate of strong orbital interactions in multiple systems and compare it to the predicted rates; (4) to hypothesize and simulate additional evolution channels that could potentially lead to such a high occurrence rate of disruptive events; and (5) to integrate these systems over time and test whether this dynamic evolution can cause efficient orbital tightening and the creation of short period binaries. The team consists of a PI who has experience with Kepler satellite's idiosyncrasies, two postdoctoral fellows, one graduate student, and six undergraduate students that will invest their summer months to learn about multiple body interactions. The proposed study has far-reaching research goals in stellar and planetary science astrophysics, a strong educational/training component and is aligned with NASA's objectives as outlined in the NRA call. Kepler is the only instrument that can provide the accuracy and temporal coverage required for the execution of this project.

  2. Formation and Evolution of X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period-donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birthrate is around 10-4 yr-1 for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass - orbital period plane. Our results suggest that, compared with black hole X-ray binaries, neutron star X-ray binaries may significantly contribute to the ULX population, and high/intermediate-mass X-ray binaries dominate the neutron star ULX population in M82/Milky Way-like galaxies, respectively. In Chapter 6, the population of intermediate- and low-mass X-ray binaries in the Galaxy is explored. We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs, and present their distribution in the initial donor mass vs. initial orbital period diagram. We then follow the evolution of I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries. The resultant BMSPs have orbital periods ranging from about 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ˜ 0.1-1 \\unit{d} is severely underestimated. Both imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss. Finally in Chapter 7 we summarize our results and give the prospects for the future work.

  3. Orbital Dynamics of Candidate Transitional Millisecond Pulsar 3FGL J1544.6-1125: An unusually face-on system

    NASA Astrophysics Data System (ADS)

    Britt, Christopher T.; Strader, Jay; Chomiuk, Laura; Halpern, Jules P.; Tremou, Evangelina; Peacock, Mark; Salinas, Ricardo

    2018-01-01

    We present the orbital solution for the donor star of the candidate transitional millisecond pulsar 3FGL J1544.6-1125, currently observed as an accreting low-mass X-ray binary. The orbital period is 0.2415361(36) days, entirely consistent with the spectral classification of the donor star as a mid to late K dwarf. The semi-amplitude of the radial velocity curve is exceptionally low at K2=39.3+/-1.5 km s-1, implying a remarkably face-on inclination in the range 5-8o, depending on the neutron star and donor masses. After determining the veiling of the secondary, we derive a distance to the binary of 3.8+/-0.7 kpc, yielding a 0.3-10 keV X-ray luminosity of 6.1+/-1.9 x1033 erg s-1, similar to confirmed transitional millisecond pulsars. As face-on binaries rarely occur by chance, we discuss the possibility that Fermi-selected samples of transitional milli-second pulsars in the sub-luminous disk state are affected by beaming. By phasing emission line strength on the spectroscopic ephemeris, we find coherent variations, and argue that some optical light originates from emission from an asymmetric shock originating near the inner disk.

  4. The High Time Resolution Radio Sky

    NASA Astrophysics Data System (ADS)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with each orbit, PSR J1729-2117 which is an unusual isolated recycled pulsar, and PSR J2322-2650 which has a companion of very low mass - just 7 × 10^{-4} {M}_{⊙}, amongst others. I begin this thesis with the study of these pulsars and discuss their histories. In addition, I demonstrate that optical observations of the companions to some of the newly discovered pulsars in the High Time Resolution Universe survey may result in a measurement of their age and that of the pulsar. I have discovered five new extragalactic single radio bursts, confirming them as an astronomical population. These appear to occur frequently, with a rate of 1.0^{+0.6}_{-0.5} × 10^4 sky^{-1} day^{-1}. The sources are likely at cosmological distances - with redshifts between 0.45 and 1.45, making them more than half way to the Big Bang in the most distant case. This implies their luminosities must be enormous, 10^{31} to 10^{33} J emitted in just a few milliseconds. Their source is unknown but I present an analysis of the options. I also perform a population simulation of the bursts which demonstrates how their intrinsic spectrum could be measured, even for unlocalised FRBs: early indications are that the spectral index of FRBs < 0.

  5. Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Hermes, J. J.; Marsh, T. R.; Gänsicke, B. T.; Tremblay, P.-E.; Littlefair, S. P.; Sahman, D. I.; Ashley, R. P.; Green, M.; Rattanasoon, S.; Dhillon, V. S.; Burleigh, M. R.; Casewell, S. L.; Buckley, D. A. H.; Braker, I. P.; Irawati, P.; Dennihy, E.; Rodríguez-Gil, P.; Winget, D. E.; Winget, K. I.; Bell, Keaton J.; Kilic, Mukremin

    2017-10-01

    Using data from the extended Kepler mission in K2 Campaign 10, we identify two eclipsing binaries containing white dwarfs with cool companions that have extremely short orbital periods of only 71.2 min (SDSS J1205-0242, a.k.a. EPIC 201283111) and 72.5 min (SDSS J1231+0041, a.k.a. EPIC 248368963). Despite their short periods, both systems are detached with small, low-mass companions, in one case a brown dwarf and in the other case either a brown dwarf or a low-mass star. We present follow-up photometry and spectroscopy of both binaries, as well as phase-resolved spectroscopy of the brighter system, and use these data to place preliminary estimates on the physical and binary parameters. SDSS J1205-0242 is composed of a 0.39 ± 0.02 M⊙ helium-core white dwarf that is totally eclipsed by a 0.049 ± 0.006 M⊙ (51 ± 6MJ) brown-dwarf companion, while SDSS J1231+0041 is composed of a 0.56 ± 0.07 M⊙ white dwarf that is partially eclipsed by a companion of mass ≲0.095 M⊙. In the case of SDSS J1205-0242, we look at the combined constraints from common-envelope evolution and brown-dwarf models; the system is compatible with similar constraints from other post-common-envelope binaries, given the current parameter uncertainties, but has potential for future refinement.

  6. Pulsar timing and general relativity

    NASA Technical Reports Server (NTRS)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  7. The 1984 eclipse of the symbiotic binary SY Muscae

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Michalitisianos, A. G.; Lutz, J. H.; Kafatos, M.

    1985-01-01

    Data from IUE spectra obtained with the 10 x 20-arcsec aperture on May 13, 1984, and optical spectrophotometry obtained with an SIT vidicon on the 1.5-m telescope at CTIO on April 29-May 1, 1984, are reported for the symbiotic binary SY Mus. The data are found to be consistent with a model of a red-giant secondary of 60 solar radii which completely eclipses the hot primary every 627 d but only partially eclipses the 75-solar-radius He(+) region surrounding the primary. The distance to SY Mus is estimated as 1.3 kpc. It is suggested that the large Balmer decrement in eclipse, with (H-alpha)/(H-beta) = 8.3 and (H-beta)/(H-gamma) = 1.5, is associated with an electron density of about 10 to the 10th/cu cm.

  8. Periodicity and eclipse minima timing of CM Draconis.

    NASA Astrophysics Data System (ADS)

    Vázquez-Martín, S.; Deeg, H. J.; Dreizler, S.; von Essen, C.; Kozhevnikov, V. P.

    2015-05-01

    Periodic deviations from a linear ephemeris of a binary star's eclipses can indicate the presence of a third body in orbit around both. Hints for such companion around the M4.5/M4.5 binary CMDra were published by Deeg et al. (2008). The assignment of a planet in the CMDra system can however only be accepted if the earlier observed periodicity trends can be verified through further observations over several years. For eclipsing binary stars of low mass, the method of eclipse minimum timing allows one to set mass limits for the detection of a third body. Deeg et al. (2008) concluded that the two possibilities for the source of CMDra's timing variations that remain valid are a planet of a few Jupiter masses on a two decade-long orbit, or an object on a century-to-millenium long orbit with masses 1.5M_J < M_{p} < 0.1M_{⊙}. However, they concluded that it is necessary to do continued observations of the timing of CMDra's eclipses to be decisive regarding the continued viability of the sinusoidal-fit-model, and hence, about the validity of a Jovian-type planet in a circumbinary orbiting around the system. Here we update the analysis of Deeg et al. (2008), including further data presented in Morales et al. (2009r) and new observations taken at Ural Observatory (2008-2013). Eclipse minimum times were obtained using the Kwee-van-Woerden method.

  9. Record-Breaking Eclipsing Binary

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    A new record holder exists for the longest-period eclipsing binary star system: TYC-2505-672-1. This intriguing system contains a primary star that is eclipsed by its companion once every 69 years with each eclipse lasting several years!120 Years of ObservationsIn a recent study, a team of scientists led by Joseph Rodriguez (Vanderbilt University) characterizes the components of TYC-2505-672-1. This binary star system consists of an M-type red giant star that undergoes a ~3.45-year-long, near-total eclipse with a period of ~69.1 years. This period is more than double that of the previous longest-period eclipsing binary!Rodriguez and collaborators combined photometric observations of TYC-2505-672-1 by the Kilodegree Extremely Little Telescope (KELT) with a variety of archival data, including observations by the American Association of Variable Star Observers (AAVSO) network and historical data from the Digital Access to a Sky Century @ Harvard (DASCH) program.In the 120 years spanned by these observations, two eclipses are detected: one in 1942-1945 and one in 2011-2015. The authors use the observations to analyze the components of the system and attempt to better understand what causes its unusual light curve.Characterizing an Unusual SystemObservations of TYC-2505-672-1 plotted from 1890 to 2015 reveal two eclipses. (The blue KELT observations during the eclipse show upper limits only.) [Rodriguez et al. 2016]By modeling the systems emission, Rodriguez and collaborators establish that TYC-2505-672-1 consists of a 3600-K primary star thats the M giant orbited by a small, hot, dim companion thats a toasty 8000 K. But if the companion is small, why does the eclipse last several years?The authors argue that the best model of TYC-2505-672-1 is one in which the small companion star is surrounded by a large, opaque circumstellar disk. Rodriguez and collaborators suggest that the companion could be a former red giant whose atmosphere was stripped from it, leaving behind the small, hot core shrouded by a large, cool disk of stripped gas. The large size of the disk causes the eclipse of the primary to last for years, as viewed from Earth.The authors estimate the properties such a disk would need to produce the observed light curve. They find that if the companion were surrounded by a disk several AU in diameter, it could orbit at a distance of ~20-30 AU from the primary and reproduce the emission we see.The next eclipse of TYC-2505-672-1 will begin in April 2080. We neednt wait until then to gather more information about this system, however! Radial velocity measurements will help establish the masses of the two components, and high-cadence UV observations could reveal more about the evolutionary state of the system. Studying this extreme binary provides an excellent opportunity to learn more about the environments in late-life star systems.CitationJoseph E. Rodriguez et al 2016 AJ 151 123. doi:10.3847/0004-6256/151/5/123

  10. Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays.

    PubMed

    Taylor, Stephen R; Simon, Joseph; Sampson, Laura

    2017-05-05

    We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.

  11. Further Evidence of a Brown Dwarf Orbiting the Post-Common Envelope Eclipsing Binary V470 Cam (HS 0705+6700)

    NASA Astrophysics Data System (ADS)

    Bogensberger, David; Clarke, Fraser; Lynas-Gray, Anthony Eugene

    2017-12-01

    Several post-common envelope binaries have slightly increasing, decreasing or oscillating orbital periods. One of several possible explanations is light travel-time changes, caused by the binary centre-of-mass being perturbed by the gravitational pull of a third body. Further studies are necessary because it is not clear how a third body could have survived subdwarf progenitor mass-loss at the tip of the Red Giant Branch, or formed subsequently. Thirty-nine primary eclipse times for V470 Cam were secured with the Philip Wetton Telescope during the period 2016 November 25th to 2017 January 27th. Available eclipse timings suggest a brown dwarf tertiary having a mass of at least 0.0236(40) M⊙, an elliptical orbit with an eccentricity of 0.376(98) and an orbital period of 11.77(67) years about the binary centreof- mass. The mass and orbit suggest a hybrid formation, in which some ejected material from the subdwarf progenitor was accreted on to a precursor tertiary component, although additional observations would be needed to confirm this interpretation and investigate other possible origins for the binary orbital period change.

  12. Absolute Parameters for the F-type Eclipsing Binary BW Aquarii

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.

    2018-05-01

    BW Aqr is a bright eclipsing binary star containing a pair of F7V stars. The absolute parameters of this binary (masses, radii, etc.) are known to good precision so they are often used to test stellar models, particularly in studies of convective overshooting. ... Maxted & Hutcheon (2018) analysed the Kepler K2 data for BW Aqr and noted that it shows variability between the eclipses that may be caused by tidally induced pulsations. ... Table 1 shows the absolute parameters for BW Aqr derived from an improved analysis of the Kepler K2 light curve plus the RV measurements from both Imbert (1979) and Lester & Gies (2018). ... The values in Table 1 with their robust error estimates from the standard deviation of the mean are consistent with the values and errors from Maxted & Hutcheon (2018) based on the PPD calculated using emcee for a fit to the entire K2 light curve.

  13. The Search for Pre-Main Sequence Eclipsing Binary Stars in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.; Stassun, K. G.

    2009-01-01

    We report time-series CCD I-band photometry for the pre-main-sequence cluster NGC 6530, located within the Lagoon Nebula. The data were obtained with the 4Kx4K imager on the SMARTS 1.0m telescope at CTIO on 36 nights over the summers of 2005 and 2006. In total we have light curves for 50,000 stars in an area 1 deg2, with a sampling cadence of 1 hour. The stars in our sample have masses in the range 0.25-4.0 Msun, assuming a distance of 1.25 kpc to the cluster. Our goals are to look for stars with rotation periods and to identify eclipsing binary candidates. Here we present light curves of photometrically variable stars and potential eclipsing binary star systems. This work has been supported by the National Science Foundation under Career grant AST-0349075.

  14. Low-mass X-ray binary evolution and the origin of millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre

    1992-01-01

    The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.

  15. Discovery of a Highly Relativistic Double Neutron Star Binary

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shami; Stovall, Kevin; PALFA Collaboration, Paul Demorest, Nihan Pol

    2018-01-01

    We report the discovery of a double neutron star (DNS) binary system, PSR J1946+2052, in Arecibo L-Band Feed Array Pulsar Survey (PALFA) observations. PSR J1946+2052 is a 17-ms pulsar in a 1.88-hour, eccentric (e = 0.06) orbit with a 1.2 solar mass companion. We have localized the pulsar to a precision of 0.09 arcseconds using a new phase binning mode at the Jansky Very Large Array. The improved position has enabled a measurement of the pulsar spin period derivative of 9E-19 s/s; the low inferred magnetic field strength at the surface of 4E+9 Gauss indicates that the pulsar has been recycled. Among all known DNS systems, PSR J1946+2052 has the shortest orbital period, and currently radiates ~13% of a solar luminosity in gravitational wave power. Its estimated time to merger is only 45.5 MYr, the shortest known, and at that time it will display the largest spin effects of any such system discovered to date. We have also measured the advance of periastron passage for this system, 25.6 +/- 0.3 degrees per year, resulting in a total system mass measurement of 2.50 +/- 0.04 solar masses.

  16. Separated before birth: pulsars B2020+28 and B2021+51 as the remnants of runaway stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2007-08-01

    Astrometric data on the pulsars B2020+28 and B2021+51 suggest that they originated within several parsecs of each other in the direction of the Cyg OB2 association. It was proposed that the pulsars share their origin in a common massive binary and were separated at the birth of the second pulsar following the asymmetric supernova explosion. We consider a different scenario for the origin of the pulsar pair based on a possibility that the pulsars were separated before their birth and that they are the remnants of runaway stars ejected (with velocities similar to those of the pulsars) from the core of Cyg OB2 due to strong three- or four-body dynamical encounters. Our scenario does not require any asymmetry in supernova explosions.

  17. Contact Binaries on Their Way Towards Merging

    NASA Astrophysics Data System (ADS)

    Gazeas, K.

    2015-07-01

    Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.

  18. The first comprehensive catalog of γ Dor pulsators and their characteristics

    NASA Astrophysics Data System (ADS)

    Ibanoglu, C.; Çakırlı, Ö.; Sipahi, E.

    2018-07-01

    We present the first comprehensive catalog of the γ Doradus type pulsating stars. This catalog covers observational properties of all γ Dor variables obtained until January 2017. The photometric and physical properties of 109 well - known γ Dor pulsators, 18 hybrid stars, 13 anomalous γ Dor stars, and 22 γ Dor stars in eclipsing plus 1 non-eclipsing SB2 binary systems are presented as separate tables. In addition, 291 candidate γ Dor variables discovered by CoRot, 307 candidate γ Dor, 205 hybrid and 11 candidate γ Dor in binaries discovered by Kepler were also presented. Distribution of the genuine single γ Dor pulsators in the Ppuls-Teff, Amplitude-Teff, Amplitude-Ppuls and L-Teff diagrams are presented and discussed. We find following correlations for the γ Dor pulsators in the eclipsing binaries: Ppuls ∝ Porb0.27, Ppuls ∝ Q0.45, and Ppuls ∝ r-0.44, where (Q) is the pulsation constant and r is the fractional radius of the pulsating component in the binary system. The correlation coefficients are not high enough due to limited sample and scattering in the data.

  19. Observations and Light Curve Solutions of the Eclipsing Binaries KR Lyn, CSS J110212+244412, NSVS 4917488 and NSVS 7336024

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, D.; Popov, V. A.; Eneva, J.; Petrov, N.

    2018-05-01

    We present photometric observations in Sloan filters g', i' of the short-period eclipsing stars KR Lyn, CSS J110212+244412, NSVS 4917488 and NSVS 7336024. The light curve solutions revealed that all targets are overcontact binaries whose components are G and K stars. Their temperature differences do not exceed 300 K but they differ considerably in size and mass. NSVS 4917488 and NSVS 7336024 reveal total eclipses and their parameters can be considered as well-determined. We found that KR Lyn, NSVS 4917488 and NSVS 7336024 are of W-subtype while CSS J110212+244412 is A-subtype W UMa-type star.

  20. The Exciting World of Binary Stars: Not Just Eclipses Anymore (Abstract)

    NASA Astrophysics Data System (ADS)

    Pablo, B.

    2018-06-01

    (Abstract only) Binary stars have always been essential to astronomy. Their periodic eclipses are the most common and efficient method for determining precise masses and radii of stars. Binaries are known for their predictability and have been observed for hundreds if not thousands of years. As such, they are often ignored by observers as uninteresting, however, nothing could be farther from the truth. In the last ten years alone the importance of binary stars, as well of our knowledge of them, has changed significantly. In this talk, I will introduce you to this new frontier of heartbeats, mergers, and evolution, while hopefully motivating a change in the collective thinking of how this unique class of objects is viewed. Most importantly,

  1. Constraining the properties of the proposed supermassive black hole system in 3C66B: limits from pulsar timing

    NASA Technical Reports Server (NTRS)

    Jenet, F. A.; Lommen, A.; Larson, S. L.; Wen, L.

    2003-01-01

    Data from long term timing observations of the radio pulsar PSR B1855+09 have been searched for the signature of Gravitational waves (G-waves) emitted by the proposed supermassive binary black hole system in 3C66B.

  2. Fate of very low-mass secondaries in accreting binaries and the 1.5-ms pulsar

    NASA Technical Reports Server (NTRS)

    Ruderman, M. A.; Shaham, J.

    1983-01-01

    It is shown analytically that the canonical stability postulate for low-mass binaries can be inaccurate when the secondary component mass is less than 0.02 solar mass. The adjustable evolutionary parameter h is demonstrated to have a value (in terms of the mass flow effects) of 2/3, less than which catastrophic instability and tidal disruption of the secondary might occur. The disrupted secondary would be reduced to a remnant significantly smaller in mass than the earth, and not be observable visually. Additionally, close passage by another star could accelerate or initiate the process. The model is applicable to the pulsar binary PSR1937+214, and is noted not to conflict with spin-up theories.

  3. THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY II: DATA ANALYSIS AND THE TIMING OF 10 NEW PULSARS, INCLUDING A RELATIVISTIC BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Ryan S.; Kaspi, Victoria M.; Archibald, Anne M.

    2013-02-15

    We have completed a 350 MHz Drift-scan Survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered {approx}10,300 deg{sup 2} and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, 7 of which are recycled pulsars. A companion paper by Boyles et al. describes the survey strategy, sky coverage, and instrumental setup, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, andmore » follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources-two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.« less

  4. 1998 UBV Light Curves of Eclipsing Binary AI Draconis and Absolute Parameters

    NASA Astrophysics Data System (ADS)

    Jassur, D. M. Z.; Khaledian, M. S.; Kermani, M. H.

    New UBV photometry of Algol-Type eclipsing binary star AI Dra and the absolute physical parameters of this system have been presented. The light curve analysis carried out by the method of differential corrections indicates that both components are inside their Roche-Lobes. From combining the photometric solution with spectroscopic data obtained from velocity curve analysis, it has been found that the system consist of a main sequence primary and an evolved (subgiant) secondary.

