Chen, Shulian; Peng, Chuandu; Wei, Xin; Luo, Deyi; Lin, Yifei; Yang, Tongxin; Jin, Xi; Gong, Lina; Li, Hong; Wang, Kunjie
2017-08-01
To investigate the effect of simulated physiological stretch on the expression of extracellular matrix (ECM) proteins and the role of integrin α4/αv, focal adhesion kinase (FAK), extracellular regulated protein kinases 1/2 (ERK1/2) in the stretch-induced ECM protein expression of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to simulated physiological stretch at the range of 5, 10, and 15% elongation. Expression of primary ECM proteins in HBSMCs was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the FAK and ERK1/2 was determined by Western blot with FAK inhibitor and ERK1/2 inhibitor (PD98059). Specificity of integrin α4 and integrin αv was determined with small interfering ribonucleic acid (siRNA) transfection. The expression of collagen I (Col1), collagen III (Col3), and fibronectin (Fn) was increased significantly under the simulated physiological stretch of 10 and 15%. Integrin α4 and αv, FAK, ERK1/2 were activated by 10% simulated physiological stretch compared with the static condition. Pretreatment of ERK1/2 inhibitor, FAK inhibitor, integrin α4 siRNA, or integrin αv siRNA reduced the stretch-induced expression of ECM proteins. And FAK inhibitor decreased the stretch-induced ERK1/2 activity and ECM protein expression. Integrin α4 siRNA or integrin αv siRNA inhibited the stretch-induced activity of FAK. Simulated physiological stretch increases the expression of ECM proteins in HBSMCs, and integrin α4/αv-FAK-ERK1/2 signaling pathway partly modulates the mechano-transducing process.
Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L
2017-02-01
Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. Copyright © 2017 the American Physiological Society.
Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S.; Chen, Faye H.
2011-01-01
Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate-hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention. PMID:22095699
Effect of ECM2 expression on bovine skeletal muscle-derived satellite cell differentiation.
Liu, Chang; Tong, Huili; Li, Shufeng; Yan, Yunqin
2018-05-01
Extracellular matrix components have important regulatory functions during cell proliferation and differentiation. In recent study, extracellular matrix were shown to have a strong effect on skeletal muscle differentiation. Here, we aimed to elucidate the effects of extracellular matrix protein 2 (ECM2), an extracellular matrix component, on the differentiation of bovine skeletal muscle-derived satellite cells (MDSCs). Western blot and immunofluorescence analyses were used to elucidate the ECM2 expression pattern in bovine MDSCs during differentiation in vitro. CRISPR/Cas9 technology was used to activate or inhibit ECM2 expression to study its effects on the in vitro differentiation of bovine MDSCs. ECM2 expression was shown to increase gradually during bovine MDSC differentiation, and the levels of this protein were higher in more highly differentiated myotubes. ECM2 activation promoted MDSC differentiation, whereas its suppression inhibited the differentiation of these cells. Here, for the first time, we demonstrated the importance of ECM2 expression during bovine MDSC differentiation; these results could lead to treatments that help to increase beef cattle muscularity. © 2018 International Federation for Cell Biology.
Chapman, Mark A.; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David
2017-01-01
Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173–183, 2009; Kjaer M. Physiol Rev 84: 649–98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins—fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. PMID:27881411
Dexamethasone attenuates oxidation of extracellular matrix proteins by human monocytes.
Ahmed, Shahid; Adamidis, Ananea; Jan, Louis C; Gibbons, Nora; Mattana, Joseph
2003-10-01
In response to infection or in immune complex-mediated diseases, inflammatory cells may oxidatively damage extracellular matrix (ECM) proteins. In this study we evaluated whether human monocytes could oxidize ECM and whether this could be modulated by exposure to LPS, IgG complexes, and dexamethasone (DEX). Wells in tissue culture plates were coated with the ECM preparation Matrigel. Porous inserts with or without the human monocyte cell line THP-1 were placed into ECM-containing wells and cells were exposed to control conditions or to LPS (10 ng/ml), IgG complexes (200 and 500 microg/ml), or DEX (10(-7) and 10(-6) M). ECM was then subjected to Western blot analysis using an antibody to oxidized protein. In addition, Western blot analysis was carried out on DEX-treated cells to evaluate expression of the NADPH oxidase components p67-phox and gp91-phox. THP-1 cells enhanced ECM oxidation and this effect was augmented by LPS and by IgG aggregates. Preincubation of cells with DEX attenuated ECM oxidation and was also associated with decreased expression of p67-phox and gp91-phox. These findings suggest that human monocytes can oxidize ECM proteins and that this may be modulated by IgG complexes and LPS. Dexamethasone appears to attenuate ECM oxidation and a better understanding of this mechanism might allow for interventions to minimize oxidative damage to ECM proteins by monocytes in infectious and inflammatory states.
Meehan, Daniel T.; Delimont, Duane; Dufek, Brianna; Zallocchi, Marisa; Phillips, Grady; Gratton, Michael Anne; Cosgrove, Dominic
2016-01-01
Alport syndrome, a type IV collagen disorder, manifests as glomerular disease associated with hearing loss with thickening of the glomerular and strial capillary basement membranes (SCBMs). We have identified a role for endothelin-1 (ET-1) activation of endothelin A receptors (ETARs) in glomerular pathogenesis. Here we explore whether ET-1 plays a role in strial pathology. Wild type (WT) and Alport mice were treated with the ETAR antagonist, sitaxentan. The stria vascularis was analyzed for SCBM thickness and for extracellular matrix (ECM) proteins. Additional WT and Alport mice were exposed to noise or hypoxia and the stria analyzed for hypoxia-related and ECM genes. A strial marginal cell line cultured under hypoxic conditions, or stimulated with ET-1 was analyzed for expression of hypoxia-related and ECM transcripts. Noise exposure resulted in significantly elevated ABR thresholds in Alport mice relative to wild type littermates. Alport stria showed elevated expression of collagen α1(IV), laminin α2, and laminin α5 proteins relative to WT. SCBM thickening and elevated ECM protein expression was ameliorated by ETAR blockade. Stria from normoxic Alport mice and hypoxic WT mice showed upregulation of hypoxia-related, ECM, and ET-1 transcripts. Both ET-1 stimulation and hypoxia up-regulated ECM transcripts in cultured marginal cells. We conclude that ET-1 mediated activation of ETARs on strial marginal cells results in elevated expression of ECM genes and thickening of the SCBMs in Alport mice. SCBM thickening results in hypoxic stress further elevating ECM and ET-1 gene expression, exacerbating strial pathology. PMID:27553900
Ito, Mikako; Ohno, Kinji
2018-02-20
Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Meehan, Daniel T; Delimont, Duane; Dufek, Brianna; Zallocchi, Marisa; Phillips, Grady; Gratton, Michael Anne; Cosgrove, Dominic
2016-11-01
Alport syndrome, a type IV collagen disorder, manifests as glomerular disease associated with hearing loss with thickening of the glomerular and strial capillary basement membranes (SCBMs). We have identified a role for endothelin-1 (ET-1) activation of endothelin A receptors (ET A Rs) in glomerular pathogenesis. Here we explore whether ET-1 plays a role in strial pathology. Wild type (WT) and Alport mice were treated with the ET A R antagonist, sitaxentan. The stria vascularis was analyzed for SCBM thickness and for extracellular matrix (ECM) proteins. Additional WT and Alport mice were exposed to noise or hypoxia and the stria analyzed for hypoxia-related and ECM genes. A strial marginal cell line cultured under hypoxic conditions, or stimulated with ET-1 was analyzed for expression of hypoxia-related and ECM transcripts. Noise exposure resulted in significantly elevated ABR thresholds in Alport mice relative to wild type littermates. Alport stria showed elevated expression of collagen α1(IV), laminin α2, and laminin α5 proteins relative to WT. SCBM thickening and elevated ECM protein expression was ameliorated by ET A R blockade. Stria from normoxic Alport mice and hypoxic WT mice showed upregulation of hypoxia-related, ECM, and ET-1 transcripts. Both ET-1 stimulation and hypoxia up-regulated ECM transcripts in cultured marginal cells. We conclude that ET-1 mediated activation of ET A Rs on strial marginal cells results in elevated expression of ECM genes and thickening of the SCBMs in Alport mice. SCBM thickening results in hypoxic stress further elevating ECM and ET-1 gene expression, exacerbating strial pathology. Copyright © 2016 Elsevier B.V. All rights reserved.
ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin.
Lee, K-m; Nam, K; Oh, S; Lim, J; Kim, R K; Shim, D; Choi, J-h; Lee, S-J; Yu, J-H; Lee, J W; Ahn, S H; Shin, I
2015-12-10
Extracellular Matrix Protein 1 (ECM1) is a marker for tumorigenesis and is correlated with invasiveness and poor prognosis in various types of cancer. However, the functional role of ECM1 in cancer metastasis is unclear. Here, we detected high ECM1 level in breast cancer patient sera that was associated with recurrence of tumor. The modulation of ECM1 expression affected not only cell migration and invasion, but also sphere-forming ability and drug resistance in breast cancer cell lines. In addition, ECM1 regulated the gene expression associated with the epithelial to mesenchymal transition (EMT) progression and cancer stem cell (CSC) maintenance. Interestingly, ECM1 increased β-catenin expression at the post-translational level through induction of MUC1, which was physically associated with β-catenin. Indeed, the association between β-catenin and the MUC1 cytoplasmic tail was increased by ECM1. Furthermore, forced expression of β-catenin altered the gene expression that potentiated EMT progression and CSC phenotype maintenance in the cells. These data provide evidence that ECM1 has an important role in cancer metastasis through β-catenin stabilization.
González, Angel; Lenzi, Henrique Leonel; Motta, Ester Maria; Caputo, Luzia; Restrepo, Angela; Cano, Luz Elena
2008-01-01
Extracellular matrix (ECM) proteins are important modulators of migration, differentiation and proliferation for the various cell types present in the lungs; they influence the immune response as well as participate in the adherence of several fungi including Paracoccidioides brasiliensis. The expression, deposition and arrangement of ECM proteins such as laminin, fibronectin, fibrinogen, collagen and proteoglycans in the lungs of mice infected with P. brasiliensis conidia has been evaluated in this study, together with the elastic fibre system. Lungs of BALB/c mice infected with P. brasiliensis conidia were analysed for the different ECM proteins by histological and immunohistochemical procedures at different times of infection. In addition, laser scanning confocal microscopy and scanning electron microscopy were used. During the early periods, the lungs of infected animals showed an inflammatory infiltrate composed mainly of polymorphonuclear neutrophils (PMNs) and macrophages, while during the later periods, mice presented a chronic inflammatory response with granuloma formation. Re-arrangement and increased expression of all ECM proteins tested were observed throughout all studied periods, especially during the occurrence of inflammatory infiltration and formation of the granuloma. The elastic fibre system showed an elastolysis process in all experiments. In conclusion, this study provides new details of pulmonary ECM distribution during the course of paracoccidioidomycosis. PMID:18336528
Shin, Seung-Heon; Ye, Mi-Kyung; Choi, Sung-Yong; Kim, Yee-Hyuk
2016-06-01
Eosinophils and fibroblasts are known to play major roles in the pathogenesis of nasal polyps. Fungi are commonly found in nasal secretion and are associated with airway inflammation. To investigate whether activated eosinophils by airborne fungi can influence the production of extracellular matrix (ECM) from nasal fibroblasts. Inferior turbinate and nasal polyp fibroblasts were stimulated with Alternaria or Aspergillus, respectively, for 24 hours and ECM messenger RNA (mRNA) and protein expressions were measured. Eosinophils isolated from healthy volunteers were stimulated with Alternaria or Aspergillus for 4 hours then superoxide, eosinophil peroxidase, and transforming growth factor β1 were measured. Then activated eosinophils were cocultured with nasal fibroblasts for 24 hours, and ECM mRNA expressions were measured. Alternaria strongly enhanced ECM mRNA expression and protein production from nasal fibroblasts. Alternaria also induced the production of superoxide, eosinophil peroxidase, and transforming growth factor β1 from eosinophils, and activated eosinophils enhanced ECM mRNA expression when they were cocultured without the Transwell insert system. Eosinophils activated with Alternaria enhanced ECM mRNA expression from nasal polyp fibroblasts. Alternaria plays an important role in tissue fibrosis in the pathogenesis of nasal polyps by directly or indirectly influencing the production of ECM from nasal fibroblasts. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1.
Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu
2015-01-01
Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.
BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1
Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu
2015-01-01
Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins. PMID:26885277
Zhou, Guihua; Li, Cai; Cai, Lu
2004-01-01
Advanced glycation end-products (AGEs) play a critical role in diabetic nephropathy by stimulating extracellular matrix (ECM) synthesis. Connective tissue growth factor (CTGF) is a potent inducer of ECM synthesis and increases in the diabetic kidneys. To determine the critical role of CTGF in AGE-induced ECM accumulation leading to diabetic nephropathy, rats were given AGEs by intravenous injection for 6 weeks. AGE treatment induced a significant renal ECM accumulation, as shown by increases in periodic acid-Schiff-positive materials, fibronectin, and type IV collagen (Col IV) accumulation in glomeruli, and a mild renal dysfunction, as shown by increases in urinary volume and protein content. AGE treatment also caused significant increases in renal CTGF and transforming growth factor (TGF)-β1 mRNA and protein expression. Direct exposure of rat mesangial cells to AGEs in vitro significantly induced increases in fibronectin and Col IV production, which could be completely prevented by pretreatment with anti-CTGF antibody. AGE treatment also significantly increased both TGF-β1 and CTGF mRNA expression; however, inhibition of TGF-β1 mRNA expression by shRNA or neutralization of TGF-β1 protein by anti-TGF-β1 antibody did not significantly prevent AGE-increased expression of CTGF mRNA and protein. These results suggest that AGE-induced CTGF expression, predominantly through a TGF-β1-independent pathway, plays a critical role in renal ECM accumulation leading to diabetic nephropathy. PMID:15579446
Lung extracellular matrix and redox regulation
Watson, Walter H.; Ritzenthaler, Jeffrey D.; Roman, Jesse
2016-01-01
Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an ‘end-stage’ process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation–reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to provide a comprehensive review of this field, but rather to highlight what has been learned and to raise interest in this area in need of much attention. PMID:26938939
Wise, Randi; Duhachek-Muggy, Sara; Qi, Yue; Zolkiewski, Michal; Zolkiewska, Anna
2016-06-01
Metastatic breast cancer cells are exposed to stress of detachment from the extracellular matrix (ECM). Cultured breast cancer cells that survive this stress and are capable of anchorage-independent proliferation form mammospheres. The purpose of this study was to explore a link between mammosphere growth, ECM gene expression, and the protein quality control system in the endoplasmic reticulum (ER). We compared the mRNA and protein levels of ER folding factors in SUM159PT and MCF10DCIS.com breast cancer cells grown as mammospheres versus adherent conditions. Publicly available gene expression data for mammospheres formed by primary breast cancer cells and for circulating tumor cells (CTCs) were analyzed to assess the status of ECM/ER folding factor genes in clinically relevant samples. Knock-down of selected protein disulfide isomerase (PDI) family members was performed to examine their roles in SUM159PT mammosphere growth. We found that cells grown as mammospheres had elevated expression of ECM genes and ER folding quality control genes. CTC gene expression data for an index patient indicated that upregulation of ECM and ER folding factor genes occurred at the time of acquired therapy resistance and disease progression. Knock-down of PDI, ERp44, or ERp57, three members of the PDI family with elevated protein levels in mammospheres, in SUM159PT cells partially inhibited the mammosphere growth. Thus, breast cancer cell survival and growth under detachment conditions require enhanced assistance of the ER protein folding machinery. Targeting ER folding factors, in particular members of the PDI family, may improve the therapeutic outcomes in metastatic breast cancer.
Protein-Anchoring Therapy of Biglycan for Mdx Mouse Model of Duchenne Muscular Dystrophy.
Ito, Mikako; Ehara, Yuka; Li, Jin; Inada, Kosuke; Ohno, Kinji
2017-05-01
Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by loss-of-function mutations in DMD encoding dystrophin. No rational therapy is currently available. Utrophin is a paralog of dystrophin and is highly expressed at the neuromuscular junction. In mdx mice, utrophin is naturally upregulated throughout the muscle fibers, which mitigates muscular dystrophy. Protein-anchoring therapy was previously reported, in which a recombinant extracellular matrix (ECM) protein is delivered to and anchored to a specific target using its proprietary binding domains. Being prompted by a report that intramuscular and intraperitoneal injection of an ECM protein, biglycan, upregulates expression of utrophin and ameliorates muscle pathology in mdx mice, protein-anchoring therapy was applied to mdx mice. Recombinant adeno-associated virus serotype 8 (rAAV8) carrying hBGN encoding human biglycan was intravenously injected into 5-week-old mdx mice. The rAAV8-hBGN treatment improved motor deficits and decreased plasma creatine kinase activities. In muscle sections of treated mice, the number of central myonuclei and the distribution of myofiber sizes were improved. The treated mice increased gene expressions of utrophin and β1-syntrophin, as well as protein expressions of biglycan, utrophin, γ-sarcoglycan, dystrobrevin, and α1-syntrophin. The expression of hBGN in the skeletal muscle of the treated mice was 1.34-fold higher than that of the native mouse Bgn (mBgn). The low transduction efficiency and improved motor functions suggest that biglycan expressed in a small number of muscle fibers was likely to have been secreted and anchored to the cell surface throughout the whole muscular fibers. It is proposed that the protein-anchoring strategy can be applied not only to deficiency of an ECM protein as previously reported, but also to augmentation of a naturally induced ECM protein.
Syaidah, Rahimi; Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi
2013-11-01
The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.
Zhang, Min; Maddala, Rupalatha; Rao, Ponugoti Vasantha
2008-01-01
Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated actomyosin organization, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active mutant of RhoA (RhoAV14). Organ-cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 exhibited a pronounced contractile morphology, increased actin stress fibers, and focal adhesions and increased levels of phosphorylated myosin light chain (MLC), collagen IV, fibronectin, and laminin. cDNA microarray analysis of RNA extracted from RhoAV14-expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins, and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of MLC, paxillin, and focal adhesion kinase and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the actomyosin assembly, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells. PMID:18799648
Lung extracellular matrix and redox regulation.
Watson, Walter H; Ritzenthaler, Jeffrey D; Roman, Jesse
2016-08-01
Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to provide a comprehensive review of this field, but rather to highlight what has been learned and to raise interest in this area in need of much attention. Copyright © 2016. Published by Elsevier B.V.
Tsoutsman, Tatiana; Wang, Xiaoyu; Garchow, Kendra; Riser, Bruce; Twigg, Stephen; Semsarian, Christopher
2013-09-01
Hypertrophic cardiomyopathy (HCM) is the most common inherited primary myocardial disorder. HCM is characterized by interstitial fibrosis and excessive accumulation of extracellular matrix (ECM) proteins. Fibrosis in HCM has been associated with impaired cardiac function and heart failure, and has been considered a key substrate for ventricular arrhythmias and sudden death. The molecular triggers underpinning ECM production are not well established. We have previously developed a double-mutant mouse model of HCM that recapitulates the phenotype seen in humans with multiple mutations, including earlier onset of the disease, progression to a dilated phenotype, severe heart failure and premature mortality. The present study investigated the expression of ECM-encoding genes in severe HCM and heart failure. Significant upregulation of structural Fn1, regulatory Mmp14, Timp1, Serpin3A, SerpinE1, SerpineE2, Tgfβ1, and Tgfβ2; and matricellular Ccn2, Postn, Spp1, Thbs1, Thbs4, and Tnc was evident from the early, pre-phenotype stage. Non-myocytes expressed ECM genes at higher levels than cardiomyocytes in normal and diseased hearts. Synchronous increase of secreted CCN2 and TIMP1 plasma levels and decrease of MMP3 levels were observed in end-stage disease. CCN2 protein expression was increased from early disease in double-mutant hearts and played an important role in ECM responses. It was a powerful modulator of ECM regulatory (Timp1 and SerpinE1) and matricellular protein-encoding (Spp1, Thbs1, Thbs4 and Tnc) gene expression in cardiomyocytes when added exogenously in vitro. Modulation of CCN2 (CTGF, connective tissue growth factor) and associated early ECM changes may represent a new therapeutic target in the treatment and prevention of heart failure in HCM. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system
Imanaka-Yoshida, Kyoko; Aoki, Hiroki
2014-01-01
Living tissue is composed of cells and extracellular matrix (ECM). In the heart and blood vessels, which are constantly subjected to mechanical stress, ECM molecules form well-developed fibrous frameworks to maintain tissue structure. ECM is also important for biological signaling, which influences various cellular functions in embryonic development, and physiological/pathological responses to extrinsic stimuli. Among ECM molecules, increased attention has been focused on matricellular proteins. Matricellular proteins are a growing group of non-structural ECM proteins highly up-regulated at active tissue remodeling, serving as biological mediators. Tenascin-C (TNC) is a typical matricellular protein, which is highly expressed during embryonic development, wound healing, inflammation, and cancer invasion. The expression is tightly regulated, dependent on the microenvironment, including various growth factors, cytokines, and mechanical stress. In the heart, TNC appears in a spatiotemporal-restricted manner during early stages of development, sparsely detected in normal adults, but transiently re-expressed at restricted sites associated with tissue injury and inflammation. Similarly, in the vascular system, TNC is strongly up-regulated during embryonic development and under pathological conditions with an increase in hemodynamic stress. Despite its intriguing expression pattern, cardiovascular system develops normally in TNC knockout mice. However, deletion of TNC causes acute aortic dissection (AAD) under strong mechanical and humoral stress. Accumulating reports suggest that TNC may modulate the inflammatory response and contribute to elasticity of the tissue, so that it may protect cardiovascular tissue from destructive stress responses. TNC may be a key molecule to control cellular activity during development, adaptation, or pathological tissue remodeling. PMID:25120494
Swaroopa Rani, Tirupaati; Podile, Appa Rao
2014-04-01
Non-host resistance (NHR) is a most durable broad-spectrum resistance employed by the plants to restrict majority of pathogens. Plant extracellular matrix (ECM) is a critical defense barrier. Understanding ECM responses during interaction with non-host pathogen will provide insights into molecular events of NHR. In this study, the ECM-associated proteome was compared during interaction of citrus with pathogen Xanthomonas axonopodis pv. citri (Xac) and non-host pathogen Xanthomonas oryzae pv. oryzae (Xoo) at 8, 16, 24 and 48 h post inoculation. Comprehensive analysis of ECM-associated proteins was performed by extracting wall-bound and soluble ECM components using both destructive and non-destructive procedures. A total of 53 proteins was differentially expressed in citrus-Xanthomonas host and non-host interaction, out of which 44 were identified by mass spectrometry. The differentially expressed proteins were related to (1) defense-response (5 pathogenesis-related proteins, 3 miraculin-like proteins (MIR, MIR1 and MIR2) and 2 proteases); (2) enzymes of reactive oxygen species (ROS) metabolism [Cu/Zn superoxide dismutase (SOD), Fe-SOD, ascorbate peroxidase and 2-cysteine-peroxiredoxin]; (3) signaling (lectin, curculin-like lectin and concanavalin A-like lectin kinase); and (4) cell-wall modification (α-xylosidase, glucan 1, 3 β-glucosidase, xyloglucan endotransglucosylase/hydrolase). The decrease in ascorbate peroxidase and cysteine-peroxiredoxin could be involved in maintenance of ROS levels. Increase in defense, cell-wall remodeling and signaling proteins in citrus-Xoo interaction suggests an active involvement of ECM in execution of NHR. Partially compromised NHR in citrus against Xoo, upon Brefeldin A pre-treatment supported the role of non-classical secretory proteins in this phenomenon. © 2013 Scandinavian Plant Physiology Society.
Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju
2016-08-01
Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. © FASEB.
Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju
2016-01-01
Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243
Paduano, Francesco; Marrelli, Massimo; Alom, Noura; Amer, Mahetab; White, Lisa J; Shakesheff, Kevin M; Tatullo, Marco
2017-06-01
Dental pulp tissue represents a source of mesenchymal stem cells that have a strong differentiation potential towards the osteogenic lineage. The objective of the current study was to examine in vitro osteogenic induction of dental pulp stem cells (DPSCs) cultured on hydrogel scaffolds derived from decellularized bone extracellular matrix (bECM) compared to collagen type I (Col-I), the major component of bone matrix. DPSCs in combination with bECM hydrogels were cultured under three different conditions: basal medium, osteogenic medium and medium supplemented with growth factors (GFs) and cell growth, mineral deposition, gene and protein expression were investigated. The DPSCs/bECM hydrogel constructs cultured in basal medium showed that cells were viable after three weeks and that the expression of runt-related transcription factor 2 (RUNX-2) and bone sialoprotein (BSP) were significantly upregulated in the absence of extra osteogenic inducers compared to Col-I hydrogel scaffolds. In addition, the protein expression levels of BSP and osteocalcin were higher on bECM with respect to Col-I hydrogel scaffolds. Furthermore, DPSCs/bECM hydrogels cultured with osteogenic or GFs supplemented medium displayed a higher upregulation of the osteo-specific markers compared to Col-I hydrogels in identical media. Collectively, our results demonstrate that bECM hydrogels might be considered as suitable scaffolds to support osteogenic differentiation of DPSCs.
Role of ID Proteins in BMP4 Inhibition of Profibrotic Effects of TGF-β2 in Human TM Cells.
Mody, Avani A; Wordinger, Robert J; Clark, Abbot F
2017-02-01
Increased expression of TGF-β2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-β2-induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-β2-induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-β2 induction of ECM proteins in TM cells. Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-β2-induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P < 0.05) and protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-β2-induced expression of fibronectin and PAI-1 in TM cells (P < 0.01). Bone morphogenic protein 4 induced ID1 and ID3 expression suppresses TGF-β2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-β2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies.
Saga, Yukika; Inamura, Tomoka; Shimada, Nao; Kawata, Takefumi
2016-05-01
STATa, a Dictyostelium homologue of metazoan signal transducer and activator of transcription, is important for the organizer function in the tip region of the migrating Dictyostelium slug. We previously showed that ecmF gene expression depends on STATa in prestalk A (pstA) cells, where STATa is activated. Deletion and site-directed mutagenesis analysis of the ecmF/lacZ fusion gene in wild-type and STATa null strains identified an imperfect inverted repeat sequence, ACAAATANTATTTGT, as a STATa-responsive element. An upstream sequence element was required for efficient expression in the rear region of pstA zone; an element downstream of the inverted repeat was necessary for sufficient prestalk expression during culmination. Band shift analyses using purified STATa protein detected no sequence-specific binding to those ecmF elements. The only verified upregulated target gene of STATa is cudA gene; CudA directly activates expL7 gene expression in prestalk cells. However, ecmF gene expression was almost unaffected in a cudA null mutant. Several previously reported putative STATa target genes were also expressed in cudA null mutant but were downregulated in STATa null mutant. Moreover, mybC, which encodes another transcription factor, belonged to this category, and ecmF expression was downregulated in a mybC null mutant. These findings demonstrate the existence of a genetic hierarchy for pstA-specific genes, which can be classified into two distinct STATa downstream pathways, CudA dependent and independent. The ecmF expression is indirectly upregulated by STATa in a CudA-independent activation manner but dependent on MybC, whose expression is positively regulated by STATa. © 2016 Japanese Society of Developmental Biologists.
Franczyk, M; Lopucki, M; Stachowicz, N; Morawska, D; Kankofer, M
2017-02-01
The placenta expresses structural and biologically active proteins. Their synthesis is mainly regulated by genomic or nongenomic signals and modulated by hormones. These protein profiles are altered during different stages of pregnancy. The biological properties of extracellular matrix (ECM) proteins were defined and described in a number of tissues including placenta. These properties enable them to be the main players in the processes of attachment or invasion into the endometrium during initial placenta formation and its timely separation after delivery and detachment. In this review, we focused on the role of ECM proteins during attachment of the placenta to the uterine wall, its timely separation, and the implications of this process on retained or pathologically attached placenta. Although the amount of published information in this area is relatively scant, some of the key proteins and processes are well defined. We focused on the available data detailing the ECM protein profiles of human (histologically thin; hemochorial) and bovine (histologically thick; epitheliochorial) placentas and compared the shared and unique ECM proteins that are relevant to placental attachment and separation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schwab, Elisabeth H.; Halbig, Maria; Glenske, Kristina; Wagner, Alena-Svenja; Wenisch, Sabine; Cavalcanti-Adam, Elisabetta A.
2013-01-01
The detailed interactions of mesenchymal stem cells (MSCs) with their extracellular matrix (ECM) and the resulting effects on MSC differentiation are still largely unknown. Integrins are the main mediators of cell-ECM interaction. In this study, we investigated the adhesion of human MSCs to fibronectin, vitronectin and osteopontin, three ECM glycoproteins which contain an integrin-binding sequence, the RGD motif. We then assayed MSCs for their osteogenic commitment in the presence of the different ECM proteins. As early as 2 hours after seeding, human MSCs displayed increased adhesion when plated on fibronectin, whereas no significant difference was observed when adhering either to vitronectin or osteopontin. Over a 10-day observation period, cell proliferation was increased when cells were cultured on fibronectin and osteopontin, albeit after 5 days in culture. The adhesive role of fibronectin was further confirmed by measurements of cell area, which was significantly increased on this type of substrate. However, integrin-mediated clusters, namely focal adhesions, were larger and more mature in MSCs adhering to vitronectin and osteopontin. Adhesion to fibronectin induced elevated expression of α5-integrin, which was further upregulated under osteogenic conditions also for vitronectin and osteopontin. In contrast, during osteogenic differentiation the expression level of β3-integrin was decreased in MSCs adhering to the different ECM proteins. When MSCs were cultured under osteogenic conditions, their commitment to the osteoblast lineage and their ability to form a mineralized matrix in vitro was increased in presence of fibronectin and osteopontin. Taken together these results indicate a distinct role of ECM proteins in regulating cell adhesion, lineage commitment and phenotype of MSCs, which is due to the modulation of the expression of specific integrin subunits during growth or osteogenic differentiation. PMID:24324361
Schwab, Elisabeth H; Halbig, Maria; Glenske, Kristina; Wagner, Alena-Svenja; Wenisch, Sabine; Cavalcanti-Adam, Elisabetta A
2013-01-01
The detailed interactions of mesenchymal stem cells (MSCs) with their extracellular matrix (ECM) and the resulting effects on MSC differentiation are still largely unknown. Integrins are the main mediators of cell-ECM interaction. In this study, we investigated the adhesion of human MSCs to fibronectin, vitronectin and osteopontin, three ECM glycoproteins which contain an integrin-binding sequence, the RGD motif. We then assayed MSCs for their osteogenic commitment in the presence of the different ECM proteins. As early as 2 hours after seeding, human MSCs displayed increased adhesion when plated on fibronectin, whereas no significant difference was observed when adhering either to vitronectin or osteopontin. Over a 10-day observation period, cell proliferation was increased when cells were cultured on fibronectin and osteopontin, albeit after 5 days in culture. The adhesive role of fibronectin was further confirmed by measurements of cell area, which was significantly increased on this type of substrate. However, integrin-mediated clusters, namely focal adhesions, were larger and more mature in MSCs adhering to vitronectin and osteopontin. Adhesion to fibronectin induced elevated expression of α₅-integrin, which was further upregulated under osteogenic conditions also for vitronectin and osteopontin. In contrast, during osteogenic differentiation the expression level of β₃-integrin was decreased in MSCs adhering to the different ECM proteins. When MSCs were cultured under osteogenic conditions, their commitment to the osteoblast lineage and their ability to form a mineralized matrix in vitro was increased in presence of fibronectin and osteopontin. Taken together these results indicate a distinct role of ECM proteins in regulating cell adhesion, lineage commitment and phenotype of MSCs, which is due to the modulation of the expression of specific integrin subunits during growth or osteogenic differentiation.
Vicente, Carolina Meloni; Ricci, Ritchelli; Nader, Helena Bonciani; Toma, Leny
2013-05-25
The extracellular matrix (ECM) influences the structure, viability and functions of cells and tissues. Recent evidence indicates that tumor cells and stromal cells interact through direct cell-cell contact, the production of ECM components and the secretion of growth factors. Syndecans are a family of transmembrane heparan sulfate proteoglycans that are involved in cell adhesion, motility, proliferation and differentiation. Syndecan-2 has been found to be highly expressed in colorectal cancer cell lines and appears to be critical for cancer cell behavior. We have examined the effect of stromal fibroblast-produced ECM on the production of proteoglycans by colorectal cancer cell lines. Our results showed that in a highly metastatic colorectal cancer cell line, HCT-116, syndecan-2 expression is enhanced by fibroblast ECM, while the expression of other syndecans decreased. Of the various components of the stromal ECM, fibronectin was the most important in stimulating the increase in syndecan-2 expression. The co-localization of syndecan-2 and fibronectin suggests that these two molecules are involved in the adhesion of HCT-116 cells to the ECM. Additionally, we demonstrated an increase in the expression of integrins alpha-2 and beta-1, in addition to an increase in the expression of phospho-FAK in the presence of fibroblast ECM. Furthermore, blocking syndecan-2 with a specific antibody resulted in a decrease in cell adhesion, migration, and organization of actin filaments. Overall, these results show that interactions between cancer cells and stromal ECM proteins induce significant changes in the behavior of cancer cells. In particular, a shift from the expression of anti-tumorigenic syndecans to the tumorigenic syndecan-2 may have implications in the migratory behavior of highly metastatic tumor cells.
Cooper, Nichola H; Balachandra, Jeya P; Hardman, Matthew J
2015-12-01
The skin's mechanical integrity is maintained by an organized and robust dermal extracellular matrix (ECM). Resistance to mechanical disruption hinges primarily on homeostasis of the dermal collagen fibril architecture, which is regulated, at least in part, by members of the small leucine-rich proteoglycan (SLRP) family. Here we present data linking protein kinase C alpha (PKCα) to the regulated expression of multiple ECM components including SLRPs. Global microarray profiling reveals deficiencies in ECM gene expression in PKCα-/- skin correlating with abnormal collagen fibril morphology, disorganized dermal architecture, and reduced skin strength. Detailed analysis of the skin and wounds from wild-type and PKCα-/- mice reveals a failure to upregulate collagen and other ECM components in response to injury, resulting in delayed granulation tissue deposition in PKCα-/- wounds. Thus, our data reveal a previously unappreciated role for PKCα in the regulation of ECM structure and deposition during skin wound healing.
Filla, Mark S; Dimeo, Kaylee D; Tong, Tiegang; Peters, Donna M
2017-12-01
Fibronectin fibrils are a major component of the extracellular matrix (ECM) of the trabecular meshwork (TM). They are a key mediator of the formation of the ECM which controls aqueous humor outflow and contributes to the pathogenesis of glaucoma. The purpose of this work was to determine if a fibronectin-binding peptide called FUD, derived from the Streptococcus pyogenes Functional Upstream Domain of the F1 adhesin protein, could be used to control fibronectin fibrillogenesis and hence ECM formation under conditions where its expression was induced by treatment with the glucocorticoid dexamethasone. FUD was very effective at preventing fibronectin fibrillogenesis in the presence or absence of steroid treatment as well as the removal of existing fibronectin fibrils. Disruption of fibronectin fibrillogenesis by FUD also disrupted the incorporation of type IV collagen, laminin and fibrillin into the ECM. The effect of FUD on these other protein matrices, however, was found to be dependent upon the maturity of the ECM when FUD was added. FUD effectively disrupted the incorporation of these other proteins into matrices when added to newly confluent cells that were forming a nascent ECM. In contrast, FUD had no effect on these other protein matrices if the cell cultures already possessed a pre-formed, mature ECM. Our studies indicate that FUD can be used to control fibronectin fibrillogenesis and that these fibrils play a role in regulating the assembly of other ECM protein into matrices involving type IV collagen, laminin, and fibrillin within the TM. This suggests that under in vivo conditions, FUD would selectively disrupt fibronectin fibrils and de novo assembly of other proteins into the ECM. Finally, our studies suggest that targeting fibronectin fibril assembly may be a viable treatment for POAG as well as other glaucomas involving excessive or abnormal matrix deposition of the ECM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Mingliang; He, Yunfan; Zhou, Tao; Zhang, Pan; Gao, Jianhua; Lu, Feng
2017-01-01
Mesenchymal stem cells are an attractive cell type for cytotherapy in wound healing. The authors recently developed a novel, adipose-tissue-derived, injectable extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel) for stem cell therapy. This study was designed to assess the therapeutic effects of ECM/SVF-gel on wound healing and potential mechanisms. ECM/SVF-gel was prepared for use in nude mouse excisional wound healing model. An SVF cell suspension and phosphate-buffered saline injection served as the control. The expression levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and monocyte chemotactic protein-1 (MCP-1) in ECM/SVF-gel were analyzed at different time points. Angiogenesis (tube formation) assays of ECM/SVF-gel extracts were evaluated, and vessels density in skin was determined. The ECM/SVF-gel extract promoted tube formation in vitro and increased the expression of the angiogenic factors VEGF and bFGF compared with those in the control. The expression of the inflammatory chemoattractant MCP-1 was high in ECM/SVF-gel at the early stage and decreased sharply during the late stage of wound healing. The potent angiogenic effects exerted by ECM/SVF-gel may contribute to the improvement of wound healing, and these effects could be related to the enhanced inflammatory response in ECM/SVF-gel during the early stage of wound healing.
Ahmed, Ahmed Ashour; Mills, Anthony D; Ibrahim, Ashraf E K; Temple, Jillian; Blenkiron, Cherie; Vias, Maria; Massie, Charlie E; Iyer, N Gopalakrishna; McGeoch, Adam; Crawford, Robin; Nicke, Barbara; Downward, Julian; Swanton, Charles; Bell, Stephen D; Earl, Helena M; Laskey, Ronald A; Caldas, Carlos; Brenton, James D
2007-12-01
The extracellular matrix (ECM) can induce chemotherapy resistance via AKT-mediated inhibition of apoptosis. Here, we show that loss of the ECM protein TGFBI (transforming growth factor beta induced) is sufficient to induce specific resistance to paclitaxel and mitotic spindle abnormalities in ovarian cancer cells. Paclitaxel-resistant cells treated with recombinant TGFBI protein show integrin-dependent restoration of paclitaxel sensitivity via FAK- and Rho-dependent stabilization of microtubules. Immunohistochemical staining for TGFBI in paclitaxel-treated ovarian cancers from a prospective clinical trial showed that morphological changes of paclitaxel-induced cytotoxicity were restricted to areas of strong expression of TGFBI. These data show that ECM can mediate taxane sensitivity by modulating microtubule stability.
Parkinson, Leigh G; Toro, Ana; Zhao, Hongyan; Brown, Keddie; Tebbutt, Scott J; Granville, David J
2015-01-01
Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases. PMID:25495009
Wierer, Michael; Prestel, Matthias; Schiller, Herbert B; Yan, Guangyao; Schaab, Christoph; Azghandi, Sepiede; Werner, Julia; Kessler, Thorsten; Malik, Rainer; Murgia, Marta; Aherrahrou, Zouhair; Schunkert, Heribert; Dichgans, Martin; Mann, Matthias
2018-02-01
Atherosclerosis leads to vascular lesions that involve major rearrangements of the vascular proteome, especially of the extracellular matrix (ECM). Using single aortas from ApoE knock out mice, we quantified formation of plaques by single-run, high-resolution mass spectrometry (MS)-based proteomics. To probe localization on a proteome-wide scale we employed quantitative detergent solubility profiling. This compartment- and time-resolved resource of atherogenesis comprised 5117 proteins, 182 of which changed their expression status in response to vessel maturation and atherosclerotic plaque development. In the insoluble ECM proteome, 65 proteins significantly changed, including relevant collagens, matrix metalloproteinases and macrophage derived proteins. Among novel factors in atherosclerosis, we identified matrilin-2, the collagen IV crosslinking enzyme peroxidasin as well as the poorly characterized MAM-domain containing 2 (Mamdc2) protein as being up-regulated in the ECM during atherogenesis. Intriguingly, three subunits of the osteoclast specific V-ATPase complex were strongly increased in mature plaques with an enrichment in macrophages thus implying an active de-mineralization function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Wierer, Michael; Prestel, Matthias; Schiller, Herbert B.; Yan, Guangyao; Schaab, Christoph; Azghandi, Sepiede; Werner, Julia; Kessler, Thorsten; Malik, Rainer; Murgia, Marta; Aherrahrou, Zouhair; Schunkert, Heribert; Dichgans, Martin; Mann, Matthias
2018-01-01
Atherosclerosis leads to vascular lesions that involve major rearrangements of the vascular proteome, especially of the extracellular matrix (ECM). Using single aortas from ApoE knock out mice, we quantified formation of plaques by single-run, high-resolution mass spectrometry (MS)-based proteomics. To probe localization on a proteome-wide scale we employed quantitative detergent solubility profiling. This compartment- and time-resolved resource of atherogenesis comprised 5117 proteins, 182 of which changed their expression status in response to vessel maturation and atherosclerotic plaque development. In the insoluble ECM proteome, 65 proteins significantly changed, including relevant collagens, matrix metalloproteinases and macrophage derived proteins. Among novel factors in atherosclerosis, we identified matrilin-2, the collagen IV crosslinking enzyme peroxidasin as well as the poorly characterized MAM-domain containing 2 (Mamdc2) protein as being up-regulated in the ECM during atherogenesis. Intriguingly, three subunits of the osteoclast specific V-ATPase complex were strongly increased in mature plaques with an enrichment in macrophages thus implying an active de-mineralization function. PMID:29208753
Janjusevic, Milijana; Greco, Stefania; Islam, Md Soriful; Castellucci, Clara; Ciavattini, Andrea; Toti, Paolo; Petraglia, Felice; Ciarmela, Pasquapina
2016-11-01
To investigate the presence of Raf kinase inhibitor protein (RKIP) in human myometrium and leiomyoma as well as to determine the effect of locostatin (RKIP inhibitor) on extracellular matrix (ECM) production, proliferation, and migration in human myometrial and leiomyoma cells. Laboratory study. Human myometrium and leiomyoma. Thirty premenopausal women who were admitted to the hospital for myomectomy or hysterectomy. Myometrial and leiomyoma tissues were used to investigate the localization and the expression level of RKIP through immunohistochemistry and Western blotting. Myometrial and leiomyoma cells were treated with locostatin (10 μM) to measure ECM expression by real-time polymerase chain reaction, GSK3β expression by Western blotting, cell migration by wound-healing assay, and cell proliferation by MTT assay and immunocytochemistry. The expression of RKIP in human myometrial and leiomyoma tissue; ECM components and GSK3β expression, migration, and proliferation in myometrial and leiomyoma cells. RKIP is expressed in human myometrial and leiomyoma tissue. Locostatin treatment resulted in the activation of the mitogen-activated protein kinase (MAPK) signal pathway (ERK phosphorylation), providing a powerful validation of our targeting protocol. Further, RKIP inhibition by locostatin reduces ECM components. Moreover, the inhibition of RKIP by locostatin impaired cell proliferation and migration in both leiomyoma and myometrial cells. Finally, locostatin treatment reduced GSK3β expression. Therefore, even if the activation of MAPK pathway should increase proliferation and migration, the destabilization of GSK3β leads to the reduction of proliferation and migration of myometrial and leiomyoma cells. Our results indicate that RKIP may be involved in leiomyoma pathophysiology. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Dab, Houcine; Hachani, Rafik; Dhaouadi, Nedra; Sakly, Mohsen; Hodroj, Wassim; Randon, Jacques; Bricca, Giampiero; Kacem, Kamel
2012-10-01
Extracellular matrix (ECM) synthesis regulation by sympathetic nervous system (SNS) or angiotensin II (ANG II) was widely reported, but interaction between the two systems on ECM synthesis needs further investigation. We tested implication of SNS and ANG II on ECM synthesis in juvenile rat aorta. Sympathectomy with guanethidine (50 mg/kg, subcutaneous) and blockade of the ANG II AT1 receptors (AT1R) blocker with losartan (20 mg/kg/day in drinking water) were performed alone or in combination in rats. mRNA and protein synthesis of collagen and elastin were examined by Q-RT-PCR and immunoblotting. Collagen type I and III mRNA were increased respectively by 62 and 43% after sympathectomy and decreased respectively by 31 and 60% after AT1R blockade. Combined treatment increased collagen type III by 36% but not collagen type I. The same tendency of collagen expression was observed at mRNA and protein levels after the three treatments. mRNA and protein level of elastin was decreased respectively by 63 and 39% and increased by 158 and 15% after losartan treatment. Combined treatment abrogates changes induced by single treatments. The two systems act as antagonists on ECM expression in the aorta and combined inhibition of the two systems prevents imbalance of mRNA and protein level of collagen I and elastin induced by single treatment. Combined inhibition of the two systems prevents deposit or excessive reduction of ECM and can more prevent cardiovascular disorders.
Tumbarello, David A; Andrews, Melissa R; Brenton, James D
2016-01-01
TGFBI has been shown to sensitize ovarian cancer cells to the cytotoxic effects of paclitaxel via an integrin receptor-mediated mechanism that modulates microtubule stability. Herein, we determine that TGFBI localizes within organized fibrillar structures in mesothelial-derived ECM. We determined that suppression of SPARC expression by shRNA decreased the deposition of TGFBI in mesothelial-derived ECM, without affecting its overall protein expression or secretion. Conversely, overexpression of SPARC increased TGFBI deposition. A SPARC-YFP fusion construct expressed by the Met5a cell line co-localized with TGFBI in the cell-derived ECM. Interestingly, in vitro produced SPARC was capable of precipitating TGFBI from cell lysates dependent on an intact SPARC carboxy-terminus with in vitro binding assays verifying a direct interaction. The last 37 amino acids of SPARC were shown to be required for the TGFBI interaction while expression of a SPARC-YFP construct lacking this region (aa 1-256) did not interact and co-localize with TGFBI in the ECM. Furthermore, ovarian cancer cells have a reduced motility and decreased response to the chemotherapeutic agent paclitaxel when plated on ECM derived from mesothelial cells lacking SPARC compared to control mesothelial-derived ECM. In conclusion, SPARC regulates the fibrillar ECM deposition of TGFBI through a novel interaction, subsequently influencing cancer cell behavior.
Andrews, Melissa R.; Brenton, James D.
2016-01-01
TGFBI has been shown to sensitize ovarian cancer cells to the cytotoxic effects of paclitaxel via an integrin receptor-mediated mechanism that modulates microtubule stability. Herein, we determine that TGFBI localizes within organized fibrillar structures in mesothelial-derived ECM. We determined that suppression of SPARC expression by shRNA decreased the deposition of TGFBI in mesothelial-derived ECM, without affecting its overall protein expression or secretion. Conversely, overexpression of SPARC increased TGFBI deposition. A SPARC-YFP fusion construct expressed by the Met5a cell line co-localized with TGFBI in the cell-derived ECM. Interestingly, in vitro produced SPARC was capable of precipitating TGFBI from cell lysates dependent on an intact SPARC carboxy-terminus with in vitro binding assays verifying a direct interaction. The last 37 amino acids of SPARC were shown to be required for the TGFBI interaction while expression of a SPARC-YFP construct lacking this region (aa 1–256) did not interact and co-localize with TGFBI in the ECM. Furthermore, ovarian cancer cells have a reduced motility and decreased response to the chemotherapeutic agent paclitaxel when plated on ECM derived from mesothelial cells lacking SPARC compared to control mesothelial-derived ECM. In conclusion, SPARC regulates the fibrillar ECM deposition of TGFBI through a novel interaction, subsequently influencing cancer cell behavior. PMID:27622658
Fibroblast extracellular matrix gene expression in response to keratinocyte-releasable stratifin.
Ghaffari, Abdi; Li, Yunyaun; Karami, Ali; Ghaffari, Mazyar; Tredget, Edward E; Ghahary, Aziz
2006-05-15
Termination of wound-healing process requires a fine balance between connective tissue deposition and its hydrolysis. Previously, we have demonstrated that keratinocyte-releasable stratifin, also known as 14-3-3 sigma protein, stimulates collagenase (MMP-1) expression in dermal fibroblasts. However, role of extracellular stratifin in regulation of extracellular matrix (ECM) factors and other matrix metalloproteinases (MMPs) in dermal fibroblast remains unexplored. To address this question, large-scale ECM gene expression profile were analyzed in human dermal fibroblasts co-cultured with keratinocytes or treated with recombinant stratifin. Superarray pathway-specific microarrays were utilized to identify upregulation or downregulation of 96 human ECM and adhesion molecule genes. RT-PCR and Western blot were used to validate microarray expression profiles of selected genes. Comparison of gene profiles with the appropriate controls showed a significant (more than twofold) increase in expression of collagenase-1, stromelysin-1 and -2, neutrophil collagenase, and membrane type 5 MMP in dermal fibroblasts treated with stratifin or co-cultured with keratinocytes. Expression of type I collagen and fibronectin genes decreased in the same fibroblasts. The results of a dose-response experiment showed that stratifin stimulates the expression of stromelysin-1 (MMP-3) mRNA by dermal fibroblasts in a concentration-dependent fashion. Furthermore, Western blot analysis of fibroblast-conditioned medium showed a peak in MMP-3 protein levels 48 h following treatment with recombinant stratifin. In a lasting-effect study, MMP-3 protein was detected in fibroblast-condition medium for up to 72 h post removal of stratifin. In conclusion, our results suggest that keratinocyte-releasable stratifin plays a major role in induction of ECM degradation by dermal fibroblasts through stimulation of key MMPs, such as MMP-1 and MMP-3. Therefore, stratifin protein may prove to be a useful target for clinical intervention in controlling excessive wound healing in fibrotic conditions. Copyright 2006 Wiley-Liss, Inc.
Comprehensive proteomic characterization of stem cell-derived extracellular matrices.
Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G
2017-06-01
In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kufaishi, Hala; Alarab, May; Drutz, Harold; Lye, Stephen; Shynlova, Oksana
2016-08-01
Primary human vaginal cells derived from women with severe pelvic organ prolapse (POP-HVCs) demonstrate altered cellular characteristics as compared to cells derived from asymptomatic women (control-HVCs). Using computer-controllable Flexcell stretch unit, we examined whether POP-HVCs react differently to mechanical loading as compared to control-HVCs by the expression of extracellular matrix (ECM) components, cell-ECM adhesion proteins, and ECM degrading and maturating enzymes. Vaginal tissue biopsies from premenopausal patients with Pelvic Organ Prolapse Quantification System stage ≥3 (n = 8) and asymptomatic controls (n = 7) were collected during vaginal hysterectomy or repair. Human vaginal cells were isolated by enzymatic digestion, seeded on collagen (COLI)-coated plates, and stretched (24 hours, 25% elongation). Total RNA was extracted, and 84 genes were screened using Human ECM and Adhesion Molecules polymerase chain reaction array; selected genes were verified by quantitative reverse transcription-polymerase chain reaction. Stretch-conditioned media (SCM) were collected and analyzed by protein array, immunoblotting, and zymography. In mechanically stretched control-HVCs, transcript levels of integrins (ITGA1, ITGA4, ITGAV, and ITGB1) and matrix metalloproteinases (MMPs) 2, 8, and 13 were downregulated (P < .05); in POP-HVCs, MMP1, MMP3, and MMP10, ADAMTS8 and 13, tissue inhibitor of metalloproteinases (TIMPs) 1 to 3, ITGA2, ITGA4, ITGA6, ITGB1, contactin (CNTN1), catenins (A1 and B1), and laminins (A3 and C1) were significantly upregulated, whereas COLs (1, 4, 5, 6, 11, and 12) and LOXL1 were downregulated. Human vaginal cells massively secrete MMPs and TIMPs proteins; MMP1, MMP8, MMP9 protein expression and MMP2 gelatinase activity were increased, whereas TIMP2 decreased in SCM from POP-HVCs compared to control-HVCs. Primary human vaginal cells derived from women with severe pelvic organ prolapse and control-HVCs react differentially to in vitro mechanical stretch. Risk factors that induce stretch may alter ECM composition and cell-ECM interaction in pelvic floor tissue leading to the abatement of pelvic organ support and subsequent POP development. © The Author(s) 2016.
Madne, Tarunkumar Hemraj; Dockrell, Mark Edward Carl
2018-02-28
Alternative splicing is a fundamental phenomenon to build protein diversity in health and diseases. Extra Domain A+ Fibronectin (EDA+Fn) is an alternatively spliced form of fibronectin protein present in the extra cellular matrix (ECM) in renal fibrosis. Podocytes are spectacular cell type and play a key role in filtration and synthesise ECM proteins in renal physiology and pathology. TGFβ1 is a strong stimulator of ECM proteins in renal injury. In this study, we have investigated alternative splicing of EDA+ Fn in human podocytes in response to TGFβ1. We have performed western blotting and immunofluorescence to characterise the expression of the EDA+Fn protein, real-time PCR for RNA expression and RT-PCR to look for alternative splicing of EDA+Fn in conditionally immortalised human podocytes culture.We used TGFβ1 as a stimulator and SB431542 and SRPIN340 for inhibitory studies. In this work, for the first time we have demonstrated in human podocytes culture EDA+Fn is expressed in the basal condition and TGFβ1 2.5ng/ml induced the Fn mRNA and EDA+Fn protein expression demonstrated by real-time PCR, western blotting and immunofluorescence. TGFβ1 2.5ng/ml induced the alternative splicing of EDA+Fn shown by conventional RT-PCR. Studies with ALK5 inhibitor SB431542 and SRPIN340 show that TGFβ1 induced alternative splicing of EDA+Fn was by the ALK5 receptor and the SR proteins. In human podocytes culture, alternative splicing of EDA+Fn occurs at basal conditions and TGFβ1 further induced the alternative splicing of EDA+Fn via ALK5 receptor activation and SR proteins. This is the first evidence of basal and TGFβ1 mediated alternative splicing of EDA+Fn in human podocytes culture.
Ahmed, Ahmed Ashour; Mills, Anthony D.; Ibrahim, Ashraf E.K.; Temple, Jillian; Blenkiron, Cherie; Vias, Maria; Massie, Charlie E.; Iyer, N. Gopalakrishna; McGeoch, Adam; Crawford, Robin; Nicke, Barbara; Downward, Julian; Swanton, Charles; Bell, Stephen D.; Earl, Helena M.; Laskey, Ronald A.; Caldas, Carlos; Brenton, James D.
2007-01-01
Summary The extracellular matrix (ECM) can induce chemotherapy resistance via AKT-mediated inhibition of apoptosis. Here, we show that loss of the ECM protein TGFBI (transforming growth factor beta induced) is sufficient to induce specific resistance to paclitaxel and mitotic spindle abnormalities in ovarian cancer cells. Paclitaxel-resistant cells treated with recombinant TGFBI protein show integrin-dependent restoration of paclitaxel sensitivity via FAK- and Rho-dependent stabilization of microtubules. Immunohistochemical staining for TGFBI in paclitaxel-treated ovarian cancers from a prospective clinical trial showed that morphological changes of paclitaxel-induced cytotoxicity were restricted to areas of strong expression of TGFBI. These data show that ECM can mediate taxane sensitivity by modulating microtubule stability. PMID:18068629
Effects of Ethanol on Brain Extracellular Matrix: Implications for Alcohol Use Disorder
Lasek, Amy W.
2016-01-01
The brain extracellular matrix (ECM) occupies the space between cells and is involved in cell-matrix and cell-cell adhesion. However, in addition to providing structural support to brain tissue, the ECM activates cell signaling and controls synaptic transmission. The expression and activity of brain ECM components are regulated by alcohol exposure. This review will discuss what is currently known about the effects of alcohol on the activity and expression of brain ECM components. An interpretation of how these changes might promote alcohol use disorder (AUD) will be also provided. Ethanol exposure decreases levels of structural proteins involved in the interstitial matrix and basement membrane, with a concomitant increase in proteolytic enzymes that degrade these components. In contrast, ethanol exposure generally increases perineuronal net (PN) components. Because the ECM has been shown to regulate both synaptic plasticity and behavioral responses to drugs of abuse, regulation of the brain ECM by alcohol may be relevant to the development of alcoholism. Although investigation of the function of brain ECM in alcohol abuse is still in early stages, a greater understanding of the interplay between ECM and alcohol might lead to novel therapeutic strategies for treating AUD. PMID:27581478
Parkinson, Leigh G; Toro, Ana; Zhao, Hongyan; Brown, Keddie; Tebbutt, Scott J; Granville, David J
2015-02-01
Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Sun, Lina; Xu, Dongxue; Xu, Qinzeng; Sun, Jingchun; Xing, Lili; Zhang, Libin; Yang, Hongsheng
2017-06-01
Sea cucumbers have a striking capacity to regenerate most of their viscera after evisceration, which has drawn the interest of many researchers. In this study, the isobaric tag for relative and absolute quantitation (iTRAQ) was utilized to investigate protein abundance changes during intestine regeneration in sea cucumbers. A total of 4073 proteins were identified, and 2321 proteins exhibited significantly differential expressions, with 1100 upregulated and 1221 downregulated proteins. Our results suggest that intestine regeneration constitutes a complex life activity regulated by the cooperation of various biological processes, including cytoskeletal changes, extracellular matrix (ECM) remodeling and ECM-receptor interactions, protein synthesis, signal recognition and transduction, energy production and conversion, and substance transport and metabolism. Additionally, real-time PCR showed mRNA expression of differentially expressed genes correlated positively with their protein levels. Our results provided a basis for studying the regulatory mechanisms associated with sea cucumber regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Dohn, Michael R; Mundell, Nathan A; Sawyer, Leah M; Dunlap, Julie A; Jessen, Jason R
2013-11-01
Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin-fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular adhesion. These data indicate that Wnt/Glypican4/Frizzled signaling regulates ECM assembly through effects on cadherin-mediated cell cohesion. Together, our results demonstrate that zebrafish Vangl2/Prickle1a and non-canonical Wnt/Frizzled signaling have opposing effects on ECM organization underlying PCP and gastrulation cell movements. © 2013 Elsevier Inc. All rights reserved.
Kang, Yunqing; Kim, Sungwoo; Khademhosseini, Ali; Yang, Yunzhi
2011-01-01
Extracellular matrix (ECM) comprises a rich meshwork of proteins and proteoglycans, which not only contains biological cues for cell behavior, but is also a reservoir for binding growth factors and controlling their release. Here we aimed to create a suitable bony microenvironment with cell-derived ECM and biodegradable β-tricalcium phosphate (β-TCP). More specifically, we investigated whether the ECM produced by bone marrow-derived mesenchymal stem cells (hBMSC) on a β-TCP scaffold can bind bone morphogenetic protein-2 (BMP-2) and control its release in a sustained manner, and further examined the effect of ECM and the BMP-2 released from ECM on cell behaviors. The ECM was obtained through culturing the hBMSC on a β-TCP porous scaffold and performing decellularization and sterilization. SEM, XPS, FTIR, and immunofluorescent staining results indicated the presence of ECM on the β-TCP and the amount of ECM increased with the incubation time. BMP-2 was loaded onto the β-TCP with and without ECM by immersing the scaffolds in the BMP-2 solution. The loading and release kinetics of the BMP-2 on the β-TCP/ECM were significantly slower than those on the β-TCP. The β-TCP/ECM exhibited a sustained release profile of the BMP-2, which was also affected by the amount of ECM. This is probably because the β-TCP/ECM has different binding mechanisms with BMP-2. The β-TCP/ECM promoted cell proliferation. Furthermore, the BMP-2-loaded β-TCP/ECM stimulated reorganization of the actin cytoskeleton, increased expression of alkaline phosphatase and calcium deposition by the cells compared to those without BMP-2 loading and the β-TCP with BMP-2 loading. PMID:21632105
Neural ECM proteases in learning and synaptic plasticity.
Tsilibary, Effie; Tzinia, Athina; Radenovic, Lidija; Stamenkovic, Vera; Lebitko, Tomasz; Mucha, Mariusz; Pawlak, Robert; Frischknecht, Renato; Kaczmarek, Leszek
2014-01-01
Recent studies implicate extracellular proteases in synaptic plasticity, learning, and memory. The data are especially strong for such serine proteases as thrombin, tissue plasminogen activator, neurotrypsin, and neuropsin as well as matrix metalloproteinases, MMP-9 in particular. The role of those enzymes in the aforementioned phenomena is supported by the experimental results on the expression patterns (at the gene expression and protein and enzymatic activity levels) and functional studies, including knockout mice, specific inhibitors, etc. Counterintuitively, the studies have shown that the extracellular proteolysis is not responsible mainly for an overall degradation of the extracellular matrix (ECM) and loosening perisynaptic structures, but rather allows for releasing signaling molecules from the ECM, transsynaptic proteins, and latent form of growth factors. Notably, there are also indications implying those enzymes in the major neuropsychiatric disorders, probably by contributing to synaptic aberrations underlying such diseases as schizophrenia, bipolar, autism spectrum disorders, and drug addiction.
Wang, Wei; Gao, Xuejiao; Guo, Mengyao; Zhang, Wenlong; Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Cao, Yongguo; Zhang, Naisheng
2014-10-01
Leptospira interrogans (L. interrogans), a worldwide zoonosis, infect humans and animals. In dogs, four syndromes caused by leptospirosis have been identified: icteric, hemorrhagic, uremic (Stuttgart disease) and reproductive (abortion and premature or weak pups), and also it caused inflammation. Extracellular matrix (ECM) is a complex mixture of matrix molecules that is crucial to the reproduction. Both inflammatory response and ECM are closed relative to reproductive. The aim of this study was to clarify how L. interrogans affected the uterus of dogs, by focusing on the inflammatory responses, and ECM expression in dogs uterine tissue infected by L. interrogans. In the present study, 27 dogs were divided into 3 groups, intrauterine infusion with L. interrogans, to make uterine infection, sterile EMJH, and normal saline as a control, respectively. The uteruses were removed by surgical operation in 10, 20, and 30 days, respectively. The methods of histopathological analysis, ELISA, Western blot and qPCR were used. The results showed that L. interrogans induced significantly inflammatory responses, which were characterized by inflammatory cellular infiltration and high expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in uterine tissue of these dogs. Furthermore, L. interrogans strongly down-regulated the expression of ECM (collagens (CL) IV, fibronectins (FN) and laminins (LN)) in mRNA and protein levels. These data indicated that strongly inflammatory responses, and abnormal regulation of ECM might contribute to the proliferation of dogs infected by L. interrogans. Copyright © 2014 Elsevier Ltd. All rights reserved.
Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate
2012-06-29
The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.
Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R.; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate
2012-01-01
The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone. PMID:22573329
Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly.
Pastino, Alexandra K; Greco, Todd M; Mathias, Rommel A; Cristea, Ileana M; Schwarzbauer, Jean E
2017-05-01
Advanced glycation endproducts (AGEs) are a heterogeneous group of compounds that form via non-enzymatic glycation of proteins throughout our lifespan and at a higher rate in certain chronic diseases such as diabetes. AGEs contribute to the progression of fibrosis, in part by stimulating cellular pathways that affect gene expression. Long-lived ECM proteins are targets for non-enzymatic glycation but the question of whether the AGE-modified ECM leads to excess ECM accumulation and fibrosis remains unanswered. In this study, cellular changes due to AGE accretion in the ECM were investigated. Non-enzymatic glycation of proteins in a decellularized fibroblast ECM was achieved by incubating the ECM in a solution of methylglyoxal (MGO). Mass spectrometry of fibronectin (FN) isolated from the glycated matrix identified twenty-eight previously unidentified MGO-derived AGE modification sites including functional sites such as the RGD integrin-binding sequence. Mesangial cells grown on the glycated, decellularized matrix assembled increased amounts of FN matrix. Soluble AGE-modified bovine serum albumin (BSA) also stimulated FN matrix assembly and this effect was reduced by function-blocking antibodies against the receptor for AGE (RAGE). These results indicate that cells respond to AGEs by increasing matrix assembly and that RAGE is involved in this response. This raises the possibility that the accumulation of ECM during the progression of fibrosis may be enhanced by cell interactions with AGEs on a glycated ECM. Copyright © 2016 Elsevier B.V. All rights reserved.
Apte, M V; Haber, P S; Darby, S J; Rodgers, S C; McCaughan, G W; Korsten, M A; Pirola, R C; Wilson, J S
1999-04-01
The pathogenesis of pancreatic fibrosis is unknown. In the liver, stellate cells play a major role in fibrogenesis by synthesising increased amounts of collagen and other extracellular matrix (ECM) proteins when activated by profibrogenic mediators such as cytokines and oxidant stress. To determine whether cultured rat pancreatic stellate cells produce collagen and other ECM proteins, and exhibit signs of activation when exposed to the cytokines platelet derived growth factor (PDGF) or transforming growth factor beta (TGF-beta). Cultured pancreatic stellate cells were immunostained for the ECM proteins procollagen III, collagen I, laminin, and fibronectin using specific polyclonal antibodies. For cytokine studies, triplicate wells of cells were incubated with increasing concentrations of PDGF or TGF-beta. Cultured pancreatic stellate cells stained strongly positive for all ECM proteins tested. Incubation of cells with 1, 5, and 10 ng/ml PDGF led to a significant dose related increase in cell counts as well as in the incorporation of 3H-thymidine into DNA. Stellate cells exposed to 0.25, 0.5, and 1 ng/ml TGF-beta showed a dose dependent increase in alpha smooth muscle actin expression and increased collagen synthesis. In addition, TGF-beta increased the expression of PDGF receptors on stellate cells. Pancreatic stellate cells produce collagen and other extracellular matrix proteins, and respond to the cytokines PDGF and TGF-beta by increased proliferation and increased collagen synthesis. These results suggest an important role for stellate cells in pancreatic fibrogenesis.
Busnadiego, Oscar; González-Santamaría, José; Lagares, David; Guinea-Viniegra, Juan; Pichol-Thievend, Cathy; Muller, Laurent
2013-01-01
Transforming growth factor β1 (TGF-β1) is a pleiotropic factor involved in the regulation of extracellular matrix (ECM) synthesis and remodeling. In search for novel genes mediating the action of TGF-β1 on vascular ECM, we identified the member of the lysyl oxidase family of matrix-remodeling enzymes, lysyl oxidase-like 4 (LOXL4), as a direct target of TGF-β1 in aortic endothelial cells, and we dissected the molecular mechanism of its induction. Deletion mapping and mutagenesis analysis of the LOXL4 promoter demonstrated the absolute requirement of a distal enhancer containing an activator protein 1 (AP-1) site and a Smad binding element for TGF-β1 to induce LOXL4 expression. Functional cooperation between Smad proteins and the AP-1 complex composed of JunB/Fra2 accounted for the action of TGF-β1, which involved the extracellular signal-regulated kinase (ERK)-dependent phosphorylation of Fra2. We furthermore provide evidence that LOXL4 was extracellularly secreted and significantly contributed to ECM deposition and assembly. These results suggest that TGF-β1-dependent expression of LOXL4 plays a role in vascular ECM homeostasis, contributing to vascular processes associated with ECM remodeling and fibrosis. PMID:23572561
Rajesh, Y; Biswas, Angana; Mandal, Mahitosh
2017-10-15
Glial tumor is one of the intrinsic brain tumors with high migratory and infiltrative potential. This essentially contributes to the overall poor prognosis by circumvention of conventional treatment regimen in glioma. The underlying mechanism in gliomagenesis is bestowed by two processes- Extracellular matrix (ECM) Remodeling and Epithelial to mesenchymal transition (EMT). Heat Shock Family of proteins (HSPs), commonly known as "molecular chaperons" are documented to be upregulated in glioma. A positive correlation also exists between elevated expression of HSPs and invasive capacity of glial tumor. HSPs overexpression leads to mutational changes in glioma, which ultimately drive cells towards EMT, ECM modification, malignancy and invasion. Differential expression of HSPs - a factor providing cytoprotection to glioma cells, also contributes towards its radioresistance /chemoresistance. Various evidences also display upregulation of EMT and ECM markers by various heat shock inducing proteins e.g. HSF-1. The aim of this review is to study in detail the role of HSPs in EMT and ECM leading to radioresistance/chemoresistance of glioma cells. The existing treatment regimen for glioma could be enhanced by targeting HSPs through immunotherapy, miRNA and exosome mediated strategies. This could be envisaged by better understanding of molecular mechanisms underlying glial tumorigenesis in relation to EMT and ECM remodeling under HSPs influence. Our review might showcase fresh potential for the development of next generation therapeutics for effective glioma management. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of Ethanol on Brain Extracellular Matrix: Implications for Alcohol Use Disorder.
Lasek, Amy W
2016-10-01
The brain extracellular matrix (ECM) occupies the space between cells and is involved in cell-matrix and cell-cell adhesion. However, in addition to providing structural support to brain tissue, the ECM activates cell signaling and controls synaptic transmission. The expression and activity of brain ECM components are regulated by alcohol exposure. This review will discuss what is currently known about the effects of alcohol on the activity and expression of brain ECM components. An interpretation of how these changes might promote alcohol use disorder (AUD) will be also provided. Ethanol (EtOH) exposure decreases levels of structural proteins involved in the interstitial matrix and basement membrane, with a concomitant increase in proteolytic enzymes that degrade these components. In contrast, EtOH exposure generally increases perineuronal net components. Because the ECM has been shown to regulate both synaptic plasticity and behavioral responses to drugs of abuse, regulation of the brain ECM by alcohol may be relevant to the development of alcoholism. Although investigation of the function of brain ECM in alcohol abuse is still in early stages, a greater understanding of the interplay between ECM and alcohol might lead to novel therapeutic strategies for treating AUD. Copyright © 2016 by the Research Society on Alcoholism.
Keck, Michael; van Dijk, Roelof Maarten; Deeg, Cornelia A; Kistler, Katharina; Walker, Andreas; von Rüden, Eva-Lotta; Russmann, Vera; Hauck, Stefanie M; Potschka, Heidrun
2018-04-01
Information about epileptogenesis-associated changes in protein expression patterns is of particular interest for future selection of target and biomarker candidates. Bioinformatic analysis of proteomic data sets can increase our knowledge about molecular alterations characterizing the different phases of epilepsy development following an initial epileptogenic insult. Here, we report findings from a focused analysis of proteomic data obtained for the hippocampus and parahippocampal cortex samples collected during the early post-insult phase, latency phase, and chronic phase of a rat model of epileptogenesis. The study focused on proteins functionally associated with cell stress, cell death, extracellular matrix (ECM) remodeling, cell-ECM interaction, cell-cell interaction, angiogenesis, and blood-brain barrier function. The analysis revealed prominent pathway enrichment providing information about the complex expression alterations of the respective protein groups. In the hippocampus, the number of differentially expressed proteins declined over time during the course of epileptogenesis. In contrast, a peak in the regulation of proteins linked with cell stress and death as well as ECM and cell-cell interaction became evident at later phases during epileptogenesis in the parahippocampal cortex. The data sets provide valuable information about the time course of protein expression patterns during epileptogenesis for a series of proteins. Moreover, the findings provide comprehensive novel information about expression alterations of proteins that have not been discussed yet in the context of epileptogenesis. These for instance include different members of the lamin protein family as well as the fermitin family member 2 (FERMT2). Induction of FERMT2 and other selected proteins, CD18 (ITGB2), CD44 and Nucleolin were confirmed by immunohistochemistry. Taken together, focused bioinformatic analysis of the proteomic data sets completes our knowledge about molecular alterations linked with cell death and cellular plasticity during epileptogenesis. The analysis provided can guide future selection of target and biomarker candidates. Copyright © 2018 Elsevier Inc. All rights reserved.
Hanson, Kevin P; Jung, Jangwook P; Tran, Quyen A; Hsu, Shao-Pu P; Iida, Rioko; Ajeti, Visar; Campagnola, Paul J; Eliceiri, Kevin W; Squirrell, Jayne M; Lyons, Gary E; Ogle, Brenda M
2013-05-01
The extracellular matrix (ECM) of the embryonic heart guides assembly and maturation of cardiac cell types and, thus, may serve as a useful template, or blueprint, for fabrication of scaffolds for cardiac tissue engineering. Surprisingly, characterization of the ECM with cardiac development is scattered and fails to comprehensively reflect the spatiotemporal dynamics making it difficult to apply to tissue engineering efforts. The objective of this work was to define a blueprint of the spatiotemporal organization, localization, and relative amount of the four essential ECM proteins, collagen types I and IV (COLI, COLIV), elastin (ELN), and fibronectin (FN) in the left ventricle of the murine heart at embryonic stages E12.5, E14.5, and E16.5 and 2 days postnatal (P2). Second harmonic generation (SHG) imaging identified fibrillar collagens at E14.5, with an increasing density over time. Subsequently, immunohistochemistry (IHC) was used to compare the spatial distribution, organization, and relative amounts of each ECM protein. COLIV was found throughout the developing heart, progressing in amount and organization from E12.5 to P2. The amount of COLI was greatest at E12.5 particularly within the epicardium. For all stages, FN was present in the epicardium, with highest levels at E12.5 and present in the myocardium and the endocardium at relatively constant levels at all time points. ELN remained relatively constant in appearance and amount throughout the developmental stages except for a transient increase at E16.5. Expression of ECM mRNA was determined using quantitative polymerase chain reaction and allowed for comparison of amounts of ECM molecules at each time point. Generally, COLI and COLIII mRNA expression levels were comparatively high, while COLIV, laminin, and FN were expressed at intermediate levels throughout the time period studied. Interestingly, levels of ELN mRNA were relatively low at early time points (E12.5), but increased significantly by P2. Thus, we identified changes in the spatial and temporal localization of the primary ECM of the developing ventricle. This characterization can serve as a blueprint for fabrication techniques, which we illustrate by using multiphoton excitation photochemistry to create a synthetic scaffold based on COLIV organization at P2. Similarly, fabricated scaffolds generated using ECM components, could be utilized for ventricular repair.
Paduano, Francesco; Marrelli, Massimo; White, Lisa J; Shakesheff, Kevin M; Tatullo, Marco
2016-01-01
The aim of this study was to evaluate the level of odontogenic differentiation of dental pulp stem cells (DPSCs) on hydrogel scaffolds derived from bone extracellular matrix (bECM) in comparison to those seeded on collagen I (Col-I), one of the main components of dental pulp ECM. DPSCs isolated from human third molars were characterized for surface marker expression and odontogenic potential prior to seeding into bECM or Col-I hydrogel scaffolds. The cells were then seeded onto bECM and Col-I hydrogel scaffolds and cultured under basal conditions or with odontogenic and growth factor (GF) supplements. DPSCs cultivated on tissue culture polystyrene (TCPS) with and without supplements were used as controls. Gene expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE) was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and mineral deposition was observed by Von Kossa staining. When DPSCs were cultured on bECM hydrogels, the mRNA expression levels of DSPP, DMP-1 and MEPE genes were significantly upregulated with respect to those cultured on Col-I scaffolds or TCPS in the absence of extra odontogenic inducers. In addition, more mineral deposition was observed on bECM hydrogel scaffolds as demonstrated by Von Kossa staining. Moreover, DSPP, DMP-1 and MEPE mRNA expressions of DPSCs cultured on bECM hydrogels were further upregulated by the addition of GFs or osteo/odontogenic medium compared to Col-I treated cells in the same culture conditions. These results demonstrate the potential of the bECM hydrogel scaffolds to stimulate odontogenic differentiation of DPSCs.
Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions
NASA Technical Reports Server (NTRS)
Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.
1998-01-01
The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.
Shimada, Nao; Nishio, Keiko; Maeda, Mineko; Urushihara, Hideko; Kawata, Takefumi
2004-10-01
Dd-STATa is a functional Dictyostelium homologue of metazoan STAT (signal transducers and activators of transcription) proteins, which is activated by cAMP and is thereby translocated into the nuclei of anterior tip cells of the prestalk region of the slug. By using in situ hybridization analyses, we found that the SLF308 cDNA clone, which contains the ecmF gene that encodes a putative extracellular matrix protein and is expressed in the anterior tip cells, was greatly down-regulated in the Dd-STATa-null mutant. Disruption of the ecmF gene, however, resulted in almost no phenotypic change. The absence of any obvious mutant phenotype in the ecmF-null mutant could be due to a redundancy of similar genes. In fact, a search of the Dictyostelium whole genome database demonstrates the existence of an additional 16 homologues, all of which contain a cellulose-binding module. Among these homologues, four genes show Dd-STATa-dependent expression, while the others are Dd-STATa-independent. We discuss the potential role of Dd-STATa in morphogenesis via its effect on the interaction between cellulose and these extracellular matrix family proteins.
Deeg, Cornelia A; Eberhardt, Christina; Hofmaier, Florian; Amann, Barbara; Hauck, Stefanie M
2011-01-01
Autoimmune uveitis is an intraocular inflammation that arises through autoreactive T-cells attacking the inner eye, eventually leading to blindness. However, the contributing molecular pathomechanisms within the affected tissues remain as yet elusive. The extracellular matrix (ECM) is a highly dynamic structure that varies tremendously and influences the encompassing tissue. In order to assess ECM re-modeling in autoimmune uveitis, we investigated the expression of ECM molecules fibronectin and osteopontin in vitreous and retina samples. This was carried out in the only spontaneous animal model for human autoimmue uveitis, namely equine recurrent uveitis (ERU) that resembles the human disease in clinical as well as in immunopathological aspects. ERU is a naturally occurring autoimmune disease in horses that develops frequently and has already proved its value to study disease-related pathomechanisms. Western blot analysis of fibronectin and osteopontin in healthy and uveitic vitreous revealed significant reduction of both proteins in uveitis. Immunohistochemical expression of fibronectin in healthy retinas was restricted to the inner limiting membrane abutting vimentin positive Müller cell endfeet, while in uveitic sections, a disintegration of the ILM was observed changing the fibronectin expression to a dispersed pattern extending toward the vitreous. Retinal expression of osteopontin in control tissue was found in a characteristic Müller cell pattern illustrated by co-localization with vimentin. In uveitic retinas, the immunoreactivity of osteopontin in gliotic Müller cells was almost absent. The ability of Müller cells to express fibronectin and osteopontin was additionally shown by immunocytochemistry of primary cultured equine Müller cells and the equine Müller cell line eqMC-7. In conclusion, severe ECM re-modeling in autoimmune uveitis reported here, might affect the adhesive function of fibronectin and thus the anchoring of Müller cell endfeet to the ILM. Furthermore, the absence of osteopontin in gliotic Müller cells might represent reduced neuroprotection, an osteopontin attribute that is intensively discussed.
Willems, Stefan M; Mohseny, Alex B; Balog, Crina; Sewrajsing, Raj; Briaire-de Bruijn, Inge H; Knijnenburg, Jeroen; Cleton-Jansen, Anne-Marie; Sciot, Raf; Fletcher, Christopher D M; Deelder, André M; Szuhai, Karoly; Hensbergen, Paul J; Hogendoorn, Pancras C W
2009-01-01
Cellular myxoma and grade I myxofibrosarcoma are mesenchymal tumours that are characterized by their abundant myxoid extracellular matrix (ECM). Despite their histological overlap, they differ clinically. Diagnosis is therefore difficult though important. We investigated their (cyto) genetics and ECM. GNAS1-activating mutations have been described in intramuscular myxoma, and lead to downstream activation of cFos. KRAS and TP53 mutations are commonly involved in sarcomagenesis whereby KRAS subsequently activates c-Fos. A well-documented series of intramuscular myxoma (three typical cases and seven cases of the more challenging cellular variant) and grade I myxofibrosarcoma (n= 10) cases were karyotyped, analyzed for GNAS1, KRAS and TP53 mutations and downstream activation of c-Fos mRNA and protein expression. ECM was studied by liquid chromatography mass spectrometry and expression of proteins identified was validated by immunohistochemistry and qPCR. Grade I myxofibrosarcoma showed variable, non-specific cyto-genetic aberrations in 83,5% of cases (n= 6) whereas karyotypes of intramuscular myxoma were all normal (n= 7). GNAS1-activating mutations were exclusively found in 50% of intramuscular myxoma. Both tumour types showed over-expression of c-Fos mRNA and protein. No mutations in KRAS codon 12/13 or in TP53 were detected. Liquid chromatography mass spectrometry revealed structural proteins (collagen types I, VI, XII, XIV and decorin) in grade I myxofibrosarcoma lacking in intramuscular myxoma. This was confirmed by immunohistochemistry and qPCR. Intramuscular/cellular myxoma and grade I myxofibrosarcoma show different molecular genetic aberrations and different composition of their ECM that probably contribute to their diverse clinical behaviour. GNAS1 mutation analysis can be helpful to distinguish intramuscular myxoma from grade I myxofibrosarcoma in selected cases. PMID:19320777
Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro.
Muñoz-Félix, José M; Cuesta, Cristina; Perretta-Tejedor, Nuria; Subileau, Mariela; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos
2016-09-01
Upregulated synthesis of extracellular matrix (ECM) proteins by myofibroblasts is a common phenomenon in the development of fibrosis. Although the role of TGF-β in fibrosis development has been extensively studied, the involvement of other members of this superfamily of cytokines, the bone morphogenetic proteins (BMPs) in organ fibrosis has given contradictory results. BMP9 is the main ligand for activin receptor-like kinase-1 (ALK1) TGF-β1 type I receptor and its effect on fibrosis development is unknown. Our purpose was to study the effect of BMP9 in ECM protein synthesis in fibroblasts, as well as the involved receptors and signaling pathways. In cultured mice fibroblasts, BMP9 induces an increase in collagen, fibronectin and connective tissue growth factor expression, associated with Smad1/5/8, Smad2/3 and Erk1/2 activation. ALK5 inhibition with SB431542 or ALK1/2/3/6 with dorsomorphin-1, inhibition of Smad3 activation with SIS3, and inhibition of the MAPK/Erk1/2 with U0126, demonstrates the involvement of these pathways in BMP9-induced ECM synthesis in MEFs. Whereas BMP9 induced Smad1/5/8 phosphorylation through ALK1, it also induces Smad2/3 phosphorylation through ALK5 but only in the presence of ALK1. Summarizing, this is the first study that accurately identifies BMP9 as a profibrotic factor in fibroblasts that promotes ECM protein expression through ALK1 and ALK5 receptors. Copyright © 2016 Elsevier Inc. All rights reserved.
Kangwantas, Korakoch; Pinteaux, Emmanuel; Penny, Jeffrey
2016-02-01
The blood-brain barrier (BBB) of the central nervous system (CNS) is essential for normal brain function. However, the loss of BBB integrity that occurs after ischaemic injury is associated with extracellular matrix (ECM) remodelling and inflammation, and contributes to poor outcome. ECM remodelling also contributes to BBB repair after injury, but the precise mechanisms and contribution of specific ECM molecules involved are unknown. Here, we investigated the mechanisms by which hypoxia and inflammation trigger loss of BBB integrity and tested the hypothesis ECM changes could contribute to BBB repair in vitro. We used an in vitro model of the BBB, composed of primary rat brain endothelial cells grown on collagen (Col) I-, Col IV-, fibronectin (FN)-, laminin (LM) 8-, or LM10-coated tissue culture plates, either as a single monolayer culture or on Transwell® inserts above mixed glial cell cultures. Cultures were exposed to oxygen-glucose deprivation (OGD) and/or reoxygenation, in the absence or the presence of recombinant interleukin-1β (IL-1β). Cell adhesion to ECM molecules was assessed by cell attachment and cell spreading assays. BBB dysfunction was assessed by immunocytochemistry for tight junction proteins occludin and zona occludens-1 (ZO-1) and measurement of trans-endothelial electrical resistance (TEER). Change in endothelial expression of ECM molecules was assessed by semi-quantitative RT-PCR. OGD and/or IL-1 induce dramatic changes associated with loss of BBB integrity, including cytoplasmic relocalisation of membrane-associated tight junction proteins occludin and ZO-1, cell swelling, and decreased TEER. OGD and IL-1 also induced gene expression of key ECM molecules associated with the BBB, including FN, Col IV, LM 8, and LM10. Importantly, we found that LM10, but not FN, Col IV, nor LM8, plays a key role in maintenance of BBB integrity and reversed most of the key hallmarks of BBB dysfunction induced by IL-1. Our data unravel new mechanisms of BBB dysfunction induced by hypoxia and inflammation and identify LM10 as a key ECM molecule involved in BBB repair after hypoxic injury and inflammation.
Oliveira, Rosane; de Morais, Zenaide Maria; Gonçales, Amane Paldes; Romero, Eliete Caló; Vasconcellos, Silvio Arruda; Nascimento, Ana L. T. O.
2011-01-01
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K D, 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a K D of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date. PMID:21755014
Oliveira, Rosane; de Morais, Zenaide Maria; Gonçales, Amane Paldes; Romero, Eliete Caló; Vasconcellos, Silvio Arruda; Nascimento, Ana L T O
2011-01-01
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K(D), 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a K(D) of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.
Shih, Ying-Chun; Chen, Chao-Ling; Zhang, Yan; Mellor, Rebecca L; Kanter, Evelyn M; Fang, Yun; Wang, Hua-Chi; Hung, Chen-Ting; Nong, Jing-Yi; Chen, Hui-Ju; Lee, Tzu-Han; Tseng, Yi-Shuan; Chen, Chiung-Nien; Wu, Chau-Chung; Lin, Shuei-Liong; Yamada, Kathryn A; Nerbonne, Jeanne M; Yang, Kai-Chien
2018-04-13
Cardiac fibrosis plays a critical role in the pathogenesis of heart failure. Excessive accumulation of extracellular matrix (ECM) resulting from cardiac fibrosis impairs cardiac contractile function and increases arrhythmogenicity. Current treatment options for cardiac fibrosis, however, are limited, and there is a clear need to identify novel mediators of cardiac fibrosis to facilitate the development of better therapeutics. Exploiting coexpression gene network analysis on RNA sequencing data from failing human heart, we identified TXNDC5 (thioredoxin domain containing 5), a cardiac fibroblast (CF)-enriched endoplasmic reticulum protein, as a potential novel mediator of cardiac fibrosis, and we completed experiments to test this hypothesis directly. The objective of this study was to determine the functional role of TXNDC5 in the pathogenesis of cardiac fibrosis. RNA sequencing and Western blot analyses revealed that TXNDC5 mRNA and protein were highly upregulated in failing human left ventricles and in hypertrophied/failing mouse left ventricle. In addition, cardiac TXNDC5 mRNA expression levels were positively correlated with those of transcripts encoding transforming growth factor β1 and ECM proteins in vivo. TXNDC5 mRNA and protein were increased in human CF (hCF) under transforming growth factor β1 stimulation in vitro. Knockdown of TXNDC5 attenuated transforming growth factor β1-induced hCF activation and ECM protein upregulation independent of SMAD3 (SMAD family member 3), whereas increasing expression of TXNDC5 triggered hCF activation and proliferation and increased ECM protein production. Further experiments showed that TXNDC5, a protein disulfide isomerase, facilitated ECM protein folding and that depletion of TXNDC5 led to ECM protein misfolding and degradation in CF. In addition, TXNDC5 promotes hCF activation and proliferation by enhancing c-Jun N-terminal kinase activity via increased reactive oxygen species, derived from NAD(P)H oxidase 4. Transforming growth factor β1-induced TXNDC5 upregulation in hCF was dependent on endoplasmic reticulum stress and activating transcription factor 6-mediated transcriptional control. Targeted disruption of Txndc5 in mice ( Txndc5 -/- ) revealed protective effects against isoproterenol-induced cardiac hypertrophy, reduced fibrosis (by ≈70%), and markedly improved left ventricle function; post-isoproterenol left ventricular ejection fraction was 59.1±1.5 versus 40.1±2.5 ( P <0.001) in Txndc5 -/- versus wild-type mice, respectively. The endoplasmic reticulum protein TXNDC5 promotes cardiac fibrosis by facilitating ECM protein folding and CF activation via redox-sensitive c-Jun N-terminal kinase signaling. Loss of TXNDC5 protects against β agonist-induced cardiac fibrosis and contractile dysfunction. Targeting TXNDC5, therefore, could be a powerful new therapeutic approach to mitigate excessive cardiac fibrosis, thereby improving cardiac function and outcomes in patients with heart failure. © 2018 American Heart Association, Inc.
Engin, Ayse Basak; Nikitovic, Dragana; Neagu, Monica; Henrich-Noack, Petra; Docea, Anca Oana; Shtilman, Mikhail I; Golokhvast, Kirill; Tsatsakis, Aristidis M
2017-06-24
Extracellular matrix (ECM) is an extraordinarily complex and unique meshwork composed of structural proteins and glycosaminoglycans. The ECM provides essential physical scaffolding for the cellular constituents, as well as contributes to crucial biochemical signaling. Importantly, ECM is an indispensable part of all biological barriers and substantially modulates the interchange of the nanotechnology products through these barriers. The interactions of the ECM with nanoparticles (NPs) depend on the morphological characteristics of intercellular matrix and on the physical characteristics of the NPs and may be either deleterious or beneficial. Importantly, an altered expression of ECM molecules ultimately affects all biological processes including inflammation. This review critically discusses the specific behavior of NPs that are within the ECM domain, and passing through the biological barriers. Furthermore, regenerative and toxicological aspects of nanomaterials are debated in terms of the immune cells-NPs interactions.
Diverse roles of integrin receptors in articular cartilage.
Shakibaei, M; Csaki, C; Mobasheri, A
2008-01-01
Integrins are heterodimeric integral membrane proteins made up of alpha and beta subunits. At least eighteen alpha and eight beta subunit genes have been described in mammals. Integrin family members are plasma membrane receptors involved in cell adhesion and active as intra- and extracellular signalling molecules in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic spread of tumour cells. Integrin beta 1 (beta1-integrin), the protein encoded by the ITGB1 gene (also known as CD29 and VLAB), is a multi-functional protein involved in cell-matrix adhesion, cell signalling, cellular defense, cell adhesion, protein binding, protein heterodimerisation and receptor-mediated activity. It is highly expressed in the human body (17.4 times higher than the average gene in the last updated revision of the human genome). The extracellular matrix (ECM) of articular cartilage is a unique environment. Interactions between chondrocytes and the ECM regulate many biological processes important to homeostasis and repair of articular cartilage, including cell attachment, growth, differentiation and survival. The beta1-integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these fundamental processes. Chondrocyte mechanoreceptors have been proposed to incorporate beta1-integrins and mechanosensitive ion channels which link with key ECM, cytoskeletal and signalling proteins to maintain the chondrocyte phenotype, prevent chondrocyte apoptosis and regulate chondrocyte-specific gene expression. This review focuses on the expression and function of beta1-integrins in articular chondrocytes, its role in the unique biology of these cells and its distribution in cartilage.
NASA Technical Reports Server (NTRS)
Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)
1994-01-01
Both spaceflight and skeletal unloading suppress the haematopoietic differentiation of macrophages (Sonnenfeld et al., Aviat. Space Environ. Med., 61:648-653, 1990; Armstrong et al., J. Appl. Physiol., 75:2734-2739, 1993). The mechanism behind this reduction in haematopoiesis has yet to be elucidated. However, changes in bone marrow extracellular matrix (ECM) may be involved. To further understand the role of ECM products in macrophage differentiation, we have performed experiments evaluating the effects of fibronectin, laminin, collagen type I, and collagen type IV on macrophage development and function. Bone marrow-derived macrophages cultured on four different ECM substrates in liquid culture medium showed less growth than those cultured on plastic. Significant morphological differences were seen on each of the substrates used. Phenotypically and functionally, as measured by class II major histocompatibility molecule (MHCII) expression, MAC-2 expression, and the secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), these macrophages were similar. In contrast, bone marrow-derived macrophages cultured in suspension, using agar, showed no difference in growth when exposed to ECM proteins. However, IL-6 and TNF-alpha secretion was affected by fibronectin, laminin, collagen type I, and collagen type IV in a concentration-dependent manner. We conclude that the ECM products fibronectin, laminin, collagen type I, and collagen type IV have profound effects on macrophage development and function. Additionally, we suggest that an ECM-supplemented agar culture system provides an environment more analogous to in vivo bone marrow than does a traditional liquid culture system.
Helal-Neto, Edward; Brandão-Costa, Renata M; Saldanha-Gama, Roberta; Ribeiro-Pereira, Cristiane; Midlej, Victor; Benchimol, Marlene; Morandi, Verônica; Barja-Fidalgo, Christina
2016-11-01
The unique composition of tumor-produced extracellular matrix (ECM) can be a determining factor in changing the profile of endothelial cells in the tumor microenvironment. As the main receptor for ECM proteins, integrins can activate a series of signaling pathways related to cell adhesion, migration, and differentiation of endothelial cells that interact with ECM proteins. We studied the direct impact of the decellularized ECM produced by a highly metastatic human melanoma cell line (MV3) on the activation of endothelial cells and identified the intracellular signaling pathways associated with cell differentiation. Our data show that compared to the ECM derived from a human melanocyte cell line (NGM-ECM), ECM produced by a melanoma cell line (MV3-ECM) is considerably different in ultrastructural organization and composition and possesses a higher content of tenascin-C and laminin and a lower expression of fibronectin. When cultured directly on MV3-ECM, endothelial cells change morphology and show increased adhesion, migration, proliferation, and tubulogenesis. Interaction of endothelial cells with MV3-ECM induces the activation of integrin signaling, increasing FAK phosphorylation and its association with Src, which activates VEGFR2, potentiating the receptor response to VEGF. The blockage of αvβ3 integrin inhibited the FAK-Src association and VEGFR activation, thus reducing tubulogenesis. Together, our data suggest that the interaction of endothelial cells with the melanoma-ECM triggers integrin-dependent signaling, leading to Src pathway activation that may potentiate VEGFR2 activation and up-regulate angiogenesis. J. Cell. Physiol. 231: 2464-2473, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Phelps, Aimee L.; Ghatnekar, Angela V.; Barth, Jeremy L.; Norris, Russell A.; Wessels, Andy
2013-01-01
Cartilage Link Protein 1 (Crtl1) is an extracellular matrix (ECM) protein that stabilizes the interaction between hyaluronan and versican and is expressed in endocardial and endocardially-derived cells in the developing heart, including cells in the atrioventricular (AV) and outflow tract (OFT) cushions. Previous investigations into the transcriptional regulation of the Crtl1 gene have shown that Sox9 regulates Crtl1 expression in both cartilage and the AV valves. The cardiac transcription factor Mef2c is involved in the regulation of gene expression in cardiac and skeletal muscle cell lineages. In this study we have investigated the potential role of Mef2c in the regulation of ECM production in the endocardial and mesenchymal cell lineages of the developing heart. We demonstrate that the Crtl1 5′ flanking region contains two highly conserved Mef2 binding sites and that Mef2c is able to bind to these sites in vivo during cardiovascular development. Additionally, we show that Crtl1 transcription is dependent on Mef2c expression in fetal mitral valve interstitial cells (VICs). Combined, these findings highlight a new role for Mef2c in cardiac development and the regulation of cardiac extracellular matrix protein expression. PMID:23468913
Tominaga, Tatsuya; Abe, Hideharu; Ueda, Otoya; Goto, Chisato; Nakahara, Kunihiko; Murakami, Taichi; Matsubara, Takeshi; Mima, Akira; Nagai, Kojiro; Araoka, Toshikazu; Kishi, Seiji; Fukushima, Naoshi; Jishage, Kou-ichi; Doi, Toshio
2011-01-01
Diabetic nephropathy (DN) is the most common cause of chronic kidney disease. We have previously reported that Smad1 transcriptionally regulates the expression of extracellular matrix (ECM) proteins in DN. However, little is known about the regulatory mechanisms that induce and activate Smad1. Here, bone morphogenetic protein 4 (Bmp4) was found to up-regulate the expression of Smad1 in mesangial cells and subsequently to phosphorylate Smad1 downstream of the advanced glycation end product-receptor for advanced glycation end product signaling pathway. Moreover, Bmp4 utilized Alk3 and affected the activation of Smad1 and Col4 expressions in mesangial cells. In the diabetic mouse, Bmp4 was remarkably activated in the glomeruli, and the mesangial area was expanded. To elucidate the direct function of Bmp4 action in the kidneys, we generated transgenic mice inducible for the expression of Bmp4. Tamoxifen treatment dramatically induced the expression of Bmp4, especially in the glomeruli of the mice. Notably, in the nondiabetic condition, the mice exhibited not only an expansion of the mesangial area and thickening of the basement membrane but also remarkable albuminuria, which are consistent with the distinct glomerular injuries in DN. ECM protein overexpression and activation of Smad1 in the glomeruli were also observed in the mice. The mesangial expansion in the mice was significantly correlated with albuminuria. Furthermore, the heterozygous Bmp4 knock-out mice inhibited the glomerular injuries compared with wild type mice in diabetic conditions. Here, we show that BMP4 may act as an upstream regulatory molecule for the process of ECM accumulation in DN and thereby reveals a new aspect of the molecular mechanisms involved in DN. PMID:21471216
Imbeault, Sophie; Gauvin, Lianne G; Toeg, Hadi D; Pettit, Alexandra; Sorbara, Catherine D; Migahed, Lamiaa; DesRoches, Rebecca; Menzies, A Sheila; Nishii, Kiyomasa; Paul, David L; Simon, Alexander M; Bennett, Steffany AL
2009-01-01
Background Gap junction protein and extracellular matrix signalling systems act in concert to influence developmental specification of neural stem and progenitor cells. It is not known how these two signalling systems interact. Here, we examined the role of ECM components in regulating connexin expression and function in postnatal hippocampal progenitor cells. Results We found that Cx26, Cx29, Cx30, Cx37, Cx40, Cx43, Cx45, and Cx47 mRNA and protein but only Cx32 and Cx36 mRNA are detected in distinct neural progenitor cell populations cultured in the absence of exogenous ECM. Multipotential Type 1 cells express Cx26, Cx30, and Cx43 protein. Their Type 2a progeny but not Type 2b and 3 neuronally committed progenitor cells additionally express Cx37, Cx40, and Cx45. Cx29 and Cx47 protein is detected in early oligodendrocyte progenitors and mature oligodendrocytes respectively. Engagement with a laminin substrate markedly increases Cx26 protein expression, decreases Cx40, Cx43, Cx45, and Cx47 protein expression, and alters subcellular localization of Cx30. These changes are associated with decreased neurogenesis. Further, laminin elicits the appearance of Cx32 protein in early oligodendrocyte progenitors and Cx36 protein in immature neurons. These changes impact upon functional connexin-mediated hemichannel activity but not gap junctional intercellular communication. Conclusion Together, these findings demonstrate a new role for extracellular matrix-cell interaction, specifically laminin, in the regulation of intrinsic connexin expression and function in postnatal neural progenitor cells. PMID:19236721
Minireview: Fibronectin in retinal disease.
Miller, Charles G; Budoff, Greg; Prenner, Jonathan L; Schwarzbauer, Jean E
2017-01-01
Retinal fibrosis, characterized by dysregulation of extracellular matrix (ECM) protein deposition by retinal endothelial cells, pigment epithelial cells, and other resident cell-types, is a unifying feature of several common retinal diseases. Fibronectin is an early constituent of newly deposited ECM and serves as a template for assembly of other ECM proteins, including collagens. Under physiologic conditions, fibronectin is found in all layers of Bruch's membrane. Proliferative vitreoretinopathy (PVR), a complication of retinal surgery, is characterized by ECM accumulation. Among the earliest histologic manifestations of diabetic retinopathy (DR) is capillary basement membrane thickening, which occurs due to perturbations in ECM homeostasis. Neovascularization, the hallmark of late stage DR as well as exudative age-related macular degeneration (AMD), involves ECM assembly as a scaffold for the aberrant new vessel architecture. Rodent models of retinal injury demonstrate a key role for fibronectin in complications characteristic of PVR, including retinal detachment. In mouse models of DR, reducing fibronectin gene expression has been shown to arrest the accumulation of ECM in the capillary basement membrane. Alterations in matrix metalloproteinase activity thought to be important in the pathogenesis of AMD impact the turnover of fibronectin matrix as well as collagens. Growth factors involved in PVR, AMD, and DR, such as PDGF and TGFβ, are known to stimulate fibronectin matrix assembly. A deeper understanding of how pathologic ECM deposition contributes to disease progression may help to identify novel targets for therapeutic intervention. © 2016 by the Society for Experimental Biology and Medicine.
Preparation of hydroxy-PAAm hydrogels for decoupling the effects of mechanotransduction cues.
Grevesse, Thomas; Versaevel, Marie; Gabriele, Sylvain
2014-08-28
It is now well established that many cellular functions are regulated by interactions of cells with physicochemical and mechanical cues of their extracellular matrix (ECM) environment. Eukaryotic cells constantly sense their local microenvironment through surface mechanosensors to transduce physical changes of ECM into biochemical signals, and integrate these signals to achieve specific changes in gene expression. Interestingly, physicochemical and mechanical parameters of the ECM can couple with each other to regulate cell fate. Therefore, a key to understanding mechanotransduction is to decouple the relative contribution of ECM cues on cellular functions. Here we present a detailed experimental protocol to rapidly and easily generate biologically relevant hydrogels for the independent tuning of mechanotransduction cues in vitro. We chemically modified polyacrylamide hydrogels (PAAm) to surmount their intrinsically non-adhesive properties by incorporating hydroxyl-functionalized acrylamide monomers during the polymerization. We obtained a novel PAAm hydrogel, called hydroxy-PAAm, which permits immobilization of any desired nature of ECM proteins. The combination of hydroxy-PAAm hydrogels with microcontact printing allows to independently control the morphology of single-cells, the matrix stiffness, the nature and the density of ECM proteins. We provide a simple and rapid method that can be set up in every biology lab to study in vitro cell mechanotransduction processes. We validate this novel two-dimensional platform by conducting experiments on endothelial cells that demonstrate a mechanical coupling between ECM stiffness and the nucleus.
Cross, A K; Haddock, G; Surr, J; Plumb, J; Bunning, R A D; Buttle, D J; Woodroofe, M N
2006-02-01
Experimental autoimmune encephalomyelitis (EAE) is an animal model of inflammatory demyelination, a pathological event common to multiple sclerosis (MS). During CNS inflammation there are alterations in the extracellular matrix (ECM). A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS)-1, -4 and -5 are proteases present in the CNS, which are able to cleave the aggregating chondroitin sulphate proteoglycans, aggrecan, phosphacan, neurocan and brevican. It is therefore important to investigate changes in their expression in different stages of EAE induction. We have investigated expression of ADAMTS-1, -4, -5 and tissue inhibitor of metalloproteinase (TIMP)-3, by real-time RT-PCR. We have also examined protein expression of ADAMTS-1, -4 and -5 by western blotting and immunocytochemistry in spinal cord from animals at different stages of disease progression. Our study demonstrated a decrease in ADAMTS-4 mRNA and protein expression. TIMP-3 was decreased at the mRNA level although protein levels were increased in diseased animals compared to controls. Our study identifies changes in ADAMTS expression during the course of CNS inflammation which may contribute to ECM degradation and disease progression.
Mifepristone inhibits extracellular matrix formation in uterine leiomyoma.
Patel, Amrita; Malik, Minnie; Britten, Joy; Cox, Jeris; Catherino, William H
2016-04-01
To characterize the efficacy of mifepristone treatment on extracellular matrix (ECM) production in leiomyomas. Laboratory study. University research laboratory. None. Treatment of human immortalized two-dimensional (2D) and three-dimensional (3D) leiomyoma and myometrial cells with mifepristone and the progestin promegestone (R5020). Expression of COL1A1, fibronectin, versican variant V0, and dermatopontin in treated leiomyoma cells by Western blot analysis and confirmatory immunohistochemistry staining of treated 3D cultures. Treatment with progestin stimulated production of COL1A1, fibronectin, versican, and dermatopontin. Mifepristone treatment inhibited protein production of these genes, most notably with versican expression. Combination treatment with both the agonist and antagonist further inhibited protein expression of these genes. Immunohistochemistry performed on 3D cultures demonstrated generalized inhibition of ECM protein concentration. Our study demonstrated that the progesterone agonist R5020 directly stimulated extracellular matrix components COL1A1, fibronectin, versican, and dermatopontin production in human leiomyoma cells. Progesterone antagonist mifepristone decreased protein production of these genes to levels comparable with untreated leiomyoma cells. Published by Elsevier Inc.
Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion.
Stearns-Reider, Kristen M; D'Amore, Antonio; Beezhold, Kevin; Rothrauff, Benjamin; Cavalli, Loredana; Wagner, William R; Vorp, David A; Tsamis, Alkiviadis; Shinde, Sunita; Zhang, Changqing; Barchowsky, Aaron; Rando, Thomas A; Tuan, Rocky S; Ambrosio, Fabrisia
2017-06-01
Age-related declines in skeletal muscle regeneration have been attributed to muscle stem cell (MuSC) dysfunction. Aged MuSCs display a fibrogenic conversion, leading to fibrosis and impaired recovery after injury. Although studies have demonstrated the influence of in vitro substrate characteristics on stem cell fate, whether and how aging of the extracellular matrix (ECM) affects stem cell behavior has not been investigated. Here, we investigated the direct effect of the aged muscle ECM on MuSC lineage specification. Quantification of ECM topology and muscle mechanical properties reveals decreased collagen tortuosity and muscle stiffening with increasing age. Age-related ECM alterations directly disrupt MuSC responses, and MuSCs seeded ex vivo onto decellularized ECM constructs derived from aged muscle display increased expression of fibrogenic markers and decreased myogenicity, compared to MuSCs seeded onto young ECM. This fibrogenic conversion is recapitulated in vitro when MuSCs are seeded directly onto matrices elaborated by aged fibroblasts. When compared to young fibroblasts, fibroblasts isolated from aged muscle display increased nuclear levels of the mechanosensors, Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), consistent with exposure to a stiff microenvironment in vivo. Accordingly, preconditioning of young fibroblasts by seeding them onto a substrate engineered to mimic the stiffness of aged muscle increases YAP/TAZ nuclear translocation and promotes secretion of a matrix that favors MuSC fibrogenesis. The findings here suggest that an age-related increase in muscle stiffness drives YAP/TAZ-mediated pathogenic expression of matricellular proteins by fibroblasts, ultimately disrupting MuSC fate. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Malik, Minnie; Britten, Joy; Cox, Jeris; Patel, Amrita; Catherino, William H
2016-01-01
To determine the effect of GnRH analogues (GnRH-a) leuprolide acetate (LA) and cetrorelix acetate on gonadal hormone-regulated expression of extracellular matrix in uterine leiomyoma three-dimensional (3D) cultures. Laboratory study. University research laboratory. Women undergoing hysterectomy for symptomatic leiomyomas. The 3D cell cultures, protein analysis, Western blot, immunohistochemistry. Expression of extracellular matrix proteins, collagen 1, fibronectin, and versican in leiomyoma cells 3D cultures exposed to E2, P, LA, cetrorelix acetate, and combinations for 24- and 72-hour time points. The 3D leiomyoma cultures exposed to E2 for 24 hours demonstrated an increased expression of collagen-1 and fibronectin, which was maintained for up to 72 hours, a time point at which versican was up-regulated significantly. Although P up-regulated collagen-1 protein (1.29 ± 0.04) within 24 hours of exposure, significant increase in all extracellular matrix (ECM) proteins was observed when the gonadal hormones were used concomitantly. Significant decrease in the amount of ECM proteins was observed on use of GnRH-a, LA and cetrorelix, with 24-hour exposure. Both the compounds also significantly decreased ECM protein concentration despite the presence of E2 or both gonadal hormones. This study demonstrates that GnRH-a directly affect the gonadal hormone-regulated collagen-1, fibronectin, and versican production in their presence. These findings suggest that localized therapy with GnRH-a may inhibit leiomyoma growth even in the presence of endogenous gonadal hormone exposure, thereby providing a mechanism to eliminate the hypoestrogenic side effects associated with GnRH-a therapy. Published by Elsevier Inc.
de Bessa Garcia, Simone A; Pereira, Michelly C; Nagai, Maria A
2010-12-21
The histological organization of the mammary gland involves a spatial interaction of epithelial and myoepithelial cells with the specialized basement membrane (BM), composed of extra-cellular matrix (ECM) proteins, which is disrupted during the tumorigenic process. The interactions between mammary epithelial cells and ECM components play a major role in mammary gland branching morphogenesis. Critical signals for mammary epithelial cell proliferation, differentiation, and survival are provided by the ECM proteins. Three-dimensional (3D) cell culture was developed to establish a system that simulates several features of the breast epithelium in vivo; 3D cell culture of the spontaneously immortalized cell line, MCF10A, is a well-established model system to study breast epithelial cell biology and morphogenesis. Mammary epithelial cells grown in 3D form spheroids, acquire apicobasal polarization, and form lumens that resemble acini structures, processes that involve cell death. Using this system, we evaluated the expression of the pro-apoptotic gene PAWR (PKC apoptosis WT1 regulator; also named PAR-4, prostate apoptosis response-4) by immunofluorescence and quantitative real time PCR (qPCR). A time-dependent increase in PAR-4 mRNA expression was found during the process of MCF10A acinar morphogenesis. Confocal microscopy analysis also showed that PAR-4 protein was highly expressed in the MCF10A cells inside the acini structure. During the morphogenesis of MCF10A cells in 3D cell culture, the cells within the lumen showed caspase-3 activation, indicating apoptotic activity. PAR-4 was only partially co-expressed with activated caspase-3 on these cells. Our results provide evidence, for the first time, that PAR-4 is differentially expressed during the process of MCF10A acinar morphogenesis.
Wilson, Richard; Norris, Emma L.; Brachvogel, Bent; Angelucci, Constanza; Zivkovic, Snezana; Gordon, Lavinia; Bernardo, Bianca C.; Stermann, Jacek; Sekiguchi, Kiyotoshi; Gorman, Jeffrey J.; Bateman, John F.
2012-01-01
Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296–1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during cartilage development. Although the multifunctional chaperone BiP was not differentially expressed, enzymes and chaperones required specifically for collagen biosynthesis, such as the prolyl 3-hydroxylase 1, cartilage-associated protein, and peptidyl prolyl cis-trans isomerase B complex, were down-regulated during maturation. Conversely, the lumenal proteins calumenin, reticulocalbin-1, and reticulocalbin-2 were significantly increased, signifying a shift toward calcium binding functions. This first proteomic analysis of cartilage development in vivo reveals the breadth of protein expression changes during chondrocyte maturation and ECM remodeling in the mouse femoral head. PMID:21989018
CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients
Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Kappler, Matthias
2017-01-01
The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (rs = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients’ disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression. PMID:29215551
CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients.
Greither, Thomas; Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Taubert, Helge; Kappler, Matthias
2017-12-07
The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (r s = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients' disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.
Nagy, Nandor; Barad, Csilla; Hotta, Ryo; Bhave, Sukhada; Arciero, Emily; Dora, David; Goldstein, Allan M
2018-05-08
The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins. © 2018. Published by The Company of Biologists Ltd.
Kaufman, Gili; Whitescarver, Ryan A; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek
2018-01-24
Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by ImageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within three days of incubation, fibroblast spheroids interacted with the fibers, and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for engineering soft and dense connective tissues with the required structural characteristics and functions needed for wound healing applications. Rapid regeneration of these layers should enhance healing of open wounds in a harsh oral environment.
Isolation and characterization of chicken bile matrix metalloproteinase
USDA-ARS?s Scientific Manuscript database
Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix (ECM) proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies but the significance of their expression in normal, he...
Miao, Ting; Wan, Zixuan; Sun, Lina; Li, Xiaoni; Xing, Lili; Bai, Yucen; Wang, Fang; Yang, Hongsheng
2017-10-01
Remodeling of extracellular matrix (ECM) regulated by matrix metalloproteinases (MMPs) is essential for tissue regeneration. In the present study, we used immunohistochemistry (IHC) techniques against ECM components to reveal changes of ECM during intestine regeneration of Apostichopus japonicus. The expression of collagen I and laminin reduced apparently from the eviscerated intestine, while fibronectin exhibited continuous expression in all regeneration stages observed. Meanwhile, we cloned two MMP genes from A. japonicus by RACE PCR. The full-length cDNA of ajMMP-2 like is 2733bp and contains a predicted open reading frame (ORF) of 1716bp encoding 572 amino acids. The full-length cDNA of ajMMP-16 like is 2705bp and contains an ORF of 1452bp encoding 484 amino acids. The predicted protein sequences of each MMP contain two conserved domains, ZnMc_MMP and HX. Homology and phylogenetic analysis revealed that ajMMP-2 like and ajMMP-16 like share high sequence similarity with MMP-2 and MMP-16 from Strongylocentrotus purpuratus, respectively. Then we investigated spatio-temporal expression of ajMMP-2 like and ajMMP-16 like during different regeneration stages by qRT-PCR and IHC. The expression pattern of them showed a roughly opposite trend from that of ECM components. According to our results, a fibronectin-dominate temporary matrix is created in intestine regeneration, and it might provide structural integrity for matrix and promote cell movement. We also hypothesize that ajMMP-2 like and ajMMP-16 like could accelerate cell migration and regulate interaction between ECM components and growth factors. This work provides new evidence of ECM and MMPs involvement in sea cucumber regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Tanoue, H; Morinaga, J; Yoshizawa, T; Yugami, M; Itoh, H; Nakamura, T; Uehara, Y; Masuda, T; Odagiri, H; Sugizaki, T; Kadomatsu, T; Miyata, K; Endo, M; Terada, K; Ochi, H; Takeda, S; Yamagata, K; Fukuda, T; Mizuta, H; Oike, Y
2018-01-01
Chondrocyte differentiation is crucial for long bone growth. Many cartilage extracellular matrix (ECM) proteins reportedly contribute to chondrocyte differentiation, indicating that mechanisms underlying chondrocyte differentiation are likely more complex than previously appreciated. Angiopoietin-like protein 2 (ANGPTL2) is a secreted factor normally abundantly produced in mesenchymal lineage cells such as adipocytes and fibroblasts, but its loss contributes to the pathogenesis of lifestyle- or aging-related diseases. However, the function of ANGPTL2 in chondrocytes, which are also differentiated from mesenchymal stem cells, remains unclear. Here, we investigate whether ANGPTL2 is expressed in or functions in chondrocytes. First, we evaluated Angptl2 expression during chondrocyte differentiation using chondrogenic ATDC5 cells and wild-type epiphyseal cartilage of newborn mice. We next assessed ANGPTL2 function in chondrogenic differentiation and associated signaling using Angptl2 knockdown ATDC5 cells and Angptl2 knockout mice. ANGPTL2 is expressed in chondrocytes, particularly those located in resting and proliferative zones, and accumulates in ECM surrounding chondrocytes. Interestingly, long bone growth was retarded in Angptl2 knockout mice from neonatal to adult stages via attenuation of chondrocyte differentiation. Both in vivo and in vitro experiments show that changes in ANGPTL2 expression can also alter p38 mitogen-activated protein kinase (MAPK) activity mediated by integrin α5β1. ANGPTL2 contributes to chondrocyte differentiation and subsequent endochondral ossification through α5β1 integrin and p38 MAPK signaling during bone growth. Our findings provide insight into molecular mechanisms governing communication between chondrocytes and surrounding ECM components in bone growth activities. Copyright © 2017. Published by Elsevier Ltd.
Wäster, Petra; Orfanidis, Kyriakos; Eriksson, Ida; Rosdahl, Inger; Seifert, Oliver; Öllinger, Karin
2017-08-08
Ultraviolet radiation (UVR) is the major risk factor for development of malignant melanoma. Fibroblast activation protein (FAP)-α is a serine protease expressed on the surface of activated fibroblasts, promoting tumour invasion through extracellular matrix (ECM) degradation. The signalling mechanism behind the upregulation of FAP-α is not yet completely revealed. Expression of FAP-α was analysed after UVR exposure in in vitro co-culture systems, gene expression arrays and artificial skin constructs. Cell migration and invasion was studied in relation to cathepsin activity and secretion of transforming growth factor (TGF)-β1. Fibroblast activation protein-α expression was induced by UVR in melanocytes of human skin. The FAP-α expression was regulated by UVR-induced release of TGF-β1 and cathepsin inhibitors prevented such secretion. In melanoma cell culture models and in a xenograft tumour model of zebrafish embryos, FAP-α mediated ECM degradation and facilitated tumour cell dissemination. Our results provide evidence for a sequential reaction axis from UVR via cathepsins, TGF-β1 and FAP-α expression, promoting cancer cell dissemination and melanoma metastatic spread.
Role of bone morphogenetic protein-7 in renal fibrosis
Li, Rui Xi; Yiu, Wai Han; Tang, Sydney C. W.
2015-01-01
Renal fibrosis is final common pathway of end stage renal disease. Irrespective of the primary cause, renal fibrogenesis is a dynamic process which involves a large network of cellular and molecular interaction, including pro-inflammatory cell infiltration and activation, matrix-producing cell accumulation and activation, and secretion of profibrogenic factors that modulate extracellular matrix (ECM) formation and cell-cell interaction. Bone morphogenetic protein-7 is a protein of the TGF-β super family and increasingly regarded as a counteracting molecule against TGF-β. A large variety of evidence shows an anti-fibrotic role of BMP-7 in chronic kidney disease, and this effect is largely mediated via counterbalancing the profibrotic effect of TGF-β. Besides, BMP-7 reduced ECM formation by inactivating matrix-producing cells and promoting mesenchymal-to-epithelial transition (MET). BMP-7 also increased ECM degradation. Despite these observations, the anti-fibrotic effect of BMP-7 is still controversial such that fine regulation of BMP-7 expression in vivo might be a great challenge for its ultimate clinical application. PMID:25954203
Extracellular matrix components in breast cancer progression and metastasis.
Oskarsson, Thordur
2013-08-01
The extracellular matrix (ECM) is composed of highly variable and dynamic components that regulate cell behavior. The protein composition and physical properties of the ECM govern cell fate through biochemical and biomechanical mechanisms. This requires a carefully orchestrated and thorough regulation considering that a disturbed ECM can have serious consequences and lead to pathological conditions like cancer. In breast cancer, many ECM proteins are significantly deregulated and specific matrix components promote tumor progression and metastatic spread. Intriguingly, several ECM proteins that are associated with breast cancer development, overlap substantially with a group of ECM proteins induced during the state of tissue remodeling such as mammary gland involution. Fibrillar collagens, fibronectin, hyaluronan and matricellular proteins are matrix components that are common to both involution and cancer. Moreover, some of these proteins have in recent years been identified as important constituents of metastatic niches in breast cancer. In addition, specific ECM molecules, their receptors or enzymatic modifiers are significantly involved in resistance to therapeutic intervention. Further analysis of these ECM proteins and the downstream ECM mediated signaling pathways may provide a range of possibilities to identify druggable targets against advanced breast cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K
2010-07-01
We have previously isolated and identified stem cells from human anterior cruciate ligament (ACL). The purpose of this study was to evaluate the differences in proliferation, differentiation, and extracellular matrix (ECM) formation abilities between bone marrow stem cells (BMSCs) and ACL-derived stem cells (LSCs) from the same donors when cultured with different growth factors, including basic fibroblast growth factor (bFGF), epidermal growth factor, and transforming growth factor-beta 1 (TGF-beta1). Ligament tissues and bone marrow aspirate were obtained from patients undergoing total knee arthroplasty and ACL reconstruction surgeries. Proliferation, colony formation, and population doubling capacity as well as multilineage differentiation potentials of LSCs and BMSCs were compared. Gene expression and ECM production for ligament engineering were also evaluated. It was found that BMSCs possessed better osteogenic differentiation potential than LSCs, while similar adipogenic and chondrogenic differentiation abilities were observed. Proliferation rates of both LSCs and BMSCs were enhanced by bFGF and TGF-beta1. TGF-beta1 treatment significantly increased the expression of type I collagen, type III collagen, fibronectin, and alpha-smooth muscle actin in LSCs, but TGF-beta1 only upregulated type I collagen and tenascin-c in BMSCs. Protein quantification further confirmed the results of differential gene expression and suggested that LSCs and BMSCs increase ECM production upon TGF-beta1 treatment. In summary, in comparison with BMSCs, LSCs proliferate faster and maintain an undifferentiated state with bFGF treatment, whereas under TGF-beta1 treatment, LSCs upregulate major tendinous gene expression and produce a robust amount of ligament ECM protein, making LSCs a potential cell source in future applications of ACL tissue engineering.
Cho, Jung-Sun; Moon, You-Mi; Um, Ji-Young; Moon, Jun-Hyeok; Park, Il-Ho; Lee, Heung-Man
2012-06-01
Nasal polyps are associated with chronic inflammation of the sinonasal mucosa and are involved in myofibroblast differentiation and extracellular matrix (ECM) accumulation. Ginsenoside Rg1, a compound derived from Panax ginseng, shows antifibrotic and anticancer effects. However, the molecular effects of Rg1 on myofibroblast differentiation and ECM production remain unknown. The aims of this study were to investigate the effect of Rg1 on transforming growth factor (TGF)-β1-induced myofibroblast differentiation and ECM production and to determine the molecular mechanism of Rg1 in nasal polyp-derived fibroblasts (NPDFs). NPDFs were isolated from nasal polyps of seven patients who had chronic rhinosinusitis with nasal polyp. NPDFs were exposed to TGF-β1 with or without Rg1. Expression levels of α-smooth muscle actin (SMA), fibronectin and collagen type Iα1 were determined by reverse transcription polymerase chain reaction, Western blot and immunofluorescent staining. TGF-β1 signaling molecules, including Smad2/3, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 were analyzed by Western blotting. Transcription factors involved with TGF-β1 signaling, nuclear factor (NF)-κB and activator protein 1 (AP-1) were also assessed by Western blot. The cytotoxic effect of Rg1 was measured by an established viability assay. The mRNA and protein expression levels of α-SMA, fibronectin and collagen type Iα1 were increased in TGF-β1-induced NPDFs. Rg1 inhibited these effects. The inhibitory molecular mechanism of Rg1 was involved in the ERK pathway. Rg1 inhibited the transcription factor activation of AP-1. Rg1 itself was not cytotoxic. The ginsenoside Rg1 has inhibitory effects on myofibroblast differentiation and ECM production. The inhibitory mechanism of Rg1 is involved with the ERK and AP-1 signaling pathways. Rg1 may be useful as an inhibitor of ECM deposition, and has potential to be used as a novel treatment option for nasal polyps.
Proteomic Analysis of Altered Extracellular Matrix Turnover in Bleomycin-induced Pulmonary Fibrosis
Decaris, Martin L.; Gatmaitan, Michelle; FlorCruz, Simplicia; Luo, Flora; Li, Kelvin; Holmes, William E.; Hellerstein, Marc K.; Turner, Scott M.; Emson, Claire L.
2014-01-01
Fibrotic disease is characterized by the pathological accumulation of extracellular matrix (ECM) proteins. Surprisingly, very little is known about the synthesis and degradation rates of the many proteins and proteoglycans that constitute healthy or pathological extracellular matrix. A comprehensive understanding of altered ECM protein synthesis and degradation during the onset and progression of fibrotic disease would be immensely valuable. We have developed a dynamic proteomics platform that quantifies the fractional synthesis rates of large numbers of proteins via stable isotope labeling and LC/MS-based mass isotopomer analysis. Here, we present the first broad analysis of ECM protein kinetics during the onset of experimental pulmonary fibrosis. Mice were labeled with heavy water for up to 21 days following the induction of lung fibrosis with bleomycin. Lung tissue was subjected to sequential protein extraction to fractionate cellular, guanidine-soluble ECM proteins and residual insoluble ECM proteins. Fractional synthesis rates were calculated for 34 ECM proteins or protein subunits, including collagens, proteoglycans, and microfibrillar proteins. Overall, fractional synthesis rates of guanidine-soluble ECM proteins were faster than those of insoluble ECM proteins, suggesting that the insoluble fraction reflected older, more mature matrix components. This was confirmed through the quantitation of pyridinoline cross-links in each protein fraction. In fibrotic lung tissue, there was a significant increase in the fractional synthesis of unique sets of matrix proteins during early (pre-1 week) and late (post-1 week) fibrotic response. Furthermore, we isolated fast turnover subpopulations of several ECM proteins (e.g. type I collagen) based on guanidine solubility, allowing for accelerated detection of increased synthesis of typically slow-turnover protein populations. This establishes the presence of multiple kinetic pools of pulmonary collagen in vivo with altered turnover rates during evolving fibrosis. These data demonstrate the utility of dynamic proteomics in analyzing changes in ECM protein turnover associated with the onset and progression of fibrotic disease. PMID:24741116
Biofilm-specific extracellular matrix proteins of non-typeable Haemophilus influenzae
Wu, Siva; Baum, Marc M.; Kerwin, James; Guerrero-Given, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul
2014-01-01
Non-typeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24 hr and 96 hr NTHi biofilms contained polysaccharides and proteinaceous components as detected by NMR and FTIR spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24 hr biofilms, two were found only in 96 hr biofilms, and fifteen were present in the ECM of both 24 hr and 96 hr NTHi biofilms. All proteins identified were either associated with bacterial membranes or were cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation. PMID:24942343
Human trabecular meshwork cells express BMP antagonist mRNAs and proteins.
Tovar-Vidales, Tara; Fitzgerald, Ashley M; Clark, Abbot F
2016-06-01
Glaucoma patients have elevated aqueous humor and trabecular meshwork (TM) levels of transforming growth factor-beta2 (TGF-β2). TGF-β2 has been associated with increased extracellular matrix (ECM) deposition (i.e. fibronectin), which is attributed to the increased resistance of aqueous humor outflow through the TM. We have previously demonstrated that bone morphogenetic protein (BMP) 4 selectively counteracts the profibrotic effect of TGF-β2 with respect to ECM synthesis in the TM, and this action is reversed by the BMP antagonist gremlin. Thus, the BMP and TGF-β signaling pathways antagonize each other's antifibrotic and profibrotic roles. The purpose of this study was to determine whether cultured human TM cells: (a) express other BMP antagonists including noggin, chordin, BMPER, BAMBI, Smurf1 and 2, and (b) whether expression of these proteins is regulated by exogenous TGF-β2 treatment. Primary human trabecular meshwork (TM) cells were grown to confluency and treated with TGF-β2 (5 ng/ml) for 24 or 48 h in serum-free medium. Untreated cell served as controls. qPCR and Western immunoblots (WB) determined that human TM cells expressed mRNAs and proteins for the BMP antagonist proteins: noggin, chordin, BMPER, BAMBI, and Smurf1/2. Exogenous TGF-β2 decreased chordin, BMPER, BAMBI, and Smurf1 mRNA and protein expression. In contrast, TGF-β2 increased secreted noggin and Smurf2 mRNA and protein levels. BMP antagonist members are expressed in the human TM. These molecules may be involved in the normal function of the TM as well as TM pathogenesis. Altered expression of BMP antagonist members may lead to functional changes in the human TM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Singh, Chandrajeet; Shyanti, Ritis K; Singh, Virendra; Kale, Raosaheb K; Mishra, Jai P N; Singh, Rana P
2018-05-05
Integrins are the major cell adhesion glycoproteins involved in cell-extracellular matrix (ECM) interaction and metastasis. Further, glycosylation on integrin is necessary for its proper folding and functionality. Herein, differential expression of integrins viz., αvβ3 and αvβ6 was examined in MDA-MB-231, MDA-MB-468 and MCF-10A cells, which signify three different stages of breast cancer development from highly metastatic to non-tumorigenic stage. The expression of αvβ3 and αvβ6 integrins at mRNA and protein levels was observed in all three cell lines and the results displayed a distinct pattern of expression. Highly metastatic cells showed enhanced expression of αvβ3 than moderate metastatic and non-tumorigenic cells. The scenario was reversed in case of αvβ6 integrin, which was strongly expressed in moderate metastatic and non-tumorigenic cells. N-glycosylation of αvβ3 and αvβ6 integrins is required for the attachment of cells to ECM proteins like fibronectin. The cell adhesion properties were found to be different in these cancer cells with respect to the type of integrins expressed. The results testify that αvβ3 integrin in highly metastatic cells, αvβ6 integrin in both moderate metastatic and non-tumorigenic cells play an important role in cell adhesion. The investigation typify that N-glycosylation on integrins is also necessary for cell-ECM interaction. Further, glycosylation inhibition by Swainsonine is found to be more detrimental to invasive property of moderate metastatic cells. Conclusively, types of integrins expressed as well as their N-glycosylation pattern alter during the course of breast cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.
Muth, Christine Anna; Steinl, Carolin; Klein, Gerd; Lee-Thedieck, Cornelia
2013-01-01
Hematopoietic stem cells (HSCs) are maintained in stem cell niches, which regulate stem cell fate. Extracellular matrix (ECM) molecules, which are an essential part of these niches, can actively modulate cell functions. However, only little is known on the impact of ECM ligands on HSCs in a biomimetic environment defined on the nanometer-scale level. Here, we show that human hematopoietic stem and progenitor cell (HSPC) adhesion depends on the type of ligand, i.e., the type of ECM molecule, and the lateral, nanometer-scaled distance between the ligands (while the ligand type influenced the dependency on the latter). For small fibronectin (FN)–derived peptide ligands such as RGD and LDV the critical adhesive interligand distance for HSPCs was below 45 nm. FN-derived (FN type III 7–10) and osteopontin-derived protein domains also supported cell adhesion at greater distances. We found that the expression of the ECM protein thrombospondin-2 (THBS2) in HSPCs depends on the presence of the ligand type and its nanostructured presentation. Functionally, THBS2 proved to mediate adhesion of HSPCs. In conclusion, the present study shows that HSPCs are sensitive to the nanostructure of their microenvironment and that they are able to actively modulate their environment by secreting ECM factors. PMID:23405094
Fontana, Vanina; Coll, Tamara A; Sobarzo, Cristian M A; Tito, Leticia Perez; Calvo, Juan Carlos; Cebral, Elisa
2012-10-01
During early placentation, matrix metalloproteinases (MMPs) play important roles in decidualization, trophoblast migration, invasion, angiogenesis, vascularization and extracellular matrix (ECM) remodeling of the endometrium. The aim of our study was to analyze the localization, distribution and differential expression of MMP-2 and -9 in the organogenic implantation site and to evaluate in vivo and in vitro decidual MMP-2 and -9 activities on day 10 of gestation in CF-1 mouse. Whole extracts for Western blotting of organogenic E10-decidua expressed MMP-2 and -9 isoforms. MMP-2 immunoreactivity was found in a granular and discrete pattern in ECM of mesometrial decidua (MD) near maternal blood vessels and slightly in non-decidualized endometrium (NDE). Immunoexpression of MMP-9 was also detected in NDE, in cytoplasm of decidual cells and ECM of vascular MD, in trophoblastic area and in growing antimesometrial deciduum. Gelatin zymography showed that MMP-9 activity was significantly lower in CM compared to the active form of direct (not cultured) and cultured decidua. The decidual active MMP-9 was significantly higher than the active MMP-2. These results show differential localization, protein expression and enzymatic activation of MMPs, suggesting specific roles for MMP-2 and MMP-9 in decidual and trophoblast tissues related to organogenic ECM remodeling and vascularization during early establishment of mouse placentation.
Cromar, Graham; Wong, Ka-Chun; Loughran, Noeleen; On, Tuan; Song, Hongyan; Xiong, Xuejian; Zhang, Zhaolei; Parkinson, John
2014-01-01
The extracellular matrix (ECM) is a defining characteristic of metazoans and consists of a meshwork of self-assembling, fibrous proteins, and their functionally related neighbours. Previous studies, focusing on a limited number of gene families, suggest that vertebrate complexity predominantly arose through the duplication and subsequent modification of retained, preexisting ECM genes. These genes provided the structural underpinnings to support a variety of specialized tissues, as well as a platform for the organization of spatio-temporal signaling and cell migration. However, the relative contributions of ancient versus novel domains to ECM evolution have not been quantified across the full range of ECM proteins. Here, utilizing a high quality list comprising 324 ECM genes, we reveal general and clade-specific domain combinations, identifying domains of eukaryotic and metazoan origin recruited into new roles in approximately two-third of the ECM proteins in humans representing novel vertebrate proteins. We show that, rather than acquiring new domains, sampling of new domain combinations has been key to the innovation of paralogous ECM genes during vertebrate evolution. Applying a novel framework for identifying potentially important, noncontiguous, conserved arrangements of domains, we find that the distinct biological characteristics of the ECM have arisen through unique evolutionary processes. These include the preferential recruitment of novel domains to existing architectures and the utilization of high promiscuity domains in organizing the ECM network around a connected array of structural hubs. Our focus on ECM proteins reveals that distinct types of proteins and/or the biological systems in which they operate have influenced the types of evolutionary forces that drive protein innovation. This emphasizes the need for rigorously defined systems to address questions of evolution that focus on specific systems of interacting proteins. PMID:25323955
Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae.
Wu, Siva; Baum, Marc M; Kerwin, James; Guerrero, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul
2014-12-01
Nontypeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen, can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24- and 96-h NTHi biofilms contained polysaccharides and proteinaceous components as detected by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24-h biofilms, two were found only in 96-h biofilms, and fifteen were present in the ECM of both 24- and 96-h NTHi biofilms. All proteins identified were either associated with bacterial membranes or cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Vasaturo, F; Malacrino, C; Sallusti, E; Coppotelli, G; Birarelli, P; Giuffrida, A; Albonici, L; Simonelli, L; Modesti, A; Modesti, M; Scarpa, S
2005-04-01
Autocrine and paracrine mechanisms modulate the synthesis and secretion of extracellular matrix (ECM); moreover, each component of the ECM is capable of modulating the synthesis and release of other ECM molecules. Therefore, the synthesis of ECM glycoprotein fibronectin and laminin was studied in the human breast cancer cell lines MCF7 and MDA MB 23, plated on different ECM. Our results showed that the cells plated on a fibronectin substrate increased laminin synthesis: this event correlated with an increase in alpha2 and alpha3 integrin subunits. Staurosporine-induced apoptosis was then analyzed in the cell lines plated on different ECM. Staurosporine treatment determined the apoptosis of 35 and 33% respectively of MDA MB 231 and MCF7; these values increased to 60 and 64% in cells plated on laminin, to 48 and 63% in cells plated on fibronectin and to 64 and 69% in cells plated on matrigel. Moreover, staurosporine treatment decreased bcl-2 expression in the cells plated on fibronectin and laminin. Yet, staurosporine treatment determined PARP cleavage and PARP partial disappearance when the cells were plated on matrigel. Finally, a partial loss of function mutant Ras protein that activated only Raf pathway, was expressed in MCF7, in order to identify whether the increase of apoptosis induced by extracellular matrix involved the Raf/MAP kinase pathway. The increase of apoptosis of the cells plated on matrigel suggested that the activation of the Raf pathway is probably involved in the decrease of survival on matrigel. These data demonstrate that the modification of ECM modulates the apoptotic process of breast cancer cells and suggest that it is worthwhile to dissect the role of ECM in the control of apoptotic process.
A novel culture device for the evaluation of three-dimensional extracellular matrix materials.
Akhyari, Payam; Ziegler, Heiko; Gwanmesia, Patricia; Barth, Mareike; Schilp, Soeren; Huelsmann, Joern; Hoffmann, Stefanie; Bosch, Julia; Kögler, Gesine; Lichtenberg, Artur
2014-09-01
Cell-matrix interactions in a three-dimensional (3D) extracellular matrix (ECM) are of fundamental importance in living tissue, and their in vitro reconstruction in bioartificial structures represents a core target of contemporary tissue engineering concepts. For a detailed analysis of cell-matrix interaction under highly controlled conditions, we developed a novel ECM evaluation culture device (EECD) that allows for a precisely defined surface-seeding of 3D ECM scaffolds, irrespective of their natural geometry. The effectiveness of EECD was evaluated in the context of heart valve tissue engineering. Detergent decellularized pulmonary cusps were mounted in EECD and seeded with endothelial cells (ECs) to study EC adhesion, morphology and function on a 3D ECM after 3, 24, 48 and 96 h. Standard EC monolayers served as controls. Exclusive top-surface-seeding of 3D ECM by viable ECs was demonstrated by laser scanning microscopy (LSM), resulting in a confluent re-endothelialization of the ECM after 96 h. Cell viability and protein expression, as demonstrated by MTS assay and western blot analysis (endothelial nitric oxide synthase, von Willebrand factor), were preserved at maintained levels over time. In conclusion, EECD proves as a highly effective system for a controlled repopulation and in vitro analysis of cell-ECM interactions in 3D ECM. Copyright © 2012 John Wiley & Sons, Ltd.
O'Brien, Kevin D; Lewis, Katherine; Fischer, Jens W; Johnson, Pamela; Hwang, Jin-Yong; Knopp, Eleanor A; Kinsella, Michael G; Barrett, P Hugh R; Chait, Alan; Wight, Thomas N
2004-11-01
Lipoprotein retention on extracellular matrix (ECM) may play a central role in atherogenesis, and a specific extracellular matrix proteoglycan, biglycan, has been implicated in lipoprotein retention in human atherosclerosis. To test whether increased cellular biglycan expression results in increased retention of lipoproteins on ECM, rat aortic smooth muscle cells (SMCs) were transduced with a human biglycan cDNA-containing retroviral vector (LBSN) or with an empty retroviral vector (LXSN). To assess the importance of biglycan's glycosaminoglycan side chains in lipoprotein retention, ECM binding studies were also performed using RASMCs transduced with a retroviral vector encoding for a mutant, glycosaminoglycan-deficient biglycan (LBmutSN). Human biglycan mRNA and protein were confirmed in LBSN and LBmutSN RASMCs by Northern and Western blot analyses. HDL3+E binding to SMC ECM was increased significantly (as determined by 95% confidence intervals for binding curves) for LBSN as compared to either LXSN or LBmutSN cells; the increases for LBSN cell ECM were due primarily to an approximately 50% increase in binding sites (increased Bmax) versus LXSN cell ECM and of approximately 25% versus LBmutSN cell ECM. These results are consistent with the hypothesis that biglycan, through its glycosaminoglycan side chains, may mediate lipoprotein retention on atherosclerotic plaque ECM.
Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix
Byron, Adam; Humphries, Jonathan D.; Randles, Michael J.; Carisey, Alex; Murphy, Stephanie; Knight, David; Brenchley, Paul E.; Zent, Roy; Humphries, Martin J.
2014-01-01
The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456. PMID:24436468
Medina-Ortiz, Wanda E.; Belmares, Ricardo; Neubauer, Sandra; Wordinger, Robert J.; Clark, Abbot F.
2013-01-01
Purpose. Levels of TGF-β2 are higher in POAG aqueous humor, causing deposition of extracellular matrix (ECM) proteins, including fibronectin (FN), in the glaucomatous human trabecular meshwork (HTM) that may be responsible for elevated IOP. The purpose of this study was to identify the expression of cellular FN (cFN) isoforms (EDA and EDB) in HTM cells and tissues, and to determine whether TGF-β2 can induce cFN expression and fibril formation in cultured HTM cells. Methods. Expression of cFN mRNA isoforms and induction by recombinant TGF-β2 (5 ng/mL) were determined by quantitative RT-PCR. The TGF-β2 induction of EDA isoform protein expression and FN fibril formation were analyzed using Western immunoblots and immunocytochemistry (ICC), respectively. Immunohistochemistry (IHC) analysis was used to examine total FN and EDA isoform expression in normal (NTM) and glaucomatous (GTM) trabecular meshwork (TM) tissues. Results. Both cFN mRNA isoforms were expressed in cultured HTM cells and were induced by TGF-β2 after 2, 4, and 7 days (P < 0.05). Similarly, EDA isoform protein and fibril formation were increased after 4 and 7 days of TGF-β2 treatment. Finally, GTM tissues had significantly greater EDA isoform protein levels (1.7-fold, P < 0.05) compared to NTM tissues. Conclusions. This study demonstrated that cFN isoforms are expressed and induced in HTM cells by TGF-β2. Also, increased EDA isoform protein levels were seen in GTM tissues. Our findings suggest that induction of cFN isoform expression in the TM ECM may be a novel pathologic mechanism involved in the TM changes associated with glaucoma. PMID:24030464
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Department of Geriatrics, Zhu Jiang Hospital, Southern Medical University, Guangzhou, Guangdong; Hu, Fang
Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF-β1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF-β1. However, whether Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in DKD is unclear. In the present study, we assessed human MCs that were incubated under high-glucose conditions tomore » mimic diabetes. Then, we transfected the cells with Klotho plasmid or siRNA to overexpress or knock down Klotho gene and protein expression. Klotho, Egr-1, fibronectin (FN), collagen type I (Col I), Smad3 and phosphorylated Smad3 (p-Smad3) gene and protein expression levels were determined by RT-qPCR and western blotting respectively. High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. pcDNA3.1-Klotho transfection-mediated Klotho overexpression down-regulated Egr-1, FN and Col I expression and the p-Smad3/Smad3 ratio in human MCs. Conversely, siRNA-mediated Klotho silencing up-regulated Egr-1, FN, and Col I expression and the p-Smad3/Smad3 ratio. Moreover, the effects of si-Klotho on Egr-1 expression were abolished by the TGF-β1 inhibitor SB-431542. Klotho overexpression can prevent mesangial ECM production in high-glucose-treated human MCs, an effect that has been partially attributed to Egr-1 down-regulation facilitated by TGF-β1/Smad3 signaling inhibition. - Highlights: • High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. • Klotho overexpression down-regulated Egr-1 and prevented mesangial ECM production in high-glucose-treated human MCs. • Klotho down-regulated Egr-1 by inhibiting TGF-β1/Smad3 signaling in high-glucose-treated human MCs.« less
ECM-Based Biohybrid Materials for Engineering Compliant, Matrix-Dense Tissues
Bracaglia, Laura G.; Fisher, John P.
2015-01-01
An ideal tissue engineering scaffold should not only promote, but take an active role in, constructive remodeling and formation of site appropriate tissue. ECM-derived proteins provide unmatched cellular recognition, and therefore influence cellular response towards predicted remodeling behaviors. Materials built with only these proteins, however, can degrade rapidly or begin too weak to substitute for compliant, matrix-dense tissues. The focus of this review is on biohybrid materials that incorporate polymer components with ECM-derived proteins, to produce a substrate with desired mechanical and degradation properties, as well as actively guide tissue remodeling. Materials are described through four fabrication methods: (1) polymer and ECM-protein fibers woven together, (2) polymer and ECM proteins combined in a bilayer, (3) cell-built ECM on polymer scaffold, and (4) ECM proteins and polymers combined in a single hydrogel. Scaffolds from each fabrication method can achieve characteristics suitable for different types of tissue. In vivo testing has shown progressive remodeling in injury models, and suggests ECM-based biohybrid materials promote a prohealing immune response over single component alternatives. The prohealing immune response is associated with lasting success and long term host maintenance of the implant. PMID:26227679
Masuda, Hiro-taka; Ishihara, Seiichiro; Harada, Ichiro; Mizutani, Takeomi; Ishikawa, Masayori; Kawabata, Kazushige; Haga, Hisashi
2014-01-01
We demonstrate that a (3-aminopropyl)triethoxysilane-treated glass surface is superior to an untreated glass surface for coating with extracellular matrix (ECM) proteins when used as a cell culture substrate to observe cell physiology and behavior. We found that MDCK cells cultured on untreated glass coated with ECM removed the coated ECM protein and secreted different ECM proteins. In contrast, the cells did not remove the coated ECM protein when seeded on (3-aminopropyl)triethoxysilane-treated (i.e., silanized) glass coated with ECM. Furthermore, the morphology and motility of cells grown on silanized glass differed from those grown on non-treated glass, even when both types of glass were initially coated with laminin. We also found that cells on silanized glass coated with laminin had higher motility than those on silanized glass coated with fibronectin. Based on our results, we suggest that silanized glass is a more suitable cell culture substrate than conventional non-treated glass when coated by ECM for observations of ECM effects on cell physiology.
A fibronectin receptor on Candida albicans mediates adherence of the fungus to extracellular matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klotz, S.A.; Smith, R.L.
1991-03-01
Binding of fibronectin, an extracellular matrix (ECM) protein, to Candida albicans was measured, and adherence of the fungus to immobilized ECM proteins, fibronectin, laminin, types I and IV collagen, and subendothelial ECM was studied. 125I-labeled fibronectin was inhibited from binding to the fungus by unlabeled human plasma fibronectin and by Arg-Gly-Asp (RGD), Gly-Arg-Gly-Glu-Ser-Pro (GRGESP), and Gly-Arg-Gly-Asp-Thr-Pro (GRGDTP), but binding was not inhibited by Gly-Arg-Gly-Asp-Ser-Pro. Soluble fibronectin, RGD, GRGESP, and GRGDTP also inhibited fungal adherence to the individual immobilized ECM proteins in a complex pattern, but only soluble fibronectin (10(-7) M) inhibited fungal adherence to subendothelial ECM. Thus, C. albicans possessesmore » at least one type of cell surface receptor for binding soluble fibronectin that can be inhibited with peptides. This receptor apparently is used to bind the fungus to immobilized ECM proteins and to subendothelial ECM and may play a role in the initiation of disseminated disease by bloodborne fungi by providing for adherence of the microorganisms to ECM proteins.« less
Shynlova, Oksana; Mitchell, Jennifer A; Tsampalieros, Anne; Langille, B Lowell; Lye, Stephen J
2004-04-01
Myometrial growth and remodeling during pregnancy depends on increased synthesis of interstitial matrix proteins. We hypothesize that the presence of mechanical tension in a specific hormonal environment regulates the expression of extracellular matrix (ECM) components in the uterus. Myometrial tissue was collected from pregnant rats on Gestational Days 0, 12, 15, 17, 19, 21, 22, 23 (labor), and 1 day postpartum and ECM expression was analyzed by Northern blotting. Expression of fibronectin, laminin beta2, and collagen IV mRNA was low during early gestation but increased dramatically on Day 23 during labor. Expression of fibrillar collagens (type I and III) peaked Day 19 and decreased near term. In contrast, elastin mRNA remained elevated from midgestation onward. Injection of progesterone (P4) on Days 20-23 (to maintain elevated plasma P4 levels) delayed the onset of labor, caused dramatic reductions in the levels of fibronectin and laminin mRNA, and prevented the fall of collagen III mRNA levels on Day 23. Treatment of pregnant rats with the progesterone receptor antagonist RU486 on Day 19 induced preterm labor on Day 20 and a premature increase in mRNA levels of collagen IV, fibronectin, and laminin. Analysis of the uterine tissue from unilaterally pregnant rats revealed that most of the changes in ECM gene expression occurred specifically in the gravid horn. Our results show a decrease in expression of fibrillar collagens and a coordinated temporal increase in expression of components of the basement membrane near term associated with decreased P4 and increased mechanical tension. These ECM changes contribute to myometrial growth and remodeling during late pregnancy and the preparation for the synchronized contractions of labor.
Eisenhauer, Peter; Chernets, Natalie; Song, You; Dobrynin, Danil; Pleshko, Nancy; Steinbeck, Marla J.; Freeman, Theresa A.
2017-01-01
The goal of this study was to investigate whether cold plasma generated by dielectric barrier discharge (DBD) modifies extracellular matrices (ECM) to influence chondrogenesis and endochondral ossification. Replacement of cartilage by bone during endochondral ossification is essential in fetal skeletal development, bone growth and fracture healing. Regulation of this process by the ECM occurs through matrix remodelling, involving a variety of cell attachment molecules and growth factors, which influence cell morphology and protein expression. The commercially available ECM, Matrigel, was treated with microsecond or nanosecond pulsed (µsp or nsp, respectively) DBD frequencies conditions at the equivalent frequencies (1 kHz) or power (~1 W). Recombinant human bone morphogenetic protein-2 was added and the mixture subcutaneously injected into mice to simulate ectopic endochondral ossification. Two weeks later, the masses were extracted and analysed by microcomputed tomography. A significant increase in bone formation was observed in Matrigel treated with µsp DBD compared with control, while a significant decrease in bone formation was observed for both nsp treatments. Histological and immunohistochemical analysis showed Matrigel treated with µsp plasma increased the number of invading cells, the amount of vascular endothelial growth factor and chondrogenesis while the opposite was true for Matrigel treated with nsp plasma. In support of the in vivo Matrigel study, 10 T1/2 cells cultured in vitro on µsp DBD-treated type I collagen showed increased expression of adhesion proteins and activation of survival pathways, which decreased with nsp plasma treatments. These results indicate DBD modification of ECM can influence cellular behaviours to accelerate or inhibit chondrogenesis and endochondral ossification. PMID:27510797
Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation.
Barallobre-Barreiro, Javier; Gupta, Shashi K; Zoccarato, Anna; Kitazume-Taneike, Rika; Fava, Marika; Yin, Xiaoke; Werner, Tessa; Hirt, Marc N; Zampetaki, Anna; Viviano, Alessandro; Chong, Mei; Bern, Marshall; Kourliouros, Antonios; Domenech, Nieves; Willeit, Peter; Shah, Ajay M; Jahangiri, Marjan; Schaefer, Liliana; Fischer, Jens W; Iozzo, Renato V; Viner, Rosa; Thum, Thomas; Heineke, Joerg; Kichler, Antoine; Otsu, Kinya; Mayr, Manuel
2016-09-13
Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors. © 2016 American Heart Association, Inc.
Löfgren, Maria; Svala, Emilia; Lindahl, Anders; Skiöldebrand, Eva; Ekman, Stina
2018-05-01
Osteoarthritis is an inflammatory and degenerative joint disease commonly affecting horses. To identify genes of relevance for cartilage pathology in osteoarthritis we studied the time-course effects of interleukin (IL)-1β on equine articular cartilage. Articular cartilage explants from the distal third metacarpal bone were collected postmortem from three horses without evidence of joint disease. The explants were stimulated with IL-1β for 27 days and global gene expression was measured by microarray. Gene expression was compared to that of unstimulated explants at days 3, 9, 15, 21 and 27. Release of inflammatory proteins was measured using Proximity Extension Assay. Stimulation with IL-1β led to time-dependent changes in gene expression related to inflammation, the extracellular matrix (ECM), and phenotypic alterations. Gene expression and protein release of cytokines, chemokines, and matrix-degrading enzymes increased in the stimulated explants. Collagen type II was downregulated from day 15, whereas other ECM molecules were downregulated earlier. In contrast molecules involved in ECM signaling (perlecan, chondroitin sulfate proteoglycan 4, and syndecan 4) were upregulated. At the late time points, genes related to a chondrogenic phenotype were downregulated, and genes related to a hypertrophic phenotype were upregulated, suggesting a transition towards hypertrophy later in the culturing period. The data suggest that this in vitro model mimics time course events of in vivo inflammation in OA and it may be valuable as an in vitro tool to test treatments and to study disease mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding.