  5. A Photometric Study of the Eclipsing Binary NSV 1000

    NASA Astrophysics Data System (ADS)

    Richards, T. J.; Bembrick, C. S.

    2018-06-01

    Abstract NSV 1000 is an unstudied eclipsing binary in Hydrus. Our photometric research in the period 2014-2016 shows it is a W UMa system with a period of 0.336 579 6(3) d, consistent with the catalogued period. Model fitting to our B, V, and Ic light curves shows the two stars are barely in contact. The parameters derived from the fit satisfy the broadly defined characteristics of a W-type W UMa system.

  6. A Bright Short Period M-M Eclipsing Binary from the KELT Survey: Magnetic Activity and the Mass-Radius Relationship for M Dwarfs

    NASA Astrophysics Data System (ADS)

    Lubin, Jack B.; Rodriguez, Joseph E.; Zhou, George; Conroy, Kyle E.; Stassun, Keivan G.; Collins, Karen; Stevens, Daniel J.; Labadie-Bartz, Jonathan; Stockdale, Christopher; Myers, Gordon; Colón, Knicole D.; Bento, Joao; Kehusmaa, Petri; Petrucci, Romina; Jofré, Emiliano; Quinn, Samuel N.; Lund, Michael B.; Kuhn, Rudolf B.; Siverd, Robert J.; Beatty, Thomas G.; Harlingten, Caisey; Pepper, Joshua; Gaudi, B. Scott; James, David; Jensen, Eric L. N.; Reichart, Daniel; Kedziora-Chudczer, Lucyna; Bailey, Jeremy; Melville, Graeme

    2017-08-01

    We report the discovery of KELT J041621-620046, a moderately bright (J ˜ 10.2) M-dwarf eclipsing binary system at a distance of 39 ± 3 pc. KELT J041621-620046 was first identified as an eclipsing binary using observations from the Kilodegree Extremely Little Telescope (KELT) survey. The system has a short orbital period of ˜1.11 days and consists of components with {M}1={0.447}+0.052-0.047 {M}⊙ and {M}2={0.399}+0.046-0.042 {M}⊙ in nearly circular orbits. The radii of the two stars are {R}1={0.540}+0.034-0.032 {R}⊙ and {\\text{}}{R}2=0.453+/- 0.017 {R}⊙ . Full system and orbital properties were determined (to ˜10% error) by conducting an EBOP (Eclipsing Binary Orbit Program) global modeling of the high precision photometric and spectroscopic observations obtained by the KELT Follow-up Network. Each star is larger by 17%-28% and cooler by 4%-10% than predicted by standard (non-magnetic) stellar models. Strong Hα emission indicates chromospheric activity in both stars. The observed radii and temperature discrepancies for both components are more consistent with those predicted by empirical relations that account for convective suppression due to magnetic activity.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (∼1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With amore » radius of 1.06 ± 0.01 R {sub Jup}, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M {sub Jup}. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric ( e {sub bin} = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.« less

  8. Kepler-1647b: The Largest and Longest-period Kepler Transiting Circumbinary Planet

    NASA Astrophysics Data System (ADS)

    Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.; Doyle, Laurance R.; Fabrycky, Daniel C.; Haghighipour, Nader; Quarles, Billy; Short, Donald R.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Gregorio, Joao; Hinse, Tobias C.; Isaacson, Howard; Jenkins, Jon M.; Jensen, Eric L. N.; Kane, Stephen; Kull, Ilya; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Mazeh, Tsevi; Müller, Tobias W. A.; Pepper, Joshua; Quinn, Samuel N.; Ragozzine, Darin; Shporer, Avi; Steffen, Jason H.; Torres, Guillermo; Windmiller, Gur; Borucki, William J.

    2016-08-01

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (˜1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06 ± 0.01 R Jup, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M Jup. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric (e bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.

  9. Multi-wavelength studies of Redback and Black Widow pulsars

    NASA Astrophysics Data System (ADS)

    Mignani, Roberto; Salvetti, David; Pallanca, Cristina; Marelli, Martino; De Luca, Andrea; Belfiore, Andrea Mario

    2016-07-01

    The unexpected Fermi discovery of more than 70 gamma-ray milli-second pulsars (MSPs) outside globular clusters, spurred the scientific interest on these objects, and opened new horizons in MSP astronomy and on the study of the evolution of neutron stars in compact binary systems, including the ablation process of the companion star in the so-called Black Widow (BW) and Redback (RB) systems. It is thought that an important fraction of the tens of unidentified pulsar-like Fermi sources at high latitude are MSPs, yet unidentified, owing to their extremely elusive radio emission. As shown in a few recent cases, optical observations have been instrumental to spot binary MSP candidates through the discovery of periodic modulations in the flux of their putative companions. In this contribution, we report on the recent follow-ups of several candidate binary MSPs carried out with optical and X-ray facilities, e.g. GROND and XMM-Newton, Swift. This program already lead to identification of the Fermi source 3FGL 2036.6-5618 as candidate RB system, through the detection of periodic (orbital) modulation of its X/optical flux (Salvetti et al. 2015).

  10. Six New Millisecond Pulsars From Arecibo Searches Of Fermi Gamma-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cromartie, H. T.; Camilo, F.; Kerr, M.

    2016-02-25

    We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) 4-year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period ≤ 8.1 hr), while the sixth is a more typical neutron star-white dwarfmore » binary with an 83-day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo’s large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched.« less

  11. SIX NEW MILLISECOND PULSARS FROM ARECIBO SEARCHES OF FERMI GAMMA-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cromartie, H. T.; Camilo, F.; Kerr, M.

    2016-03-01

    We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) four year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period ≤ 8.1 hr), while the sixth is a more typical neutron star-whitemore » dwarf binary with an 83 day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo's large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched.« less

  12. The Discovery of an Eccentric Millisecond Pulsar in the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Cordes, James M.; Hessels, Jason W. T.; Bassa, Cees; Lorimer, Duncan R.; Stairs, Ingrid H.; van Leeuwen, Joeri; Arzoumnian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Crawford, Fronefield; Deneva, Julia S.; Faucher-Giguère, Claude-André; Gaensler, B. M.; Han, Jinlin; Jenet, Fredrick A.; Kasian, Laura; Kondratiev, Vlad I.; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A.; Stappers, Ben W.; Venkataraman, Arun; Vlemmings, Wouter

    2008-02-01

    The evolution of binary systems is governed by their orbital properties and the stellar density of the local environment. Studies of neutron stars in binary star systems offer unique insights into both these issues. In an Arecibo survey of the Galactic disk, we have found PSR J1903+0327, a radio emitting neutron star (a ``pulsar'') with a 2.15 ms rotation period, in a 95-day orbit around a massive companion. Observations in the infra-red suggests that the companion may be a main-sequence star. Theories requiring an origin in the Galactic disk cannot account for the extraordinarily high orbital eccentricity observed (0.44) or a main-sequence companion of a pulsar that has spin properties suggesting a prolonged accretion history. The most likely formation mechanism is an exchange interaction in a globular star cluster. This requires that the binary was either ejected from its parent globular cluster as a result of a three-body interaction, or that that cluster was disrupted by repeated passages through the disk of the Milky Way.

  13. On The Origin Of Hyper-Fast Pulsars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-08-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 gave the highest (transverse) velocity (~1100 km/s) ever measured for a neutron star (Chatterjee et al. 2005). The spin-down characteristics of PSR B1508+55 (typical of non-recycled pulsars) imply that the high velocity of this pulsar cannot be solely due to disruption of a tight massive binary system. A possible way to account for the high velocity of PSR B1508+55 is to assume that at least a part of this velocity is due to a natal or post-natal kick (Chatterjee et al. 2005). We propose an alternative explanation for the origin of hyper-fast pulsars. We suggest that PSR B1508+55 could be the remnant of a (symmetric) supernova explosion of the helium core of a massive star expelled at high velocity from the dense core of a young massive stellar cluster by an intermediate-mass (binary) black hole. The maximum peculiar velocity of the helium core is limited by the parabolic velocity on its surface and could be as large as ~2000 km/s. Thus, one can account not only for the high velocity measured for PSR B1508+55, but also for the even higher velocity of ~1600 km/s inferred for the pulsar PSR B2224+65 (Guitar; Chatterjee & Cordes 2004) on the basis of its proper motion and the dispersion measure distance estimate.

  14. A deep survey of the X-ray binary populations in the SMC

    NASA Astrophysics Data System (ADS)

    Zezas, A.; Antoniou, V.

    2017-10-01

    The Small Magellanic Cloud (SMC) has been the subject of systematic X-ray surveys over the past two decades, which have yielded a rich population of high-mass X-ray binaries consisting predominantly of Be/X-ray binaries. We present results from our deep Chandra survey of the SMC which targeted regions with stellar populations ranging between ˜10-100 Myr. X-ray luminosities down to ˜3×10^{32} erg/s were reached, probing all active accreting binaries and extending well into the regime of quiescent accreting binaries and X-ray emitting normal stars. We measure the dependence of the formation efficiency of X-ray binaries on age. We also detect pulsations from 19 known and one new candidate pulsar. We construct the X-ray luminosity function in different regions of the SMC, which shows clear evidence for the propeller effect the centrifugal inhibition of accretion due to the interaction of the accretion flow with the pulsar's magnetic field. Finally we compare these results with predictions for the formation efficiency of X-ray binaries as a function of age from X-ray binary population synthesis models.

  15. The green bank northern celestial cap pulsar survey. I. Survey description, data analysis, and initial results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stovall, K.; Dartez, L. P.; Ford, A. J.

    We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts, at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4096 channels every 81.92 μs. This survey will cover the entire sky visible to the Green Bank Telescope (δ > –40°, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (<30 pc cm{sup –3}) millisecond pulsars (MSPs)more » with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of –1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214+5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636+5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 M{sub J}). PSR J0645+5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434+7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816+4510 is an eclipsing MSP in a short-period orbit (8.7 hr) and may have recently completed its spin-up phase.« less

  16. The evolution of eccentricity in the eclipsing binary system AS Camelopardalis

    NASA Astrophysics Data System (ADS)

    Kozyreva, Valentina; Kusakin, Anatoly; Bogomazov, Alexey

    2018-01-01

    In 2002, 2004 and 2017 we conducted high precision CCD photometry observations of the eclipsing binary system AS Cam. By analysis of the light curves from1967 to 2017 (our data + data from the literature) we obtained photometric elements of the system and found a change in the system’s orbital eccentricity of Δe = 0.03±0.01. This change can indicate that there is a third companion in the system in a highly inclined orbit with respect to the orbital plane of the central binary, and its gravitational influence may cause the discrepancy between observed and theoretical apsidal motion rates of AS Cam.

  17. A connection between long-term luminosity variations and orbital period changes in chromospherically active binaries

    NASA Technical Reports Server (NTRS)

    Hall, Douglas S.

    1991-01-01

    The eclipsing binary CG Cyg provides observational confirmation of three predictions made by Applegate's (1991) improvement on the theory that magnetic cycles cause the quasi-periodic orbital period changes in binaries containing a convective star. The mean brightness outside eclipse and the period vary with the same cycle length of about 50 yr. The light curve and O - C curve are in phase, with maximum light and period increase occurring in early 1980. The chromospherically active star becomes bluer in phase with the brightening. Because a period increase occurs at maximum brightness, the sense of the star's differential rotation is specified: outside rotating faster.

  18. A SUBSTELLAR COMPANION TO THE WHITE DWARF-RED DWARF ECLIPSING BINARY NN Ser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S.-B.; Dai, Z.-B.; Liao, W.-P.

    2009-11-20

    NN Ser is a short-period (P = 3.12 hr) close binary containing a very hot white dwarf primary with a mass of 0.535 M{sub sun} and a fully convective secondary with a mass of 0.111 M{sub sun}. The changes in the orbital period of the eclipsing binary were analyzed based on our five newly determined eclipse times together with those compiled from the literature. A small-amplitude (0fd00031) cyclic period variation with a period of 7.56 years was discovered to be superimposed on a possible long-term decrease. The periodic change was plausibly explained as the light-travel time effect via the presencemore » of a tertiary companion. The mass of the tertiary companion is determined to be M{sub 3}sin i' = 0.0107(+-0.0017) M{sub sun} when a total mass of 0.646 M{sub sun} for NN Ser is adopted. For orbital inclinations i' >= 49.{sup 0}56, the mass of the tertiary component was calculated to be M {sub 3} <= 0.014 M{sub sun}; thus it would be an extrasolar planet. The third body is orbiting the white dwarf-red dwarf eclipsing binary at a distance shorter than 3.29 AU. Since the observed decrease rate of the orbital period is about two orders larger than that caused by gravitational radiation, it can be plausibly interpreted by magnetic braking of the fully convective component, which is driving this binary to evolve into a normal cataclysmic variable.« less

  19. The Light-time Effect in the Eclipsing Binaries with Early-type Components U CrB and RW Tau

    NASA Astrophysics Data System (ADS)

    Khaliullina, A. I.

    2018-04-01

    A detailed study of the orbital-period variations of the Algol-type eclipsing binaries with earlyspectral- type primary components U CrB and RW Tau has been performed. The period variations in both systems can be described as a superposition of secular and cyclic variations of the period. A secular period increase at a rate of 2.58d × 10-7/year is observed for U CrB, which can be explained if there is a uniform flow of matter from the lower-mass to the higher-mass component, with the total angular momentum conserved. RW Tau features a secular period decrease at a rate of -8.6d × 10-7/year; this could be due to a loss of angular momentum by the binary due to magnetic braking. The cyclic orbital-period variations of U CrB and RWTau can be explained by the motion of the eclipsing binary systems along their long-period orbits. In U CrB, this implies that the eclipsing binary moves with a period of 91.3 years around a third body with mass M 3 > 1.13 M ⊙; in RW Tau, the period of the motion around the third body is 66.6 years, and the mass of the third body is M 3 > 1.24 M ⊙. It also cannot be ruled out that the variations are due to the magnetic cycles of the late-type secondaries. The residual period variations could be a superposition of variations due to non-stationary ejection of matter and effects due to magnetic cycles.

  20. The puzzling orbital period evolution of the LMXB AX J1745.6-2901

    NASA Astrophysics Data System (ADS)

    Ponti, G.; De, K.; Munoz-Darias, T.; Stella, L.; Nandra, K.

    2017-10-01

    The discovery of gravitational waves through mergers of binary black holes raises the question of how such compact systems form, renewing issues related to the orbital evolution of binary systems. Eclipsing X-ray binaries are excellent tools to constrain the orbital period evolution and how the system loses angular momentum. I will present an X-ray eclipse timing analysis (spanning an interval of more than 20 yr) of one of such objects, AX J1745.6-2901. Its orbital period is decreasing at a rate Pdotorb=-4.03+-0.32 e-11 s s-1, at least one order of magnitude larger than expected from conservative mass transfer and angular momentum losses due to gravitational waves and magnetic braking, and it might result from either non-conservative mass transfer or magnetic activity changing the quadrupole moment of the companion star. I will also show that imprinted on the long-term evolution of the orbit, there are highly significant eclipse leads delays of 10-30 s, characterized by a clear state dependence in which, on average, eclipses occur earlier during the hard state. Finally, I will discuss whether accretion disc winds might have an impact onto the orbital evolution.

  1. Hot subdwarfs in (eclipsing) binaries with brown dwarf or low-mass main-sequence companions

    NASA Astrophysics Data System (ADS)

    Schaffenroth, Veronika; Geier, Stephan; Heber, Uli

    2014-09-01

    The formation of hot subdwarf stars (sdBs), which are core helium-burning stars located on the extended horizontal branch, is not yet understood. Many of the known hot subdwarf stars reside in close binary systems with short orbital periods of between a few hours and a few days, with either M-star or white-dwarf companions. Common-envelope ejection is the most probable formation channel. Among these, eclipsing systems are of special importance because it is possible to constrain the parameters of both components tightly by combining spectroscopic and light-curve analyses. They are called HW Virginis systems. Soker (1998) proposed that planetary or brown-dwarf companions could cause the mass loss necessary to form an sdB. Substellar objects with masses greater than >10 M_J were predicted to survive the common-envelope phase and end up in a close orbit around the stellar remnant, while planets with lower masses would entirely evaporate. This raises the question if planets can affect stellar evolution. Here we report on newly discovered eclipsing or not eclipsing hot subdwarf binaries with brown-dwarf or low-mass main-sequence companions and their spectral and photometric analysis to determine the fundamental parameters of both components.

  2. Mapping the accretion disc of the short period eclipsing binary SDSS J0926+3624

    NASA Astrophysics Data System (ADS)

    Schlindwein, Wagner; Baptista, Raymundo

    2018-05-01

    We report the analysis of time-series of optical photometry of SDSS J0926+3624 collected with the Liverpool Robotic Telescope between 2012 February and March while the object was in quiescence. We combined our median eclipse timing with those in the literature to revise the ephemeris and confirm that the binary period is increasing at a rate \\dot{P}=(3.2 ± 0.4)× 10^{-13} s/s. The light curves show no evidence of either the orbital hump produced by a bright spot at disc rim or of superhumps; the average out-of-eclipse brightness level is consistently lower than previously reported. The eclipse map from the average light curve shows a hot white dwarf surrounded by a faint, cool accretion disc plus enhanced emission along the gas stream trajectory beyond the impact point at the outer disc rim, suggesting the occurrence of gas stream overflow/penetration at that epoch. We estimate a disc mass input rate of \\dot{M}=(9 ± 1)× 10^{-12} M_⊙ yr^{-1}, more than an order of magnitude lower than that expected from binary evolution with conservative mass transfer.

  3. The local nanohertz gravitational-wave landscape from supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.

    2017-12-01

    Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.

  4. Formation of Millisecond Pulsars with Heavy White Dwarf Companions: Extreme Mass Transfer on Subthermal Timescales.

    PubMed

    Tauris; van Den Heuvel EP; Savonije

    2000-02-20

    We have performed detailed numerical calculations of the nonconservative evolution of close X-ray binary systems with intermediate-mass (2.0-6.0 M middle dot in circle) donor stars and a 1.3 M middle dot in circle accreting neutron star. We calculated the thermal response of the donor star to mass loss in order to determine its stability and follow the evolution of the mass transfer. Under the assumption of the "isotropic reemission model," we demonstrate that in many cases it is possible for the binary to prevent a spiral-in and survive a highly super-Eddington mass transfer phase (1

  5. The orbital eccentricities of binary millisecond pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.; Heggie, Douglas C.

    1995-01-01

    Low-mass binary millisecond pulsars (LMBPs) are born with very small orbital eccentricities, typically of order e(sub i) approximately 10(exp -6) to 10(exp -3). In globular clusters, however, higher eccentricities e(sub f) much greater than e(sub i) can be induced by dynamical interactions with passing stars. Here we show that the cross section for this process is much larger than previously estimated. This is becuse, even for initially circular binaries, the induced eccentricity e(sub f) for an encounter with pericenter separation r(sub p) beyond a few times the binary semimajor axis a declines only as a power law (e(sub f) varies as (r(sub p)/a)(exp -5/2), and not as an exponential. We find that all currently known LMBPs in clusters were probably affected by interactions, with their current eccentricities typically greater than at birth by an order of magnitude or more.

  6. Digitizing Villanova University's Eclipsing Binary Card Catalogue

    NASA Astrophysics Data System (ADS)

    Guzman, Giannina; Dalton, Briana; Conroy, Kyle; Prsa, Andrej

    2018-01-01

    Villanova University’s Department of Astrophysics and Planetary Science has years of hand-written archival data on Eclipsing Binaries at its disposal. This card catalog began at Princeton in the 1930’s with notable contributions from scientists such as Henry Norris Russel. During World War II, the archive was moved to the University of Pennsylvania, which was one of the world centers for Eclipsing Binary research, consequently, the contributions to the catalog during this time were immense. It was then moved to University of Florida at Gainesville before being accepted by Villanova in the 1990’s. The catalog has been kept in storage since then. The objective of this project is to digitize this archive and create a fully functional online catalog that contains the information available on the cards, along with the scan of the actual cards. Our group has built a database using a python-powered infrastructure to contain the collected data. The team also built a prototype web-based searchable interface as a front-end to the catalog. Following the data-entry process, information like the Right Ascension and Declination will be run against SIMBAD and any differences between values will be noted as part of the catalog. Information published online from the card catalog and even discrepancies in information for a star, could be a catalyst for new studies on these Eclipsing Binaries. Once completed, the database-driven interface will be made available to astronomers worldwide. The group will also acquire, from the database, a list of referenced articles that have yet to be found online in order to further pursue their digitization. This list will be comprised of references in the cards that were neither found on ADS nor online during the data-entry process. Pursuing the integration of these references to online queries such as ADS will be an ongoing process that will contribute and further facilitate studies on Eclipsing Binaries.

  7. Observations and light curve solutions of a selection of middle-contact W UMa binaries

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana Petrova; Popov, Velimir Angelov; Lyubenova Vasileva, Doroteya; Petrov, Nikola Ivanov

    2018-04-01

    Photometric observations in Sloan g‧ and i‧ bands of W UMa binaries NSVS 4340949, T-Dra0–00959, GSC 03950–00707, NSVS 4665041, NSVS 4803568, MM Peg, MM Com and NSVS 4751449 are presented. The light curve solutions revealed that the components of each target are of G and K spectral types. The binaries of the sample have middle-contact configurations whose fillout factors are within the range 0.2–0.4. The only exception is NSVS 4751449 which is in deeper contact (fillout factor of 0.55). It precisely obeys the relation between mass ratio and fillout factor for deep, low mass ratio overcontact binaries. One of the eclipses of almost all targets (except MM Peg) is an occultation and their photometric mass ratios and solutions could be accepted with confidence. We found that the target components have almost equal temperatures but differ considerably in size and mass. The components of the partially-eclipsed MM Peg have close parameters. Our solutions reveal that NSVS 4340949, T-Dra0–00959, NSVS 4803568 and MM Com are of W subtype while GSC 03950–00707, NSVS 4665041, MM Peg and NSVS 4751449 are of A subtype. This subclassification is well-determined for all totally-eclipsed binaries. The targets confirm the trends in which W-subtype systems have smaller periods and lower temperatures than A subtype binaries.

  8. WW Geminorum: An Early B-type Eclipsing Binary Evolving into the Contact Phase

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Yang, Y.; Dai, H.-F.; Yin, X.-G.

    2014-11-01

    WW Gem is a B-type eclipsing binary with a period of 1.2378 days. The CCD photometry of this binary was performed in 2013 December using the 85 cm telescope at the Xinglong Stations of the National Astronomical Observatories of China. Using the updated W-D program, the photometric model was deduced from the VRI light curves. The results imply that WW Gem is a near-contact eclipsing binary whose primary component almost fills its Roche lobe. The photometric mass ratio is q ph = 0.48(± 0.05). All collected times of minimum light, including two new ones, were used for the period studies. The orbital period changes of WW Gem could be described by an upward parabola, possibly overlaid by a light-time orbit with a period of P mod = 7.41(± 0.04) yr and a semi-amplitude of A = 0.0079 days(± 0.0005 days), respectively. This kind of cyclic oscillation may be attributed to the light-travel time effect via the third body. The long-term period increases at a rate of dP/dt = +3.47(±0.04) × 10-8 day yr-1, which may be explained by the conserved mass transfer from the less massive component to the more massive one. With mass transfer, the massive binary WW Gem may be evolving into a contact binary.

  9. The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    van Eyken, Julian C.; Ciardi, David R.; Rebull, Luisa M.; Stauffer, John R.; Akeson, Rachel L.; Beichman, Charles A.; Boden, Andrew F.; von Braun, Kaspar; Gelino, Dawn M.; Hoard, D. W.; Howell, Steve B.; Kane, Stephen R.; Plavchan, Peter; Ramírez, Solange V.; Bloom, Joshua S.; Cenko, S. Bradley; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Law, Nicholas M.; Nugent, Peter E.; Ofek, Eran O.; Poznanski, Dovi; Quimby, Robert M.; Grillmair, Carl J.; Laher, Russ; Levitan, David; Mattingly, Sean; Surace, Jason A.

    2011-08-01

    The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3fdg5 × 2fdg3) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 ± 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8).

  10. The Quadruple-lined, Doubly Eclipsing System V482 Persei

    NASA Astrophysics Data System (ADS)

    Torres, Guillermo; Sandberg Lacy, Claud H.; Fekel, Francis C.; Wolf, Marek; Muterspaugh, Matthew W.

    2017-09-01

    We report spectroscopic and differential photometric observations of the A-type system V482 Per, which reveal it to be a rare hierarchical quadruple system containing two eclipsing binaries. One binary has the previously known orbital period of 2.4 days and a circular orbit, and the other a period of 6 days, a slightly eccentric orbit (e = 0.11), and shallow eclipses only 2.3% deep. The two binaries revolve around their common center of mass in a highly elongated orbit (e = 0.85) with a period of 16.67 yr. Radial velocities are measured for all components from our quadruple-lined spectra and are combined with the light curves and measurements of times of minimum light for the 2.4 day binary to solve for the elements of the inner and outer orbits simultaneously. The line-of-sight inclination angles of the three orbits are similar, suggesting they may be close to coplanar. The available observations appear to indicate that the 6 day binary experiences significant retrograde apsidal motion in the amount of about 60 deg per century. We derive absolute masses for the four stars good to better than 1.5%, along with radii with formal errors of 1.1% and 3.5% for the 2.4 day binary and ˜9% for the 6 day binary. A comparison of these and other physical properties with current stellar evolution models gives excellent agreement for a metallicity of [{Fe}/{{H}}]=-0.15 and an age of 360 Myr.

  11. Neutron star binaries, pulsars and burst sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1981-01-01

    Unresolved issues involving neutron star binaries, pulsars, and burst sources are described. Attention is drawn to the types of observations most likely to resolve them. Many of these observations are likely to be carried out during the next decade by one or more missions that have been approved or proposed. Flux measurements with an imaging detector and broad-band spectroscopic studies in the energy range 30-150 keV are discussed. The need for soft X-ray and X-ray observations with an instrument which has arcminute angular resolution and an effective area substantially greater than of ROSAT or EXOSAT is also discussed.

  12. Structure in the Disk of epsilon Aurigae - Analysis of ARCES and TripleSpec spectra from the 2010 eclipse

    NASA Astrophysics Data System (ADS)

    Gibson, Justus L.; Stencel, Robert E.; Ketzeback, William; Barentine, John; Coughlin, Jeffrey; Leadbeater, Robin; Saurage, Gabrelle

    2018-06-01

    Worldwide interest in the recent eclipse of epsilon Aurigae resulted in the generation of several extensive data sets, including high resolution spectroscopic monitoring. This lead to the discovery, among other things, of the existence of a mass transfer stream, seen notably during third contact. We explored spectroscopic facets of the mass transfer stream during third contact, using high resolution spectra obtained with the ARCES and TripleSpec instruments at Apache Point Observatory. One hundred and sixteen epochs of data were obtained between 2009 and 2012, and equivalent widths and line velocities measured for high versus low eccentricity accretion disk lines. These datasets also enable greater detail to be measured of the mid-eclipse enhancement of the He I 10830Å line, and the discovery of the P Cygni shape of the Pa-β line at third contact. We found evidence of higher speed material, associated with the mass transfer stream, persisting between third and fourth eclipse contacts. We visualized the disk and stream interaction using SHAPE software, and used CLOUDY software to estimate that the source of the enhanced He I 10830A absorption arises from a region with nH = 1011 cm-3 and temperature of 20,000 K, consistent with a mid-B type central star. Van Rensbergen binary star evolutionary models are somewhat consistent with the current binary parameters for their case of a 9 plus 8 solar mass initial binary, evolving into a 2.3 and 14.11 solar mass end product after 35 Myr. With these results, it is possible to make predictions which suggest that continued monitoring prior to the next eclipse (2036) will help resolve standing questions about the mass and age of this binary.

  13. Orbital period variation study of the low-mass Algol eclipsing binary AI Draconis

    NASA Astrophysics Data System (ADS)

    Hanna, Magdy A.

    2013-06-01

    Orbital period changes for the Algol-type eclipsing binary AI Dra were studied based on the analysis of its observed times of light minimum. The period variation showed cyclic changes in the interval from JD. ≈ 24 36000 to JD. ≈ 24 47500 and a secular period increase rate (dP/dt = 2.44 × 10-7 d/year) starting from JD. ≈ 24 48500 up to 24 55262, in a time scale equals to 5 × 106 year.

  14. Variable Star and Exoplanet Section of the Czech Astronomical Society

    NASA Astrophysics Data System (ADS)

    Brát, L.; Zejda, M.

    2010-12-01

    We present activities of Czech variable star observers organized in the Variable Star and Exoplanet Section of the Czech Astronomical Society. We work in four observing projects: B.R.N.O. - eclipsing binaries, MEDUZA - intrinsic variable stars, TRESCA - transiting exoplanets and candidates, HERO - objects of high energy astrophysics. Detailed information together with O-C gate (database of eclipsing binaries minima timings) and OEJV (Open European Journal on Variable stars) are available on our internet portal http://var.astro.cz.

  15. YSOVAR: Six Pre-main-sequence Eclipsing Binaries in the Orion Nebula Cluster

    DTIC Science & Technology

    2012-06-25

    reserved. Printed in the U.S.A. YSOVAR: SIX PRE-MAIN-SEQUENCE ECLIPSING BINARIES IN THE ORION NEBULA CLUSTER M. Morales-Calderón1,2, J. R. Stauffer1, K. G...multi-color light curves for∼2400 candidate Orion Nebula Cluster (ONC) members from our Warm Spitzer Exploration Science Program YSOVAR, we have...readable tables 1. INTRODUCTION The Orion Nebula Cluster (ONC) contains several thousand members, and since it is nearby, it provides an excellent em

  16. First Spectroscopic Solutions of Two Southern Eclipsing Binaries: HO Tel and QY Tel

    NASA Astrophysics Data System (ADS)

    Sürgit, D.; Erdem, A.; Engelbrecht, C. A.; van Heerden, P.; Manick, R.

    2015-07-01

    We present preliminary results from the analysis of spectroscopic observations of two southern eclipsing binary stars, HO Tel and QY Tel. The grating spectra of these two systems were obtained at the Sutherland Station of the South African Astronomical Observatory in 2013. Radial velocities of the components were determined by the Fourier disentangling technique. Keplerian radial velocity models of HO Tel and QY Tel give their mass ratio as 0.921±0.005 and 1.089±0.007, respectively.

  17. VizieR Online Data Catalog: Light curves for the eclipsing binary V1094 Tau (Maxted+, 2015)

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Hutcheon, R. J.; Torres, G.; Lacy, C. H. S.; Southworth, J.; Smalley, B.; Pavlovski, K.; Marschall, L. A.; Clausen, J. V.

    2015-04-01

    Photometric light curves of the detached eclipsing binary V1094 Tau in the Stroemgren u-,v-,b- and y-bands, and in the Johnson V-band. The curves in the Stroemgren bands were obtained with the Stroemgren Automatic Telescope (SAT) at ESO, La Silla. The curves in the V-band were obtained with the NFO telescope in New Mexico and with the URSA telescope at the University of Arkansas. (6 data files).

  18. The KOI 425 Multi-star System

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Boley, Aaron C.

    2017-10-01

    Kepler Object of Interest 425 (KOI 425) is an eclipsing binary with periodic features in addition to the known primary and secondary transits. This KOI has been observed by Saterne et al. 2012 with SOPHIE, who found its phase variance to be indicative of a diluted eclipsing binary, likely produced by a multi-star system. We analyze the complete set of Kepler archival data for this system along with the published SOPHIE results to assess the multiplicity and the dynamics of the system.

  19. Limits on Planets Orbiting Massive Stars from Radio Pulsar Timing

    NASA Technical Reports Server (NTRS)

    Thorsett, S. E.; Dewey, R. J.

    1993-01-01

    When a massive star collapses to a neutron star, rapidly losing over half its mass in a symmetric supernova explosiosn, any planets orbiting the star will be unbound. However, to explain the observed space velocity and binary fraction of radio pulsars, an asymmetric kick must be given to the neutron star of birth.

  20. GK Dra: a delta Scuti Star in a New Eclipsing System Discovered by Hipparcos

    NASA Astrophysics Data System (ADS)

    Dallaporta, Sergio; Tomov, Toma; Zwitter, Tomaz; Munari, Ulisse

    2002-09-01

    GK Dra has been discovered by the Hipparcos mission as a 17 days eclipsing binary. We present here the first ground-based study of this star, based on extensive BV photoelectric photometry. We found a period of 9.974 days, equal depth primary and secondary eclipse (m=0.35 mag), no color variation in eclipse, and one of the components being a Sct star with an amplitude of 0.04 mag and a period of about 2.7 hours.

  1. Radius of the neutron star magnetosphere during disk accretion

    NASA Astrophysics Data System (ADS)

    Filippova, E. V.; Mereminskiy, I. A.; Lutovinov, A. A.; Molkov, S. V.; Tsygankov, S. S.

    2017-11-01

    The dependence of the spin frequency derivative \\dot ν of accreting neutron stars with a strongmagnetic field (X-ray pulsars) on the mass accretion rate (bolometric luminosity, L bol) has been investigated for eight transient pulsars in binary systems with Be stars. Using data from the Fermi/GBM and Swift/BAT telescopes, we have shown that for seven of the eight systems the dependence \\dot ν ( L bol) can be fitted by the model of angular momentum transfer through an accretion disk, which predicts the relation \\dot ν ˜ L 6/7 bol. Hysteresis in the dependence \\dot ν ( L bol) has been confirmed in the system V 0332+53 and has been detected for the first time in the systems KS 1947+300, GRO J1008-57, and 1A 0535+26. Estimates for the radius of the neutron star magnetosphere in all of the investigated systems have been obtained. We show that this quantity varies from pulsar to pulsar and depends strongly on the analytical model and the estimates for the neutron star and binary system parameters.

  2. The High Time Resolution Universe Pulsar Survey - XIII. PSR J1757-1854, the most accelerated binary pulsar

    NASA Astrophysics Data System (ADS)

    Cameron, A. D.; Champion, D. J.; Kramer, M.; Bailes, M.; Barr, E. D.; Bassa, C. G.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C. M. L.; Freire, P. C. C.; Jameson, A.; Johnston, S.; Karuppusamy, R.; Keith, M. J.; Levin, L.; Lorimer, D. R.; Lyne, A. G.; McLaughlin, M. A.; Ng, C.; Petroff, E.; Possenti, A.; Ridolfi, A.; Stappers, B. W.; van Straten, W.; Tauris, T. M.; Tiburzi, C.; Wex, N.

    2018-03-01

    We report the discovery of PSR J1757-1854, a 21.5-ms pulsar in a highly-eccentric, 4.4-h orbit with a neutron star (NS) companion. PSR J1757-1854 exhibits some of the most extreme relativistic parameters of any known pulsar, including the strongest relativistic effects due to gravitational-wave damping, with a merger time of 76 Myr. Following a 1.6-yr timing campaign, we have measured five post-Keplerian parameters, yielding the two component masses (mp = 1.3384(9) M⊙ and mc = 1.3946(9) M⊙) plus three tests of general relativity, which the theory passes. The larger mass of the NS companion provides important clues regarding the binary formation of PSR J1757-1854. With simulations suggesting 3-σ measurements of both the contribution of Lense-Thirring precession to the rate of change of the semimajor axis and the relativistic deformation of the orbit within ˜7-9 yr, PSR J1757-1854 stands out as a unique laboratory for new tests of gravitational theories.

  3. VizieR Online Data Catalog: 10 new pulsars in Arecibo drift-scan survey (Lorimer+, 2005)

    NASA Astrophysics Data System (ADS)

    Lorimer, D. R.; Xilouris, K. M.; Fruchter, A. S.; Stairs, I. H.; Camilo, F.; Vazquez, A. M.; Eder, J. A.; McLaughlin, M. A.; Roberts, M. S. E.; Hessels, J. W. T.; Ransom, S. M.

    2006-02-01

    We present the results of a 430-MHz survey for pulsars conducted during the upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of 1147deg2 of sky using a drift-scan technique. We detected 33 pulsars, 10 of which were not known prior to the survey observations. The highlight of the new discoveries is PSR J0407+1607, which has a spin period of 25.7ms, a characteristic age of 1.5Gyr and is in a 1.8-yr orbit about a low-mass (>0.2M) companion. The long orbital period and small eccentricity (e=0.0009) make the binary system an important new addition to the ensemble of binary pulsars suitable to test for violations of the strong equivalence principle. We also report on our initially unsuccessful attempts to detect optically the companion to J0407+1607, which imply that its absolute visual magnitude is >12.1. If, as expected on evolutionary grounds, the companion is an He white dwarf, our non-detection implies a cooling age of least 1Gyr. (3 data files).

  4. Correlation between the luminosity and spin-period changes during outbursts of 12 Be binary pulsars observed by the MAXI/GSC and the Fermi/GBM

    NASA Astrophysics Data System (ADS)

    Sugizaki, Mutsumi; Mihara, Tatehiro; Nakajima, Motoki; Makishima, Kazuo

    2017-12-01

    To study observationally the spin-period changes of accreting pulsars caused by the accretion torque, the present work analyzes X-ray light curves of 12 Be binary pulsars obtained by the MAXI Gas-Slit Camera all-sky survey and their pulse periods measured by the Fermi Gamma-ray Burst Monitor pulsar project, both covering more than six years, from 2009 August to 2016 March. The 12 objects were selected because they are accompanied by clear optical identification and accurate measurements of surface magnetic fields. The luminosity L and the spin-frequency derivatives \\dot{ν}, measured during large outbursts with L ≳ 1 × 1037 erg s-1, were found to follow approximately the theoretical relations in the accretion torque models, represented by \\dot{ν} ∝ L^{α} (α ≃ 1), and the coefficient of proportionality between \\dot{ν} and Lα agrees, within a factor of ˜3, with that proposed by Ghosh and Lamb (1979b, ApJ, 234, 296). In the course of the present study, the orbital elements of several sources were refined.

  5. PSR J0751+1807: un ajuste a los parámetros característicos del sistema binario

    NASA Astrophysics Data System (ADS)

    De Vito, M. A.; Benvenuto, O. G.

    PSR J0751+1807 is a millisecond pulsar belonging to a binary system with a low mass white dwarf companion. This system belongs to the group of recycled pulsars by mass transfer from a close companion, accelerating the pulsar rotation in this process. The orbital period for the system is of 6 hours. In this work we show our fit to the characteristic parameters of the system presented by Nice et al. (2005) FULL TEXT IN SPANISH

  6. Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps

    NASA Astrophysics Data System (ADS)

    Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.

    2017-07-01

    Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed on randomized training sets. Results: We obtain excellent results (about 5% global error rate) with classification into light curve morphology classes on the Hipparcos data. The classification into system morphology classes using the Catalog and Atlas of Eclipsing binaries (CALEB) has a higher error rate (about 10.5%), most importantly due to the (sometimes strong) similarity of the photometric light curves originating from physically different systems. When trained on CALEB and then applied to Kepler-detected eclipsing binaries subsampled according to Gaia observing times, LDA and SOM provide tractable, easy-to-visualize subspaces of the full (functional) space of light curves that summarize the most important phenomenological elements of the individual light curves. The sequence of light curves ordered by their first linear discriminant coefficient is compared to results obtained using local linear embedding. The SOM method proves able to find a 2-dimensional embedded surface in the space of the light curves which separates the system morphology classes in its different regions, and also identifies a few other phenomena, such as the asymmetry of the light curves due to spots, eccentric systems, and systems with a single eclipse. Furthermore, when data from other surveys are projected to the same SOM surface, the resulting map yields a good overview of the general biases and distortions due to differences in time sampling or population.

  7. Period distribution of pulsars in the Magellanic Clouds: Propeller line versus Equilibrium period

    NASA Astrophysics Data System (ADS)

    Tanashkin, A. S.; Ikhsanov, N. R.

    2017-12-01

    A majority of accretion-powered X-ray pulsars in wind-fed High Mass X-ray Binaries (HMXBs) located in the Magellanic Clouds are observed to be transient X-ray sources. They are characterized by short luminous outbursts, while spending most of the time in quiescence. The quiescent states of the pulsars in the diagram “Pulsar Period vs. X-ray Luminosity” fall on a line with the slope -0.43. The same slope is expected for the propeller line which separates stars in the accretor state from stars in the propeller state. We show, however, that a line with the same slope would also be expected if rotation of the pulsars is close to equilibrium.

  8. Recent Observations of the Neglected Southern Eclipsing Binary Systems V343 Cen, UY Mus, HT Aps, and V1961 Sgr

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Samec, R. G.; Stoddard, M. L.; McKenzie, R.; Rebar, D.; Lavoie, G. D.; Moody, S.; Miller, J.; Van Hamme, W.