Germain, Stéphane; Monnot, Catherine; Muller, Laurent; Eichmann, Anne
2010-05-01
Angiogenesis is a highly coordinated tissue remodeling process leading to blood vessel formation. Hypoxia triggers angiogenesis via induction of expression of growth factors such as vascular endothelial growth factor (VEGF). VEGF instructs endothelial cells to form tip cells, which lead outgrowing capillary sprouts, whereas Notch signaling inhibits sprout formation. Basement membrane deposition and mechanical cues from the extracellular matrix (ECM) induced by hypoxia may participate to coordinated vessel sprouting in conjunction with the VEGF and Notch signaling pathways. Hypoxia regulates ECM composition, deposition, posttranslational modifications and rearrangement. In particular, hypoxia-driven vascular remodeling is dynamically regulated through modulation of ECM-modifying enzyme activities that eventually affect both matricellular proteins and growth factor availability. Better understanding of the complex interplay between endothelial cells and soluble growth factors and mechanical factors from the ECM will certainly have significant implications for understanding the regulation of developmental and pathological angiogenesis driven by hypoxia.
Tang, Cheng; Xu, Yan; Jin, Chengzhe; Min, Byoung-Hyun; Li, Zhiyong; Pei, Xuan; Wang, Liming
2013-12-01
Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
A newly identified protein of Leptospira interrogans mediates binding to laminin.
Longhi, Mariana T; Oliveira, Tatiane R; Romero, Eliete C; Gonçales, Amane P; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O
2009-10-01
Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. The search for novel antigens that could be relevant in host-pathogen interactions is being pursued. These antigens have the potential to elicit several activities, including adhesion. This study focused on a hypothetical predicted lipoprotein of Leptospira, encoded by the gene LIC12895, thought to mediate attachment to extracellular matrix (ECM) components. The gene was cloned and expressed in Escherichia coli BL21 Star (DE3)pLys by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. The capacity of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC12895, named Lsa27 (leptospiral surface adhesin, 27 kDa), bound strongly to laminin in a dose-dependent and saturable fashion. Moreover, Lsa27 was recognized by antibodies from serum samples of confirmed leptospirosis specimens in both the initial and the convalescent phases of the disease. Lsa27 is most likely a surface protein of Leptospira as revealed in liquid-phase immunofluorescence assays with living organisms. Taken together, these data indicate that this newly identified membrane protein is expressed during natural infection and may play a role in mediating adhesion of L. interrogans to its host.
Leonard, Annemarie K; Loughran, Elizabeth A; Klymenko, Yuliya; Liu, Yueying; Kim, Oleg; Asem, Marwa; McAbee, Kevin; Ravosa, Matthew J; Stack, M Sharon
2018-01-01
This chapter highlights methods for visualization and analysis of extracellular matrix (ECM) proteins, with particular emphasis on collagen type I, the most abundant protein in mammals. Protocols described range from advanced imaging of complex in vivo matrices to simple biochemical analysis of individual ECM proteins. The first section of this chapter describes common methods to image ECM components and includes protocols for second harmonic generation, scanning electron microscopy, and several histological methods of ECM localization and degradation analysis, including immunohistochemistry, Trichrome staining, and in situ zymography. The second section of this chapter details both a common transwell invasion assay and a novel live imaging method to investigate cellular behavior with respect to collagen and other ECM proteins of interest. The final section consists of common electrophoresis-based biochemical methods that are used in analysis of ECM proteins. Use of the methods described herein will enable researchers to gain a greater understanding of the role of ECM structure and degradation in development and matrix-related diseases such as cancer and connective tissue disorders. © 2018 Elsevier Inc. All rights reserved.
Li, Xiaochuan; Cheng, Shi; Wu, Yaohong; Ying, Jingwei; Wang, Chaofeng; Wen, Tianyong; Bai, Xuedong; Ji, Wei; Wang, Deli; Ruan, Dike
2018-04-01
Although nucleus pulposus (NP) tissue engineering has achieved tremendous success, researches still face the huge obstacles in maintaining cell survival and function. A novel functional self-assembled peptide RADA-KPSS was constructed by conjugating BMP-7 short active fragment (KPSS) to the C-terminus of RADA16-I that displays anti-inflammatory and anti-apoptosis effects. However, whether this functional self-assembled RADA-KPSS peptide can alleviate inflammation and NPC apoptosis induced by tumor necrosis factor-alpha (TNF-α) has not been studied. Therefore, we cultured NPCs treated with TNF-α for 48 h with the RADA-KPSS peptide, and compared the results to those with RADA16-I peptide. The cell apoptosis rate, inflammatory mediator secretion, expression of matrix-degrading enzymes, and extracellular matrix (ECM) protein levels were evaluated. The expression of nuclear factor-κB-p65 (NF-κB-p65) protein was also tested. TNF-α-treated NPCs cultured with the RADA16-I peptide showed up-regulated gene expression for matrix-degrading enzymes, such as matrix metalloproteinases-3 (MMP-3), MMP-9, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4), and down-regulated gene expression for ECM proteins such as aggrecan, collagen II, and Sox-9. The RADA-KPSS peptide could attenuate the expression of MMP-3, MMP-9, and ADAMTS-4, promote accumulation of ECM proteins, and increase secretion of glycosaminoglycan as compared with the RADA16-I peptide. Moreover, the TNF-α-damaged NPCs was further demonstrated to inhibit NF-κB-p65, IL-1, IL-6, and prostaglandin E-2 proteins and decrease cell apoptosis in RADA-KPSS peptide. In conclusion, the functional self-assembled RADA-KPSS peptides have anti-inflammatory and anti-apoptotic effects by promoting anabolic processes and inhibiting catabolic processes in intervertebral disk degeneration. These peptides may be feasible for clinical applications in NP tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1082-1091, 2018. © 2017 Wiley Periodicals, Inc.
Kaufman, Gili; Whitescarver, Ryan; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek
2017-10-09
Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by imageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within 3 days of incubation, fibroblast spheroids interacted with the fibers and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for engineering soft and dense connective tissues with the required structural characteristics and functions needed for wound healing applications. Rapid regeneration of these layers should enhance healing of open wounds in a harsh oral environment. © 2017 IOP Publishing Ltd.
Experimental Cerebral Malaria Pathogenesis—Hemodynamics at the Blood Brain Barrier
Nacer, Adéla; Movila, Alexandru; Sohet, Fabien; Girgis, Natasha M.; Gundra, Uma Mahesh; Loke, P'ng; Daneman, Richard; Frevert, Ute
2014-01-01
Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8+ T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45hi CD8+ T cells, ICAM-1+ macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8+ T cells and ICAM+ macrophages, causes a severe restriction in the venous blood efflux from the brain, which exacerbates the vasogenic edema and increases the intracranial pressure. Thus, death from ECM could potentially occur as a consequence of intracranial hypertension. PMID:25474413
Wang, Y; Huang, G; Mo, B; Wang, C
2016-06-03
The aim of this study was to determine the effect of artesunate on extracellular matrix (ECM) accumulation and the expression of collagen-IV, matrix metalloproteinase (MMP), and tissue inhibitor of matrix metalloproteinase (TIMP) to understand the pharmacological role of artesunate in pulmonary fibrosis. Eighty Sprague-Dawley rats were randomly assigned to four groups that were administered saline alone, bleomycin (BLM) alone, BLM + artesunate, or artesunate alone for 28 days. Lung tissues from 10 rats in each group were used to obtain lung fibroblast (LF) primary cells, and the rest were used to analyze protein expression. The mRNA expression of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 in lung fibroblasts was detected by real-time quantitative reverse transcriptase polymerase chain reaction. The protein levels of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 protein in lung tissues were analyzed by western blotting. Artesunate treatment alleviated alveolitis and pulmonary fibrosis induced by bleomycin in rats, as indicated by a decreased lung coefficient and improvement of lung tissue morphology. Artesunate treatment also led to decreased collagen-IV protein levels, which might be a result of its downregulated expression and increased MMP-2 and MMP-9 protein and mRNA levels. Increased TIMP-1 and TIMP- 2 protein and mRNA levels were detected after artesunate treatment in lung tissues and primary lung fibroblast cells and may contribute to enhanced activity of MMP-2 and -9. These findings suggested that artesunate attenuates alveolitis and pulmonary fibrosis by regulating expression of collagen-IV, TIMP-1 and 2, as well as MMP-2 and -9, to reduce ECM accumulation.
Zhang, Wei; Liu, Na; Shi, Haigang; Liu, Jun; Shi, Lianxin; Zhang, Bo; Wang, Huaiyu; Ji, Junhui; Chu, Paul K.
2015-01-01
Positively-charged surfaces on implants have a similar potential to upregulate osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) as electromagnetic therapy approved for bone regeneration. Generally, their osteogenesis functions are generally considered to stem from the charge-induced adhesion of extracellular matrix (ECM) proteins without exploring the underlying surface charge/cell signaling molecule pathways. Herein, a positively-charged surface with controllable tertiary amines is produced on a polymer implant by plasma surface modification. In addition to inhibiting the TNF-α expression, the positively-charged surface with tertiary amines exhibits excellent cytocompatibility as well as remarkably upregulated osteogenesis-related gene/protein expressions and calcification of the contacted BMSCs. Stimulated by the charged surface, these BMSCs display high iNOS expressions among the three NOS isoforms. Meanwhile, downregulation of the iNOS by L-Can or siRNA inhibit osteogenic differentiation in the BMSCs. These findings suggest that a positively-charged surface with tertiary amines induces osteogenesis of BMSCs via the surface charge/iNOS signaling pathway in addition to elevated ECM protein adhesion. Therefore, creating a positively-charged surface with tertiary amines is a promising approach to promote osseointegration with bone tissues. PMID:25791957
Middleton, A M; Chadwick, M V; Nicholson, A G; Dewar, A; Groger, R K; Brown, E J; Wilson, R
2000-10-01
Mycobacterium avium complex (MAC) are opportunistic respiratory pathogens that infect non-immunocompromised patients with established lung disease, although they can also cause primary infections. The ability to bind fibronectin is conserved among many mycobacterial species. We have investigated the adherence of a sputum isolate of MAC to the mucosa of organ cultures constructed with human tissue and the contribution of M. avium fibronectin attachment protein (FAP) to the process. MAC adhered to fibrous, but not globular mucus, and to extracellular matrix (ECM) in areas of epithelial damage, but not to intact extruded cells and collagen fibres. Bacteria occasionally adhered to healthy unciliated epithelium and to cells that had degenerated exposing their contents, but never to ciliated cells. The results obtained with different respiratory tissues were similar. Two ATCC strains of MAC gave similar results. There was a significant reduction (P < 0.05) in the number of bacteria adhering to ECM after preincubation of bacteria with fibronectin and after preincubation of the tissue with M. avium FAP in a concentration-dependant manner. The number of bacteria adhering to fibrous mucus was unchanged. Immunogold labelling demonstrated fibronectin in ECM as well as in other areas of epithelial damage, but only ECM bound FAP. A Mycobacterium smegmatis strain had the same pattern of adherence to the mucosa as MAC. When the FAP gene was deleted, the strain demonstrated reduced adherence to ECM, and adherence was restored when the strain was transfected with an M. avium FAP expression construct. We conclude that MAC adheres to ECM in areas of epithelial damage via FAP and to mucus with a fibrous appearance via another adhesin. Epithelial damage exposing ECM and poor mucus clearance will predispose to MAC airway infection.
Liem, David Alexandre; Murali, Sanjana; Sigdel, Dibakar; Shi, Yu; Wang, Xuan; Shen, Jiaming; Choi, Howard; Caufield, J Harry; Wang, Wei; Ping, Peipei; Han, Jiawei
2018-05-18
Extracellular matrix (ECM) proteins have been shown to play important roles regulating multiple biological processes in an array of organ systems, including the cardiovascular system. By using a novel bioinformatics text-mining tool, we studied six categories of cardiovascular disease (CVD), namely ischemic heart disease (IHD), cardiomyopathies (CM), cerebrovascular accident (CVA), congenital heart disease (CHD), arrhythmias (ARR), and valve disease (VD), anticipating novel ECM protein-disease and protein-protein relationships hidden within vast quantities of textual data. We conducted a phrase-mining analysis, delineating the relationships of 709 ECM proteins with the six groups of CVDs reported in 1,099,254 abstracts. The technology pipeline known as Context-aware Semantic Online Analytical Processing (CaseOLAP) was applied to semantically rank the association of proteins to each and all six CVDs, performing analyses to quantify each protein-disease relationship. We performed principal component analysis and hierarchical clustering of the data, where each protein is visualized as a six dimensional vector. We found that ECM proteins display variable degrees of association with the six CVDs; certain CVDs share groups of associated proteins whereas others have divergent protein associations. We identified 82 ECM proteins sharing associations with all six CVDs. Our bioinformatics analysis ascribed distinct ECM pathways (via Reactome) from this subset of proteins, namely insulin-like growth factor regulation and interleukin-4 and interleukin-13 signaling, suggesting their contribution to the pathogenesis of all six CVDs. Finally, we performed hierarchical clustering analysis and identified protein clusters associated with a targeted CVD; analyses revealed unexpected insights underlying ECM-pathogenesis of CVDs.
A Yeast Model of FUS/TLS-Dependent Cytotoxicity
Ju, Shulin; Tardiff, Daniel F.; Han, Haesun; Divya, Kanneganti; Zhong, Quan; Maquat, Lynne E.; Bosco, Daryl A.; Hayward, Lawrence J.; Brown, Robert H.; Lindquist, Susan; Ringe, Dagmar; Petsko, Gregory A.
2011-01-01
FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis (fALS). Although FUS/TLS is normally located predominantly in the nucleus, the pathogenic mutant forms of FUS/TLS traffic to, and form inclusions in, the cytoplasm of affected spinal motor neurons or glia. Here we report a yeast model of human FUS/TLS expression that recapitulates multiple salient features of the pathology of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, inclusion formation, and cytotoxicity. Protein domain analysis indicates that the carboxyl-terminus of FUS/TLS, where most of the ALS-associated mutations are clustered, is required but not sufficient for the toxicity of the protein. A genome-wide genetic screen using a yeast over-expression library identified five yeast DNA/RNA binding proteins, encoded by the yeast genes ECM32, NAM8, SBP1, SKO1, and VHR1, that rescue the toxicity of human FUS/TLS without changing its expression level, cytoplasmic translocation, or inclusion formation. Furthermore, hUPF1, a human homologue of ECM32, also rescues the toxicity of FUS/TLS in this model, validating the yeast model and implicating a possible insufficiency in RNA processing or the RNA quality control machinery in the mechanism of FUS/TLS mediated toxicity. Examination of the effect of FUS/TLS expression on the decay of selected mRNAs in yeast indicates that the nonsense-mediated decay pathway is probably not the major determinant of either toxicity or suppression. PMID:21541368
Han, Fei; Wang, Shanshan; Chang, Yunpeng; Li, Chunjun; Yang, Juhong; Han, Zhe; Chang, Baocheng; Sun, Bei; Chen, Liming
2018-03-01
MicroRNAs (miRNAs) are involved in multiple biological functions via suppressing target genes. Triptolide is a monomeric compound isolated from a traditional Chinese herb, which exerts protective roles in many kinds of glomerular diseases. However, our understanding of the triptolide effect on miRNAome is still limited. In this study, we found that triptolide significantly decreased albuminuria and improved glomerulosclerosis in rats with diabetic kidney disease (DKD). And triptolide also inhibited extracellular matrix (ECM) protein accumulation and the notch1 pathway activation under diabetic conditions. MiR-137 was significantly decreased in the HG (high glucose)-treated HRMCs and in the kidney tissues of the diabetic rats, but was upregulated by triptolide. In addition, overexpression of miR-137 exerted similar effects to those of triptolide, while miR-137 inhibition aggravated ECM protein accumulation. Luciferase reporter assay results demonstrated that miR-137 directly targets Notch1. Furthermore, the miR-137-dependent effects were due to Notch1 suppression that in turn inhibited ECM protein expression, key mediators of glomerulosclerosis. Finally, downregulation of miR-137 reversed the ECM inhibition role of triptolide in HG cultured HRMCs. Taken together, these findings indicate that triptolide is a potential therapeutic option for DKD and that miR-137/Notch1 pathway play roles in the anti-glomerulosclerosis mechanism of triptolide. © 2017 Wiley Periodicals, Inc.
CHARACTERIZING THE ROLE OF THE NELL1 GENE IN CARDIOVASCULAR DEVELOPMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L. Y.; Culiat, C.
Nell1{sup 6R} is a chemically-induced point mutation in a novel cell-signaling gene, Nell1, which results in truncation of the protein and degradation of the Nell16R transcript. Earlier studies revealed that loss of Nell1 function reduces expression of numerous extracellular matrix (ECM) proteins required for differentiation of bone and cartilage precursor cells, thereby causing severe skull and spinal defects. Since skeletal and cardiovascular development are closely linked biological processes, this research focused on: a) examining Nell16R mutant mice for cardiovascular defects, b) determining Nell1 expression in fetal and adult hearts, and c) establishing how ECM genes affected by Nell1 infl uencemore » heart development. Structural heart defects in Nell16R mutant fetuses were analyzed by heart length and width measurements and standard histological methods (haematoxylin and eosin staining). Nell1 expression was assayed in fetal and adult hearts using reverse transcription polymerase chain reaction (RT-PCR). A comprehensive bioinformatics analysis using public databases (Stanford SOURCE Search, Integrated Cartilage Gene Database, Mouse Genome Informatics, and NCBI UniGene) was undertaken to investigate the relationship between cardiovascular development and each of twentyeight genes affected by Nell1. Nell1-defi cient mice have signifi cantly enlarged hearts (particularly the heart width), dramatically reduced blood fl ow out of the heart and unexpanded lungs. Isolation of total RNAs from hearts of adult (control and heterozygote) and fetal (control and homozygous mutant) mice have been completed and RT-PCR assays are in progress. The bioinformatics analysis showed that the majority of genes with reduced expression in Nell1-defi cient mice are normally expressed in the heart (79%; 22/28), blood vessels (71%; 20/28) and bone marrow (61%; 17/28). Moreover, mouse mutations in seven of these genes (Col15a1, Osf-2, Bmpr1a, Pkd1, Mfge8, Ptger4, Col5a1) manifest abnormalities in cardiovascular development. These data demonstrate for the fi rst time that Nell1 has a role in early mammalian cardiovascular development, mediated by its regulation of ECM proteins necessary for normal cell growth and differentiation. In addition, understanding the mechanisms by which Nell1 and its associated ECM genes affect the cardiovascular system can provide future strategies for the treatment of heart and blood vessel defects.« less
Kim, Yong-Bae; Lee, Sung-Yul; Ye, Sang-Kyu; Lee, Jung Weon
2007-02-01
Cell adhesion to the extracellular matrix (ECM) regulates gene expressions in diverse dynamic environments. However, the manner in which gene expressions are regulated by extracellular cues is largely unknown. In this study, suspended gastric carcinoma cells showed higher basal and transforming growth factor-beta1 (TGFbeta1)-mediated acetylations of histone 3 (H3) and Lys(9) of H3 and levels of integrin-linked kinase (ILK) mRNA and protein than did fibronectin-adherent cells did. Moreover, the insignificant acetylation and ILK expression in adherent cells were recovered by alterations of integrin signaling and actin organization, indicating a connection between cytoplasmic and nuclear changes. Higher acetylations in suspended cells were correlated with associations between Smad4, p300/CBP, and Lys(9)-acetylated H3. Meanwhile, adherent cells showed more associations between HDAC3, Ski, and MeCP2. Chromatin immunoprecipitations with anti-acetylated H3, Lys(9)-acetylated H3, or p300/CBP antibody resulted in more coprecipitated ILK promoter, correlated with enhanced ILK mRNA and protein levels, in suspended cells. Moreover, ILK expression inversely regulated cell adhesion to ECM proteins, and its overexpression enhanced cell growth in soft agar. These observations indicate that cell adhesion and/or its related molecular basis regulate epigenetic mechanisms leading to a loss of ILK transcription, which in turn regulates cell adhesion property in a feedback linkage.
Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Ritelli, Marco
2018-01-01
Vascular Ehlers-Danlos syndrome (vEDS) is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII), which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER) homeostasis, COLLs folding and extracellular matrix (ECM) organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition into the ECM of several structural proteins crucial to the integrity of soft connective tissues. PMID:29346445
Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Ritelli, Marco; Colombi, Marina
2018-01-01
Vascular Ehlers-Danlos syndrome (vEDS) is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII), which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER) homeostasis, COLLs folding and extracellular matrix (ECM) organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition into the ECM of several structural proteins crucial to the integrity of soft connective tissues.
Cavaco, Sofia; Viegas, Carla S B; Rafael, Marta S; Ramos, Acácio; Magalhães, Joana; Blanco, Francisco J; Vermeer, Cees; Simes, Dina C
2016-03-01
Osteoarthritis (OA) is a whole-joint disease characterized by articular cartilage loss, tissue inflammation, abnormal bone formation and extracellular matrix (ECM) mineralization. Disease-modifying treatments are not yet available and a better understanding of osteoarthritis pathophysiology should lead to the discovery of more effective treatments. Gla-rich protein (GRP) has been proposed to act as a mineralization inhibitor and was recently shown to be associated with OA in vivo. Here, we further investigated the association of GRP with OA mineralization-inflammation processes. Using a synoviocyte and chondrocyte OA cell system, we showed that GRP expression was up-regulated following cell differentiation throughout ECM calcification, and that inflammatory stimulation with IL-1β results in an increased expression of COX2 and MMP13 and up-regulation of GRP. Importantly, while treatment of articular cells with γ-carboxylated GRP inhibited ECM calcification, treatment with either GRP or GRP-coated basic calcium phosphate (BCP) crystals resulted in the down-regulation of inflammatory cytokines and mediators of inflammation, independently of its γ-carboxylation status. Our results strengthen the calcification inhibitory function of GRP and strongly suggest GRP as a novel anti-inflammatory agent, with potential beneficial effects on the main processes responsible for osteoarthritis progression. In conclusion, GRP is a strong candidate target to develop new therapeutic approaches.
Gkretsi, Vasiliki; Stylianou, Andreas; Louca, Maria; Stylianopoulos, Triantafyllos
2017-04-18
Breast cancer (BC) is the most common malignant disease in women, with most patients dying from metastasis to distant organs, making discovery of novel metastasis biomarkers and therapeutic targets imperative. Extracellular matrix (ECM)-related adhesion proteins as well as tumor matrix stiffness are important determinants for metastasis. As traditional two-dimensional culture does not take into account ECM stiffness, we employed 3-dimensional collagen I gels of increasing concentration and stiffness to embed BC cells of different invasiveness (MCF-7, MDA-MB-231 and MDA-MB-231-LM2) or tumor spheroids. We tested the expression of cell-ECM adhesion proteins and found that Ras Suppressor-1 (RSU-1) is significantly upregulated in increased stiffness conditions. Interestingly, RSU-1 siRNA-mediated silencing inhibited Urokinase Plasminogen Activator, and metalloproteinase-13, whereas tumor spheroids formed from RSU-1-depleted cells lost their invasive capacity in all cell lines and stiffness conditions. Kaplan-Meier survival plot analysis corroborated our findings showing that high RSU-1 expression is associated with poor prognosis for distant metastasis-free and remission-free survival in BC patients. Taken together, our results indicate the important role of RSU-1 in BC metastasis and set the foundations for its validation as potential BC metastasis marker.
Bi-directional signaling: Extracellular Matrix and Integrin Regulation of Breast Tumor Progression
Gehler, Scott; Ponik, Suzanne M.; Riching, Kristin M; Keely, Patricia J.
2016-01-01
Cell transformation and tumor progression involves a common set of acquired capabilities, including increased proliferation, failure of cell death, self-sufficiency in growth, angiogenesis, and tumor cell invasion and metastasis (1). The stromal environment consists of many cell types, including fibroblasts, macrophages, and endothelial cells, in addition to various extracellular matrix (ECM) proteins that function to support normal tissue maintenance, but have also been implicated in tumor progression (2). Both the chemical and mechanical properties of the ECM have been shown to influence normal and malignant cell behavior. For instance, mesenchymal stem cells differentiate into specific lineages that are dependent on matrix stiffness (3), while tumor cells undergo changes in cell behavior and gene expression in response to matrix stiffness (4). ECM remodeling is implicated in tumor progression and includes changes in both the chemical and mechanical properties of the ECM (5) that can be a result of 1.) increased deposition of stromal ECM, 2.) enhanced contraction of ECM fibrils, and 3.) altered collagen alignment and ECM stiffness. In addition, remodeling of the ECM may alter whether tumor cells employ proteolytic degradation mechanisms during invasion and metastasis. Tumor cells respond to such changes in ECM remodeling through altered intracellular signaling and cell cycle control that lead to enhanced proliferation, loss of normal tissue architecture, and local tumor cell migration and invasion into the surrounding stromal tissue (6). This review will focus on the bi-directional interplay between the mechanical properties of the ECM and changes in integrin-mediated signal transduction events in an effort to elucidate cell behaviors during tumor progression. PMID:23582036
Proteoglycans in Leiomyoma and Normal Myometrium
Barker, Nichole M.; Carrino, David A.; Caplan, Arnold I.; Hurd, William W.; Liu, James H.; Tan, Huiqing; Mesiano, Sam
2015-01-01
Uterine leiomyoma are a common benign pelvic tumors composed of modified smooth muscle cells and a large amount of extracellular matrix (ECM). The proteoglycan composition of the leiomyoma ECM is thought to affect pathophysiology of the disease. To test this hypothesis, we examined the abundance (by immunoblotting) and expression (by quantitative real-time polymerase chain reaction) of the proteoglycans biglycan, decorin, and versican in leiomyoma and normal myometrium and determined whether expression is affected by steroid hormones and menstrual phase. Leiomyoma and normal myometrium were collected from women (n = 17) undergoing hysterectomy or myomectomy. In vitro studies were performed on immortalized leiomyoma (UtLM) and normal myometrial (hTERT-HM) cells with and without exposure to estradiol and progesterone. In leiomyoma tissue, abundance of decorin messenger RNA (mRNA) and protein were 2.6-fold and 1.4-fold lower, respectively, compared with normal myometrium. Abundance of versican mRNA was not different between matched samples, whereas versican protein was increased 1.8-fold in leiomyoma compared with myometrium. Decorin mRNA was 2.4-fold lower in secretory phase leiomyoma compared with proliferative phase tissue. In UtLM cells, progesterone decreased the abundance of decorin mRNA by 1.3-fold. Lower decorin expression in leiomyoma compared with myometrium may contribute to disease growth and progression. As decorin inhibits the activity of specific growth factors, its reduced level in the leiomyoma cell microenvironment may promote cell proliferation and ECM deposition. Our data suggest that decorin expression in leiomyoma is inhibited by progesterone, which may be a mechanism by which the ovarian steroids affect leiomyoma growth and disease progression. PMID:26423601
Thakur, Ravi; Mishra, Durga Prasad
2016-12-01
Matricellular proteins (MCPs) are the non-structural extracellular matrix (ECM) proteins with various regulatory functions. MCPs are critical regulators of ECM homeostasis and are often found dysregulated in various malignancies. They interact with various proteins like ECM structural proteins, integrins, growth factor receptors and growth factors to modulate their availability and activity. Cancer-supporting MCPs are known to induce proliferation, migration and invasion of cancer cells. MCPs also support cancer stem (like) cell growth and induce a drug-resistant state. Apart from their direct effects on cancer cells, they play key roles in angiogenesis, immunomodulation, stromal cell infiltration, stromal proliferation and matrix remodeling. High expression of various MCPs belonging to the tenascin, CCN and SIBLING families is often associated with aggressive tumors and poor patient prognosis. Due to their differential expression and distinct functional role, these MCPs are perceived as attractive therapeutic targets in cancer. Studies on preclinical models have indicated that targeting tumor-supportive MCPs could be a potent avenue for developing anti-cancer therapies. The MCP receptors, like integrins and some associated growth factor receptors, are already being targeted using pharmacological inhibitors and neutralizing antibodies. Neutralizing antibodies against CCNs, tenascins and SIBLINGs have shown promising results in preclinical cancer models, suggesting an opportunity to develop anti-MCP therapies to target cancer. Peptides derived from anti-cancer MCPs could also serve as therapeutic entities. In the present review, in continuation with the expanding horizon of MCP functions and disease association, we focus on (i) their unique domain arrangement, (ii) their association with cancer hallmarks and (iii) available and possible therapeutic interventions. Copyright © 2016 Elsevier Inc. All rights reserved.
Inhibition of extracellular matrix production and remodeling by doxycycline in smooth muscle cells.
Palomino-Morales, Rogelio; Torres, Carolina; Perales, Sonia; Linares, Ana; Alejandre, Maria Jose
2016-12-01
Alterations in the extracellular matrix (ECM) production and remodeling of smooth muscle cells (SMCs) have been implicated in processes related to the differentiation in atherosclerosis. Due to the anti-atherosclerotic properties of the tetracyclines, we aimed to investigate whether cholesterol supplementation changes the effect of doxycycline over the ECM proteins synthesis and whether isoprenylated proteins and Rho A protein activation are affected. SMC primary culture isolated from chicks exposed to atherogenic factors in vivo (a cholesterol-rich diet, SMC-Ch), comparing it with control cultures isolated after a standard diet (SMC-C). After treatment with 20 nM doxycycline, [H 3 ]-proline and [H 3 ]-mevalonate incorporation were used to measure the synthesis of collagen and isoprenylated proteins, respectively. Real-time PCR was assessed to determine col1a2, col2a1, col3a1, fibronectin, and mmp2 gene expression and the pull-down technique was applied to determine the Rho A activation state. A higher synthesis of collagens and isoprenylated proteins in SMC-Ch than in SMC-C was determined showing that doxycycline inhibits ECM production and remodeling in both SMC types of cultures. Moreover, preliminary results about the effect of doxycycline on protein isoprenylation and Rho A protein activation led us to discuss the possibility that membrane G-protein activation pathways could mediate the molecular mechanism. Copyright © 2016 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.
E-Peptides Control Bioavailability of IGF-1
Piszczek, Agnieszka; Perlas, Emarald; Winn, Nadine; Nastasi, Tommaso; Rosenthal, Nadia
2012-01-01
Insulin-like growth factor 1 (IGF-1) is a potent cytoprotective growth factor that has attracted considerable attention as a promising therapeutic agent. Transgenic over-expression of IGF-1 propeptides facilitates protection and repair in a broad range of tissues, although transgenic mice over-expressing IGF-1 propeptides display little or no increase in IGF-1 serum levels, even with high levels of transgene expression. IGF-1 propeptides are encoded by multiple alternatively spliced transcripts including C-terminal extension (E) peptides, which are highly positively charged. In the present study, we use decellularized mouse tissue to show that the E-peptides facilitate in vitro binding of murine IGF-1 to the extracellular matrix (ECM) with varying affinities. This property is independent of IGF-1, since proteins consisting of the E-peptides fused to relaxin, a related member of the insulin superfamily, bound equally avidly to decellularized ECM. Thus, the E-peptides control IGF-1 bioavailability by preventing systemic circulation, offering a potentially powerful way to tether IGF-1 and other therapeutic proteins to the site of synthesis and/or administration. PMID:23251442
Park, Yong-Beom; Seo, Sinji; Kim, Jin-A; Heo, Jin-Chul; Lim, Young-Cheol; Ha, Chul-Won
2015-06-24
The extracellular matrix (ECM) surrounding cells contains a variety of proteins that provide structural support and regulate cellular functions. Previous studies have shown that decellularized ECM isolated from tissues or cultured cells can be used to improve cell differentiation in tissue engineering applications. In this study we evaluated the effect of decellularized chondrocyte-derived ECM (CDECM) on the chondrogenesis of human placenta-derived mesenchymal stem cells (hPDMSCs) in a pellet culture system. After incubation with or without chondrocyte-derived ECM in chondrogenic medium for 1 or 3 weeks, the sizes and wet masses of the cell pellets were compared with untreated controls (hPDMSCs incubated in chondrogenic medium without chondrocyte-derived ECM). In addition, histologic analysis of the cell pellets (Safranin O and collagen type II staining) and quantitative reverse transcription-PCR analysis of chondrogenic markers (aggrecan, collagen type II, and SOX9) were carried out. Our results showed that the sizes and masses of hPDMSC pellets incubated with chondrocyte-derived ECM were significantly higher than those of untreated controls. Differentiation of hPDMSCs (both with and without chondrocyte-derived ECM) was confirmed by Safranin O and collagen type II staining. Chondrogenic marker expression and glycosaminoglycan (GAG) levels were significantly higher in hPDMSC pellets incubated with chondrocyte-derived ECM compared with untreated controls, especially in cells precultured with chondrocyte-derived ECM for 7 d. Taken together, these results demonstrate that chondrocyte-derived ECM enhances the chondrogenesis of hPDMSCs, and this effect is further increased by preculture with chondrocyte-derived ECM. This preculture method for hPDMSC chondrogenesis represents a promising approach for cartilage tissue engineering.
Protumorigenic Role of HAPLN1 and Its IgV Domain in Malignant Pleural Mesothelioma
Ivanova, Alla V.; Goparaju, Chandra M.V.; Ivanov, Sergey V.; Nonaka, Daisuke; Cruz, Christina; Beck, Amanda; Lonardo, Fulvio; Wali, Anil; Pass, Harvey I.
2013-01-01
Purpose Tumor extracellular matrix (ECM) plays a crucial role in cancer progression mediating and transforming host-tumor interactions. Targeting the ECM is becoming an increasingly promising therapeutic approach in cancer treatment. We find that one of the ECM proteins, HAPLN1, is overexpressed in the majority of mesotheliomas. This study was designed to characterize the protumorigenic role of HAPLN1 in mesothelioma. Experimental Design Overexpression of HAPLN1was assessed and validated on a large set of normal/mesothelioma specimens on the RNA and protein levels. We also analyzed DNA copy number alterations in the HAPLN1 genomic locus using the array-based comparative genomic hybridization representational oligonucleotide microarray analysis tool. Tumorigenic activities of the HAPLN1 domains were evaluated in vitro on mesothelioma cells transfected with HAPLN1-expressing constructs. Results We found that HAPLN1 is 23-fold overexpressed in stage Imesothelioma and confirmed it for 76% samples (n = 53) on RNA and 97% (n = 40) on protein levels. The majority of lung cancers showed no differential expression of HAPLN1. Analysis of DNA copy number alterations identified recurrent gain in the 5q14.3 HAPLN1 locus in ~27% of tumors. Noteworthy, high expression of HAPLN1negatively correlated with time to progression (P = 0.05, log-rank test) and overall survival (P = 0.006). Proliferation, motility, invasion, and soft-agar colony formation assays on mesothelioma cells overexpressing full-length HAPLN1 or its functional domains strongly supported the protumorigenic role of HAPLN1 and its SP-IgV domain. Conclusion Overexpression of HAPLN1 and its SP-IgV domain increases tumorigenic properties of mesothelioma. Thus, targeting the SP-IgV domain may be one of the therapeutic approaches in cancer treatment. PMID:19351750
Protumorigenic role of HAPLN1 and its IgV domain in malignant pleural mesothelioma.
Ivanova, Alla V; Goparaju, Chandra M V; Ivanov, Sergey V; Nonaka, Daisuke; Cruz, Christina; Beck, Amanda; Lonardo, Fulvio; Wali, Anil; Pass, Harvey I
2009-04-15
Tumor extracellular matrix (ECM) plays a crucial role in cancer progression mediating and transforming host-tumor interactions. Targeting the ECM is becoming an increasingly promising therapeutic approach in cancer treatment. We find that one of the ECM proteins, HAPLN1, is overexpressed in the majority of mesotheliomas. This study was designed to characterize the protumorigenic role of HAPLN1 in mesothelioma. Overexpression of HAPLN1 was assessed and validated on a large set of normal/mesothelioma specimens on the RNA and protein levels. We also analyzed DNA copy number alterations in the HAPLN1 genomic locus using the array-based comparative genomic hybridization representational oligonucleotide microarray analysis tool. Tumorigenic activities of the HAPLN1 domains were evaluated in vitro on mesothelioma cells transfected with HAPLN1-expressing constructs. We found that HAPLN1 is 23-fold overexpressed in stage I mesothelioma and confirmed it for 76% samples (n = 53) on RNA and 97% (n = 40) on protein levels. The majority of lung cancers showed no differential expression of HAPLN1. Analysis of DNA copy number alterations identified recurrent gain in the 5q14.3 HAPLN1 locus in approximately 27% of tumors. Noteworthy, high expression of HAPLN1 negatively correlated with time to progression (P = 0.05, log-rank test) and overall survival (P = 0.006). Proliferation, motility, invasion, and soft-agar colony formation assays on mesothelioma cells overexpressing full-length HAPLN1 or its functional domains strongly supported the protumorigenic role of HAPLN1 and its SP-IgV domain. Overexpression of HAPLN1 and its SP-IgV domain increases tumorigenic properties of mesothelioma. Thus, targeting the SP-IgV domain may be one of the therapeutic approaches in cancer treatment.
Thrombospondins: old players, new games.
Stenina-Adognravi, Olga
2013-10-01
Thrombospondins (TSPs) are secreted extracellular matrix (ECM) proteins from TSP family, which consists of five homologous members. They share a complex domain structure and have numerous binding partners in ECM and multiple cell surface receptors. Information that has emerged over the past decade identifies TSPs as important mediators of cellular homeostasis, assigning new important roles in cardiovascular pathology to these proteins. Recent studies of the functions of TSP in the cardiovascular system, diabetes and aging, which placed several TSPs in a position of critical regulators, demonstrated the involvement of these proteins in practically every aspect of cardiovascular pathophysiology related to atherosclerosis: inflammation, immunity, leukocyte recruitment and function, function of vascular cells, angiogenesis, and responses to hypoxia, ischemia and hyperglycemia. TSPs are also critically important in the development and ultimate outcome of the complications associated with atherosclerosis--myocardial infarction, and heart hypertrophy and failure. Their expression and significance increase with age and with the progression of diabetes, two major contributors to the development of atherosclerosis and its complications. This overview of recent literature examines the latest information on the newfound functions of TSPs that emphasize the importance of ECM in cardiovascular homeostasis and pathology. The functions of TSPs in myocardium, vasculature, vascular complications of diabetes, aging and immunity are discussed.
Designing ECM-mimetic Materials Using Protein Engineering
Cai, Lei; Heilshorn, Sarah C.
2014-01-01
The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell-matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure-function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20 years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (1) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (2) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality. PMID:24365704
Romano, Jacob; Nimrod, Guy; Ben-Tal, Nir; Shadkchan, Yona; Baruch, Koti; Sharon, Haim; Osherov, Nir
2006-07-01
The ECM33/SPS2 family of glycosylphosphatidylinositol-anchored proteins plays an important role in maintaining fungal cell wall integrity and virulence. However, the precise molecular role of these proteins is unknown. In this work, AfuEcm33, the gene encoding the ECM33 homologue in the important pathogenic fungus Aspergillus fumigatus, has been cloned and its function analysed. It is shown that disruption of AfuEcm33 results in rapid conidial germination, increased cell-cell adhesion, resistance to the antifungal agent caspofungin and increased virulence in an immunocompromised mouse model for disseminated aspergillosis. These results suggest that the protein encoded by AfuEcm33 is involved in key aspects of cell wall morphogenesis and plays an important role in A. fumigatus virulence.
Wendremaire, Maeva; Mourtialon, Pascal; Goirand, Françoise; Lirussi, Frédéric; Barrichon, Marina; Hadi, Tarik; Garrido, Carmen; Le Ray, Isabelle; Dumas, Monique; Sagot, Paul; Bardou, Marc
2013-02-01
Reorganization of myometrial extracellular matrix (ECM) is essential for the uterus to achieve powerful synchronous contractions during labor. Remodeling of the ECM has been implicated in membrane rupture and cervical ripening. Because maternal obesity is associated with both delivery disorders and elevated circulating leptin levels, this study aimed to assess the ability of leptin to interfere with lipopolysaccharide (LPS)-induced myometrial ECM remodeling. Myometrial biopsy samples were obtained from women undergoing cesarean delivery before labor onset. Myometrial explants were incubated for 48 h with LPS and leptin. LPS challenge was associated with a marked decrease in collagen content and in heat shock protein (HSP) 47 expression, reflecting a disruption in collagen synthesis and an increase in matrix metalloproteinase (MMP) 2 and MMP9 activity and in MMP2, MMP9, and MMP13 expression. Leptin prevented an LPS-induced decrease in myometrial collagen content in a concentration-dependent manner. This effect was associated with an increase in HSP47 expression and a decrease in MMP2 and MMP9 activity and expression. These results show that leptin prevents LPS-induced myometrial remodeling through collagen synthesis stimulation and inhibition of MMP2 and MMP9. Our study strengthens the hypothesis that leptin plays a role in the development of obesity-related delivery disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang
Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a rolemore » in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.« less
Kasamatsu, Shinya; Hachiya, Akira; Fujimura, Tsutomu; Sriwiriyanont, Penkanok; Haketa, Keiichi; Visscher, Marty O.; Kitzmiller, William J.; Bello, Alexander; Kitahara, Takashi; Kobinger, Gary P.; Takema, Yoshinori
2011-01-01
UVB-induced cutaneous photodamage/photoaging is characterized by qualitative and quantitative deterioration in dermal extracellular matrix (ECM) components such as collagen and elastic fibers. Disappearance of microfibrillar-associated protein 4 (MFAP-4), a possible limiting factor for cutaneous elasticity, was documented in photoaged dermis, but its function is poorly understood. To characterize its possible contribution to photoprotection, MFAP-4 expression was either augmented or inhibited in a human skin xenograft photodamage murine model and human fibroblasts. Xenografted skin with enhanced MFAP-4 expression was protected from UVB-induced photodamage/photoaging accompanied by the prevention of ECM degradation and aggravated elasticity. Additionally, remarkably increased or decreased fibrillin-1-based microfibril development was observed when fibroblasts were treated with recombinant MFAP-4 or with MFAP-4-specific siRNA, respectively. Immunoprecipitation analysis confirmed direct interaction between MFAP-4 and fibrillin-1. Taken together, our findings reveal the essential role of MFAP-4 in photoprotection and offer new therapeutic opportunities to prevent skin-associated pathologies. PMID:22355679
Jurzak, Magdalena; Adamczyk, Katarzyna; Antończak, Paweł; Garncarczyk, Agnieszka; Kuśmierz, Dariusz; Latocha, Małgorzata
2014-01-01
Keloids are characterized by overgrowth of connective tissue in the skin that arises as a consequence of abnormal wound healing. Normal wound healing is regulated by a complex set of interactions within a network of profibrotic and antifibrotic cytokines that regulate new extracellular matrix (ECM) synthesis and remodeling. These proteins include transforming growth factor β (TGFβ) isoforms and connective tissue growth factor (CTGF). TGFβ1 stimulates fibroblasts to synthesize and contract ECM and acts as a central mediator of profibrotic response. CTGF is induced by TGFβ1 and is considered a downstream mediator of TGFβ1action in fibroblasts. CTGF plays a crucial role in keloid pathogenesis by promoting prolonged collagen synthesis and deposition and as a consequence sustained fibrotic response. During keloids formation, besides imbalanced ECM synthesis and degradation, fibroblast proliferation and it's resistance to apoptosis is observed. Key genes that may play a role in keloid formation and growth involve: suppressor gene p53.,cyclin-depend- ent kinase inhibitor CDKN1A (p21) and BCL2 family genes: antiapoptotic BCL-2 and proapoptotic BAX. Genistein (4',5,7-trihydroxyisoflavone) exhibits multidirectional biological action. The concentration of genistein is relatively high in soybean. Genistein has been shown as effective antioxidant and chemopreventive agent. Genistein can bind to estrogen receptors (ERs) and modulate estrogen action due to its structure similarity to human estrogens. Genistein also inhibits transcription factors NFκB. Akt and AP-l signaling pathways, that are important for cytokines expression and cell proliferation, differentiation, survival and apoptosis. The aim of the study was to investigate genistein as a potential inhibitor of CTGF and TGFβ1, β2 and β3 isoforms expression and a potential regulator of p53. CDKN1A(p21), BAX and BCL-2 expression in normal fibroblasts and fibroblasts derived from keloids cultured in vitro. Real time RT-QPCR was used to estimate transcription level of selected genes in normal and keloid fibroblasts treated with genistein. Secreted/cell-associated CTGF protein was evaluated in cell growth's medium by ELISA. Total protein quantification was evaluated by fluorimetric assay in cells llsates (Quant-iT TM Protein Assay Kit). It was found that TGFβ1, β2 and β3 genes expression are decreased by genistein. Genistein suppresses the expression of CTGF mRNA and CTGF protein in a concentration dependent manner, p53 and p21 genes expression are modulated by genistein in concentration dependent manner. The agent also modulates BAX/BCL-2 ratio in examined cells in vitro.
Yang, W; Lee, S; Jo, Y H; Lee, K M; Nemeno, J G; Nam, B M; Kim, B Y; Jang, I J; Kim, H N; Takebe, T; Lee, J I
2014-05-01
Autologous chondrocyte transplantation (ACT) has been established to contribute cartilage regeneration over the past years; however, many obstacles need to be overcome. Recently, newer ACT technique involves cotransplantation of chondrocytes and biomaterial. Although various proposed intelligent biomaterials exist, many of them remain insufficient and controversial. In this study, we aimed to examine the effects of natural extracellular matrix (ECM) to the proliferation rate and differentiation on the chondrocytes. We first derived a natural ECM sheet from 10-μm-thick frozen sections of porcine knee cartilages. We then cultured the chondrocytes derived from a rabbit's knee on a dish precoated with the natural ECM. Then we assessed differentiation and chondrogenic potential of the cells compared with those grown in untreated culture dishes. We characterized the gene expression of chondrogenic markers, such as collagen type II, SOX-9, and aggrecan, as well as the level of ECM protein with the use of reverse-transcription polymerase chain reaction analysis. The cells cultured with the ECM sheet showed highest chondrogenic potential and differentiation. Therefore, we can induce good chondrogenesis by with the use of a natural ECM sheet on the culture dish. The readily available and easy-to-handle thin ECM sheets create an environment that promotes efficient cartilage regeneration. Our data suggest that this natural ECM scaffold improved the chondrogenic differentiation of the cells in vitro by providing a favorable microenvironment. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Ookubo, Masanori; Kanai, Hirohiko; Aoki, Harusuke; Yamada, Naoto
2013-09-01
To determine whether treatment with various antidepressants or mood stabilizers leads to region-specific changes, we investigated the effects of their subchronic (14 days of intraperitoneal injection) administration on the tissue concentration of monoamines, dopamine, serotonin, and norepinephrine, and the protein expression of acetylated histone H3 (AcH3) and histone deacetylases (HDACs) in the mouse striatum (ST), nucleus accumbens (Acb), hippocampus (Hip), cingulate cortex (Cg), and amygdala (Amy). Subchronic administration with the antidepressants (S)-citalopram oxalate (ECM), duloxetine hydrochloride (DLX), and mirtazapine (MIR) commonly induced significant increases in dopamine and serotonin levels in the ST and Cg. By contrast, no common profiles for dopamine, serotonin, or norepinephrine were identified in the Acb, Hip, or Amy. Treatment with sodium valproate (VPA), lithium chloride (Li), lamotrigine (LTG), levetiracetam (LTM), olanzapine (OLZ), clozapine (CLZ), clomipramine (CLM), ECM, and DLX induced significant increases in AcH3 expression in the Acb, while treatment with CLM, ECM, DLX, MIR, carbamazepine (CBZ), LTG, LTM, OLZ, or CLZ induced significant increases in HDAC2 and HDAC3 in the ST. CLM, MIR, VPA, CBZ, LTG, LTM, OLZ, or CLZ induced significant increases in HDAC3 in the Cg, and ECM, DLX, MIR, VPA, CBZ, LTG, LTM, or OLZ resulted in significant increases in HDAC5 in the Amy. Collectively, the changes of monoamine content were restricted for mood stabilizer effects, but increased expression of HDAC2, HDAC3, or HDAC5 in the ST, Cg, or Amy was often found, supporting the possibility that antidepressant-like effects involve epigenetic modifications associated with changes in HDAC expression. Copyright © 2013 Elsevier Ltd. All rights reserved.
Oh, Chun-do; Lu, Yue; Liang, Shoudan; Mori-Akiyama, Yuko; Chen, Di; de Crombrugghe, Benoit; Yasuda, Hideyo
2014-01-01
The transcription factor SOX9 plays an essential role in determining the fate of several cell types and is a master factor in regulation of chondrocyte development. Our aim was to determine which genes in the genome of chondrocytes are either directly or indirectly controlled by SOX9. We used RNA-Seq to identify genes whose expression levels were affected by SOX9 and used SOX9 ChIP-Seq to identify those genes that harbor SOX9-interaction sites. For RNA-Seq, the RNA expression profile of primary Sox9flox/flox mouse chondrocytes infected with Ad-CMV-Cre was compared with that of the same cells infected with a control adenovirus. Analysis of RNA-Seq data indicated that, when the levels of Sox9 mRNA were decreased more than 8-fold by infection with Ad-CMV-Cre, 196 genes showed a decrease in expression of at least 4-fold. These included many cartilage extracellular matrix (ECM) genes and a number of genes for ECM modification enzymes (transferases), membrane receptors, transporters, and others. In ChIP-Seq, 75% of the SOX9-interaction sites had a canonical inverted repeat motif within 100 bp of the top of the peak. SOX9-interaction sites were found in 55% of the genes whose expression was decreased more than 8-fold in SOX9-depleted cells and in somewhat fewer of the genes whose expression was reduced more than 4-fold, suggesting that these are direct targets of SOX9. The combination of RNA-Seq and ChIP-Seq has provided a fuller understanding of the SOX9-controlled genetic program of chondrocytes.
Bai, Chujie; Yang, Min; Fan, Zhengfu; Li, Shu; Gao, Tian; Fang, Zhiwei
2015-06-10
Three-dimensional (3D) culture models are considered to recapitulate the cell microenvironment in solid tumors, including the extracellular matrix (ECM), cell-cell interactions, and signal transduction. These functions are highly correlated with cellular behaviors and contribute to resistances against chemo- and radio-therapies. However, the biochemical effects and mechanisms remain unknown in soft sarcoma. Therefore, we developed an in vitro 3D model of sarcoma to analyze the reasons of the chemo- and radio-resistance in therapies. Four soft sarcoma cell lines, HT1080, RD, SW872, and human osteosarcoma cell line 1 (HOSS1), a cell line established from a patient-derived xenograft, were applied to 3D culture and treated with growth factors in methylcellulose-containing medium. Spheroids were examined morphologically and by western blotting, RT-qPCR, and immunofluorescence staining to analyze cell adhesion, gap junctions, ECM genes, and related factors. Proliferation and colony formation assays were performed to assess chemo- and radio-resistances between 3D and two-dimensional (2D) cell cultures. Annexin V and Propidium Iodide staining was used to detect early apoptotic sarcoma cells treated with Doxorubicin, Gemcitabine, and Docetaxel in the 3D model. The four soft sarcoma cell lines formed spheres in vitro by culture in modified condition medium. Compared with 2D cell culture, expression of ECM genes and proteins, including COL1A1, LOX, SED1, FN1, and LAMA4, was significantly increased in 3D culture. Analysis of cadherin and gap junction molecules showed significant changes in the gene and protein expression profiles under 3D conditions. These changes affected cell-cell communication and were mainly associated with biological processes such as cell proliferation and apoptosis related to chemo- and radio-resistances. Our findings revealed significant differences between 3D and 2D cell culture systems, and indicated that cellular responsiveness to external stress such as radiation and chemotherapeutics is influenced by differential expression of genes and proteins involved in regulation of the ECM, cell adhesion, and gap junction signaling.
Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.
2015-01-01
Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633
The mesangial matrix in the normal and sclerotic glomerulus.
Rosenblum, N D
1994-02-01
Mesangial sclerosis is a final common pathway to glomerular destruction in a variety of glomerular diseases. The expression of several classes of extracellular matrix (ECM) molecules has been defined in the normal and diseased mesangial matrix (MM). However, the manner in which these ECM components determine the three dimensional structure and function of the MM remains to be defined. Structural studies of the MM suggest that its constituent molecules are regionally organized into subcompartments with different three dimensional structures. The diversity of matrix molecules expressed within the MM as well as the organization of these components in nonrenal ECM's, such as the cornea, provides further support for this organizational model. The study of the cornea has also revealed that novel short chain collagenous proteins partially determine the three dimensional structure of the matrix. Recently, a novel collagen, type VIII collagen, has been described in mesangial cells and in the intact glomerulus. It is hypothesized that type VIII collagen is expressed both as a polymer and as a monomer within the glomerulus, and depending on its conformation, may serve unique functions. In the chronically diseased MM, normal MM components are overexpressed and fibrillar collagens are expressed de novo in a delayed fashion. Enhanced proteoglycan expression, observed early in disease, may determine increased volume of the mesangium. This, in turn, may stimulate the production of fibrillar collagens by mesangial cells resulting in a fibrillar noncompliant mesangial matrix.
Growth and differentiation of human lens epithelial cells in vitro on matrix
NASA Technical Reports Server (NTRS)
Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.; Aragon, G.; Lin, S. P.; Lui, G.; Polansky, J. R.
2000-01-01
PURPOSE: To characterize the growth and maturation of nonimmortalized human lens epithelial (HLE) cells grown in vitro. METHODS: HLE cells, established from 18-week prenatal lenses, were maintained on bovine corneal endothelial (BCE) extracellular matrix (ECM) in medium supplemented with basic fibroblast growth factor (FGF-2). The identity, growth, and differentiation of the cultures were characterized by karyotyping, cell morphology, and growth kinetics studies, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and Western blot analysis. RESULTS: HLE cells had a male, human diploid (2N = 46) karyotype. The population-doubling time of exponentially growing cells was 24 hours. After 15 days in culture, cell morphology changed, and lentoid formation was evident. Reverse transcription-polymerase chain reaction (RT-PCR) indicated expression of alphaA- and betaB2-crystallin, fibroblast growth factor receptor 1 (FGFR1), and major intrinsic protein (MIP26) in exponential growth. Western analyses of protein extracts show positive expression of three immunologically distinct classes of crystallin proteins (alphaA-, alphaB-, and betaB2-crystallin) with time in culture. By Western blot analysis, expression of p57(KIP2), a known marker of terminally differentiated fiber cells, was detectable in exponential cultures, and levels increased after confluence. MIP26 and gamma-crystallin protein expression was detected in confluent cultures, by using immunofluorescence, but not in exponentially growing cells. CONCLUSIONS: HLE cells can be maintained for up to 4 months on ECM derived from BCE cells in medium containing FGF-2. With time in culture, the cells demonstrate morphologic characteristics of, and express protein markers for, lens fiber cell differentiation. This in vitro model will be useful for investigations of radiation-induced cataractogenesis and other studies of lens toxicity.
Proteolytic-antiproteolytic balance and its regulation in carcinogenesis
Skrzydlewska, Elzbieta; Sulkowska, Mariola; Koda, Mariusz; Sulkowski, Stanislaw
2005-01-01
Cancer development is essentially a tissue remodeling process in which normal tissue is substituted with cancer tissue. A crucial role in this process is attributed to proteolytic degradation of the extracellular matrix (ECM). Degradation of ECM is initiated by proteases, secreted by different cell types, participating in tumor cell invasion and increased expression or activity of every known class of proteases (metallo-, serine-, aspartyl-, and cysteine) has been linked to malignancy and invasion of tumor cells. Proteolytic enzymes can act directly by degrading ECM or indirectly by activating other proteases, which then degrade the ECM. They act in a determined order, resulting from the order of their activation. When proteases exert their action on other proteases, the end result is a cascade leading to proteolysis. Presumable order of events in this complicated cascade is that aspartyl protease (cathepsin D) activates cysteine proteases (e.g., cathepsin B) that can activate pro-uPA. Then active uPA can convert plasminogen into plasmin. Cathepsin B as well as plasmin are capable of degrading several components of tumor stroma and may activate zymogens of matrix metalloproteinases, the main family of ECM degrading proteases. The activities of these proteases are regulated by a complex array of activators, inhibitors and cellular receptors. In physiological conditions the balance exists between proteases and their inhibitors. Proteolytic-antiproteolytic balance may be of major significance in the cancer development. One of the reasons for such a situation is enhanced generation of free radicals observed in many pathological states. Free radicals react with main cellular components like proteins and lipids and in this way modify proteolytic-antiproteolytic balance and enable penetration damaging cellular membrane. All these lead to enhancement of proteolysis and destruction of ECM proteins and in consequence to invasion and metastasis. PMID:15761961
Generation of a Close-to-Native In Vitro System to Study Lung Cells-Extracellular Matrix Crosstalk.
Garlíková, Zuzana; Silva, Ana Catarina; Rabata, Anas; Potěšil, David; Ihnatová, Ivana; Dumková, Jana; Koledová, Zuzana; Zdráhal, Zbyněk; Vinarský, Vladimír; Hampl, Aleš; Pinto-do-Ó, Perpétua; Nascimento, Diana Santos
2018-01-01
Extracellular matrix (ECM) is an essential component of the tissue microenvironment, actively shaping cellular behavior. In vitro culture systems are often poor in ECM constituents, thus not allowing for naturally occurring cell-ECM interactions. This study reports on a straightforward and efficient method for the generation of ECM scaffolds from lung tissue and its subsequent in vitro application using primary lung cells. Mouse lung tissue was subjected to decellularization with 0.2% sodium dodecyl sulfate, hypotonic solutions, and DNase. Resultant ECM scaffolds were devoid of cells and DNA, whereas lung ECM architecture of alveolar region and blood and airway networks were preserved. Scaffolds were predominantly composed of core ECM and ECM-associated proteins such as collagens I-IV, nephronectin, heparan sulfate proteoglycan core protein, and lysyl oxidase homolog 1, among others. When homogenized and applied as coating substrate, ECM supported the attachment of lung fibroblasts (LFs) in a dose-dependent manner. After ECM characterization and biocompatibility tests, a novel in vitro platform for three-dimensional (3D) matrix repopulation that permits live imaging of cell-ECM interactions was established. Using this system, LFs colonized the ECM scaffolds, displaying a close-to-native morphology in intimate interaction with the ECM fibers, and showed nuclear translocation of the mechanosensor yes-associated protein (YAP), when compared with cells cultured in two dimensions. In conclusion, we developed a 3D-like culture system, by combining an efficient decellularization method with a live-imaging culture platform, to replicate in vitro native lung cell-ECM crosstalk. This is a valuable system that can be easily applied to other organs for ECM-related drug screening, disease modeling, and basic mechanistic studies.
Januskevicius, Andrius; Vaitkiene, Simona; Gosens, Reinoud; Janulaityte, Ieva; Hoppenot, Deimante; Sakalauskas, Raimundas; Malakauskas, Kestutis
2016-06-13
Recent studies have suggested that eosinophils may have a direct effect on airway smooth muscle cells (ASMC), causing their proliferation in patients with asthma, but the precise mechanism of the interaction between these cells remains unknown. We propose that changes in Wnt signaling activity and extracellular matrix (ECM) production may help explain these findings. Therefore, the aim of this study was to investigate the effect of eosinophils from asthmatic and non-asthmatic subjects on Wnt-5a, transforming growth factor β1 (TGF-β1), and ECM protein (fibronectin and collagen) gene expression and ASMC proliferation. A total of 18 subjects were involved in the study: 8 steroid-free asthma patients and 10 healthy subjects. Peripheral blood eosinophils were isolated using centrifugation and magnetic separation. An individual co-culture of eosinophils with human ASMC was prepared for each study subject. Adhesion of eosinophils to ASMC (evaluated by assaying eosinophil peroxidase activity) was determined following various incubation periods (30, 45, 60, 120, and 240 min). The expression of Wnt-5a, TGF-β1, and ECM protein genes in ASMC was measured using quantitative real-time polymerase chain reaction (PCR) after 24 h of co-culture. Proliferation of ASMC was measured using the Alamar blue method after 48 h and 72 h of co-culture with eosinophils. Eosinophils from asthmatic subjects demonstrated increased adhesion to ASMC compared with eosinophils from healthy subjects (p < 0.05) in vitro. The expression of Wnt-5a, TGF-β1, collagen, and fibronectin genes in ASMC was significantly higher after 24 h of co-culture with eosinophils from asthmatic subjects, while co-culture of ASMC with eosinophils from healthy subjects increased only TGF-β1 and fibronectin gene expression. ASMC proliferation was augmented after co-culture with eosinophils from asthma patients compared with co-culture with eosinophils from healthy subjects (p < 0.05). Eosinophils enhance Wnt-5a, TGF-β1, fibronectin, and collagen gene expression in ASMC and promote proliferation of these cells in asthma. ClinicalTrials.gov Identifier: NCT02648074 .
Identification of fibrinogen-binding proteins of Aspergillus fumigatus using proteomic approach.
Upadhyay, Santosh Kumar; Gautam, Poonam; Pandit, Hrishikesh; Singh, Yogendra; Basir, Seemi Farhat; Madan, Taruna
2012-03-01
Aspergillus fumigatus, the main etiological agent for various forms of human aspergillosis, gets access to the respiratory system of human host by inhalation of airborne conidia. These conidia possibly adhere to extracellular matrix (ECM) proteins. Among the ECM proteins involved in adherence, fibrinogen is thought to be crucial. Here, we studied whether A. fumigatus three-week culture filtrate (3wcf) proteins promote binding of A. fumigatus to ECM proteins and promote fungal growth. We observed that incubation of ECM with 3wcf proteins led to dose- and time-dependent increase in adherence of conidia to the ECM. In order to identify the catalogue of fibrinogen-binding A. fumigatus proteins, we carried out fibrinogen affinity blotting using two-dimensional gel electrophoresed 3wcf proteins. A total of 15 fibrinogen-binding protein spots corresponding to 7 unique proteins were identified in 3wcf using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF). Among these, 4 proteins, namely, beta-glucosidase, alpha-mannosidase, pectate lyase A and oryzin precursor were predicted to have cell wall or extracellular localization, whereas amidase family protein and two hypothetical proteins did not display the signal sequence. This study reports seven novel fibrinogen-binding proteins of A. fumigatus, some of which could be further explored for targeting the adhesion phenomenon as antifungal strategy.
Lund, Dane K.; Mouly, Vincent
2014-01-01
The twenty-five known matrix metalloproteases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteases (TIMPs), mediate cell invasion through the extracellular matrix (ECM). In a comparative three-dimensional assay, we analyzed human and mouse satellite cells' competence to invade an artificial ECM (collagen I). We identified a single MMP that 1) is expressed by human muscle satellite cells; 2) is induced at the mRNA/protein level by adhesion to collagen I; and 3) is necessary for invasion into a collagen I matrix. Interestingly, murine satellite cells neither express this MMP, nor invade the collagen matrix. However, exogenous human MMP-14 is not sufficient to induce invasion of a collagen matrix by murine cells, emphasizing species differences. PMID:24898588
Han, Jingjia; Gerstenhaber, Jonathan A; Lazarovici, Philip; Lelkes, Peter I
2013-05-13
All blood vessels are lined with a quiescent endothelium, which aids in regulating regular blood flow and avoiding thrombus formation. Current attempts at replacing diseased blood vessels frequently fail due to the intrinsic thrombogenicity of the materials used as vascular grafts. In extending our previous work where we introduced a new candidate scaffolds for vascular grafts electrospun from a blend solution of PLGA, gelatin, and elastin (PGE), this study aimed to evaluate the potential of PGE scaffolds to support nonthrombogenic monolayers of primary isolates of human aortic endothelial cells (HAECs), as assessed by a combination of biochemical, molecular, and bioinformatics-based analyses. After 24 h of culture on 3-D fibrous PGE scaffolds, HAECs formed a confluent, nonthrombogenic, and physiologically competent monolayer, as assessed by tissue factor (TF) gene expression and protein activity assays. The levels of TF mRNA/protein activity in HAECs grown on PGE scaffolds were similar to those on gelatin or collagen IV-coated 2-D surfaces. In addition, bioinformatics-based analysis of a focused microarray containing 84 ECM-related cDNA probes demonstrated that HAECs essentially expressed a histotypic ECM-related "transcriptome" on PGE scaffolds, where cells were more quiescent than cells cultured on 2-D coverslips coated with gelatin (a well-known "inert" substrate for conventional EC culture), but less so than on 2-D PGE films. These data suggest an important role for nanorough substrates (PGE films) in passivating endothelial cells and confirm the crucial effect of substrate composition in this process. Principal component analysis of microarray data on the above substrates (including collagen IV) implied that substrate composition plays a greater role than surface topography in affecting the endothelial ECM-related "transcriptome". Taken together, our findings suggest that electrospun PGE scaffolds are potentially suitable for application in small diameter vascular tissue engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gkretsi, Vasiliki; Stylianou, Andreas; Stylianopoulos, Triantafyllos, E-mail: tstylian@ucy.ac.cy
A hallmark of cancer cells is their ability to invade surrounding tissues and form metastases. Cell-extracellular matrix (ECM)-adhesion proteins are crucial in metastasis, connecting tumor ECM with actin cytoskeleton thus enabling cells to respond to mechanical cues. Vasodilator-stimulated phosphoprotein (VASP) is an actin-polymerization regulator which interacts with cell-ECM adhesion protein Migfilin, and regulates cell migration. We compared VASP expression in MCF-7 and MDA-MB-231 breast cancer (BC) cells and found that more invasive MDA-MB-231 cells overexpress VASP. We then utilized a 3-dimensional (3D) approach to study metastasis in MDA-MB-231 cells using a system that considers mechanical forces exerted by the ECM.more » We prepared 3D collagen I gels of increasing concentration, imaged them by atomic force microscopy, and used them to either embed cells or tumor spheroids, in the presence or absence of VASP. We show, for the first time, that VASP silencing downregulated Migfilin, β-catenin and urokinase plasminogen activator both in 2D and 3D, suggesting a matrix-independent mechanism. Tumor spheroids lacking VASP demonstrated impaired invasion, indicating VASP’s involvement in metastasis, which was corroborated by Kaplan-Meier plotter showing high VASP expression to be associated with poor remission-free survival in lymph node-positive BC patients. Hence, VASP may be a novel BC metastasis biomarker. - Highlights: • More invasive MDA-MB-231 overexpress VASP compared to MCF-7 breast cancer cells. • We prepared 3D collagen I gels of increasing concentration and characterized them. • VASP silencing downregulated Migfilin, β-catenin and uPA both in 2D and 3D culture. • Tumor spheroids lacking VASP demonstrated impaired invasion. • Kaplan-Meier plotter shows association of high VASP expression with poor survival.« less
Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun
2014-05-01
Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro.
OmpL1 Is an Extracellular Matrix- and Plasminogen-Interacting Protein of Leptospira spp.
Fernandes, Luis G. V.; Vieira, Monica L.; Kirchgatter, Karin; Alves, Ivy J.; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Romero, Eliete C.
2012-01-01
Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection. PMID:22802342
OmpL1 is an extracellular matrix- and plasminogen-interacting protein of Leptospira spp.
Fernandes, Luis G V; Vieira, Monica L; Kirchgatter, Karin; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Romero, Eliete C; Nascimento, Ana L T O
2012-10-01
Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with K(D) (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a K(D) of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.
Co-expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A.
Mukund, Kavitha; Ward, Samuel R; Lieber, Richard L; Subramaniam, Shankar
2017-10-16
Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications.The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into 5 groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes- Dclk1 and Ostalpha within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous workBotulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications.The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into 5 groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes- Dclk1 and Ostalpha within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous work.
Barker, Nichole M; Carrino, David A; Caplan, Arnold I; Hurd, William W; Liu, James H; Tan, Huiqing; Mesiano, Sam
2016-03-01
Uterine leiomyoma are a common benign pelvic tumors composed of modified smooth muscle cells and a large amount of extracellular matrix (ECM). The proteoglycan composition of the leiomyoma ECM is thought to affect pathophysiology of the disease. To test this hypothesis, we examined the abundance (by immunoblotting) and expression (by quantitative real-time polymerase chain reaction) of the proteoglycans biglycan, decorin, and versican in leiomyoma and normal myometrium and determined whether expression is affected by steroid hormones and menstrual phase. Leiomyoma and normal myometrium were collected from women (n = 17) undergoing hysterectomy or myomectomy. In vitro studies were performed on immortalized leiomyoma (UtLM) and normal myometrial (hTERT-HM) cells with and without exposure to estradiol and progesterone. In leiomyoma tissue, abundance of decorin messenger RNA (mRNA) and protein were 2.6-fold and 1.4-fold lower, respectively, compared with normal myometrium. Abundance of versican mRNA was not different between matched samples, whereas versican protein was increased 1.8-fold in leiomyoma compared with myometrium. Decorin mRNA was 2.4-fold lower in secretory phase leiomyoma compared with proliferative phase tissue. In UtLM cells, progesterone decreased the abundance of decorin mRNA by 1.3-fold. Lower decorin expression in leiomyoma compared with myometrium may contribute to disease growth and progression. As decorin inhibits the activity of specific growth factors, its reduced level in the leiomyoma cell microenvironment may promote cell proliferation and ECM deposition. Our data suggest that decorin expression in leiomyoma is inhibited by progesterone, which may be a mechanism by which the ovarian steroids affect leiomyoma growth and disease progression. © The Author(s) 2015.
Dynamic expression patterns of ECM molecules in the developing mouse olfactory pathway
Shay, Elaine L.; Greer, Charles A.; Treloar, Helen B.
2009-01-01
Olfactory sensory neuron (OSN) axons follow stereotypic spatio-temporal paths in the establishment of the olfactory pathway. Extracellular matrix (ECM) molecules are expressed early in the developing pathway and are proposed to have a role in its initial establishment. During later embryonic development, OSNs sort out and target specific glomeruli to form precise, complex topographic projections. We hypothesized that ECM cues may help to establish this complex topography. The aim of this study was to characterize expression of ECM molecules during the period of glomerulogenesis, when synaptic contacts are forming. We examined expression of laminin-1, perlecan, tenascin-C and CSPGs and found a coordinated pattern of expression of these cues in the pathway. These appear to restrict axons to the pathway while promoting axon outgrowth within. Thus, ECM molecules are present in dynamic spatio-temporal positions to affect OSN axons as they navigate to the olfactory bulb and establish synapses. PMID:18570250
Randles, Michael J; Woolf, Adrian S; Huang, Jennifer L; Byron, Adam; Humphries, Jonathan D; Price, Karen L; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J; Long, David A; Lennon, Rachel
2015-12-01
Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein-protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. Copyright © 2015 by the American Society of Nephrology.
Shan, Sze Wan; Do, Chi Wai; Lam, Thomas Chuen; Kong, Ricky Pak Wing; Li, King Kit; Chun, Ka Man; Stamer, William Daniel; To, Chi Ho
2017-10-06
The molecular pathophysiology of corticosteroid-induced ocular hypertension (CIH) is not well understood. To determine the biological mechanisms of CIH, this study investigated protein expression profiles of human trabecular meshwork (hTM) cells in response to dexamethasone and prednisolone treatment. Both discovery-based sequential windowed data independent acquisition of the total high-resolution mass spectra (SWATH-MS) and targeted based high resolution multiple reaction monitoring (MRM-HR) confirmation were applied using a hybrid quadrupole-time-of-flight mass spectrometer. A comprehensive list of 1759 proteins (1% FDR) was generated from the hTM. Quantitative proteomics revealed 20 differentially expressed proteins (p-value ≤ 0.05 and fold-change ≥ 1.5 or ≤ 0.67) commonly induced by prednisolone and dexamethasone, both at 300 nM. These included connective tissue growth factor (CTGF) and thrombospondin-1 (THBS1), two proteins previously implicated in ocular hypertension, glaucoma, and the transforming growth factor-β pathway. Their gene expressions in response to corticosteroids were further confirmed using reverse-transcription polymerase chain reaction. Together with other novel proteins identified in the data sets, additional pathways implicated by these regulated proteins were the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, integrin cell surface interaction, extracellular matrix (ECM) proteoglycans, and ECM-receptor interaction. Our results indicated that an integrated platform of SWATH-MS and MRM-HR allows high throughput identification and confirmation of novel and known corticosteroid-regulated proteins in trabecular meshwork cells, demonstrating the power of this technique in extending the current understanding of the pathogenesis of CIH.
Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound
Tracy, Lauren E.; Minasian, Raquel A.; Caterson, E.J.
2016-01-01
Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism. Recent Advances: Advances in tissue culture, tissue engineering, and ex vivo models have made the examination and precise measurements of ECM components in wound healing possible. Likewise, the development of specific transgenic animal models has created the opportunity to characterize the role of various ECM molecules in healing wounds. In addition, the recent characterization of new ECM molecules, including matricellular proteins, dermatopontin, and FACIT collagens (Fibril-Associated Collagens with Interrupted Triple helices), further demonstrates our cursory knowledge of the ECM in coordinated wound healing. Critical Issues: The manipulation and augmentation of ECM components in the healing wound is emerging in patient care, as demonstrated by the use of acellular dermal matrices, tissue scaffolds, and wound dressings or topical products bearing ECM proteins such as collagen, hyaluronan (HA), or elastin. Once thought of as neutral structural proteins, these molecules are now known to directly influence many aspects of cellular wound healing. Future Directions: The role that ECM molecules, such as CCN2, osteopontin, and secreted protein, acidic and rich in cysteine, play in signaling homing of fibroblast progenitor cells to sites of injury invites future research as we continue investigating the heterotopic origin of certain populations of fibroblasts in a healing wound. Likewise, research into differently sized fragments of the same polymeric ECM molecule is warranted as we learn that fragments of molecules such as HA and tenascin-C can have opposing effects on dermal fibroblasts. PMID:26989578
Periostin: a novel prognostic and therapeutic target for genitourinary cancer?
Nuzzo, Pier Vitale; Buzzatti, Giulia; Ricci, Francesco; Rubagotti, Alessandra; Argellati, Francesca; Zinoli, Linda; Boccardo, Francesco
2014-10-01
Many of the cellular abnormalities present in solid tumors are structural in nature and involve the proteins of the extracellular matrix (ECM). Periostin is a protein produced and secreted by the fibroblasts as a component of the ECM where it is involved in regulating intercellular adhesion. The expression of periostin has an important physiological role during embryogenesis and growth, namely at the level of bone, dental, and cardiac tissues. Many studies indicate that periostin plays an important role for tumor progression in various types of cancer, such as colon, lung, head and neck, breast, ovarian, and prostate. To the best of our knowledge, a limited number of studies have investigated periostin expression in urogenital cancer, such as prostate, bladder, penile, and renal cancer, and no studies were performed in testis cancer. In this review article, we summarize the most recent knowledge of periostin, its genetic and protein structure, and the role of the different isoforms identified and sequenced so far. In particular, we focus our attention on the role of this protein in genitourinary tumors, trying to emphasize the role not only as a possible prognostic marker, but also as a possible target for the development of future anticancer therapies. Copyright © 2014 Elsevier Inc. All rights reserved.
Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao
2015-01-01
We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.
Schwarz, Silke; Elsaesser, Alexander F; Koerber, Ludwig; Goldberg-Bockhorn, Eva; Seitz, Andreas M; Bermueller, Christian; Dürselen, Lutz; Ignatius, Anita; Breiter, Roman; Rotter, Nicole
2015-12-01
One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage-specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region. Copyright © 2012 John Wiley & Sons, Ltd.
Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira
2010-01-01
Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment. PMID:19887451
Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-Ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira
2010-01-15
Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment.
Wanyonyi, Stephen S; Lefevre, Christophe; Sharp, Julie A; Nicholas, Kevin R
2013-08-08
Asynchronous concurrent lactation (ACL) is an extreme lactation strategy in macropod marsupials including the tammar wallaby, that may hold the key to understanding local control of mammary epithelial cell function. Marsupials have a short gestation and a long lactation consisting of three phases; P2A, P2B and P3, representing early, mid and late lactation respectively and characterised by profound changes in milk composition. A lactating tammar is able to concurrently produce phase 2A and 3 milk from adjacent glands in order to feed a young newborn and an older sibling at heel. Physiological effectors of ACL remain unknown and in this study the extracellular matrix (ECM) is investigated for its role in switching mammary phenotypes between phases of tammar wallaby lactation. Using the level of expression of the genes for the phase specific markers tELP, tWAP, and tLLP-B representing phases 2A, 2B and 3 respectively we show for the first time that tammar wallaby mammary epithelial cells (WallMECs) extracted from P2B acquire P3 phenotype when cultured on P3 ECM. Similarly P2A cells acquire P2B phenotype when cultured on P2B ECM. We further demonstrate that changes in phase phenotype correlate with phase-specific changes in ECM composition. This study shows that progressive changes in ECM composition in individual mammary glands provide a local regulatory mechanism for milk protein gene expression thereby enabling the mammary glands to lactate independently. Copyright © 2013. Published by Elsevier B.V.
OCT1-Mediated Metformin Uptake Regulates Pancreatic Stellate Cell Activity.
Wu, Chunhua; Qiu, Shanhu; Zhu, Xiangyun; Lin, Hao; Li, Ling
2018-06-27
Metformin treatment is reported to be associated with a lower incidence of and mortality from pancreatic cancer (PC) in type 2 diabetes patients. Activated pancreatic stellate cells (PSCs) are key stroma cells responsible for pancreatic fibrogenesis and PC progression. However, little research is about the influence of metformin on PSCs. Given the potential beneficial effects of metformin on PC, pancreatic tumour stroma is an important target for new therapeutics. We observed the effects of metformin on PSCs. We investigated the effects of metformin on human PSCs proliferation and the production of extracellular matrix (ECM) proteins. Cells were cultured with different concentrations of metformin (0-10 mmol/L). Cell proliferation was determined by immunofluorescence staining for nuclear Ki67 labelling. ECM production was studied by quantitative real-time polymerase chain reaction, immunoblotting and immunofluorescence microscopy. Adenosine monophosphate-activated protein kinase (AMPK), an important regulatory molecule responsible for metformin action, and the organic cation transporter member 1 (OCT1), which is believed to be the most important transporter for the pharmacological action of metformin, were investigated for their possible involvements in metformin-induced proliferation and ECM production. Our results showed that metformin inhibited PSCs proliferation and decreased the production of ECM proteins by activation of AMPK phosphorylation. Silencing of OCT1 expression resulted in a reduction in the effects of metformin on PSCs activity. Collectively, the data indicate that OCT1 may contribute to uptake metformin and regulate PSCs activity. OCT1 is a target of metformin in regulating PSCs activity. © 2018 The Author(s). Published by S. Karger AG, Basel.
Kee, Nalise Low Ah; Krause, Jason; Blatch, Gregory L; Muramoto, Koji; Sakka, Kazuo; Sakka, Makiko; Naudé, Ryno J; Wagner, Leona; Wolf, Raik; Rahfeld, Jens-Ulrich; Demuth, Hans-Ulrich; Mielicki, Wojciech P; Frost, Carminita L
2015-10-01
Proteases are essential for tumour progression and many are over-expressed during this time. The main focus of research was the role of these proteases in degradation of the basement membrane and extracellular matrix (ECM), thereby enabling metastasis to occur. Cancer procoagulant (CP), a protease present in malignant tumours, but not normal tissue, is a known activator of coagulation factor X (FX). The present study investigated the function of CP in cancer progression by focussing on its enzymatic specificity. FX cleavage was confirmed using SDS-PAGE and MALDI-TOF MS and compared to the proteolytic action of CP on ECM proteins, including collagen type IV, laminin and fibronectin. Contrary to previous reports, CP cleaved FX at the conventional activation site (between Arg-52 and Ile-53). Additionally, degradation of FX by CP occurred at a much slower rate than degradation by conventional activators. Complete degradation of the heavy chain of FX was only visible after 24 h, while degradation by RVV was complete after 30 min, supporting postulations that the procoagulant function of CP may be of secondary importance to its role in cancer progression. Of the ECM proteins tested, only fibronectin was cleaved. The substrate specificity of CP was further investigated by screening synthetic peptide substrates using a novel direct CP assay. The results indicate that CP is not essential for either cancer-associated blood coagulation or the degradation of ECM proteins. Rather, they suggest that this protease may be required for the proteolytic activation of membrane receptors.
Lytic and mechanical stability of clots composed of fibrin and blood vessel wall components.
Rottenberger, Z; Komorowicz, E; Szabó, L; Bóta, A; Varga, Z; Machovich, R; Longstaff, C; Kolev, K
2013-03-01
Proteases expressed in atherosclerotic plaque lesions generate collagen fragments, release glycosaminoglycans (chondroitin sulfate [CS] and dermatan sulfate [DS]) and expose extracellular matrix (ECM) proteins (e.g. decorin) at sites of fibrin formation. Here we address the effect of these vessel wall components on the lysis of fibrin by the tissue plasminogen activator (tPA)/plasminogen system and on the mechanical stability of clots. MMP-8-digested collagen fragments, isolated CS, DS, glycosylated decorin and its core protein were used to prepare mixed matrices with fibrin (additives present at a 50-fold lower mass concentration than fibrinogen). Scanning electron microscopy (SEM) showed that the presence of ECM components resulted in a coarse fibrin structure, most pronounced for glycosylated decorin causing an increase in the median fiber diameter from 85 to 187 nm. Rheological measurements indicated that these structural alterations were coupled to decreased shear resistance (1.8-fold lower shear stress needed for gel/fluid transition of the clots containing glycosylated decorin) and rigidity (reduction of the storage modulus from 54.3 to 33.2 Pa). The lytic susceptibility of the modified fibrin structures was increased. The time to 50% lysis by plasmin was reduced approximately 2-fold for all investigated ECM components (apart from the core protein of decorin which produced a moderate reduction of the lysis time by 25%), whereas fibrin-dependent plasminogen activation by tPA was inhibited by up to 30%. ECM components compromise the chemical and mechanical stability of fibrin as a result of changes in its ultrastructure. © 2012 International Society on Thrombosis and Haemostasis.
Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis
Hielscher, Abigail; Ellis, Kim; Qiu, Connie; Porterfield, Josh; Gerecht, Sharon
2016-01-01
The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particular, fibronectin has been documented to activate endothelial cells, resulting in their transition from a quiescent state to an active state in which the cells exhibit enhanced migration and proliferation. The goal of this study is to examine the role of polymerized fibronectin during vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morphogenesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibronectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascular morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal decreased expression of stromal matrix proteins in the absence of polymerized fibronectin with high co-localization of matrix proteins found in association with polymerized fibronectin. Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and mean square displacement, are disrupted in structures grown in the absence of polymerized fibronectin. Additionally, vascular organization failed to occur in the absence of a polymerized fibronectin matrix. Consistent with these observations, we tested vascular morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demonstrating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall, fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for matrix assembly and vascular morphogenesis. PMID:26811931
Stoppel, Whitney L.; Gao, Albert E.; Greaney, Allison M.; Partlow, Benjamin P.; Bretherton, Ross C.; Kaplan, David L.; Black, Lauren D.
2018-01-01
Heart failure is the leading cause of death in the United States and rapidly becoming the leading cause of death worldwide. While pharmacological treatments can reduce progression to heart failure following myocardial infarction, there still exists a need for new therapies that promote better healing post injury for a more functional cardiac repair and methods to understand how the changes to tissue mechanical properties influence cell phenotype and function following injury. To address this need, we have optimized a silk-based hydrogel platform containing cardiac tissue-derived extracellular matrix (cECM). These silk-cECM hydrogels have tunable mechanical properties, as well as rate-controllable hydrogel stiffening over time. In vitro, silk-cECM scaffolds led to enhanced cardiac fibroblast (CF) cell growth and viability with culture time. cECM incorporation improved expression of integrin an focal adhesion proteins, suggesting that CFs were able to interact with the cECM in the hydrogel. Subcutaneous injection of silk hydrogels in rats demonstrated that addition of the cECM led to endogenous cell infiltration and promoted endothelial cell ingrowth after 4 weeks in vivo. This naturally derived silk fibroin platform is applicable to the development of more physiologically relevant constructs that replicate healthy and diseased tissue in vitro and has the potential to be used as an injectable therapeutic for cardiac repair. PMID:27480328
Binding of human plasminogen by the lipoprotein LipL46 of Leptospira interrogans.
Santos, Jadson V; Pereira, Priscila R M; Fernandes, Luis G V; Siqueira, Gabriela Hase; de Souza, Gisele O; Souza Filho, Antônio; Vasconcellos, Silvio A; Heinemann, Marcos B; Chapola, Erica G B; Nascimento, Ana L T O
2018-02-01
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira. Bacteria disseminate via the bloodstream and colonize the renal tubules of reservoir hosts. Leptospiral surface-exposed proteins are important targets, because due to their location they can elicit immune response and mediate adhesion and invasion processes. LipL46 has been previously reported to be located at the leptospiral outer membrane and recognized by antibodies present in serum of infected hamsters. In this study, we have confirmed the cellular location of this protein by immunofluorescence and FACS. We have cloned and expressed the recombinant protein LipL46 in its soluble form. LipL46 was recognized by confirmed leptospirosis human serum, suggesting its expression during infection. Binding screening of LipL46 with extracellular matrix (ECM) and plasma components showed that this protein interacts with plasminogen. The binding is dose-dependent on protein concentration, but saturation was not reached with the range of protein concentration used. Kringle domains of plasminogen and lysine residues of the recombinant protein are involved in the binding because the lysine analog, amino caproic acid (ACA) almost totally inhibited the reaction. The interaction of LipL46 with plasminogen generates plasmin in the presence of plasminogen activator uPA. Because plasmin generated at the leptospiral surface can degrade ECM molecules and decrease opsonophagocytosis, we tentatively infer that Lip46 has a role in helping the invasion process of pathogenic Leptospira. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidhauser, C. Bissell, M.J.; Myers, C.A.; Casperson, G.F.
1990-12-01
Milk protein regulation involves synergistic action of lactogenic hormones and extracellular matrix (ECM). It is well established that substratum has a dramatic effect on morphology and function of mammary cells. The molecular mechanisms that regulate the ECM- and hormone-dependent gene expression, however, have not been resolved. To address this question, a subpopulation (designated CID 9) of the mouse mammary epithelial cell strain COMMA-2D has been developed in which more than 35% of the cells express {beta}-casein, form alveoli-like structures when plated onto a reconstituted basement membrane, and secrete {beta}-casein undirectionally into a lumen. These cells were stably transfected with amore » series of chloramphenicol acetyltransferase (CAT) fusion genes to study transcriptional regulation of the bovine {beta}-casein gene. The expression of CAT in these lines demonstrated a striking matrix and hormone dependency. This regulation occurered primarily at the transcriptional level and was dependent on the length of the 5{prime} flanking region of the {beta}-casein promotor. Both matrix and hormonal control of transcription occurred within at least the first 1790 base pairs upstream and/or 42 base pairs downstream of the transcriptional initiation site. The ECM effect was independent of glucocorticoid stimulation. However, prolactin was essential and hydrocortisone further increased CAT expression. Endogenous {beta}-casein expression in these lines was similar to that of the parent CID 9 cells. Our data indicate the existence of matrix-dependent elements that regulate transcription.« less
Harvey, Adam; Yen, Ten-Yang; Aizman, Irina; Tate, Ciara; Case, Casey
2013-01-01
Mesenchymal stromal cells (MSCs) transiently transfected with notch1 intracellular domain (NICD) are beneficial for neurological disorders as observed in several preclinical studies. Extracellular matrix (ECM) derived from NICD-transfected MSCs has been previously shown to support in vitro neural cell growth and survival better than that of un-transfected MSCs. To understand the underlying mechanism(s) by which NICD-transfected MSC-derived ECM supports neural cell growth and survival, we investigated the differences in NICD-transfected MSC- and MSC-derived ECM protein quantity and composition. To compare the ECM derived from MSCs and NICD-transfected MSCs, the proteins were sequentially solubilized using sodium dodecyl sulfate (SDS) and urea, quantified, and compared across four human donors. We then analyzed ECM proteins using either in-gel digests or in-solution surfactant-assisted trypsin digests (SAISD) coupled with reverse phase nano-liquid chromatography and tandem mass spectrometry (nLC-MS/MS). Analyses using nLC-MS/MS identified key components of ECM from NICD-transfected MSCs and un-transfected MSCs and revealed significant differences in their respective compositions. This work provides a reproducible method for identifying and comparing in vitro cell-derived ECM proteins, which is crucial for exploring the mechanisms underlying cellular therapy. PMID:24244468
Jamuna, J B; Nandini, C D
2014-06-01
Sustained hyperglycemia as a result of diabetes mellitus results in over-expression of glucose transporters (GLUTs/SGLTs), protein kinase C-α (PKC-α) and transforming growth factor-β (TGF-β) in kidney which increases synthesis and accumulation of extracellular matrix (ECM) components leading to diabetic nephropathy. Previous results from our laboratory showed that banana flower (BF) and pseudostem (BS) ameliorated diabetic complications and reduced formation of advanced glycation end-products (AGEs). In this study, attempts were made to delineate the changes observed in GLUTs and ECM components in kidney by feeding BF and BS at the molecular level. Diabetes was induced in male Wistar rats by injecting streptozotocin. Rats were fed with standard AIN-76 diet or diet supplemented with 5% BF or BS. Rats fed with diet supplemented with aminoguanidine (0.05%) were used as a positive control. Effect of BF and BS on expression of GLUTs/SGLTs, PKC and TGF β in kidney was evaluated by RT-PCR and accumulation of ECM components in kidney was quantitated by ELISA and immunohistochemistry. BF and BS modulated the over-expression of GLUT 1, 2, 5, SGLT 1, 2 and factors such as PKC-α and TGF-β to various extents. This impinged on the synthesis of ECM components like laminin, fibronectin and type-IV collagen. The results suggest that BF and BS reduce the diabetic nephropathy complications which are accompanied by changes at the molecular level. Copyright © 2013 Elsevier B.V. All rights reserved.
Kebebew, Electron; Peng, Miao; Reiff, Emily; Duh, Quan-Yang; Clark, Orlo H.; McMillan, Alex
2005-01-01
Objective: The objective of this study was to determine whether genes that regulate cellular invasion and metastasis are differentially expressed and could serve as diagnostic markers of malignant thyroid nodules. Summary and Background Data: Patients whose thyroid nodules have indeterminate or suspicious cytologic features on fine needle aspiration (FNA) biopsy require thyroidectomy because of a 20% to 30% risk of thyroid cancer. Cell invasion and metastasis is a hallmark of malignant phenotype; therefore, genes that regulate these processes might be differentially expressed and could serve as diagnostic markers of malignancy. Methods: Differentially expressed genes (2-fold higher or lower) in malignant versus benign thyroid neoplasms were identified by extracellular matrix and adhesion molecule cDNA array analysis and confirmed by real-time quantitative polymerase chain reaction (PCR). The area under the receiver operating characteristic (AUC) curve was calculated to determine diagnostic accuracy of gene expression level cutoffs established by logistic regression analysis. Results: By cDNA array analysis, ADAMTS8, ECM1, MMP8, PLAU, SELP, and TMPRSS4 were upregulated, and by quantitative PCR, ECM1, SELP, and TMPRSS4 mRNA expression was higher in malignant (n = 57) than in benign (n = 38) thyroid neoplasms (P< 0.002). ECM1 and TMPRSS4 mRNA expression levels were independent predictors of a malignant thyroid neoplasm (P < 0.003). The AUC was 0.956 for ECM1 and 0.926 for TMPRSS4. Combining both markers improved their diagnostic use (AUC 0.985; sensitivity, 91.7%; specificity, 89.8%; positive predictive value, 85.7%; negative predictive value, 82.8%). ECM1 and TMPRSS4 expression analysis improved the diagnostic accuracy of FNA biopsy in 35 of 38 indeterminate or suspicious results. The level of ECM1 mRNA expression was higher in TNM stage I differentiated thyroid cancers than in stage II and III tumors (P ≤ 0.031). Conclusions: ECM1 and TMPRSS4 are excellent diagnostic markers of malignant thyroid nodules and may be used to improve the diagnostic accuracy of FNA biopsy. ECM1 is also a marker of the extent of disease in differentiated thyroid cancers. PMID:16135921
Stretching the boundaries of extracellular matrix research.
Hynes, Richard O
2014-12-01
Extracellular matrix (ECM) proteins constitute >1% of the proteome and interact with many modifiers and growth factors to affect most aspects of cellular behaviour during development and normal physiology, as well as in diseases such as fibroses, cancer and many genetic disorders. In addition to biochemical signals provided to cells by ECM proteins, important cell–ECM interactions involve bidirectional mechanotransduction influences, which are dependent on the physical structure and organization of the ECM. These are beginning to be understood using twenty-first-century approaches, including biophysics, nanotechnology, biological engineering and modern microscopy. Articles in this issue of Nature Reviews Molecular Cell Biology review progress in our understanding of the ECM.
Slack, Barbara E.; Siniaia, Marina S.
2008-01-01
The mitogen-activated protein kinases (MAPKs) are activated by extracellular signals, and translocate to the nucleus where they modulate transcription. Integrin-mediated cell adhesion to extracellular matrix (ECM) proteins is required for efficient transmission of MAPK-based signals initiated by growth factors. However, the modulation of G protein-coupled receptor (GPCR) signaling by adhesion is less well understood. In the present study we assessed the impact of cell adhesion on MAPK activation by muscarinic M3 receptors. The muscarinic agonist carbachol more efficiently promoted stress fiber formation and tyrosine phosphorylation of focal adhesion-associated proteins in M3 receptor-expressing cells adherent to fibronectin or collagen type I, as compared to polylysine. Overall MAPK activation was robust in cells adherent to all three substrata. However, total levels of MAPK and mitogen-activated protein kinase kinase (MEK) in the nucleus were significantly greater in cells adherent to ECM proteins for 2.5 hours, and levels of activated MAPK and MEK in the nuclei of these cells were higher following carbachol stimulation, relative to levels in cells adherent to polylysine. MEK inhibitors did not prevent adhesion-dependent translocation of MAPK and MEK to the nucleus, and increased nuclear phospho-MEK levels in carbachol-stimulated cells. The results suggest that adhesion of cells to ECM triggers the redistribution of MAPK and MEK to the nucleus, possibly as a result of the cytoskeletal rearrangements that accompany cell spreading. This may represent a mechanism for priming the nucleus with MEK and MAPK, leading to more rapid and pronounced increases in intranuclear phospho-MAPK upon GPCR stimulation. PMID:15779001
Extracellular matrix biomimicry for the creation of investigational and therapeutic devices.
Pellowe, Amanda S; Gonzalez, Anjelica L
2016-01-01
The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics. © 2015 Wiley Periodicals, Inc.
Tripathi, Yamini B; Shukla, Rashmi; Pandey, Nidhi; Pandey, Vivek; Kumar, Mohan
2017-02-01
Currently, no drug is available to directly target the signaling molecules involved in the pathogenesis of diabetic nephropathy (DN); only antihypertensive and antidiabetic drugs are in clinical use. In the present study, the therapeutic effects of a active fraction of tubers from Pueraria tuberosa (hereafter referred to as PTY-2) were investigated in streptozotocin (STZ)-diabetic rats with DN, with particular emphasis on its effects on extracellular matrix (ECM) accumulation and matrix metalloproteinase (Mmp)-9 expression in kidney tissue. Rats were injected with 55 mg/kg, i.p., STZ. After 40 days, rats were divided into groups as follows (n = 6 per group): Group 1, age-matched rats not injected with STZ (non-diabetic control); Group 2, STZ-diabetic DN rats; and Group 3, PTY-2 (30 mg/100 g, p.o.)-treated DN rats. After 20 days treatment, the effects of PTY-2 on serum urea and creatinine concentrations, urinary levels of glucose, creatinine, protein, and ketone bodies, and urine pH were determined. Kidney tissue was evaluated for Mmp-9 expression and histological changes. Blood glucose, serum urea, creatinine, and urine protein levels were significantly higher, and creatinine clearance was significantly lower, in Group 2 versus Group 1 rats. There was a higher degree of glomerulosclerosis, expansion of the mesangial matrix, and excess ECM deposition and eosinophilic casts in kidneys from Group 2 versus Group 1 rats. Furthermore, Mmp-9 activity and expression were significantly reduced in kidney homogenate of Group 2 versus Group 1 rats. Interestingly, PTY-2 treatment significantly reversed all these changes in DN rats. Treatment of DN rats with PTY-2 significantly attenuated the severity of DN by increasing the expression and activity of Mmp-9, consequently degrading the ECM accumulated in kidney tissue. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Choi, Hee-Jung; Chung, Tae-Wook; Kim, Jai-Eun; Jeong, Han-Sol; Joo, Myungsoo; Cha, Jaeho; Kim, Cheorl-Ho; Ha, Ki-Tae
2012-11-01
Expression of matrix metalloproteinase 9 (MMP-9) may contribute to inflammatory conditions such as arthritis, hepatitis, atherosclerosis, and pulmonary fibrosis, which involves the destruction of the extracellular matrix (ECM). Macrophages stimulated with lipopolysaccharide (LPS) express MMP-9 through the nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1) signaling pathways. Aesculin, a 6,7-dihydroxycoumarin-6-O-beta-glucopyranoside, has been highlighted for its anti-hepatotoxic, hypouricemic, antioxidative, photo-protective, and anti-apoptotic properties. In this study, we investigated the effects of aesculin on LPS-stimulated MMP-9 production and its regulatory mechanism by using murine macrophage RAW264.7 cells. Aesculin did not trigger any significant cytotoxic effect on RAW264.7 cells at concentration up to 150 μM. Secretion and expression levels of MMP-9, which were highly elevated by LPS treatment, were reduced by the addition of aesculin in a dose-dependent manner. However, gelatinolytic activity of MMP-9 was not reduced by aesculin. Luciferase activity assays and electrophoretic mobility shift assays using RAW264.7 cells showed that the inhibition of MMP-9 expression by aesculin was mediated by AP-1 rather than NF-κB. In addition, aesculin inhibited phosphorylation of p38 MAPK and subsequent activation of c-fos, a component of AP-1 transcription factor, but not JNK, ERK1/2, and c-jun. These findings suggest that aesculin is a potent drug candidate that protects against the inflammatory destruction of ECM. Copyright © 2012 Elsevier B.V. All rights reserved.
Randles, Michael J.; Woolf, Adrian S.; Huang, Jennifer L.; Byron, Adam; Humphries, Jonathan D.; Price, Karen L.; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J.; Long, David A.
2015-01-01
Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein–protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. PMID:25896609
Collagen and related extracellular matrix proteins in atherosclerotic plaque development.
Shami, Annelie; Gonçalves, Isabel; Hultgårdh-Nilsson, Anna
2014-10-01
The structure, composition and turnover of the extracellular matrix (ECM) as well as cell-matrix interactions are crucial in the developing atherosclerotic plaque. There is a need for further insight into specific proteins in the ECM and their functions in the developing plaque, and during the last few years a number of publications have highlighted this very important field of research. These novel findings will be addressed in the present review. This review covers literature focused on collagen and ECM proteins interacting with collagen, and what their roles may be in plaque development. Acute myocardial infarction and stroke are common diseases that cause disability and mortality, and the underlying mechanism is often the rupture of a vulnerable atherosclerotic plaque. The vascular ECM and the tissue repair in the atherosclerotic lesion are important players in plaque progression. Understanding how specific proteins in the ECM interact with cells in the plaque and affect the fate of the plaque can lead to new treatments for cardiovascular disease.
Sahoo, Subhransu S.; Quah, Min Yuan; Nielsen, Sarah; Atkins, Joshua; Au, Gough G.; Cairns, Murray J.; Nahar, Pravin; Lombard, Janine M.; Tanwar, Pradeep S.
2017-01-01
Although aggressive invasion and distant metastases are an important cause of morbidity and mortality in patients with endometrial cancer (EC), the requisite events determining this propensity are currently unknown. Using organotypic three-dimensional culture of endometrial cancer cell lines, we demonstrated anti-correlated TGF-β signalling gene expression patterns that arise among extracellular matrix (ECM)-attached cells. TGF-β pathway seemed to be active in EC cells forming non-glandular colonies in 3D-matrix but weaker in glandular colonies. Functionally we found that out of several ECM proteins, fibronectin relatively promotes Smad phosphorylation suggesting a potential role in regulating TGF-β signalling in non-glandular colonies. Importantly, alteration of TGF-β pathway induced EMT and MET in both type of colonies through slug protein. The results exemplify a crucial role of TGF-β pathway during EC metastasis in human patients and inhibition of the pathway in a murine model impaired tumour cell invasion and metastasis depicting an attractive target for therapeutic intervention of malignant tumour progression. These findings provide key insights into the role of ECM-derived TGF-β signalling to promote endometrial cancer metastasis and offer an avenue for therapeutic targeting of microenvironment derived signals along with tumour cells. PMID:29069715
Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation.
Grogan, Shawn P; Chen, Xian; Sovani, Sujata; Taniguchi, Noboru; Colwell, Clifford W; Lotz, Martin K; D'Lima, Darryl D
2014-01-01
Interaction between chondrocytes and the cartilage extracellular matrix (ECM) is essential for maintaining the cartilage's role as a low-friction and load-bearing tissue. In this study, we examined the influence of cartilage zone-specific ECM on human articular chondrocytes (HAC) in two-dimensional and three-dimensional (3D) environments. Two culture systems were used. SYSTEM 1: HAC were cultured on cell-culture plates that had been precoated with the following ECM molecules for 7 days: decorin, biglycan, tenascin C (superficial zone), collagen type II, hyaluronan (HA) (middle and deep zones), and osteopontin (deep zone). Uncoated standard culture plates were used as controls. Expanded cells were examined for phenotypic changes using real-time polymerase chain reaction. In addition, expanded cells were placed into high-density pellet cultures for 14 days. Neocartilage formation was assessed via gene expression and histology evaluations. SYSTEM 2: HAC that were cultured on untreated plates and encapsulated in a 3D alginate scaffold were mixed with one of the zone-specific ECM molecules. Cell viability, gene expression, and histology assessments were conducted on 14-day-old tissues. In HAC monolayer culture, exposure to decorin, HA, and osteopontin increased COL2A1 and aggrecan messenger RNA (mRNA) levels compared with controls. Biglycan up-regulated aggrecan without a significant impact on COL2A1 expression; Tenascin C reduced COL2A1 expression. Neocartilage formed after preculture on tenascin C and collagen type II expressed higher COL2A1 mRNA compared with control pellets. Preculture of HAC on HA decreased both COL2A1 and aggrecan expression levels compared with controls, which was consistent with histology. Reduced proteoglycan 4 (PRG4) mRNA levels were observed in HAC pellets that had been precultured with biglycan and collagen type II. Exposing HAC to HA directly in 3D-alginate culture most effectively induced neocartilage formation, showing increased COL2A1 and aggrecan, and reduced COL1A1 compared with controls. Decorin treatments increased HAC COL2A1 mRNA levels. These data indicate that an appropriate exposure to cartilage-specific ECM proteins could be used to enhance cartilage formation and to even induce the formation of zone-specific phenotypes to improve cartilage regeneration.
Bertram, Catharina; Hass, Ralf
2009-10-01
The extracellular matrix (ECM) and a complex interplay of cell-to-cell and cell-to-matrix (ECM) interactions provide important platforms to determine cellular senescence and a potentially tumorigenic transformation of normal human mammary epithelial cells (HMEC). An enhanced formation of extracellular filaments, consisting of elastin-like structures, in senescent post-selection HMEC populations was paralleled by a significantly increased expression of its precursor protein tropoelastin and matched with a markedly elevated activity of the cross-linking enzyme family of lysyl oxidases (LOX). RNAi experiments revealed both the ECM metalloproteinase MMP-7 and the growth factor HB-EGF as potential effectors of an increased tropoelastin expression. Moreover, co-localization of MMP-7 and HB-EGF as well as a concomittant downstream signaling via Fra-1 indicated a possible association between the reduced MMP-7 enzyme activity and an impaired HB-EGF processing, resulting in an enhanced tropoelastin synthesis during senescence of HMEC. In agreement with previous work, these findings suggested an important influence of the extracellular proteinase MMP-7 on the aging process of HMEC, affecting both extracellular remodeling as well as intracellular signaling pathways.
Yan, C; Han, R
1997-01-01
Protein tyrosine kinase (PTK) appears to be involved in the activation of signaling during cell attachment to and spreading on extracellular matrix (ECM) in the metastatic cascade. To verify the assumption that PTK inhibitors might impair ECM signaling and prevent cancer metastasis, the highly metastatic B16-BL6 mouse melanoma cells were exposed to the PTK inhibitor genistein for 3 days. The ability of the cells to invade through reconstituted basement membrane (Matrigel) and to establish experimental pulmonary metastatic foci in C57BL/6 mice decreased after genistein exposure. The genistein-treated cells were also prevented from attaching to Matrigel and spread extremely poorly on the ECM substratum. Immunoblot analysis showed that tyrosine phosphorylation of a 125-kD protein in response to cell spreading on Matrigel was suppressed in the genistein-treated cells. Adhesion-induced protein tyrosine phosphorylation represents the earlier and specific event in the activation of ECM signaling, so this result implied ECM signaling was impaired in the treated cells. With immunofluorescence microscopy, the adhesion-induced tyrosine phosphorylated proteins were located at the pericytoplasms of well-spread cells, but not at the periphery of poorly spread genistein-treated cells. Therefore, this paper suggests that genistein might impair ECM signaling and subsequently prevent cancer cells from spreading well and invading or establishing metastasis through the suppression of adhesion-induced protein tyrosine phosphorylation. PTKs and adhesion-induced protein tyrosine phosphorylation might play a role in the control of invasion and metastasis.
Protein hydrogels with engineered biomolecular recognition
NASA Astrophysics Data System (ADS)
Mi, Lixin
Extracellular matrices (ECMs) are the hydrated macromolecular gels in which cells migrate and proliferate and organize into tissues in vivo . The development of artificial ECM with the required mechanical, physico-chemical, and biological properties has long been a challenge in the biomaterial research field. In this dissertation, a novel set of bioactive protein hydrogels has been synthesized and characterized at both molecular and materials levels. The self-recognized and self-assembled protein copolymers have the ability to provide engineered biofunctionality through the controlled arrangement of bioactive domains on the nanoscale. Genetic engineering methods have been employed to synthesize these protein copolymers. Plasmid DNA carrying genes to express both di- and tri-block proteins have been constructed using molecular cloning techniques. These genes were expressed in bacterial E. coli to ensure homogeneous protein length and anticipated structure. Three diblock protein sequences having a leucine zipper construct on one end and polyelectrolyte (AGAGAGPEG)10 on the other, have been studied by circular dichroism, size-exclusion chromatography, analytical ultracentrifugation, and static light scattering to characterize their secondary structure, structural stability, and oligomeric state. The results show that ABC diblock mixtures form very stable heterotrimer aggregates via self-recognition and self-assembly of the coiled coil end domains. Tri-block proteins with two leucine zipper motif ends flanking the polyelectrolyte random coil in the middle have been investigated by circular dichroism and fluorescence spectroscopy, and the hydrogels formed by self-assembly of these tri-blocks have been studied using transmission electronic microscopy and diffusing wave spectroscopy. The reversible gelation behavior is the result of heterotrimeric aggregation of helices to form the physical crosslinks in the gel, with the polyelectrolyte region center block retaining water soluble and swelling. The RGD cell adhesion tripeptide has been inserted into the polyelectrolyte region by site-directed mutagenesis. Two dimensional human foreskin fibroblast cultures have shown that the RGD-containing protein surface is bioactive in promoting cell attachment, cell signaling, and cytoskeleton organization. The protein and the cell recognize and interact at molecular level. Collectively, these findings indicate that this bioactive protein hydrogel system is a promising biomaterial for mammalian cell culture. This research may provide insights for the rational development of bioactive ECM for specific cell and tissue engineering applications.
Takahashi, Toshiaki; Friedmacher, Florian; Takahashi, Hiromizu; Daniel Hofmann, Alejandro; Puri, Prem
2015-02-01
Malformation of the nonmuscular tissue components in congenital diaphragmatic hernia (CDH) is thought to underlie the diaphragmatic defect, causing intrathoracic herniation of abdominal viscera and thus disturbing normal lung development. It has been shown that diaphragmatic and pulmonary morphogeneses require the structural integrity of connective tissue, and developmental mutations that inhibit the formation of extracellular matrix (ECM) result in CDH with hypoplastic lungs. Lysyl oxidase (lox), an extracellular enzyme that catalyzes the cross-linking of ECM proteins, plays an essential role during diaphragmatic and pulmonary development by controlling the formation of connective tissue. Furthermore, lox (-/-) knockouts exhibit abnormal connective tissue with diaphragmatic defects and impaired airway morphogenesis. We designed this study to investigate the hypothesis that diaphragmatic and pulmonary lox expression is decreased in the nitrofen-induced CDH model. Timed-pregnant Sprague-Dawley rats were exposed to either nitrofen or vehicle on gestational day 9 (D9), and fetuses were harvested on selected time points D15 and D18. The micro-dissected fetal diaphragms (n=48) and lungs (n=48) were divided into two groups: control and nitrofen-exposed samples (n=12 per specimen and time point, respectively). Diaphragmatic and pulmonary gene expression levels of lox were analyzed by quantitative real-time polymerase chain reaction. Immunohistochemical staining was performed to evaluate lox protein expression in diaphragms and lungs. Relative mRNA expression of lox was significantly reduced in diaphragms and lungs of nitrofen-exposed fetuses on D15 (0.29 ± 0.08 vs. 0.12 ± 0.05; p<0.05 and 0.52 ± 0.44 vs. 0.20 ± 0.04; p<0.05) and D18 (0.90 ± 0.25 vs. 0.57 ± 0.23; p<0.05 and 0.59 ± 0.26 vs. 0.35 ± 0.09; p<0.05) compared with controls. Diaphragmatic and pulmonary immunoreactivity of lox was markedly decreased in nitrofen-exposed fetuses on D15 and D18 compared with controls. Decreased lox expression during diaphragmatic development and lung branching morphogenesis may interfere with normal cross-linking of ECM proteins, disrupting the integrity of connective tissue, and contributing to the diaphragmatic defect and impaired airway formation in the nitrofen-induced CDH model. Georg Thieme Verlag KG Stuttgart · New York.
Kang, S K; Park, Y D; Kang, S I; Kim, D K; Kang, K L; Lee, S Y; Lee, H J; Kim, E C
2015-10-01
Resistin was recently reported to play a role in inflammation-related diseases such as arthritis. However, the precise role of resistin in chronic inflammatory diseases, such as periodontal disease, remains unclear. The aim of this study was to investigate the combined effects of nicotine and lipopolysaccharide (LPS) on the expression of resistin and to assess whether resistin expression influences the levels of inflammatory cytokines, extracellular matrix (ECM) molecules and MMPs in human periodontal ligament cells (PDLCs) stimulated with both nicotine and LPS. PDLCs were pretreated with isoproterenol or resistin-specific small interfering RNA (siRNA), stimulated with LPS plus nicotine for 24 h, and then monitored for the production of inflammatory mediators. The concentrations of prostaglandin E2 (PGE2) and nitric oxide (NO) were measured by radioimmunoassay and the Griess method, respectively. RT-PCR and western blot analysis were used to measure the levels of mRNA and protein, respectively. Western blot analysis was also used to assess the activation of various signal-transduction pathways. Treatment with nicotine plus LPS up-regulated the expression of resistin mRNA and the production of resistin protein in PDLCs in a time- and concentration-dependent manner. Isoproterenol-mediated interference with the function of resistin, or siRNA-mediated knockdown of resistin expression, markedly attenuated the LPS plus nicotine-mediated stimulation of PGE2 and NO production, the production of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase proteins and the expression of proinflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-12] and MMPs (MMP-1, MMP-2 and MMP-9); however, these treatments restored the expression of ECM molecules. Furthermore, pretreatment with isoproterenol or resistin-specific siRNA blocked nicotine plus LPS-induced activation of phosphoinositide-3-kinase, glycogen synthase kinase-3 beta, β-catenin, p38, ERK, JNK and nuclear factor-κB. This is the first study to show that the inhibition of resistin, by either a pharmacological or a genetic silencing approach, has anti-inflammatory effects. These effects include decreased levels of inflammatory cytokines and the prevention of ECM breakdown in a nicotine plus LPS-stimulated PDLC model. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rrp1b, a New Candidate Susceptibility Gene for Breast Cancer Progression and Metastasis
Crawford, Nigel P. S; Qian, Xiaolan; Ziogas, Argyrios; Papageorge, Alex G; Boersma, Brenda J; Walker, Renard C; Lukes, Luanne; Rowe, William L; Zhang, Jinghui; Ambs, Stefan; Lowy, Douglas R; Anton-Culver, Hoda; Hunter, Kent W
2007-01-01
A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b), was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM) genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis. PMID:18081427
Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurai, Atsuo; Okahashi, Nobuo; Maruyama, Fumito
2008-08-29
Group A streptococcus (GAS) causes a wide range of human diseases, including bacterial arthritis. The pathogenesis of arthritis is characterized by synovial proliferation and the destruction of cartilage and subchondral bone in joints. We report here that GAS strain JRS4 invaded a chondrogenic cell line ATDC5 and induced the degradation of the extracellular matrix (ECM), whereas an isogenic mutant of JRS4 lacking a fibronectin-binding protein, SAM1, failed to invade the chondrocytes or degrade the ECM. Reverse transcription-PCR and Western blot analysis revealed that the expression of matrix metalloproteinase (MMP)-13 was strongly elevated during the infection with GAS. A reporter assaymore » revealed that the activation of the AP-1 transcription factor and the phosphorylation of c-Jun terminal kinase participated in MMP-13 expression. These results suggest that MMP-13 plays an important role in the destruction of infected joints during the development of septic arthritis.« less
Gallo-Ebert, Christina; Donigan, Melissa; Liu, Hsing-Yin; Pascual, Florencia; Manners, Melissa; Pandya, Devanshi; Swanson, Robert; Gallagher, Denise; Chen, WeiWei; Carman, George M.; Nickels, Joseph T.
2013-01-01
Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp consensus SRE is identical to the anaerobic response element, AR1c. Data indicate that Upc2 and Ecm22 function through binding to this SRE site. We now show that it is two novel anaerobic AR1b elements in the UPC2 promoter that direct global ERG gene expression in response to a block in de novo ergosterol biosynthesis, brought about by antifungal drug treatment. The AR1b elements are absolutely required for auto-induction of UPC2 gene expression and protein and require Upc2 and Ecm22 for function. We further demonstrate the direct binding of recombinant expressed S. cerevisiae ScUpc2 and pathogenic Candida albicans CaUpc2 and Candida glabrata CgUpc2 to AR1b and SRE/AR1c elements. Recombinant endogenous promoter studies show that the UPC2 anaerobic AR1b elements act in trans to regulate ergosterol gene expression. Our results indicate that Upc2 must occupy UPC2 AR1b elements in order for ERG gene expression induction to take place. Thus, the two UPC2-AR1b elements drive expression of all ERG genes necessary for maintaining normal antifungal susceptibility, as wild type cells lacking these elements have increased susceptibility to azole antifungal drugs. Therefore, targeting these specific sites for antifungal therapy represents a novel approach to treat systemic fungal infections. PMID:24163365
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Rong-hui, E-mail: fan_ronghuixa@163.com; Zhu, Xiu-mei; Sun, Yao-wen
Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expressionmore » of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.« less
Liao, Jun; Zhang, Le; Ke, Mei-gui; Xu, Teng
2013-12-01
To observe the effect of electroacupuncture (EA) at "Dazhui" (GV 14) on the contents of extracellular matrix (ECM), collagen type II (COL-II), collagen type V (COL-V), matrix metalloproteinase (MMP)-13, tissue inhibitor of metalloproteinase (TIMP)-1 in rats with cervicovertebral disc degeneration so as to explore its mechanism underlying relief of intervertebral disc degeneration. A total of 28 SD rats were randomly divided into sham group (n = 7), model group (n = 7), EA group (n = 7) and medication group (n = 7). The model of cervical intervertebral disc degeneration was established by trans-section of the deep neck splenius, the longest muscles of head, neck costocervicalis, head semi-spinatus muscle, supraspinous ligament and interspinal ligaments of cervical 2-7 segments, etc. to produce imbalance between the dynamic and static force. EA was applied to "Dazhui" (GV 14) for 30 min, once daily for 28 days, with a 2 days' interval between two courses. Animals of the medication group were treated by oral administration of meloxicam tablets (0.75 mg/kg) once daily for 28 days, with a 2 days' interval between two courses. Immunohistochemistry was used to measure the expression of ECM, COL- II, COL-V, MMP-13 and TIMP-1 in the cervicovertebral disc tissue. Compared with the sham group, the expression levels of ECM and COL-II proteins in the cervicovertebral disc tissue were significantly decreased in the model group (P < 0.01), while COL-V and MMP-13 expression levels in the model group were significantly increased (P < 0.01, P < 0.05). Compared with the model group, both ECM and COL-Il expression levels were considerably increased in the EA group and medication group (P < 0.01), while COL-V and MMP-13 expression levels were considerably down-regulated (P < 0.01, P < 0.05). No significant differences were found among the four groups in TIMP-1 expression levels (P > 0.05). EA of "Dazhui" (GV 14) can effectively regulate extracellular matrix system in rats with cervical intervertebral disc degeneration, which is possibly related to its effect in relieving cervical spondylosis.
The Role of Structural Extracellular Matrix Proteins in Urothelial Bladder Cancer (Review)
Brunner, Andrea; Tzankov, Alexandar
2007-01-01
The extracellular matrix (ECM) plays a key role in the modulation of cancer cell invasion. In urothelial carcinoma of the bladder (UC) the role of ECM proteins has been widely studied. The mechanisms, which are involved in the development of invasion, progression and generalization, are complex, depending on the interaction of ECM proteins with each other as well as with cancer cells. The following review will focus on the pathogenetic role and prognostic value of structural proteins, such as laminins, collagens, fibronectin (FN), tenascin (Tn-C) and thrombospondin 1 (TSP1) in UC. In addition, the role of integrins mediating the interaction of ECM molecules and cancer cells will be addressed, since integrin-mediated FN, Tn-C and TSP1 interactions seem to play an important role during tumor cell invasion and angiogenesis. PMID:19662222
Integrin activation and focal complex formation in cardiac hypertrophy.
Laser, M; Willey, C D; Jiang, W; Cooper, G; Menick, D R; Zile, M R; Kuppuswamy, D
2000-11-10
Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.
Integrin activation and focal complex formation in cardiac hypertrophy
NASA Technical Reports Server (NTRS)
Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.
2000-01-01
Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.
Lance, Amanda; Yang, Chih-Chao; Swamydas, Muthulekha; Dean, Delphine; Deitch, Sandy; Burg, Karen J L; Dréau, Didier
2016-01-01
The extracellular matrix (ECM) contributes to the generation and dynamic of normal breast tissue, in particular to the generation of polarized acinar and ductal structures. In vitro 3D culture conditions, including variations in the composition of the ECM, have been shown to directly influence the formation and organization of acinus-like and duct-like structures. Furthermore, the density of the ECM appears to also play a role in the normal mammary tissue and tumour formation. Here we show that the density of the ECM directly influences the number, organization and function of breast acini. Briefly, non-malignant human breast MCF10A cells were incubated in increasing densities of a Matrigel®-collagen I matrix. Elastic moduli near and distant to the acinus structures were measured by atomic force microscopy, and the number of acinus structures was determined. Immunochemistry was used to investigate the expression levels of E-cadherin, laminin, matrix metalloproteinase-14 and ß-casein in MCF10A cells. The modulus of the ECM was significantly increased near the acinus structures and the number of acinus structures decreased with the increase in Matrigel-collagen I density. As evaluated by the expression of laminin, the organization of the acinus structures present was altered as the density of the ECM increased. Increases in both E-cadherin and MMP14 expression by MCF10A cells as ECM density increased were also observed. In contrast, MCF10A cells expressed lower ß-casein levels as the ECM density increased. Taken together, these observations highlight the key role of ECM density in modulating the number, organization and function of breast acini. Copyright © 2013 John Wiley & Sons, Ltd.
Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R.
2016-01-01
Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages. PMID:26934296
Extraction and Assembly of Tissue-Derived Gels for Cell Culture and Tissue Engineering
Uriel, Shiri; Labay, Edwardine; Francis-Sedlak, Megan; Moya, Monica L.; Weichselbaum, Ralph R.; Ervin, Natalia; Cankova, Zdravka
2009-01-01
Interactions with the extracellular matrix (ECM) play an important role in regulating cell function. Cells cultured in, or on, three-dimensional ECM recapitulate similar features to those found in vivo that are not present in traditional two-dimensional culture. In addition, both natural and synthetic materials containing ECM components have shown promise in a number of tissue engineering applications. Current materials available for cell culture and tissue engineering do not adequately reflect the diversity of ECM composition between tissues. In this paper, a method is presented for extracting solutions of proteins and glycoproteins from soft tissues and inducing assembly of these proteins into gels. The extracts contain ECM proteins specific to the tissue source with low levels of intracellular molecules. Gels formed from the tissue-derived extracts have nanostructure similar to ECM in vivo and can be used to culture cells as both a thin substrate coating and a thick gel. This technique could be used to assemble hydrogels with varying composition depending upon the tissue source, hydrogels for three-dimensional culture, as scaffolds for tissue engineering therapies, and to study cell–matrix interactions. PMID:19115821
Felemban, Majed; Dorgau, Birthe; Hunt, Nicola Claire; Hallam, Dean; Zerti, Darin; Bauer, Roman; Ding, Yuchun; Collin, Joseph; Steel, David; Krasnogor, Natalio; Al-Aama, Jumana; Lindsay, Susan; Mellough, Carla; Lako, Majlinda
2018-05-17
The extracellular matrix (ECM) plays an important role in numerous processes including cellular proliferation, differentiation, migration, maturation, adhesion guidance and axonal growth. To date, there has been no detailed analysis of the ECM distribution during retinal ontogenesis in humans and the functional importance of many ECM components is poorly understood. In this study, the expression of key ECM components in adult mouse and monkey retina, developing and adult human retina and retinal organoids derived from human pluripotent stem cells was studied. Our data indicate that basement membrane ECMs (Fibronectin and Collagen IV) were expressed in Bruch's membrane and the inner limiting membrane of the developing human retina, whilst the hyalectins (Versican and Brevican), cluster of differentiation 44 (CD44), photoreceptor-specific ECMs Interphotoreceptor Matrix Proteoglycan 1 (IMPG1) and Interphotoreceptor Matrix Proteoglycan 2 (IMPG2) were detected in the developing interphotoreceptor matrix (IPM). The expression of IMPG1, Versican and Brevican in the developing IPM was conserved between human developing retina and human pluripotent stem cell-derived retinal organoids. Blocking the action of CD44 and IMPG1 in pluripotent stem cell derived retinal organoids affected the development of photoreceptors, their inner/outer segments and connecting cilia and disrupted IPM formation, with IMPG1 having an earlier and more significant impact. Together, our data suggest an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation during human retinogenesis. The expression and the role of many extracellular matrix (ECM) components during human retinal development is not fully understood. In this study, expression of key ECM components (Collagen IV, Fibronectin, Brevican, Versican, IMPG1 and IMPG2) was investigated during human retinal ontogenesis. Collagen IV and Fibronectin were expressed in Bruch's membrane; whereas Brevican, Versican, IMPG1 & IMPG2 in the developing interphotoreceptor matrix (IPM). Retinal organoids were successfully generated from pluripotent stem cells. The expression of ECM components was examined in the retinal organoids and found to recapitulate human retinal development in vivo. Using functional blocking experiments, we were able to highlight an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation. Copyright © 2018 Acta Materialia Inc. All rights reserved.
The alterations in the extracellular matrix composition guide the repair of damaged liver tissue
Klaas, Mariliis; Kangur, Triin; Viil, Janeli; Mäemets-Allas, Kristina; Minajeva, Ave; Vadi, Krista; Antsov, Mikk; Lapidus, Natalia; Järvekülg, Martin; Jaks, Viljar
2016-01-01
While the cellular mechanisms of liver regeneration have been thoroughly studied, the role of extracellular matrix (ECM) in liver regeneration is still poorly understood. We utilized a proteomics-based approach to identify the shifts in ECM composition after CCl4 or DDC treatment and studied their effect on the proliferation of liver cells by combining biophysical and cell culture methods. We identified notable alterations in the ECM structural components (eg collagens I, IV, V, fibronectin, elastin) as well as in non-structural proteins (eg olfactomedin-4, thrombospondin-4, armadillo repeat-containing x-linked protein 2 (Armcx2)). Comparable alterations in ECM composition were seen in damaged human livers. The increase in collagen content and decrease in elastic fibers resulted in rearrangement and increased stiffness of damaged liver ECM. Interestingly, the alterations in ECM components were nonhomogenous and differed between periportal and pericentral areas and thus our experiments demonstrated the differential ability of selected ECM components to regulate the proliferation of hepatocytes and biliary cells. We define for the first time the alterations in the ECM composition of livers recovering from damage and present functional evidence for a coordinated ECM remodelling that ensures an efficient restoration of liver tissue. PMID:27264108
Schenke-Layland, Katja; Rofail, Fady; Heydarkhan, Sanaz; Gluck, Jessica M.; Ingle, Nilesh P.; Angelis, Ekaterini; Choi, Chang-Hwan; MacLellan, W Robb; Beygui, Ramin E; Shemin, Richard J; Heydarkhan-Hagvall, Sepideh
2009-01-01
Synthetic polymers or naturally-derived extracellular matrix (ECM) proteins have been used to create tissue engineering scaffolds; however, the need for surface modification in order to achieve polymer biocompatibility and the lack of biomechanical strength of constructs built using proteins alone remain major limitations. To overcome these obstacles, we developed novel hybrid constructs composed of both strong biosynthetic materials and natural human ECM proteins. Taking advantage of the ability of cells to produce their own ECM, human foreskin fibroblasts were grown on silicon-based nanostructures exhibiting various surface topographies that significantly enhanced ECM protein production. After 4 weeks, cell-derived sheets were harvested and histology, immunochemistry, biochemistry and multiphoton imaging revealed the presence of collagens, tropoelastin, fibronectin and glycosaminoglycans. Following decellularization, purified sheet-derived ECM proteins were mixed with poly(ε-caprolactone) to create fibrous scaffolds using electrospinning. These hybrid scaffolds exhibited excellent biomechanical properties with fiber and pore sizes that allowed attachment and migration of adipose tissue-derived stem cells. Our study represents an innovative approach to generate strong, non-cytotoxic scaffolds that could have broad applications in tissue regeneration strategies. PMID:19524289
Fernández, Ignacio; Darias, Maria; Andree, Karl B; Mazurais, David; Zambonino-Infante, Jose Luís; Gisbert, Enric
2011-02-09
Vitamin A (VA) has a key role in vertebrate morphogenesis, determining body patterning and growth through the control of cell proliferation and differentiation processes. VA regulates primary molecular pathways of those processes by the binding of its active metabolite (retinoic acid) to two types of specific nuclear receptors: retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which promote transcription of downstream target genes. This process is well known in most of higher vertebrates; however, scarce information is available regarding fishes. Therefore, in order to gain further knowledge of fish larval development and its disruption by nutritional VA imbalance, the relative expression of some RARs and RXRs, as well as several genes involved in morpho- and skeletogenesis such as peroxisome proliferator-activated receptors (PPARA, PPARB and PPARG); retinol-binding protein (RBP); insulin-like growth factors I and II (IGF1 and IGF2, respectively); bone morphogenetic protein 2 (Bmp2); transforming growth factor β-1 (TGFB1); and genes encoding different extracellular matrix (ECM) proteins such as matrix Gla protein (mgp), osteocalcin (bglap), osteopontin (SPP1), secreted protein acidic and rich in cysteine (SPARC) and type I collagen α1 chain (COL1A1) have been studied in gilthead sea bream. During gilthead sea bream larval development, specific expression profiles for each gene were tightly regulated during fish morphogenesis and correlated with specific morphogenetic events and tissue development. Dietary hypervitaminosis A during early larval development disrupted the normal gene expression profile for genes involved in RA signalling (RARA), VA homeostasis (RBP) and several genes encoding ECM proteins that are linked to skeletogenesis, such as bglap and mgp. Present data reflects the specific gene expression patterns of several genes involved in larval fish RA signalling and skeletogenesis; and how specific gene disruption induced by a nutritional VA imbalance underlie the skeletal deformities. Our results are of basic interest for fish VA signalling and point out some of the potential molecular players involved in fish skeletogenesis. Increased incidences of skeletal deformities in gilthead sea bream fed with hypervitaminosis A were the likely ultimate consequence of specific gene expression disruption at critical development stages.
2011-01-01
Background Vitamin A (VA) has a key role in vertebrate morphogenesis, determining body patterning and growth through the control of cell proliferation and differentiation processes. VA regulates primary molecular pathways of those processes by the binding of its active metabolite (retinoic acid) to two types of specific nuclear receptors: retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which promote transcription of downstream target genes. This process is well known in most of higher vertebrates; however, scarce information is available regarding fishes. Therefore, in order to gain further knowledge of fish larval development and its disruption by nutritional VA imbalance, the relative expression of some RARs and RXRs, as well as several genes involved in morpho- and skeletogenesis such as peroxisome proliferator-activated receptors (PPARA, PPARB and PPARG); retinol-binding protein (RBP); insulin-like growth factors I and II (IGF1 and IGF2, respectively); bone morphogenetic protein 2 (Bmp2); transforming growth factor β-1 (TGFB1); and genes encoding different extracellular matrix (ECM) proteins such as matrix Gla protein (mgp), osteocalcin (bglap), osteopontin (SPP1), secreted protein acidic and rich in cysteine (SPARC) and type I collagen α1 chain (COL1A1) have been studied in gilthead sea bream. Results During gilthead sea bream larval development, specific expression profiles for each gene were tightly regulated during fish morphogenesis and correlated with specific morphogenetic events and tissue development. Dietary hypervitaminosis A during early larval development disrupted the normal gene expression profile for genes involved in RA signalling (RARA), VA homeostasis (RBP) and several genes encoding ECM proteins that are linked to skeletogenesis, such as bglap and mgp. Conclusions Present data reflects the specific gene expression patterns of several genes involved in larval fish RA signalling and skeletogenesis; and how specific gene disruption induced by a nutritional VA imbalance underlie the skeletal deformities. Our results are of basic interest for fish VA signalling and point out some of the potential molecular players involved in fish skeletogenesis. Increased incidences of skeletal deformities in gilthead sea bream fed with hypervitaminosis A were the likely ultimate consequence of specific gene expression disruption at critical development stages. PMID:21306609
Zhang, Chengliang; Zhang, Yanfeng; Zhu, Hong; Hu, Jiajia; Xie, Zhongshang
2018-06-01
Cardiac fibrosis is associated with diverse heart diseases. In response to different pathological irritants, cardiac fibroblasts may be induced to proliferate and differentiate into cardiac myofibroblasts, thus contributing to cardiac fibrosis. TGF-β signaling is implicated in the development of heart failure through the induction of cardiac fibrosis. C-Ski, an inhibitory regulator of TGF-β signaling, has been reported to suppress TGF-β1-induced human cardiac fibroblasts' proliferation and ECM protein increase; however, the underlying molecular mechanism needs further investigation. In the present study, we demonstrated that c-Ski could ameliorate isoproterenol (ISO)-induced rat myocardial fibrosis model and TGF-β1-induced primary rat cardiac fibroblasts' proliferation, as well as extracellular matrix (ECM) deposition. The protein level of c-Ski was dramatically decreased in cardiac fibrosis and TGF-β1-stimulated primary rat cardiac fibroblasts. In recent decades, a family of small non-coding RNA, namely miRNAs, has been reported to regulate gene expression by interacting with diverse mRNAs and inducing either translational suppression or mRNA degradation. Herein, we selected miR-34a and miR-93 as candidate miRNAs that might target to regulate c-Ski expression. After confirming that miR-34a/miR-93 targeted c-Ski to inhibit its expression, we also revealed that miR-34a/miR-93 affected TGF-β1-induced fibroblasts' proliferation and ECM deposition through c-Ski. Taken together, we demonstrated a miR-34a/miR-93-c-Ski axis which modulates TGF-β1- and ISO-induced cardiac fibrosis in vitro and in vivo; targeting the inhibitory factors of c-Ski to rescue its expression may be a promising strategy for the treatment of cardiac fibrosis. Copyright © 2018 Elsevier Inc. All rights reserved.
Mu, Shengzhi; Kang, Bei; Zeng, Weihui; Sun, Yaowen; Yang, Fan
2016-05-01
Post-traumatic hypertrophic scar (HS) is a fibrotic disease with excessive extracellular matrix (ECM) production, which is a response to tissue injury by fibroblasts. Although emerging evidence has indicated that miRNA contributes to hypertrophic scarring, the role of miRNA in HS formation remains unclear. In this study, we found that miR-143-3p was markedly downregulated in HS tissues and fibroblasts (HSFs) using qRT-PCR. The expression of connective tissue growth factor (CTGF/CCN2) was upregulated both in HS tissues and HSFs, which is proposed to play a key role in ECM deposition in HS. The protein expression of collagen I (Col I), collagen III (Col III), and α-smooth muscle actin (α-SMA) was obviously inhibited after treatment with miR-143-3p in HSFs. The CCK-8 assay showed that miR-143-3p transfection reduced the proliferation ability of HSFs, and flow cytometry showed that either early or late apoptosis of HSFs was upregulated by miR-143-3p. In addition, the activity of caspase 3 and caspase 9 was increased after miR-143-3p transfection. On the contrary, the miR-143-3p inhibitor was demonstrated to increase cell proliferation and inhibit apoptosis of HSFs. Moreover, miR-143-3p targeted the 3'-UTR of CTGF and caused a significant decrease of CTGF. Western blot demonstrated that Akt/mTOR phosphorylation and the expression of CTGF, Col I, Col III, and α-SMA were inhibited by miR-143-3p, but increased by CTGF overexpression. In conclusion, we found that miR-143-3p inhibits hypertrophic scarring by regulating the proliferation and apoptosis of human HSFs, inhibiting ECM production-associated protein expression by targeting CTGF, and restraining the Akt/mTOR pathway.
Krawczak, David A; Westendorf, Jennifer J; Carlson, Cathy S; Lewis, Jack L
2009-06-01
The aim of this study was to determine the effects of bone morphogenetic protein-2 (BMP-2) on articular chondrocyte tissues grown as monolayers in vitro for up to 8 weeks. Articular chondrocytes were isolated from New Zealand White rabbits and plated in monolayer cultures. The cultures were supplemented with 100 ng/mL of BMP-2 for up to 8 weeks and the extracellular matrix (ECM) composition, material properties, and messenger RNA (mRNA) expression were analyzed. mRNA expression of cartilage-specific genes, type II collagen, and aggrecan showed that BMP-2 enhanced chondrocyte stability for up to 3 weeks. After 3 weeks in culture, there was substantially more type I collagen expression and more osteopontin and runt-related transcription factor 2 expression in 5- and 8-week cultures treated with BMP-2 than in controls. Additionally, matrix metalloproteinase-13 and ADAMTS-5 (A disintegrin-like and metalloproteinase with thrombospondin 5) were upregulated in 5- and 8-week cultures treated with BMP-2, coinciding with a loss of ECM density, collagen, and proteoglycan. Eight-week tissue stimulated with BMP-2 was more fragile and tore more easily when removed from the culture dish as compared to controls, suggesting temporal limitations to the effectiveness of BMP-2 in monolayer systems and perhaps other models to enhance the generation of a cartilage-like tissue for tissue engineering purposes.
Biological Regulation of Bone Quality
Alliston, Tamara
2014-01-01
The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149
Yan, C; Han, R
1998-07-03
Protein tyrosine phosphorylation occurs as one of the earlier events in cancer cell-extracellular matrix (ECM) interaction. With immunoblot analysis and immunofluorescence microscopy, genistein was found to suppress the tyrosine phosphorylation of proteins located at the cell periphery, including a 125 kDa protein, when B16-BL6 melanoma cells attached to and interacted with ECM. When accompanied by the suppression of adhesion-induced protein tyrosine phosphorylation, the invasive potential of B16-BL6 cells through reconstituted basement membrane was decreased significantly. However, neither adhesive capability nor cell growth was significantly affected by genistein. Therefore, the interruption of cancer cell-ECM interaction by suppression of protein tyrosine phosphorylation may contribute to invasion prevention of genistein.
Tumbarello, David A; Temple, Jillian; Brenton, James D
2012-05-28
The extracellular matrix (ECM) has a key role in facilitating the progression of ovarian cancer and we have shown recently that the secreted ECM protein TGFBI modulates the response of ovarian cancer to paclitaxel-induced cell death. We have determined TGFBI signaling from the extracellular environment is preferential for the cell surface αvß3 integrin heterodimer, in contrast to periostin, a TGFBI paralogue, which signals primarily via a ß1 integrin-mediated pathway. We demonstrate that suppression of ß1 integrin expression, in ß3 integrin-expressing ovarian cancer cells, increases adhesion to rTGFBI. In addition, Syndecan-1 and -4 expression is dispensable for adhesion to rTGFBI and loss of Syndecan-1 cooperates with the loss of ß1 integrin to further enhance adhesion to rTGFBI. The RGD motif present in the carboxy-terminus of TGFBI is necessary, but not sufficient, for SKOV3 cell adhesion and is dispensable for adhesion of ovarian cancer cells lacking ß3 integrin expression. In contrast to TGFBI, the carboxy-terminus of periostin, lacking a RGD motif, is unable to support adhesion of ovarian cancer cells. Suppression of ß3 integrin in SKOV3 cells increases resistance to paclitaxel-induced cell death while suppression of ß1 integrin has no effect. Furthermore, suppression of TGFBI expression stimulates a paclitaxel resistant phenotype while suppression of fibronectin expression, which primarily signals through a ß1 integrin-mediated pathway, increases paclitaxel sensitivity. Therefore, different ECM components use distinct signaling mechanisms in ovarian cancer cells and in particular, TGFBI preferentially interacts through a ß3 integrin receptor mediated mechanism to regulate the response of cells to paclitaxel-induced cell death.
Azuma, Morio; Tofrizal, Alimuddin; Maliza, Rita; Batchuluun, Khongorzul; Ramadhani, Dini; Syaidah, Rahimi; Tsukada, Takehiro; Fujiwara, Ken; Kikuchi, Motoshi; Horiguchi, Kotaro; Yashiro, Takashi
2015-12-25
The extracellular matrix (ECM) is important in creating cellular environments in tissues. Recent studies have demonstrated that ECM components are localized in anterior pituitary cells and affect cell activity. Thus, clarifying the mechanism responsible for ECM maintenance would improve understanding of gland function. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases and participate in ECM degradation. In this study, we investigated whether cells expressing TIMPs are present in rat anterior pituitary gland. Reverse transcription polymerase chain reaction was used to analyze expression of the TIMP family (TIMP1-4), and cells producing TIMPs in the gland were identified by using in situ hybridization. Expression of TIMP1, TIMP2, and TIMP3 mRNAs was detected, and the TIMP-expressing cells were located in the gland. The TIMP-expressing cells were also investigated by means of double-staining with in situ hybridization and immunohistochemical techniques. Double-staining revealed that TIMP1 mRNA was expressed in folliculostellate cells. TIMP2 mRNA was detected in folliculostellate cells, prolactin cells, and thyroid-stimulating hormone cells. TIMP3 mRNA was identified in endothelial cells, pericytes, novel desmin-immunopositive perivascular cells, and folliculostellate cells. These findings indicate that TIMP1-, TIMP2-, and TIMP3-expressing cells are present in rat anterior pituitary gland and that they are involved in maintaining ECM components.
Azuma, Morio; Tofrizal, Alimuddin; Maliza, Rita; Batchuluun, Khongorzul; Ramadhani, Dini; Syaidah, Rahimi; Tsukada, Takehiro; Fujiwara, Ken; Kikuchi, Motoshi; Horiguchi, Kotaro; Yashiro, Takashi
2015-01-01
The extracellular matrix (ECM) is important in creating cellular environments in tissues. Recent studies have demonstrated that ECM components are localized in anterior pituitary cells and affect cell activity. Thus, clarifying the mechanism responsible for ECM maintenance would improve understanding of gland function. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases and participate in ECM degradation. In this study, we investigated whether cells expressing TIMPs are present in rat anterior pituitary gland. Reverse transcription polymerase chain reaction was used to analyze expression of the TIMP family (TIMP1-4), and cells producing TIMPs in the gland were identified by using in situ hybridization. Expression of TIMP1, TIMP2, and TIMP3 mRNAs was detected, and the TIMP-expressing cells were located in the gland. The TIMP-expressing cells were also investigated by means of double-staining with in situ hybridization and immunohistochemical techniques. Double-staining revealed that TIMP1 mRNA was expressed in folliculostellate cells. TIMP2 mRNA was detected in folliculostellate cells, prolactin cells, and thyroid-stimulating hormone cells. TIMP3 mRNA was identified in endothelial cells, pericytes, novel desmin-immunopositive perivascular cells, and folliculostellate cells. These findings indicate that TIMP1-, TIMP2-, and TIMP3-expressing cells are present in rat anterior pituitary gland and that they are involved in maintaining ECM components. PMID:26855451
Nanoscale protein architecture of the kidney glomerular basement membrane
Suleiman, Hani; Zhang, Lei; Roth, Robyn; Heuser, John E; Miner, Jeffrey H; Shaw, Andrey S; Dani, Adish
2013-01-01
In multicellular organisms, proteins of the extracellular matrix (ECM) play structural and functional roles in essentially all organs, so understanding ECM protein organization in health and disease remains an important goal. Here, we used sub-diffraction resolution stochastic optical reconstruction microscopy (STORM) to resolve the in situ molecular organization of proteins within the kidney glomerular basement membrane (GBM), an essential mediator of glomerular ultrafiltration. Using multichannel STORM and STORM-electron microscopy correlation, we constructed a molecular reference frame that revealed a laminar organization of ECM proteins within the GBM. Separate analyses of domains near the N- and C-termini of agrin, laminin, and collagen IV in mouse and human GBM revealed a highly oriented macromolecular organization. Our analysis also revealed disruptions in this GBM architecture in a mouse model of Alport syndrome. These results provide the first nanoscopic glimpse into the organization of a complex ECM. DOI: http://dx.doi.org/10.7554/eLife.01149.001 PMID:24137544
An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity
Rosa, Jeffrey B.; Metzstein, Mark M.
2018-01-01
During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens. PMID:29309404
Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network
Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan
2015-01-01
Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088
Soteriou, Despina; Iskender, Banu; Byron, Adam; Humphries, Jonathan D.; Borg-Bartolo, Simon; Haddock, Marie-Claire; Baxter, Melissa A.; Knight, David; Humphries, Martin J.; Kimber, Susan J.
2013-01-01
Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal. PMID:23658023
Colorectal Cancer Metastases Settle in the Hepatic Microenvironment Through α5β1 Integrin.
Pelillo, Chiara; Bergamo, Alberta; Mollica, Hilaria; Bestagno, Marco; Sava, Gianni
2015-10-01
Colorectal cancer (CRC) metastasis dissemination to secondary sites represents the critical point for the patient's survival. The microenvironment is crucial to cancer progression, influencing tumour cell behaviour by modulating the expression and activation of molecules such as integrins, the cell-extracellular matrix interacting proteins participating in different steps of the tumour metastatic process. In this work, we investigated the role of α5β1 integrin and how the microenvironment influences this adhesion molecule, in a model of colon cancer progression to the liver. The culture medium conditioned by the IHH hepatic cell line, and the extracellular matrix (ECM) proteins, modulate the activation of α5β1 integrin in the colon cancer cell line HCT-116, and drives FAK phosphorylation during the process of cell adhesion to fibronectin, one of the main components of liver ECM. In these conditions, α5β1 modulates the expression/activity of another integrin, α2β1, involved in the cell adhesion to collagen I. These results suggest that α5β1 integrin holds a leading role in HCT-116 colorectal cancer cells adhesion to the ECM through the modulation of the intracellular focal adhesion kinase FAK and the α2β1 integrin activity. The driving role of the tumour microenvironment on CRC dissemination, here detected, and described, strengthens and adds new value to the concept that α5β1 integrin can be an appropriate and relevant therapeutic target for the control of CRC metastases. © 2015 Wiley Periodicals, Inc.
Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.; ...
2015-11-18
Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict andmore » analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. As a result, ECM fungi shared lifestyle-specific SSPs likely involved in symbiosis that are good candidates for further functional analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.
Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict andmore » analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. As a result, ECM fungi shared lifestyle-specific SSPs likely involved in symbiosis that are good candidates for further functional analyses.« less
Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.; Veneault-Fourrey, Claire
2015-01-01
Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict and analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. ECM fungi shared lifestyle-specific SSPs likely involved in symbiosis that are good candidates for further functional analyses. PMID:26635749
Sood, Disha; Chwalek, Karolina; Stuntz, Emily; Pouli, Dimitra; Du, Chuang; Tang-Schomer, Min; Georgakoudi, Irene; Black, Lauren D; Kaplan, David L
2016-01-01
The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using in vitro 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.
Essential roles of fibronectin in the development of the left-right embryonic body plan.
Pulina, Maria V; Hou, Shuan-Yu; Mittal, Ashok; Julich, Dorthe; Whittaker, Charlie A; Holley, Scott A; Hynes, Richard O; Astrof, Sophie
2011-06-15
Studies in Xenopus laevis suggested that cell-extracellular matrix (ECM) interactions regulate the development of the left-right axis of asymmetry; however, the identities of ECM components and their receptors important for this process have remained unknown. We discovered that FN is required for the establishment of the asymmetric gene expression pattern in early mouse embryos by regulating morphogenesis of the node, while cellular fates of the nodal cells, canonical Wnt and Shh signaling within the node were not perturbed by the absence of FN. FN is also required for the expression of Lefty 1/2 and activation of SMADs 2 and 3 at the floor plate, while cell fate specification of the notochord and the floor plate, as well as signaling within and between these two embryonic organizing centers remained intact in FN-null mutants. Furthermore, our experiments indicate that a major cell surface receptor for FN, integrin α5β1, is also required for the development of the left-right asymmetry, and that this requirement is evolutionarily conserved in fish and mice. Taken together, our studies demonstrate the requisite role for a structural ECM protein and its integrin receptor in the development of the left-right axis of asymmetry in vertebrates. Copyright © 2011 Elsevier Inc. All rights reserved.
Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A.
2012-01-01
Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis. PMID:22222499
Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A; Marciano-Cabral, Francine
2012-03-01
Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis.
Dellett, Margaret; Hu, Wanzhou; Papadaki, Vasiliki; Ohnuma, Shin-ichi
2012-04-01
The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.
Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells.
Di Felice, Valentina; Serradifalco, Claudia; Rizzuto, Luigi; De Luca, Angela; Rappa, Francesca; Barone, Rosario; Di Marco, Patrizia; Cassata, Giovanni; Puleio, Roberto; Verin, Lucia; Motta, Antonella; Migliaresi, Claudio; Guercio, Annalisa; Zummo, Giovanni
2015-11-01
The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when organ transplantation remains the only treatment able to rescue the patient's life. Silk fibroin-based scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric nets were used. Cardiac progenitor cells isolated from adult rats were seeded by capillarity in the 3D structures and cultured inside inserts for 21 days. Under this condition, the cells expressed a high level of sarcomeric and cardiac proteins and synthesized a great quantity of ECM. In particular, partially orientated scaffolds induced the synthesis of titin, which is a fundamental protein in sarcomere assembly. Copyright © 2013 John Wiley & Sons, Ltd.
Gonadal steroids regulate the expression of aggrecanases in human endometrial stromal cells in vitro
Wen, Jiadi; Zhu, Hua; Leung, Peter CK
2013-01-01
The human endometrium undergoes cyclic change during each menstrual cycle in response to gonadal steroids. Proteolysis of endometrial extracellular matrix (ECM) is necessary to prepare this dynamic tissue for pregnancy. Proteolytic enzymes such as matrix metalloproteinase (MMP) and closely related a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) have been assigned key roles in the highly regulated cyclic remodelling of the endometrial ECM. We have previously shown that ADAMTS-1 undergoes spatiotemporal changes in human endometrial stromal cells under the regulation of gonadal steroids. This suggests that other ADAMTS subtypes, known as aggrecanases, may contribute to the ECM remodelling events that occur in female physiological cycles and in preparation for pregnancy. To determine whether progesterone (P4), 17β-estradiol (E2), or dihydrotestosterone (DHT), alone or in combination, are capable of regulating ADAMTS-4, -5, -8 or -9 expression in human endometrial stromal cells in vitro. Real-time quantitative PCR and Western blot analysis were used to measure ADAMTSs mRNA and protein levels in primary cultures of human endometrial stromal cells (n = 12). P4, DHT but not E2 have regulatory effects on ADAMTS-8, -9 and -5 expression. Combined treatment with gonadal steroids did not show any synergistic or antagonistic effects. However, the synthetic steroid antagonists RU486 and hydroxyflutamide specifically inhibited the P4- or DHT-mediated regulatory effects on ADAMTS expression. These studies provide evidence that the regulation of aggrecanases by gonadal steroids in human endometrial stromal cells may play an important role during decidualization. PMID:23947778
Chang, Perng-Kuang; Zhang, Qi; Scharfenstein, Leslie; Mack, Brian; Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu
2018-06-01
Many glycosylphosphatidylinositol-anchored proteins (GPI-APs) of fungi are membrane enzymes, organization components, and extracellular matrix adhesins. We analyzed eight Aspergillus flavus transcriptome sets for the GPI-AP gene family and identified AFLA_040110, AFLA_063860, and AFLA_113120 to be among the top 5 highly expressed genes of the 36 family genes analyzed. Disruption of the former two genes did not drastically affect A. flavus growth and development. In contrast, disruption of AFLA_113120, an orthologue of Saccharomyces cerevisiae ECM33, caused a significant decrease in vegetative growth and conidiation, promoted sclerotial production, and altered conidial pigmentation. The A. flavus ecm33 null mutant, compared with the wild type and the complemented strain, produced predominantly aflatoxin B 2 but accumulated comparable amounts of cyclopiazonic acid. It showed decreased sensitivity to Congo red at low concentrations (25-50 μg/mL) but had increased sensitivity to calcofluor white at high concentrations (250-500 μg/mL). Analyses of cell wall carbohydrates indicated that the α-glucan content was decreased significantly (p < 0.05), but the contents of chitin and ß-glucan were increased in the mutant strain. In a maize colonization study, the mutant was shown to be impaired in its infectivity and produced 3- to 4-fold lower amounts of conidia than the wild type and the complemented strain. A. flavus Ecm33 is required for proper cell wall composition and plays an important role in normal fungal growth and development, aflatoxin biosynthesis, and seed colonization.