    2002-12-01

    As a part of our continuing search for solar type binaries with impacting gas streams, we present light curves of V343 Cen, UY Mus, HT Aps, and V1961 Sgr. These are all neglected variables whose observing histories show little or no observations since their discovery. The CCD observations were taken at the 0.9-m at CTI0 in the UBVRI Johnson-Cousins system. The observations were taken in on 2002, May 31-June 8 and 2001, May 16 - 23 respectively. UY Mus is a near contact binary with a large difference in eclipse depths of V = 0.67 mag. Otherwise the curve appears symmetric. The times of minimum light determined from our data are HJD Min I = 242047.62316(6) and Min II = 2452050.4874(3) where the value in parentheses is the standard error in the last decimal place. V1961 Sgr (GCVS 6848 485) is a W UMa binary with a difference in eclipse depths of V = 0.11 mag and a possible variable spot area causing a V = 0.04 mag variation in MAX I from night to night. HT Aps is a near contact solar type binary with a large difference in eclipse depths of V= 0.47 mag and a somewhat asymmetric (difference in maxima, V= 0.4 mag) light curve. It is a possibly a candidate for a binary with a gas stream. One time of minimum light determined from our data is HJD Min I = 2452331.63725 (12). V343 Cen is a near contact binary with a large difference in eclipse depths of V= 0.42 mag and distortions that give evidence of a gas stream collision. The difference in maxima is V = 0.07 mag. The curve shows little variation over the 4 day interval of observation. Light curves analyses, new period determinations and photometric data will be presented for these variables. Acknowledgements: We wish to thank the American Astronomical Society for their continued support of our undergraduate research programs through their small research grants. Faulkner and Samec were visiting Astronomers, Cerro Tololo InterAmerican Observatory, National Optical Astronomical Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.

  9. A high-frequency survey of the southern Galactic plane for pulsars

    NASA Technical Reports Server (NTRS)

    Johnston, Simon; Lyne, A. G.; Manchester, R. N.; Kniffen, D. A.; D'Amico, N.; Lim, J.; Ashworth, M.

    1992-01-01

    Results of an HF survey designed to detect young, distant, and short-period pulsars are presented. The survey detected a total of 100 pulsars, 46 of which were previously unknown. The periods of the newly discovered pulsars range between 47 ms and 2.5 ms. One of the new discoveries, PSR 1259-63, is a member of a long-period binary system. At least three of the pulsars have ages less than 30,000 yr, bringing the total number of such pulsars to 12. The majority of the new discoveries are distant objects with high dispersion measures, which are difficult to detect at low frequencies. This demonstrates that the survey has reduced the severe selection effects of pulse scattering, high Galactic background temperature, and dispersion broadening, which hamper the detection of such pulsars at low radio frequencies. The pulsar distribution in the southern Galaxy is found to extend much further from the Galactic center than that in the north, probably due to two prominent spiral arms in the southern Galaxy.

  10. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  11. Inferred Eccentricity and Period Distributions of Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Matijevic, G.

    2014-01-01

    Determining the underlying eccentricity and orbital period distributions from an observed sample of eclipsing binary stars is not a trivial task. Shen and Turner (2008) have shown that the commonly used maximum likelihood estimators are biased to larger eccentricities and they do not describe the underlying distribution correctly; orbital periods suffer from a similar bias. Hogg, Myers and Bovy (2010) proposed a hierarchical probabilistic method for inferring the true eccentricity distribution of exoplanet orbits that uses the likelihood functions for individual star eccentricities. The authors show that proper inference outperforms the simple histogramming of the best-fit eccentricity values. We apply this method to the complete sample of eclipsing binary stars observed by the Kepler mission (Prsa et al. 2011) to derive the unbiased underlying eccentricity and orbital period distributions. These distributions can be used for the studies of multiple star formation, dynamical evolution, and they can serve as a drop-in replacement to prior, ad-hoc distributions used in the exoplanet field for determining false positive occurrence rates.

  12. A simultaneous spectroscopic and photometric study of two eclipsing binaries: V566 Oph and V972 Her

    NASA Astrophysics Data System (ADS)

    Selam, S. O.; Esmer, E. M.; Şenavcı, H. V.; Bahar, E.; Yörükoğlu, O.; Yılmaz, M.; Baştürk, Ö.

    2018-02-01

    In this study, we have performed simultaneous solutions of light and radial velocity curves of two eclipsing binary systems, V566 Oph and V972 Her. We observed both systems spectroscopically with a very recently installed spectrograph on the 40 cm telescope, T40, located in Ankara University Kreiken Observatory (AUKR), for the first time. We made use of the photometric data from the Hipparcos satellite for V972 Her, while we obtained the photometric observations of V566 Oph by using the 35 cm telescope, T35, located also in our observatory campus. We derived the absolute parameters for both systems and discussed their evolutionary states. In addition to the simultaneous analysis, we have also analyzed the change in mid-eclipse times for V566 Oph, and found cyclic variations, for which we have discussed light-time effect and magnetic activity as their potential origin, superimposed on a secular change due to a mass transfer between the components of the binary.

  13. X-ray mapping of the stellar wind in the binary PSR J2032+4127/MT91 213

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Vasilopoulos, G.; Christie, I. M.; Giannios, D.; Coe, M. J.

    2018-02-01

    PSR J2032+4127 is a young and rapidly rotating pulsar on a highly eccentric orbit around the high-mass Be star MT91 213. X-ray monitoring of the binary system over an ˜4000 d period with Swift has revealed an increase of the X-ray luminosity which we attribute to the synchrotron emission of the shocked pulsar wind. We use Swift X-ray observations to infer a clumpy stellar wind with r-2 density profile and constrain the Lorentz factor of the pulsar wind to 105 < γw < 106. We investigate the effects of an axisymmetric stellar wind with polar gradient on the X-ray emission. Comparison of the X-ray light curve hundreds of days before and after the periastron can be used to explore the polar structure of the wind.

  14. DISCOVERY OF EXTENDED AND VARIABLE RADIO STRUCTURE FROM THE GAMMA-RAY BINARY SYSTEM PSR B1259-63/LS 2883

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldon, Javier; Ribo, Marc; Paredes, Josep M.

    2011-05-01

    PSR B1259-63 is a 48 ms pulsar in a highly eccentric 3.4 year orbit around the young massive star LS 2883. During the periastron passage the system displays transient non-thermal unpulsed emission from radio to very high energy gamma rays. It is one of the three galactic binary systems clearly detected at TeV energies, together with LS 5039 and LS I +61 303. We observed PSR B1259-63 after the 2007 periastron passage with the Australian Long Baseline Array at 2.3 GHz to trace the milliarcsecond (mas) structure of the source at three different epochs. We have discovered extended and variablemore » radio structure. The peak of the radio emission is detected outside the binary system near periastron, at projected distances of 10-20 mas (25-45 AU assuming a distance of 2.3 kpc). The total extent of the emission is {approx}50 mas ({approx}120 AU). This is the first observational evidence that non-accreting pulsars orbiting massive stars can produce variable extended radio emission at AU scales. Similar structures are also seen in LS 5039 and LS I +61 303, in which the nature of the compact object is unknown. The discovery presented here for the young non-accreting pulsar PSR B1259-63 reinforces the link with these two sources and supports the presence of pulsars in these systems as well. A simple kinematical model considering only a spherical stellar wind can approximately trace the extended structures if the binary system orbit has a longitude of the ascending node of {Omega} {approx} -40{sup 0} and a magnetization parameter of {sigma} {approx} 0.005.« less

  15. Radio Pulse Search and X-Ray Monitoring of SAX J1808.4−3658: What Causes Its Orbital Evolution?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patruno, Alessandro; King, Andrew R.; Jaodand, Amruta

    The accreting millisecond X-ray pulsar SAX J1808.4−3658 shows a peculiar orbital evolution that proceeds at a very fast pace. It is important to identify the underlying mechanism responsible for this behavior because it can help to understand how this system evolves and which physical processes (such as mass loss or spin–orbit coupling) are occurring in the binary. It has also been suggested that, when in quiescence, SAX J1808.4−3658 turns on as a radio pulsar, a circumstance that might provide a link between accreting millisecond pulsars and black-widow (BW) radio pulsars. In this work, we report the results of a deepmore » radio pulsation search at 2 GHz using the Green Bank Telescope in 2014 August and an X-ray study of the 2015 outburst with Chandra , Swift XRT, and INTEGRAL . In quiescence, we detect no radio pulsations and place the strongest limit to date on the pulsed radio flux density of any accreting millisecond pulsar. We also find that the orbit of SAX J1808.4−3658 continues evolving at a fast pace. We compare the orbital evolution of SAX J1808.4−3658 to that of several other accreting and nonaccreting binaries, including BWs, redbacks, cataclysmic variables, black holes, and neutron stars in low-mass X-ray binaries. We discuss two possible scenarios: either the neutron star has a large moment of inertia and is ablating the donor, generating mass loss with an efficiency of 40%, or the donor star has a strong magnetic field of at least 1 kG and is undergoing quasi-cyclic variations due to spin–orbit coupling.« less

  16. ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, S. R.; Vallisneri, M.; Ellis, J. A.

    2016-03-01

    Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black hole binaries (∼10{sup −15} strain at f = 1 yr{sup −1}). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves (GWs) are likely to be detected in the near future. In this Letter, we answer this question quantitatively using simple statistical estimates,more » deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have discouraging prospects of making a detection in the next two decades. By contrast, we find large arrays are crucial to detection because the quadrupolar spatial correlations induced by GWs can be well sampled by many pulsar pairs. Indeed, timing programs that monitor a large and expanding set of pulsars have an ∼80% probability of detecting GWs within the next 10 years, under assumptions on merger rates and environmental influences ranging from optimistic to conservative. Even in the extreme case where 90% of binaries stall before merger and environmental coupling effects diminish low-frequency gravitational-wave power, detection is delayed by at most a few years.« less

  17. Prospects for discovering pulsars in future continuum surveys using variance imaging

    NASA Astrophysics Data System (ADS)

    Dai, S.; Johnston, S.; Hobbs, G.

    2017-12-01

    In our previous paper, we developed a formalism for computing variance images from standard, interferometric radio images containing time and frequency information. Variance imaging with future radio continuum surveys allows us to identify radio pulsars and serves as a complement to conventional pulsar searches that are most sensitive to strictly periodic signals. Here, we carry out simulations to predict the number of pulsars that we can uncover with variance imaging in future continuum surveys. We show that the Australian SKA Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) survey can find ∼30 normal pulsars and ∼40 millisecond pulsars (MSPs) over and above the number known today, and similarly an all-sky continuum survey with SKA-MID can discover ∼140 normal pulsars and ∼110 MSPs with this technique. Variance imaging with EMU and SKA-MID will detect pulsars with large duty cycles and is therefore a potential tool for finding MSPs and pulsars in relativistic binary systems. Compared with current pulsar surveys at high Galactic latitudes in the Southern hemisphere, variance imaging with EMU and SKA-MID will be more sensitive, and will enable detection of pulsars with dispersion measures between ∼10 and 100 cm-3 pc.

  18. K2 Variable Catalogue: Variable stars and eclipsing binaries in K2 campaigns 1 and 0

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Kirk, J.; Lam, K. W. F.; McCormac, J.; Walker, S. R.; Brown, D. J. A.; Osborn, H. P.; Pollacco, D. L.; Spake, J.

    2015-07-01

    Aims: We have created a catalogue of variable stars found from a search of the publicly available K2 mission data from Campaigns 1 and 0. This catalogue provides the identifiers of 8395 variable stars, including 199 candidate eclipsing binaries with periods up to 60 d and 3871 periodic or quasi-periodic objects, with periods up to 20 d for Campaign 1 and 15 d for Campaign 0. Methods: Lightcurves are extracted and detrended from the available data. These are searched using a combination of algorithmic and human classification, leading to a classifier for each object as an eclipsing binary, sinusoidal periodic, quasi periodic, or aperiodic variable. The source of the variability is not identified, but could arise in the non-eclipsing binary cases from pulsation or stellar activity. Each object is cross-matched against variable star related guest observer proposals to the K2 mission, which specifies the variable type in some cases. The detrended lightcurves are also compared to lightcurves currently publicly available. Results: The resulting catalogue gives the ID, type, period, semi-amplitude, and range of the variation seen. We also make available the detrended lightcurves for each object. The catalogue is available at http://deneb.astro.warwick.ac.uk/phrlbj/k2varcat/ and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A19

  19. Relativistic apsidal motion in eccentric eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Claret, A.; Kotková, L.; Kučáková, H.; Kocián, R.; Brát, L.; Svoboda, P.; Šmelcer, L.

    2010-01-01

    Context. The study of apsidal motion in detached eclipsing binary systems is known to be an important source of information about stellar internal structure as well as the possibility of verifying of General Relativity outside the Solar System. Aims: As part of the long-term Ondřejov and Ostrava observational projects, we aim to measure precise times of minima for eccentric eclipsing binaries, needed for the accurate determination of apsidal motion, providing a suitable test of the effects of General Relativity. Methods: About seventy new times of minimum light recorded with photoelectric or CCD photometers were obtained for ten eccentric-orbit eclipsing binaries with significant relativistic apsidal motion. Their O-C diagrams were analysed using all reliable timings found in the literature, and new or improved elements of apsidal motion were obtained. Results: We confirm very long periods of apsidal motion for all systems. For BF Dra and V1094 Tau, we present the first apsidal-motion solution. The relativistic effects are dominant, representing up to 100% of the total observable apsidal-motion rate in several systems. The theoretical and observed values of the internal structure constant k 2 were compared for systems with lower relativistic contribution. Using the light-time effect solution, we predict a faint third component for V1094 Tau orbiting with a short period of about 8 years. Partly based on photoelectric observations secured at the Hvar Observatory, Faculty of Geodesy, Zagreb, Croatia, in October 2008.

  20. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis.

    PubMed

    Jenkins, J M; Doyle, L R; Cullers, D K

    1996-02-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  1. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.

    1996-01-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  2. W UMa Type Eclipsing Binary VW Cep

    NASA Astrophysics Data System (ADS)

    Kang, Bong-Seok; Lee, Yong-Sam; Jeong, Jang-Hae

    2000-06-01

    A total of 1,018 observations (509 in B, 509 in V ) of the eclipsing binary VW Cep was made during 7 nights from April through May in 1999 at Sobaeksan Optical Astronomy Observatory, using the CCD camera attached to the 61cm telescope. A time of minimum light of HJD2451327.2282 was determined from our data, and we constructed BV light curves with the data. Using Wilson-Devinney's binary model, we analized the light curves. The absolute dimension of M1 = 0.95Msolar, M2 = 0.33Msolar, R1 = 1.02Rsolar, R2 = 0.66Rsolar of the VW Cep system were derived from our light curve solution and Kaszas et al. (1998) spectroscoppic rsult.

  3. A Photometric Study of Three Eclipsing Binary Stars (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Ryan, A.

    2016-12-01

    (Abstract only) As part of a program to study eclipsing binary stars that exhibit the O'Connell Effect (OCE) we are observing a selection of binary stars in a long term study. The OCE is a difference in maximum light across the ligthcurve possibly cause by starspots. We observed for 7 nights at McDonald Observatory using the 30-inch telescope in July 2015, and used the same telescope remotely for a total of 20 additional nights in August, October, December, and January. We will present lightcurves for three stars from this study, characterize the OCE for these stars, and present our model results for the physical parameters of the star making up each of these systems.

  4. A New Light Curve and Analysis of the Long Period Eclipsing Binary BF Draconis

    NASA Astrophysics Data System (ADS)

    Wolf, G. W.; Craig, L. E.; Caffey, J. F.

    1999-01-01

    The star BF Draconis was found to be an eclipsing binary by Strohmeier, Knigge and Ott (1962) and originally thought to be an Algol-type system with a period of 5.6 days. A spectrographic study by Imbert (1985) showed that the period was actually double this value and that the system consisted of two well-separated, almost-equal F-type stars in elliptical orbit. Diethelm, Wolf and Agerer (1993) later published a preliminary light curve of this system showing minima of unequal depth and width with a displaced secondary, confirming the elliptical orbit but disagreeing with Imbert on the specific orbital parameters. As a part of our long-term program of obtaining improved light curves of double-lined spectroscopic and eclipsing binaries, we have observed BF Draconis for the past four years using the 0.4 meter telescope at the Baker Observatory of Southwest Missouri State University. Complete light curves in the Cousins BVRI passbands have been obtained with our Photometrics CCD system, and a new model and orbital parameters for the binary have been determined using the Wilson-Devinney program. This research has been supported by NSF Grants AST-9315061 and AST-9605822 and NASA Grant NGT5-40060.

  5. Period Study and Analyses of 2017 Observations of the Totally Eclipsing, Solar Type Binary, MT Camelopardalis

    NASA Astrophysics Data System (ADS)

    Faulkner, Danny R.; Samec, Ronald G.; Caton, Daniel B.

    2018-06-01

    We report here on a period study and the analysis of BVRcIc light curves (taken in 2017) of MT Cam (GSC03737-01085), which is a solar type (T ~ 5500K) eclipsing binary. D. Caton observed MT Cam on 05, 14, 15, 16, and 17, December 2017 with the 0.81-m reflector at Dark Sky Observatory. Six times of minimum light were calculated from four primary eclipses and two secondary eclipses:HJD I = 24 58092.4937±0.0002, 2458102.74600±0.0021, 2458104.5769±0.0002, 2458104.9434±0.0029HJD II = 2458103.6610±0.0001, 2458104.7607±0.0020,Six times of minimum light were also calculated from data taken by Terrell, Gross, and Cooney, in their 2016 and 2004 observations (reported in IBVS #6166; TGC, hereafter). In addition, six more times of minimum light were taken from the literature. From all 18 times of minimum light, we determined the following light elements:JD Hel Min I=2458102.7460(4) + 0.36613937(5) EWe found the orbital period was constant over the 14 years spanning all observations. We note that TGC found a slightly increasing period. However, our results were obtained from a period study rather than comparison of observations from only two epochs by the Wilson-Devinney (W-D) Program. A BVRcIc Johnson-Cousins filtered simultaneous W-D Program solution gives a mass ratio (0.3385±0.0014) very nearly the same as TGC’s (0.347±0.003), and a component temperature difference of only ~40 K. As with TGC, no spot was needed in the modeling. Our modeling (beginning with Binary Maker 3.0 fits) was done without prior knowledge of TGC’s. This shows the agreement achieved when independent analyses are done with the W-D code. The present observations were taken 1.8 years later than the last curves by TGC, so some variation is expected.The Roche Lobe fill-out of the binary is ~13% and the inclination is ~83.5 degrees. The system is a shallow contact W-type W UMa Binary, albeit, the amplitudes of the primary and secondary eclipse are very nearly identical. An eclipse duration of ~21 minutes was determined for the secondary eclipse and the light curve solution. Additional and more detailed information is given in the poster paper.

  6. Pulsar simulations for the Fermi Large Area Telescope

    DOE PAGES

    Razzano, M.; Harding, Alice K.; Baldini, L.; ...

    2009-05-21

    Pulsars are among the prime targets for the Large Area Telescope (LAT) aboard the recently launched Fermi observatory. The LAT will study the gamma-ray Universe between 20 MeV and 300 GeV with unprecedented detail. Increasing numbers of gamma-ray pulsars are being firmly identified, yet their emission mechanisms are far from being understood. To better investigate and exploit the LAT capabilities for pulsar science, a set of new detailed pulsar simulation tools have been developed within the LAT collaboration. The structure of the pulsar simulator package ( PulsarSpectrum) is presented here. Starting from photon distributions in energy and phase obtained frommore » theoretical calculations or phenomenological considerations, gamma-rays are generated and their arrival times at the spacecraft are determined by taking into account effects such as barycentric effects and timing noise. Pulsars in binary systems also can be simulated given orbital parameters. As a result, we present how simulations can be used for generating a realistic set of gamma-rays as observed by the LAT, focusing on some case studies that show the performance of the LAT for pulsar observations.« less

  7. The High Time Resolution Universe surveys for pulsars and fast transients

    NASA Astrophysics Data System (ADS)

    Keith, Michael J.

    2013-03-01

    The High Time Resolution Universe survey for pulsars and transients is the first truly all-sky pulsar survey, taking place at the Parkes Radio Telescope in Australia and the Effelsberg Radio Telescope in Germany. Utilising multibeam receivers with custom built all-digital recorders the survey targets the fastest millisecond pulsars and radio transients on timescales of 64 μs to a few seconds. The new multibeam digital filter-bank system at has a factor of eight improvement in frequency resolution over previous Parkes multibeam surveys, allowing us to probe further into the Galactic plane for short duration signals. The survey is split into low, mid and high Galactic latitude regions. The mid-latitude portion of the southern hemisphere survey is now completed, discovering 107 previously unknown pulsars, including 26 millisecond pulsars. To date, the total number of discoveries in the combined survey is 135 and 29 MSPs These discoveries include the first magnetar to be discovered by it's radio emission, unusual low-mass binaries, gamma-ray pulsars and pulsars suitable for pulsar timing array experiments.

  8. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  9. An eclipsing post common-envelope system consisting of a pulsating hot subdwarf B star and a brown dwarf companion

    NASA Astrophysics Data System (ADS)

    Schaffenroth, V.; Barlow, B. N.; Drechsel, H.; Dunlap, B. H.