Kuwahara, Go; Hashimoto, Takuya; Tsuneki, Masayuki; Yamamoto, Kota; Assi, Roland; Foster, Trenton R; Hanisch, Jesse J; Bai, Hualong; Hu, Haidi; Protack, Clinton D; Hall, Michael R; Schardt, John S; Jay, Steven M; Madri, Joseph A; Kodama, Shohta; Dardik, Alan
2017-01-01
Objective Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix (ECM) components, promotes wall thickening and ECM deposition during AVF maturation. Approach and Results AVF were created via needle puncture in wild-type (WT) C57BL/6J and CD44 knockout (KO) mice. CD44 mRNA and protein expression was increased in WT AVF. CD44 KO mice showed no increase in AVF wall thickness (8.9 μm vs. 26.8 μm; P = 0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared to control AVF. CD44 KO mice also showed no increase in VCAM-1 expression, ICAM-1 expression and MCP-1 expression in the AVF compared to controls; there were also no increased M2 macrophage markers (TGM2: 81.5 fold, P = 0.0015; IL-10: 7.6 fold, P = 0.0450) in CD44 KO mice. Delivery of MCP-1 to CD44 KO mice rescued the phenotype with thicker AVF walls (27.2 μm vs. 14.7 μm; P = 0.0306), increased collagen density (2.4 fold; P = 0.0432), and increased number of M2 macrophages (2.1 fold; P = 0.0335). Conclusions CD44 promotes accumulation of M2 macrophages, ECM deposition and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation. PMID:28450292
Jessen, Tammy N; Jessen, Jason R
2017-12-15
Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The Research of Acellular pancreatic bioscaffoldas a natural 3D platform In Vitro
NASA Astrophysics Data System (ADS)
Wang, Xin; Li, Zhao
2018-03-01
AIM: To investigate the biochemical and functional properties of a rat acellular pancreatic bioscaffold (APB). METHODS: Fresh pancreata were soaked and perfused. The histological structure, the extracellular matrix (ECM) composition, and the DNA content of the APBs were evaluated. After biocompatibility studies, the proliferation, apoptosis and differentiation of AR42J pancreatic acinar cells cultured on APBs were assessed. RESULTS: The pancreatic tissues became translucent after decellularization. The native macroscopic 3D architecture and the ECM ultrastructure were preserved, with large ductal structures and vascular tissue branching from the greater pancreatic artery, but there were no visible vascular endothelial cells, cellular components or cracked cellular debris. The ECM components, including collagen I, collagen IV, fibronectin, laminin and sGAG, were not decreased after decellularization of the APB (P>0.05) however, the DNA content was decreased significantly (P<0.05). The subcutaneous implantation sites showed low immunological response and low cytotoxicity around the APB. The proliferation rate was higher and the apoptosis rate was lower when AR42J cells were cultured on APB than when they were cultured in media alone, on artificial scaffold or ECM (P<0.05). The gene expression of pancreatic duodenal homeodomain containing transcription factor (PDX-1) and pancreatic exocrine transcription factor (PTF-1) and the protein expression of α-Amy, cytokeratin 7 (CK7) and fetal liver kinase-1 (Flk-1) were higher for the APB group than for the other groups (P<0.001). CONCLUSION: Our findings support the biological utility of whole pancreas APBs as biomaterial scaffolds, which provides an improved approach for regenerative medicine.
15-LO/15-HETE mediated vascular adventitia fibrosis via p38 MAPK-dependent TGF-β.
Zhang, Li; Li, Yumei; Chen, Minggang; Su, Xiaojie; Yi, Dan; Lu, Ping; Zhu, Daling
2014-02-01
15-Lipoxygenase/15-hydroxyeicosatetraenoic acid (15-LO/15-HETE) is known to modulate pulmonary vascular medial hypertrophy and intimal endothelial cells migration and angiogenesis after hypoxia. However, it is unclear whether 15-HETE affects the adventitia of the pulmonary arterial wall. We performed immunohistochemistry, adventitia fibrosis, pulmonary artery fibroblasts phenotype and extracellular matrix (ECM) deposition to determine the role of 15-HETE in hypoxia-induced pulmonary vascular adventitia remodeling. Our studies showed that O2 deprivation induced adventitia hypertrophy of pulmonary arteries with ECM accumulation in both humans with pulmonary arterial hypertension and hypoxic rats. Hypoxia induced 15-LO expression in adventitia. With the inhibitor, NDGA depressed the hypoxia induced ECM deposition and 15-LO production in hypoxic rats. Hypoxia up-regulated the expression of α-SMA, type-Ia collagen and fibronectin in cultured fibroblasts, which seemed to be due to the increased 15-LO/15-HETE. Exogenous 15-HETE mediated the ECM and phenotypic alterations of the fibroblasts as well. The 15-LO/15-HETE induced adventitia fibrosis and fibroblasts phenotypic alterations depended on signaling of the transforming growth factor-β1 (TGF-β1)/Smad2/3 pathway. P38 mitogen-activated protein kinase (p38 MAPKs) was likely to mediate 15-LO induced TGF-β1 and Smad2/3 activation after hypoxia. The results suggest that adventitia fibrosis is an important event in the hypoxia induced pulmonary arterial remodeling, which relies on 15-LO/15-HETE induced p38 MAPK-dependent TGF-β1/Smad2/3 intracellular signaling systems. © 2013 Wiley Periodicals, Inc.
Feng, Pengfei; Li, Xiaona; Chen, Weiyi; Liu, Chengxing; Rong, Shuo; Wang, Xiaojun; Du, Genlai
2016-06-10
Corneal tensile strain increases if the cornea becomes thin or if intraocular pressure increases. However, the effects of mechanical stress on extracellular matrix (ECM) remodelling in the corneal repair process and the corneal anomalies are unknown. In this study, the combined effects of interleukin-1β (IL-1β) on matrix metalloproteinases (MMPs) in corneal fibroblasts under cyclic stretching were investigated in vitro. Cultured rabbit corneal fibroblasts were subjected to 5, 10 or 15 % cyclic equibiaxial stretching at 0.1 Hz for 36 h in the presence of IL-1β. Conditioned medium was harvested for the analysis of MMP2 and MMP9 protein production using the gelatin zymography and western blot techniques. Cyclic equibiaxial stretching changed the cell morphology by increasing the contractility of F-actin fibres. IL-1β alone induced the expression of MMP9 and increased the production of MMP2, and 5 % stretching alone decreased the production of MMP2, which indicates that a low stretching magnitude can reduce ECM degradation. In the presence of IL-1β, 5 and 10 % stretching increased the production of MMP2, whereas 15 % stretching increased the production of MMP9. These results indicate that MMP expression is enhanced by cyclic mechanical stimulation in the presence of IL-1β, which is expected to contribute to corneal ECM degradation, leading to the development of post-refractive surgery keratectasia.
Puttabyatappa, Muraly; Al-Alem, Linah F; Zakerkish, Farnosh; Rosewell, Katherine L; Brännström, Mats; Curry, Thomas E
2017-01-01
Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. Copyright © 2017 by the Endocrine Society.
Puttabyatappa, Muraly; Al-Alem, Linah F.; Zakerkish, Farnosh; Rosewell, Katherine L.; Brännström, Mats
2017-01-01
Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. PMID:27813674
Fibromodulin modulates myoblast differentiation by controlling calcium channel.
Lee, Eun Ju; Nam, Joo Hyun; Choi, Inho
2018-06-16
Fibromodulin (FMOD) is a proteoglycan present in extracellular matrix (ECM). Based on our previous findings that FMOD controls myoblast differentiation by regulating the gene expressions of collagen type I alpha 1 (COL1α1) and integral membrane protein 2 A (Itm2a), we undertook this study to investigate relationships between FMOD and calcium channels and to understand further the mechanism by which they control myoblast differentiation. Gene expression studies and luciferase reporter assays showed FMOD affected calcium channel gene expressions by regulating calcium channel gene promoter, and patch-clamp experiments showed both L- and T-type calcium channel currents were almost undetectable in FMOD knocked down cells. In addition, gene knock-down studies demonstrated the COL1α1 and Itm2a genes both regulate the expressions of calcium channel genes. Studies using a cardiotoxin-induced mouse muscle injury model demonstrated calcium channels play important roles in the regeneration of muscle tissue, possibly by promoting the differentiation of muscle stem cells (MSCs). Summarizing, the study demonstrates ECM components secreted by myoblasts during differentiation provide an essential environment for muscle differentiation and regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.
Seehusen, Frauke; Al-Azreg, Seham A.; Raddatz, Barbara B.; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang
2016-01-01
In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease. PMID:27441688
Seehusen, Frauke; Al-Azreg, Seham A; Raddatz, Barbara B; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang
2016-01-01
In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Nazarul; Hu, Chuan, E-mail: chuan.hu@louisville.edu
2010-01-01
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cellmore » surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.« less
A molecular ensemble in the rER for procollagen maturation.
Ishikawa, Yoshihiro; Bächinger, Hans Peter
2013-11-01
Extracellular matrix (ECM) proteins create structural frameworks in tissues such as bone, skin, tendon and cartilage etc. These connective tissues play important roles in the development and homeostasis of organs. Collagen is the most abundant ECM protein and represents one third of all proteins in humans. The biosynthesis of ECM proteins occurs in the rough endoplasmic reticulum (rER). This review describes the current understanding of the biosynthesis and folding of procollagens, which are the precursor molecules of collagens, in the rER. Multiple folding enzymes and molecular chaperones are required for procollagen to establish specific posttranslational modifications, and facilitate folding and transport to the cell surface. Thus, this molecular ensemble in the rER contributes to ECM maturation and to the development and homeostasis of tissues. Mutations in this ensemble are likely candidates for connective tissue disorders. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. Copyright © 2013 Elsevier B.V. All rights reserved.
Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration.
Kim, Min-Cheol; Silberberg, Yaron R; Abeyaratne, Rohan; Kamm, Roger D; Asada, H Harry
2018-01-16
Filopodia have a key role in sensing both chemical and mechanical cues in surrounding extracellular matrix (ECM). However, quantitative understanding is still missing in the filopodial mechanosensing of local ECM stiffness, resulting from dynamic interactions between filopodia and the surrounding 3D ECM fibers. Here we present a method for characterizing the stiffness of ECM that is sensed by filopodia based on the theory of elasticity and discrete ECM fiber. We have applied this method to a filopodial mechanosensing model for predicting directed cell migration toward stiffer ECM. This model provides us with a distribution of force and displacement as well as their time rate of changes near the tip of a filopodium when it is bound to the surrounding ECM fibers. Aggregating these effects in each local region of 3D ECM, we express the local ECM stiffness sensed by the cell and explain polarity in the cellular durotaxis mechanism.
Van den Oever, Michel C; Lubbers, Bart R; Goriounova, Natalia A; Li, Ka W; Van der Schors, Roel C; Loos, Maarten; Riga, Danai; Wiskerke, Joost; Binnekade, Rob; Stegeman, M; Schoffelmeer, Anton N M; Mansvelder, Huibert D; Smit, August B; De Vries, Taco J; Spijker, Sabine
2010-01-01
Successful treatment of drug addiction is hampered by high relapse rates during periods of abstinence. Neuroadaptation in the medial prefrontal cortex (mPFC) is thought to have a crucial role in vulnerability to relapse to drug seeking, but the molecular and cellular mechanisms remain largely unknown. To identify protein changes that contribute to relapse susceptibility, we investigated synaptic membrane fractions from the mPFC of rats that underwent 21 days of forced abstinence following heroin self-administration. Quantitative proteomics revealed that long-term abstinence from heroin self-administration was associated with reduced levels of extracellular matrix (ECM) proteins. After extinction of heroin self-administration, downregulation of ECM proteins was also present in the mPFC, as well as nucleus accumbens (NAc), and these adaptations were partially restored following cue-induced reinstatement of heroin seeking. In the mPFC, these ECM proteins are condensed in the perineuronal nets that exclusively surround GABAergic interneurons, indicating that ECM adaptation might alter the activity of GABAergic interneurons. In support of this, we observed an increase in the inhibitory GABAergic synaptic inputs received by the mPFC pyramidal cells after the re-exposure to heroin-conditioned cues. Recovering levels of ECM constituents by metalloproteinase inhibitor treatment (FN-439; i.c.v.) prior to a reinstatement test attenuated subsequent heroin seeking, suggesting that the reduced synaptic ECM levels during heroin abstinence enhanced sensitivity to respond to heroin-conditioned cues. We provide evidence for a novel neuroadaptive mechanism, in which heroin self-administration-induced adaptation of the ECM increased relapse vulnerability, potentially by augmenting the responsivity of mPFC GABAergic interneurons to heroin-associated stimuli. PMID:20592718
Avilés-Reyes, A.; Miller, J.H.; Simpson-Haidaris, P.J.; Lemos, J.A.; Abranches, J.
2014-01-01
SUMMARY Cnm, a collagen- and laminin-binding protein present in a subset of Streptococcus mutans strains, mediates binding to extracellular matrices (ECM), intracellular invasion and virulence in the Galleria mellonella model. Antibodies raised against Cnm were used to confirm expression and the cell surface localization of Cnm in the highly invasive OMZ175 strain. Sequence analysis identified two additional genes (cnaB and cbpA) encoding putative surface proteins immediately upstream of cnm. Inactivation of cnaB and cbpA in OMZ175, individually or in combination, did not decrease the ability of this highly invasive and virulent strain to bind to different ECM proteins, invade human coronary artery endothelial cells (HCAEC), or kill G. mellonella. Similarly, expression of cnaB and cbpA in the cnm− strain UA159 revealed that these genes did not enhance Cnmrelated phenotypes. However, integration of cnm in the chromosome of UA159 significantly increased its ability to bind to collagen and laminin, invade HCAEC, and kill G. mellonella. Moreover, the presence of antibodies against Cnm nearly abolished the ability of OMZ175 to bind to collagen and laminin and invade HCAEC, and significantly protected G. mellonella against OMZ175 infection. We concluded that neither CnaB nor CbpA is necessary for the expression of Cnm-related traits. We also provided definitive evidence that Cnm is an important virulence factor and a suitable target for the development of novel preventive and therapeutic strategies to combat invasive S. mutans strains. PMID:24103776
Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad
2015-01-01
Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057
Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad
2015-01-01
Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.
Extracellular Matrix and Redox Signaling in Cellular Responses to Stress.
Roberts, David D
2017-10-20
Cells in multicellular organisms communicate extensively with neighboring cells and distant organs using a variety of secreted proteins and small molecules. Cells also reside in a structural extracellular matrix (ECM), and changes in its composition, mechanical properties, and post-translational modifications provide additional layers of communication. This Forum addresses emerging mechanisms by which redox signaling controls and is controlled by changes in the ECM, focusing on the roles of matricellular proteins. These proteins engage specific cell surface signaling receptors, integrins, and proteoglycans to regulate the biosynthesis and catabolism of redox signaling molecules and the activation of their signal transducers. These signaling pathways, in turn, regulate the composition of ECM and its function. Covalent post-translational modifications of ECM by redox molecules further regulate its structure and function. Recent studies of acute injuries and chronic disease have identified important pathophysiological roles for this cross-talk and new therapeutic opportunities. Antioxid. Redox Signal. 27, 771-773.
Riser, B L; Cortes, P; Zhao, X; Bernstein, J; Dumler, F; Narins, R G
1992-01-01
To define the interplay of glomerular hypertension and hypertrophy with mesangial extracellular matrix (ECM) deposition, we examined the effects of glomerular capillary distention and mesangial cell stretching on ECM synthesis. The volume of microdissected rat glomeruli (Vg), perfused ex vivo at increasing flows, was quantified and related to the proximal intraglomerular pressure (PIP). Glomerular compliance, expressed as the slope of the positive linear relationship between PIP and Vg was 7.68 x 10(3) microns 3/mmHg. Total Vg increment (PIP 0-150 mmHg) was 1.162 x 10(6) microns 3 or 61% (n = 13). A 16% increase in Vg was obtained over the PIP range equivalent to the pathophysiological limits of mean transcapillary pressure difference. A similar effect of renal perfusion on Vg was also noted histologically in tissue from kidneys perfused/fixed in vivo. Cultured mesangial cells undergoing cyclic stretching increased their synthesis of protein, total collagen, and key components of ECM (collagen IV, collagen I, laminin, fibronectin). Synthetic rates were stimulated by cell growth and the degree of stretching. These results suggest that capillary expansion and stretching of mesangial cells by glomerular hypertension provokes increased ECM production which is accentuated by cell growth and glomerular hypertrophy. Mesangial expansion and glomerulosclerosis might result from this interplay of mechanical and metabolic forces. Images PMID:1430216
Butler, William T; Brunn, Jan C; Qin, Chunlin
2003-01-01
Dentinogenesis involves the initial odontoblastic synthesis of a collagen-rich extracellular matrix (ECM) and predentin that is converted to dentin when the collagen fibrils become mineralized. Since the width of predentin is rather uniform, we postulate that extracellular events regulate dentinogenesis. Similarly, osteogenesis involves an initial unmineralized osteoid that is mineralized and converted to bone. To gain insights into these two processes, we compared ECM proteins in bone with those in dentin, focusing upon the sialic acid (SA)-rich proteins. We observed qualitative similarities between the SA-rich proteins, but distinct differences in the amounts of osteopontin (OPN) and dentin sialoprotein (DSP). OPN, a predominant protein in bone, was found in much smaller amounts in dentin. Conversely, DSP was abundant in dentin ECM, but found sparingly in bone. Molecular cloning experiments indicate that coding sequences for DSP and dentin phosphoprotein (DPP) are found on the same mRNA. We believe that the initial form of the precursor protein DSPP is inactive in influencing the mineralization process and that it must be activated by cleavage of peptide bonds in conserved regions. Thus, unknown proteinases would act on DSPP, possibly at the mineralization front, and liberate active DPP, which plays an initiation and regulatory role in the formation of apatite crystals. This post-translational processing reaction would represent an important control point in dentinogenesis. Recently, we identified uncleaved DSPP in dentin extracts, which should allow us to test portions of our hypothesis.
Aguado, Brian A; Caffe, Jordan R; Nanavati, Dhaval; Rao, Shreyas S; Bushnell, Grace G; Azarin, Samira M; Shea, Lonnie D
2016-03-01
Metastatic tumor cells colonize the pre-metastatic niche, which is a complex microenvironment consisting partially of extracellular matrix (ECM) proteins. We sought to identify and validate novel contributors to tumor cell colonization using ECM-coated poly(ε-caprolactone) (PCL) scaffolds as mimics of the pre-metastatic niche. Utilizing orthotopic breast cancer mouse models, fibronectin and collagen IV-coated scaffolds implanted in the subcutaneous space captured colonizing tumor cells, showing a greater than 2-fold increase in tumor cell accumulation at the implant site compared to uncoated scaffolds. As a strategy to identify additional ECM colonization contributors, decellularized matrix (DCM) from lungs and livers containing metastatic tumors were characterized. In vitro, metastatic cell adhesion was increased on DCM coatings from diseased organs relative to healthy DCM. Furthermore, in vivo implantations of diseased DCM-coated scaffolds had increased tumor cell colonization relative to healthy DCM coatings. Mass-spectrometry proteomics was performed on healthy and diseased DCM to identify candidates associated with colonization. Myeloperoxidase was identified as abundantly present in diseased organs and validated as a contributor to colonization using myeloperoxidase-coated scaffold implants. This work identified novel ECM proteins associated with colonization using decellularization and proteomics techniques and validated candidates using a scaffold to mimic the pre-metastatic niche. The pre-metastatic niche consists partially of ECM proteins that promote metastatic cell colonization to a target organ. We present a biomaterials-based approach to mimic this niche and identify ECM mediators of colonization. Using murine breast cancer models, we implanted microporous PCL scaffolds to recruit colonizing tumor cells in vivo. As a strategy to modulate colonization, we coated scaffolds with various ECM proteins, including decellularized lung and liver matrix from tumor-bearing mice. After characterizing the organ matrices using proteomics, myeloperoxidase was identified as an ECM protein contributing to colonization and validated using our scaffold. Our scaffold provides a platform to identify novel contributors to colonization and allows for the capture of colonizing tumor cells for a variety of downstream clinical applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Li, Wu-Li; Wu, Cheng-Hai; Yang, Jun; Tang, Min; Chen, Long-Jie; Zhao, Shou-Liang
2015-08-01
Nifedipine-induced gingival overgrowth (NIGO) is characterized by cell proliferation and extracellular matrix (ECM) component accumulation in gingival connective tissues, with varying degrees of inflammation and fibrosis. Impaired collagen and ECM homeostasis may be among the underlying molecular mechanisms that lead to the fibrotic changes that occur in drug-induced gingival overgrowth (DIGO). Because matrix metalloproteinases (MMPs) play vital roles in regulating collagen and ECM metabolism, many studies have been performed to reveal the relationship between MMPs and DIGO. It is thought that the gelatinases MMP-2 and MMP-9, both type IV collagenases, are involved in the development of tissue inflammation and organ fibrosis. However, the few studies regarding gelatinase expression in DIGO are controversial. Recent studies have demonstrated the inhibitory effect of cyclosporine A (CsA) on gelatinase expression and/or activity; however, similar changes have yet to be detected in Nif-treated gingival tissues. In this study, we verified that Nif treatment could lead to gingival overgrowth in rats and that gingival inflammation played a pro-proliferative role in NIGO development. Additionally, we examined the temporal expression of gelatinases on days 0, 7, 14, 21, 30, and 40 during NIGO development. The aim was to investigate whether MMP-2 and MMP-9 played significant roles in regulating NIGO development and progression. MMP-2 gene expression was not altered by Nif treatment alone but was significantly inhibited by Nif treatment for 30 days in the presence of local inflammation. However, no significant alterations in MMP-2 protein expression were detected in the Nif-treated gingival tissue, regardless of the presence or absence of local inflammation. Moreover, Nif treatment could lead to transient and significant increases in MMP-9 gene and protein expression levels in the presence of local inflammation. In particular, active MMP-9 expression increased significantly in the gingival tissue that received the combined effect of Nif and ligation treatment; besides, a temporal, but not significant, change was also observed in the gingival tissue that received Nif treatment alone. Taken together, these results provided evidence that temporal changes in MMP-2 and MMP-9 expression occurred during NIGO development. Nif treatment accompanied by local inflammation regulated MMP-2 and MMP-9 expression, primarily MMP-9, which was most likely associated with NIGO severity. Thus, MMP-9 is a potential contributing factor in the process of NIGO development.
El-Amin, S F; Lu, H H; Khan, Y; Burems, J; Mitchell, J; Tuan, R S; Laurencin, C T
2003-03-01
The nature of the extracellular matrix (ECM) is crucial in regulating cell functions via cell-matrix interactions, cytoskeletal organization, and integrin-mediated signaling. In bone, the ECM is composed of proteins such as collagen (CO), fibronectin (FN), laminin (LM), vitronectin (VN), osteopontin (OP) and osteonectin (ON). For bone tissue engineering, the ECM should also be considered in terms of its function in mediating cell adhesion to biomaterials. This study examined ECM production, cytoskeletal organization, and adhesion of primary human osteoblastic cells on biodegradable matrices applicable for tissue engineering, namely polylactic-co-glycolic acid 50:50 (PLAGA) and polylactic acid (PLA). We hypothesized that the osteocompatible, biodegradable polymer surfaces promote the production of bone-specific ECM proteins in a manner dependent on polymer composition. We first examined whether the PLAGA and PLA matrices could support human osteoblastic cell growth by measuring cell adhesion at 3, 6 and 12h post-plating. Adhesion on PLAGA was consistently higher than on PLA throughout the duration of the experiment, and comparable to tissue culture polystyrene (TCPS). ECM components, including CO, FN, LM, ON, OP and VN, produced on the surface of the polymers were quantified by ELISA and localized by immunofluorescence staining. All of these proteins were present at significantly higher levels on PLAGA compared to PLA or TCPS surfaces. On PLAGA, OP and ON were the most abundant ECM components, followed by CO, FN, VN and LN. Immunofluorescence revealed an extracellular distribution for CO and FN, whereas OP and ON were found both intracellularly as well as extracellularly on the polymer. In addition, the actin cytoskeletal network was more extensive in osteoblasts cultured on PLAGA than on PLA or TCPS. In summary, we found that osteoblasts plated on PLAGA adhered better to the substrate, produced higher levels of ECM molecules, and showed greater cytoskeletal organization than on PLA and TCPS. We propose that this difference in ECM composition is functionally related to the enhanced cell adhesion observed on PLAGA. There is initial evidence that specific composition of the PLAGA polymer favors the ECM. Future studies will seek to optimize ECM production on these matrices for bone tissue engineering applications.
Howell, Matthew D; Gottschall, Paul E
2012-01-01
DS (Down syndrome), resulting from trisomy of chromosome 21, is the most common cause of genetic mental retardation; however, the molecular mechanisms underlying the cognitive deficits are poorly understood. Growing data indicate that changes in abundance or type of CSPGs (chondroitin sulfate proteoglycans) in the ECM (extracellular matrix) can influence synaptic structure and plasticity. The purpose of this study was to identify changes in synaptic structure in the hippocampus in a model of DS, the Ts65Dn mouse, and to determine the relationship to proteoglycan abundance and/or cleavage and cognitive disability. We measured synaptic proteins by ELISA and changes in lectican expression and processing in the hippocampus of young and old Ts65Dn mice and LMCs (littermate controls). In young (5 months old) Ts65Dn hippocampal extracts, we found a significant increase in the postsynaptic protein PSD-95 (postsynaptic density 95) compared with LMCs. In aged (20 months old) Ts65Dn hippocampus, this increase was localized to hippocampal stratum oriens extracts compared with LMCs. Aged Ts65Dn mice exhibited impaired hippocampal-dependent spatial learning and memory in the RAWM (radial-arm water maze) and a marked increase in levels of the lectican versican V2 in stratum oriens that correlated with the number of errors made in the final RAWM block. Ts65Dn stratum oriens PNNs (perineuronal nets), an extension of the ECM enveloping mostly inhibitory interneurons, were dispersed over a larger area compared with LMC mice. Taken together, these data suggest a possible association with alterations in the ECM and inhibitory neurotransmission in the Ts65Dn hippocampus which could contribute to cognitive deficits. PMID:22225533
Shimomura, Kazunori; Rothrauff, Benjamin B; Tuan, Rocky S
2017-03-01
The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). Controlled laboratory study. Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 10 6 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the glycosaminoglycan content was higher in both the inner and outer mECM groups compared with the control group. These results showed that the inner mECM enhances the fibrocartilaginous differentiation of hBMSCs, while the outer mECM promotes a more fibroblastic phenotype. Our findings support the feasibility of fabricating bioactive scaffolds using region-specific mECM preparations for meniscus tissue engineering. This is the first report to demonstrate the feasibility of applying region-specific mECMs for the engineering of meniscus implants capable of reproducing the biphasic, anatomic, and biochemical characteristics of the meniscus, features that should contribute to the feasibility of their clinical application.
Microarray analysis of laser capture microdissected-anulus cells from the human intervertebral disc.
Gruber, Helen E; Mougeot, Jean-Luc; Hoelscher, Gretchen; Ingram, Jane A; Hanley, Edward N
2007-05-15
Five Thompson Grade I/II discs (Group 1), 7 Grade III discs (Group 2), and 3 Grade IV discs (Group IV) were studied here in a project approved by the authors' Human Subjects Institutional Review Board. Our objective was to use laser capture microdissection (LCM) to harvest cells from the human anulus and to derive gene expression profiles using microarray analysis. Appropriate gene expression is essential in the intervertebral disc for maintenance of extracellular matrix (ECM), ECM remodeling, and maintenance of a viable disc cell population. During disc degeneration, cell numbers drop, making gene expression studies challenging. LCM was used to harvest cells from paraffin-embedded sections of human anulus tissue. Gene profiling used Affymetrix GeneChip Human X3P arrays. ANOVA and SAM permutation analysis were applied to dCHIP normalized, filtered, and log-transformed gene expression data ( approximately 33,500 probes), and data analyzed to identify genes that were significantly differentially expressed between the 3 groups. We identified 47 genes that were significantly differentially expressed between the 3 groups (P < 0.001 and lowest q values). Compared with the healthiest discs (Grade I/II), 13 genes were up-regulated and 19 down-regulated in both the Grade III and the Grade IV discs. Genes with biologic significance regulated during degeneration involved cell senescence, low cell division rates, hypoxia-related genes, heat-shock protein 70 interacting protein, neuropilin 2, and interleukin-23p19 (interleukin-12 family). Results expand our understanding of disc aging and degeneration and show that LCM is a valuable technique that can be used to collect mRNA amounts adequate for microarray analysis from the sparse cell population of the human anulus.
Takahashi, Toshiaki; Friedmacher, Florian; Takahashi, Hiromizu; Hofmann, Alejandro Daniel; Puri, Prem
2015-01-01
Normal development of the fetal diaphragm requires muscularization of the diaphragm as well as the structural integrity of its underlying connective tissue components. Developmental mutations that inhibit the formation of extracellular matrix (ECM) have been shown to result in congenital diaphragmatic hernia (CDH). Copper (Cu) is an important element during diaphragm morphogenesis by participating in cross-linking of collagen and elastin fibers. Cu transport is strictly regulated by two membrane proteins: Cu-uptake transporter 1 (CTR1) and the Cu-efflux pump ATP7A. Animals lacking Cu-dependent enzymes exhibit abnormal connective tissue with diaphragmatic defects. However, the molecular basis of disruptions in Cu-mediated ECM formation in CDH remains unclear. We designed this study to investigate the hypothesis that diaphragmatic expression of CTR1 and ATP7A is decreased in the nitrofen-induced CDH model. Timed-pregnant rats were exposed to either nitrofen or vehicle on gestational day 9 (D9), and fetuses were harvested on selected time-points D15 and D18. Microdissected fetal diaphragms (n = 48) were divided into control and nitrofen-induced CDH samples (n = 12 per experimental group and time-point). Diaphragmatic gene expression levels of CTR1 and ATP7A were analyzed by quantitative real-time polymerase chain reaction. Immunohistochemistry was performed to evaluate CTR1 and ATP7A protein expression in fetal diaphragms, which was combined with specific rhodanine staining to determine diaphragmatic Cu content. Relative mRNA levels of CTR1 and ATP7A were significantly reduced in diaphragms of nitrofen-exposed fetuses on D15 (0.06 ± 0.02 vs. 0.18 ± 0.08; p < 0.05 and 0.04 ± 0.02 vs. 0.08 ± 0.02; p < 0.05) and D18 (0.10 ± 0.03 vs. 0.17 ± 0.02; p < 0.05 and 0.09 ± 0.03 vs. 0.16 ± 0.04; p < 0.05) compared to controls. Immunoreactivity of CTR1 and ATP7A was markedly decreased in the malformed diaphragmatic ECM of nitrofen-exposed fetuses on D15 and D18, which was associated with a significantly decreased diaphragmatic Cu content on D15 (7.22 ± 2.91 vs. 17.50 ± 3.09; p < 0.05) and D18 (17.60 ± 3.54 vs. 28.20 ± 4.63; p < 0.05) compared to controls. Reduced diaphragmatic expression of CTR1 and ATP7A during morphogenesis may impair the activity of Cu-dependent enzymes and thus contribute to defective ECM during diaphragmatic development.
Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue
Vierkotten, Sarah; Lindner, Michael; Königshoff, Melanie; Eickelberg, Oliver
2015-01-01
During the last decades, the study of cell behavior was largely accomplished in uncoated or extracellular matrix (ECM)-coated plastic dishes. To date, considerable cell biological efforts have tried to model in vitro the natural microenvironment found in vivo. For the lung, explants cultured ex vivo as lung tissue cultures (LTCs) provide a three-dimensional (3D) tissue model containing all cells in their natural microenvironment. Techniques for assessing the dynamic live interaction between ECM and cellular tissue components, however, are still missing. Here, we describe specific multidimensional immunolabeling of living 3D-LTCs, derived from healthy and fibrotic mouse lungs, as well as patient-derived 3D-LTCs, and concomitant real-time four-dimensional multichannel imaging thereof. This approach allowed the evaluation of dynamic interactions between mesenchymal cells and macrophages with their ECM. Furthermore, fibroblasts transiently expressing focal adhesions markers incorporated into the 3D-LTCs, paving new ways for studying the dynamic interaction between cellular adhesions and their natural-derived ECM. A novel protein transfer technology (FuseIt/Ibidi) shuttled fluorescently labeled α-smooth muscle actin antibodies into the native cells of living 3D-LTCs, enabling live monitoring of α-smooth muscle actin-positive stress fibers in native tissue myofibroblasts residing in fibrotic lesions of 3D-LTCs. Finally, this technique can be applied to healthy and diseased human lung tissue, as well as to adherent cells in conventional two-dimensional cell culture. This novel method will provide valuable new insights into the dynamics of ECM (patho)biology, studying in detail the interaction between ECM and cellular tissue components in their natural microenvironment. PMID:26092995
Joshua, Ifeoluwapo Matthew; Höfken, Thomas
2017-04-05
Zinc cluster proteins are a large family of transcriptional regulators with a wide range of biological functions. The zinc cluster proteins Ecm22, Upc2, Sut1 and Sut2 have initially been identified as regulators of sterol import in the budding yeast Saccharomyces cerevisiae . These proteins also control adaptations to anaerobic growth, sterol biosynthesis as well as filamentation and mating. Orthologs of these zinc cluster proteins have been identified in several species of Candida . Upc2 plays a critical role in antifungal resistance in these important human fungal pathogens. Upc2 is therefore an interesting potential target for novel antifungals. In this review we discuss the functions, mode of actions and regulation of Ecm22, Upc2, Sut1 and Sut2 in budding yeast and Candida .
Towards integrating extracellular matrix and immunological pathways.
Boyd, David F; Thomas, Paul G
2017-10-01
The extracellular matrix (ECM) is a complex and dynamic structure made up of an estimated 300 different proteins. The ECM is also a rich source of cytokines and growth factors in addition to numerous bioactive ECM degradation products that influence cell migration, proliferation, and differentiation. The ECM is constantly being remodeled during homeostasis and in a wide range of pathological contexts. Changes in the ECM modulate immune responses, which in turn regulate repair and regeneration of tissues. Here, we review the many components of the ECM, enzymes involved in ECM remodeling, and the signals that feed into immunological pathways in the context of a dynamic ECM. We highlight studies that have taken an integrative approach to studying immune responses in the context of the ECM and studies that use novel proteomic strategies. Finally, we discuss research challenges relevant to the integration of immune and ECM networks and propose experimental and translational approaches to resolve these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recruitment of dental pulp cells by dentine and pulp extracellular matrix components.
Smith, J G; Smith, A J; Shelton, R M; Cooper, P R
2012-11-01
The present study aimed to determine whether dentine tissue and preparations of extracellular matrix (ECM) from pulp (pECM) and dentine (dECM), and breakdown products, influenced pulp cell migration. Chemotaxis transwell and agarose spot assays demonstrated that both dentine and pulp ECM molecules acted as chemoattractants for primary pulp cells. Chemoattractant activities of dECM and pECM were enhanced when subjected to acid and enzymatic breakdown, respectively. This enhanced activity following physiologically relevant breakdown may be pertinent to the disease environment. Pulp cell migration in response to dental ECMs was dependent on an active rho pathway. Recruited cells exhibited increased stem cell marker expression indicating that dental ECMs and their breakdown products selectively attract progenitor cells that contribute to repair processes. In conclusion, combined these results indicate that ECM molecules contribute to cell recruitment necessary for regeneration of the dentine-pulp complex after injury. Copyright © 2012 Elsevier Inc. All rights reserved.
Ishihara, Seiichiro; Inman, David R; Li, Wan-Ju; Ponik, Suzanne M; Keely, Patricia J
2017-11-15
In response to chemical stimuli from cancer cells, mesenchymal stem cells (MSC) can differentiate into cancer-associated fibroblasts (CAF) and promote tumor progression. How mechanical stimuli such as stiffness of the extracellular matrix (ECM) contribute to MSC phenotype in cancer remains poorly understood. Here, we show that ECM stiffness leads to mechano-signal transduction in MSC, which promotes mammary tumor growth in part through secretion of the signaling protein prosaposin. On a stiff matrix, MSC cultured with conditioned media from mammary cancer cells expressed increased levels of α-smooth muscle actin, a marker of CAF, compared with MSC cultured on a soft matrix. By contrast, MSC cultured on a stiff matrix secreted prosaposin that promoted proliferation and survival of mammary carcinoma cells but inhibited metastasis. Our findings suggest that in addition to chemical stimuli, increased stiffness of the ECM in the tumor microenvironment induces differentiation of MSC to CAF, triggering enhanced proliferation and survival of mammary cancer cells. Cancer Res; 77(22); 6179-89. ©2017 AACR . ©2017 American Association for Cancer Research.
Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan
2016-11-14
Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.
Wen, Jiadi; Zhu, Hua; Leung, Peter C K
2013-10-01
The human endometrium undergoes cyclic change during each menstrual cycle in response to gonadal steroids. Proteolysis of endometrial extracellular matrix (ECM) is necessary to prepare this dynamic tissue for pregnancy. Proteolytic enzymes such as matrix metalloproteinase (MMP) and closely related a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) have been assigned key roles in the highly regulated cyclic remodelling of the endometrial ECM. We have previously shown that ADAMTS-1 undergoes spatiotemporal changes in human endometrial stromal cells under the regulation of gonadal steroids. This suggests that other ADAMTS subtypes, known as aggrecanases, may contribute to the ECM remodelling events that occur in female physiological cycles and in preparation for pregnancy. To determine whether progesterone (P4), 17β-estradiol (E2), or dihydrotestosterone (DHT), alone or in combination, are capable of regulating ADAMTS-4, -5, -8 or -9 expression in human endometrial stromal cells in vitro. Real-time quantitative PCR and Western blot analysis were used to measure ADAMTSs mRNA and protein levels in primary cultures of human endometrial stromal cells (n = 12). P4, DHT but not E2 have regulatory effects on ADAMTS-8, -9 and -5 expression. Combined treatment with gonadal steroids did not show any synergistic or antagonistic effects. However, the synthetic steroid antagonists RU486 and hydroxyflutamide specifically inhibited the P4- or DHT-mediated regulatory effects on ADAMTS expression. These studies provide evidence that the regulation of aggrecanases by gonadal steroids in human endometrial stromal cells may play an important role during decidualization. © 2013 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Fallon, Justin R; McNally, Elizabeth M
2018-08-01
The extracellular matrix (ECM) plays key roles in normal and diseased skeletal and cardiac muscle. In healthy muscle the ECM is essential for transmitting contractile force, maintaining myofiber integrity and orchestrating cellular signaling. Duchenne Muscular Dystrophy (DMD) is caused by loss of dystrophin, a cytosolic protein that anchors a transmembrane complex and serves as a vital link between the actin cytoskeleton and the basal lamina. Loss of dystrophin leads to membrane fragility and impaired signaling, resulting in myofiber death and cycles of inflammation and regeneration. Fibrosis is also a cardinal feature of DMD. In this review, we will focus on two cases where understanding the normal function and regulation of ECM in muscle has led to the discovery of candidate therapeutics for DMD. Biglycan is a small leucine rich repeat ECM protein present as two glycoforms in muscle that have dramatically different functions. One widely expressed form is biglycan proteoglycan (PG) that bears two chondroitin sulfate GAG chains (typically chondroitin sulfate) and two N-linked carbohydrates. The second glycoform, referred to as 'NG' (non-glycanated) biglycan, lacks the GAG side chains. NG, but not PG biglycan recruits utrophin, an autosomal paralog of dystrophin, and an NOS-containing signaling complex to the muscle cell membrane. Recombinant NG biglycan can be systemically delivered to dystrophic mice where it upregulates utrophin at the membrane and improves muscle health and function. An optimized version of NG biglycan, 'TVN-102', is under development as a candidate therapeutic for DMD. A second matrix-embedded protein being evaluated for therapeutic potential is latent TGFβ binding protein 4 (LTBP4). Identified in a genomic screen for modifiers of muscular dystrophy, LTBP4 binds both TGFβ and myostatin. Genetic studies identified the hinge region of LTBP4 as linked to TGFβ release and contributing to the "hyper-TGFβ" signaling state that promotes fibrosis in muscular dystrophy. This hinge region can be stabilized by antibodies directed towards this domain. Stabilizing the hinge region of LTBP4 is expected to reduce latent TGFβ release and thus reduce fibrosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Xu, Yanyi; Patnaik, Sourav; Guo, Xiaolei; Li, Zhenqing; Lo, Wilson; Butler, Ryan; Claude, Andrew; Liu, Zhenguo; Zhang, Ge; Liao, Jun; Anderson, Peter M; Guan, Jianjun
2014-08-01
Stem cell therapy has the potential to regenerate heart tissue after myocardial infarction (MI). The regeneration is dependent upon cardiac differentiation of the delivered stem cells. We hypothesized that timing of the stem cell delivery determines the extent of cardiac differentiation as cell differentiation is dependent on matrix properties such as biomechanics, structure and morphology, and these properties in cardiac extracellular matrix (ECM) continuously vary with time after MI. In order to elucidate the relationship between ECM properties and cardiac differentiation, we created an in vitro model based on ECM-mimicking fibers and a type of cardiac progenitor cell, cardiosphere-derived cells (CDCs). A simultaneous fiber electrospinning and cell electrospraying technique was utilized to fabricate constructs. By blending a highly soft hydrogel with a relatively stiff polyurethane and modulating fabrication parameters, tissue constructs with similar cell adhesion property but different global modulus, single fiber modulus, fiber density and fiber alignment were achieved. The CDCs remained alive within the constructs during a 1week culture period. CDC cardiac differentiation was dependent on the scaffold modulus, fiber volume fraction and fiber alignment. Two constructs with relatively low scaffold modulus, ∼50-60kPa, most significantly directed the CDC differentiation into mature cardiomyocytes as evidenced by gene expressions of cardiac troponin T (cTnT), calcium channel (CACNA1c) and cardiac myosin heavy chain (MYH6), and protein expressions of cardiac troponin I (cTnI) and connexin 43 (CX43). Of these two low-modulus constructs, the extent of differentiation was greater for lower fiber alignment and higher fiber volume fraction. These results suggest that cardiac ECM properties may have an effect on cardiac differentiation of delivered stem cells. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A 3-D Cardiac Muscle Construct for Exploring Adult Marrow Stem Cell Based Myocardial Regeneration
Valarmathi, Mani T.; Goodwin, Richard L.; Fuseler, John W.; Davis, Jeffrey M.; Yost, Michael J.; Potts, Jay D.
2010-01-01
Adult bone marrow stromal cells (BMSCs) are capable of differentiating into cardiomyocyte-like cells in vitro and contribute to myocardial regeneration in vivo. Consequently, BMSCs may potentially play a vital role in cardiac repair and regeneration. However, this concept has been limited by inadequate and inconsistent differentiation of BMSCs into cardiomyocytes along with poor survival and integration of neo-cardiomyocytes after implantation into ischemic myocardium. In order to overcome these barriers and to explore adult stem cell based myocardial regeneration, we have developed an in vitro model of three-dimensional (3-D) cardiac muscle using rat ventricular embryonic cardiomyocytes (ECMs) and BMSCs. When ECMs and BMSCs were seeded sequentially onto a 3-D tubular scaffold engineered from topographically aligned type I collagen fibers and cultured in basal medium for 7, 14, 21, or 28 days, the maturation and co-differentiation into a cardiomyocyte lineage was observed. Phenotypic induction was characterized at morphological, immunological, biochemical and molecular levels. The observed expression of transcripts coding for cardiomyocyte phenotypic markers and the immunolocalization of cardiomyogenic lineage-associated proteins revealed typical expression patterns of neo-cardiomyogenesis. At the biochemical level differentiating cells exhibited appropriate metabolic activity and at the ultrastructural level myofibrillar and sarcomeric organization were indicative of an immature phenotype. Our 3-D co-culture system sustains the ECMs in vitro continuum of differentiation process and simultaneously induces the maturation and differentiation of BMSCs into cardiomyocyte-like cells. Thus, this novel 3-D co-culture system provides a useful in vitro model to investigate the functional role and interplay of developing ECMs and BMSCs during cardiomyogenic differentiation. PMID:20129663
Riser, Bruce L.; Najmabadi, Feridoon; Perbal, Bernard; Peterson, Darryl R.; Rambow, Jo Ann; Riser, Melisa L.; Sukowski, Ernest; Yeger, Herman; Riser, Sarah C.
2009-01-01
Fibrosis is a major cause of end-stage renal disease, and although initiation factors have been elucidated, uncertainty concerning the downstream pathways has hampered the development of anti-fibrotic therapies. CCN2 (CTGF) functions downstream of transforming growth factor (TGF)-β, driving increased extracellular matrix (ECM) accumulation and fibrosis. We examined the possibility that CCN3 (NOV), another CCN family member with reported biological activities that differ from CCN2, might act as an endogenous negative regulator of ECM and fibrosis. We show that cultured rat mesangial cells express CCN3 mRNA and protein, and that TGF-β treatment reduced CCN3 expression levels while increasing CCN2 and collagen type I activities. Conversely, either the addition of CCN3 or CCN3 overexpression produced a marked down-regulation of CCN2 followed by virtual blockade of both collagen type I transcription and its accumulation. This finding occurred in both growth-arrested and CCN3-transfected cells under normal growth conditions after TGF-β treatment. These effects were not attributable to altered cellular proliferation as determined by cell cycle analysis, nor were they attributable to interference of Smad signaling as shown by analysis of phosphorylated Smad3 levels. In conclusion, both CCN2 and CCN3 appear to act in a yin/yang manner to regulate ECM metabolism. CCN3, acting downstream of TGF-β to block CCN2 and the up-regulation of ECM, may therefore serve to naturally limit fibrosis in vivo and provide opportunities for novel, endogenous-based therapeutic treatments. PMID:19359517
Riser, Bruce L; Najmabadi, Feridoon; Perbal, Bernard; Peterson, Darryl R; Rambow, Jo Ann; Riser, Melisa L; Sukowski, Ernest; Yeger, Herman; Riser, Sarah C
2009-05-01
Fibrosis is a major cause of end-stage renal disease, and although initiation factors have been elucidated, uncertainty concerning the downstream pathways has hampered the development of anti-fibrotic therapies. CCN2 (CTGF) functions downstream of transforming growth factor (TGF)-beta, driving increased extracellular matrix (ECM) accumulation and fibrosis. We examined the possibility that CCN3 (NOV), another CCN family member with reported biological activities that differ from CCN2, might act as an endogenous negative regulator of ECM and fibrosis. We show that cultured rat mesangial cells express CCN3 mRNA and protein, and that TGF-beta treatment reduced CCN3 expression levels while increasing CCN2 and collagen type I activities. Conversely, either the addition of CCN3 or CCN3 overexpression produced a marked down-regulation of CCN2 followed by virtual blockade of both collagen type I transcription and its accumulation. This finding occurred in both growth-arrested and CCN3-transfected cells under normal growth conditions after TGF-beta treatment. These effects were not attributable to altered cellular proliferation as determined by cell cycle analysis, nor were they attributable to interference of Smad signaling as shown by analysis of phosphorylated Smad3 levels. In conclusion, both CCN2 and CCN3 appear to act in a yin/yang manner to regulate ECM metabolism. CCN3, acting downstream of TGF-beta to block CCN2 and the up-regulation of ECM, may therefore serve to naturally limit fibrosis in vivo and provide opportunities for novel, endogenous-based therapeutic treatments.
Du, Jianguang; Takeuchi, Hideyuki; Leonhard-Melief, Christina; Shroyer, Kenneth R.; Dlugosz, Malgosia; Haltiwanger, Robert S.; Holdener, Bernadette C.
2010-01-01
Thrombospondin type 1 repeat (TSR) superfamily members regulate diverse biological activities ranging from cell motility to inhibition of angiogenesis. In this study, we verified that mouse protein O-fucosyltransferase-2 (POFUT2) specifically adds O-fucose to TSRs. Using two Pofut2 gene trap lines, we demonstrated that O-fucosylation of TSRs was essential for restricting epithelial to mesenchymal transition in the primitive streak, correct patterning of mesoderm, and localization of the definitive endoderm. Although Pofut2 mutant embryos established anterior/posterior polarity, they underwent extensive mesoderm differentiation at the expense of maintaining epiblast pluripotency. Moreover, mesoderm differentiation was biased towards the vascular endothelial cell lineage. Localization of Foxa2 and Cer1 expressing cells within the interior of Pofut2 mutant embryos suggested that POFUT2 activity was also required for the displacement of the primitive endoderm by definitive endoderm. Notably, Nodal, BMP4, Fgf8, and Wnt3 expression were markedly elevated and expanded in Pofut2 mutants, providing evidence that O-fucose modification of TSRs was essential for modulation of growth factor signaling during gastrulation. The ability of Pofut2 mutant embryos to form teratomas comprised of tissues from all three germ layer origins suggested that defects in Pofut2 mutant embryos resulted from abnormalities in the extracellular environment. This prediction is consistent with the observation that POFUT2 targets are constitutive components of the extracellular matrix (ECM) or associate with the ECM. For this reason, the Pofut2 mutants represent a valuable tool for studying the role of O-fucosylation in ECM synthesis and remodeling, and will be a valuable model to study how post-translational modification of ECM components regulates the formation of tissue boundaries, cell movements, and signaling. PMID:20637190
Horiguchi, Kotaro; Fujiwara, Ken; Ilmiawati, Cimi; Kikuchi, Motoshi; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi
2011-07-01
Folliculostellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture exhibited marked proliferation in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In a process referred to as matricrine action, FS cells receive ECM as a signal through their receptors, which results in morphological and functional changes. In this study, we investigated matricrine signaling in FS cells and observed that the proliferation of FS cells is mediated by integrin β1, which is involved in various signaling pathways for cell migration and proliferation in response to ECM. Then, we analyzed downstream events of the integrin β1 signaling pathway in the proliferation of FS cells and identified caveolin 3 as a potential candidate molecule. Caveolin 3 is a membrane protein that binds cholesterol and a number of signaling molecules that interact with integrin β1. Using specific small interfering RNA of caveolin 3, the proliferation of FS cells was inhibited. Furthermore, caveolin 3 drove activation of the mitogen-activated protein kinase (MAPK) signaling cascades, which resulted in upregulation of cyclin D1 in FS cells. These findings suggest that matricrine signaling in the proliferation of FS cells was transduced by a caveolin 3-mediated integrin β1 signaling pathway and subsequent activation of the MAPK pathway. © 2011 Society for Endocrinology
Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair.
Paiva, Katiucia B S; Granjeiro, José M
2017-01-01
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering. © 2017 Elsevier Inc. All rights reserved.
Wang, Zongjie; Calpe, Blaise; Zerdani, Jalil; Lee, Youngsang; Oh, Jonghyun; Bae, Hojae; Khademhosseini, Ali; Kim, Keekyoung
2016-07-01
In the developing heart, a specific subset of endocardium undergoes an endothelial-to-mesenchymal transformation (EndMT) thus forming nascent valve leaflets. Extracellular matrix (ECM) proteins and growth factors (GFs) play important roles in regulating EndMT but the combinatorial effect of GFs with ECM proteins is less well understood. Here we use microscale engineering techniques to create single, binary, and tertiary component microenvironments to investigate the combinatorial effects of ECM proteins and GFs on the attachment and transformation of adult ovine mitral valve endothelial cells to a mesenchymal phenotype. With the combinatorial microenvironment microarrays, we utilized 60 different combinations of ECM proteins (Fibronectin, Collagen I, II, IV, Laminin) and GFs (TGF-β1, bFGF, VEGF) and were able to identify new microenvironmental conditions capable of modulating EndMT in MVECs. Experimental results indicated that TGF-β1 significantly upregulated the EndMT while either bFGF or VEGF downregulated EndMT process markedly. Also, ECM proteins could influence both the attachment of MVECs and the response of MVECs to GFs. In terms of attachment, fibronectin is significantly better for the adhesion of MVECs among the five tested proteins. Overall collagen IV and fibronectin appeared to play important roles in promoting EndMT process. Great consistency between macroscale and microarrayed experiments and present studies demonstrates that high-throughput cellular microarrays are a promising approach to study the regulation of EndMT in valvular endothelium. Biotechnol. Bioeng. 2016;113: 1403-1412. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalayarasan, Srinivasan, E-mail: kalaivasanbio@gmail.com; Sriram, Narayanan; Soumyakrishnan, Syamala
Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis.more » Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.« less
Bell, M J; Wall, E; Russell, G; Simm, G; Stott, A W
2011-07-01
This study compared the environmental impact of a range of dairy production systems in terms of their global warming potential (GWP, expressed as carbon dioxide equivalents, CO(2)-eq.) and associated land use, and explored the efficacy of reducing said impact. Models were developed using the unique data generated from a long-term genetic line × feeding system experiment. Holstein-Friesian cows were selected to represent the UK average for milk fat plus protein production (control line) or were selected for increased milk fat plus protein production (select line). In addition, cows received a low forage diet (50% forage) with no grazing or were on a high forage (75% forage) diet with summer grazing. A Markov chain approach was used to describe the herd structure and help estimate the GWP per year and land required per cow for the 4 alternative systems and the herd average using a partial life cycle assessment. The CO(2)-eq. emissions were expressed per kilogram of energy-corrected milk (ECM) and per hectare of land use, as well as land required per kilogram of ECM. The effects of a phenotypic and genetic standard deviation unit improvement on herd feed utilization efficiency, ECM yield, calving interval length, and incidence of involuntary culling were assessed. The low forage (nongrazing) feeding system with select cows produced the lowest CO(2)-eq. emissions of 1.1 kg/kg of ECM and land use of 0.65 m(2)/kg of ECM but the highest CO(2)-eq. emissions of 16.1t/ha of the production systems studied. Within the herd, an improvement of 1 standard deviation in feed utilization efficiency was the only trait of those studied that would significantly reduce the reliance of the farming system on bought-in synthetic fertilizer and concentrate feed, as well as reduce the average CO(2)-eq. emissions and land use of the herd (both by about 6.5%, of which about 4% would be achievable through selective breeding). Within production systems, reductions in CO(2)-eq. emissions per kilogram of ECM and CO(2)-eq. emissions per hectare were also achievable by an improvement in feed utilization. This study allowed development of models that harness the biological trait variation in the animal to improve the environmental impact of the farming system. Genetic selection for efficient feed use for milk production according to feeding system can bring about reductions in system nutrient requirements, CO(2)-eq. emissions, and land use per unit product. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Labrousse-Arias, David; Martínez-Ruiz, Antonio; Calzada, María J
2017-10-20
The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.
Norton, Thomas T.
2012-01-01
Purpose. During the development of, and recovery from, negative lens-induced myopia there is regulated remodeling of the scleral extracellular matrix (ECM) that controls the extensibility of the sclera. Difference gel electrophoresis (DIGE) was used to identify and categorize proteins whose levels are altered in this process. Methods. Two groups of five tree shrews started monocular lens wear 24 days after eye opening (days of visual experience [VE]). The lens-induced myopia (LIM) group wore a −5 D lens for 4 days. The recovery (REC) group wore a −5 D lens for 11 days and then recovered for 4 days. Two normal groups (28 and 39 days of VE; n = 5 each) were also examined, age-matched to each of the treatment groups. Refractive and A-scan measures confirmed the effect of the treatments. Scleral proteins were isolated and resolved by DIGE. Proteins that differed in abundance were identified by mass spectrometry. Ingenuity pathway analysis was used to investigate potential biological pathway interactions. Results. During normal development (28–39 days of VE), eight proteins decreased and one protein increased in relative abundance. LIM-treated eyes were myopic and longer than control eyes; LIM-control eyes were slightly myopic compared with 28N eyes, indicating a yoking effect. In both the LIM-treated and the LIM-control eyes, there was a general downregulation from normal of proteins involved in transcription, cell adhesion, and protein synthesis. Additional proteins involved in cell adhesion, actin cytoskeleton, transcriptional regulation, and ECM structural proteins differed in the LIM-treated eyes versus normal but did not differ in the control eyes versus normal. REC-treated eyes were recovering from the induced myopia. REC-control eye refractions were not significantly different from the 39N eyes, and few proteins differed from age-matched normal eyes. The balance of protein expression in the REC-treated eyes, compared with normal eyes and REC-control eyes, shifted toward upregulation or a return to normal levels of proteins involved in cell adhesion, cell division, cytoskeleton, and ECM structural proteins, including upregulation of several cytoskeleton-related proteins not affected during myopia development. Conclusions. The DIGE procedure revealed new proteins whose abundance is altered during myopia development and recovery. Many of these are involved in cell-matrix adhesions, cytoskeleton, and transcriptional regulation and extend our understanding of the remodeling that controls the extensibility of the sclera. Reductions in these proteins during minus lens wear may produce the increased scleral viscoelasticity that results in faster axial elongation. Recovery is not a mirror image of lens-induced myopia—many protein levels, decreased during LIM, returned to normal, or slightly above normal, and additional cytoskeleton proteins were upregulated. However, no single protein or pathway appeared to be responsible for the scleral changes during myopia development or recovery. PMID:22039233
Jeong, Jangho; Keum, Seula; Kim, Daehwan; You, Eunae; Ko, Panseon; Lee, Jieun; Kim, Jaegu; Kim, Jung-Woong; Rhee, Sangmyung
2018-06-12
Accumulating evidence has shown that matrix stiffening in cancer tissue by the deposition of extracellular matrix (ECM) is closely related with severe tumor progression. However, much less is known about the genes affected by matrix stiffness and its signaling for cancer progression. In the current research, we investigated the differential gene expression of a non-small lung adenocarcinoma cell line, H1299, cultured under the conditions of soft (∼0.5 kPa) and stiff (∼40 kPa) matrices, mimicking the mechanical environments of normal and cancerous tissues, respectively. For integrated transcriptome analysis, the genes identified by ECM stiffening were compared with 8248 genes retrieved from The Cancer Genome Atlas Lung Adenocarcinoma (TCGA). In stiff matrix, 29 genes were significantly upregulated, while 75 genes were downregulated. The screening of hazard ratios for these genes using the Kaplan-Meier Plotter identified 8 genes most closely associated with cancer progression under the condition of matrix stiffening. Among these genes, spindle pole body component 25 homolog (SPC25) was one of the most up-regulated genes in stiff matrix and tumor tissue. Knockdown of SPC25 in H1299 cells using shRNA significantly inhibited cell proliferation with downregulation of the expression of checkpoint protein, Cyclin B1, under the condition of stiff matrix whereas the proliferation rate in soft matrix was not affected by SPC25 silencing. Thus, our findings provide novel key molecules for studying the relationship of extracellular matrix stiffening and cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.
Manipulation of valve composition to elucidate the role of collagen in aortic valve calcification
2014-01-01
Background Extracellular matrix (ECM) disarray is found in calcific aortic valvular disease (CAVD), yet much remains to be learned about the role of individual ECM components in valvular interstitial cell (VIC) function and dysfunction. Previous clinical analyses have shown that calcification is associated with decreased collagen content, while previous in vitro work has suggested that the presence of collagen attenuates the responsiveness of VICs to pro-calcific stimuli. The current study uses whole leaflet cultures to examine the contributions of endogenous collagen in regulating the phenotype and calcification of VICs. Methods A “top-down” approach was used to characterize changes in VIC phenotype in response to collagen alterations in the native 3D environment. Collagen-deficient leaflets were created via enzymatic treatment and cultured statically for six days in vitro. After culture, leaflets were harvested for analysis of DNA, proliferation, apoptosis, ECM composition, calcification, and gene/protein expression. Results In general, disruption of collagen was associated with increased expression of disease markers by VICs in whole organ leaflet culture. Compared to intact control leaflets, collagen-deficient leaflets demonstrated increased VIC proliferation and apoptosis, increased expression of disease-related markers such as alpha-smooth muscle actin, alkaline phosphatase, and osteocalcin, and an increase in calcification as evidenced by positive von Kossa staining. Conclusions These results indicate that disruption of the endogenous collagen structure in aortic valves is sufficient to stimulate pathological consequences in valve leaflet cultures, thereby highlighting the importance of collagen and the valve extracellular matrix in general in maintaining homeostasis of the valve phenotype. PMID:24581344
Park, Hae-Young Lopilly; Kim, Jie Hyun; Jung, Younhea; Park, Chan Kee
2017-08-01
We investigated the extracellular matrix (ECM) of the lamina cribrosa (LC) and peripapillary sclera (PPS) and compared histone acetylation and related enzymes to identify racial differences between Korean and Caucasian donor eyes. Posterior segment tissues were obtained from 30 Caucasian donors and 42 age and axial length-matched Korean donors. Histone modification was assessed for histone deacetylase (HDAC) 2, HDAC3, and acetylated histone H3. The promoter regions of the major ECM in the LC and PPS including collagen type I and III, and elastic fiber components (elastin and fibrillin-1) and lysyl oxidase enzymes including lysyl oxidase-like 1 and 2 (LOXL2) were evaluated by chromatin immunoprecipitation (ChIP) assay. Protein and mRNA expression of major ECM components were assessed using real-time polymerase chain reaction analysis, western blot analysis, and immunohistochemical staining. HDAC2 and HDAC3 expression levels were decreased and acetylated histone H3 was increased in the LC and PPS of Korean eyes than Caucasian eyes. The promoter regions of LOXL2, elastin, and fribrillin-1 genes were highly acetylated in Korean LC. Expression of LOXL2 and elastic fiber components (elastin and fibrillin-1) were significantly increased in Korean LC and PPS than Caucasians according to the real-time polymerase chain reaction, western blot analyses, and quantification of elastic fiber staining. Histone acetylation status differed in the promoter regions of the elastic fiber components and LOXL2 in the LC and PPS according to race. Further study to reveal the association with these findings to the pathogenesis of glaucoma in Korean eyes is needed.
Ceccarelli, A; Zhukovskaya, N; Kawata, T; Bozzaro, S; Williams, J
2000-12-01
The ecmB gene of Dictyostelium is expressed at culmination both in the prestalk cells that enter the stalk tube and in ancillary stalk cell structures such as the basal disc. Stalk tube-specific expression is regulated by sequence elements within the cap-site proximal part of the promoter, the stalk tube (ST) promoter region. Dd-STATa, a member of the STAT transcription factor family, binds to elements present in the ST promoter-region and represses transcription prior to entry into the stalk tube. We have characterised an activatory DNA sequence element, that lies distal to the repressor elements and that is both necessary and sufficient for expression within the stalk tube. We have mapped this activator to a 28 nucleotide region (the 28-mer) within which we have identified a GA-containing sequence element that is required for efficient gene transcription. The Dd-STATa protein binds to the 28-mer in an in vitro binding assay, and binding is dependent upon the GA-containing sequence. However, the ecmB gene is expressed in a Dd-STATa null mutant, therefore Dd-STATa cannot be responsible for activating the 28-mer in vivo. Instead, we identified a distinct 28-mer binding activity in nuclear extracts from the Dd-STATa null mutant, the activity of this GA binding activity being largely masked in wild type extracts by the high affinity binding of the Dd-STATa protein. We suggest, that in addition to the long range repression exerted by binding to the two known repressor sites, Dd-STATa inhibits transcription by direct competition with this putative activator for binding to the GA sequence.
Ji, Hong; Tang, Haiying; Lin, Hongli; Mao, Jingwei; Gao, Lili; Liu, Jia; Wu, Taihua
2014-11-01
The differentiation of fibroblasts, which are promoted by transforming growth factor-β (TGF-β)/Smad, is involved in the process of pulmonary fibrosis. The Rho/Rho-associated coiled-coil-forming protein kinase (Rock) pathway may regulate the fibroblast differentiation and myofibroblast expression of α-smooth muscle actin (α-SMA), however, the mechanism is not clear. The aim of the present study was to evaluate the role of Rho/Rock and TGF-β/Smad in TGF-β1-induced lung fibroblasts differentiation. Human embryonic lung fibroblasts were stimulated by TGF-β1, Y-27632 (inhibitor of Rho/Rock signaling) and staurosporine (inhibitor of TGF-β/Smad signaling). The α-SMA expression, cell cycle progression, content of the extracellular matrix (ECM) in cell culture supernatants and the expression of RhoA, RhoC, Rock1 and Smad2 were detected. The results demonstrated that α-SMA-positive cells significantly increased following TGF-β1 stimulation. Rho/Rock and TGF-β/Smad inhibitors suppressed TGF-β1-induced lung fibroblast differentiation. The inhibitors increased G 0 /G 1 and decreased S and G 2 /M percentages. The concentrations of the ECM proteins in the supernatant were significantly increased by TGF-β1 stimulation, whereas they were decreased by inhibitor stimulation. RhoA, RhoC, Rock1, Smad2 and tissue inhibitor of metalloproteinase-1 were upregulated by TGF-β1 stimulation. The Rho/Rock inhibitor downregulated Smad2 expression and the TGF-β/Smad inhibitor downregulated RhoA, RhoC and Rock1 expression. Therefore, the Rho/Rock pathway and Smad signaling were involved in the process of lung fibroblasts transformation, induced by TGF-β1, to myofibroblasts. The two pathways may undergo cross-talk in the lung fibroblasts differentiation in vitro .
A fast and mild decellularization protocol for obtaining extracellular matrix.
Mirzarafie, Ariana; Grainger, Rhian K; Thomas, Ben; Bains, William; Ustok, Fatma I; Lowe, Chris R
2014-04-01
Degradation of extracellular matrix (ECM) function with age is a major cause of loss of tissue function with age that we would wish to reverse. Tissue engineering to provide replacement tissue requires an ECM-mimicking scaffold for cell organization. The standard protocols for achieving this take 10 days and include steps that may change the protein structure of the ECM. Here we describe a much shorter protocol for decellularizing chicken muscle, skin, and tendon samples that achieves the same efficiency as the original protocol without protein cross-link interference. Our protocol can be completed in 72 hr.
Protective role for miR-9-5p in the fibrogenic transformation of human dermal fibroblasts.
Miguel, Verónica; Busnadiego, Oscar; Fierro-Fernández, Marta; Lamas, Santiago
2016-01-01
Excessive accumulation of extracellular matrix (ECM) proteins is the hallmark of fibrotic diseases, including skin fibrosis. This response relies on the activation of dermal fibroblasts that evolve into a pro-fibrogenic phenotype. One of the major players in this process is the cytokine transforming growth factor-β (TGF-β). MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression affecting a wide range of pathophysiological events including fibrogenesis. MicroRNA-9-5p (miR-9-5p) has been shown to exert a protective role in lung and peritoneal fibrosis. This study aimed to evaluate the role of miR-9-5p in skin fibrosis. miR-9-5p is up-regulated in TGF-β1-treated human dermal fibroblasts (HDFs). In silico identification of miR-9-5p targets spotted the type II TGF-β receptor (TGFBR2) as a potential TGF-β signaling-related effector for this miRNA. Consistently, over-expression of miR-9-5p in HDFs down-regulated TGFBR2 at both the mRNA and protein levels and reduced the phosphorylation of Smad2 and the translocation of Smad2/3 to the nucleus. In keeping, over-expression of miR-9-5p significantly delayed TGF-β1-dependent transformation of dermal fibroblasts, decreasing the expression of ECM protein collagen, type I, alpha 1 (Col1α1), and fibronectin (FN), the amount of secreted collagen proteins, and the expression of the archetypal myofibroblast marker alpha-smooth muscle actin (α-SMA). By contrast, specific inhibition of miR-9-5p resulted in enhanced presence of fibrosis markers. The expression of miR-9-5p was also detected in the skin and plasma in the mouse model of bleomycin-induced dermal fibrosis. Using lentiviral constructs, we demonstrated that miR-9-5p over-expression was also capable of deterring fibrogenesis in this same model. miR-9-5p significantly prevents fibrogenesis in skin fibrosis. This is mediated by an abrogation of TGF-β-mediated signaling through the down-regulation of TGFBR2 expression in HDFs. These results may pave the way for future diagnostic or therapeutic developments for skin fibrosis based on miR-9-5p.
Nallasamy, Shanmugasundaram; Yoshida, Kyoko; Akins, Meredith; Myers, Kristin; Iozzo, Renato
2017-01-01
The extracellular matrix (ECM) plays an active and dynamic role that both reflects and facilitates the functional requirements of a tissue. The mature ECM of the nonpregnant cervix is drastically reorganized during pregnancy to drive changes in tissue mechanics that ensure safe birth. In this study, our research on mice deficient in the proteoglycan decorin have led to the finding that progesterone and estrogen play distinct and complementary roles to orchestrate structural reorganization of both collagen and elastic fibers in the cervix during pregnancy. Abnormalities in collagen and elastic fiber structure and tissue mechanical function evident in the cervix of nonpregnant and early pregnant decorin-null mice transiently recover for the remainder of pregnancy only to return 1 month postpartum. Consistent with the hypothesis that pregnancy levels of progesterone and estrogen may regulate ECM organization and turnover, expressions of factors required for assembly and synthesis of collagen and elastic fibers are temporally regulated, and the ultrastructure of collagen fibrils and elastic fibers is markedly altered during pregnancy in wild-type mice. Finally, utilizing ovariectomized nonpregnant decorin-null mice, we demonstrate structural resolution of collagen and elastic fibers by progesterone or estrogen, respectively, and the potential for both ECM proteins to contribute to mechanical function. These investigations advance understanding of regulatory factors that drive specialized ECM organization and contribute to an understanding of the cervical remodeling process, which may provide insight into potential complications associated with preterm birth that impact 9.6% of live births in the United States. PMID:28204185
Heilig, C W; Concepcion, L A; Riser, B L; Freytag, S O; Zhu, M; Cortes, P
1995-01-01
An environment of high glucose concentration stimulates the synthesis of extracellular matrix (ECM) in mesangial cell (MC) cultures. This may result from a similar increase in intracellular glucose concentration. We theorized that increased uptake, rather than glucose concentration per se is the major determinant of exaggerated ECM formation. To test this, we compared the effects of 35 mM glucose on ECM synthesis in normal MCs with those of 8 mM glucose in the same cells overexpressing the glucose transporter GLUT1 (MCGT1). Increasing medium glucose from 8 to 35 mM caused normal MCs to increase total collagen synthesis and catabolism, with a net 81-90% increase in accumulation. MCs transduced with the human GLUT1 gene (MCGT1) grown in 8 mM glucose had a 10-fold greater GLUT1 protein expression and a 1.9, 2.1, and 2.5-fold increase in cell myo-inositol, lactate production, and cell sorbitol content, respectively, as compared to control MCs transduced with bacterial beta-galactosidase (MCLacZ). MCGT1 also demonstrated increased glucose uptake (5-fold) and increased net utilization (43-fold), and greater synthesis of individual ECM components than MCLacZ. In addition, total collagen synthesis and catabolism were also enhanced with a net collagen accumulation 111-118% greater than controls. Thus, glucose transport activity is an important modulator of ECM formation by MCs; the presence of high extracellular glucose concentrations is not necessarily required for the stimulation of matrix synthesis. Images PMID:7560072
Xu, Qian; Liu, Xiaoling; Liu, Weiwei; Hayashi, Toshihiko; Yamato, Masayuki; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi
2018-05-30
The extracellular matrix (ECM) is a major biomechanical environment for all cells in vivo, and tightly controls wound healing and cancer progression. Type I collagen (Col I) is the most abundant component in ECM and plays an essential role for cell motility control and migration beyond structural support. Our previous results showed that Col I increased the length of primary cilia and the expression of primary cilia-associated proteins in 3T3-L1 cells. The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes for the development and maintenance of tissue functions. In this study, we investigated the role of Hippo/YAP signaling in primary cilia growth of cells cultured on Col I-coated plate, as well as the potential link between primary cilia and migration. At 2-day post-confluence, YAP localization in the nucleus was dramatically increased when the cells were cultured on Col I-coated plate, accompanied by cilia growth. YAP inhibitor verteporfin repressed the growth of primary cilia as well as the expressions of ciliogenesis-associated proteins in confluent 3T3-L1 cells cultured on Col I-coated plate. Moreover, knockdown of either YAP or IFT88, one of the ciliogenesis-associated proteins, reversed the migration of confluent 3T3-L1 cells promoted by Col I-coating. In conclusion, activation of YAP pathway by Col I-coating of culture plate for confluent 3T3-L1 cells is positively associated with the primary cilia growth, which eventually results in promoted migration.
Matrix-Dependent Perturbation of TGFβ Signaling and Disease
Doyle, Jefferson J.; Gerber, Elizabeth E.; Dietz, Harry C.
2012-01-01
Transforming growth factor beta (TGFβ) is a multipotent cytokine that is sequestered in the extracellular matrix (ECM) through interactions with a number of ECM proteins. The ECM serves to concentrate latent TGFβ at sites of intended function, to influence the bioavailability and/or function of TGFβ activators, and perhaps to regulate the intrinsic performance of cell surface effectors of TGFβ signal propagation. The downstream consequences of TGFβ signaling cascades in turn provide feedback modulation of the ECM. This review covers recent examples of how genetic mutations in constituents of the ECM or TGFβ signaling cascade result in altered ECM homeostasis, cellular performance and ultimately disease, with an emphasis on emerging therapeutic strategies that seek to capitalize on this refined mechanistic understanding. PMID:22641039
NASA Technical Reports Server (NTRS)
Globus, R. K.; Moursi, A.; Zimmerman, D.; Lull, J.; Damsky, C.