    2015-04-01

    Hot subdwarf B stars (sdBs) are evolved, core helium-burning objects located on the extreme horizontal branch. Their formation history is still puzzling because the sdB progenitors must lose nearly all of their hydrogen envelope during the red-giant phase. About half of the known sdBs are in close binaries with periods from 1.2 h to a few days, which implies that they experienced a common-envelope phase. Eclipsing hot subdwarf binaries (also called HW Virginis systems) are rare but important objects for determining fundamental stellar parameters. Even more significant and uncommon are those binaries containing a pulsating sdB, since the mass can be determined independently by asteroseismology. Here we present a first analysis of the eclipsing hot subdwarf binary V2008-1753. The light curve shows a total eclipse, a prominent reflection effect, and low-amplitude pulsations with periods from 150 to 180 s. An analysis of the light- and radial velocity curves indicates a mass ratio close to q = 0.146, an radial velocity semi-amplitude of K = 54.6 km s-1, and an inclination of i = 86.8°. Combining these results with our spectroscopic determination of the surface gravity, log g = 5.83, the best-fitting model yields an sdB mass of 0.47 M⊙ and a companion mass of 69 MJup. Because the latter mass is below the hydrogen-burning limit, V2008-1753 represents the first HW Vir system that is known to consist of a pulsating sdB and a brown dwarf companion. Consequently, it holds strong potential for better constraining models of sdB binary evolution and asteroseismology.

  10. TESTING THE ASTEROSEISMIC SCALING RELATIONS FOR RED GIANTS WITH ECLIPSING BINARIES OBSERVED BY KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Jackiewicz, J.

    2016-12-01

    Given the potential of ensemble asteroseismology for understanding fundamental properties of large numbers of stars, it is critical to determine the accuracy of the scaling relations on which these measurements are based. From several powerful validation techniques, all indications so far show that stellar radius estimates from the asteroseismic scaling relations are accurate to within a few percent. Eclipsing binary systems hosting at least one star with detectable solar-like oscillations constitute the ideal test objects for validating asteroseismic radius and mass inferences. By combining radial velocity (RV) measurements and photometric time series of eclipses, it is possible to determine themore » masses and radii of each component of a double-lined spectroscopic binary. We report the results of a four-year RV survey performed with the échelle spectrometer of the Astrophysical Research Consortium’s 3.5 m telescope and the APOGEE spectrometer at Apache Point Observatory. We compare the masses and radii of 10 red giants (RGs) obtained by combining radial velocities and eclipse photometry with the estimates from the asteroseismic scaling relations. We find that the asteroseismic scaling relations overestimate RG radii by about 5% on average and masses by about 15% for stars at various stages of RG evolution. Systematic overestimation of mass leads to underestimation of stellar age, which can have important implications for ensemble asteroseismology used for Galactic studies. As part of a second objective, where asteroseismology is used for understanding binary systems, we confirm that oscillations of RGs in close binaries can be suppressed enough to be undetectable, a hypothesis that was proposed in a previous work.« less

  11. Absolute Properties of the Low-Mass Eclipsing Binary CM Draconis

    NASA Astrophysics Data System (ADS)

    Morales, Juan Carlos; Ribas, Ignasi; Jordi, Carme; Torres, Guillermo; Gallardo, José; Guinan, Edward F.; Charbonneau, David; Wolf, Marek; Latham, David W.; Anglada-Escudé, Guillem; Bradstreet, David H.; Everett, Mark E.; O'Donovan, Francis T.; Mandushev, Georgi; Mathieu, Robert D.

    2009-02-01

    Spectroscopic and eclipsing binary systems offer the best means for determining accurate physical properties of stars, including their masses and radii. The data available for low-mass stars have yielded firm evidence that stellar structure models predict smaller radii and higher effective temperatures than observed, but the number of systems with detailed analyses is still small. In this paper, we present a complete reanalysis of one of such eclipsing systems, CM Dra, composed of two dM4.5 stars. New and existing light curves as well as a radial velocity curve are modeled to measure the physical properties of both components. The masses and radii determined for the components of CM Dra are M 1 = 0.2310 ± 0.0009 M sun, M 2 = 0.2141 ± 0.0010M sun, R 1 = 0.2534 ± 0.0019 R sun, and R 2 = 0.2396 ± 0.0015 R sun. With relative uncertainties well below the 1% level, these values constitute the most accurate properties to date for fully convective stars. This makes CM Dra a valuable benchmark for testing theoretical models. In comparing our measurements with theory, we confirm the discrepancies previously reported for other low-mass eclipsing binaries. These discrepancies seem likely to be due to the effects of magnetic activity. We find that the orbit of this system is slightly eccentric, and we have made use of eclipse timings spanning three decades to infer the apsidal motion and other related properties.

  12. SS Bootis - A totally eclipsing binary of the RS CVn type

    NASA Technical Reports Server (NTRS)

    Vaucher, C. A.; Africano, J. L.; Henry, G. W.; Hall, D. S.; Wilson, J. W.

    1983-01-01

    Photoelectric photometry gathered for SS Bootis over the 1976-1981 period shows a distortion wave amplitude variation from 0.05 to 0.20 mag, with no apparent pattern. From the rectified light curve, a new time of midprimary eclipse was found to be 2444332.0335 + or - 0.0005 days. Solutions of the primary eclipse data, rectified for star spots as well as for ellipticity and reflection, are presented.

  13. Decoding of the light changes in eclipsing Wolf-Rayet binaries. I. A non-classical approach to the solution of light curves

    NASA Astrophysics Data System (ADS)

    Perrier, C.; Breysacher, J.; Rauw, G.

    2009-09-01

    Aims: We present a technique to determine the orbital and physical parameters of eclipsing eccentric Wolf-Rayet + O-star binaries, where one eclipse is produced by the absorption of the O-star light by the stellar wind of the W-R star. Methods: Our method is based on the use of the empirical moments of the light curve that are integral transforms evaluated from the observed light curves. The optical depth along the line of sight and the limb darkening of the W-R star are modelled by simple mathematical functions, and we derive analytical expressions for the moments of the light curve as a function of the orbital parameters and the key parameters of the transparency and limb-darkening functions. These analytical expressions are then inverted in order to derive the values of the orbital inclination, the stellar radii, the fractional luminosities, and the parameters of the wind transparency and limb-darkening laws. Results: The method is applied to the SMC W-R eclipsing binary HD 5980, a remarkable object that underwent an LBV-like event in August 1994. The analysis refers to the pre-outburst observational data. A synthetic light curve based on the elements derived for the system allows a quality assessment of the results obtained.

  14. Asiago eclipsing binaries program IV. SZ Camelopardalis, a β Cephei pulsator in a quadruple, eclipsing system

    NASA Astrophysics Data System (ADS)

    Tamajo, E.; Munari, U.; Siviero, A.; Tomasella, L.; Dallaporta, S.

    2012-03-01

    We present a spectroscopic and photometric analysis of the multiple system and early-type eclipsing binary SZ Cam (O9 IV + B0.5 V), which consists of an eclipsing SB2 pair of orbital period P = 2.7 days in a long orbit (~55 yrs) around a non-eclipsing SB1 pair of orbital period P = 2.8 days. We have reconstructed the spectra of the individual components of SZ Cam from the observed composite spectra using the technique of spectral disentangling. We used them together with extensive and accurate BVIC CCD photometry to obtain an orbital solution. Our photometry revealed the presence of a β Cep variable in the SZ Cam hierarchical system, probably located within the non-eclipsing SB1 pair. The pulsation period is (0.33265 ± 0.00005) days and the observed total amplitude in the B band is (0.0105 ± 0.0005) mag. NLTE analysis of the disentangled spectra provided atmospheric parameters for all three components, consistent with those derived from orbital solution. Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A139

  15. Analysis of GSC 2475-1587 and GSC 841-277: Two Eclipsing Binary Stars Found During Asteroid Lightcurve Observations

    NASA Astrophysics Data System (ADS)

    Stephens, R. D.; Warner, B. D.

    2006-05-01

    When observing asteroids we select from two to five comparison stars for differential photometry, taking the average value of the comparisons for the single value to be subtracted from the value for the asteroid. As a check, the raw data of each comparison star are plotted as is the difference between any single comparison and the average of the remaining stars in the set. On more than one occasion, we have found that at least one of the comparisons was variable. In two instances, we took time away from our asteroid lightcurve work to determine the period of the two binaries and attempted to model the system using David Bradstreet's Binary Maker 3. Unfortunately, neither binary showed a total eclipse. Therefore, our results are not conclusive and present only one of many possibilities.

  16. WW Geminorum: An early B-type eclipsing binary evolving into the contact phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.-G.; Dai, H.-F.; Yin, X.-G.

    2014-11-01

    WW Gem is a B-type eclipsing binary with a period of 1.2378 days. The CCD photometry of this binary was performed in 2013 December using the 85 cm telescope at the Xinglong Stations of the National Astronomical Observatories of China. Using the updated W-D program, the photometric model was deduced from the VRI light curves. The results imply that WW Gem is a near-contact eclipsing binary whose primary component almost fills its Roche lobe. The photometric mass ratio is q {sub ph} = 0.48(± 0.05). All collected times of minimum light, including two new ones, were used for the periodmore » studies. The orbital period changes of WW Gem could be described by an upward parabola, possibly overlaid by a light-time orbit with a period of P {sub mod} = 7.41(± 0.04) yr and a semi-amplitude of A = 0.0079 days(± 0.0005 days), respectively. This kind of cyclic oscillation may be attributed to the light-travel time effect via the third body. The long-term period increases at a rate of dP/dt = +3.47(±0.04) × 10{sup –8} day yr{sup –1}, which may be explained by the conserved mass transfer from the less massive component to the more massive one. With mass transfer, the massive binary WW Gem may be evolving into a contact binary.« less

  17. X-ray and Optical Explorations of Spiders

    NASA Astrophysics Data System (ADS)

    Roberts, M.; Al Noori, H.; Torres, R.; Russell, D.; Mclaughlin, M.; Gentile, P.

    2017-10-01

    Black widows and redbacks are binary systems consisting of a millisecond pulsar in a close binary with a companion which is having matter driven off of its surface by the pulsar wind. X-rays due to an intrabinary shock have been observed from many of these systems, as well as orbital variations in the optical emission from the companion due to heating and tidal distortion. We have been systematically studying these systems in radio, optical and X-rays. Here we will present an overview of X-ray and optical studies of these systems, including new XMM-Newton data obtained from several of these systems, along with new optical photometry.

  18. Broad-Band Measurements of Cen X-3 With XTE and CGRO

    NASA Technical Reports Server (NTRS)

    Vestrand, W. Thomas

    1999-01-01

    Centaurus X-3 has played a key role in the development of our understanding of galactic x-ray binary sources. Timing analysis of the UHURU x-ray observations for the luminous Cen X-3 source (L approximately 10(exp 38) erg/s) revealed the first evidence for coherent x-ray pulsations from an object in a binary system (Giaconni 1971; Schreier 1972). It was quickly understood that the luminous pulsed x-ray emission could be generated by the accretion of matter from a companion star onto a rotating neutron star and led to the adoption of binary star models as the fundamental model for galactic x-ray sources (e.g. Pringle and Rees 1972; Lamb 1973). Based on modeling and refined observations since the original measurements, we now believe that Cen X-3 is a high mass x-ray binary system that contains a disk-fed pulsar with a period of 4.84 seconds that is in a 2.087 day orbit around an O-star companion. Since the pulsar discovery, its period has been intermittently monitored and those studies show a long term spin-up of the pulsar punctuated by short intervals of spin-down (e.g. Finger 1994). The implied torques are thought to originate from the interaction of an accretion disk with the magnetic field of a neutron star (Ghosh and Lamb 1979).

  19. X-ray astronomy from Uhuru to HEAO-1

    NASA Technical Reports Server (NTRS)

    Clark, G. W.

    1981-01-01

    The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.

  20. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1996-01-01

    This grant dealt with several topics related to the dynamics of systems containing a compact object. Most of the research dealt with systems containing Neutron Stars (NS's), but a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems were also addressed. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's), Low Mass X-Ray Binaries (LMXB's) and Cataclysmic Variables (CV's). Also dealt with was one aspect of NS structure, namely NS superfluidity. A large fraction of the research dealt with irradiation-driven winds from companions which turned out to be of importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's. Work was concentrated on the following four problems: The Windy Pulsar B197+20 and its Evolution; Wind 'Echoes' in Tight Binaries; Post Nova X-ray Emission in CV's; and Dynamics of Pinned Superfluids in Neutron Stars.

  1. The MUCHFUSS photometric campaign

    NASA Astrophysics Data System (ADS)

    Schaffenroth, V.; Geier, S.; Heber, U.; Gerber, R.; Schneider, D.; Ziegerer, E.; Cordes, O.

    2018-06-01

    Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which have lost almost all of their hydrogen envelope. This mass loss is often triggered by common envelope interactions with close stellar or even substellar companions. Cool companions like late-type stars or brown dwarfs are detectable via characteristic light-curve variations like reflection effects and often also eclipses. To search for such objects, we obtained multi-band light curves of 26 close sdO/B binary candidates from the MUCHFUSS project with the BUSCA instrument. We discovered a new eclipsing reflection effect system (P = 0.168938 d) with a low-mass M dwarf companion (0.116 M⊙). Three more reflection effect binaries found in the course of the campaign have already been published; two of them are eclipsing systems, and in one system only showing the reflection effect but no eclipses, the sdB primary is found to be pulsating. Amongst the targets without reflection effect a new long-period sdB pulsator was discovered and irregular light variations were found in two sdO stars. The found light variations allowed us to constrain the fraction of reflection effect binaries and the substellar companion fraction around sdB stars. The minimum fraction of reflection effect systems amongst the close sdB binaries might be greater than 15% and the fraction of close substellar companions in sdB binaries may be as high as 8.0%. This would result in a close substellar companion fraction to sdB stars of about 3%. This fraction is much higher than the fraction of brown dwarfs around possible progenitor systems, which are solar-type stars with substellar companions around 1 AU, as well as close binary white dwarfs with brown dwarf companions. This might suggest that common envelope interactions with substellar objects are preferentially followed by a hot subdwarf phase.

  2. Eclipse timings of the low-mass X-ray binary EXO 0748-676: Statistical arguments against orbital period changes

    NASA Technical Reports Server (NTRS)

    Hertz, Paul; Wood, Kent S.; Cominsky, Lynn

    1995-01-01

    EXO 0748-676, an eclipsing low-mass X-ray binary, is one of only about four or five low-mass X-ray binaries for which orbital period evolution has been reported. We observed a single eclipse egress with ROSAT . The time of this egress is consistent with the apparent increase in P(sub orb) previously reported on the basis of EXOSAT and Ginga observations. Standard analysis, in which O-C (observed minus calculated) timing residuals are examined for deviations from a constant period, implicitly assume that the only uncertainty in each residual is measurement error and that these errors are independent. We argue that the variable eclipse durations and profiles observed in EXO 0748-676 imply that there is an additional source of uncertainty in timing measurements, that this uncertainty is intrinsic to the binary system, and that it is correlated from observation to observation with a variance which increases as a function of the number of binary cycles between observations. This intrinsic variability gives rise to spurious trends in O-C residuals which are misinterpreted as changes in the orbital period. We describe several statistics tests which can be used to test for the presence of intrinsic variability. We apply those statistical tests which are suitable to the EXO 0748-676 observations. The apparent changes in the orbital period of EXO 0748-676 can be completely accounted for by intrinsic variability with an rms variability of approximately 0.35 s per orbital cycle. The variability appears to be correlated from cycle-to-cycle on timescales of less than 1 yr. We suggest that the intrinsic variability is related to slow changes in either the source's X-ray luminosity or the structure of the companion star's atmosphere. We note that several other X-ray binaries and cataclysmic variables have previously reported orbital period changes which may also be due to intrinsic variability rather than orbital period evolution.

  3. Line Identifications in the Far Ultraviolet Spectrum of the Eclipsing Binary System 31 Cygni

    NASA Astrophysics Data System (ADS)

    Hagen Bauer, Wendy; Bennett, P. D.

    2011-05-01

    The eclipsing binary system 31 Cygni (K4 Ib + B3 V) was observed at several phases with the Far Ultraviolet Spectrosocopic Explorer (FUSE) satellite. During total eclipse, a rich emission spectrum was observed, produced by scattering of hot star photons in the extended wind of the K supergiant. The system was observed during deep chromospheric eclipse, and 2.5 months after total eclipse ended. We present an atlas of line identifications in these spectra. During total eclipse, emission features from C II , C III, N I, N II, N III, O I, Si II, P II, P III, S II, S III, Ar I, Cr III, Fe II, Fe III, and Ni II were detected. The strongest emission features arise from N II. These lines appear strongly in absorption during chromospheric eclipse, and even 2.5 months after total eclipse, the absorption bottoms out on the underlying emission seen during total eclipse. The second strongest features in the emission spectrum arise from Fe III. Any chromospheric Fe III absorption is buried within strong chromospheric absorption from other species, mainly Fe II. The emission profiles of most of the doubly-ionized species are red-shifted relative to the systemic velocity, with asymmetric profiles with a steeper long-wavelength edge. Emission profiles from singly-ionized species tend to be more symmetric and centered near the systemic velocity. In deep chromospheric eclipse, absorption features are seen from neutral and singly-ionized species, arising from lower levels up to 3 eV. Many strong chromospheric features are doubled in the observation obtained during egress from eclipse. The 31 Cygni spectrum taken 2.5 months after total eclipse ended ws compared to single-star B spectra from the FUSE archives. There was still some additional chromospheric absorption from strong low-excitation Fe II, O I and Ar I.

  4. A Comprehensive Catalog of Galactic Eclipsing Binary Stars with Eccentric Orbits Based on Eclipse Timing Diagrams

    NASA Astrophysics Data System (ADS)

    Kim, C.-H.; Kreiner, J. M.; Zakrzewski, B.; Ogłoza, W.; Kim, H.-W.; Jeong, M.-J.

    2018-04-01

    A comprehensive catalog of 623 galactic eclipsing binary (EB) systems with eccentric orbits is presented with more than 2830 times of minima determined from the archived photometric data by various sky-survey projects and new photometric measurements. The systems are divided into two groups according to whether the individual system has a GCVS name or not. All the systems in both groups are further classified into three categories (D, A, and A+III) on the basis of their eclipse timing diagrams: 453 D systems showing just constantly displaced secondary minima, 139 A systems displaying only apsidal motion (AM), and 31 A+III systems exhibiting both AM and light-time effects. AM parameters for 170 systems (A and A+III systems) are consistently calculated and cataloged with basic information for all systems. Some important statistics for the AM parameters are discussed and compared with those derived for the eccentric EB systems in the Large and Small Magellanic Clouds.

  5. Timing of AB And eclipses

    NASA Astrophysics Data System (ADS)

    Kozyreva, V. S.; Ibrahimov, M. A.; Gaynullina, E. R.; Karimov, R. G.; Hafizov, B. M.; Satovskii, B. L.; Krushevska, V. N.; Kuznyetsova, Yu. G.; Bogomazov, A. I.; Irsmambetova, T. R.; Tutukov, A. V.

    2018-01-01

    This study aims timing the eclipses of the short period low mass binary star AB And. The times of minima are taken from the literature and from our observations in October 2013 (22 times of minima) and in August 2014 (23 times of minima). We find and discuss an inaccuracy in the determination of the types of minima in the previous investigation by Li et al. (2014). We study the secular evolution of the central binary's orbital period and the possibility of the existence of third and fourth companions in the system.

  6. LX Persei, an eclipsing binary with H and K emission

    NASA Technical Reports Server (NTRS)

    Weiler, E. J.

    1974-01-01

    The masses and MK classes were calculated for the eclipsing spectroscopic binary LX Persei. Its spectrum shows strong H and K emission and doubled lines in the photographic region. The Ca II emission velocity shifts vary in phase with the secondary's absorption lines and are presumably associated with this component. The stars are tentatively classed as G0 V and K0 IV, and the cooler component is the more massive by a ratio of 0.96. The system has a period of 8.0 days.

  7. A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.

    2016-10-01

    We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.

  8. Period changes of the long-period cataclysmic binary EX Draconis

    NASA Astrophysics Data System (ADS)

    Pilarčík, L.; Wolf, M.; Dubovský, P. A.; Hornoch, K.; Kotková, L.

    2012-03-01

    The cataclysmic variable star EX Dra is a relatively faint but frequently investigated eclipsing dwarf nova. In total 35 new eclipses were measured photometrically as part of our long-term monitoring of interesting eclipsing systems. Using published and new mid-eclipse times obtained between 2004 and 2011 we constructed the observed-minus-calculated diagram. The current data present 21 years of period modulation with a semi-amplitude of 2.5 min. The eclipse timings show significant deviations from the best sinusoidal fit, which indicates that this ephemeris is not a complete description of the data. The fractional period change is roughly ΔP/P = 3 × 10-6.

  9. Modeling X-ray and gamma-ray emission in the intrabinary shock of pulsar binaries

    NASA Astrophysics Data System (ADS)

    An, H.