1995-01-01
The differentiaton of bone cells is a complex multistep process. Bone is somewhat unusual in that it is very actively and continually remodeled in the adult and that maintenance of its mass in the mature organism is exquisitely sensitive to mechanical as well as chemical signals. Bone is also unique because it consists of a very large amount of extracellular matrix (ECM) that is mineralized. The integrin family of ECM receptors has been shown to play an important role in tissue morphogenesis in several systems. Our studies on the regulation of matrix remodeling enzymes by integrins in rabbit synovial fibroblasts show that two b1 integrin fibronectin (FN) receptor complexes (alpha 5 beta 1 and alpha 4 beta 1) cooperate in detecting subtle changes in the composition of the ECM. As a result of signal transduction by these integrins, the levels of mRNA and protein for several members of the metalloproteinase family are regulated in these cells. We have also used antibody and RGD peptide perturbation studies to determine the significance of cell/ECM interactions to normal osteogenesis. We found that interactions between the cell binding domain of FN and integrins are required for both normal morphogenesis and gene expression in cultured osteoblasts that differentiate to form bone-like tissue in culture. These data lead us to propose that beta 1 integrins play an important role in osteoblast differentiation as well as in bone remodeling.
Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.
Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert T; Liu, Xuhui
2014-01-01
extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.
Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.
Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert; Liu, Xuhui
2014-07-01
extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ren; Boudreau, Aaron; Bissell, Mina J
Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemicalmore » cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra - to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.« less
Oktem, G; Vatansever, S; Ayla, S; Uysal, A; Aktas, S; Karabulut, B; Bilir, A
2006-02-01
Multicellular tumor spheroid (MTS) represents a three-dimensional structural form of tumors in laboratory conditions, and it has the characteristics of avascular micrometastases or intervascular spaces of big tumors. Recent studies indicate that extracellular matrix (ECM) proteins play a critical role in tumor metastasis, therefore normal and cancer cells require an ECM for survival, proliferation and differentiation. Doxorubicin and Docetaxel are widely used in the therapy of breast cancer, as well as in in vivo and in vitro studies. In this study, we examined the effect of apoptosis and proliferation of cells on the human breast cancer cell line, MCF-7, by using p53, bcl-2 and Ki67 gene expression, and the tendency to metastasis with extracellular matrix proteins, laminin and type IV collagen after chemotherapy in the spheroid model. The apoptotic cell death in situ was detected by TUNEL method. TUNEL-positive cells and positive immunoreactivities of laminin, type IV collagen, p53 and, bcl-2 were detected in the control group. There was no laminin and type IV collagen immunoreactivities in spheroids of drug groups. While TUNEL-positive cells and p53 immunoreactivity were detected in Docetaxel, Doxorubicin and Docetaxel/Doxorubicin groups, p53 immunoreactivity was not observed in the Docetaxel group. There was no bcl-2 immunoreactivity in either drug group. In addition, we did not detect Ki67 immunoreactivity in both control and drug treatment groups. However, the absence of Ki67 protein in MCF-7 breast multicellular tumor spheroids is possibly related to the cells in G0 or S phase. These chemotherapeutic agents may affect the presence of ECM proteins in this in vitro model of micrometastasis of spheroids. These findings suggest that the possible mechanism of cell death in Doxorubicin and Docetaxel/Doxorubicin treatment groups is related to apoptosis through the p53 pathway. However, we considered the possibility that there is another control mechanism for the Docetaxel group.
Role of the extracellular matrix during neural crest cell migration.
Perris, R; Perissinotto, D
2000-07-01
Once specified to become neural crest (NC), cells occupying the dorsal portion of the neural tube disrupt their cadherin-mediated cell-cell contacts, acquire motile properties, and embark upon an extensive migration through the embryo to reach their ultimate phenotype-specific sites. The understanding of how this movement is regulated is still rather fragmentary due to the complexity of the cellular and molecular interactions involved. An additional intricate aspect of the regulation of NC cell movement is that the timings, modes and patterns of NC cell migration are intimately associated with the concomitant phenotypic diversification that cells undergo during their migratory phase and the fact that these changes modulate the way that moving cells interact with their microenvironment. To date, two interplaying mechanisms appear central for the guidance of the migrating NC cells through the embryo: one involves secreted signalling molecules acting through their cognate protein kinase/phosphatase-type receptors and the other is contributed by the multivalent interactions of the cells with their surrounding extracellular matrix (ECM). The latter ones seem fundamental in light of the central morphogenetic role played by the intracellular signals transduced through the cytoskeleton upon integrin ligation, and the convergence of these signalling cascades with those triggered by cadherins, survival/growth factor receptors, gap junctional communications, and stretch-activated calcium channels. The elucidation of the importance of the ECM during NC cell movement is presently favoured by the augmenting knowledge about the macromolecular structure of the specific ECM assembled during NC development and the functional assaying of its individual constituents via molecular and genetic manipulations. Collectively, these data propose that NC cell migration may be governed by time- and space-dependent alterations in the expression of inhibitory ECM components; the relative ratio of permissive versus non-permissive ECM components; and the supramolecular assembly of permissive ECM components. Six multidomain ECM constituents encoded by a corresponding number of genes appear to date the master ECM molecules in the control of NC cell movement. These are fibronectin, laminin isoforms 1 and 8, aggrecan, and PG-M/version isoforms V0 and V1. This review revisits a number of original observations in amphibian and avian embryos and discusses them in light of more recent experimental data to explain how the interaction of moving NC cells with these ECM components may be coordinated to guide cells toward their final sites during the process of organogenesis.
A Glimpse of Matrix Metalloproteinases in Diabetic Nephropathy
Xu, X.; Xiao, L.; Xiao, P.; Yang, S.; Chen, G.; Liu, F.; Kanwar, Y.Y.; Sun, L.
2014-01-01
Matrix metalloproteinases (MMPs) are proteolytic enzymes belonging to the family of zinc-dependent endopeptidases that are capable of degrading almost all the proteinaceous components of the extracellular matrix (ECM). It is known that MMPs play a role in a number of renal diseases, such as, various forms of glomerulonephritis and tubular diseases, including some of the inherited kidney diseases. In this regard, ECM accumulation is considered to be a hallmark morphologic finding of diabetic nephropathy, which not only is related to the excessive synthesis of matrix proteins, but also to their decreased degradation by the MMPs. In recent years, increasing evidence suggest that there is a good correlation between the activity or expression of MMPs and progression of renal disease in patients with diabetic nephropathy in humans and in various experimental animal models. In such a diabetic milieu, the expression of MMPs is modulated by high glucose, advanced glycation end products (AGEs), TGF-β, reactive oxygen species (ROS), transcription factors and some of the microRNAs. In this review, we focused on the structure and functions of MMPs, and their role in the pathogenesis of diabetic nephropathy. PMID:25039784
Wan, Yi-gang; Sun, Wei; Dou, Chen-hui
2011-04-01
To explore the potential molecular mechanisms of multi-glycoside of Tripterygium wilfordii Hook. f. (GTW) for ameliorating glomerulosclerosis (GS) by observing its intervention effect on transforming growth factor (TGF)-beta1/Smad signaling pathway in adriamycin-induced nephropathy (ADRN) model rat. Fifteen female Sprague-Dawley (SD) rats were randomly divided into three groups, the sham-operation group (A), the untreated model group (B), and the GTW treated model group (C). Rats in Group B and C were made into ADRN model by right nephrectomy and intravenous injection of adriamycin (ADR, 0. 4 mL and 0. 2 mL respectively in 4 weeks). After the model was successfully established, rats in Group C were orally given GTW (50 mg/kg per day), while rats in Group B were intervened with distilled water. The intervention for two groups was 6 weeks. Rats' body weight were weighed and 24 h urinary protein excretion (Upro) detected by the end of the 2nd, 4th, 8th and 10th week. All rats were sacrificed at the end of 10th week after operation to withdraw blood and kidney tissue to examine serum biochemical parameters, glomerular morphological changes, alpha-smooth muscle actin (alpha-SMA), and collagen type I expression. Besides, the mRNA expressions of TGF-beta1, Smad3 and Smad7, as well as protein expressions of TGF-beta1, and phosphorylated Smad2/3 (p-Smad2/3) in glomeruli were detected by RT-PCR or Western blotting. As compared with Group B, in Group C, Upro and serum albumin were improved significantly, but no difference between groups was found in levels of blood urea nitrogen(BUN), serum creatinine(SCr), or hepatic cell injury. Mesangial cell proliferation, extracellular matrix (ECM) and collagen deposition were suppressed by GTW. Expressions of alpha-SMA and collagen type I decreased, and the characteristic changes of GS were attenuated. The mRNA expressions of TGF-P,31, Smad3 and protein expression of TGF-beta1, p-Smad2/3 in renal tissues were down-regulated, while the protein expression of Smad7 mRNA was up-regulated. GTW showed effect in ameliorating GS in vivo. It could reduce the ECM deposition and improve GS by way of intervening TGF-beta1/Smad signaling pathway in the kidney through regulating the mRNA or protein expressions of key signal molecules, such as Smad3 and p-Smad2/3.
Palchesko, Rachelle N; Szymanski, John M; Sahu, Amrita; Feinberg, Adam W
2014-09-01
Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo . Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments.
Palchesko, Rachelle N.; Szymanski, John M.; Sahu, Amrita; Feinberg, Adam W.
2014-01-01
Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo. Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments. PMID:25530816
Wu, Laying; Lee, L Andrew; Niu, Zhongwei; Ghoshroy, Soumitra; Wang, Qian
2011-08-02
Topographical features ranging from micro- to nanometers can affect cell orientation and migratory pathways, which are important factors in tissue engineering and tumor migration. In our previous study, a convective assembly of bacteriophage M13 resulted in thin films which could be used to control the alignment of cells. However, several questions regarding its underlying reasons to dictate cell alignment remained unanswered. Here, we further study the nanometer topographical features generated by the bacteriophage M13 crystalline film, which results in the alignment of the cells and extracellular matrix (ECM) proteins. Sequential imaging analyses at micro- and nanoscale levels of aligned cells and fibrillar matrix proteins were documented using scanning electron microscopy and immunofluorescence microscopy. As a result, we observed baby hamster kidney cells with higher degree of alignment on the ordered M13 substrates than NIH-3T3 fibroblasts, a difference which could be attributed to the intrinsic nature of the cells' production of ECM proteins. The results from this study provide a crucial insight into the topographical features of a biological thin film, which can be utilized to control the orientation of cells and surrounding ECM proteins.
Isolation, characterization, and aggregation of a structured bacterial matrix precursor.
Chai, Liraz; Romero, Diego; Kayatekin, Can; Akabayov, Barak; Vlamakis, Hera; Losick, Richard; Kolter, Roberto
2013-06-14
Biofilms are surface-associated groups of microbial cells that are embedded in an extracellular matrix (ECM). The ECM is a network of biopolymers, mainly polysaccharides, proteins, and nucleic acids. ECM proteins serve a variety of structural roles and often form amyloid-like fibers. Despite the extensive study of the formation of amyloid fibers from their constituent subunits in humans, much less is known about the assembly of bacterial functional amyloid-like precursors into fibers. Using dynamic light scattering, atomic force microscopy, circular dichroism, and infrared spectroscopy, we show that our unique purification method of a Bacillus subtilis major matrix protein component results in stable oligomers that retain their native α-helical structure. The stability of these oligomers enabled us to control the external conditions that triggered their aggregation. In particular, we show that stretched fibers are formed on a hydrophobic surface, whereas plaque-like aggregates are formed in solution under acidic pH conditions. TasA is also shown to change conformation upon aggregation and gain some β-sheet structure. Our studies of the aggregation of a bacterial matrix protein from its subunits shed new light on assembly processes of the ECM within bacterial biofilms.
Keating, Dominic T; Sadlier, Denise M; Patricelli, Andrea; Smith, Sinead M; Walls, Dermot; Egan, Jim J; Doran, Peter P
2006-09-01
The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF) remain elusive. Transforming Growth Factor beta 1(TGF-beta1) is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549) in response to TGF-beta1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-beta1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM) proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO) databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing) family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity) of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-beta1, suggesting a potential role for these molecules in ECM accumulation in IPF.
Li, X; Velleman, S G
2009-02-01
During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.
Li, Jing; Thielemann, Christiane; Reuning, Ute; Johannsmann, Diethelm
2005-01-15
The quartz crystal microbalance (QCM) was used to monitor specific, integrin-mediated adhesion of human ovarian cancer cells to distinct extracellular matrix (ECM) proteins immobilized on gold-coated quartz crystal resonators. The QCM was operated in the impedance analysis mode, where frequency shift as well as bandwidth are accessible on a broad range of overtones. The increase in bandwidth caused by covering the quartz resonator with cells was reproducible and largely independent of overtone order, whereas the frequency shift displayed some variability. Thus the bandwidth proved to be the more robust parameter for sensing cell adhesive events. The bandwidth increased in proportion to the number of seeded cells to the quartz crystal as long as the number was below 150,000 cells/ml. Comparing the resonance parameters on different harmonics, one finds that viscoelastic modeling with homogeneous layer systems cannot reproduce the results: lateral heterogeneity has to be taken into account. The differences in adhesive strength of human ovarian cancer cells towards selected ECM proteins monitored by QCM was in good agreement with data obtained by conventional cell adhesion assays. Strong cell adhesion was observed to the ECM proteins vitronectin (VN) and fibronectin (FN), while only weak attachment occurred on laminin. In order to prove specific, integrin alphavbeta3-mediated cell adhesion to its ligands FN and VN, the cyclic integrin alphavbeta3-directed peptide c(RGDfV) was used as competitor and significantly reversed cell adhesion. Since integrin interaction with ECM proteins is dependent on the presence of bivalent cations, cell detachment was also seen after treatment of cell monolayers with the chelator ethylene-dinitro-tetra-acetic acid (EDTA). The QCM technique is a reliable method to monitor cell adsorption to ECM-pretreated surfaces in real time. It may be an alternative tool for screening specific and selective antagonists of integrin/ECM interaction.
Michel, Jean-Baptiste; Jondeau, Guillaume; Milewicz, Dianna M
2018-03-15
Vascular smooth muscle cells (vSMCs) play a crucial role in both the pathogenesis of Aneurysms and Dissections of the ascending thoracic aorta (TAAD) in humans and in the associated adaptive compensatory responses, since thrombosis and inflammatory processes are absent in the majority of cases. Aneurysms and dissections share numerous characteristics, including aetiologies and histopathological alterations: vSMC disappearance, medial areas of mucoid degeneration, and extracellular matrix (ECM) breakdown. Three aetiologies predominate in TAAD in humans: (i) genetic causes in heritable familial forms, (ii) an association with bicuspid aortic valves, and (iii) a sporadic degenerative form linked to the aortic aging process. Genetic forms include mutations in vSMC genes encoding for molecules of the ECM or the TGF-β pathways, or participating in vSMC tone. On the other hand, aneurysms and dissections, whatever their aetiologies, are characterized by an increase in wall permeability leading to transmural advection of plasma proteins which could interact with vSMCs and ECM components. In this context, blood-borne plasminogen appears to play an important role, because its outward convection through the wall is increased in TAAD, and it could be converted to active plasmin at the vSMC membrane. Active plasmin can induce vSMC disappearance, proteolysis of adhesive proteins, activation of MMPs and release of TGF-β from its ECM storage sites. Conversely, vSMCs could respond to aneurysmal biomechanical and proteolytic injury by an epigenetic phenotypic switch, including constitutional overexpression and nuclear translocation of Smad2 and an increase in antiprotease and ECM protein synthesis. In contrast, such an epigenetic phenomenon is not observed in dissections. In this context, dysfunction of proteins involved in vSMC tone are interesting to study, particularly in interaction with plasma protein transport through the wall and TGF-β activation, to establish the relationship between these dysfunctions and ECM proteolysis.
Extracellular matrix and its receptors in Drosophila neural development
Broadie, Kendal; Baumgartner, Stefan; Prokop, Andreas
2011-01-01
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: 1) neural progenitor proliferation, 2) axonal growth and pathfinding and 3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions. PMID:21688401
Su, Pan; Chen, Sheng; Zheng, Yu Han; Zhou, Hai Yan; Yan, Cheng Hua; Yu, Fang; Zhang, Ya Guang; He, Lan; Zhang, Yuan; Wang, Yanming; Wu, Lei; Wu, Xiaoai; Yu, Bingke; Ma, Li Yan; Yang, Zhiru; Wang, Jianhua; Zhao, Guixian; Zhu, Jinfang; Wu, Zhi-Ying; Sun, Bing
2016-01-01
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS characterized by demyelination and axonal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model for human MS. While Th17 cells are important for the disease induction, Th2 cells are inhibitory in this process. Here, we report the effect of a Th2 cell product, extracellular matrix protein 1 (ECM1), on the differentiation of Th17 cells and the development of experimental autoimmune encephalomyelitis (EAE). Our results demonstrated that ECM1 administration from day 1 to day 7 following the EAE induction could ameliorate the Th17 cell responses and EAE development in vivo. Further mechanism study revealed that ECM1 could interact with αv integrin on DC cells and block the αv integrin-mediated activation of latent TGF-β, resulting in an inhibition of Th17 differentiation at early stage of EAE induction. Furthermore, overexpression of ECM1 in vivo significantly inhibited Th17 cell response and EAE induction in ECM1 transgenic mouse. Overall, our work has identified a novel function of ECM1 in inhibiting Th17 differentiation in the EAE model, suggesting that ECM1 may have a potential to be used in clinical applications for understanding the pathogenesis of MS and its diagnosis. PMID:27316685
Endosteal-like extracellular matrix expression on melt electrospun written scaffolds.
Muerza-Cascante, Maria Lourdes; Shokoohmand, Ali; Khosrotehrani, Kiarash; Haylock, David; Dalton, Paul D; Hutmacher, Dietmar W; Loessner, Daniela
2017-04-01
Tissue engineering technology platforms constitute a unique opportunity to integrate cells and extracellular matrix (ECM) proteins into scaffolds and matrices that mimic the natural microenvironment in vitro. The development of tissue-engineered 3D models that mimic the endosteal microenvironment enables researchers to discover the causes and improve treatments for blood and immune-related diseases. The aim of this study was to establish a physiologically relevant in vitro model using 3D printed scaffolds to assess the contribution of human cells to the formation of a construct that mimics human endosteum. Melt electrospun written scaffolds were used to compare the suitability of primary human osteoblasts (hOBs) and placenta-derived mesenchymal stem cells (plMSCs) in (non-)osteogenic conditions and with different surface treatments. Using osteogenic conditions, hOBs secreted a dense ECM with enhanced deposition of endosteal proteins, such as fibronectin and vitronectin, and osteogenic markers, such as osteopontin and alkaline phosphatase, compared to plMSCs. The expression patterns of these proteins were reproducibly identified in hOBs derived from three individual donors. Calcium phosphate-coated scaffolds induced the expression of osteocalcin by hOBs when maintained in osteogenic conditions. The tissue-engineered endosteal microenvironment supported the growth and migration of primary human haematopoietic stem cells (HSCs) when compared to HSCs maintained using tissue culture plastic. This 3D testing platform represents an endosteal bone-like tissue and warrants future investigation for the maintenance and expansion of human HSCs. This work is motivated by the recent interest in melt electrospinning writing, a 3D printing technique used to produce porous scaffolds for biomedical applications in regenerative medicine. Our team has been among the pioneers in building a new class of melt electrospinning devices for scaffold-based tissue engineering. These scaffolds allow structural support for various cell types to invade and deposit their own ECM, mimicking a characteristic 3D microenvironment for experimental studies. We used melt electrospun written polycaprolactone scaffolds to develop an endosteal bone-like tissue that promotes the growth of HSCs. We combine tissue engineering concepts with cell biology and stem cell research to design a physiologically relevant niche that is of prime interest to the scientific community. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Siegel, Dawn H; Ashton, Gabrielle H S; Penagos, Homero G; Lee, James V; Feiler, Heidi S; Wilhelmsen, Kirk C; South, Andrew P; Smith, Frances J D; Prescott, Alan R; Wessagowit, Vesarat; Oyama, Noritaka; Akiyama, Masashi; Al Aboud, Daifullah; Al Aboud, Khalid; Al Githami, Ahmad; Al Hawsawi, Khalid; Al Ismaily, Abla; Al-Suwaid, Raouf; Atherton, David J; Caputo, Ruggero; Fine, Jo-David; Frieden, Ilona J; Fuchs, Elaine; Haber, Richard M; Harada, Takashi; Kitajima, Yasuo; Mallory, Susan B; Ogawa, Hideoki; Sahin, Sedef; Shimizu, Hiroshi; Suga, Yasushi; Tadini, Gianluca; Tsuchiya, Kikuo; Wiebe, Colin B; Wojnarowska, Fenella; Zaghloul, Adel B; Hamada, Takahiro; Mallipeddi, Rajeev; Eady, Robin A J; McLean, W H Irwin; McGrath, John A; Epstein, Ervin H
2003-07-01
Kindler syndrome is an autosomal recessive disorder characterized by neonatal blistering, sun sensitivity, atrophy, abnormal pigmentation, and fragility of the skin. Linkage and homozygosity analysis in an isolated Panamanian cohort and in additional inbred families mapped the gene to 20p12.3. Loss-of-function mutations were identified in the FLJ20116 gene (renamed "KIND1" [encoding kindlin-1]). Kindlin-1 is a human homolog of the Caenorhabditis elegans protein UNC-112, a membrane-associated structural/signaling protein that has been implicated in linking the actin cytoskeleton to the extracellular matrix (ECM). Thus, Kindler syndrome is, to our knowledge, the first skin fragility disorder caused by a defect in actin-ECM linkage, rather than keratin-ECM linkage.
Zhang, Deying; Zhang, Yong; Zhang, Yuanyuan; Yi, Hualin; Wang, Zhan; Wu, Rongpei; He, Dawei; Wei, Guanghui; Wei, Shicheng; Hu, Yun; Deng, Junhong; Criswell, Tracy; Yoo, James; Zhou, Yu; Atala, Anthony
2017-08-01
Skeletal muscle precursor cells (MPCs) are considered a key candidate for cell therapy in the treatment of skeletal muscle dysfunction due to injury, disease, or age. However, expansion of a sufficient number of functional skeletal muscle cells in vitro from a small tissue biopsy has been challenging due to changes in phenotypic expression of these cells under traditional culture conditions. Thus, the aim of the study was to develop a better culture system for the expansion and myo-differentiation of MPCs that could further be used for therapy. For this purpose, we developed an ideal method of tissue decellularization and compared the ability of different matrices to support MPC growth and differentiation. Porcine-derived skeletal muscle and liver and kidney extracellular matrix (ECM) were generated by decellularization methods consisting of distilled water, 0.2 mg/mL DNase, or 5% fetal bovine serum. Acellular matrices were further homogenized, dissolved, and combined with a hyaluronic acid-based hydrogel decorated with heparin (ECM-HA-HP). The cell proliferation and myogenic differentiation capacity of human MPCs were assessed when grown on gel alone, ECM, or each ECM-HA-HP substrate. Human MPC proliferation was significantly enhanced when cultured on the ECM-HA-HP substrates compared to the other substrates tested, with the greatest proliferation on the muscle ECM-HA-HP (mECM-HA-HP) substrate. The number of differentiated myotubes was significantly increased on the mECM-HA-HP substrate compared to the other gel-ECM substrates, as well as the numbers of MPCs expressing specific myogenic cell markers (i.e., myosin, desmin, myoD, and myf5). In conclusion, skeletal mECM-HA-HP as a culture substrate provided an optimal culture microenvironment potentially due to its similarity to the in vivo environment. These data suggest a potential use of skeletal muscle-derived ECM gel for the expansion and differentiation of human MPCs for cell-based therapy for skeletal muscle dysfunction.
Hydrogels Derived from Central Nervous System Extracellular Matrix
Medberry, Christopher J.; Crapo, Peter M.; Siu, Bernard F.; Carruthers, Christopher A.; Wolf, Matthew T.; Nagarkar, Shailesh P.; Agrawal, Vineet; Jones, Kristen E.; Kelly, Jeremy; Johnson, Scott A.; Velankar, Sachin S.; Watkins, Simon C.; Modo, Michel
2012-01-01
Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair. PMID:23158935
Mohanty, S; Jermyn, K A; Early, A; Kawata, T; Aubry, L; Ceccarelli, A; Schaap, P; Williams, J G; Firtel, R A
1999-08-01
Dd-STATa is a structural and functional homologue of the metazoan STAT (Signal Transducer and Activator of Transcription) proteins. We show that Dd-STATa null cells exhibit several distinct developmental phenotypes. The aggregation of Dd-STATa null cells is delayed and they chemotax slowly to a cyclic AMP source, suggesting a role for Dd-STATa in these early processes. In Dd-STATa null strains, slug-like structures are formed but they have an aberrant pattern of gene expression. In such slugs, ecmB/lacZ, a marker that is normally specific for cells on the stalk cell differentiation pathway, is expressed throughout the prestalk region. Stalk cell differentiation in Dictyostelium has been proposed to be under negative control, mediated by repressor elements present in the promoters of stalk cell-specific genes. Dd-STATa binds these repressor elements in vitro and the ectopic expression of ecmB/lacZ in the null strain provides in vivo evidence that Dd-STATa is the repressor protein that regulates commitment to stalk cell differentiation. Dd-STATa null cells display aberrant behavior in a monolayer assay wherein stalk cell differentiation is induced using the stalk cell morphogen DIF. The ecmB gene, a general marker for stalk cell differentiation, is greatly overinduced by DIF in Dd-STATa null cells. Also, Dd-STATa null cells are hypersensitive to DIF for expression of ST/lacZ, a marker for the earliest stages in the differentiation of one of the stalk cell sub-types. We suggest that both these manifestations of DIF hypersensitivity in the null strain result from the balance between activation and repression of the promoter elements being tipped in favor of activation when the repressor is absent. Paradoxically, although Dd-STATa null cells are hypersensitive to the inducing effects of DIF and readily form stalk cells in monolayer assay, the Dd-STATa null cells show little or no terminal stalk cell differentiation within the slug. Dd-STATa null slugs remain developmentally arrested for several days before forming very small spore masses supported by a column of apparently undifferentiated cells. Thus, complete stalk cell differentiation appears to require at least two events: a commitment step, whereby the repression exerted by Dd-STATa is lifted, and a second step that is blocked in a Dd-STATa null organism. This latter step may involve extracellular cAMP, a known repressor of stalk cell differentiation, because Dd-STATa null cells are abnormally sensitive to the inhibitory effects of extracellular cyclic AMP.
EMMPRIN regulates β1 integrin-mediated adhesion through Kindlin-3 in human melanoma cells.
Delyon, Julie; Khayati, Farah; Djaafri, Ibtissem; Podgorniak, Marie-Pierre; Sadoux, Aurélie; Setterblad, Niclas; Boutalbi, Zineb; Maouche, Kamel; Maskos, Uwe; Menashi, Suzanne; Lebbé, Céleste; Mourah, Samia
2015-06-01
EMMPRIN is known to promote tumor invasion through extracellular matrix (ECM) degradation. Here we report that EMMPRIN can regulate melanoma cell adhesion to the ECM through an interaction with β1 integrin involving kindlin-3. In this study, EMMPRIN knockdown in the human melanoma cell line M10 using siRNA decreased cell invasion and significantly increased cell adhesion and spreading. A morphological change from a round to a spread shape was observed associated with enhanced phalloidin-labelled actin staining. In situ proximity ligation assay and co-immunoprecipitation revealed that EMMPRIN silencing increased the interaction of β1 integrin with kindlin-3, a focal adhesion protein. This was associated with an increase in β1 integrin activation and a decrease in the phosphorylation of the downstream integrin kinase FAK. Moreover, the expression at both the transcript and protein level of kindlin-3 and of β1 integrin was inversely regulated by EMMPRIN. EMMPRIN did not regulate either talin expression or its interaction with β1 integrin. These results are consistent with our in vivo demonstration that EMMPRIN inhibition increased β1 integrin activation and its interaction with kindlin-3. To conclude, these findings reveal a new role of EMMPRIN in tumor cell migration through ß1 integrin/kindlin-3-mediated adhesion pathway. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Horiguchi, Kotaro; Kouki, Tom; Fujiwara, Ken; Tsukada, Takehiro; Ly, Floren; Kikuchi, Motoshi; Yashiro, Takashi
2012-08-01
Folliculostellate (FS) cells in the anterior pituitary gland appear to have multifunctional properties. FS cells connect to each other at gap junctions and thereby form a histological and functional network. We have performed a series of studies on network formation in FS cells and recently reported that FS cells markedly prolong their cytoplasmic processes and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In this study, we investigated the mechanism of this extension of FS cell cytoplasmic processes under the influence of laminin and found that laminin promoted stress fiber formation within FS cells. Next, we noted that formation of stress fibers in FS cells was mediated by syndecan-4, a transmembrane proteoglycan that binds ECM and soluble factors via their extracellular glycosaminoglycan chain. We then observed that expressions of syndecan-4 and α-actinin (a microfilament bundling protein that cross-links actin stress fibers in FS cells) were upregulated by laminin. Using specific siRNA of syndecan-4, actin polymerization of FS cells was inhibited. Our findings suggest that FS cells received a signal from laminin-syndecan-4 interaction, which resulted in morphological changes, and that the formation of a morphological and functional network in FS cells was transduced by a syndecan-4-dependent mechanism in the presence of ECM.
Chastain, Sara R; Kundu, Anup K; Dhar, Sanjay; Calvert, Jay W; Putnam, Andrew J
2006-07-01
The osteogenic potential of mesenchymal stem cells (MSCs) cultured on poly(lactide-co-glycolide) (PLGA) or poly(caprolactone) (PCL), two widely used polymeric biomaterials that have been reported to differentially support osteogenic differentiation, was compared in these studies. Here we report that MSCs cultured in 3-D PLGA scaffolds for up to 5 weeks significantly upregulate osteocalcin gene expression levels. By contrast, osteocalcin expression was markedly downregulated in 3-D PCL-based constructs over the same time course. We hypothesized that differential adsorption of extracellular matrix (ECM) proteins present in serum-containing culture medium and subsequent differences in integrin-mediated adhesion are responsible for these differences, and tested this hypothesis using thin (2-D) polymeric films. Supporting this hypothesis, significant amounts of fibronectin and vitronectin deposited onto both materials in serum-containing osteogenic media, with type-I collagen present in lower amounts. Adhesion-blocking studies revealed that MSCs adhere to PCL primarily via vitronectin, while type-I collagen mediates their attachment to PLGA. These adhesive mechanisms correlated with higher levels of alkaline phosphatase (ALP) activity after 2 weeks of monolayer culture on PLGA versus PCL. These data suggest that the initial adhesion of MSCs to PLGA via type-I collagen fosters osteogenesis while adhesion to PCL via vitronectin does not, and stress the need for an improved molecular understanding of cell-ECM interactions in stem cell-based therapies. Copyright (c) 2006 Wiley Periodicals, Inc.
Popov, Ivan K; Kwon, Taejoon; Crossman, David K; Crowley, Michael R; Wallingford, John B; Chang, Chenbei
2017-06-15
During early vertebrate embryogenesis, cell fate specification is often coupled with cell acquisition of specific adhesive, polar and/or motile behaviors. In Xenopus gastrulae, tissues fated to form different axial structures display distinct motility. The cells in the early organizer move collectively and directionally toward the animal pole and contribute to anterior mesendoderm, whereas the dorsal and the ventral-posterior trunk tissues surrounding the blastopore of mid-gastrula embryos undergo convergent extension and convergent thickening movements, respectively. While factors regulating cell lineage specification have been described in some detail, the molecular machinery that controls cell motility is not understood in depth. To gain insight into the gene battery that regulates both cell fates and motility in particular embryonic tissues, we performed RNA sequencing (RNA-seq) to investigate differentially expressed genes in the early organizer, the dorsal and the ventral marginal zone of Xenopus gastrulae. We uncovered many known signaling and transcription factors that have been reported to play roles in embryonic patterning during gastrulation. We also identified many uncharacterized genes as well as genes that encoded extracellular matrix (ECM) proteins or potential regulators of actin cytoskeleton. Co-expression of a selected subset of the differentially expressed genes with activin in animal caps revealed that they had distinct ability to block activin-induced animal cap elongation. Most of these factors did not interfere with mesodermal induction by activin, but an ECM protein, EFEMP2, inhibited activin signaling and acted downstream of the activated type I receptor. By focusing on a secreted protein kinase PKDCC1, we showed with overexpression and knockdown experiments that PKDCC1 regulated gastrulation movements as well as anterior neural patterning during early Xenopus development. Overall, our studies identify many differentially expressed signaling and cytoskeleton regulators in different embryonic regions of Xenopus gastrulae and imply their functions in regulating cell fates and/or behaviors during gastrulation. Copyright © 2016 Elsevier Inc. All rights reserved.
The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue.
Swift, Joe; Discher, Dennis E
2014-07-15
How cells respond to physical cues in order to meet and withstand the physical demands of their immediate surroundings has been of great interest for many years, with current research efforts focused on mechanisms that transduce signals into gene expression. Pathways that mechano-regulate the entry of transcription factors into the cell nucleus are emerging, and our most recent studies show that the mechanical properties of the nucleus itself are actively controlled in response to the elasticity of the extracellular matrix (ECM) in both mature and developing tissue. In this Commentary, we review the mechano-responsive properties of nuclei as determined by the intermediate filament lamin proteins that line the inside of the nuclear envelope and that also impact upon transcription factor entry and broader epigenetic mechanisms. We summarize the signaling pathways that regulate lamin levels and cell-fate decisions in response to a combination of ECM mechanics and molecular cues. We will also discuss recent work that highlights the importance of nuclear mechanics in niche anchorage and cell motility during development, hematopoietic differentiation and cancer metastasis, as well as emphasizing a role for nuclear mechanics in protecting chromatin from stress-induced damage. © 2014. Published by The Company of Biologists Ltd.
The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue
Swift, Joe; Discher, Dennis E.
2014-01-01
ABSTRACT How cells respond to physical cues in order to meet and withstand the physical demands of their immediate surroundings has been of great interest for many years, with current research efforts focused on mechanisms that transduce signals into gene expression. Pathways that mechano-regulate the entry of transcription factors into the cell nucleus are emerging, and our most recent studies show that the mechanical properties of the nucleus itself are actively controlled in response to the elasticity of the extracellular matrix (ECM) in both mature and developing tissue. In this Commentary, we review the mechano-responsive properties of nuclei as determined by the intermediate filament lamin proteins that line the inside of the nuclear envelope and that also impact upon transcription factor entry and broader epigenetic mechanisms. We summarize the signaling pathways that regulate lamin levels and cell-fate decisions in response to a combination of ECM mechanics and molecular cues. We will also discuss recent work that highlights the importance of nuclear mechanics in niche anchorage and cell motility during development, hematopoietic differentiation and cancer metastasis, as well as emphasizing a role for nuclear mechanics in protecting chromatin from stress-induced damage. PMID:24963133
Sahoo, Sambit; Toh, Siew Lok; Goh, James C H
2010-04-01
An ideal scaffold that provides a combination of suitable mechanical properties along with biological signals is required for successful ligament/tendon regeneration in mesenchymal stem cell-based tissue engineering strategies. Among the various fibre-based scaffolds that have been used, hybrid fibrous scaffolds comprising both microfibres and nanofibres have been recently shown to be particularly promising. This study developed a biohybrid fibrous scaffold system by coating bioactive bFGF-releasing ultrafine PLGA fibres over mechanically robust slowly-degrading degummed knitted microfibrous silk scaffolds. On the ECM-like biomimetic architecture of ultrafine fibres, sustained release of bFGF mimicked the ECM in function, initially stimulating mesenchymal progenitor cell (MPC) proliferation, and subsequently, their tenogeneic differentiation. The biohybrid scaffold system not only facilitated MPC attachment and promoted cell proliferation, with cells growing both on ultrafine PLGA fibres and silk microfibres, but also stimulated tenogeneic differentiation of seeded MPCs. Upregulated gene expression of ligament/tendon-specific ECM proteins and increased collagen production likely contributed to enhancing mechanical properties of the constructs, generating a ligament/tendon analogue that has the potential to be used to repair injured ligaments/tendons. Copyright 2010 Elsevier Ltd. All rights reserved.
Teoh-Fitzgerald, ML; Fitzgerald, MP; Zhong, W; Askeland, RW; Domann, FE
2013-01-01
Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging activity could be an effective strategy for breast cancer treatment. PMID:23318435
Fundamentals of protein and cell interactions in biomaterials.
Aiyelabegan, Hammed Tanimowo; Sadroddiny, Esmaeil
2017-04-01
The extracellular matrix (ECM) is an active and complex microenvironment with outstanding biomechanical, biophysical, and biochemical characteristics, which can indirectly or directly controls cell adhesion, migration, proliferation, and differentiation, as well as partaking in regeneration and homeostasis of organs and tissues. The ECM has captivated a great deal of attention with the rapid progress of tissue engineering (TE) in the field of regenerative medicine (RM). Approaches to TE, RM and cancer therapy center on the necessity to deliver cell signals to direct cell proliferation and differentiation. These "external signals" are induced from cell-cell, and cell-ECM, interactions, as well as from physico-chemical, mechanical stimuli and growth factors. With the advent of new biomaterials such as casein, we gave a general insight into cell-ECM protein interactions in biomaterials and their applications in TE, RM and cancer therapy. An account of the main ECM molecules and cellular receptors with emphasis on integrins and its ligands was given, their effect on the induction of particular signal transduction pathways is also elucidated. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Wong, Maelene L.; Wong, Janelle L.; Horn, Rebecca M.; Sannajust, Kimberley C.; Rice, Dawn A.
2016-01-01
Effective solubilization of proteins by chaotropes in proteomic applications motivates their use in solubilization-based antigen removal/decellularization strategies. A high urea concentration has previously been reported to significantly reduce lipophilic antigen content of bovine pericardium (BP); however, structure and function of the resultant extracellular matrix (ECM) scaffold were compromised. It has been recently demonstrated that in vivo ECM scaffold fate is determined by two primary outcome measures as follows: (1) sufficient reduction in antigen content to avoid graft-specific adaptive immune responses and (2) maintenance of native ECM structural proteins to avoid graft-specific innate responses. In this work, we assessed residual antigenicity, ECM architecture, ECM content, thermal stability, and tensile properties of BP subjected to a gradient of urea concentrations to determine whether an intermediate concentration exists at which both antigenicity and structure–function primary outcome measures for successful in vivo scaffold outcome can simultaneously be achieved. Alteration in tissue structure–function properties at various urea concentrations with decreased effectiveness for antigen removal makes use of urea-mediated antigen removal unlikely to be suitable for functional scaffold generation. PMID:27230226
MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin
Shi, Feng; Sottile, Jane
2011-01-01
The extracellular matrix (ECM) is dynamically remodeled by cells during development, normal tissue homeostasis and in a variety of disease processes. We previously showed that fibronectin is an important regulator of ECM remodeling. The deposition and/or polymerization of fibronectin into the ECM controls the deposition and stability of other ECM molecules. In addition, agents that inhibit fibronectin polymerization promote the turnover of fibronectin fibrils and enhance ECM fibronectin endocytosis and intracellular degradation. Endocytosis of ECM fibronectin is regulated by β1 integrins, including α5β1 integrin. We have examined the role of extracellular proteases in regulating ECM fibronectin turnover. Our data show that membrane type matrix metalloproteinase 1 (MT1-MMP; also known as MMP14) is a crucial regulator of fibronectin turnover. Cells lacking MT1-MMP show reduced turnover and endocytosis of ECM fibronectin. MT1-MMP regulates ECM fibronectin remodeling by promoting extracellular cleavage of fibronectin and by regulating α5β1-integrin endocytosis. Our data also show that fibronectin polymerization stabilizes fibronectin fibrils and inhibits ECM fibronectin endocytosis by inhibiting α5β1-integrin endocytosis. These data are the first to show that an ECM protein and its modifying enzyme can regulate integrin endocytosis. These data also show that integrin trafficking plays a major role in modulating ECM fibronectin remodeling. The dual dependence of ECM fibronectin turnover on extracellular proteolysis and endocytosis highlights the complex regulatory mechanisms that control ECM remodeling to ensure maintenance of proper tissue function. PMID:22159414
Linyi, Cai; Xiangli, Kong; Jing, Xie
2016-06-01
This study aimed to investigate the effects of in vitro continuous passaging on the morphological phenotype and differentiation characteristics of mouse hyaline chondrocytes, as well as on the balance of the extracellular matrix (ECM). Enzymatic digestion was conducted to isolate mouse hyaline chondrocytes, which expanded over five passages in vitro. Hematoxylin-eosin stain was used to show the changes in chondrocyte morphology. Semi-quantitative polymerase chain reaction was performed to analyze the mRNA changes in the marker genes, routine genes, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs) in chondrocytes. Zymography was carried out to elucidate changes in gelatinase activities. After continuous expansion in vitro, the morphology of round or polygonal chondrocytes changed to elongated and spindled shape. The expression of marker genes significantly decreased (P < 0.05), and it was almost negatively expressed by P5 chondrocytes. By contrast, the down regulation of routine genes was insignificant. The gene expression levels of MMPs and TIMPs both decreased (P < 0.05), but the change in MMP-1 and TIMP-1 was not statistically significant (P > 0.05). Meanwhile, the ratio of MMPs/TIMPs was altered. At the protein level, the activities of gelatinases decreased after passaging, especially for P4 and P5 chondrocytes (P < 0.05). Serially passaged chondrocytes dedifferentiated and lost specific phenotypic characteristics during in vitro expansion culture. Simultaneously, the anabolism and catabolism of the cartilage ECM became uncontrollable and led to the imbalance of ECM homeostasis. When hyaline chondrocytes are applied in research on relevant diseases or cartilage tissue engineering, P0-P2 chondrocytes should be used.
Tissue-Engineered Nanofibrous Nerve Grafts for Enhancing the Rate of Nerve Regeneration
2015-10-01
structured nanofibrous biodegradable nerve graft system that present ECM protein, neurotrophic factor, and pre-seeded with bone marrow stromal cells in...nanofibrous biodegradable nerve graft system that present extracellular matrix (ECM) protein, nerve growth factor, and pre-seeded with bone marrow stromal...proposed novel structured nanofibrous biodegradable grafts will provide the micro environment, bioactivity, transport features and mechanics ideal for
Sun, Huanxing; Zhu, Yangyang; Pan, Hongyi; Chen, Xiaosong; Balestrini, Jenna L; Lam, TuKiet T; Kanyo, Jean E; Eichmann, Anne; Gulati, Mridu; Fares, Wassim H; Bai, Hanwen; Feghali-Bostwick, Carol A; Gan, Ye; Peng, Xueyan; Moore, Meagan W; White, Eric S; Sava, Parid; Gonzalez, Anjelica L; Cheng, Yuwei; Niklason, Laura E; Herzog, Erica L
2016-05-01
Fibrocytes are collagen-producing leukocytes that accumulate in patients with systemic sclerosis (SSc; scleroderma)-related interstitial lung disease (ILD) via unknown mechanisms that have been associated with altered expression of neuroimmune proteins. The extracellular matrix (ECM) influences cellular phenotypes. However, a relationship between the lung ECM and fibrocytes in SSc has not been explored. The aim of this study was to use a novel translational platform based on decellularized human lungs to determine whether the lung ECM of patients with scleroderma controls the development of fibrocytes from peripheral blood mononuclear cells. We performed biomechanical evaluation of decellularized scaffolds prepared from lung explants from healthy control subjects and patients with scleroderma, using tensile testing and biochemical and proteomic analysis. Cells obtained from healthy controls and patients with SSc-related ILD were cultured on these scaffolds, and CD45+pro-ColIα1+ cells meeting the criteria for fibrocytes were quantified. The contribution of the neuromolecule netrin-1 to fibrosis was assessed using neutralizing antibodies in this system and by administering bleomycin via inhalation to netrin-1(+/-) mice. Compared with control lung scaffolds, lung scaffolds from patients with SSc-related ILD showed aberrant anatomy, enhanced stiffness, and abnormal ECM composition. Culture of control cells in lung scaffolds from patients with SSc-related ILD increased production of pro-ColIα1+ cells, which was stimulated by enhanced stiffness and abnormal ECM composition. Cells from patients with SSc-related ILD demonstrated increased pro-ColIα1 responsiveness to lung scaffolds from scleroderma patients but not enhanced stiffness. Enhanced detection of netrin-1-expressing CD14(low) cells in patients with SSc-related ILD was observed, and antibody-mediated netrin-1 neutralization attenuated detection of CD45+pro-ColIα1+ cells in all settings. Netrin-1(+/-) mice were protected against bleomycin-induced lung fibrosis and fibrocyte accumulation. Factors present in the lung matrices of patients with scleroderma regulate fibrocyte accumulation via a netrin-1-dependent pathway. Netrin-1 regulates bleomycin-induced pulmonary fibrosis in mice. Netrin-1 might be a novel therapeutic target in SSc-related ILD. © 2016, American College of Rheumatology.
A Common Suite of Coagulation Proteins Function in Drosophila Muscle Attachment.
Green, Nicole; Odell, Nadia; Zych, Molly; Clark, Cheryl; Wang, Zong-Heng; Biersmith, Bridget; Bajzek, Clara; Cook, Kevin R; Dushay, Mitchell S; Geisbrecht, Erika R
2016-11-01
The organization and stability of higher order structures that form in the extracellular matrix (ECM) to mediate the attachment of muscles are poorly understood. We have made the surprising discovery that a subset of clotting factor proteins are also essential for muscle attachment in the model organism Drosophila melanogaster One such coagulation protein, Fondue (Fon), was identified as a novel muscle mutant in a pupal lethal genetic screen. Fon accumulates at muscle attachment sites and removal of this protein results in decreased locomotor behavior and detached larval muscles. A sensitized genetic background assay reveals that fon functions with the known muscle attachment genes Thrombospondin (Tsp) and Tiggrin (Tig). Interestingly, Tig is also a component of the hemolymph clot. We further demonstrate that an additional clotting protein, Larval serum protein 1γ (Lsp1γ), is also required for muscle attachment stability and accumulates where muscles attach to tendons. While the local biomechanical and organizational properties of the ECM vary greatly depending on the tissue microenvironment, we propose that shared extracellular protein-protein interactions influence the strength and elasticity of ECM proteins in both coagulation and muscle attachment. Copyright © 2016 by the Genetics Society of America.
FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis.
Knüppel, Larissa; Heinzelmann, Katharina; Lindner, Michael; Hatz, Rudolf; Behr, Jürgen; Eickelberg, Oliver; Staab-Weijnitz, Claudia A
2018-04-19
In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-β1 (TGF-β1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.
Bale, Swarna; Venkatesh, Pooladanda; Sunkoju, Manoj; Godugu, Chandraiah
2018-01-01
Pulmonary fibrosis (PF) is chronic lung disease with only two FDA approved clinically available drugs, with limited safety profile. Inadequate therapy motivated us to explore the effect of vimentin inhibitor Withaferin A, as an anti-fibrotic agent against TGF-β1-induced in vitro fibrotic events and Bleomycin induced in vivo fibrosis with an emphasis on epithelial to mesenchymal transition (EMT), extracellular matrix deposition (ECM), inflammation, and angiogenesis. In vitro EMT and fibrotic events were induced by TGF-β1 in alveolar epithelial cells and human fetal lung fibroblasts followed by treatment with Withaferin A (0.25, 0.5, and 1 μM concentrations) to explore its anti-fibrotic effects. In vivo potential of Withaferin A (2 and 4 mg/kg) was assessed in murine model of Bleomycin induced PF. All the parameters and molecular studies related to PF were performed at the end of treatment period. Withaferin A treatment reduced the progression of PF by modulating the EMT related cell markers both in vivo and in vitro. Withaferin A ameliorated the expression of inflammatory cytokines including NF-κB p65, IL-1β and TNF-α, as well as attenuated the expression of pro-fibrotic proteins including CTGF, collagen 1A2, collagen 3A1, and fibronectin. Expression of angiogenic factors like VEGF, FAK, p38 MAPK, and PLC-γ1 were also inhibited by Withaferin A. Phosphorylation of Smad 2/3 induced by TGF-β1 and Bleomycin were significantly inhibited. Withaferin A suppressed expression of pro-inflammatory, pro-fibrotic, and pro-angiogenic mediators and also reduced the ECM deposition. In a nutshell, Withaferin A could probably prove as an efficient and potential therapeutic against PF.
Bale, Swarna; Venkatesh, Pooladanda; Sunkoju, Manoj; Godugu, Chandraiah
2018-01-01
Pulmonary fibrosis (PF) is chronic lung disease with only two FDA approved clinically available drugs, with limited safety profile. Inadequate therapy motivated us to explore the effect of vimentin inhibitor Withaferin A, as an anti-fibrotic agent against TGF-β1-induced in vitro fibrotic events and Bleomycin induced in vivo fibrosis with an emphasis on epithelial to mesenchymal transition (EMT), extracellular matrix deposition (ECM), inflammation, and angiogenesis. In vitro EMT and fibrotic events were induced by TGF-β1 in alveolar epithelial cells and human fetal lung fibroblasts followed by treatment with Withaferin A (0.25, 0.5, and 1 μM concentrations) to explore its anti-fibrotic effects. In vivo potential of Withaferin A (2 and 4 mg/kg) was assessed in murine model of Bleomycin induced PF. All the parameters and molecular studies related to PF were performed at the end of treatment period. Withaferin A treatment reduced the progression of PF by modulating the EMT related cell markers both in vivo and in vitro. Withaferin A ameliorated the expression of inflammatory cytokines including NF-κB p65, IL-1β and TNF-α, as well as attenuated the expression of pro-fibrotic proteins including CTGF, collagen 1A2, collagen 3A1, and fibronectin. Expression of angiogenic factors like VEGF, FAK, p38 MAPK, and PLC-γ1 were also inhibited by Withaferin A. Phosphorylation of Smad 2/3 induced by TGF-β1 and Bleomycin were significantly inhibited. Withaferin A suppressed expression of pro-inflammatory, pro-fibrotic, and pro-angiogenic mediators and also reduced the ECM deposition. In a nutshell, Withaferin A could probably prove as an efficient and potential therapeutic against PF. PMID:29623041
Xu, Qilin; Shanti, Rabie M.; Zhang, Qunzhou; Cannady, Steven B.
2017-01-01
In the oral cavity, the tongue is the anatomic subsite most commonly involved by invasive squamous cell carcinoma. Current treatment protocols often require significant tissue resection to achieve adequate negative margins and optimal local tumor control. Reconstruction of the tongue while preserving and/or restoring its critical vocal, chewing, and swallowing functions remains one of the major challenges in head and neck oncologic surgery. We investigated the in vitro feasibility of fabricating a novel combinatorial construct using porcine small intestinal submucosa extracellular matrix (SIS-ECM) and human gingiva-derived mesenchymal stem cells (GMSCs) as a GMSC/SIS-ECM tissue graft for the tongue reconstruction. We developed a rat model of critical-sized myomucosal defect of the tongue that allowed the testing of therapeutic effects of an acellular SIS-ECM construct versus a GMSC/SIS-ECM construct on repair and regeneration of the tongue defect. We showed that the GMSC/SIS-ECM construct engrafted at the host recipient site, promoted soft tissue healing, and regenerated the muscular layer, compared to the SIS-ECM alone or nontreated defect controls. Furthermore, our results revealed that transplantation of the GMSC/SIS-ECM construct significantly increased the expression of several myogenic transcriptional factors and simultaneously suppressed the expression of type I collagen at the wounded area of the tongue. These compelling findings suggest that, unlike the tongue contracture and fibrosis of the nontreated defect group, transplantation of the combinatorial GMSC/SIS-ECM constructs accelerates wound healing and muscle regeneration and maintains the overall tongue shape, possibly by both enhancing the function of endogenous skeletal progenitor cells and suppressing fibrosis. Together, our findings indicate that GMSC/SIS-ECM potentially served as a myomucosal graft for tongue reconstruction postsurgery of head and neck cancer. PMID:27923325
2018-01-01
Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture. PMID:29552635
Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L; Lee, Kelvin H; Kloxin, April M
2018-03-12
Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture.
Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David
2018-03-12
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.
MacColl, Elisabeth; Khalil, Raouf A
2015-12-01
Lower-extremity veins have efficient wall structure and function and competent valves that permit upward movement of deoxygenated blood toward the heart against hydrostatic venous pressure. Matrix metalloproteinases (MMPs) play an important role in maintaining vein wall structure and function. MMPs are zinc-binding endopeptidases secreted as inactive pro-MMPs by fibroblasts, vascular smooth muscle (VSM), and leukocytes. Pro-MMPs are activated by various activators including other MMPs and proteinases. MMPs cause degradation of extracellular matrix (ECM) proteins such as collagen and elastin, and could have additional effects on the endothelium, as well as VSM cell migration, proliferation, Ca(2+) signaling, and contraction. Increased lower-extremity hydrostatic venous pressure is thought to induce hypoxia-inducible factors and other MMP inducers/activators such as extracellular matrix metalloproteinase inducer, prostanoids, chymase, and hormones, leading to increased MMP expression/activity, ECM degradation, VSM relaxation, and venous dilation. Leukocyte infiltration and inflammation of the vein wall cause further increases in MMPs, vein wall dilation, valve degradation, and different clinical stages of chronic venous disease (CVD), including varicose veins (VVs). VVs are characterized by ECM imbalance, incompetent valves, venous reflux, wall dilation, and tortuosity. VVs often show increased MMP levels, but may show no change or decreased levels, depending on the VV region (atrophic regions with little ECM versus hypertrophic regions with abundant ECM) and MMP form (inactive pro-MMP versus active MMP). Management of VVs includes compression stockings, venotonics, and surgical obliteration or removal. Because these approaches do not treat the causes of VVs, alternative methods are being developed. In addition to endogenous tissue inhibitors of MMPs, synthetic MMP inhibitors have been developed, and their effects in the treatment of VVs need to be examined. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G
2017-07-01
Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are necessary to further facilitate solubility and removal of nuclear-associated antigenic proteins from xenogeneic ECM scaffolds, in addition to an in vivo assessing of the material.
Liu, Haifeng; Wei, Xing; Ding, Xili; Li, Xiaoming; Zhou, Gang; Li, Ping; Fan, Yubo
2015-01-01
As a brand new member in mesenchymal stem cells (MSCs) families, synovium-derived mesenchymal stem cells (SMSCs) have been increasingly regarded as a promising therapeutic cell species for musculoskeletal regeneration. However, there are few reports mentioning ligamentogenesis of SMSCs and especially null for their engineering use towards ligament regeneration. The aim of this study was to investigate and compare the cellular responses of MSCs derived from bone marrow and synovium on combined silk scaffolds that can be used to determine the cell source most appropriate for tissue-engineered ligament. Rabbit SMSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro for two weeks after seeding on the combined silk scaffolds. Samples were studied and compared for their cellular morphology, proliferation, collagen production, gene, and protein expression of ligament-related extracellular matrix (ECM) markers. In addition, the two cell types were transfected with green fluorescent protein to evaluate their fate after implantation in an intraarticular environment of the knee joint. After 14 days of culturing, SMSCs showed a significant increase in proliferation as compared with BMSCs. The transcript and protein expression levels of ligament-related ECM markers in SMSCs were significantly higher than those in BMSCs. Moreover, 6 weeks postoperatively, more viable cells were presented in SMSC-loaded constructs than in BMSC-loaded constructs. Therefore, based on the cellular response in vitro and in vivo, SMSCs may represent a more suitable cell source than BMSCs for further study and development of tissue-engineered ligament. © 2014 Wiley Periodicals, Inc.
Sawyer, Andrew J; Kyriakides, Themis R
2016-02-01
Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Le, Lily Thao-Nhi; Cazares, Oscar; Mouw, Janna K.; Chatterjee, Sharmila; Macias, Hector; Moran, Angel; Ramos, Jillian; Keely, Patricia J.; Weaver, Valerie M.
2016-01-01
Breast tumor progression is accompanied by changes in the surrounding extracellular matrix (ECM) that increase stiffness of the microenvironment. Mammary epithelial cells engage regulatory pathways that permit dynamic responses to mechanical cues from the ECM. Here, we identify a SLIT2/ROBO1 signaling circuit as a key regulatory mechanism by which cells sense and respond to ECM stiffness to preserve tensional homeostasis. We observed that Robo1 ablation in the developing mammary gland compromised actin stress fiber assembly and inhibited cell contractility to perturb tissue morphogenesis, whereas SLIT2 treatment stimulated Rac and increased focal adhesion kinase activity to enhance cell tension by maintaining cell shape and matrix adhesion. Further investigation revealed that a stiff ECM increased Robo1 levels by down-regulating miR-203. Consistently, patients whose tumor expressed a low miR-203/high Robo1 expression pattern exhibited a better overall survival prognosis. These studies show that cells subjected to stiffened environments up-regulate Robo1 as a protective mechanism that maintains cell shape and facilitates ECM adherence. PMID:26975850
A Common Suite of Coagulation Proteins Function in Drosophila Muscle Attachment
Green, Nicole; Odell, Nadia; Zych, Molly; Clark, Cheryl; Wang, Zong-Heng; Biersmith, Bridget; Bajzek, Clara; Cook, Kevin R.; Dushay, Mitchell S.; Geisbrecht, Erika R.
2016-01-01
The organization and stability of higher order structures that form in the extracellular matrix (ECM) to mediate the attachment of muscles are poorly understood. We have made the surprising discovery that a subset of clotting factor proteins are also essential for muscle attachment in the model organism Drosophila melanogaster. One such coagulation protein, Fondue (Fon), was identified as a novel muscle mutant in a pupal lethal genetic screen. Fon accumulates at muscle attachment sites and removal of this protein results in decreased locomotor behavior and detached larval muscles. A sensitized genetic background assay reveals that fon functions with the known muscle attachment genes Thrombospondin (Tsp) and Tiggrin (Tig). Interestingly, Tig is also a component of the hemolymph clot. We further demonstrate that an additional clotting protein, Larval serum protein 1γ (Lsp1γ), is also required for muscle attachment stability and accumulates where muscles attach to tendons. While the local biomechanical and organizational properties of the ECM vary greatly depending on the tissue microenvironment, we propose that shared extracellular protein–protein interactions influence the strength and elasticity of ECM proteins in both coagulation and muscle attachment. PMID:27585844
Gene evolution and functions of extracellular matrix proteins in teeth
Yoshizaki, Keigo; Yamada, Yoshihiko
2013-01-01
The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the “core matrisome” in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins. PMID:23539364
2014-01-01
Background To gain insight into what differences might restrict the capacity for limb regeneration in Xenopus froglets, we used High Performance Liquid Chromatography (HPLC)/double mass spectrometry to characterize protein expression during fibroblastema formation in the amputated froglet hindlimb, and compared the results to those obtained previously for blastema formation in the axolotl limb. Results Comparison of the Xenopus fibroblastema and axolotl blastema revealed several similarities and significant differences in proteomic profiles. The most significant similarity was the strong parallel down regulation of muscle proteins and enzymes involved in carbohydrate metabolism. Regenerating Xenopus limbs differed significantly from axolotl regenerating limbs in several ways: deficiency in the inositol phosphate/diacylglycerol signaling pathway, down regulation of Wnt signaling, up regulation of extracellular matrix (ECM) proteins and proteins involved in chondrocyte differentiation, lack of expression of a key cell cycle protein, ecotropic viral integration site 5 (EVI5), that blocks mitosis in the axolotl, and the expression of several patterning proteins not seen in the axolotl that may dorsalize the fibroblastema. Conclusions We have characterized global protein expression during fibroblastema formation after amputation of the Xenopus froglet hindlimb and identified several differences that lead to signaling deficiency, failure to retard mitosis, premature chondrocyte differentiation, and failure of dorsoventral axial asymmetry. These differences point to possible interventions to improve blastema formation and pattern formation in the froglet limb. PMID:25063185
Integrin linked kinase regulates the transcription of AQP2 by NFATC3.
Hatem-Vaquero, Marco; Griera, Mercedes; Giermakowska, Wieslawa; Luengo, Alicia; Calleros, Laura; Gonzalez Bosc, Laura V; Rodríguez-Puyol, Diego; Rodríguez-Puyol, Manuel; De Frutos, Sergio
2017-09-01
Two processes are associated with progressive loss of renal function: 1) decreased aquaporin-2 (AQP2) expression and urinary concentrating capacity (Nephrogenic Diabetes Insipidus, NDI); and 2) changes in extracellular matrix (ECM) composition, e.g. increased collagen I (Col I) deposition, characteristic of tubule-interstitial fibrosis. AQP2 expression is regulated by both the ECM-to-intracellular scaffold protein integrin-linked kinase (ILK) by NFATc/AP1 and other transcription factors. In the present work, we used in vivo and in vitro approaches to examine ILK participation in NFATc3/AP-1-mediated increases in AQP2 gene expression. Both NFATc3 knock-out mice and ILK conditional-knockdown mice (cKD-ILK) display symptoms of NDI (polyuria and reduced AQP2 expression). NFATc3 is upregulated in the renal medulla tubular cells of cKD-ILK mice but with reduced nuclear localization. Inner medullary collecting duct mIMCD3 cells were subjected to ILK depletion and transfected with reporter plasmids. Pharmacological activators or inhibitors determined the effect of ILK activity on NFATc/AP-1-dependent increases in transcription of AQP2. Finally, mIMCD3 cultured on Col I showed reduced activity of the ILK/GSK3β/NFATc/AQP2 axis, suggesting this pathway is a potential target for therapeutic treatment of NDI. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparative analysis of lysyl oxidase (like) family members in pulmonary fibrosis.
Aumiller, Verena; Strobel, Benjamin; Romeike, Merrit; Schuler, Michael; Stierstorfer, Birgit E; Kreuz, Sebastian
2017-03-10
Extracellular matrix (ECM) composition and stiffness are major driving forces for the development and persistence of fibrotic diseases. Lysyl oxidase (LOX) and LOX-like (LOXL) proteins play crucial roles in ECM remodeling due to their collagen crosslinking and intracellular functions. Here, we systematically investigated LOX/L expression in primary fibroblasts and epithelial cells under fibrotic conditions, Bleomycin (BLM) induced lung fibrosis and in human IPF tissue. Basal expression of all LOX/L family members was detected in epithelial cells and at higher levels in fibroblasts. Various pro-fibrotic stimuli broadly induced LOX/L expression in fibroblasts, whereas specific induction of LOXL2 and partially LOX was observed in epithelial cells. Immunohistochemical analysis of lung tissue from 14 IPF patients and healthy donors revealed strong induction of LOX and LOXL2 in bronchial and alveolar epithelium as well as fibroblastic foci. Using siRNA experiments we observed that LOXL2 and LOXL3 were crucial for fibroblast-to-myofibroblast transition (FMT). As FMT could only be reconstituted with an enzymatically active LOXL2 variant, we conclude that LOXL2 enzymatic function is crucial for fibroblast transdifferentiation. In summary, our study provides a comprehensive analysis of the LOX/L family in fibrotic lung disease and indicates prominent roles for LOXL2/3 in fibroblast activation and LOX/LOXL2 in IPF.
Hyaluronic Acid is Overexpressed in Fibrotic Lung Tissue and Promotes Collagen Expression
2008-04-01
cause of morbidity and mortality in scleroderma . The overexpression of collagen is accompanied by the overexpression of other extracellular matrix...7 Appendices…………………………………………………………………………… 7 3 INTRODUCTION Systemic scleroderma is a debilitating disease...excessive accumulation of extracellular matrix [ECM] proteins, particularly collagen I) is the major cause of morbidity and mortality in scleroderma . The
Trabecular meshwork ECM remodeling in glaucoma: could RAS be a target?
Agarwal, Puneet; Agarwal, Renu
2018-06-14
Disturbances of extracellular matrix (ECM) homeostasis in trabecular meshwork (TM) cause increased aqueous outflow resistance leading to elevated intraocular pressure (IOP) in glaucomatous eyes. Therefore, restoration of ECM homeostasis is a rational approach to prevent disease progression. Since renin-angiotensin system (RAS) inhibition positively alters ECM homeostasis in cardiovascular pathologies involving pressure and volume overload, it is likely that RAS inhibitors reduce IOP primarily by restoring ECM homeostasis. Areas covered: Current evidence showing the presence of RAS components in ocular tissue and its role in regulating aqueous humor dynamics is briefly summarized. The role of RAS in ECM remodeling is discussed both in terms of its effects on ECM synthesis and its breakdown. The mechanisms of ECM remodeling involving interactions of RAS with transforming growth factor-β, Wnt/β-catenin signaling, bone morphogenic proteins, connective tissue growth factor, and matrix metalloproteinases in ocular tissue are discussed. Expert opinion: Current literature strongly indicates a significant role of RAS in ECM remodeling in TM of hypertensive eyes. Hence, IOP-lowering effect of RAS inhibitors may primarily be attributed to restoration of ECM homeostasis in aqueous outflow pathways rather than its vascular effects. However, the mechanistic targets for RAS inhibitors have much wider distribution and consequences, which remain relatively unexplored in TM.
Zheng, Xin; Zhao, Feng-Chao; Pang, Yong; Li, Dong-Ya; Yao, Sheng-Cheng; Sun, Shao-Song; Guo, Kai-Jin
2017-06-01
Osteoarthritis (OA) is characterized by degradation of chondrocyte extracellular matrix (ECM). Accumulating evidence suggests that microRNAs (miRNAs) are associated with OA, but little is known of their function in chondrocyte ECM degradation. The objective of this study was to investigate the expression and function of miRNAs in OA. miRNA expression profile was determined in OA cartilage tissues and controls, employing Solexa sequencing and reverse transcription quantitative PCR (RT-qPCR). According to a modified Mankin scale, cartilage degradation was evaluated. Functional analysis of the miRNAs on chondrocyte ECM degradation was performed after miRNA transfection and IL-1β treatment. Luciferase reporter assays and western blotting were employed to determine miRNA targets. Expression of miR-221-3p was downregulated in OA cartilage tissues, which was significantly correlated with a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-221-3p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28I2 cells, SDF1 was identified as a target of miR-221-3p. SDF1 overexpression resulted in increased expression of catabolic genes such as MMP-13 and ADAMTS-5 in response to IL-1β, but these effects were moderated by miR-221-3p. SDF1 treatment antagonized this effect, while knockdown of SDF1 by shSDF1 induced inhibitory effects on the expression of CXCR4 and its main target genes, similar to miR-221-3p. The results indicate that upregulation of miR-221-3p could prevent IL-1β-induced ECM degradation in chondrocytes. Targeting the SDF1/CXCR4 signaling pathway may be used as a therapeutic approach for OA. miR-221-3p is downregulated in human cartilage tissues. miR-221-3p levels are associated with cartilage degeneration grade. miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes. Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4 signaling. miR-221-3p is identified as a novel potential therapeutic target for osteoarthritis. KEY MESSAGES: miR-221-3p is downregulated in human cartilage tissues. miR-221-3p levels are associated with cartilage degeneration grade. miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes. Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4 signaling. miR-221-3p is identified as a novel potential therapeutic target for osteoarthritis.
Insight On Colorectal Carcinoma Infiltration by Studying Perilesional Extracellular Matrix
Nebuloni, Manuela; Albarello, Luca; Andolfo, Annapaola; Magagnotti, Cinzia; Genovese, Luca; Locatelli, Irene; Tonon, Giovanni; Longhi, Erika; Zerbi, Pietro; Allevi, Raffaele; Podestà, Alessandro; Puricelli, Luca; Milani, Paolo; Soldarini, Armando; Salonia, Andrea; Alfano, Massimo
2016-01-01
The extracellular matrix (ECM) from perilesional and colorectal carcinoma (CRC), but not healthy colon, sustains proliferation and invasion of tumor cells. We investigated the biochemical and physical diversity of ECM in pair-wised comparisons of healthy, perilesional and CRC specimens. Progressive linearization and degree of organization of fibrils was observed from healthy to perilesional and CRC ECM, and was associated with a steady increase of stiffness and collagen crosslinking. In the perilesional ECM these modifications coincided with increased vascularization, whereas in the neoplastic ECM they were associated with altered modulation of matrisome proteins, increased content of hydroxylated lysine and lysyl oxidase. This study identifies the increased stiffness and crosslinking of the perilesional ECM predisposing an environment suitable for CRC invasion as a phenomenon associated with vascularization. The increased stiffness of colon areas may represent a new predictive marker of desmoplastic region predisposing to invasion, thus offering new potential application for monitoring adenoma with invasive potential. PMID:26940881
Lin, Yang; Lewallen, Eric A.; Camilleri, Emily T.; Bonin, Carolina A.; Jones, Dakota L.; Dudakovic, Amel; Galeano-Garces, Catalina; Wang, Wei; Karperien, Marcel J.; Larson, Annalise N.; Dahm, Diane L.; Stuart, Michael J.; Levy, Bruce A.; Smith, Jay; Ryssman, Daniel B.; Westendorf, Jennifer J.; Im, Hee-Jeong; van Wijnen, Andre J.; Riester, Scott M.; Krych, Aaron J.
2016-01-01
Preservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression between stored allograft cartilage and fresh cartilage from living donors using high throughput molecular screening strategies. We applied next generation RNA sequencing (RNA-seq) and real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to assess genome-wide differences in mRNA expression between stored allograft cartilage and fresh cartilage tissue from living donors. Gene ontology analysis was used to characterize biological pathways associated with differentially expressed genes. Our studies establish reduced levels of mRNAs encoding cartilage related extracellular matrix (ECM) proteins (i.e., COL1A1, COL2A1, COL10A1, ACAN, DCN, HAPLN1, TNC, and COMP) in stored cartilage. These changes occur concomitantly with increased expression of “early response genes” that encode transcription factors mediating stress/cytoprotective responses (i.e., EGR1, EGR2, EGR3, MYC, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, and JUND). The elevated expression of “early response genes” and reduced levels of ECM-related mRNAs in stored cartilage allografts suggests that tissue viability may be maintained by a cytoprotective program that reduces cell metabolic activity. These findings have potential implications for future studies focused on quality assessment and clinical optimization of osteochondral allografts used for cartilage transplantation. PMID:26909883
Multiphoton microscopy of ECM proteins in baboon aortic leaflet
NASA Astrophysics Data System (ADS)
Gonzalez, Mariacarla; Saytashev, Ilyas; Luna, Camila; Gonzalez, Brittany; Pinero, Alejandro; Perez, Manuel; Ramaswamy, Sharan; Ramella-Roman, Jessica
2018-02-01
The extracellular matrix (ECM) plays crucial role in defining mechanical properties of a heart valve yet the mechanobiological role of the ECM proteins - collagen and elastin - in living heart valve leaflets is still poorly understood. In this study, non-linear microscopy was used to obtain three dimensional images of collagen and elastin arrangement in aortic leaflets under combined steady flow (850 ml/min) and cyclic flexure (1 Hz) mechanical (dynamic) training. A novel bioreactor capable of mimicking the flow conditions in a living heart was used in this study and was optimized for microscopic imagery. A custom made non-linear microscope was used in this study to provide Second Harmonic Generation (SHG) imaging of collagen arrangement and two-photon imaging of elastin. Two control and three trained leaflet samples from static and dynamic tissue culture were imaged to observe protein changes in the tissue for a period of seven days. Dynamic training led to a decrease in alignment index of the protein fibers compared to the static treatment.
Reithmeier, Anja; Panizza, Elena; Krumpel, Michael; Orre, Lukas M; Branca, Rui M M; Lehtiö, Janne; Ek-Rylander, Barbro; Andersson, Göran
2017-09-15
Tartrate-resistant acid phosphatase (TRAP/ACP5), a metalloenzyme that is characteristic for its expression in activated osteoclasts and in macrophages, has recently gained considerable focus as a driver of metastasis and was associated with clinically relevant parameters of cancer progression and cancer aggressiveness. MDA-MB-231 breast cancer cells with different TRAP expression levels (overexpression and knockdown) were generated and characterized for protein expression and activity levels. Functional cell experiments, such as proliferation, migration and invasion assays were performed as well as global phosphoproteomic and proteomic analysis was conducted to connect molecular perturbations to the phenotypic changes. We identified an association between metastasis-related properties of TRAP-overexpressing MDA-MB-231 breast cancer cells and a TRAP-dependent regulation of Transforming growth factor (TGFβ) pathway proteins and Cluster of differentiation 44 (CD44). Overexpression of TRAP increased anchorage-independent and anchorage-dependent cell growth and proliferation, induced a more elongated cellular morphology and promoted cell migration and invasion. Migration was increased in the presence of the extracellular matrix (ECM) proteins osteopontin and fibronectin and the basement membrane proteins collagen IV and laminin I. TRAP-induced properties were reverted upon shRNA-mediated knockdown of TRAP or treatment with the small molecule TRAP inhibitor 5-PNA. Global phosphoproteomics and proteomics analyses identified possible substrates of TRAP phosphatase activity or signaling intermediates and outlined a TRAP-dependent regulation of proteins involved in cell adhesion and ECM organization. Upregulation of TGFβ isoform 2 (TGFβ2), TGFβ receptor type 1 (TβR1) and Mothers against decapentaplegic homolog 2 (SMAD2), as well as increased intracellular phosphorylation of CD44 were identified upon TRAP perturbation. Functional antibody-mediated blocking and chemical inhibition demonstrated that TRAP-dependent migration and proliferation is regulated via TGFβ2/TβR, whereas proliferation beyond basal levels is regulated through CD44. Altogether, TRAP promotes metastasis-related cell properties in MDA-MB-231 breast cancer cells via TGFβ2/TβR and CD44, thereby identifying a potential signaling mechanism associated to TRAP action in breast cancer cells.
Li, S; Jia, X; Duance, V C; Blain, E J
2011-06-20
It is still relatively unclear how intervertebral disc (IVD) cells sense a mechanical stimulus and convert this signal into a biochemical response. Previous studies demonstrated that the cytoskeletal elements are mechano-responsive in many cell types and may contribute to mechano-signalling pathways. The objective of this study was to determine the response of cells from the outer annulus fibrosus (OAF) to physiological levels of cyclic tensile strain; further, cells from the nucleus pulposus (NP) were also subjected to an identical loading regime to compare biological responses across the IVD populations. We determined whether the organisation and expression of the major cytoskeletal elements and their associated accessory proteins are responsive to mechanical stimulation in these cells, and whether these changes correlated with either a catabolic or anabolic phenotype. OAF and NP cells from immature bovine IVD were seeded onto Flexcell® type I collagen coated plates. Cells were subjected to cyclic tensile strain (10 %, 1 Hz) for 60 minutes. Post-loading, cells were processed for immunofluorescence microscopy, RNA extracted for quantitative PCR and protein extracted for Western blotting analysis. F-actin reorganisation was evident in OAF and NP cells subjected to tensile strain; strain induced β-actin at the transcriptional and translational level in OAF cells. β-tubulin mRNA and protein synthesis increased in strained OAF cells, but vimentin expression was significantly inhibited. Cytoskeletal element organisation and expression were less responsive to strain in NP cells. Tensile strain increased type I collagen and differentially regulated extracellular matrix (ECM)-degrading enzymes' mRNA levels in OAF cells. Strain induced type II collagen transcription in NP cells, but had no effect on the transcription of any other genes analysed. Tensile strain induces different mechano-responses in the organisation and/or expression of cytoskeletal elements and on markers of IVD metabolism. Differential mechano-regulation of anabolic and catabolic ECM components in the OAF and NP populations reflects their respective mechanical environments in situ.
Sun, Zhengda; Wang, Chih-Yang; Lawson, Devon A; Kwek, Serena; Velozo, Hugo Gonzalez; Owyong, Mark; Lai, Ming-Derg; Fong, Lawrence; Wilson, Mark; Su, Hua; Werb, Zena; Cooke, Daniel L
2018-02-16
Tumor endothelial cells (TEC) play an indispensible role in tumor growth and metastasis although much of the detailed mechanism still remains elusive. In this study we characterized and compared the global gene expression profiles of TECs and control ECs isolated from human breast cancerous tissues and reduction mammoplasty tissues respectively by single cell RNA sequencing (scRNA-seq). Based on the qualified scRNA-seq libraries that we made, we found that 1302 genes were differentially expressed between these two EC phenotypes. Both principal component analysis (PCA) and heat map-based hierarchical clustering separated the cancerous versus control ECs as two distinctive clusters, and MetaCore disease biomarker analysis indicated that these differentially expressed genes are highly correlated with breast neoplasm diseases. Gene Set Enrichment Analysis software (GSEA) enriched these genes to extracellular matrix (ECM) signal pathways and highlighted 127 ECM-associated genes. External validation verified some of these ECM-associated genes are not only generally overexpressed in various cancer tissues but also specifically overexpressed in colorectal cancer ECs and lymphoma ECs. In conclusion, our data demonstrated that ECM-associated genes play pivotal roles in breast cancer EC biology and some of them could serve as potential TEC biomarkers for various cancers.
Mahale, Alka; Fikri, Fatma; Al Hati, Khitam; Al Shahwan, Sami; Al Jadaan, Ibrahim; Al Katan, Hind; Khandekar, Rajiv; Maktabi, Azza; Edward, Deepak P
2017-01-01
Impervious encapsulation around Ahmed glaucoma valve (AGV) results in surgical failure raising intraocular pressure (IOP). Dysregulation of extracellular matrix (ECM) molecules and cellular factors might contribute to increased hydraulic resistance to aqueous drainage. Therefore, we examined these molecules in failed AGV capsular tissue. Immunostaining for ECM molecules (collagen I, collagen III, decorin, lumican, chondroitin sulfate, aggrecan and keratan sulfate) and cellular factors (αSMA and TGFβ) was performed on excised capsules from failed AGVs and control tenon's tissue. Staining intensity of ECM molecules was assessed using Image J. Cellular factors were assessed based on positive cell counts. Histopathologically two distinct layers were visible in capsules. The inner layer (proximal to the AGV) showed significant decrease in most ECM molecules compared to outer layer. Furthermore, collagen III (p = 0.004), decorin (p = 0.02), lumican (p = 0.01) and chondroitin sulfate (p = 0.02) was significantly less in inner layer compared to tenon's tissue. Outer layer labelling however was similar to control tenon's for most ECM molecules. Significantly increased cellular expression of αSMA (p = 0.02) and TGFβ (p = 0.008) was detected within capsular tissue compared to controls. Our results suggest profibrotic activity indicated by increased αSMA and TGFβ expression and decreased expression of proteoglycan (decorin and lumican) and glycosaminoglycans (chondroitin sulfate). Additionally, we observed decreased collagen III which might reflect increased myofibroblast contractility when coupled with increased TGFβ and αSMA expression. Together these events lead to tissue dysfunction potentially resulting in hydraulic resistance that may affect aqueous flow through the capsular wall.
Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties
Fessart, Delphine; Domblides, Charlotte; Avril, Tony; Eriksson, Leif A; Begueret, Hugues; Pineau, Raphael; Malrieux, Camille; Dugot-Senant, Nathalie; Lucchesi, Carlo; Chevet, Eric; Delom, Frederic
2016-01-01
The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER-retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.13887.001 PMID:27240165
Hu, Zenglei; Gu, Han; Hu, Jiao; Hu, Shunlin; Wang, Xiaoquan; Liu, Xiaowen; Jiao, Xinan; Liu, Xiufan
2018-06-15
Pathogenesis of genotype VII Newcastle disease virus (NDV) is characterized with remarkable immunopathology in the spleen in chickens. However, the mechanism for this unique pathological phenotype is not fully understood. Previous transcriptomics data showed that genotype VII NDV JS5/05 caused a greater downregulation of extracellular matrix (ECM) genes than genotype IV virus Herts/33 in the spleen. In this study, the role of ECM in pathology of genotype VII NDV was investigated using quantitative proteomics. Pathology studies showed that JS5/05 caused severe immunopathology characterized with remarkable necrosis in the spleen, whereas Herts/33 only induced mild pathological changes. The ECM was firstly enriched from the spleens and ECM proteins of different categories were identified by LC-MS/MS. Quantitative proteomic analysis showed that JS5/05 caused a significant disruption of ECM integrity and molecular composition compared to Herts/33. Particularly, JS5/05 induced a more remarkable collagen breakdown in the spleen compared to Herts/33. Moreover, matrix metalloproteinase (MMP)-13 and -14 were significantly upregulated by JS5/05 infection. KEGG pathway analysis suggested that differential regulation of ECM proteins by JS5/05 and Herts/33 may impact pathology through different pathways. Therefore, our results suggested that MMP upregulation and consequent ECM degradation contribute to immunopathology of genotype VII NDV in the spleen. Pathogenesis of genotype VII NDV is characterized with severe immunopathology in the spleen in chickens. Elucidating the mechanism of this pathology phenotype is critical to understand pathogenesis of genotype VII NDV. Here, we present the proteomic data of an important non-cellular compartment, the extracellular matrix (ECM), in the spleen from chickens infected with genotype VII and IV NDVs. Our results suggest that significant upregulation of matrix metalloproteinases by genotype VII NDV and consequent disruption of ECM integrity and composition may be associated with immunopathology in the spleen. Moreover, ECM degradation, represented by collagen breakdown, is an important pathology event in the process of genotype VII NDV infection. Our study for the first time presents evidence of ECM regulation by NDV and adds ECM remodeling as a new manifestation for NDV pathology. Our findings also deepen the understanding of NDV pathogenesis. Copyright © 2018. Published by Elsevier B.V.
Back to basics--how the evolution of the extracellular matrix underpinned vertebrate evolution.
Huxley-Jones, Julie; Pinney, John W; Archer, John; Robertson, David L; Boot-Handford, Raymond P
2009-04-01
The extracellular matrix (ECM) is a complex substrate that is involved in and influences a spectrum of behaviours such as growth and differentiation and is the basis for the structure of tissues. Although a characteristic of all metazoans, the ECM has elaborated into a variety of tissues unique to vertebrates, such as bone, tendon and cartilage. Here we review recent advances in our understanding of the molecular evolution of the ECM. Furthermore, we demonstrate that ECM genes represent a pivotal family of proteins the evolution of which appears to have played an important role in the evolution of vertebrates.
Sandri, Chiara; Caccavari, Francesca; Valdembri, Donatella; Camillo, Chiara; Veltel, Stefan; Santambrogio, Martina; Lanzetti, Letizia; Bussolino, Federico; Ivaska, Johanna; Serini, Guido
2012-01-01
During developmental and tumor angiogenesis, semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases. R-Ras is mainly expressed in vascular cells, where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms. We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and -angiogenic activity of R-Ras. Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia. Upon binding, GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF) to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes. Here, the R-Ras/RIN2/Rab5 signaling module activates Rac1-dependent cell adhesion via TIAM1, a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate. In conclusion, the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Rac1. PMID:22825554
Development of a novel human recellularized endometrium that responds to a 28-day hormone treatment†
Olalekan, Susan A.; Burdette, Joanna E.; Getsios, Spiro; Woodruff, Teresa K.
2017-01-01
Abstract Three-dimensional (3D) in vitro models have been established to study the physiology and pathophysiology of the endometrium. With emerging evidence that the native extracellular matrix (ECM) provides appropriate cues and growth factors essential for tissue homeostasis, we describe, a novel 3D endometrium in vitro model developed from decellularized human endometrial tissue repopulated with primary endometrial cells. Analysis of the decellularized endometrium using mass spectrometry revealed an enrichment of cell adhesion molecules, cytoskeletal proteins, and ECM proteins such as collagen IV and laminin. Primary endometrial cells within the recellularized scaffolds proliferated and remained viable for an extended period of time in vitro. In order to evaluate the hormonal response of cells within the scaffolds, the recellularized scaffolds were treated with a modified 28-day hormone regimen to mimic the human menstrual cycle. At the end of 28 days, the cells within the endometrial scaffold expressed both estrogen and progesterone receptors. In addition, decidualization markers, IGFBP-1 and prolactin, were secreted upon addition of dibutyryl cyclic AMP indicative of a decidualization response. This 3D model of the endometrium provides a new experimental tool to study endometrial biology and drug testing. PMID:28449068
Farach-Carson, Mary C; Warren, Curtis R; Harrington, Daniel A; Carson, Daniel D
2014-02-01
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders. © 2013.
Farach-Carson, Mary C.; Warren, Curtis R.; Harrington, Daniel A.; Carson, Daniel D.
2013-01-01
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550M years) extracellular matrix molecules. In vertebrates, perlecan’s five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders. PMID:24001398
Tissue matrix arrays for high throughput screening and systems analysis of cell function
Beachley, Vince Z.; Wolf, Matthew T.; Sadtler, Kaitlyn; Manda, Srikanth S.; Jacobs, Heather; Blatchley, Michael; Bader, Joel S.; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H.
2015-01-01
Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here, we describe tissue extracellular matrix (ECM) arrays for screening biological outputs and systems analysis. We spotted processed tissue ECM particles as two-dimensional arrays or incorporated them with cells to generate three-dimensional cell-matrix microtissue arrays. We then investigated the response of human stem, cancer, and immune cells to tissue ECM arrays originating from 11 different tissues, and validated the 2D and 3D arrays as representative of the in vivo microenvironment through quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes following culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and translation. PMID:26480475
Shimoyama, S; Gansauge, F; Gansauge, S; Oohara, T; Beger, H G
1995-12-01
The aim of this study was to elucidate the expression and distribution patterns of both integrins and extracellular matrix (ECM) molecules in chronic pancreatitis (CP) and pancreatic adenocarcinoma (PC) compared with normal pancreas (NP). Expression of nine alpha-subunits (alpha 2-alpha 6, alpha V, alpha L, alpha M, and alpha X), four beta-subunits (beta 1, beta 3-beta 5), and four ECM molecules (type IV collagen, laminin, fibronectin, and vitronectin) was investigated immunohistochemically. In CP, all integrins except alpha V showed nearly the same staining patterns compared with NP. Some acinar cells in CP expressed alpha V. Whereas alpha 2, alpha 3, and alpha 6 expression was stronger and diffuse, no alpha 5 expression was seen in PC. Basement membrane (BM) showed continuous staining in CP, whereas it showed discontinuous/absent staining in PC with antitype IV collagen, laminin, and vitronectin antibodies. Some carcinoma cells showed reverse correlation between alpha 2, alpha 3, and alpha 6 expression and type IV collagen and laminin expression. Fibronectin showed diffuse stromal expression in CP and PC. Some acinar cells or duct cells in CP carcinoma cells in PC showed intracellular VN expression. These results suggest that these integrins and ECM molecules are involved in inflammatory and malignant processes in pancreas.
Zhang, Cheng-Lin; Zhao, Qian; Liang, Hui; Qiao, Xue; Wang, Jin-Yu; Wu, Dan; Wu, Li-Ling; Li, Li
2018-03-01
Cardiac fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins in the myocardium and results in decreased ventricular compliance and diastolic dysfunction. Cartilage intermediate layer protein-1 (CILP-1), a novel identified cardiac matricellular protein, is upregulated in most conditions associated with cardiac remodeling, however, whether CILP-1 is involved in pressure overload-induced fibrotic response is unknown. Here, we investigated whether CILP-1 was critically involved in the fibrotic remodeling induced by pressure overload. Western blot analysis and immunofluorescence staining showed that CILP-1 was predominantly detected in cardiac myocytes and to a less extent in the interstitium. In isolated adult mouse ventricular myocytes and nonmyocytes, CILP-1 was found to be mainly synthesized by myocytes. CILP-1 expression in left ventricles was upregulated in C57BL/6 mice undergoing transverse aortic constriction (TAC). Myocardial CILP-1 knockdown aggravated whereas CILP-1 overexpression attenuated TAC-induced ventricular remodeling and dysfunction, as measured by echocardiography test, morphological examination, and gene expressions of fibrotic molecules. Incubation of cardiac fibroblasts with the conditioned medium containing full-length, N-terminal, or C-terminal CILP-1 inhibited transforming growth factor (TGF)-β1-induced Smad3 phosphorylation and the subsequent profibrotic events. We first demonstrated that C-terminal CILP-1 increased Akt phosphorylation, promoted the interaction between Akt and Smad3, and suppressed Smad3 phosphorylation. Blockade of PI3K-Akt pathway attenuated the inhibitory effect of C-CILP-1 on TGF-β1-induced Smad3 activation. We conclude that CILP-1 is a novel ECM protein possessing anti-fibrotic ability in pressure overload-induced fibrotic remodeling. This anti-fibrotic effect of CILP-1 attributes to interfering TGF-β1 signaling through its N- and C- terminal fragments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Engineering Breast Cancer Microenvironments and 3D Bioprinting
Belgodere, Jorge A.; King, Connor T.; Bursavich, Jacob B.; Burow, Matthew E.; Martin, Elizabeth C.; Jung, Jangwook P.
2018-01-01
The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal–cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators) are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning) can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1) biochemical factors modulating breast cancer cell-ECM interactions and (2) 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments. PMID:29881724
Effects of treatment with Maraviroc a CCR5 inhibitor on a human hepatic stellate cell line.
Coppola, Nicola; Perna, Angelica; Lucariello, Angela; Martini, Salvatore; Macera, Margherita; Carleo, Maria A; Guerra, Germano; Esposito, Vincenzo; De Luca, Antonio
2018-08-01
After an acute liver damage, tissue regeneration repairs lesions with degradation of deposed fibrotic material, while mechanisms of tissue restoration are persistently activated following several repeated injuries, inducing deposition of extracellular matrix. (ECM). Factors responsible for ECM remodeling have been identified in a pathway involving a family of zinc-dependent enzyme matrix metalloproteinases (MMPs), together with tissue inhibitor of metalloproteinases (TIMPs). Recent experimental models suggested a role of CCR5 receptor in the genesis of liver fibrosis. Drawing from these background we decided to evaluate the effects of the treatment with the CCR5 inhibitor Maraviroc on LX-2, a human hepatic stellate cell line (HSC). Treatment with Maraviroc resulted in a block in S phase of LX-2 cells with increased expression levels of cyclin D1 and p21 while the expression of p53 was reduced. Treatment with Maraviroc was also able to block the accumulation of fibrillar collagens and extracellular matrix proteins (ECM), as demonstrated by the decrease of specific markers as Collagen type I, α-SMA, and TGF-β1. In addition we observed a down regulation of both metalloproteins (MMP-2, MMP-9), used for the degradation of the extracellular matrix and their inhibitors (TIMP-1, TIMP-2). The identification of a compound that may modulate the dynamic of liver fibrosis could be crucial in all chronic liver diseases. Maraviroc could play an important role because, in addition to its own anti-HIV activity, it could reduce the release of pro-inflammatory citokynes implicated in liver fibrogenesis. © 2018 Wiley Periodicals, Inc.
WAVE3-NFκB Interplay Is Essential for the Survival and Invasion of Cancer Cells
Davuluri, Gangarao; Augoff, Katarzyna; Schiemann, William P.; Plow, Edward F.; Sossey-Alaoui, Khalid
2014-01-01
The WAVE3 cytoskeletal protein promotes cancer invasion and metastasis. We have shown that the WAVE3-mediated activation of cancer cell invasion is due, in part, to its regulation of expression and activity of key metalloproteinases (MMPs), including MMP9, which is centrally involved in invadopodia-mediated degradation of the extracellular matrix (ECM). MMP9 is also a major NFκB target gene, suggesting a potential linkage of WAVE3 to this pathway, which we sought to investigate. Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes. Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity. Both pharmacologic and genetic manipulations of NFκB effector molecules show that the biological consequence of loss of WAVE3 function in the NFκB pathway result the inhibition of invadopodia formation and ECM degradation by cancer cells, and these changes are a consequence of decreased MMP9 expression and activity. Loss of WAVE3 also sensitized cancer cells to apoptosis and cell death driven by TNFα, through the inhibition of the AKT pro-survival pathway. Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation. Therefore, targeted therapeutic inhibition of WAVE3 will sensitize cancer cells to apoptosis and cell death, and suppress cancer invasion and metastasis. PMID:25329315
WAVE3-NFκB interplay is essential for the survival and invasion of cancer cells.
Davuluri, Gangarao; Augoff, Katarzyna; Schiemann, William P; Plow, Edward F; Sossey-Alaoui, Khalid
2014-01-01
The WAVE3 cytoskeletal protein promotes cancer invasion and metastasis. We have shown that the WAVE3-mediated activation of cancer cell invasion is due, in part, to its regulation of expression and activity of key metalloproteinases (MMPs), including MMP9, which is centrally involved in invadopodia-mediated degradation of the extracellular matrix (ECM). MMP9 is also a major NFκB target gene, suggesting a potential linkage of WAVE3 to this pathway, which we sought to investigate. Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes. Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity. Both pharmacologic and genetic manipulations of NFκB effector molecules show that the biological consequence of loss of WAVE3 function in the NFκB pathway result the inhibition of invadopodia formation and ECM degradation by cancer cells, and these changes are a consequence of decreased MMP9 expression and activity. Loss of WAVE3 also sensitized cancer cells to apoptosis and cell death driven by TNFα, through the inhibition of the AKT pro-survival pathway. Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation. Therefore, targeted therapeutic inhibition of WAVE3 will sensitize cancer cells to apoptosis and cell death, and suppress cancer invasion and metastasis.
Tatsumura, Masaki; Sakane, Masataka; Ochiai, Naoyuki; Mizuno, Shuichi
2013-01-01
The addition of cyclic hydrostatic pressure (cHP) to cell culture medium has been used to promote extracellular matrix (ECM) production by articular chondrocytes. Though a combination of cHP followed by atmospheric pressure (AP) has been examined previously, the rationale of such a combination was unclear. We compared the effects of loading once versus twice (combinations of cHP followed by AP) regarding both gene expression and biochemical and histological phenotypes of chondrocytes. Isolated bovine articular chondrocytes were embedded in a collagen gel and incubated for 14 days under conditions combining cHP and AP. The gene expression of aggrecan core protein and collagen type II were upregulated in response to cHP, and those levels were maintained for at least 4 days after cHP treatment. Accumulation of cartilage-specific sulfated glycosaminoglycans following cHP for 7 days and subsequent AP for 7 days was significantly greater than that of the AP control (p < 0.05). Therefore, incubation at AP after loading with cHP was found to beneficially affect ECM accumulation. Manipulating algorithms of cHP combined with AP will be useful in producing autologous chondrocyte-based cell constructs for implantation. © 2014 S. Karger AG, Basel.
E6/E7-P53-POU2F1-CTHRC1 axis promotes cervical cancer metastasis and activates Wnt/PCP pathway
Zhang, Rong; Lu, Huan; Lyu, Yuan-yuan; Yang, Xiao-mei; Zhu, Lin-yan; Yang, Guang-dong; Jiang, Peng-cheng; Re, Yuan; Song, Wei-wei; Wang, Jin-hao; Zhang, Can-can; Gu, Fei; Luo, Tian-jiao; Wu, Zhi-yong; Xu, Cong-jian
2017-01-01
Cervical cancer is an infectious cancer and the most common gynecologic cancer worldwide. E6/E7, the early genes of the high-risk mucosal human papillomavirus type, play key roles in the carcinogenic process of cervical cancer. However, little was known about its roles in modulating tumor microenvironment, particular extracellular matrix (ECM). In this study, we found that E6/E7 could regulate multiple ECM proteins, especially collagen triple helix repeat containing 1 (CTHRC1). CTHRC1 is highly expressed in cervical cancer tissue and serum and closely correlated with clinicopathological parameters. CTHRC1 promotes cervical cancer cell migration and invasion in vitro and metastasis in vivo. E6/E7 regulates the expression of CTHRC1 in cervical cancer by E6/E7-p53-POU2F1 (POU class 2 homeobox 1) axis. Futhermore, CTHRC1 activates Wnt/PCP signaling pathway. Take together, E6/E7-p53-POU2F1-CTHRC1 axis promotes cervical cancer cell invasion and metastasis and may act as a potential therapeutic target for interventions against cervical cancer invasion and metastasis. PMID:28303973
Rojas, Armando; Añazco, Carolina; González, Ileana; Araya, Paulina
2018-04-05
A growing body of epidemiologic evidence suggests that people with diabetes are at a significantly higher risk of many forms of cancer. However, the molecular mechanisms underlying this association are not fully understood. Cancer cells are surrounded by a complex milieu, also known as tumor microenvironment, which contributes to the development and metastasis of tumors. Of note, one of the major components of this niche is the extracellular matrix (ECM), which becomes highly disorganized during neoplastic progression, thereby stimulating cancer cell transformation, growth and spread. One of the consequences of chronic hyperglycemia, the most frequently observed sign of diabetes and the etiological source of diabetes complications, is the irreversible glycation and oxidation of proteins and lipids leading to the formation of the advanced glycation end-products (AGEs). These compounds may covalently crosslink and biochemically modify structure and functions of many proteins, and AGEs accumulation is particularly high in long-living proteins with low biological turnover, features that are shared by most, if not all, ECM proteins. AGEs-modified proteins are recognized by AGE-binding proteins, and thus glycated ECM components have the potential to trigger Receptor for advanced glycation end-products-dependent mechanisms. The biological consequence of receptor for advanced glycation end-products activation mechanisms seems to be connected, in different ways, to drive some hallmarks of cancer onset and tumor growth. The present review intends to highlight the potential impact of ECM glycation on tumor progression by triggering receptor for advanced glycation end-products-mediated mechanisms.
Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins
Champer, Jackson; Ito, James I.; Clemons, Karl V.; Stevens, David A.; Kalkum, Markus
2016-01-01
We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MSE (Mass Spectrometry—Elevated Collision Energy). Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4), Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here. PMID:26878023
Understanding the role of growth factors in modulating stem cell tenogenesis.
Gonçalves, Ana I; Rodrigues, Márcia T; Lee, Sang-Jin; Atala, Anthony; Yoo, James J; Reis, Rui L; Gomes, Manuela E
2013-01-01
Current treatments for tendon injuries often fail to fully restore joint biomechanics leading to the recurrence of symptoms, and thus resulting in a significant health problem with a relevant social impact worldwide. Cell-based approaches involving the use of stem cells might enable tailoring a successful tendon regeneration outcome. As growth factors (GFs) powerfully regulate the cell biological response, their exogenous addition can further stimulate stem cells into the tenogenic lineage, which might eventually depend on stem cells source. In the present study we investigate the tenogenic differentiation potential of human- amniotic fluid stem cells (hAFSCs) and adipose-derived stem cells (hASCs) with several GFs associated to tendon development and healing; namely, EGF, bFGF, PDGF-BB and TGF-β1. Stem cells response to biochemical stimuli was studied by screening of tendon-related genes (collagen type I, III, decorin, tenascin C and scleraxis) and proteins found in tendon extracellular matrix (ECM) (Collagen I, III, and Tenascin C). Despite the fact that GFs did not seem to influence the synthesis of tendon ECM proteins, EGF and bFGF influenced the expression of tendon-related genes in hAFSCs, while EGF and PDGF-BB stimulated the genetic expression in hASCs. Overall results on cellular alignment morphology, immunolocalization and PCR analysis indicated that both stem cell source can be biochemically induced towards tenogenic commitment, validating the potential of hASCs and hAFSCs for tendon regeneration strategies.
Analysis of molecular pathways in pancreatic ductal adenocarcinomas with a bioinformatics approach.
Wang, Yan; Li, Yan
2015-01-01
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.
Nogami, Makiko; Kimura, Tomoatsu; Seki, Shoji; Matsui, Yoshito; Yoshida, Toshiko; Koike-Soko, Chika; Okabe, Motonori; Motomura, Hiraku; Gejo, Ryuichi; Nikaido, Toshio
2016-04-01
Extracellular matrix (ECM) derived from human amniotic mesenchymal cells (HAMs) has various biological activities. In this study, we developed a novel HAM-derived ECM-coated polylactic-co-glycolic acid (ECM-PLGA) scaffold, examined its property on mesenchymal cells, and investigated its potential as a cell-free scaffold for cartilage repair. ECM-PLGA scaffolds were developed by inoculating HAM on a PLGA. After decellularization by irradiation, accumulated ECM was examined. Exogenous cell growth and differentiation of rat mesenchymal stem cells (MSCs) on the ECM-PLGA were analyzed in vitro by cell attachment/proliferation assay and reverse transcription-polymerase chain reaction. The cell-free ECM-PLGA scaffolds were implanted into osteochondral defects in the trochlear groove of rat knees. After 4, 12, or 24 weeks, the animals were sacrificed and the harvested tissues were examined histologically. The ECM-PLGA contained ECM that mimicked natural amniotic stroma that contains type I collagen, fibronectin, hyaluronic acid, and chondroitin sulfates. The ECM-PLGA showed excellent properties of cell attachment and proliferation. MSCs inoculated on the ECM-PLGA scaffold showed accelerated type II collagen mRNA expression after 3 weeks in culture. The ECM-PLGA implanted into an osteochondral defect in rat knees induced gradual tissue regeneration and resulted in hyaline cartilage repair, which was better than that in the empty control group. These in vitro and in vivo experiments show that the cell-free scaffold composed of HAM-derived ECM and PLGA provides a favorable growth environment for MSCs and facilitates the cartilage repair process. The ECM-PLGA may become a "ready-made" biomaterial for cartilage repair therapy.
Shimada, Nao; Maruo, Toshinari; Maeda, Mineko; Urushihara, Hideko; Kawata, Takefumi
2005-02-01
Dd-STATa, a Dictyostelium homolog of the metazoan STAT (signal transducers and activators of transcription) proteins, is necessary in the slug for correct entry into culmination. Dd-STATa-null mutant fails to culminate and its phenotype correlates with the loss of a funnel-shaped core region, the pstAB core region, which expresses both the ecmA and ecmB genes. To understand how the differentiation of pstAB core cells is regulated, we identified an EST that is expressed in the core cells of normal slugs but down-regulated in the Dd-STATa-null mutant. This EST, SSK348, encodes a close homolog of the Dictyostelium acetyl-CoA synthetase (ACS). A promoter fragment of the cognate gene, aslA (acetyl-CoA synthetase-like A), was fused to a lacZ reporter and the expression pattern determined. As expected from the behavior of the endogenous aslA gene, the aslA::lacZ fusion gene is not expressed in Dd-STATa-null slugs. In parental cells, the aslA promoter is first activated in the funnel-shaped core cells located at the slug anterior, the "pstAB core." During culmination, the pstAB core cells move down, through the prespore cells, to form the inner part of the basal disc. As the spore mass climbs the stalk, the aslA gene comes to be expressed in cells of the upper and lower cups, structures that cradle the spore head. Deletion and point mutation analyses of the promoter identified an AT-rich sequence that is necessary for expression in the pstAB core. This acts in combination with repressor regions that prevent ectopic aslA expression in the pre-stalk regions of slugs and the stalks of culminants. Thus, this study confirms that Dd-STATa is necessary for the differentiation of pstAB core cells, by showing that it is needed for the activation of the aslA gene. It also identifies aslA promoter elements that are likely to be regulated, directly or indirectly, by Dd-STATa.
Defining the extracellular matrix using proteomics
Byron, Adam; Humphries, Jonathan D; Humphries, Martin J
2013-01-01
The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology. PMID:23419153
Sen, Triparna; Moulik, Shuvojit; Dutta, Anindita; Choudhury, Paromita Roy; Banerji, Aniruddha; Das, Shamik; Roy, Madhumita; Chatterjee, Amitava
2009-02-13
The tumor inhibiting property of green tea polyphenol epigallocatechin-3-gallate (EGCG) is well documented. Studies reveal that matrix-metalloproteinases (MMPs) play pivotal roles in tumor invasion through degradation of basement membranes and extracellular matrix (ECM). We studied the effect of EGCG on matrixmetalloproteinases-2 (MMP-2), the factors involved in activation, secretion and signaling molecules that might be involved in the regulation of MMP-2 in human breast cancer cell line, MCF-7. MCF-7 was treated with EGCG (20 muM, 24 h), the effect of EGCG on MMP-2 expression, activity and its regulatory molecules were studied by gelatin zymography, Western blot, quantitative and semi-quantitative real time RT-PCR, immunoflourescence and cell adhesion assay. EGCG treatment reduced the activity, protein expression and mRNA expression level of MMP-2. EGCG treatment reduced the expression of focal adhesion kinase (FAK), membrane type-1-matrix metalloproteinase (MT1-MMP), nuclear factor-kappa B (NF-kB), vascular endothelial growth factor (VEGF) and reduced the adhesion of MCF-7 cells to ECM, fibronectin and vitronectin. Real time RT-PCR revealed a reduced expression of integrin receptors alpha5, beta1, alphav and beta3 due to EGCG treatment. Down regulation of expression of MT1-MMP, NF-kB, VEGF and disruption of functional status of integrin receptors may indicate decreased MMP-2 activation; low levels of FAK expression might indicate disruption in FAK-induced MMP-2 secretion and decrease in activation of phosphatidyl-inositol-3-kinase (PI-3K), extracellular regulated kinase (ERK) indicates probable hindrance in MMP-2 regulation and induction. We propose EGCG as potential inhibitor of expression and activity of pro-MMP-2 by a process involving multiple regulatory molecules in MCF-7.
Ito, Akira; Aoyama, Tomoki; Iijima, Hirotaka; Tajino, Junichi; Nagai, Momoko; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi
2015-05-01
To date, there have been few studies on how temperature affects the phenotype and metabolism of human chondrocytes. Thus, the purpose of this study was to elucidate the effects of culture temperature on chondrocyte redifferentiation and extracellular matrix (ECM) formation using dedifferentiated mature human chondrocytes in vitro. Dedifferentiated chondrocytes were cultured in a pellet culture system for up to 21 days. The pellets were randomly divided into three groups with different culture temperature (32, 37, and 41°C). Chondrocyte redifferentiation and ECM formation were evaluated by wet weight, messenger ribonucleic acid (mRNA), histological, and biochemical analyses. The results showed that the wet weight and the mRNA expressions of collagen type II A1 and cartilage oligomeric matrix protein at 37°C were higher than the corresponding values at 32°C. The histological and biochemical analyses revealed that the syntheses of type II collagen and proteoglycan were promoted at 37°C compared to those at 32°C, whereas they were considerably inhibited at 41°C. In conclusion, the results obtained herein indicated that temperature affects chondrocyte redifferentiation and ECM formation, and modulation of temperature might thus represent an advantageous means to regulate the phenotype and biosynthetic activity of chondrocytes. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Rotellar, Fernando; Valentí, Victor; Silva, Camilo; Gil, María J; Salvador, Javier; Frühbeck, Gema
2012-10-01
Obesity is associated with an altered inflammatory and extracellular matrix (ECM) profile. Tenascin C (TNC) is an ECM glycoprotein with proinflammatory effects. We aimed to explore the expression levels of TNC in adipose tissue analyzing the contribution of adipocytes and stromovascular fraction cells (SVFC) as well as its impact on inflammation and ECM regulation. We also analyzed the effect of the stimulation with TNF-α and lipopolysaccharide (LPS) on both SVFC and adipocytes. Samples obtained from 75 subjects were used in the study. Expression levels of TNC, TLR4, MMP2, and MMP9 were analyzed in visceral adipose tissue (VAT) as well as in both adipocytes and SVFC. In addition, Tnc expression was measured in two mice models of obesity. We show, for the first time, that VAT expression levels of TNC are increased in normoglycemic and type 2 diabetic obese patients (P<0.01) as well as in obese patients with nonalcoholic steatohepatitis (P<0.01). Furthermore, expression levels of Tnc in epididymal adipose tissue from two different mice models of obesity were significantly increased (P<0.01). TNC and TLR4 were mainly expressed by SVFC, and its expression was significantly enhanced (P<0.01) by TNF-α treatment. LPS treatment also increased mRNA levels of TNC. Moreover, the addition of exogenous TNC induced (P<0.05) TLR4 and CCL2 mRNA expression in human adipocyte cultures. These findings indicate that TNC is involved in the etiopathology of obesity via visceral adipose tissue inflammation representing a link with ECM remodeling.
The role of the extracellular matrix in primary myelofibrosis
Leiva, O; Ng, S K; Chitalia, S; Balduini, A; Matsuura, S; Ravid, K
2017-01-01
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm that arises from clonal proliferation of hematopoietic stem cells and leads to progressive bone marrow (BM) fibrosis. While cellular mutations involved in the development of PMF have been heavily investigated, noteworthy is the important role the extracellular matrix (ECM) plays in the progression of BM fibrosis. This review surveys ECM proteins contributors of PMF, and highlights how better understanding of the control of the ECM within the BM niche may lead to combined therapeutic options in PMF. PMID:28157219
Åhrman, Emma; Hallgren, Oskar; Malmström, Lars; Hedström, Ulf; Malmström, Anders; Bjermer, Leif; Zhou, Xiao-Hong; Westergren-Thorsson, Gunilla; Malmström, Johan
2018-03-01
Remodeling of the extracellular matrix (ECM) is a common feature in lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Here, we applied a sequential tissue extraction strategy to describe disease-specific remodeling of human lung tissue in disease, using end-stages of COPD and IPF. Our strategy was based on quantitative comparison of the disease proteomes, with specific focus on the matrisome, using data-independent acquisition and targeted data analysis (SWATH-MS). Our work provides an in-depth proteomic characterization of human lung tissue during impaired tissue remodeling. In addition, we show important quantitative and qualitative effects of the solubility of matrisome proteins. COPD was characterized by a disease-specific increase in ECM regulators, metalloproteinase inhibitor 3 (TIMP3) and matrix metalloproteinase 28 (MMP-28), whereas for IPF, impairment in cell adhesion proteins, such as collagen VI and laminins, was most prominent. For both diseases, we identified increased levels of proteins involved in the regulation of endopeptidase activity, with several proteins belonging to the serpin family. The established human lung quantitative proteome inventory and the construction of a tissue-specific protein assay library provides a resource for future quantitative proteomic analyses of human lung tissues. We present a sequential tissue extraction strategy to determine changes in extractability of matrisome proteins in end-stage COPD and IPF compared to healthy control tissue. Extensive quantitative analysis of the proteome changes of the disease states revealed altered solubility of matrisome proteins involved in ECM regulators and cell-ECM communication. The results highlight disease-specific remodeling mechanisms associated with COPD and IPF. Copyright © 2018 Elsevier B.V. All rights reserved.
EpCAM-Independent Enrichment of Circulating Tumor Cells in Metastatic Breast Cancer.
Schneck, Helen; Gierke, Berthold; Uppenkamp, Frauke; Behrens, Bianca; Niederacher, Dieter; Stoecklein, Nikolas H; Templin, Markus F; Pawlak, Michael; Fehm, Tanja; Neubauer, Hans
2015-01-01
Circulating tumor cells (CTCs) are the potential precursors of metastatic disease. Most assays established for the enumeration of CTCs so far-including the gold standard CellSearch-rely on the expression of the cell surface marker epithelial cell adhesion molecule (EpCAM). But, these approaches may not detect CTCs that express no/low levels of EpCAM, e.g. by undergoing epithelial-to-mesenchymal transition (EMT). Here we present an enrichment strategy combining different antibodies specific for surface proteins and extracellular matrix (ECM) components to capture an EpCAMlow/neg cell line and EpCAMneg CTCs from blood samples of breast cancer patients depleted for EpCAM-positive cells. The expression of respective proteins (Trop2, CD49f, c-Met, CK8, CD44, ADAM8, CD146, TEM8, CD47) was verified by immunofluorescence on EpCAMpos (e.g. MCF7, SKBR3) and EpCAMlow/neg (MDA-MB-231) breast cancer cell lines. To test antibodies and ECM proteins (e.g. hyaluronic acid (HA), collagen I, laminin) for capturing EpCAMneg cells, the capture molecules were first spotted in a single- and multi-array format onto aldehyde-coated glass slides. Tumor cell adhesion of EpCAMpos/neg cell lines was then determined and visualized by Coomassie/MitoTracker staining. In consequence, marginal binding of EpCAMlow/neg MDA-MB-231 cells to EpCAM-antibodies could be observed. However, efficient adhesion/capturing of EpCAMlow/neg cells could be achieved via HA and immobilized antibodies against CD49f and Trop2. Optimal capture conditions were then applied to immunomagnetic beads to detect EpCAMneg CTCs from clinical samples. Captured CTCs were verified/quantified by immunofluorescence staining for anti-pan-Cytokeratin (CK)-FITC/anti-CD45 AF647/DAPI. In total, in 20 out of 29 EpCAM-depleted fractions (69%) from 25 metastatic breast cancer patients additional EpCAMneg CTCs could be identified [range of 1-24 CTCs per sample] applying Trop2, CD49f, c-Met, CK8 and/or HA magnetic enrichment. EpCAMneg dual-positive (CKpos/CD45pos) cells could be traced in 28 out of 29 samples [range 1-480]. By single-cell array-based comparative genomic hybridization we were able to demonstrate the malignant nature of one EpCAMneg subpopulation. In conclusion, we established a novel enhanced CTC enrichment strategy to capture EpCAMneg CTCs from clinical blood samples by targeting various cell surface antigens with antibody mixtures and ECM components.
Roomi, M Waheed; Cha, John; Kalinovsky, Tatiana; Roomi, Nusrath; Niedzwiecki, Aleksandra; Rath, Matthias
2015-09-01
Cervical cancer is one of the most commonly diagnosed cancers and a significant cause of mortality in women worldwide. Although cervical cancer is fully treatable in the early stages, once it has metastasized, patient outcome is poor. The objective of the present study was to investigate the effect of dietary supplementation with a nutrient mixture (NM) containing lysine, ascorbic acid, proline, green tea extract and other micronutrients on the expression of extracellular matrix (ECM) proteins in HeLa cell xenografts in nude female mice. After housing for 1 week, female athymic nude mice between 5 and 6 weeks of age (n=12) were inoculated subcutaneously with 3×10 6 HeLa cells in phosphate-buffered saline and Matrigel and randomly divided into two groups. These were the control group, in which the mice were fed with regular mouse chow, and the NM group, in which the mice were fed with the regular diet supplemented with 0.5% NM (w/w). After 4 weeks, the tumors were excised and processed for histology. Tumor growth was evaluated and the tumors were stained for the ECM proteins collagen I, collagen IV, fibronectin, laminin, periodic acid-Schiff (PAS) and elastin. NM strongly inhibited (by 59%, P=0.001) the growth of HeLa xenografts in nude mice. Tumors from control mice exhibited little to no collagen I expression either internally or in the fibrous capsule, while tumors from the NM group expressed collagen I in the fibrous capsule and within the tumor. Tumors from the control group showed diffuse cytoplasmic and capsular collagen IV with abundant nucleated cells. NM treatment substantially increased collagen IV production and induced a dense fibrous network of collagen IV with chambers that surrounded live nucleated cells and large amounts of necrotic cell debris. Tumors from the mice fed with the NM exhibited a well-defined border of fibronectin in the capsule and intense areas of staining internally whereas control group tumors showed less overall fibronectin with sporadic internal staining and little in the fibrous capsule. Although laminin appeared abundantly in control and NM-treated tumors, the NM group tumors exhibited a chamber-like network of laminin internally. Tumors from the control group exhibited internal areas of intense PAS staining, whereas tumors from the NM-treated group exhibited a more uniform diffuse pattern of PAS staining. In conclusion, NM supplementation of HeLa xenograft-bearing female nude mice demonstrated a potent inhibition of tumor growth and enhancement of ECM proteins, suggesting the therapeutic value of this specific nutrient complex in the treatment of cervical cancer.
Lunde, Ida G; Herum, Kate M; Carlson, Cathrine C; Christensen, Geir
2016-09-01
Heart disease is a deadly syndrome affecting millions worldwide. It reflects an unmet clinical need, and the disease mechanisms are poorly understood. Cardiac fibrosis is central to heart disease. The four-membered family of transmembrane proteoglycans, syndecan-1 to -4, is believed to regulate fibrosis. We review the current literature concerning syndecans in cardiac fibrosis. Syndecan expression is up-regulated in response to pro-inflammatory stimuli in various forms of heart disease with fibrosis. Mice lacking syndecan-1 and -4 show reduced activation of pro-fibrotic signaling and increased cardiac rupture upon infarction indicating an important role for these molecules. Whereas the short cytoplasmic tail of syndecans regulates signaling, their extracellular part, substituted with heparan sulfate glycosaminoglycan chains, binds a plethora of extracellular matrix (ECM) molecules involved in fibrosis, e.g., collagens, growth factors, cytokines, and immune cell adhesion proteins. Full-length syndecans induce pro-fibrotic signaling, increasing the expression of collagens, myofibroblast differentiation factors, ECM enzymes, growth factors, and immune cell adhesion molecules, thereby also increasing cardiac stiffness and preventing cardiac rupture. Upon pro-inflammatory stimuli, syndecan ectodomains are enzymatically released from heart cells (syndecan shedding). Shed ectodomains affect the expression of ECM molecules, promoting ECM degradation and cardiac rupture upon myocardial infarction. Blood levels of shed syndecan-1 and -4 ectodomains are associated with hospitalization, mortality, and heart remodeling in patients with heart failure. Improved understanding of syndecans and their modifying enzymes in cardiac fibrosis might contribute to the development of compounds with therapeutic potential, and enzymatically shed syndecan ectodomains might constitute a future prognostic tool for heart diseases with fibrosis. Graphical Abstract Graphical abstract summarizing the contents of the current review on syndecans in cardiac fibrosis. The heart is subjected to various forms of pathological stimuli, e.g., myocardial infarction, hypertension, valvular stenosis, infection, or an inherited genetic mutation, triggering responses in cells resident in the heart. Here, we focus on the responses of cardiac fibroblasts directing changes in the extracellular matrix resulting in cardiac fibrosis. A family of four transmembrane proteoglycans, syndecan-1 to -4, is expressed in the cell membrane of cardiac fibroblasts and is generally up-regulated in response to the above-mentioned pathological stimuli. Syndecans carry glycosaminoglycan chains on their extracellular domain, binding a plethora of molecules involved in fibrosis, e.g., growth factors, cytokines, immune cell adhesion proteins, and pathogens. Syndecans have a short cytoplasmic tail involved in pro-fibrotic signaling. The signaling and cellular processes governed by syndecans in the heart in response to pathological stimuli regulate important aspects of extracellular matrix remodeling and fibrosis and have mainly been studied in cardiac remodeling in response to cardiac infarction and pressure overload. In general, adequate timing and the quantity and quality of fibrosis are absolutely crucial for heart function and survival, determining cardiac stiffness, contractility, compliance, probability of rupture, dilation, and diastolic and systolic function. Syndecan-1 and -4 have mainly been studied in the heart and are discussed in this review (LV left ventricle).
NASA Astrophysics Data System (ADS)
Ba, Xiaolan
Biomineralization is a wide-spread phenomenon in the biological systems, which is the process of mineral formation by organisms through interaction between its organic contents and the inorganic minerals. The process is essential in a broad spectrum of biological phenomena ranging from bone and tooth formation to pathological mineralization under hypoxic conditions or cancerous formations. In this thesis I studied biomineralization at the earliest stages in order to obtain a better understanding of the fundamental principals involved. This knowledge is essential if we want to engineer devices which will increase bone regeneration or prevent unwanted mineral deposits. Extracellular matrix (ECM) proteins play an essential role during biomineralization in bone and engineered tissues. In this dissertation, I present an approach to mimic the ECM in vitro to probe the interactions of these proteins with calcium phosphate mineral and with each other. Early stage of mineralization is investigated by mechanical properties of the protein fibers using Scanning Probe Microscopy (SPM) and Shear Modulation Force Microscopy (SMFM). The development of mineral crystals on the protein matrices is also characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Grazing Incidence X-ray Diffraction (GIXRD). The results demonstrate complementary actions of the two ECM proteins to collect cations and template calcium phosphate mineral, respectively. Magnets have been clinically used as an "induction source" in various bone or orthodontic treatments. However, the mechanism and effects of magnetic fields remain unclear. In this dissertation, I also undertake the present investigation to study the effects of 150 mT static magnetic fields (SMF) on ECM development and cell biomineralization using MC3T3-E1 osteobalst-like cells. Early stage of biomineralization is characterized by SPM, SMFM and confocal laser scanning microscopy (CSLM). Late stage of biomineralization is investigated by SEM, GIXRD and energy dispersive X-ray spectroscopy (EDXS). Gene expression during the exposure of SMF is also studies by RT-PCR. The results indicated that exposure to SMF induces osteoblasts to produce larger quantities of HA, with higher degree of crystalline order. The controlling and understanding of protein on the surface is of great interest in biomedical application such as implant medicine, biosensor design, food processing, and chromatographic separations. The adsorbed protein onto the surface significantly determines the performance of biomaterials in a biological environment. Recent studies have suggested that the preservation of the native secondary structure of protein adsorbed is essential for biological application. In order to manipulate protein adsorption and design biocompatible materials, the mechanisms underlying protein-surface interactions, especially how surface properties of materials induce conformational changes of adsorbed proteins, needs to be well understood. Here we demonstrated that even though SPS is a necessary condition, it is not sufficient. We show that low substrate conductivity as well as proper salt concentration are also critical in sustained protein adsorption continuously. These factors allow one to pattern regions of different conducting properties and for the first time patterns physiologically relevant protein structures. Here we show that we can achieve patterned biomineralized regimes, both with plasma proteins in a simple and robust manner without additional functionalization or application of electrochemical gradients. Since the data indicate that the patterns just need to differ in electrical conductivity, rather than surface chemistry, we propose that the creation of transient image charges, due to incomplete charge screening, may be responsible for sustain the driving force for continual protein absorption.
Advanced glycation end products and the progressive course of renal disease.
Heidland, A; Sebekova, K; Schinzel, R
2001-10-01
In experimental and human diabetic nephropathy (DN), it has been shown that advanced glycation end products (AGEs), in particular, carboxymethyl-lysine and pentosidine, accumulate with malondialdehyde in glomerular lesions in relation to disease severity and in the presence of an upregulated receptor for AGE (RAGE) in podocytes. Toxic effects of AGEs result from structural and functional alterations in plasma and extracellular matrix (ECM) proteins, in particular, from cross-linking of proteins and interaction of AGEs with their receptors and/or binding proteins. In mesangial and endothelial cells, the AGE-RAGE interaction caused enhanced formation of oxygen radicals with subsequent activation of nuclear factor-kappaB and release of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor-alpha), growth factors (transforming growth factor-beta1 [TGF-beta1], insulin-like growth factor-1), and adhesion molecules (vascular cell adhesion molecule-1, intercellular adhesion molecule-1). In tubular cells, incubation with AGE albumin was followed by stimulation of the mitogen-activating protein (MAP) kinase pathway and its downstream target, the activating protien-1 (AP-1) complex, TGF-beta1 overexpression, enhanced protein kinase C activity, decreased cell proliferation, and impaired protein degradation rate, in part caused by decreased cathepsin activities. The pathogenic relevance of AGEs was further verified by in vivo experiments in euglycemic rats and mice by the parenteral administration of AGE albumin, leading in the glomeruli to TGF-beta1 overproduction, enhanced gene expression of ECM proteins, and morphological lesions similar to those of DN. Evidence for the pathogenic relevance of AGEs in DN also comes from experimental studies in which the formation and/or action of AGEs was modulated by aminoguanidine, OPB-9195, pyridoxamine, soluble RAGEs, serine protease trypsin, and antioxidants, resulting in improved cell and/or renal function.
Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts.
Kutty, Jaishankar K; Webb, Ken
2010-01-01
The composition and organization of the vocal fold extracellular matrix (ECM) provide the viscoelastic mechanical properties that are required to sustain high-frequency vibration during voice production. Although vocal injury and pathology are known to produce alterations in matrix physiology, the mechanisms responsible for the development and maintenance of vocal fold ECM are poorly understood. The objective of this study was to investigate the effect of physiologically relevant vibratory stimulation on ECM gene expression and synthesis by fibroblasts encapsulated within hyaluronic acid hydrogels that approximate the viscoelastic properties of vocal mucosa. Relative to static controls, samples exposed to vibration exhibited significant increases in mRNA expression levels of HA synthase 2, decorin, fibromodulin and MMP-1, while collagen and elastin expression were relatively unchanged. Expression levels exhibited a temporal response, with maximum increases observed after 3 and 5 days of vibratory stimulation and significant downregulation observed at 10 days. Quantitative assays of matrix accumulation confirmed significant increases in sulphated glycosaminoglycans and significant decreases in collagen after 5 and 10 days of vibratory culture, relative to static controls. Cellular remodelling and hydrogel viscosity were affected by vibratory stimulation and were influenced by varying the encapsulated cell density. These results indicate that vibration is a critical epigenetic factor regulating vocal fold ECM and suggest that rapid restoration of the phonatory microenvironment may provide a basis for reducing vocal scarring, restoring native matrix composition and improving vocal quality. 2009 John Wiley & Sons, Ltd.
ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION
Kanan, Y.; Al-Ubaidi, M.R.
2014-01-01
The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460
Extracellular Matrix Modulation: Optimizing Skin Care and Rejuvenation Procedures.
Widgerow, Alan D; Fabi, Sabrina G; Palestine, Roberta F; Rivkin, Alexander; Ortiz, Arisa; Bucay, Vivian W; Chiu, Annie; Naga, Lina; Emer, Jason; Chasan, Paul E
2016-04-01
Normal aging and photoaging of the skin are chronic processes that progress gradually. The extracellular matrix (ECM), constituting over 70% of the skin, is the central hub for repair and regeneration of the skin. As such, the ECM is the area where changes related to photodamage are most evident. Degradation of the ECM with fragmentation of proteins significantly affects cross talk and signaling between cells, the matrix, and its constituents. The accumulation of collagen fragments, amorphous elastin agglutinations, and abnormal cross-linkages between the collagen fragments impedes the ECM from its normal repair and regenerative capacity, which manifests as wrinkled, non-elastic skin. Similar to how the chronic wound healing process requires wound bed preparation before therapeutic intervention, treatment of chronic aging of the skin would likely benefit from a "skin bed preparation" to optimize the outcome of rejuvenation procedures and skin maintenance programs. This involves introducing agents that can combat stress-induced oxidation, proteasome dysfunction, and non-enzymatic cross linkages involved in glycation end products, to collectively modulate this damaged ECM, and upregulate neocollagenesis and elastin production. Agents of particular interest are matrikines, peptides originating from the fragmentation of matrix proteins that exhibit a wide range of biological activities. Peptides of this type (tripeptide and hexapeptide) are incorporated in ALASTIN™ Skin Nectar with TriHex™ technology (ALASTIN Skincare, Inc., Carlsbad, CA), which is designed to target ECM modulation with a goal of optimizing results following invasive and non-invasive dermal rejuvenating procedures.
Hamuro, Junji; Toda, Munetoyo; Asada, Kazuko; Hiraga, Asako; Schlötzer-Schrehardt, Ursula; Montoya, Monty; Sotozono, Chie; Ueno, Morio; Kinoshita, Shigeru
2016-09-01
To identify the subpopulation (SP) among heterogeneous cultured human corneal endothelial cells (cHCECs) devoid of cell-state transition applicable for cell-based therapy. Subpopulation presence in cHCECs was confirmed via surface CD-marker expression level by flow cytometry. CD markers effective for distinguishing distinct SPs were selected by analyzing those on established cHCECs with a small cell area and high cell density. Contrasting features among three typical cHCEC SPs was confirmed by PCR array for extracellular matrix (ECM). Combined analysis of CD markers was performed to identify the SP (effector cells) applicable for therapy. ZO-1 and Na+/K+ ATPase, CD200, and HLA expression were compared among heterogeneous SPs. Flow cytometry analysis identified the effector cell expressing CD166+CD105-CD44-∼+/-CD26-CD24-, but CD200-, and the presence of other SPs with CD166+ CD105-CD44+++ (CD26 and CD24, either + or -) was confirmed. PCR array revealed three distinct ECM expression profiles. Some SPs expressed ZO-1 and Na+/K+ ATPase at comparable levels with effector cells, while only one SP expressed CD200, but not on effector cells. Human leukocyte antigen expression was most reduced in the effector SP. The proportion of effector cells (E-ratio) inversely paralleled donor age and decreased during prolonged culture passages. The presence of Rho-associated protein kinase (ROCK) inhibitor increased the E-ratio in cHCECs. The average area of effector cells was approximately 200∼220 μm2, and the density of cHCECs exceeded 2500 cells/mm2. A specified cultured effector cell population sharing the surface phenotypes with mature HCECs in corneal tissues may serve as an alternative to donor corneas for the treatment of corneal endothelial dysfunction.
Duarte, Fernanda O; Gomes-Gatto, Camila do Valle; Oishi, Jorge C; Lino, Anderson Diogo de S; Stotzer, Uliana S; Rodrigues, Maria Fernanda C; Gatti da Silva, Guilherme H; Selistre-de-Araújo, Heloisa S
2017-08-01
Adipose tissue development is associated with modifications involving extracellular matrix remodelling, and metalloproteinases play a significant role in this process. Reduced circulating sexual hormones cause impacts on the size, morphology and functions of the adipose tissue, increasing susceptibility to diseases. This study investigated whether exercise training may be an alternative strategy to combat the effects promoted by estrogen decay through modulation in gene expression patterns in the extracellular matrix (ECM) of visceral adipose tissue of ovariectomized rats. Nulliparous rats (n = 40) were randomly distributed into four groups (n = 10/group): sham sedentary (Sh-S), sham resistance training (Sh-Rt), ovariectomized sedentary (Ovx-S) and ovariectomized resistance training (Ovx-Rt). The Sh-S animals did not have any type of training. The body mass and food intake, ECM gene expression, gelatinase MMP-2 activity and adipocyte area were measured. A lack of estrogen promoted an increase in body mass, food intake and the visceral, parametrial and subcutaneous adipocyte areas. The ovariectomy upregulated the expression of MMP-2, MMP-9, TGF-β, CTGF, VEGF-A and MMP-2 activity. On the other hand, resistance training decreased the body mass, food intake and the adipocyte area of the three fat depots analysed; upregulated TIMP-1, VEGF-A and MMP-2 gene expression; downregulated MMP-9, TGF-β and CTGF gene expression; and decreased the MMP-2 activity. We speculate that resistance training on a vertical ladder could play an important role in maintaining and remodelling ECM by modulation in the ECM gene expression and MMP-2 activity, avoiding its destabilization which is impaired by the lack of estrogen. © 2017 The Authors. International Journal of Experimental Pathology © 2017 International Journal of Experimental Pathology.
Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem
2017-02-01
Introduction Diaphragmatic morphogenesis depends on proper formation of muscle connective tissue (MCT) and underlying extracellular matrix (ECM). Fibrillin-1 is an essential ECM protein and crucial for the structural integrity of MCT in the developing diaphragm. Recently, mutations in the fibrillin-1 gene (FBN1) have been identified in cases of congenital diaphragmatic hernia (CDH), thus suggesting that alterations in FBN1 gene expression may lead to diaphragmatic defects. We designed this study to investigate the hypothesis that the diaphragmatic expression of fibrillin-1 is decreased in the MCT of nitrofen-induced CDH. Materials and Methods Time-mated rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms ( n = 72) were harvested on D13, D15, and D18, and divided into control and nitrofen-exposed specimens. Laser-capture microdissection was used to obtain diaphragmatic tissue cells. Gene expression levels of FBN1 were analyzed by qRT-PCR. Immunofluorescence-double-staining for fibrillin-1 and the mesenchymal marker Gata4 was performed to evaluate protein expression and localization. Results Relative mRNA expression of FBN1 was significantly decreased in pleuroperitoneal folds on D13 (3.39 ± 1.29 vs. 5.47 ± 1.92; p < 0.05), developing diaphragms on D15 (2.48 ± 0.89 vs. 4.03 ± 1.62; p < 0.05), and fully muscularized diaphragms on D18 (2.49 ± 0.69 vs. 3.93 ± 1.55; p < 0.05) of nitrofen-exposed fetuses compared with controls. Confocal-laser-scanning microscopy revealed markedly diminished fibrillin-1 immunofluorescence mainly in MCT, associated with a reduction of proliferating mesenchymal cells in nitrofen-exposed fetuses on D13, D15, and D18 compared with controls. Conclusions Decreased expression of fibrillin-1 during morphogenesis of the fetal diaphragm may disrupt mesenchymal cell proliferation, causing malformed MCT and thus resulting in diaphragmatic defects in the nitrofen-induced CDH model. Georg Thieme Verlag KG Stuttgart · New York.
Clustering of adhesion receptors following exposure of insect blood cells to foreign surfaces.
Nardi, James B; Zhuang, Shufei; Pilas, Barbara; Bee, Charles Mark; Kanost, Michael R
2005-05-01
Cell-mediated immune responses of insects involve interactions of two main classes of blood cells (hemocytes) known as granular cells and plasmatocytes. In response to a foreign surface, these hemocytes suddenly transform from circulating, non-adherent cells to cells that interact and adhere to each other and the foreign surface. This report presents evidence that during this adhesive transformation the extracellular matrix (ECM) proteins lacunin and a ligand for peanut agglutinin (PNA) lectin are released by granular cells and bind to surfaces of both granular cells and plasmatocytes. ECM protein co-localizes on cell surfaces with the adhesive receptors integrin and neuroglian, a member of the immunoglobulin superfamily. The ECM protein(s) secreted by granular cells are hypothesized to interact with adhesion receptors such as neuroglian and integrin by cross linking and clustering them on hemocyte surfaces. This clustering of receptors is known to enhance the adhesiveness (avidity) of interacting mammalian immune cells. The formation of ring-shaped clusters of these adhesion receptors on surfaces of insect immune cells represents an evolutionary antecedent of the mammalian immunological synapse.
One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior.
Marinkovic, Milos; Block, Travis J; Rakian, Rubie; Li, Qihong; Wang, Exing; Reilly, Matthew A; Dean, David D; Chen, Xiao-Dong
2016-01-01
For more than 100years, cells and tissues have been studied in vitro using glass and plastic surfaces. Over the last 10-20years, a great body of research has shown that cells are acutely sensitive to their local environment (extracellular matrix, ECM) which contains both chemical and physical cues that influence cell behavior. These observations suggest that modern cell culture systems, using tissue culture polystyrene (TCP) surfaces, may fail to reproduce authentic cell behavior in vitro, resulting in "artificial outcomes." In the current study, we use bone marrow (BM)- and adipose (AD)-derived stromal cells to prepare BM-ECM and AD-ECM, which are decellularized after synthesis by the cells, to mimic the cellular niche for each of these tissues. Each ECM was characterized for its ability to affect BM- and AD-mesenchymal stem cell (MSC) proliferation, as well as proliferation of three cancer cell lines (HeLa, MCF-7, and MDA-MB-231), modulate cell spreading, and direct differentiation relative to standard TCP surfaces. We found that both ECMs promoted the proliferation of MSCs, but that this effect was enhanced when the tissue-origin of the cells matched that of the ECM (i.e. BM-ECM promoted the proliferation of BM-MSCs over AD-MSCs, and vice versa). Moreover, BM- and AD-ECM were shown to preferentially direct MSC differentiation towards either osteogenic or adipogenic lineage, respectively, suggesting that the effects of the ECM were tissue-specific. Further, each ECM influenced cell morphology (i.e. circularity), irrespective of the origin of the MSCs, lending more support to the idea that effects were tissue specific. Interestingly, unlike MSCs, these ECMs did not promote the proliferation of the cancer cells. In an effort to further understand how these three culture substrates influence cell behavior, we evaluated the chemical (protein composition) and physical properties (architecture and mechanical) of the two ECMs. While many structural proteins (e.g. collagen and fibronectin) were found at equivalent levels in both BM- and AD-ECM, the architecture (i.e. fiber orientation; surface roughness) and physical properties (storage modulus, surface energy) of each were unique. These results, demonstrating differences in cell behavior when cultured on the three different substrates (BM- and AD-ECM and TCP) with differences in chemical and physical properties, provide evidence that the two ECMs may recapitulate specific elements of the native stem cell niche for bone marrow and adipose tissues. More broadly, it could be argued that ECMs, elaborated by cells ex vivo, serve as an ideal starting point for developing tissue-specific culture environments. In contrast to TCP, which relies on the "one size fits all" paradigm, native tissue-specific ECM may be a more rational model to approach engineering 3D tissue-specific culture systems to replicate the in vivo niche. We suggest that this approach will provide more meaningful information for basic research studies of cell behavior as well as cell-based therapeutics. Published by Elsevier B.V.
Lsa63, a newly identified surface protein of Leptospira interrogans binds laminin and collagen IV.
Vieira, Monica L; de Morais, Zenaide M; Gonçales, Amane P; Romero, Eliete C; Vasconcellos, Silvio A; Nascimento, Ana L T O
2010-01-01
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease that affects populations worldwide. We have identified in proteomic studies a protein that is encoded by the gene LIC10314 and expressed in virulent strain of L. interrogans serovar Pomona. This protein was predicted to be surface exposed by PSORT program and contains a p83/100 domain identified by BLAST analysis that is conserved in protein antigens of several strains of Borrelia and Treponema spp. The proteins containing this domain have been claimed antigen candidates for serodiagnosis of Lyme borreliosis. Thus, we have cloned the LIC10314 and expressed the protein in Escherichia coli BL21-SI strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. This protein is conserved among several species of pathogenic Leptospira and absent in the saprophytic strain L. biflexa. We confirm by liquid-phase immunofluorescence assays with living organisms that this protein is most likely a new surface leptospiral protein. The ability of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC10314, named Lsa63 (Leptospiral surface adhesin of 63kDa), binds strongly to laminin and collagen IV in a dose-dependent and saturable fashion. In addition, Lsa63 is probably expressed during infection since it was recognized by antibodies of serum samples of confirmed-leptospirosis patients in convalescent phase of the disease. Altogether, the data suggests that this novel identified surface protein may be involved in leptospiral pathogenesis. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
RECK-Mediated β1-Integrin Regulation by TGF-β1 Is Critical for Wound Contraction in Mice.
Gutiérrez, Jaime; Droppelmann, Cristian A; Contreras, Osvaldo; Takahashi, Chiaki; Brandan, Enrique
2015-01-01
Fibroblasts are critical for wound contraction; a pivotal step in wound healing. They produce and modify the extracellular matrix (ECM) required for the proper tissue remodeling. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a key regulator of ECM homeostasis and turnover. However, its role in wound contraction is presently unknown. Here we describe that Transforming growth factor type β1 (TGF-β1), one of the main pro-fibrotic wound-healing promoting factors, decreases RECK expression in fibroblasts through the Smad and JNK dependent pathways. This TGF-β1 dependent downregulation of RECK occurs with the concomitant increase of β1-integrin, which is required for fibroblasts adhesion and wound contraction through the activation of focal adhesion kinase (FAK). Loss and gain RECK expression experiments performed in different types of fibroblasts indicate that RECK downregulation mediates TGF-β1 dependent β1-integrin expression. Also, reduced levels of RECK potentiate TGF-β1 effects over fibroblasts FAK-dependent contraction, without affecting its cognate signaling. The above results were confirmed on fibroblasts derived from the Reck+/- mice compared to wild type-derived fibroblasts. We observed that Reck+/- mice heal dermal wounds more efficiently than wild type mice. Our results reveal a critical role for RECK in skin wound contraction as a key mediator in the axis: TGF-β1-RECK-β1-integrin.
Matrilin-3 Is Dispensable for Mouse Skeletal Growth and Development
Ko, Yaping; Kobbe, Birgit; Nicolae, Claudia; Miosge, Nicolai; Paulsson, Mats; Wagener, Raimund; Aszódi, Attila
2004-01-01
Matrilin-3 belongs to the matrilin family of extracellular matrix (ECM) proteins and is primarily expressed in cartilage. Mutations in the gene encoding human matrilin-3 (MATN-3) lead to autosomal dominant skeletal disorders, such as multiple epiphyseal dysplasia (MED), which is characterized by short stature and early-onset osteoarthritis, and bilateral hereditary microepiphyseal dysplasia, a variant form of MED characterized by pain in the hip and knee joints. To assess the function of matrilin-3 during skeletal development, we have generated Matn-3 null mice. Homozygous mutant mice appear normal, are fertile, and show no obvious skeletal malformations. Histological and ultrastructural analyses reveal endochondral bone formation indistinguishable from that of wild-type animals. Northern blot, immunohistochemical, and biochemical analyses indicated no compensatory upregulation of any other member of the matrilin family. Altogether, our findings suggest functional redundancy among matrilins and demonstrate that the phenotypes of MED disorders are not caused by the absence of matrilin-3 in cartilage ECM. PMID:14749384
Bae, Eun-Bin; Park, Keun-Ho; Shim, Jin-Hyung; Chung, Ho-Yun; Choi, Jae-Won; Lee, Jin-Ju; Kim, Chang-Hwan; Jeon, Ho-Jun; Kang, Seong-Soo; Huh, Jung-Bo
2018-01-01
This study was undertaken to evaluate the effect of 3D printed polycaprolactone (PCL)/ β -tricalcium phosphate ( β -TCP) scaffold containing bone demineralized and decellularized extracellular matrix (bdECM) and human recombinant bone morphogenetic protein-2 (rhBMP-2) on bone regeneration. Scaffolds were divided into PCL/ β -TCP, PCL/ β -TCP/bdECM, and PCL/ β -TCP/bdECM/BMP groups. In vitro release kinetics of rhBMP-2 were determined with respect to cell proliferation and osteogenic differentiation. These three reconstructive materials were implanted into 8 mm diameter calvarial bone defect in male Sprague-Dawley rats. Animals were sacrificed four weeks after implantation for micro-CT, histologic, and histomorphometric analyses. The findings obtained were used to calculate new bone volumes (mm 3 ) and new bone areas (%). Excellent cell bioactivity was observed in the PCL/ β -TCP/bdECM and PCL/ β -TCP/bdECM/BMP groups, and new bone volume and area were significantly higher in the PCL/ β -TCP/bdECM/BMP group than in the other groups ( p < .05). Within the limitations of this study, bdECM printed PCL/ β -TCP scaffolds can reproduce microenvironment for cells and promote adhering and proliferating the cells onto scaffolds. Furthermore, in the rat calvarial defect model, the scaffold which printed rhBMP-2 loaded bdECM stably carries rhBMP-2 and enhances bone regeneration confirming the possibility of bdECM as rhBMP-2 carrier.
Komosinska-Vassev, Katarzyna; Olczyk, Pawel; Winsz-Szczotka, Katarzyna; Kuznik-Trocha, Kornelia; Klimek, Katarzyna; Olczyk, Krystyna
2012-02-13
The authors studied the role of increased oxidative stress in the development of oxidative protein damage and extracellular matrix (ECM) components in ageing. The age- and gender-associated disturbances in connective tissue metabolism were evaluated by the plasma chondroitin sulphated glycosaminoglycans (CS-GAG) and non-sulphated GAG-hyaluronan (HA) measurements. Plasma concentration of advanced oxidation protein products (AOPP) was analysed in order to assess oxidative protein damage and evaluate the possible deleterious role of oxidative phenomenon on tissue proteoglycans' metabolism during the physiological ageing process. Sulphated and non-sulphated GAGs as well as AOPP were quantified in plasma samples from 177 healthy volunteers. A linear age-related decline of plasma CS-GAG level was found in this study (r=-0.46; p<0.05). In contrast, HA concentrations rise gradually with age (r=0.44; p<0.05) in plasma samples. For both ECM components, the observed differences were not gender-specific. A strong age-dependent relationship has been shown in regard to AOPP. AOPP levels significantly increased with age (r=0.63; p<0.05), equally strongly in both men (r=0.69; p<0.05) and women (r=0.57; p<0.05) during physiological ageing. A significant correlation was found between the concentrations of AOPP and both CS-GAG (r=-0.31; p<0.05) and HA (r=0.33; p<0.05). Proceeding with age changes in the ECM are reflected by CS-GAG and HA plasma levels. Strong correlations between AOPP and ECM components indicate that oxidative stress targets protein and non-protein components of the connective tissue matrix during human ageing.
Sarig, Udi; Au-Yeung, Gigi C.T.; Wang, Yao; Bronshtein, Tomer; Dahan, Nitsan; Boey, Freddy Y.C.; Venkatraman, Subbu S.
2012-01-01
The decellularization of porcine heart tissue offers many opportunities for the production of physiologically relevant myocardial mimetic scaffolds. Earlier, we reported the successful isolation of a thin porcine cardiac extracellular matrix (pcECM) exhibiting relevant bio-mechanical properties for myocardial tissue engineering. Nevertheless, since native cardiac tissue is much thicker, such thin scaffolds may offer limited regeneration capacity. However, generation of thicker myocardial mimetic tissue constructs is hindered by diffusion limitations (∼100 μm), and the lack of a proper vascular-like network within these constructs. In our present work, we focused on optimizing the decellularization procedure for thicker tissue slabs (10–15 mm), while retaining their inherent vasculature, and on characterizing the resulting pcECM. The trypsin/Triton-based perfusion procedure that resulted in a nonimmunogenic and cell-supportive pcECM was found to be more effective in cell removal and in the preservation of fiber morphology and structural characteristics than stirring, sonication, or sodium dodecyl sulfate/Triton-based procedures. Mass spectroscopy revealed that the pcECM is mainly composed of ECM proteins with no apparent cellular protein remains. Mechanical testing indicated that the obtained pcECM is viscoelastic in nature and possesses the typical stress-strain profile of biological materials. It is stiffer than native tissue yet exhibits matched mechanical properties in terms of energy dissipation, toughness, and ultimate stress behavior. Vascular network functionality was maintained to the first three–four branches from the main coronary vessels. Taken together, these results reaffirm the efficiency of the decellularization procedure reported herein for yielding thick nonimmunogenic cell-supportive pcECM scaffolds, preserving both native tissue ultra-structural properties and an inherent vascular network. When reseeded with the appropriate progenitor cells, these scaffolds can potentially serve as ex vivo screening platforms for new therapeutics, as models for human cardiac ECM, or as biomedical constructs for patch or transmural transplantation strategies. PMID:22663095
Han, Mira; Bae, Jung-Soo; Ban, Jae-Jun; Shin, Hee Soon; Lee, Dong Hun; Chung, Jin Ho
2018-05-01
Exposure of the skin to ultraviolet (UV) radiation causes extracellular matrix (ECM) collapse in the dermis, owing to an increase in matrix metalloproteinase (MMP) production in both the epidermis and dermis, and a decrease in type I collagen expression in the dermis. Recently, black rice (Oryza sativa L.) was reported to have a wide range of pharmacological effects in various settings. However, the effects of black rice extract (BRE) on UV‑irradiated skin cells have not yet been characterized. BRE treatment did not affect cell morphology and viability of HaCaT and human dermal fibroblasts (HDF). We demonstrated that BRE downregulated basal and UV‑induced MMP‑1 expression in HaCaT cells. Furthermore, BRE significantly increased type I procollagen expression, and decreased MMP‑1 and MMP‑3 expression in UV‑irradiated HDF. The underlying mechanisms of these results involve a decrease in p38 and c‑Jun N‑terminal kinase activity, and suppression of UV‑induced activation of activator protein‑1 (AP‑1). BRE reduced UV‑induced reactive oxygen species production in HaCaT cells in a dose‑dependent manner. Indeed, mass spectrometry revealed that BRE contained antioxidative flavonoid components such as cyanidin‑3‑O‑β‑D‑glycoside and taxifolin‑7‑O‑glucoside. These findings suggest that BRE attenuates UV‑induced ECM damage by modulating mitogen‑activated protein kinase and AP‑1 signaling, and could be used as an active ingredient for preventing photoaging of the skin.
Chaillou, Thomas; Jackson, Janna R; England, Jonathan H; Kirby, Tyler J; Richards-White, Jena; Esser, Karyn A; Dupont-Versteegden, Esther E; McCarthy, John J
2015-01-01
The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. Copyright © 2015 the American Physiological Society.
Chaillou, Thomas; Jackson, Janna R.; England, Jonathan H.; Kirby, Tyler J.; Richards-White, Jena; Esser, Karyn A.; Dupont-Versteegden, Esther E.
2014-01-01
The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. PMID:25554798
Mah, Wesley; Jiang, Guoqiao; Olver, Dylan; Cheung, Godwin; Kim, Ben; Larjava, Hannu; Häkkinen, Lari
2014-01-01
Scar formation following skin injury can be a major psychosocial and physiological problem. However, the mechanisms of scar formation are still not completely understood. Previous studies have shown that wound healing in oral mucosa is faster, associates with a reduced inflammatory response and results to significantly reduced scar formation compared with skin wounds. In the present study, we hypothesized that oral mucosal fibroblasts from human gingiva are inherently distinct from fibroblasts from breast and abdominal skin, two areas prone to excessive scar formation, which may contribute to the preferential wound healing outcome in gingiva. To this end, we compared the phenotype of human gingival and skin fibroblasts cultured in in vivo-like three-dimensional (3D) cultures that mimic the cells' natural extracellular matrix (ECM) niche. To establish 3D cultures, five parallel fibroblast lines from human gingiva (GFBLs) and breast skin (SFBLs) were seeded in high density, and cultured for up to 21 days in serum and ascorbic acid containing medium to induce expression of wound-healing transcriptome and ECM deposition. Cell proliferation, morphology, phenotype and expression of wound healing and scar related genes were analyzed by real-time RT-PCR, Western blotting and immunocytochemical methods. The expression of a set of genes was also studied in three parallel lines of human abdominal SFBLs. Findings showed that GFBLs displayed morphologically distinct organization of the 3D cultures and proliferated faster than SFBLs. GFBLs expressed elevated levels of molecules involved in regulation of inflammation and ECM remodeling (MMPs) while SFBLs showed significantly higher expression of TGF-β signaling, ECM and myofibroblast and cell contractility-related genes. Thus, GFBLs display an inherent phenotype conducive for fast resolution of inflammation and ECM remodeling, characteristic for scar-free wound healing, while SFBLs have a profibrotic, scar-prone phenotype. PMID:24608113
NASA Astrophysics Data System (ADS)
Cramer, Gwendolyn M.; El-Hamidi, Hamid; Celli, Jonathan P.