    2017-10-01

    We present broadband SED and light curve, and a wind interaction model for the gamma-ray binary 1FGL J1018.6-5856 (J1018) which exhibits double peaks in the X-ray light curve. Assuming that the X-ray to low-energy gamma-ray emission is produced by synchrotron radiation and high-energy gamma rays by inverse Compton scattering in the intrabinary shock (IBS), we model the broadband SED and light curve of J1018 using a two-component model having slow electrons in the shock and fast bulk-accelerated electrons at the skin of the shock. The model explains the broadband SED and light curve of J1018 qualitatively well. In particular, modeling the synchrotron emission constrains the orbital geometry. We discuss potential use of the model for other pulsar binaries.

  10. GJ 3236 - radial velocity determination

    NASA Astrophysics Data System (ADS)

    Kára, J.; Wolf, M.; Zharikov, S.

    2018-04-01

    We present a new study of low-mass red-dwarf eclipsing binary GJ 3236 using spectroscopic data obtained by the 2.12-m telescope at the San Pedro Mártir Observatory. We resolved radial velocities of both components of the binary and improved determination of the physical parameters of the binary.

  11. The Araucaria project. The distance to the small Magellanic Cloud from late-type eclipsing binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczyk, Dariusz; Pietrzyński, Grzegorz; Gieren, Wolfgang

    2014-01-01

    We present a distance determination to the Small Magellanic Cloud (SMC) based on an analysis of four detached, long-period, late-type eclipsing binaries discovered by the Optical Gravitational Lensing Experiment (OGLE) survey. The components of the binaries show negligible intrinsic variability. A consistent set of stellar parameters was derived with low statistical and systematic uncertainty. The absolute dimensions of the stars are calculated with a precision of better than 3%. The surface brightness-infrared color relation was used to derive the distance to each binary. The four systems clump around a distance modulus of (m – M) = 18.99 with a dispersionmore » of only 0.05 mag. Combining these results with the distance published by Graczyk et al. for the eclipsing binary OGLE SMC113.3 4007, we obtain a mean distance modulus to the SMC of 18.965 ± 0.025 (stat.) ± 0.048 (syst.) mag. This corresponds to a distance of 62.1 ± 1.9 kpc, where the error includes both uncertainties. Taking into account other recent published determinations of the SMC distance we calculated the distance modulus difference between the SMC and the Large Magellanic Cloud equal to 0.458 ± 0.068 mag. Finally, we advocate μ{sub SMC} = 18.95 ± 0.07 as a new 'canonical' value of the distance modulus to this galaxy.« less

  12. Orbital period changes in RW CrA, DX Vel and V0646 Cen

    NASA Astrophysics Data System (ADS)

    Volkov, I. M.; Chochol, D.; Grygar, J.; Mašek, M.; Juryšek, J.

    2017-06-01

    We aim to determine the absolute parameters of the components of southern Algol-type binaries with deep eclipses RW CrA, DX Vel, V0646 Cen and interpret their orbital period changes. The data analysis is based on a high quality Walraven photoelectric photometry, obtained in the 1960-70s, our recent CCD photometry, ASAS (Pojmanski, 2002), and Hipparcos (Perryman et al., 1997) photometry of the objects. Their light curves were analyzed using the PHOEBE program with fixed effective temperatures of the primary components, found from disentangling the Walraven (B-U) and (V-B) colour indices. We found the absolute parameters of the components of all three objects. All reliable observed times of minimum light were used to construct and analyze the Eclipse Time Variation (ETV) diagrams. We interpreted the ETV diagrams of the detached binary RW CrA and the semi-detached binary DX Vel by a LIght-Time Effect (LITE), estimated parameters of their orbits and masses of their third bodies. We suggest a long term variation of the inclination angle of both eclipsing binaries, caused by a non-coplanar orientation of their third body orbits. We interpreted the detected orbital period increase in the semi-detached binary V0646 Cen by a mass transfer from the less to more massive component with the rate M⊙ = 6.08×10-9 M⊙/yr.

  13. Planets around pulsars - Implications for planetary formation

    NASA Technical Reports Server (NTRS)

    Bodenheimer, Peter

    1993-01-01

    Data on planets around pulsars are summarized, and different models intended to explain the formation mechanism are described. Both theoretical and observational evidence suggest that very special circumstances are required for the formation of planetary systems around pulsars, namely, the prior presence of a millisecond pulsar with a close binary companion, probably a low mass main-sequence star. It is concluded that the discovery of two planets around PSR 1257+12 is important for better understanding the problems of dynamics and stellar evolution. The process of planetary formation should be learned through intensive studies of the properties of disks near young objects and application of techniques for detection of planets around main-sequence solar-type stars.

  14. Discovery of a young, 267 millisecond pulsar in the supernova remnant W44

    NASA Technical Reports Server (NTRS)

    Wolszczan, A.; Cordes, J. M.; Dewey, R. J.

    1991-01-01

    This paper reports the discovery of a 267 msec pulsar, PSR 1853 + 01, in the SNR W44 (G34.7 - 0.4), located south of the W44, well within its radio shell and at the outher edge of the X-ray emission region which fills the SNR interior. The PSR 1853 + 01 is separated only 20 arcmin from the PSR 1854 + 00 pulsar discovered by Mohanty (1983). Results of timing observatons of PSR 1853 + 01 are presented, and a possible relationship between the two objects is examined. It is suggested that the two pulsars may have a common origin in a binary system disrupted by the explosion that produced W44.

  15. Young and Waltzing Binary Stars

    NASA Astrophysics Data System (ADS)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a star determines its fate . Massive stars (with masses more than 50 times that of the Sun) lead a glorious, but short life. They are hot and very luminous and exhaust their energy supply in just a few million years. At the other end of the scale, low-mass stars like the Sun are more economical with their resources. Being cooler and dimmer, they are able to shine for billions of years [2]. But although the mass determines the fate of a star, it is not a trivial matter to measure this crucial parameter. In fact, it can only be determined directly if the star happens to be gravitationally bound to another star in a binary stellar system. Observations of the orbital motions of the two stars as they circle each other allows to "weigh" them, and also provide other important information, e.g. about their sizes and temperatures. Orbital motions The understanding of orbital motions has a long history in astronomy. The basic laws of Johannes Kepler (1571-1630) are still used to calculate the masses of orbiting objects, in the solar system as well as in binary stellar systems. However, while the observations of the motion of the nine planets and moons have allowed us to measure quite accurately the masses of objects in our vicinity, the information needed to "weigh" the binary stellar systems is not that easy to obtain. As a result, the mass estimates of the stars in binary systems are often rather uncertain. A main problem is that the individual stars in many binary systems can not be visually separated, even in the best telescopes. The information about the orbit may then come from the motions of the stars, if these are revealed by spectroscopic observations of the combined light (such systems are referred to as "spectroscopic binaries"). If absorption lines from both components are present in the spectrum, the measured wavelength of these double lines will shift periodically back and forth. This is the well-known Doppler effect and it directly reflects the changing velocities of the stars, as they move along their orbits and periodically approach and recede from the observer. Such spectroscopic observations therefore allow to measure the orbital velocities of the stars. It is exactly the same technique that is used to study and weigh extra-solar planets orbiting other stars [3]. However, this method has an important limitation. From the spectroscopical observations alone, it is only possible to deduce limits on the masses, as the inclination of orbits to the line-of-sight is usually unknown. The masses derived in this way (for stars as well as for exoplanets) are therefore only lower limits on the actual masses. Eclipsing Binaries However, fortunate observational circumstances sometimes allow to obtain all information about the stellar orbits. If a binary system is viewed (almost exactly) edge-on, the stars may pass in front of each other from time to time. Astronomers refer to this phenomenon as an "eclipse" and speak about an "eclipsing binary". The effect is similar to a "solar" eclipse as seen on the Earth, whenever the Moon passes in front of the Sun. Like the Moon blocks the sunlight, less light is received from the eclipsed star and thus the combined light from the binary system decreases during the eclipse. The way this happens (astronomers speak about the system's "lightcurve") then provides the additional information about the inclination of the orbit that is needed to determine exactly the stellar masses in a "spectroscopic" binary system. Very accurate values for the stellar diameters and the surface temperatures of the two stars can also be deduced. In short, when a full set of observations is available, it is possible to give a comprehensive description of an eclipsing binary system and its components. Eclipsing, spectroscopic binaries thus represent true cornerstones for the determination of stellar masses , and as such they are fundamental for our understanding of stellar evolution . Rather few such systems are known, but they can also be used to check ("calibrate") other, indirect methods to derive stellar parameters. It is on this background that the first discovery of an eclipsing binary system with two young, solar-like stars is of great interest. The Orion Binary Young stars are not so easy to find. One way is to look for their high-energy emission from a hot corona, created by their enhanced magnetic activity. The object RXJ 0529.4+0041 was first discovered in this way by the X-ray satellite ROSAT. Subsequent optical spectroscopy showed this object to be a young, low-mass spectroscopic binary system. And when a team of astronomers [1] used a 91-cm telescope at the Serra La Nave observing station on the slope of the Etna volcano (Sicily) to monitor the light curve, they also discovered that this system undergoes eclipses. All data confirm that RXJ 0529.4+0041 is located in the Orion Nebula at a distance of about 1500 light-years. This is one of the nearest star-forming regions and almost all stars in this area are quite young. Spectroscopic observations soon confirmed that the binary system was no exception. In particular, fairly strong absorption lines of the fragile element Lithium [4] were detected in both of the binary stars. As Lithium is known to be rapidly destroyed in stars, the finding of a relatively high content of this element implies that the stars must indeed be young. They were probably formed no more than 10 million years ago, i.e., in astronomical terms, they are "infant" stars . High-resolution spectroscopic observations, mostly with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , were used to determine the radial velocities of the stars. From these, a first determination of the orbital and stellar parameters was possible. The orbital period turned out to be short. The two stars swing around each other in just 3 days. This also means they must be very close to each other (but still entirely detached from each other) - the detailed analysis showed that the distance between the two components is only 12 solar radii, or a little more than 8 million kilometres. If you would image yourself standing on the surface of the smaller star, the disk of the companion star would extend some 15° in the sky. This is 30 times larger than our view of the Sun! ADONIS observations The short orbital period and the even shorter duration of the eclipses, only 6 hours, posed a real challenge for the observers. They decided to obtain further high-angular resolution observations with the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. Most fortunately, early ADONIS images demonstrated that this binary stellar system has a third companion, sufficiently far away from the two others to be seen as a separate star by ADONIS. This unexpected bonus made it possible to monitor the light changes of the binary system in great detail, by using the third companion as a convenient "reference" star. In December 2000 and January 2001, detailed ADONIS images of the RXJ 0529.4+0041 system were obtained in three near-infrared filters (the J-, H- and K-bands). ADONIS is equipped with the SHARP II camera and eliminates the adverse image-smearing effects of the atmospheric turbulence in real-time by means of a computer-controlled flexible mirror. As expected, the new, extremely sharp images of RXJ 0529.4+0041 greatly improved the achievable photometric precision. In particular, as the image of the third component was perfectly separated from the others, it did not "contaminate" the derived light curve of the eclipsing binary. The movie Primary eclipse Secondary eclipse ESO PR Photo 29a/01 ESO PR Photo 29a/01 [Preview - JPEG: 375 x 400 pix - 87k] [Normal - JPEG: 750 x 800 pix - 240k] ESO PR Photo 29d/01 ESO PR Photo 29d/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 272k] ESO PR Photo 29b/01 ESO PR Photo 29b/01 [Preview - JPEG: 375 x 400 pix - 90k] [Normal - JPEG: 750 x 800 pix - 240k] ESO PR Photo 29e/01 ESO PR Photo 29e/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 280k] ESO PR Photo 29c/01 ESO PR Photo 29c/01 [Preview - JPEG: 375 x 400 pix - 94k] [Normal - JPEG: 750 x 800 pix - 256k] ESO PR Photo 29f/01 ESO PR Photo 29f/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 280k] Caption : Six individual frames from the ADONIS movie of the RXJ 0529.4+0041 eclipsing, binary stellar system, corresponding to the time around the "primary" and "secondary" eclipses, respectively. For a detailed explanation, read the text. ESO PR Video Clip 06/01 [512 x 448 pix MPEG] ESO PR Video Clip 06/01 (150 frames/00:06 min) [MPEG Video; 512 x 448 pix; 871 k] ESO Video Clip 06/01 shows the ADONIS images of the RXJ 0529.4+0041 eclipsing, binary stellar system, as recorded in three near-infrared filters (J, H, and K; to the left), with the observed light-curves (top) and a graphical representation of the system during a full orbit, as it would look like to a nearby observer. More details in the text The ADONIS images have been combined into an instructive movie ( PR Video Clip 06/01 ). The left-hand panel shows the eclipsing binary system (it is the upper right and brighter of the two objects; the light from the two stars merge into a single point of light) and the well visible third component (lower left), as they were recorded by ADONIS in the three different filter bands. As the two stars in the binary system move around each other in their orbits, eclipses occur and the brightness of the binary system clearly changes - it may help to play the movie several times to see this more clearly. For reference, the Universal Time (UT) and the orbital phase (increasing from 0 to 1 during a full revolution) are continuously displayed in the movie. The right-hand panel shows a build-up of the observed light curves for the binary system. It represents the brightness difference between binary system and the third object that shines with constant light. Both the primary, deeper and the secondary, less deep eclipses are well visible. The primary eclipse was observed on December 8, 2000 and is here displayed at phase zero. During this minimum, the brightness of the binary system decreases by about 45% (0.4 magnitudes). The primary eclipse takes place when the smaller component blocks the light from the brighter and hotter star. The orbital motions of the two stars are illustrated by a computer-generated, animated sequence. The secondary eclipse (at phase 0.5) dims the light from the system less; it occurs when the larger and brighter star almost completely (about 90%) hides its smaller companion. The second minimum was recorded on January 12, 2001. None of the eclipses is therefore "total". The stellar parameters A detailed analysis of these high-precision light curves allowed the astronomers to determine the orbits and hence, to perform an extremely accurate measurement of the fundamental stellar parameters for the two young stars of RXJ 0529.4+0041 . The star that is eclipsed during the primary eclipse (the "primary") is the more massive and also the hotter and brighter of the two stars. Its mass is 1.3 times that of our Sun, i.e., about 2.6 10 30 kg [2]. Its diameter is nearly 1.6 times larger than that of our Sun (i.e., about 2.2 million km) and the surface temperature is found to be a little more than 5000 °C, or a few hundred degrees cooler than the Sun. The "secondary" star is slightly lighter than our Sun. Its weight is about 90% of that of the Sun (1.8 10 30 kg) and the diameter is 20% larger (about 1.7 million km), while the surface temperature is 4000 degrees. In fact, these two stars are still so young that most of their energy comes from the contraction process - the first phase during which they are formed from an interstellar cloud by this process is not yet over and they are still getting smaller. It is by this process that collapsing stars heat up enough to start nuclear burning. When infant stars in RXJ 0529.4+0041 eventually reach middle-age, their sizes will most likely also be quite similar to that of the Sun. The significance of RXJ 0529.4+0041 Few systems are known for which such precise determinations of the stellar parameters have ever been possible - and this binary system represents the first case where both the components are such young stars . A detailed comparison of the derived stellar parameters with current models for the evolution of young stars shows fairly good agreement for the primary component. However, there are certain discrepancies in the case of the secondary component, showing that the current models for the early stages of lower-mass stars must still be refined. More information Part of the results described in this press release are described in more detail in a scientific article ( "RXJ 0529.4+0041: a low-mass pre-main sequence eclipsing-spectroscopic binary" by E. Covino et al.) that has been published in the European research journal Astronomy & Astrophysics (Vol. 361, p. 49). Notes [1] The team consists of Elvira Covino (Principal Investigator), Juan M. Alcalá , Rosita Paladino (all Osservatorio Astronomico di Capodimonte, Napoli, Italy), Antonio Frasca , Santo Catalano , Ettore Marilli (all Osservatorio Astrofisico di Catania, Italy) and Michael Sterzik (ESO-Chile). [2] One solar mass corresponds to 1.99 10 30 kg, or about 330,000 times the mass of the Earth. The Sun is about 4500 million years old and its total lifetime is of the order of 12-13,000 million years. It is an interesting thought that if the Sun would have been somewhat heavier, its total lifetime might have been too short for living organisms to develop on the Earth. In fact, the biological evolution that ultimately lead to the emergence of human beings apparently lasted about 4 billion years; this corresponds to the total lifetime of a star that is only about 20 % heavier than the Sun. Note also the current ESO-ESA CERN educational programme on "Life in the Universe". [3] In the case of exoplanets, the planet itself is not visible, but the spectral lines from the star are seen to wobble due to the gravitational influence of the planet, cf. ESO PR 07/01. [4] Several ESO Press Releases concern observations of the element Lithium in stars, e.g., PR 03/99 (in a giant star), PR 08/00 (in a metal-poor star) and PR 10/01 (from a "swallowed" exoplanet).

  16. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oezel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio

    We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M{sub Sun} and a dispersion of 0.24 M{sub Sun }. These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand,more » double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M{sub Sun }, but with a dispersion of only 0.05 M{sub Sun }. Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M{sub Sun} and a dispersion of 0.2 M{sub Sun }, consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed {approx}2 M{sub Sun} suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.« less

  17. Lightweight Double Neutron Star Found

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    More than forty years after the first discovery of a double neutron star, we still havent found many others but a new survey is working to change that.The Hunt for PairsThe observed shift in the Hulse-Taylor binarys orbital period over time as it loses energy to gravitational-wave emission. [Weisberg Taylor, 2004]In 1974, Russell Hulse and Joseph Taylor discovered the first double neutron star: two compact objects locked in a close orbit about each other. Hulse and Taylors measurements of this binarys decaying orbit over subsequent years led to a Nobel prize and the first clear evidence of gravitational waves carrying energy and angular momentum away from massive binaries.Forty years later, we have since confirmed the existence of gravitational waves directly with the Laser Interferometer Gravitational-Wave Observatory (LIGO). Nonetheless, finding and studying pre-merger neutron-star binaries remains a top priority. Observing such systems before they merge reveals crucial information about late-stage stellar evolution, binary interactions, and the types of gravitational-wave signals we expect to find with current and future observatories.Since the Hulse-Taylor binary, weve found a total of 16 additional double neutron-star systems which represents only a tiny fraction of the more than 2,600 pulsars currently known. Recently, however, a large number of pulsar surveys are turning their eyes toward the sky, with a focus on finding more double neutron stars and at least one of them has had success.The pulse profile for PSR J1411+2551 at 327 MHz. [Martinez et al. 2017]A Low-Mass DoubleConducted with the 1,000-foot Arecibo radio telescope in Puerto Rico, the Arecibo 327 MHz Drift Pulsar Survey has enabled the recent discovery of dozens of pulsars and transients. Among them, as reported by Jose Martinez (Max Planck Institute for Radio Astronomy) and coauthors in a recent publication, is PSR J1411+2551: a new double neutron star with one of the lowest masses ever measured for such a system.Through meticulous observations over the span of 2.5 years, Martinez and collaborators were able to obtain a number of useful measurements for the system, including the pulsars period (62 ms), the period of the binary (2.62 days), and the systems eccentricity (e = 0.17).In addition, the team measured the rate of advance of periastron of the system, allowing them to estimate the total mass of the system: M = 2.54 solar masses. This mass, combined with the eccentricity of the orbit, demonstrate that the companion of the pulsar in PSR J1411+2551 is almost certainly a neutron star and the system is one of the lightest known to date, even including the double neutron-star merger that was observed by LIGO in August this past year.Constraining Stellar PhysicsBased on its measured properties, PSR J1411+2551 is most likely a recycled pulsar in a double neutron-star system. [Martinez et al. 2017]The intriguing orbital properties and low mass of PSR J1411+2551 have already allowed the authors to explore a number of constraints to stellar evolution models, including narrowing the possible equations of state for neutron stars that could produce such a system. These constraints will be interesting to compare to constraints from LIGO and Virgo in the future, as more merging neutron-star systems are observed.Meanwhile, our best bet for obtaining further constraints is to continue searching for more pre-merger double neutron-star systems like the Hulse-Taylor binary and PSR J1411+2551. Let the hunt continue!CitationJ. G. Martinez et al 2017 ApJL 851 L29. doi:10.3847/2041-8213/aa9d87

  18. Light curve variations of the eclipsing binary V367 Cygni

    NASA Astrophysics Data System (ADS)

    Akan, M. C.

    1987-07-01

    The long-period eclipsing binary star V367 Cygni has been observed photoelectrically in two colours, B and V, in 1984, 1985, and 1986. These new light curves of the system have been discussed and compared for the light-variability with the earlier ones presented by Heiser (1962). Using some of the previously published photoelectric light curves and the present ones, several primary minima times have been derived to calculate the light elements. Any attempt to obtain a photometric solution of the binary is complicated by the peculiar nature of the light curve caused by the presence of the circumstellar matter in the system. Despite this difficulty, however, some approaches are being carried out to solve the light curves which are briefly discussed.

  19. Pulsar Timing Array Based Search for Supermassive Black Hole Binaries in the Square Kilometer Array Era

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Mohanty, Soumya D.

    2017-04-01

    The advent of next generation radio telescope facilities, such as the Square Kilometer Array (SKA), will usher in an era where a pulsar timing array (PTA) based search for gravitational waves (GWs) will be able to use hundreds of well timed millisecond pulsars rather than the few dozens in existing PTAs. A realistic assessment of the performance of such an extremely large PTA must take into account the data analysis challenge posed by an exponential increase in the parameter space volume due to the large number of so-called pulsar phase parameters. We address this problem and present such an assessment for isolated supermassive black hole binary (SMBHB) searches using a SKA era PTA containing 1 03 pulsars. We find that an all-sky search will be able to confidently detect nonevolving sources with a redshifted chirp mass of 1 010 M⊙ out to a redshift of about 28 (corresponding to a rest-frame chirp mass of 3.4 ×1 08 M⊙). We discuss the important implications that the large distance reach of a SKA era PTA has on GW observations from optically identified SMBHB candidates. If no SMBHB detections occur, a highly unlikely scenario in the light of our results, the sky-averaged upper limit on strain amplitude will be improved by about 3 orders of magnitude over existing limits.

  20. GOALS, STRATEGIES AND FIRST DISCOVERIES OF AO327, THE ARECIBO ALL-SKY 327 MHz DRIFT PULSAR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deneva, J. S.; Stovall, K.; Martinez, J. G.

    2013-09-20

    We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of –1° to 28°, excluding the region within 5° of the Galactic plane, where high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 μs sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsarsmore » with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include 3 ms pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28°-38°. We compare the sensitivity and search volume of AO327 to the Green Bank North Celestial Cap survey and the GBT350 drift survey, both of which operate at 350 MHz.« less

  1. Pulsar Timing Array Based Search for Supermassive Black Hole Binaries in the Square Kilometer Array Era.

    PubMed

    Wang, Yan; Mohanty, Soumya D

    2017-04-14

    The advent of next generation radio telescope facilities, such as the Square Kilometer Array (SKA), will usher in an era where a pulsar timing array (PTA) based search for gravitational waves (GWs) will be able to use hundreds of well timed millisecond pulsars rather than the few dozens in existing PTAs. A realistic assessment of the performance of such an extremely large PTA must take into account the data analysis challenge posed by an exponential increase in the parameter space volume due to the large number of so-called pulsar phase parameters. We address this problem and present such an assessment for isolated supermassive black hole binary (SMBHB) searches using a SKA era PTA containing 10^{3} pulsars. We find that an all-sky search will be able to confidently detect nonevolving sources with a redshifted chirp mass of 10^{10}  M_{⊙} out to a redshift of about 28 (corresponding to a rest-frame chirp mass of 3.4×10^{8}  M_{⊙}). We discuss the important implications that the large distance reach of a SKA era PTA has on GW observations from optically identified SMBHB candidates. If no SMBHB detections occur, a highly unlikely scenario in the light of our results, the sky-averaged upper limit on strain amplitude will be improved by about 3 orders of magnitude over existing limits.

  2. The EBLM project. I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit

    NASA Astrophysics Data System (ADS)

    Triaud, A. H. M. J.; Hebb, L.; Anderson, D. R.; Cargile, P.; Collier Cameron, A.; Doyle, A. P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Maxted, P.; Naef, D.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Stassun, K.; Udry, S.; West, R. G.

    2013-01-01

    This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 ± 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects have projected spin-orbit angles aligned with their primaries' rotation. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass-radius relationship, whereas WASP-30b lies above it. Using WASP-South photometric observations (Sutherland, South Africa) confirmed with radial velocity measurement from the CORALIE spectrograph, photometry from the EulerCam camera (both mounted on the Swiss 1.2 m Euler Telescope), radial velocities from the HARPS spectrograph on the ESO's 3.6 m Telescope (prog ID 085.C-0393), and photometry from the robotic 60 cm TRAPPIST telescope, all located at ESO, La Silla, Chile. The data is publicly available at the CDS Strasbourg and on demand to the main author.Tables A.1-A.3 are available in electronic form at http://www.aanda.orgPhotometry tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A18

  3. On the radiation beaming of bright X-ray pulsars and constraints on neutron star mass-radius relation

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Verhagen, Patrick A.; Tsygankov, Sergey S.; van der Klis, Michiel; Lutovinov, Alexander A.; Larchenkova, Tatiana I.

    2018-03-01

    The luminosity of accreting magnetized neutron stars can largely exceed the Eddington value due to appearance of accretion columns. The height of the columns can be comparable to the neutron star radius. The columns produce the X-rays detected by the observer directly and illuminate the stellar surface, which reprocesses the X-rays and causes additional component of the observed flux. The geometry of the column and the illuminated part of the surface determine the radiation beaming. Curved space-time affects the angular flux distribution. We construct a simple model of the beam patterns formed by direct and reflected flux from the column. We take into account the possibility of appearance of accretion columns, whose height is comparable to the neutron star radius. We argue that depending on the compactness of the star, the flux from the column can be either strongly amplified due to gravitational lensing, or significantly reduced due to column eclipse by the star. The eclipses of high accretion columns result in specific features in pulse profiles. Their detection can put constraints on the neutron star radius. We speculate that column eclipses are observed in X-ray pulsar V 0332+53, leading us to the conclusion of large neutron star radius in this system (˜15 km if M ˜ 1.4 M⊙). We point out that the beam pattern can be strongly affected by scattering in the accretion channel at high luminosity, which has to be taken into account in the models reproducing the pulse profiles.

  4. More surprises from the violent gamma-ray binary LS 2883 /B1259-63.

    NASA Astrophysics Data System (ADS)

    Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G.

    2018-01-01

    We report the results of a Chandra X-ray Observatory (CXO) monitoring campaign of the high-mass gamma-ray binary LS 2883, which hosts the young pulsar B1259-63. The monitoring now covers two binary cycles (6.8 years) and allows us to conclude that ejections of high-velocity X-ray emitting material are common for this binary. In the first cycle we observed an extended feature which detached and moved away from the binary. The observed changes in position were consistent with a steady motion with v=(0.07+/-0.01)c and a slight hint of acceleration. Tracing the motion back in time suggested that the X-ray emitting matter was ejected close to periastron passage. In the last orbital cycle, accelerated motion (reaching (0.13+/-0.02)c) is strongly preferred over a steady motion (the latter would imply that the ejected material was launched ~400 days after the periastron passage). The moving feature is also more luminous, compared to the previous binary cycle, larger in its apparent extent, and exhibits a puzzling morphology. We will show the CXO movies from both binary cycles and discuss physical interpretation of the resolved outflow dynamics in this remarkable system, which provides unique insight into the properties of the pulsar and stellar winds and their interaction.

  5. Spectral irradiance curve calculations for any type of solar eclipse

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Merrill, J. E.

    1974-01-01

    A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = sub c (1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail.

  6. VX Her: Eclipsing Binary System or Single Variable Star

    NASA Astrophysics Data System (ADS)

    Perry, Kathleen; Castelaz, Michael; Henson, Gary; Boghozian, Andrew

    2015-01-01

    VX Her is a pulsating variable star with a period of .4556504 days. It is believed to be part of an eclipsing binary system (Fitch et al. 1966). This hypothesis originated from Fitch seeing VX Her's minimum point on its light curve reaching a 0.7 magnitude fainter than normal and remaining that way for nearly two hours. If VX Her were indeed a binary system, I would expect to see similar results with a fainter minimum and a broader, more horizontal dip. Having reduced and analyzed images from the Southeastern Association for Research in Astronomy Observatory in Chile and Kitt Peak, as well as images from a 0.15m reflector at East Tennessee State University, I found that VX Her has the standard light curve of the prototype variable star, RR Lyrae. Using photometry, I found no differing features in its light curve to suggest that it is indeed a binary system. However, more observations are needed in case VX Her is a wide binary.

  7. Observations of hot stars and eclipsing binaries with FRESIP

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.

    1994-01-01

    The FRESIP project offers an unprecedented opportunity to study pulsations in hot stars (which vary on time scales of a day) over a several year period. The photometric data will determine what frequencies are present, how or if the amplitudes change with time, and whether there is a connection between pulsation and mass loss episodes. It would initiate a new field of asteroseismology studies of hot star interiors. A search should be made for selected hot stars for inclusion in the list of project targets. Many of the primary solar mass targets will be eclipsing binaries, and I present estimates of their frequency and typical light curves. The photometric data combined with follow up spectroscopy and interferometric observations will provide fundamental data on these stars. The data will provide definitive information on the mass ratio distribution of solar-mass binaries (including the incidence of brown dwarf companions) and on the incidence of planets in binary systems.

  8. What Makes Red Giants Tick? Linking Tidal Forces, Activity, and Solar-Like Oscillations via Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason

    2016-01-01

    Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for studying stellar evolution and probing the Milky Way. However, not all red giants show solar-like oscillations. It has been proposed that stronger tidal interactions from short-period binaries and increased magnetic activity on spotty giants are linked to absent or damped solar-like oscillations, yet each star tells a nuanced story. In this work, we characterize a subset of red giants in eclipsing binaries observed by Kepler. The binaries exhibit a range of orbital periods, solar-like oscillation behavior, and stellar activity. We use orbital solutions together with a suite of modeling tools to combine photometry and spectroscopy in a detailed analysis of tidal synchronization timescales, star spot activity, and stellar evolution histories. These red giants offer an unprecedented opportunity to test stellar physics and are important benchmarks for ensemble asteroseismology.

  9. Light equation in eclipsing binary CV Boo: third body candidate in elliptical orbit

    NASA Astrophysics Data System (ADS)

    Bogomazov, A. I.; Kozyreva, V. S.; Satovskii, B. L.; Krushevska, V. N.; Kuznyetsova, Y. G.; Ehgamberdiev, S. A.; Karimov, R. G.; Khalikova, A. V.; Ibrahimov, M. A.; Irsmambetova, T. R.; Tutukov, A. V.

    2016-12-01

    A short period eclipsing binary star CV Boo is tested for the possible existence of additional bodies in the system with a help of the light equation method. We use data on the moments of minima from the literature as well as from our observations during 2014 May-July. A variation of the CV Boo's orbital period is found with a period of {≈}75 d. This variation can be explained by the influence of a third star with a mass of {≈}0.4 M_{⊙} in an eccentric orbit with e≈0.9. A possibility that the orbital period changes on long time scales is discussed. The suggested tertiary companion is near the chaotic zone around the central binary, so CV Boo represents an interesting example to test its dynamical evolution. A list of 14 minima moments of the binary obtained from our observations is presented.

  10. The infrared counterpart of the eclipsing X-ray binary HO253 + 193

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Becklin, E. E.; Mclean, I. S.; Patterson, Joseph

    1992-01-01

    We report the identification of the infrared counterpart of the pulsating X-ray source HO253 + 193. It is a highly reddened star varying in K light with a period near 3 hr, but an apparent even-odd effect in the light curve implies that the true period is 6.06 hr. Together with the recent report of X-ray eclipses at the latter period, this establishes the close binary nature of the source. Infrared minimum occurs at X-ray minimum, certifying that the infrared variability arises from the tidal distortion of the lobe-filling secondary. The absence of a point source at radio wavelengths, plus the distance derived from the infrared data, suggests that the binary system is accidentally located behind the dense core of the molecular cloud Lynds 1457. The eclipses and pulsations in the X-ray light curve, coupled with the hard X-ray spectrum and low luminosity, demonstrate that HO253 + 193 contains an accreting magnetic white dwarf, and hence belongs to the 'DQ Herculis' class of cataclysmic variables.

  11. The Chandra Delta Ori Large Project: Occultation Measurements of the Shocked Gas tn the Nearest Eclipsing O-Star Binary

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.; Nichols, Joy; Naze, Yael; Rauw, Gregor; Pollock, Andrew; Moffat, Anthony; Richardson, Noel; Evans, Nancy; Hamaguchi, Kenji; Oskinova, Lida; hide

    2013-01-01

    Delta Ori is the nearest massive, single-lined eclipsing binary (O9.5 II + B0.5III). As such it serves as a fundamental calibrator of the mass-radius-luminosity relation in the upper HR diagram. It is also the only eclipsing O-type binary system which is bright enough to be observable with the CHANDRA gratings in a reasonable exposure. Studies of resolved X-ray line complexes provide tracers of wind mass loss rate and clumpiness; occultation by the X-ray dark companion of the line emitting region can provide direct spatial information on the location of the X-ray emitting gas produced by shocks embedded in the wind of the primary star. We obtained phase-resolved spectra with Chandra in order to determine the level of phase-dependent vs. secular variability in the shocked wind. Along with the Chandra observations we obtained simultaneous photometry from space with the Canadian MOST satellite to help understand the relation between X-ray and photospheric variability.

  12. A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Camilo, F; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbet, R; Cutini, S; Dermer, C D; Desvignes, G; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Freire, P C C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hobbs, G; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Johnston, S; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Manchester, R N; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; McLaughlin, M A; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ransom, S M; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Starck, J L; Striani, E; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Watters, K; Webb, N; Weltevrede, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface.

  13. Searching for Extrasolar Trojan Planets: A Status Report

    NASA Astrophysics Data System (ADS)

    Caton, D. B.; Davis, S. A.; Kluttz, K. A.; Stamilio, R. J.; Wohlman, K. D.

    2001-05-01

    We are exploring the light curves of eclipsing binaries for the photometric signature of planets that may exist at the L4 and L5 Lagrange points of the stellar system. While no binaries are known to exist that strictly satisfy the stellar mass ratio constraint for the restricted three-body problem, the general solution would allow a planet formed at the L-point to remain there if there are no major perturbing bodies such as an additional planet. We have coined such objects "Trojan planets." The advantage of this approach is that the phases of the planetary eclipses are known. We picked systems with deep primary eclipses, to maximize the amount of system light eclipsed by the planet when in front of the hotter star. We also scanned the Finding List for Observers of Interactive Binary Stars, for G dwarf systems, but found only a few that were high inclination and detached. The target list includes QY Aql, YZ Aql, V442 Cas, SS Cet, S Cnc, VW Cyg, WW Cyg, RR Dra, RX Gem, RY Gem, VW Hya, Y Leo, TV Mon, BN Sct, UW Vir, AC UMa, and GSC 1657. We have concentrated on V442 Cas and YZ Aql, based on initial results that show anomalies in the light curves near the phases where a Trojan planet eclipse is expected. New work is being done on brighter systems by using a "spot filter," similar to that developed by Castellano (PASP 112, 821-6),2000), to allow longer exposures that provide brighter comparison stars. We will report on the observations made to date on several systems. We gratefully acknowledge the support of the National Science Foundation, through grants AST-9731062 and AST-0089248. We also appreciate the support of the Fund for Astrophysical Research. Gregory Shelton and Brenda Corbin, at the U.S. naval Observatory Library, have been indispensable in providing references for these binary systems. This research has made use of the Simbad database, operated at CDS, Strasbourg, France

  14. LUMINOSITY DISCREPANCY IN THE EQUAL-MASS, PRE-MAIN-SEQUENCE ECLIPSING BINARY PAR 1802: NON-COEVALITY OR TIDAL HEATING?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez Maqueo Chew, Yilen; Stassun, Keivan G.; Hebb, Leslie

    Parenago 1802, a member of the {approx}1 Myr Orion Nebula Cluster, is a double-lined, detached eclipsing binary in a 4.674 day orbit, with equal-mass components (M{sub 2}/M{sub 1} = 0.985 {+-} 0.029). Here we present extensive VI{sub C} JHK{sub S} light curves (LCs) spanning {approx}15 yr, as well as a Keck/High Resolution Echelle Spectrometer (HIRES) optical spectrum. The LCs evince a third light source that is variable with a period of 0.73 days, and is also manifested in the high-resolution spectrum, strongly indicating the presence of a third star in the system, probably a rapidly rotating Classical T Tauri star.more » We incorporate this third light into our radial velocity and LC modeling of the eclipsing pair, measuring accurate masses (M{sub 1} = 0.391 {+-} 0.032 and M{sub 2} = 0.385 {+-} 0.032 M{sub Sun }), radii (R{sub 1} = 1.73 {+-} 0.02 and R{sub 2} = 1.62 {+-} 0.02 R{sub Sun }), and temperature ratio (T{sub eff,1}/T{sub eff,2} = 1.0924 {+-} 0.0017). Thus, the radii of the eclipsing stars differ by 6.9% {+-} 0.8%, the temperatures differ by 9.2% {+-} 0.2%, and consequently the luminosities differ by 62% {+-} 3%, despite having masses equal to within 3%. This could be indicative of an age difference of {approx}3 Multiplication-Sign 10{sup 5} yr between the two eclipsing stars, perhaps a vestige of the binary formation history. We find that the eclipsing pair is in an orbit that has not yet fully circularized, e = 0.0166 {+-} 0.003. In addition, we measure the rotation rate of the eclipsing stars to be 4.629 {+-} 0.006 days; they rotate slightly faster than their 4.674 day orbit. The non-zero eccentricity and super-synchronous rotation suggest that the eclipsing pair should be tidally interacting, so we calculate the tidal history of the system according to different tidal evolution theories. We find that tidal heating effects can explain the observed luminosity difference of the eclipsing pair, providing an alternative to the previously suggested age difference.« less

  15. GSC 4232.2850, a new eclipsing binary with elliptical orbit

    NASA Astrophysics Data System (ADS)

    Goranskij, V.; Shugarov, S.; Kroll, P.; Golovin, A.

    2005-04-01

    GSC 4232.2830 (20h 01m 28s.407, +61? 10' 17".18, 2000.0, v=12m.1) was suspected to be an eclipsing binary by VPG in the routine overview of photographical plates taken with 40-cm astrograph of SAI Crimean station. To define orbital elements of the binary, we searched for observations in Sonneberg Observatory plate collection, NSVS database (Wozniak et al., 2004), and carried out visual monitoring with a small telescope equipped with an electronic image tube, an analogue of a night vision device. Later, when we had found a preliminary solution, we carried out accurate CCD photometry to improve the orbital elements. We should note, that the depths of eclipses in the NSVS database do not exceed 0m.2, what contradicts to other observations. We suppose that NSVS measurements concern to integral light of two stars, a variable star, and a nearby brighter star, GSC 4232.2395, due to low resolution of this survey, 72". Using all the available observations we found the single orbital solution with an elliptical orbit and the period of 11,6 day. The center of the secondary minimum occurs at the orbital phase 0.69835 or 8.1 day after the primary minimum. The improved ephemeris derived using accurate CCD observations is following: HJD Min I = 2453278,3185(2) + 11.628188 (5) x E. O-C analysis does not show orbital period variations during the time interval of observations, or any evidence of apsidal motion. The observations show that both eclipses have about equal depth 0m.60, but essentially different duration, 0p.028 (7 h.8) for Min I, and 0 p.0175 (4 h.9) for Min II. The eclipses are partial. CCD photometry gives mean colors U-B = -0 m.06, B-V = 0 m.57, and V-R = 0 m.50 without notable color variations in the eclipse phases. Old Sonneberg photographic observations indicate that the eclipses were shallower in the middle of the past century than in the present time! Such contradictions may suggest that the depth of eclipses varied, as in the well-known system SSLac (Mossakovskaja, 1993; Milone et al, 2000; Torres and Stefanic, 2001). The eclipse depth variations should be verified with more precise observations taken during the longer time interval.

  16. The apsidal motion of the eccentric eclipsing binary DI Herculis - An apparent discrepancy with general relativity

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Maloney, F. P.

    1985-01-01

    The apsidal motion of the eccentric eclipsing binary DI Herculis (HD 175227) is determined from an analysis of the available observations and eclipse timings from 1959 to 1984. Least squares solutions to the primary and secondary minima extending over an 84-yr interval yielded a small advance of periastron omega dot of 0.65 deg/100 yr + or - 0.18/100 yr. The observed advance of the periastron is about one seventh of the theoretical value of 4.27 deg/100 yr that is expected from the combined relativistic and classical effects. The discrepancy is about -3.62 deg/100 yr, or a magnitude of about 20 sigma. Classical mechanisms which explain the discrepancy are discussed, together with the possibility that there may be problems with general relativity itself.

  17. Modeling Radial Velocities and Eclipse Photometry of the Kepler Target KIC 4054905: an Oscillating Red Giant in an Eclipsing Binary

    NASA Astrophysics Data System (ADS)

    Benbakoura, M.; Gaulme, P.; McKeever, J.; Beck, P. G.; Jackiewicz, J.; García, R. A.

    2017-12-01

    Asteroseismology is a powerful tool to measure the fundamental properties of stars and probe their interiors. This is particularly efficient for red giants because their modes are well detectable and give information on their deep layers. However, the seismic relations used to infer the mass and radius of a star have been calibrated on the Sun. Therefore, it is crucial to assess their accuracy for red giants which are not perfectly homologous to it. We study eclipsing binaries with a giant component to test their validity. We identified 16 systems for which we intend to compare the dynamical masses and radii obtained by combined photometry and spectroscopy to the values obtained from asteroseismology. In the present work, we illustrate our approach on a system from our sample.

  18. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  19. High-energy variability of the Pulsar binary PSR J1311-3430

    NASA Astrophysics Data System (ADS)

    An, Hongjun; Fermi-LAT Collaboration

    2018-01-01

    We present analysis results of high-energy observations of the extreme mass-ratio black-widow millisecond pulsar binary PSR J1311-3430. Our studies in the UV, X-ray, and gamma-ray bands confirm the orbital modulation in the gamma-ray band as suggested previously. In addition, we find that the modulation is stronger in the high-energy band. In the lower-energy UV and X-ray bands, we detect flares which were observed previously and attributed to magnetic activities. We find that the optical flares are associated with the X-ray flares, suggesting common origin. We explore possible connections of the variabilities with the intrabinary shock (IBS) and magnetic activity on the low mass companion.

  20. CHANDRA AND SWIFT X-RAY OBSERVATIONS OF THE X-RAY PULSAR SMC X-2 DURING THE OUTBURST OF 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K. L.; Hu, C.-P; Lin, L. C. C.

    2016-09-10

    We report the Chandra /HRC-S and Swift /XRT observations for the 2015 outburst of the high-mass X-ray binary pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra /HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift /XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipsesmore » or an ionized high-density shadow wind near the companion’s surface. Finally, we propose that an outflow driven by the radiation pressure from day ∼10 played an important role in the X-ray/optical evolution of the outburst.« less

  1. Millisecond Pulsars: The Gifts that Keep on Giving

    NASA Astrophysics Data System (ADS)

    Ransom, Scott M.

    2011-01-01

    There are about 2000 pulsars known, and while all of them as neutron stars are fascinating objects, the best and most exciting science comes from a very small percentage ( 1%) of exotic objects, most of which are millisecond pulsars (MSPs). These systems are notoriously hard to detect, yet their numbers have bloomed in the past 5-6 years via surveys using the world's largest radio telescopes and the Fermi Gamma-ray Space Telescope. Timing observations of these new MSPs as well as much improved monitoring of previously known MSPs are providing a wealth of science. In this talk I'll briefly cover 3 main areas in basic physics where systems like these are making an impact: strong-field tests of general relativity, the nature of matter at supra-nuclear densities, and the direct detection of gravitational waves (e.g. NANOGrav). In addition, several of the systems exhibit some very interesting astrophysics as well, including a transition from X-ray binary to MSP and a likely triple system that turned into an eccentric MSP binary.

  2. A NuSTAR Observation of the Gamma-Ray Emitting Millisecond Pulsar PSR J1723–2837

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, A. K. H.; Hui, C. Y.; Takata, J.

    We report on the first NuSTAR observation of the gamma-ray emitting millisecond pulsar binary PSR J1723–2837. X-ray radiation up to 79 keV is clearly detected, and the simultaneous NuSTAR and Swift spectrum is well described by an absorbed power law with a photon index of ∼1.3. We also find X-ray modulations in the 3–10, 10–20, 20–79, and 3–79 keV bands at the 14.8 hr binary orbital period. All of these are entirely consistent with previous X-ray observations below 10 keV. This new hard X-ray observation of PSR J1723–2837 provides strong evidence that the X-rays are from the intrabinary shock viamore » an interaction between the pulsar wind and the outflow from the companion star. We discuss how the NuSTAR observation constrains the physical parameters of the intrabinary shock model.« less

  3. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    PubMed

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  4. IUE observations of the atmospheric eclipsing binary system Zeta Aurigae

    NASA Technical Reports Server (NTRS)

    Champman, R. D.

    1980-01-01

    IUE observations of the eclipsing binary system Zeta Aurigae made prior to and during the eclipse of the relatively small B8 V star by the cool supergiant star (spectral type K2 II) are reported. Spectral lines produced by the absorption of B star radiation in the atmosphere of the K star during eclipse can be used as a probe of the extended K star atmosphere, due to the negligible cool star continuum in the 1200-3200 A region. Spectra taken prior to eclipse are found to be similar to those of the single B8 V star 64 Ori, with the exception of very strong multi-component absorption lines of Si II, Si IV, C IV and the Mg resonance doublet with strong P Cygni profiles, indicating a double shell. Absorption lines including those corresponding to Al II, Al III, Cr II, Mn II, Fe II, Ni II and Ca II are observed to increase in strength and number as the eclipse progresses, with high-ionization-potential lines formed far from the K star, possibly in a shock wave, and low-ionization potential lines, formed in cool plasma, probably a cool wind, nearer to the K star. Finally, an emission-line spectra with lines corresponding to those previously observed in absorption is noted at the time the B-star continuum had disappeared.

  5. An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent.

    PubMed

    Pietrzyński, G; Graczyk, D; Gieren, W; Thompson, I B; Pilecki, B; Udalski, A; Soszyński, I; Kozłowski, S; Konorski, P; Suchomska, K; Bono, G; Moroni, P G Prada; Villanova, S; Nardetto, N; Bresolin, F; Kudritzki, R P; Storm, J; Gallenne, A; Smolec, R; Minniti, D; Kubiak, M; Szymański, M K; Poleski, R; Wyrzykowski, L; Ulaczyk, K; Pietrukowicz, P; Górski, M; Karczmarek, P

    2013-03-07

    In the era of precision cosmology, it is essential to determine the Hubble constant to an accuracy of three per cent or better. At present, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC), which, being our second-closest galaxy, serves as the best anchor point for the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to measure stellar parameters and distances precisely and accurately. The eclipsing-binary method was previously applied to the LMC, but the accuracy of the distance results was lessened by the need to model the bright, early-type systems used in those studies. Here we report determinations of the distances to eight long-period, late-type eclipsing systems in the LMC, composed of cool, giant stars. For these systems, we can accurately measure both the linear and the angular sizes of their components and avoid the most important problems related to the hot, early-type systems. The LMC distance that we derive from these systems (49.97 ± 0.19 (statistical) ± 1.11 (systematic) kiloparsecs) is accurate to 2.2 per cent and provides a firm base for a 3-per-cent determination of the Hubble constant, with prospects for improvement to 2 per cent in the future.

  6. Photometric Mapping of Two Kepler Eclipsing Binaries: KIC11560447 and KIC8868650

    NASA Astrophysics Data System (ADS)

    Senavci, Hakan Volkan; Özavci, I.; Isik, E.; Hussain, G. A. J.; O'Neal, D. O.; Yilmaz, M.; Selam, S. O.

    2018-04-01

    We present the surface maps of two eclipsing binary systems KIC11560447 and KIC8868650, using the Kepler light curves covering approximately 4 years. We use the code DoTS, which is based on maximum entropy method in order to reconstruct the surface maps. We also perform numerical tests of DoTS to check the ability of the code in terms of tracking phase migration of spot clusters. The resulting latitudinally averaged maps of KIC11560447 show that spots drift towards increasing orbital longitudes, while the overall behaviour of spots on KIC8868650 drifts towards decreasing latitudes.

  7. Massive companions of binary systems

    NASA Astrophysics Data System (ADS)

    Jableka, D.; Zola, S.; Zakrzewski, B.; Kreiner, J. M.; Ogloza, W.

    2018-04-01

    We examined the O-C diagrams of eclipsing binary systems and selected these exhibiting cyclic shape, either sinusoidal or quasi sinusoidal. Assuming these variations being due to the Light Time Travel effect (LTE), we estimated the parameters of companions with the Monte Carlo method. As a result, we identified nearly two dozen of eclipsing systems that might have companions with a minimum mass larger than that of a neutron star. Their masses fall into the range between 1.7 and 34 solar masses. This sample of triples with high mass companions can be confirmed with the help of observations gathered by Gaia: parallaxes and astrometric measurements.

  8. Prospects for gravitational wave astronomy with next generation large-scale pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Mohanty, Soumya D.

    2018-02-01

    Next generation radio telescopes, namely the Five-hundred-meter Aperture Spherical Telescope (FAST) and the Square Kilometer Array (SKA), will revolutionize the pulsar timing arrays (PTAs) based gravitational wave (GW) searches. We review some of the characteristics of FAST and SKA, and the resulting PTAs, that are pertinent to the detection of gravitational wave signals from individual supermassive black hole binaries.

  9. Corrections and clarifications.

    PubMed

    1994-01-21

    The Research News article by Faye Flam about the 1993 physics Nobel Prize ("A prize for patient listening," 22 Oct., p. 507), awarded to Joseph Taylor and Russell Hulse for the discovery of a binary pulsar, incorrectly attributed key observations. The measurements implying that the pulsar is emitting gravitational waves were made by Taylor in collaboration with Joel Weisberg, Lee Fowler, and Peter McCulloch, not by Taylor and Hulse.

  10. Classification of close binary systems by Svechnikov

    NASA Astrophysics Data System (ADS)

    Dryomova, G. N.

    The paper presents the historical overview of classification schemes of eclipsing variable stars with the foreground of advantages of the classification scheme by Svechnikov being widely appreciated for Close Binary Systems due to simplicity of classification criteria and brevity.

  11. Probing Neutron Star Evolution with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Wijers, Ralph A. M. J.

    1996-02-01

    The research sponsored by this grant was conducted in two fields of high-energy astrophysics: gamma-ray bursts and evolution of neutron stars. It is unknown at this time whether they are related. The work performed in each area is discussed followed by a full list of publications supported by the grant. My research (with E. Fenimore, L. Lubin, B. Paczyiiski, and A. Ulmer) has focussed on devising tests that could distinguish between BATSE and galactic-halo distance scales using the available data. In the first instance, the issue was whether the early BATSE peak flux distribution could be used to extract more than just a slope of the log N(greater than P) distribution, and whether it joined smoothly to the steeper peak flux distribution of bright bursts. To this end, we analysed the peak flux distribution for the presence of a change in slope. This was done both by fitting models with a core radius to see whether a significant value for it could be found, and by developing a completely model-independent test to search for slope changes in arbitrary distributions that are nearly power laws. A slope change was marginally detected in the first-year BATSE data. Good progress has been made in understanding the evolution of neutron stars and their magnetic fields. Having shown in earlier work that magnetic fields in some neutron stars, particularly Her X-1, do not decay spontaneously on million-year time scales, we set out to check whether such spontaneous decay was needed in isolated radio pulsars, as claimed by many. We found that it is not; rather long decay times or no decay are preferred. Since there are neutron stars with low magnetic fields, one must conclude that there is something in their past that distinguishes them from most pulsars. These so-called recycled pulsars are in binaries much more often than normal pulsars. My research concentrates on the class of scenarios in which the recycled pulsars are initially the same as ordinary high-field radio pulsars, and have acquired their properties due to mass transfer processes in binary stars. This links their evolution to that of X-ray binaries.

  12. Multiwavelength monitoring and X-ray brightening of Be X-ray binary PSR J2032+4127/MT91 213 on its approach to periastron

    DOE PAGES

    Ho, Wynn C. G.; Ng, C. -Y.; Lyne, Andrew G.; ...

    2016-09-22

    The radio and gamma-ray pulsar PSR J2032+4127 was recently found to be in a decades-long orbit with the Be star MT91 213, with the pulsar moving rapidly towards periastron. This binary shares many similar characteristics with the previously unique binary system PSR B1259-63/LS 2883. Here in this paper, we describe radio, X-ray, and optical monitoring of PSR J2032+4127/MT91 213. Our extended orbital phase coverage in radio, supplemented with Fermi LAT gamma-ray data, allows us to update and refine the orbital period to 45–50 yr and time of periastron passage to 2017 November. We analyse archival and recent Chandra and Swiftmore » observations and show that PSR J2032+4127/MT91 213 is now brighter in X-rays by a factor of ~70 since 2002 and ~20 since 2010. While the pulsar is still far from periastron, this increase in X-rays is possibly due to collisions between pulsar and Be star winds. Optical observations of the Hα emission line of the Be star suggest that the size of its circumstellar disc may be varying by ~2 over time-scales as short as 1–2 months. In conclusion, multiwavelength monitoring of PSR J2032+4127/MT91 213 will continue through periastron passage, and the system should present an interesting test case and comparison to PSR B1259-63/LS 2883.« less

  13. RELATIVISTIC MEASUREMENTS FROM TIMING THE BINARY PULSAR PSR B1913+16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisberg, J. M.; Huang, Y., E-mail: jweisber@carleton.edu

    2016-09-20

    We present relativistic analyses of 9257 measurements of times-of-arrival from the first binary pulsar, PSR B1913+16, acquired over the last 35 years. The determination of the “Keplerian” orbital elements plus two relativistic terms completely characterizes the binary system, aside from an unknown rotation about the line of sight, leading to a determination of the masses of the pulsar and its companion: 1.438 ± 0.001 M {sub ☉} and 1.390 ± 0.001 M {sub ☉}, respectively. In addition, the complete system characterization allows for the creation of relativistic gravitation test by comparing measured and predicted sizes of various relativistic phenomena. Wemore » find that the ratio of the observed orbital period decrease caused by gravitational wave damping (corrected by a kinematic term) to the general relativistic prediction is 0.9983 ± 0.0016, thereby confirms the existence and strength of gravitational radiation as predicted by general relativity. For the first time in this system, we have also successfully measured the two parameters characterizing the Shapiro gravitational propagation delay, and found that their values are consistent with general relativistic predictions. For the first time in any system, we have also measured the relativistic shape correction to the elliptical orbit, δ {sub θ} , although its intrinsic value is obscured by currently unquantified pulsar emission beam aberration. We have also marginally measured the time derivative of the projected semimajor axis, which, when improved in combination with beam aberration modeling from geodetic precession observations, should ultimately constrain the pulsar’s moment of inertia.« less

  14. A hydrodynamics-informed, radiation model for HESS J0632+057 from radio to gamma rays

    NASA Astrophysics Data System (ADS)

    Barkov, Maxim V.; Bosch-Ramon, Valenti

    2018-06-01

    Relativistic hydrodynamical simulations of the eccentric gamma-ray binary HESS J0632+057 show that the energy of a putative pulsar wind should accumulate in the binary surroundings between periastron and apastron, being released by fast advection close to apastron. To assess whether this could lead to a maximum of the non-thermal emission before apastron, we derive simple prescriptions for the non-thermal energy content, the radiation efficiency, and the impact of energy losses on non-thermal particles, in the simulated hydrodynamical flow. These prescriptions are used to estimate the non-thermal emission in radio, X-rays, GeV, and TeV, from the shocked pulsar wind in a binary system simulated using a simplified 3-dimensional scheme for several orbital cycles. Lightcurves at different wavelengths are derived, together with synthetic radio images for different orbital phases. The dominant peak in the computed lightcurves is broad and appears close to, but before, apastron. This peak is followed by a quasi-plateau shape, and a minor peak only in gamma rays right after periastron. The radio maps show ejection of radio blobs before apastron in the periastron-apastron direction. The results show that a scenario with a highly eccentric high-mass binary hosting a young pulsar can explain the general phenomenology of HESS J0632+057: despite its simplicity, the adopted approach yields predictions that are robust at a semi-quantitative level and consistent with multiwavelength observations.

  15. AUTOCLASSIFICATION OF THE VARIABLE 3XMM SOURCES USING THE RANDOM FOREST MACHINE LEARNING ALGORITHM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, Sean A.; Murphy, Tara; Lo, Kitty K., E-mail: s.farrell@physics.usyd.edu.au

    In the current era of large surveys and massive data sets, autoclassification of astrophysical sources using intelligent algorithms is becoming increasingly important. In this paper we present the catalog of variable sources in the Third XMM-Newton Serendipitous Source catalog (3XMM) autoclassified using the Random Forest machine learning algorithm. We used a sample of manually classified variable sources from the second data release of the XMM-Newton catalogs (2XMMi-DR2) to train the classifier, obtaining an accuracy of ∼92%. We also evaluated the effectiveness of identifying spurious detections using a sample of spurious sources, achieving an accuracy of ∼95%. Manual investigation of amore » random sample of classified sources confirmed these accuracy levels and showed that the Random Forest machine learning algorithm is highly effective at automatically classifying 3XMM sources. Here we present the catalog of classified 3XMM variable sources. We also present three previously unidentified unusual sources that were flagged as outlier sources by the algorithm: a new candidate supergiant fast X-ray transient, a 400 s X-ray pulsar, and an eclipsing 5 hr binary system coincident with a known Cepheid.« less

  16. 1FGL J1417.7-4407: A Likely Gamma-Ray Bright Binary with A Massive Neutron Star and A Giant Secondary

    NASA Technical Reports Server (NTRS)

    Strader, Jay; Chomiuk, Laura; Cheung, C. C.; Sand, David J.; Donato, Davide; Corbet, Robin H. D.; Koeppe, Dana; Edwards, Philip G.; Stevens, Jamie; Petrov, Leonid

    2015-01-01

    We present multiwavelength observations of the persistent Fermi-Large Area Telescope unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 solar mass) and a approximately 0.35 solar mass giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk-magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma- ray to X-ray luminosity (approximately 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.

  17. A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Archer, A.

    2016-11-10

    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259–63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both datamore » sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ∼2 G before the disappearance of the radio pulsar and greater than ∼10 G afterward.« less

  18. Identification of the High-energy Gamma-Ray Source 3FGL J1544.6-1125 as a Transitional Millisecond Pulsar Binary in an Accreting State

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Halpern, Jules P.

    2015-04-01

    We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4-112820, the most probable counterpart of the unassociated Fermi-LAT source 3FGL J1544.6-1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-rays exhibit large-amplitude variations in the form of fast switching (within ˜10 s) between two distinct flux levels that differ by a factor of ≈10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar (MSP) binaries PSR J1023+0038 and XSS J12270-4859, which are also associated with γ-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4-112820 and 3FGL J1544.6-1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto an MSP and the γ-rays originating from an accretion-driven outflow. 1RXS J154439.4-112820 is only the fourth γ-ray-emitting low-mass X-ray binary system to be identified and is likely to sporadically undergo transformations to a non-accreting rotation-powered pulsar system.

  19. News From The Erebos Project

    NASA Astrophysics Data System (ADS)

    Schaffenroth, Veronika; Barlow, Brad; Geier, Stephan; Vučković, Maja; Kilkenny, Dave; Schaffenroth, Johannes

    2017-12-01

    Planets and brown dwarfs in close orbits will interact with their host stars, as soon as the stars evolve to become red giants. However, the outcome of those interactions is still unclear. Recently, several brown dwarfs have been discovered orbiting hot subdwarf stars at very short orbital periods of 0.065 - 0.096 d. More than 8% of the close hot subdwarf binaries might have sub-stellar companions. This shows that such companions can significantly affect late stellar evolution and that sdB binaries are ideal objects to study this influence. Thirty-eight new eclipsing sdB binary systems with cool low-mass companions and periods from 0.05 to 0.5 d were discovered based on their light curves by the OGLE project. In the recently published catalog of eclipsing binaries in the Galactic bulge, we discovered 75 more systems. We want to use this unique and homogeneously selected sample to derive the mass distribution of the companions, constrain the fraction of sub-stellar companions and determine the minimum mass needed to strip off the red-giant envelope. We are especially interested in testing models that predict hot Jupiter planets as possible companions. Therefore, we started the EREBOS (Eclipsing Reflection Effect Binaries from the OGLE Survey) project, which aims at analyzing those new HW Vir systems based on a spectroscopic and photometric follow up. For this we were granted an ESO Large Program for ESO-VLT/FORS2. Here we give an update on the the current status of the project and present some preliminary results.

  20. Orbital Period Variations in the NY Vir System, Revisited in the Light of New Data

    NASA Astrophysics Data System (ADS)

    Baştürk, Özgür; Esmer, Ekrem Murat

    2018-02-01

    NY Virginis is an eclipsing binary system with a subdwarf B primary and an M type dwarf secondary. Recent studies (Qian et al. 2012; Lee et al. 2014) suggested the presence of two circumbinary planets with a few Jovian masses within the system. Lee et al. (2014) examined the orbital stabilities of the suggested planets, using the best-fit parameters derived from their eclipse timing variation analysis. They found that the outer companion should be ejected from the system in about 800 000 years. An observational report from Pulley et al. (2016) pointed out that the recent mideclipse times of the binary deviate significantly from the models suggested by Lee et al. (2014). In fact, variations in the orbital period of the system had already been recognized by many authors, but the parameters of these variations vary significantly as new data accumulate. Here, we analyze the eclipse timing variations of the NY Vir system, using new mid-eclipse times that we have obtained together with earlier published measurements in order to understand the nature of the system and constrain its parameters.

Top