2017-02-01
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extracellular matrix-rich stromal involvement, but it is not clear how ECM properties that affect invasiveness and chemotherapy response influence efficacy of photodynamic therapy (PDT). To disentangle the mechanical and biochemical effects of ECM composition, we measured the effects of various combinations of ECM proteins on growth behavior, invasive potential, and therapeutic response of multicellular 3D pancreatic tumor models. These spheroids were grown in attachment-free conditions before embedding in combinations of rheologically characterized collagen 1 and Matrigel combinations and treated with oxaliplatin chemotherapy and PDT. We find that cells invading from collagen-embedded tumor spheroids, the least rigid ECM substrate described here, displayed better response to PDT than to oxaliplatin chemotherapy. Overall, our results support that ECM-mediated invading PDAC populations remain responsive to PDT in conditions that induce chemoresistance.
Nanoscale Viscoelasticity of Extracellular Matrix Proteins in Soft Tissues: a Multiscale Approach
Miri, Amir K.; Heris, Hossein K.; Mongeau, Luc; Javid, Farhad
2013-01-01
We propose that the bulk viscoelasticity of soft tissues results from two length-scale-dependent mechanisms: the time-dependent response of extracellular matrix proteins (ECM) at the nanometer scale and the biophysical interactions between the ECM solid structure and interstitial fluid at the micrometer scale. The latter was modeled using the poroelasticity theory with an assumption of free motion of the interstitial fluid within the porous ECM structure. Following a recent study (Heris, H.K., Miri, A.K., Tripathy, U., Barthelat, F., Mongeau, L., 2013. Journal of the Mechanical Behavior of Biomedical Materials), atomic force microscopy was used to perform creep loading and 50-nm sinusoidal oscillations on porcine vocal folds. The proposed model was calibrated by a finite element model to accurately predict the nanoscale viscoelastic moduli of ECM. A linear correlation was observed between the in-depth distribution of the viscoelastic moduli and that of hyaluronic acids in the vocal fold tissue. We conclude that hyaluronic acids may regulate the vocal fold viscoelasticity at nanoscale. The proposed methodology offers a characterization tool for biomaterials used in vocal fold augmentations. PMID:24317493
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Liang; Hu, Jia; Weng, Yuxiong
Intervertebral disc degeneration (IDD) is marked by imbalanced metabolism of the extracellular matrix (ECM) in the nucleus pulposus (NP) of intervertebral discs. This study aimed to determine whether sirtuin 6 (SIRT6), a member of the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases, protects the NP from ECM degradation in IDD. Our study showed that expression of SIRT6 markedly decreased during IDD progression. Overexpression of wild-type SIRT6, but not a catalytically inactive mutant, prevented IL-1β-induced NP ECM degradation. SIRT6 depletion by RNA interference in NP cells caused ECM degradation. Moreover, SIRT6 physically interacted with nuclear factor-κB (NF-κB) catalytic subunit p65, transcriptionalmore » activity of which was significantly suppressed by SIRT6 overexpression. These results suggest that SIRT6 prevented NP ECM degradation in vitro via inhibiting NF-κB-dependent transcriptional activity and that this effect depended on its deacetylase activity. - Highlights: • SIRT6 expression is decreased in degenerative nucleus pulposus (NP) tissues. • SIRT6 overexpression lowers IL-1β-induced matrix degradation of NP. • SIRT6 inhibition induces matrix degradation of NP. • SIRT6 prevents matrix degradation of NP via the NF-κB signaling pathway.« less
Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.
Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong
2017-06-01
Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy of SC-CO 2 method for delipidation and decellularization of adipose tissue whilst retaining its ECM and its subsequent utilization as a bioactive surface coating material for soft tissue engineering, angiogenesis and wound healing applications. Copyright © 2017 Elsevier B.V. All rights reserved.
CCN1/CYR61 overexpression in hepatic stellate cells induces ER stress-related apoptosis.
Borkham-Kamphorst, Erawan; Steffen, Bettina T; Van de Leur, Eddy; Haas, Ute; Tihaa, Lidia; Friedman, Scott L; Weiskirchen, Ralf
2016-01-01
CCN1/CYR61 is a matricellular protein of the CCN family, comprising six secreted proteins specifically associated with the extracellular matrix (ECM). CCN1 acts as an enhancer of the cutaneous wound healing process by preventing hypertrophic scar formation through induction of myofibroblast senescence. In liver fibrosis, the senescent cells are primarily derived from activated hepatic stellate cells (HSC) that initially proliferate in response to liver damage and are the major source of ECM. We investigate here the possible use of CCN1 as a senescence inducer to attenuate liver fibrogenesis by means of adenoviral gene transfer in primary HSC, myofibroblasts (MFB) and immortalized HSC lines (i.e. LX-2, CFSC-2G). Infection with Ad5-CMV-CCN1 induced large amounts of CCN1 protein in all these cells, resulting in an overload of the endoplasmic reticulum (ER) and in a compensatory unfolded protein response (UPR). The UPR resulted in upregulation of ER chaperones including BIP/Grp78, Grp94 and led to an activation of IRE1α as evidenced by spliced XBP1 mRNA with IRE1α-induced JNK phosphorylation. The UPR arm PERK and eIF2a was phosphorylated, combined with significant CHOP upregulation. Ad5-CMV-CCN1 induced HSC apoptosis that was evident by proteolytic cleavage of caspase-12, caspase-9 and the executor caspase-3 and positive TUNEL stain. Remarkably, Ad5-CMV-CCN1 effectively reduced collagen type I mRNA expression and protein. We conclude that the matricellular protein CCN1 gene transfer induces HSC apoptosis through ER stress and UPR. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Interaction of Mycobacterium tuberculosis with human respiratory mucosa.
Middleton, A M; Chadwick, M V; Nicholson, A G; Dewar, A; Groger, R K; Brown, E J; Ratliff, T L; Wilson, R
2002-01-01
Endobronchial infection is associated with pulmonary tuberculosis in the majority of cases. We have investigated the adherence of Mycobacterium tuberculosis to the human respiratory mucosa. Organ cultures constructed with human tissue were infected with M. tuberculosis in the presence or absence of mycobacterial fibronectin attachment cell surface proteins and examined by scanning electron microscopy. M. tuberculosis adhered mainly to extracellular matrix (ECM) in areas of mucosal damage, but not to ciliated mucosa, intact extruded cells, basement membrane or collagen fibres. Bacteria also adhered to fibrous but not globular mucus and occasionally to healthy unciliated mucosa, open tight junctions and to extruded cells that had degenerated, exposing their contents. There was a significant reduction (p<0.05) in the number of bacteria adhering to ECM after pre-incubation of bacteria with fibronectin and after pre-incubation of the tissue with M. avium fibronectin attachment protein (FAP) and M. bovis antigen 85B protein, in a concentration dependent manner. The combined effect of FAP and antigen 85B protein was significantly greater than either protein alone. Bacterial adherence to fibrous mucus was not influenced by fibronectin. We conclude that M. tuberculosis adheres to ECM in areas of mucosal damage at least in part via FAP and antigen 85B protein.
Proteomic differences between native and tissue‐engineered tendon and ligament
Tew, Simon R.; Peffers, Mandy; Canty‐Laird, Elizabeth G.; Comerford, Eithne
2016-01-01
Tendons and ligaments (T/Ls) play key roles in the musculoskeletal system, but they are susceptible to traumatic or age‐related rupture, leading to severe morbidity as well as increased susceptibility to degenerative joint diseases such as osteoarthritis. Tissue engineering represents an attractive therapeutic approach to treating T/L injury but it is hampered by our poor understanding of the defining characteristics of the two tissues. The present study aimed to determine differences in the proteomic profile between native T/Ls and tissue engineered (TE) T/L constructs. The canine long digital extensor tendon and anterior cruciate ligament were analyzed along with 3D TE fibrin‐based constructs created from their cells. Native tendon and ligament differed in their content of key structural proteins, with the ligament being more abundant in fibrocartilaginous proteins. 3D T/L TE constructs contained less extracellular matrix (ECM) proteins and had a greater proportion of cellular‐associated proteins than native tissue, corresponding to their low collagen and high DNA content. Constructs were able to recapitulate native T/L tissue characteristics particularly with regard to ECM proteins. However, 3D T/L TE constructs had similar ECM and cellular protein compositions indicating that cell source may not be an important factor for T/L tissue engineering. PMID:27080496
Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B
2017-03-01
Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic biological mechanisms of muscle fiber hypertrophy. Copyright © 2017 the American Physiological Society.
Schwartz, Andrew J.; Grekin, Jeremy A.; Gumucio, Jonathan P.; Sugg, Kristoffer B.
2017-01-01
Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic biological mechanisms of muscle fiber hypertrophy. PMID:27979985
Croutze, Roger; Jomha, Nadr; Uludag, Hasan; Adesida, Adetola
2013-12-13
Limited intrinsic healing potential of the meniscus and a strong correlation between meniscal injury and osteoarthritis have prompted investigation of surgical repair options, including the implantation of functional bioengineered constructs. Cell-based constructs appear promising, however the generation of meniscal constructs is complicated by the presence of diverse cell populations within this heterogeneous tissue and gaps in the information concerning their response to manipulation of oxygen tension during cell culture. Four human lateral menisci were harvested from patients undergoing total knee replacement. Inner and outer meniscal fibrochondrocytes (MFCs) were expanded to passage 3 in growth medium supplemented with basic fibroblast growth factor (FGF-2), then embedded in porous collagen type I scaffolds and chondrogenically stimulated with transforming growth factor β3 (TGF-β3) under 21% (normal or normoxic) or 3% (hypoxic) oxygen tension for 21 days. Following scaffold culture, constructs were analyzed biochemically for glycosaminoglycan production, histologically for deposition of extracellular matrix (ECM), as well as at the molecular level for expression of characteristic mRNA transcripts. Constructs cultured under normal oxygen tension expressed higher levels of collagen type II (p = 0.05), aggrecan (p < 0.05) and cartilage oligomeric matrix protein, (COMP) (p < 0.05) compared to hypoxic expanded and cultured constructs. Accumulation of ECM rich in collagen type II and sulfated proteoglycan was evident in normoxic cultured scaffolds compared to those under low oxygen tension. There was no significant difference in expression of these genes between scaffolds seeded with MFCs isolated from inner or outer regions of the tissue following 21 days chondrogenic stimulation (p > 0.05). Cells isolated from inner and outer regions of the human meniscus demonstrated equivalent differentiation potential toward chondrogenic phenotype and ECM production. Oxygen tension played a key role in modulating the redifferentiation of meniscal fibrochondrocytes on a 3D collagen scaffold in vitro.
Ghezzi, Chiara E; Marelli, Benedetto; Omenetto, Fiorenzo G; Funderburgh, James L; Kaplan, David L
2017-01-01
The worldwide need for human cornea equivalents continues to grow. Few clinical options are limited to allogenic and synthetic material replacements. We hypothesized that tissue engineered human cornea systems based on mechanically robust, patterned, porous, thin, optically clear silk protein films, in combination with human corneal stromal stem cells (hCSSCs), would generate 3D functional corneal stroma tissue equivalents, in comparison to previously developed 2D approaches. Silk film contact guidance was used to control the alignment and distribution of hCSSCs on RGD-treated single porous silk films, which were then stacked in an orthogonally, multi-layered architecture and cultured for 9 weeks. These systems were compared similar systems generated with human corneal fibroblasts (hCFs). Both cell types were viable and preferentially aligned along the biomaterial patterns for up to 9 weeks in culture. H&E histological sections showed that the systems seeded with the hCSSCs displayed ECM production throughout the entire thickness of the constructs. In addition, the ECM proteins tested positive for keratocyte-specific tissue markers, including keratan sulfate, lumican, and keratocan. The quantification of hCSSC gene expression of keratocyte-tissue markers, including keratocan, lumican, human aldehyde dehydrogenase 3A1 (ALDH3A1), prostaglandin D2 synthase (PTDGS), and pyruvate dehydrogenase kinase, isozyme 4 (PDK4), within the 3D tissue systems demonstrated upregulation when compared to 2D single silk films and to the systems generated with the hCFs. Furthermore, the production of ECM from the hCSSC seeded systems and subsequent remodeling of the initial matrix significantly improved cohesiveness and mechanical performance of the constructs, while maintaining transparency after 9 weeks.
Sivan, Unnikrishnan; Jayakumar, K; Krishnan, Lissy K
2016-10-01
Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Håkansson, Joakim; Xian, Xiaojie; He, Liqun; Ståhlberg, Anders; Nelander, Sven; Samuelsson, Tore; Kubista, Mikael; Semb, Henrik
2005-01-01
To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.
Cui, Jinyu; Good, Nathan M.; Hu, Bo; ...
2016-04-26
Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targetedmore » metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm overexpressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. Lastly, this research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Jinyu; Good, Nathan M.; Hu, Bo
Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targetedmore » metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm overexpressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. Lastly, this research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.« less
Pfeil, Uwe; Bharathala, Subhashini; Murtaza, Ghulam; Mermer, Petra; Papadakis, Tamara; Boening, Andreas; Kummer, Wolfgang
2016-12-01
Heart valves are highly organized structures determining the direction of blood flow through the heart. Smooth muscle cells within the valve are thought to play an active role during the heart cycle, rather than being just passive flaps. The mature heart valve is composed of extracellular matrix (ECM), various differentiations of valvular interstitial cells (VIC), smooth muscle cells and overlying endothelium. VIC are important for maintaining the structural integrity of the valve, thereby affecting valve function and ECM remodelling. Accumulating evidence suggests an important role of calcitonin receptor-like receptor (CRL) signalling in preventing heart damage under several pathological conditions. Thus we investigate the existence of a putative CRL signalling system in mouse and human heart valves by real-time RT-PCR, laser-assisted microdissection, immunofluorescence and NADPH-diaphorase histochemistry. Mouse and human heart valves expressed mRNAs for the CRL ligands adrenomedullin (AM), adrenomedullin-2 (AM-2) and calcitonin gene-related peptide (CGRP) and for their receptor components, i.e., CRL and receptor-activity-modifying proteins 1-3. Immunofluorescence analysis revealed AM-, AM-2- and CRL-immunolabelling in endothelial cells and VIC, whereas CGRP immunoreactivity was restricted to nerve fibres and some endothelial cells. Nitric oxide synthase activity, as demonstrated by NADPH-diaphorase histochemistry, was shown mainly in valvular endothelial cells in mice, whereas in human aortic valves, VIC and smooth muscle cells were positive. Our results showed the presence of an intrinsic AM/AM-2/CGRP signalling system in murine and human heart valves with distinct cellular localization, suggesting its involvement in the regulation of valve stiffness and ECM production and turnover.
van der Steen, Sophieke C H A; van Tilborg, Angela A G; Vallen, Myrtille J E; Bulten, Johan; van Kuppevelt, Toin H; Massuger, Leon F A G
2016-03-01
The extracellular matrix (ECM) of ovarian cancer may provide a number of potential biomarkers. Chondroitin sulfate (CS), a class of sulfated polysaccharides, is abundantly present in the ECM of ovarian cancer. Structural alterations of CS chains (i.e. sulfation pattern) have been demonstrated to play a role in cancer development and progression. In this study we investigate the potential of highly sulfated CS as a biomarker in ovarian cancer using the single chain antibody GD3A11 selected by the phage display technology. The specificity of the antibody was determined by an indirect ELISA. GD3A11 epitope expression was assessed by immunohistochemistry in healthy organs, benign and malignant ovarian tumors (N=359) and correlated to clinical parameters. The CHST15 gene, responsible for the biosynthesis of highly sulfated CS was evaluated for mutation and methylation status. The GD3A11 epitope was minimally expressed in normal organs. Intense expression was observed in the ECM of different ovarian cancer subtypes, in contrast to benign ovarian tumors. Expression was independent of tumor grade, FIGO stage, and the use chemotherapy. For the aggressive ovarian cancer phenotype, intense expression was identified as an independent predictor for poor prognosis. CHST15 gene analysis showed no mutations nor an altered methylation status. Specific highly sulfated CS motifs expressed in the tumoral ECM hold biomarker potential in ovarian cancer patients. These matrix motifs constitute a novel class of biomarkers with prognostic significance and may be instrumental for innovative diagnostic and therapeutic applications (e.g. targeted therapy) in management of ovarian cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Yata, Teerapong; Lee, Eugene L Q; Suwan, Keittisak; Syed, Nelofer; Asavarut, Paladd; Hajitou, Amin
2015-06-03
Gene therapy has been an attractive paradigm for cancer treatment. However, cancer gene therapy has been challenged by the inherent limitation of vectors that are able to deliver therapeutic genes to tumors specifically and efficiently following systemic administration. Bacteriophage (phage) are viruses that have shown promise for targeted systemic gene delivery. Yet, they are considered poor vectors for gene transfer. Recently, we generated a tumor-targeted phage named adeno-associated virus/phage (AAVP), which is a filamentous phage particle whose genome contains the adeno-associated virus genome. Its effectiveness in delivering therapeutic genes to tumors specifically both in vitro and in vivo has been shown in numerous studies. Despite being a clinically useful vector, a multitude of barriers impede gene transduction to tumor cells. We hypothesized that one such factor is the tumor extracellular matrix (ECM). We used a number of tumor cell lines from different species and histological types in 2D monolayers or 3D multicellular tumor spheroid (MCTS) models. To assess whether the ECM is a barrier to tumor cell targeting by AAVP, we depleted the ECM using collagenase, hyaluronidase, or combination of both. We employed multiple techniques to investigate and quantify the effect of ECM depletion on ECM composition (including collagen type I, hyaluronic acid, fibronectin and laminin), and how AAVP adsorption, internalisation, gene expression and therapeutic efficacy are subsequently affected. Data were analyzed using a student's t test when comparing two groups or one-way ANOVA and post hoc Tukey tests when using more than two groups. We demonstrate that collagenase and hyaluronidase-mediated degradation of tumor ECM affects the composition of collagen, hyaluronic acid and fibronectin. Consequently, AAVP diffusion, internalisation, gene expression and tumor cell killing were enhanced after enzymatic treatment. Our data suggest that enhancement of gene transfer by the AAVP is solely attributed to ECM depletion. We provide substantial evidence that ECM modulation is relevant in clinically applicable settings by using 3D MCTS, which simulates in vivo environments more accurately. Our findings suggest that ECM depletion is an effective strategy to enhance the efficiency of viral vector-guided gene therapy.
Cytocompatible and water stable ultrafine protein fibers for tissue engineering
NASA Astrophysics Data System (ADS)
Jiang, Qiuran
This dissertation proposal focuses on the development of cytocompatible and water stable protein ultrafine fibers for tissue engineering. The protein-based ultrafine fibers have the potential to be used for biomedicine, due to their biocompatibility, biodegradability, similarity to natural extracellular matrix (ECM) in physical structure and chemical composition, and superior adsorption properties due to their high surface to volume ratio. However, the current technologies to produce the protein-based ultrafine fibers for biomedical applications still have several problems. For instance, the current electrospinning and phase separation technologies generate scaffolds composed of densely compacted ultrafine fibers, and cells can spread just on the surface of the fiber bulk, and hardly penetrate into the inner sections of scaffolds. Thus, these scaffolds can merely emulate the ECM as a two dimensional basement membrane, but are difficult to mimic the three dimensional ECM stroma. Moreover, the protein-based ultrafine fibers do not possess sufficient water stability and strength for biomedical applications, and need modifications such as crosslinking. However, current crosslinking methods are either high in toxicity or low in crosslinking efficiency. To solve the problems mentioned above, zein, collagen, and gelatin were selected as the raw materials to represent plant proteins, animal proteins, and denatured proteins in this dissertation. A benign solvent system was developed specifically for the fabrication of collagen ultrafine fibers. In addition, the gelatin scaffolds with a loose fibrous structure, high cell-accessibility and cell viability were produced by a novel ultralow concentration phase separation method aiming to simulate the structure of three dimensional (3D) ECM stroma. Non-toxic crosslinking methods using citric acid as the crosslinker were also developed for electrospun or phase separated scaffolds from these three proteins, and proved to be efficient to enhance the strength and water stability of scaffolds. The crosslinked protein scaffolds showed higher cytocompatibility than the polylactic acid scaffolds and the fibers crosslinked by glutaraldehyde. The potential of using these protein-based ultrafine fibers crosslinked by citric acid for tissue engineering has been proved in this dissertation.
RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex.
Jacquemet, Guillaume; Green, David M; Bridgewater, Rebecca E; von Kriegsheim, Alexander; Humphries, Martin J; Norman, Jim C; Caswell, Patrick T
2013-09-16
Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)-dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM.
RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1–IQGAP1 complex
Jacquemet, Guillaume; Green, David M.; Bridgewater, Rebecca E.; von Kriegsheim, Alexander; Humphries, Martin J.; Norman, Jim C.
2013-01-01
Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)–dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM. PMID:24019536
Podocyte-derived microparticles promote proximal tubule fibrotic signaling via p38 MAPK and CD36
Munkonda, Mercedes N.; Akbari, Shareef; Landry, Chloe; Sun, Suzy; Xiao, Fengxia; Turner, Maddison; Holterman, Chet E.; Nasrallah, Rania; Hébert, Richard L.; Kennedy, Christopher R. J.; Burger, Dylan
2018-01-01
ABSTRACT Tubulointerstitial fibrosis is a hallmark of advanced diabetic kidney disease that is linked to a decline in renal function, however the pathogenic mechanisms are poorly understood. Microparticles (MPs) are 100–1000 nm vesicles shed from injured cells that are implicated in intercellular signalling. Our lab recently observed the formation of MPs from podocytes and their release into urine of animal models of type 1 and 2 diabetes and in humans with type 1 diabetes. The purpose of the present study was to examine the role of podocyte MPs in tubular epithelial cell fibrotic responses. MPs were isolated from the media of differentiated, untreated human podocytes (hPODs) and administered to cultured human proximal tubule epithelial cells (PTECs). Treatment with podocyte MPs increased p38 and Smad3 phosphorylation and expression of the extracellular matrix (ECM) proteins fibronectin and collagen type IV. MP-induced responses were attenuated by co-treatment with the p38 inhibitor SB202190. A transforming growth factor beta (TGF-β) receptor inhibitor (LY2109761) blocked MP-induced Smad3 phosphorylation and ECM protein expression but not p38 phosphorylation suggesting that these responses occurred downstream of p38. Finally, blockade of the class B scavenger receptor CD36 completely abrogated MP-mediated p38 phosphorylation, downstream Smad3 activation and fibronectin/collagen type IV induction. Taken together our results suggest that podocyte MPs interact with proximal tubule cells and induce pro-fibrotic responses. Such interactions may contribute to the development of tubular fibrosis in glomerular disease. PMID:29435202
Montanez-Sauri, Sara I; Sung, Kyung Eun; Berthier, Erwin; Beebe, David J
2013-03-01
During breast carcinoma progression, the three-dimensional (3D) microenvironment is continuously remodeled, and changes in the composition of the extracellular matrix (ECM) occur. High throughput screening platforms have been used to decipher the complexity of the microenvironment and to identify ECM components responsible for cancer progression. However, traditional screening platforms are typically limited to two-dimensional (2D) cultures, and often exclude the influence of ECM and stromal components. In this work, a system that integrates 3-dimensional cell culture techniques with an automated microfluidic platform was used to create a new ECM screening platform that cultures cells in more physiologically relevant 3D in vitro microenvironments containing stromal cells and different ECM molecules. This new ECM screening platform was used to culture T47D breast carcinoma cells in mono- and co-culture with human mammary fibroblasts (HMF) with seven combinations of three different ECM proteins (collagen, fibronectin, laminin). Differences in the morphology of T47D clusters, and the proliferation of T47D cells were found in ECM compositions rich in fibronectin or laminin. In addition, an MMP enzyme activity inhibition screening showed the capabilities of the platform for small molecule screening. The platform presented in this work enables screening for the effects of matrix and stromal compositions and show promises for providing new insights in the identification of key ECM components involved in breast cancer.
Kohara, Yukihiro; Soeta, Satoshi; Izu, Yayoi; Arai, Kiyotaka; Amasaki, Hajime
2016-11-01
In the groove of Ranvier (GOR), osteoblast lineages form bone bark, which develops into endosteal cortical bone. This ossification process is thought to be regulated by the microenvironment in the GOR. Type VI collagen (Col VI), an extracellular matrix (ECM) protein found in the periosteum/perichondrium, mediates osteoblast differentiation via the cell-surface receptor neural/glial antigen 2 (NG2) chondroitin sulfate proteoglycan. In order to clarify the function of Col VI during osteoblast differentiation in the GOR, in the present study, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the rat tibia proximal end during postnatal growing periods by immunohistochemistry. Our data revealed that Col VI accumulated in the ECM of the GOR middle layer and that Col VI accumulation was reduced and disappeared in the inner and middle lower regions. Runt-related transcription factor 2-immunoreactive pre-osteoblasts expressed NG2 in Col VI-immunopositive areas. However, Osterix-immunoreactive mature osteoblasts were only found in the Col VI-immunonegative area. These findings indicate that Col VI provided a characteristic microenvironment in the GOR and that NG2-Col VI interactions may regulate the differentiation of osteoblast lineages prior to terminal maturation. Copyright © 2016 Elsevier GmbH. All rights reserved.
Luo, Limin; Li, Jun; Liu, Han; Jian, Xiaoqing; Zou, Qianlei; Zhao, Qing; Le, Qu; Chen, Hongdou; Gao, Xinghua; He, Chundi
2017-05-12
Adiponectin, an adipocyte-derived hormone, exerts pleiotropic biological effects on metabolism, inflammation, vascular homeostasis, apoptosis and immunity. Recently, adiponectin has been suggested to attenuate the progression of human dermal fibrosis. Connective tissue growth factor (CTGF) is induced in keloids and is thought to be participated in the formation of keloid fibrosis. However, the roles played by adiponectin in keloids remain unclear. In this study, we explored the effects of adiponectin on CTGF-induced cell proliferation, migration and the deposition of extracellular matrix (ECM) and their associated intracellular signalling pathways in keloid fibroblasts (KFs). We also explored possible mechanisms of keloid pathogenesis. Primary fibroblast cultures were established from foreskin biopsies and skin biopsies from patients with keloids. The expression of adiponectin and adiponectin receptors (adipoRs) was evaluated by reverse transcription-PCR (RT-PCR), quantitative real-time RT-PCR, immunofluorescence staining, and immunohistochemical analysis. Next, KFs and normal dermal fibroblasts (NFs) were treated with CTGF in the presence or absence of adiponectin. A cell counting kit-8 (CCK-8) and the Transwell assay were used to examine cell proliferation and migration. The level of the collagen I, fibronectin (FN) and α-smooth muscle actin (α-SMA) mRNAs and proteins were determined by quantitative real-time RT-PCR and western blotting. The effects of RNA interference (RNAi) targeting the adipoR genes were detected. Phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase-protein kinase (PI3K-Akt) were examined by western blotting to further investigate the signalling pathways. Furthermore, inhibitors of signal transduction pathways were investigated. The expression levels of adiponectin and adipoRs were significantly decreased in keloids compared with those in normal skin tissue. Adiponectin suppressed the CTGF-induced KFs, but not NFs, proliferation, migration and ECM production. Moreover, adiponectin inhibited the phosphorylation of AMPK, p38 and extracellular-regulated kinase (ERK), but not that of Jun N-terminal kinase (JNK) or Akt, in CTGF-treated KFs. The activity of adiponectin-mediated signalling pathways was attenuated by small interfering RNAs (siRNAs) targeting adipoR1 (but not siRNAs targeting adipoR2, T-cadherin or calreticulin), AMPK (Compound C), p38 (SB203580) inhibitors, and mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059). Based on our results, adiponectin suppresses CTGF-induced KFs proliferation, migration and ECM overproduction. One of the underlying mechanisms is the activation of the adipoR1, AMPK, p38, and ERK signalling pathways. Therefore, adiponectin may play an important role in the progression of keloids, suggesting a potential novel target for keloid treatment.
Nam, Seo Hee; Kim, Doyeun; Lee, Mi-Sook; Lee, Doohyung; Kwak, Tae Kyoung; Kang, Minkyung; Ryu, Jihye; Kim, Hye-Jin; Song, Haeng Eun; Choi, Jungeun; Lee, Gyu-Ho; Kim, Sang-Yeob; Park, Song Hwa; Kim, Dae Gyu; Kwon, Nam Hoon; Kim, Tai Young; Thiery, Jean Paul; Kim, Sunghoon; Lee, Jung Weon
2015-01-01
The adhesion properties of cells are involved in tumor metastasis. Although KRS at the plasma membrane is shown important for cancer metastasis, additionally to canonical roles of cytosolic KRS in protein translation, how KRS and its downstream effectors promote the metastatic migration remains unexplored. Disseminative behaviors (an earlier metastatic process) of colon cancer cell spheroids embedded in 3D collagen gels were studied with regards to cell adhesion properties, and relevance in KRS−/+ knocked-down animal and clinical colon cancer tissues. Time-lapse imaging revealed KRS-dependent cell dissemination from the spheroids, whereas KRS-suppressed spheroids remained static due to the absence of outbound movements supported by cell-extracellular matrix (ECM) adhesion. While keeping E-cadherin at the outward disseminative cells, KRS caused integrin-involved intracellular signaling for ERK/c-Jun, paxillin, and cell-ECM adhesion-mediated signaling to modulate traction force for crawling movement. KRS-suppressed spheroids became disseminative following ERK or paxillin re-expression. The KRS-dependent intracellular signaling activities correlated with the invasiveness in clinical colon tumor tissues and in KRS−/+ knocked-down mice tissues. Collectively, these observations indicate that KRS at the plasma membrane plays new roles in metastatic migration as a signaling inducer, and causes intracellular signaling for cancer dissemination, involving cell-cell and cell-ECM adhesion, during KRS-mediated metastasis. PMID:26091349
Tiwari, Vishvanath; Tiwari, Deepika; Patel, Varsha; Tiwari, Monalisa
2017-09-01
Acinetobacter baumannii, opportunistic nosocomial pathogen, increases gradually in the clinical setup. The high level of resistance mechanisms acquired by these bacteria makes their eradication difficult and biofilm formation is one of them. Biofilm comprises of closely packed bacterial population crowded together by extra-cellular matrix (ECM). ECM contains bacterial secreted polymers such as exopolysaccharides (EPS), proteins and extracellular-DNA (e-DNA) and rarely amyloidogenic proteins. Biofilm offers protection of underlying bacterial population against chemotherapeutic agents and host immune system. Therefore, present efforts are focused to find a novel therapeutic that targets biofilm-associated infections. Plants are used as a natural therapeutic for numerous ailments. In order to find an alternative of the available antibacterial drugs, we have focused on the natural herbal active compounds. In this study, we have extracted active compounds from various medicinal plants and screened its anti-biofilm activity against carbapenem resistant strain of A. baumannii. Results showed that polar extract of kiwi (Actinidia deliciosa) and clove (Syzygium aromaticum) exhibit effective anti-biofilm activity. These two plants were also used for their phytochemical screening and TLC profiling to find out the constituting secondary metabolites. Actinidia deliciosa extract contains an alkaloid (sanquinarine) as well as a flavonoid (hydroxyflavone). Anti-biofilm effect of this extract on the ECM of A. baumannii showed that it reduces EPS, protein and eDNA contents in the ECM. Proteins of ECM have also shown to form amyloid like structure, which was evident from its interaction with the Congo Red. CFU counting after Actinidia deliciosa extract treatment also supported the results. Therefore, it can be concluded that polar extract of A. deliciosa can be used to find suitable alternative therapeutic to control biofilm formation by carbapenem resistant strain of Acinetobacter baumannii. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exploring the key genes and pathways in enchondromas using a gene expression microarray.
Shi, Zhongju; Zhou, Hengxing; Pan, Bin; Lu, Lu; Kang, Yi; Liu, Lu; Wei, Zhijian; Feng, Shiqing
2017-07-04
Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.
Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem
2016-02-01
Developmental mutations that inhibit normal formation of extracellular matrix (ECM) in fetal diaphragms have been identified in congenital diaphragmatic hernia (CDH). FRAS1 and FRAS1-related extracellular matrix 2 (FREM2), which encode important ECM proteins, are secreted by mesenchymal cells during diaphragmatic development. The FRAS1/FREM2 gene unit has been shown to form a ternary complex with FREM1, which plays a crucial role during formation of human and rodent diaphragms. Furthermore, it has been demonstrated that the diaphragmatic expression of FREM1 is decreased in the nitrofen-induced CDH model. We hypothesized that FRAS1 and FREM2 expression is decreased in the developing diaphragms of fetal rats with nitrofen-induced CDH. Pregnant rats were exposed to either nitrofen or vehicle on gestational day 9 (D9), and fetuses were harvested on D13, D15 and D18. Microdissected diaphragms were divided into nitrofen-exposed/CDH and control samples (n = 12 per time-point and experimental group, respectively). Diaphragmatic gene expression levels of FRAS1 and FREM2 were analyzed by qRT-PCR. Immunofluorescence double staining for FRAS1 and FREM2 was combined with the mesenchymal marker GATA4 in order to evaluate protein expression and localization in pleuroperitoneal folds (PPFs) and fetal diaphragmatic tissue. Relative mRNA expression of FRAS1 and FREM2 were significantly reduced in PPFs of nitrofen-exposed fetuses on D13 (1.76 ± 0.86 vs. 3.09 ± 1.15; p < 0.05 and 0.47 ± 0.26 vs. 0.82 ± 0.36; p < 0.05), developing diaphragms of nitrofen-exposed fetuses on D15 (1.45 ± 0.80 vs. 2.63 ± 0.84; p < 0.05 and 0.41 ± 0.16 vs. 1.02 ± 0.49; p < 0.05) and fully muscularized diaphragms of CDH fetuses on D18 (1.35 ± 0.75 vs. 2.32 ± 0.92; p < 0.05 and 0.37 ± 0.24 vs. 0.70 ± 0.32; p < 0.05) compared to controls. Confocal laser scanning microscopy revealed markedly diminished FRAS1 and FREM2 immunofluorescence in diaphragmatic mesenchyme, which was associated with reduced proliferation of mesenchymal cells in nitrofen-exposed PPFs and fetal CDH diaphragms on D13, D15 and D18 compared to controls. Decreased mesenchymal expression of FRAS1 and FREM2 in the nitrofen-induced CDH model may cause failure of the FRAS1/FREM2 gene unit to activate FREM1 signaling, disturbing the formation of diaphragmatic ECM and thus contributing to the development of diaphragmatic defects in CDH.
Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis.
Seo, Yoojin; Jung, Youngmee; Kim, Soo Hyun
2018-02-01
Initial angiogenesis within the first 3 days is critical for healing ischemic diseases such as myocardial infarction. Recently, decellularized extracellular matrix (dECM) has been reported to provide tissue-derived ECM components and can be used as a scaffold for cell delivery for angiogenesis in tissue engineering. Decellularization by various detergents such as sodium dodecyl sulfate (SDS) and triton X-100 can remove the cell nuclei in tissue organs. However, this leads to ECM structure denaturation, decreased presence of various ECM proteins and cytokines, and loss of mechanical properties. To overcome these limitations, in this study, we developed a supercritical carbon dioxide and ethanol co-solvent (scCO 2 -EtOH) decellularization method, which is a detergent-free system that prevents ECM structure disruption and retains various angiogenic proteins in the heart dECM, and tested on rat heart tissues. The heart tissue was placed into the scCO 2 reactor and decellularized at 37 °C and 350 bar. After scCO 2 -EtOH treatment, the effects were evaluated by DNA, collagen, and glycosaminoglycan (GAG) quantification and hematoxylin and eosin and immunofluorescence staining to determine the absence of nucleic acids and preservation of heart ECM components. Similar to the native group, the scCO 2 -EtOH group contained more ECM components such as collagen, GAGs, collagen I, laminin, and fibronectin and angiogenic factors including vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor and others in comparison to the detergent group. In addition, to estimate angiogenesis of the dECM hydrogels, the neutralized dECM solution was injected in a rat subcutaneous layer (n = 6 in each group: collagen, scCO 2 -EOH, and detergent group), after which the solution naturally formed gelation in the subcutaneous layer. After 3 days, the gels were harvested and estimated by immunofluorescence staining and the ImageJ program for angiogenesis analysis. Consequently, blood vessel formation and density of vWF and α-SMA in the scCO 2 -EtOH group were significantly greater than that in the collagen group. Here we suggest that heart-derived decellularized extracellular matrix (dECM) with scCO 2 -EtOH treatment is a highly promising angiogenic material for healing in ischemic disease. Supercritical carbon dioxide (scCO 2 ) in a supercritical phase has low viscosity and high diffusivity between gas and liquid properties and is known to be affordable, non-toxic, and eco-friendly. Therefore, scCO 2 extraction technology has been extensively used in commercial and industrial fields. Recently, decellularized extracellular matrix (dECM) was applied to tissue engineering and regenerative medicine as a scaffold, therapeutic material, and bio-ink for 3D printing. Moreover, the general decellularization method using detergents has limitations including eliminating tissue-derived ECM components and disrupting their structures after decellularization. To overcome these limitations, heart tissues were treated with scCO 2 -EtOH for decellularization, resulting in preserving of tissue due to the various ECM and angiogenic factors derived. In addition, initiation of angiogenesis was highly induced even after 3 days of injection. Copyright © 2017. Published by Elsevier Ltd.
Drusen in patient-derived hiPSC-RPE models of macular dystrophies
Galloway, Chad A.; Dalvi, Sonal; Hung, Sandy S. C.; MacDonald, Leslie A.; Latchney, Lisa R.; Wong, Raymond C. B.; Guymer, Robyn H.; Williams, David S.; Chung, Mina M.; Gamm, David M.; Pébay, Alice; Hewitt, Alex W.; Singh, Ruchira
2017-01-01
Age-related macular degeneration (AMD) and related macular dystrophies (MDs) are a major cause of vision loss. However, the mechanisms underlying their progression remain ill-defined. This is partly due to the lack of disease models recapitulating the human pathology. Furthermore, in vivo studies have yielded limited understanding of the role of specific cell types in the eye vs. systemic influences (e.g., serum) on the disease pathology. Here, we use human induced pluripotent stem cell-retinal pigment epithelium (hiPSC-RPE) derived from patients with three dominant MDs, Sorsby’s fundus dystrophy (SFD), Doyne honeycomb retinal dystrophy/malattia Leventinese (DHRD), and autosomal dominant radial drusen (ADRD), and demonstrate that dysfunction of RPE cells alone is sufficient for the initiation of sub-RPE lipoproteinaceous deposit (drusen) formation and extracellular matrix (ECM) alteration in these diseases. Consistent with clinical studies, sub-RPE basal deposits were present beneath both control (unaffected) and patient hiPSC-RPE cells. Importantly basal deposits in patient hiPSC-RPE cultures were more abundant and displayed a lipid- and protein-rich “drusen-like” composition. Furthermore, increased accumulation of COL4 was observed in ECM isolated from control vs. patient hiPSC-RPE cultures. Interestingly, RPE-specific up-regulation in the expression of several complement genes was also seen in patient hiPSC-RPE cultures of all three MDs (SFD, DHRD, and ADRD). Finally, although serum exposure was not necessary for drusen formation, COL4 accumulation in ECM, and complement pathway gene alteration, it impacted the composition of drusen-like deposits in patient hiPSC-RPE cultures. Together, the drusen model(s) of MDs described here provide fundamental insights into the unique biology of maculopathies affecting the RPE–ECM interface. PMID:28878022
Identification of full-length dentin matrix protein 1 in dentin and bone.
Huang, Bingzhen; Maciejewska, Izabela; Sun, Yao; Peng, Tao; Qin, Disheng; Lu, Yongbo; Bonewald, Lynda; Butler, William T; Feng, Jian; Qin, Chunlin
2008-05-01
Dentin matrix protein 1 (DMP1) has been identified in the extracellular matrix (ECM) of dentin and bone as the processed NH(2)-terminal and COOH-terminal fragment. However, the full-length form of DMP1 has not been identified in these tissues. The focus of this investigation was to search for the intact full-length DMP1 in dentin and bone. We used two types of anti-DMP1 antibodies to identify DMP1: one type specifically recognizes the NH(2)-terminal region and the other type is only reactive to the COOH-terminal region of the DMP1 amino acid sequence. An approximately 105-kDa protein, extracted from the ECM of rat dentin and bone, was recognized by both types of antibodies; and the migration rate of this protein was identical to the recombinant mouse full-length DMP1 made in eukaryotic cells. We concluded that this approximately 105-kDa protein is the full-length form of DMP1, which is considerably less abundant than its processed fragments in the ECM of dentin and bone. We also detected the full-length form of DMP1 and its processed fragments in the extract of dental pulp/odontoblast complex dissected from rat teeth. In addition, immunofluorescence analysis showed that in MC3T3-E1 cells the NH(2)-terminal and COOH-terminal fragments of DMP1 are distributed differently. Our findings indicate that the majority of DMP1 must be cleaved within the cells that synthesize it and that minor amounts of uncleaved DMP1 molecules are secreted into the ECM of dentin and bone.
Dawson, R A; Goberdhan, N J; Freedlander, E; MacNeil, S
1996-03-01
The aim of this study was to investigate whether prior culture of cells on ECM proteins might positively influence the performance of keratinocytes when cells are transferred to a dermal in vitro wound bed model. Keratinocytes were cultured using a method for producing cultured epithelial autografts for severely burned patients (essentially using Green's medium, a mitogen-rich medium containing fetal calf serum, cholera toxin, EGF, insulin, transferrin and triiodothyronine). Cells were cultured either on irradiated 3T3 fibroblasts (as in the standard Rheinwald and Green technique) or, alternatively, on collagen I, collagen IV, matrigel, RGD, vitronectin or fibronectin. Under these conditions matrigel, collagen I and IV enhanced initial attachment, RGD, vitronectin, fibronectin and irradiated 3T3 fibroblasts did not. Proliferation of cells was positively influenced by matrigel, collagen I and IV and irradiated 3T3 fibroblasts; of these, however, only matrigel and 3T3 fibroblasts had sustained significant effects on keratinocyte proliferation over 4 days. Cells on fibronectin showed significantly reduced proliferation. An acellular non-viable dermis was then used to mimic the homograft allodermis onto which cultured epithelial autograft sheets are grafted clinically and cells cultured on the various ECM proteins for 96 h were transferred to this in vitro wound model. None of the substrates enhanced keratinocyte performance on this model. It was concluded that under these conditions some ECM proteins can significantly affect keratinocyte attachment and, to a lesser extent, proliferation but that the culture of keratinocytes on these ECM proteins does not appear to confer any lasting benefit to the attachment of these keratinocytes to an in vitro wound-bed model.
Miyata, Shinji; Kitagawa, Hiroshi
2017-10-01
The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vogel, Sarah; Arnoldini, Simon; Möller, Stephanie; Schnabelrauch, Matthias; Hempel, Ute
2016-11-01
Extracellular matrix (ECM) composition and structural integrity is one of many factors that influence cellular differentiation. Fibronectin (FN) which is in many tissues the most abundant ECM protein forms a unique fibrillary network. FN homes several binding sites for sulfated glycosaminoglycans (sGAG), such as heparin (Hep), which was previously shown to influence FN conformation and protein binding. Synthetically sulfated hyaluronan derivatives (sHA) can serve as model molecules with a well characterized sulfation pattern to study sGAG-FN interaction. Here is shown that the low-sulfated sHA (sHA1) interacts with FN and influences fibril assembly. The interaction of FN fibrils with sHA1 and Hep, but not with non-sulfated HA was visualized by immunofluorescent co-staining. FRET analysis of FN confirmed the presence of more extended fibrils in human bone marrow stromal cells (hBMSC)-derived ECM in response to sHA1 and Hep. Although both sHA1 and Hep affected FN conformation, exclusively sHA1 increased FN protein level and led to thinner fibrils. Further, only sHA1 had a pro-osteogenic effect and enhanced the activity of tissue non-specific alkaline phosphatase. We hypothesize that the sHA1-triggered change in FN assembly influences the entire ECM network and could be the underlying mechanism for the pro-osteogenic effect of sHA1 on hBMSC.
Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.
Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina
2018-03-27
Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.
ECM Proteins Glycosylation and Relation to Diabetes
NASA Astrophysics Data System (ADS)
Pernodet, Nadine; Bloomberg, Ayla; Sood, Vandana; Slutsky, Lenny; Ge, Shouren; Clark, Richard; Rafailovich, Miriam
2004-03-01
The chemical modification and crosslinking of proteins by sugar glycosylation contribute to the aging of tissue proteins, and acceleration of this reaction during hyperglycemia is implicated in the pathogenesis of diabetic complications, such as disorder of the wound healing. Advanced glycation endproducts (AGEs) formation and protein crosslinking are irreversible processes that alter the structural and functional properties of proteins, lipid components and nucleic acids. And the mechanism, by which it happens, is not clear. Fibrinogen and fibronectin are plasma proteins, which play a major role in human wound healing. Fibrinogen converts to an insoluble fibrin "gel" following a cut, which eventually forms a clot to prevent blood loss, to direct cell adhesion and migration for forming scars. Fibronectin is a critical protein for cell adhesion and migration in wound healing. The effects of glucose on the binding of these plasma proteins from the extra cellular matrix (ECM) were followed at different concentrations by atomic force microscopy and lateral force modulation to measure the mechanical response of the samples. Glucose solutions (1, 2, and 3mg/mL) were incubated with the protein (100 mg/ml) and silicon (Si) substrates spun with sulfonated polystyrene (SPS) 28% for five days. Data showed that not only the organization of the protein on the surface was affected but also its mechanical properties. At 3 mg/mL glucose, Fn fibers were observed to be harder than those of the control, in good agreement with our hypothesis that glycosylation hardens tissues by crosslinking of proteins in the ECM and might cause fibers to break more easily.
Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation.
Stylli, Stanley S; Stacey, T T I; Verhagen, Anne M; Xu, San San; Pass, Ian; Courtneidge, Sara A; Lock, Peter
2009-08-01
Invadopodia are actin-based projections enriched with proteases, which invasive cancer cells use to degrade the extracellular matrix (ECM). The Phox homology (PX)-Src homology (SH)3 domain adaptor protein Tks5 (also known as SH3PXD2A) cooperates with Src tyrosine kinase to promote invadopodia formation but the underlying pathway is not clear. Here we show that Src phosphorylates Tks5 at Y557, inducing it to associate directly with the SH3-SH2 domain adaptor proteins Nck1 and Nck2 in invadopodia. Tks5 mutants unable to bind Nck show reduced matrix degradation-promoting activity and recruit actin to invadopodia inefficiently. Conversely, Src- and Tks5-driven matrix proteolysis and actin assembly in invadopodia are enhanced by Nck1 or Nck2 overexpression and inhibited by Nck1 depletion. We show that clustering at the plasma membrane of the Tks5 inter-SH3 region containing Y557 triggers phosphorylation at this site, facilitating Nck recruitment and F-actin assembly. These results identify a Src-Tks5-Nck pathway in ECM-degrading invadopodia that shows parallels with pathways linking several mammalian and pathogen-derived proteins to local actin regulation.
The extracellular matrix in myocardial injury, repair, and remodeling
2017-01-01
The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration. PMID:28459429
Matrix metalloproteinases and epidermal wound repair.
Martins, Vera L; Caley, Matthew; O'Toole, Edel A
2013-02-01
Epidermal wound healing is a complex and highly coordinated process where several different cell types and molecules, such as growth factors and extracellular matrix (ECM) components, play an important role. Among the many proteins that are essential for the restoration of tissue integrity is the metalloproteinase (MMP) family. MMPs can act on ECM and non-ECM components affecting degradation and modulation of the ECM, growth-factor activation and cell-cell and cell-matrix signalling. MMPs are secreted by different cell types such as keratinocytes, fibroblasts and inflammatory cells at different stages and locations during wound healing, thereby regulating this process in a very coordinated and controlled way. In this article, we review the role of MMPs and their inhibitors (TIMPs), as well as the disintegrin and metalloproteinase with the thrombospondin motifs (ADAMs) family, in epithelial wound repair.
Extracellular matrix proteins as temporary coating for thin-film neural implants
NASA Astrophysics Data System (ADS)
Ceyssens, Frederik; Deprez, Marjolijn; Turner, Neill; Kil, Dries; van Kuyck, Kris; Welkenhuysen, Marleen; Nuttin, Bart; Badylak, Stephen; Puers, Robert
2017-02-01
Objective. This study investigates the suitability of a thin sheet of extracellular matrix (ECM) proteins as a resorbable coating for temporarily reinforcing fragile or ultra-low stiffness thin-film neural implants to be placed on the brain, i.e. microelectrocorticographic (µECOG) implants. Approach. Thin-film polyimide-based electrode arrays were fabricated using lithographic methods. ECM was harvested from porcine tissue by a decellularization method and coated around the arrays. Mechanical tests and an in vivo experiment on rats were conducted, followed by a histological tissue study combined with a statistical equivalence test (confidence interval approach, 0.05 significance level) to compare the test group with an uncoated control group. Main results. After 3 months, no significant damage was found based on GFAP and NeuN staining of the relevant brain areas. Significance. The study shows that ECM sheets are a suitable temporary coating for thin µECOG neural implants.
Lee, JeHoon; Banu, Sakhila K; Burghardt, Robert C; Starzinski-Powitz, Anna; Arosh, Joe A
2013-03-01
Endometriosis is a chronic gynecological disease of reproductive age women characterized by the presence of functional endometrial tissues outside the uterine cavity. Interactions between the endometriotic cells and the peritoneal extracellular matrix proteins (ECM) are crucial mechanisms that allow adhesion of the endometriotic cells into peritoneal mesothelia. Prostaglandin E2 (PGE2) plays an important role in the pathogenesis of endometriosis. In previous studies, we have reported that selective inhibition of PGE2 receptors PTGER2 and PTGER4 decreases survival and invasion of human endometriotic epithelial and stromal cells through multiple mechanisms. Results of the present study indicates that selective inhibition of PTGER2- and PTGER4-mediated PGE2 signaling 1) decreases the expression and/or activity of specific integrin receptor subunits Itgb1 (beta1) and Itgb3 (beta3) but not Itgb5 (beta5), Itga1 (alpha1), Itga2 (alpha2), Itga5 (alpha5), and Itgav (alphav); 2) decreases integrin-signaling components focal adhesion kinase or protein kinase 2 (PTK2) and talin proteins; 3) inhibits interactions between Itgb1/Itgb3 subunits, PTK2, and talin and PTGER2/PTGER4 proteins through beta-arrestin-1 and Src kinase protein complex in human endometriotic epithelial cells 12Z and stromal cells 22B; and 4) decreases adhesion of 12Z and 22B cells to ECM collagen I, collagen IV, fibronectin, and vitronectin in a substrate-specific manner. These novel findings provide an important molecular framework for further evaluation of selective inhibition of PTGER2 and PTGER4 as potential nonsteroidal therapy to expand the spectrum of currently available treatment options for endometriosis in child-bearing age women.
Hearing Pupils' Voices: Revealing the Need for Citizenship Education within Primary Schools
ERIC Educational Resources Information Center
Warwick, Paul
2007-01-01
Citizenship education (CE) is a recent innovation within the National Curriculum in England, key aspects of which have a clear relevance to the "Every Child Matters" (ECM) agenda. Both CE and ECM strongly articulate a commitment to democratic principles and express a concern over children's perspectives being taken into account in order…
Haslene-Hox, Hanne; Oveland, Eystein; Woie, Kathrine; Salvesen, Helga B; Tenstad, Olav; Wiig, Helge
2015-01-01
Elements of the extracellular matrix (ECM), notably collagen and glucosaminoglycans, will restrict part of the space available for soluble macromolecules simply because the molecules cannot occupy the same space. This phenomenon may influence macromolecular drug uptake. To study the influence of steric and charge effects of the ECM on the distribution volumes of macromolecules in human healthy and malignant gynecologic tissues we used as probes 15 abundant plasma proteins quantified by high-resolution mass spectrometry. The available distribution volume (VA) of albumin was increased in ovarian carcinoma compared with healthy ovarian tissue. Furthermore, VA of plasma proteins between 40 and 190 kDa decreased with size for endometrial carcinoma and healthy ovarian tissue, but was independent of molecular weight for the ovarian carcinomas. An effect of charge on distribution volume was only found in healthy ovaries, which had lower hydration and high collagen content, indicating that a condensed interstitium increases the influence of negative charges. A number of earlier suggested biomarker candidates were detected in increased amounts in malignant tissue, e.g., stathmin and spindlin-1, showing that interstitial fluid, even when unfractionated, can be a valuable source for tissue-specific proteins. We demonstrate that the distribution of abundant plasma proteins in the interstitium can be elucidated by mass spectrometry methods and depends markedly on hydration and ECM structure. Our data can be used in modeling of drug uptake, and give indications on ECM components to be targeted to increase the uptake of macromolecular substances. Copyright © 2015 the American Physiological Society.
Shukla, Vasudha; Barnhouse, Victoria; Ackerman, William E; Summerfield, Taryn L; Powell, Heather M; Leight, Jennifer L; Kniss, Douglas A; Ghadiali, Samir N
2018-01-01
The leading cause of neonatal mortality, pre-term birth, is often caused by pre-mature ripening/opening of the uterine cervix. Although cervical fibroblasts play an important role in modulating the cervix's extracellular matrix (ECM) and mechanical properties, it is not known how hormones, i.e., progesterone, and pro-inflammatory insults alter fibroblast mechanics, fibroblast-ECM interactions and the resulting changes in tissue mechanics. Here we investigate how progesterone and a pro-inflammatory cytokine, IL-1β, alter the biomechanical properties of human cervical fibroblasts and the fibroblast-ECM interactions that govern tissue-scale mechanics. Primary human fibroblasts were isolated from non-pregnant cervix and treated with estrogen/progesterone, IL-1β or both. The resulting changes in ECM gene expression, matrix remodeling, traction force generation, cell-ECM adhesion and tissue contractility were monitored. Results indicate that IL-1β induces a significant reduction in traction force and ECM adhesion independent of pre-treatment with progesterone. These cell level effects altered tissue-scale mechanics where IL-1β inhibited the contraction of a collagen gel over 6 days. Interestingly, progesterone treatment alone did not modulate traction forces or gel contraction but did result in a dramatic increase in cell-ECM adhesion. Therefore, the protective effect of progesterone may be due to altered adhesion dynamics as opposed to altered ECM remodeling.
Adipose extracellular matrix remodelling in obesity and insulin resistance☆
Lin, De; Chun, Tae-Hwa; Kang, Li
2016-01-01
The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes. PMID:27179976
Proteomic differences between native and tissue-engineered tendon and ligament.
Kharaz, Yalda A; Tew, Simon R; Peffers, Mandy; Canty-Laird, Elizabeth G; Comerford, Eithne
2016-05-01
Tendons and ligaments (T/Ls) play key roles in the musculoskeletal system, but they are susceptible to traumatic or age-related rupture, leading to severe morbidity as well as increased susceptibility to degenerative joint diseases such as osteoarthritis. Tissue engineering represents an attractive therapeutic approach to treating T/L injury but it is hampered by our poor understanding of the defining characteristics of the two tissues. The present study aimed to determine differences in the proteomic profile between native T/Ls and tissue engineered (TE) T/L constructs. The canine long digital extensor tendon and anterior cruciate ligament were analyzed along with 3D TE fibrin-based constructs created from their cells. Native tendon and ligament differed in their content of key structural proteins, with the ligament being more abundant in fibrocartilaginous proteins. 3D T/L TE constructs contained less extracellular matrix (ECM) proteins and had a greater proportion of cellular-associated proteins than native tissue, corresponding to their low collagen and high DNA content. Constructs were able to recapitulate native T/L tissue characteristics particularly with regard to ECM proteins. However, 3D T/L TE constructs had similar ECM and cellular protein compositions indicating that cell source may not be an important factor for T/L tissue engineering. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanoscale viscoelasticity of extracellular matrix proteins in soft tissues: A multiscale approach.
Miri, Amir K; Heris, Hossein K; Mongeau, Luc; Javid, Farhad
2014-02-01
It is hypothesized that the bulk viscoelasticity of soft tissues is determined by two length-scale-dependent mechanisms: the time-dependent response of the extracellular matrix (ECM) proteins at the nanometer scale and the biophysical interactions between the ECM solid structure and interstitial fluid at the micrometer scale. The latter is governed by poroelasticity theory assuming free motion of the interstitial fluid within the porous ECM structure. In a recent study (Heris, H.K., Miri, A.K., Tripathy, U., Barthelat, F., Mongeau, L., 2013. J. Mech. Behav. Biomed. Mater.), atomic force microscopy was used to measure the response of porcine vocal folds to a creep loading and a 50-nm sinusoidal oscillation. A constitutive model was calibrated and verified using a finite element model to accurately predict the nanoscale viscoelastic moduli of ECM. A generally good correlation was obtained between the predicted variation of the viscoelastic moduli with depth and that of hyaluronic acids in vocal fold tissue. We conclude that hyaluronic acids may regulate vocal fold viscoelasticity. The proposed methodology offers a characterization tool for biomaterials used in vocal fold augmentations. © 2013 Elsevier Ltd. All rights reserved.
Engineering hydrogels as extracellular matrix mimics
Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun
2010-01-01
Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine. PMID:20394538
The interplay between hepatic stellate cells and hepatocytes in an in vitro model of NASH.
Barbero-Becerra, Varenka J; Giraudi, Pablo J; Chávez-Tapia, Norberto C; Uribe, Misael; Tiribelli, Claudio; Rosso, Natalia
2015-10-01
A complex interplay exists between hepatocytes and hepatic stellate cells (HSC) in hepatic fibrogenesis. The activation of HSCs after liver injury leads to production of extracellular matrix (ECM). Co-culture models could be useful to mimic the liver microenvironment. This study evaluates the effect of free fatty acids (FFA) on HSC cells and the interplay with hepatocytes via both soluble-mediator and cell-cell contact. The human hepatocyte cell line (HuH7) and HSC cells (LX2) were exposed to FFA for 24 h in 3 different experimental set-ups: (A) monoculture of HSC; (B) Transwell® system (effect of soluble mediators); and (C) Simultaneous Co-Culture (SCC) (cell-to-cell connections). Intracellular FFA accumulation was assessed qualitatively (microscopy) and quantitatively (flow cytometry); the activation of HSC (alpha smooth muscle actin, α-SMA) expression of ECM components were quantified by RT-PCR. FFA exposure induces intracellular fat accumulation in all the experimental set-up but the expression of α-SMA was significantly increased only in SCC. On the contrary, the expression of ECM was substantially decreased in the transwell® system. The HSC activation is independent of FFA accumulation but requires cell-to-cell interaction with hepatocyte. On the contrary, the gene regulation of ECM components seems to occur through paracrine mediators. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Zufang; Sun, Yan; Wang, Jing; Du, Shengrong; Li, Yongzeng; Lin, Juqiang; Feng, Shangyuan; Lei, Jinping; Lin, Hongxin; Chen, Rong; Zeng, Haishan
2013-12-01
In this study, a rapid and simple method which combines drop coating deposition and Raman spectroscopy (DCDR) was developed to characterize the dry embryo culture media (ECM) droplet. We demonstrated that Raman spectra obtained from the droplet edge presented useful and characteristic signatures for protein and amino acids assessment. Using a different analytical method, scanning electron microscopy coupled with energy dispersive X-ray analysis, we further confirmed that Na, K, and Cl were mainly detected in the central area of the dry ECM droplet while sulphur, an indicative of the presence of macromolecules such as proteins, was mainly found at the periphery of the droplet. In addition, to reduce sample preparation time, different temperatures for drying the droplets were tested. The results showed that drying temperature at 50°C can effectively reduce the sample preparation time to 6 min (as compared to 50 min for drying at room temperature, ˜25°C) without inducing thermal damage to the proteins. This work demonstrated that DCDR has potential for rapid and reliable metabolomic profiling of ECM in clinical applications.
Lin, Yang; Lewallen, Eric A; Camilleri, Emily T; Bonin, Carolina A; Jones, Dakota L; Dudakovic, Amel; Galeano-Garces, Catalina; Wang, Wei; Karperien, Marcel J; Larson, Annalise N; Dahm, Diane L; Stuart, Michael J; Levy, Bruce A; Smith, Jay; Ryssman, Daniel B; Westendorf, Jennifer J; Im, Hee-Jeong; van Wijnen, Andre J; Riester, Scott M; Krych, Aaron J
2016-11-01
Preservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression between stored allograft cartilage and fresh cartilage from living donors using high throughput molecular screening strategies. We applied next generation RNA sequencing (RNA-seq) and real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to assess genome-wide differences in mRNA expression between stored allograft cartilage and fresh cartilage tissue from living donors. Gene ontology analysis was used to characterize biological pathways associated with differentially expressed genes. Our studies establish reduced levels of mRNAs encoding cartilage related extracellular matrix (ECM) proteins (i.e., COL1A1, COL2A1, COL10A1, ACAN, DCN, HAPLN1, TNC, and COMP) in stored cartilage. These changes occur concomitantly with increased expression of "early response genes" that encode transcription factors mediating stress/cytoprotective responses (i.e., EGR1, EGR2, EGR3, MYC, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, and JUND). The elevated expression of "early response genes" and reduced levels of ECM-related mRNAs in stored cartilage allografts suggests that tissue viability may be maintained by a cytoprotective program that reduces cell metabolic activity. These findings have potential implications for future studies focused on quality assessment and clinical optimization of osteochondral allografts used for cartilage transplantation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1950-1959, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development
Ducy, Patricia; Starbuck, Michael; Priemel, Matthias; Shen, Jianhe; Pinero, Gerald; Geoffroy, Valerie; Amling, Michael; Karsenty, Gerard
1999-01-01
The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (ΔCbfa1) in differentiated osteoblasts only postnatally. ΔCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. ΔCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that ΔCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally. PMID:10215629
Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Munteanu, Maria Cristina; Dinischiotu, Anca
2016-01-01
AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE’s proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications. PMID:27015414
Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Munteanu, Maria Cristina; Dinischiotu, Anca
2016-01-01
AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE's proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications.
Handy, Jeffrey A; Fu, Ping P; Kumar, Pradeep; Mells, Jamie E; Sharma, Shvetank; Saxena, Neeraj K; Anania, Frank A
2011-12-15
Adiponectin is protective against hepatic fibrosis, whereas leptin promotes fibrosis. In HSCs (hepatic stellate cells), leptin signals via a JAK2 (Janus kinase 2)/STAT3 (signal transducer and activator of transcription 3) pathway, producing effects that enhance ECM (extracellular matrix) deposition. SOCS-3 (suppressor of cytokine signalling-3) and PTP1B (protein tyrosine phosphatase 1B) are both negative regulators of JAK/STAT signalling, and recent studies have demonstrated a role for adiponectin in regulating SOCS-3 expression. In the present study we investigate mechanisms whereby adiponectin dampens leptin signalling and prevents excess ECM production. We treated culture-activated rat HSCs with recombinant adiponectin, leptin, both or neither, and also treated adiponectin knockout (Ad-/-) and wild-type mice with leptin and/or carbon tetrachloride (CCl4) or saline. We analyse JAK2 and Ob-Rb (long form of the leptin receptor) phosphorylation, and PTP1B expression and activity. We also explore potential mechanisms through which adiponectin regulates SOCS-3-Ob-Rb association. Adiponectin inhibits leptin-stimulated JAK2 activation and Ob-Rb phosphorylation in HSCs, whereas both were increased in Ad-/- mice. Adiponectin stimulates PTP1B expression and activity in vitro, whereas PTP1B expression was lower in Ad-/-mice than in wild-type mice. Adiponectin also promotes SOCS-3-Ob-R association and blocks leptin-stimulated formation of extracellular TIMP-1 (tissue inhibitor of metalloproteinases-1)-MMP-1 (matrix metalloproteinase-1) complexes in vitro. These results suggest two novel mechanisms whereby adiponectin inhibits hepatic fibrosis: (i) by promoting binding of SOCS-3 to Ob-Rb, and (ii) by stimulating PTP1B expression and activity, thus inhibiting JAK2/STAT3 signalling at multiple points.
Jahan, Rahat; Macha, Muzafar A; Rachagani, Satyanarayana; Das, Srustidhar; Smith, Lynette M; Kaur, Sukhwinder; Batra, Surinder K
2018-08-01
Alternative splicing is evolving as an eminent player of oncogenic signaling for tumor development and progression. Mucin 4 (MUC4), a type I membrane-bound mucin, is differentially expressed in pancreatic cancer (PC) and plays a critical role in its progression and metastasis. However, the molecular implications of MUC4 splice variants during disease pathogenesis remain obscure. The present study delineates the pathological and molecular significance of a unique splice variant of MUC4, MUC4/X, which lacks the largest exon 2, along with exon 3. Exon 2 encodes for the highly glycosylated tandem repeat (TR) domain of MUC4 and its absence creates MUC4/X, which is devoid of TR. Expression analysis from PC clinical samples revealed significant upregulation of MUC4/X in PC tissues with most differential expression in poorly differentiated tumors. In vitro studies suggest that overexpression of MUC4/X in wild-type-MUC4 (WT-MUC4) null PC cell lines markedly enhanced PC cell proliferation, invasion, and adhesion to extracellular matrix (ECM) proteins. Furthermore, MUC4/X overexpression leads to an increase in the tumorigenic potential of PC cells in orthotopic transplantation studies. In line with these findings, doxycycline-induced expression of MUC4/X in an endogenous WT-MUC4 expressing PC cell line (Capan-1) also displayed enhanced cell proliferation, invasion, and adhesion to ECM, compared to WT-MUC4 alone, emphasizing its direct involvement in the aggressive behavior of PC cells. Investigation into the molecular mechanism suggested that MUC4/X facilitated PC tumorigenesis via integrin-β1/FAK/ERK signaling pathway. Overall, these findings revealed the novel role of MUC4/X in promoting and sustaining the oncogenic features of PC. Copyright © 2018 Elsevier B.V. All rights reserved.
Fujiwara, Ken; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi
2010-12-01
Type I and III collagens widely occur in the rat anterior pituitary gland and are the main components of the extracellular matrix (ECM). Although ECM components possibly play an important role in the function of the anterior pituitary gland, little is known about collagen-producing cells. Type I collagen is a heterotrimer of two α1(I) chains (the product of the col1a1 gene) and one α2(I) chain (the product of the col1a2 gene). Type III collagen is a homotrimer of α1(III) chains (the product of the col3a1 gene). We used in situ hybridization with digoxigenin-labeled cRNA probes to examine the expression of col1a1, col1a2, and col3a1 mRNAs in the pituitary gland of adult rats. mRNA expression for these collagen genes was clearly observed, and cells expressing col1a1, col1a2, and col3a1 mRNA were located around capillaries in the gland. We also investigated the possible double-staining of collagen mRNA and pituitary hormones, S-100 protein (a marker of folliculo-stellate cells), or desmin (a marker of pericytes). Col1a1 and col3a1 mRNA were identified in desmin-immunopositive cells. Thus, only pericytes produce type I and III collagens in the rat anterior pituitary gland.
Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development.
He, Hua; Huang, Meina; Sun, Shenfei; Wu, Yihui; Lin, Xinhua
2017-08-01
The tree-like structure of the mammalian lung is generated from branching morphogenesis, a reiterative process that is precisely regulated by numerous factors. How the cell surface and extra cellular matrix (ECM) molecules regulate this process is still poorly understood. Herein, we show that epithelial deletion of Heparan Sulfate (HS) synthetase Ext1 resulted in expanded branching tips and reduced branching number, associated with several mesenchymal developmental defects. We further demonstrate an expanded Fgf10 expression and increased FGF signaling activity in Ext1 mutant lungs, suggesting a cell non-autonomous mechanism. Consistent with this, we observed reduced levels of SHH signaling which is responsible for suppressing Fgf10 expression. Moreover, reactivating SHH signaling in mutant lungs rescued the tip dilation phenotype and attenuated FGF signaling. Importantly, the reduced SHH signaling activity did not appear to be caused by decreased Shh expression or protein stability; instead, biologically active form of SHH proteins were reduced in both the Ext1 mutant epithelium and surrounding wild type mesenchymal cells. Together, our study highlights the epithelial HS as a key player for dictating SHH signaling critical for lung morphogenesis.
Encapsulated Stem Cells Loaded With Hyaluronidase-expressing Oncolytic Virus for Brain Tumor Therapy
Martinez-Quintanilla, Jordi; He, Derek; Wakimoto, Hiroaki; Alemany, Ramon; Shah, Khalid
2015-01-01
Despite the proven safety of oncolytic viruses (OV) in clinical trials for glioblastoma (GBM), their efficacy has been hindered by suboptimal spreading within the tumor. We show that hyaluronan or hyaluronic acid (HA), an important component of extracellular matrix (ECM), is highly expressed in a majority of tumor xenografts established from patient-derived GBM lines that present both invasive and nodular phenotypes. Intratumoral injection of a conditionally replicating adenovirus expressing soluble hyaluronidase (ICOVIR17) into nodular GBM, mediated HA degradation and enhanced viral spread, resulting in a significant antitumor effect and mice survival. In an effort to translate OV-based therapeutics into clinical settings, we encapsulated human adipose-derived mesenchymal stem cells (MSC) loaded with ICOVIR17 in biocompatible synthetic extracellular matrix (sECM) and tested their efficacy in a clinically relevant mouse model of GBM resection. Compared with direct injection of ICOVIR17, sECM-MSC loaded with ICOVIR17 resulted in a significant decrease in tumor regrowth and increased mice survival. This is the first report of its kind revealing the expression of HA in GBM and the role of OV-mediated HA targeting in clinically relevant mouse model of GBM resection and thus has clinical implications. PMID:25352242
Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering
NASA Astrophysics Data System (ADS)
Grover, Gregory N.; Rao, Nikhil; Christman, Karen L.
2014-01-01
Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of 30 min, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in 4 min upon irradiation, allowing 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates that PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications.
Developmental roles of the BMP1/TLD metalloproteinases.
Ge, Gaoxiang; Greenspan, Daniel S
2006-03-01
The astacin family (M12A) of the metzincin subclan MA(M) of metalloproteinases has been detected in developing and mature individuals of species that range from hydra to humans. Functions of this family of metalloproteinase vary from digestive degradation of polypeptides, to biosynthetic processing of extracellular proteins, to activation of growth factors. This review will focus on a small subgroup of the astacin family; the bone morphogenetic protein 1 (BMP1)/Tolloid (TLD)-like metalloproteinases. In vertebrates, the BMP1/TLD-like metalloproteinases play key roles in regulating formation of the extracellular matrix (ECM) via biosynthetic processing of various precursor proteins into mature functional enzymes, structural proteins, and proteins involved in initiating mineralization of the ECM of hard tissues. Roles in ECM formation include: processing of the C-propeptides of procollagens types I-III, to yield the major fibrous components of vertebrate ECM; proteolytic activation of the enzyme lysyl oxidase, necessary to formation of covalent cross-links in collagen and elastic fibers; processing of NH2-terminal globular domains and C-propeptides of types V and XI procollagen chains to yield monomers that are incorporated into and control the diameters of collagen type I and II fibrils, respectively; processing of precursors for laminin 5 and collagen type VII, both of which are involved in securing epidermis to underlying dermis; and maturation of small leucine-rich proteoglycans. The BMP1/TLD-related metalloproteinases are also capable of activating the vertebrate transforming growth factor-beta (TGF-beta)-like "chalones" growth differentiation factor 8 (GDF8, also known as myostatin), and GDF11 (also known as BMP11), involved in negative feedback inhibition of muscle and neural tissue growth, respectively; by freeing them from noncovalent latent complexes with their cleaved prodomains. BMP1/TLD-like proteinases also liberate the vertebrate TGF-beta-like morphogens BMP2 and 4 and their invertebrate ortholog decapentaplegic, from latent complexes with the vertebrate extracellular antagonist chordin and its invertebrate ortholog short gastrulation (SOG), respectively. The result is formation of the BMP signaling gradients that form the dorsal-ventral axis in embryogenesis. Thus, BMP1/TLD-like proteinases appear to be key to regulating and orchestrating formation of the ECM and signaling by various TGF-beta-like proteins in morphogenetic and homeostatic events. Copyright 2006 Wiley-Liss, Inc.
Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M
2017-03-14
Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.
Darbro, Benjamin W; Mahajan, Vinit B; Gakhar, Lokesh; Skeie, Jessica M; Campbell, Elizabeth; Wu, Shu; Bing, Xinyu; Millen, Kathleen J; Dobyns, William B; Kessler, John A; Jalali, Ali; Cremer, James; Segre, Alberto; Manak, J Robert; Aldinger, Kimerbly A; Suzuki, Satoshi; Natsume, Nagato; Ono, Maya; Hai, Huynh Dai; Viet, Le Thi; Loddo, Sara; Valente, Enza M; Bernardini, Laura; Ghonge, Nitin; Ferguson, Polly J; Bassuk, Alexander G
2013-08-01
We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles and detected a mutation in the extracellular matrix (ECM) protein-encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1-binding partner. Structural modeling of the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the ECM in the pathogenesis of Dandy-Walker spectrum disorders. © 2013 WILEY PERIODICALS, INC.
Lee, Young Sook; Choi, Joung-Woo; Oh, Jung-Eun; Yun, Chae-Ok; Kim, Sung Wan
2017-01-01
In consensus, myocardial infarction (MI) is defined as irreversible cell death secondary to prolonged ischemia in heart. The aim of our study was to evaluate the therapeutic potential of anti-fibrotic human Relaxin-expressing plasmid DNA with hypoxia response element (HRE) 12 copies (HR1) delivered by a dendrimer type PAM-ABP polymer G0 (HR1/G0) after MI on functional, hemodynamic, geometric, and cardiac extracellular matrix (ECM) remodeling in rats. HR1/G0 demonstrated significantly improved LV systolic function, hemodynamic parameters, and geometry on 1 wk and 4 wks after MI in rats, compared with I/R group. The resolution of regional wall motional abnormalities and the increased blood flow of infarct-related coronary artery supported functional improvements of HR1/G0. Furthermore, HR1/G0 polyplex showed favorable post-infarct cardiac ECM remodeling reflected on the favorable cardiac ECM compositions. Overall, this is the first study, which presented an advanced platform for the gene therapy that reverses adverse cardiac remodeling after MI with a HR1 gene delivered by a bioreducible dendrimer polymer in the cardiac ECM. PMID:27174688
Kang, Yong Guk; Jang, Hwanseok; Yang, Taeseok Daniel; Notbohm, Jacob; Choi, Youngwoon; Park, Yongdoo; Kim, Beop-Min
2018-06-01
Mechanical interactions of living cells with the surrounding environment via focal adhesion (FA) in three dimensions (3-D) play a key role in dynamic biological events, such as tissue regeneration, wound healing, and cancer invasion. Recently, several methods for observing 3-D cell-extracellular matrix (ECM) interactions have been reported, lacking solid and quantitative analysis on the dynamics of the physical interaction between the cell and the ECM. We measured the submicron displacements of ECM deformation in 3-D due to protrusion-retraction dynamics during cell migration, using second-harmonic generation without labeling the matrix structures. We then quantitatively analyzed the mechanical deformation between the ECM and the cells based on spatiotemporal volumetric correlations. The greatest deformations within the collagen matrix were found to occur at sites of colocalization of the FA site-related proteins vinculin and actin, which confirms that FA sites play a critical role in living cells within the ECM as a point for adhesion, traction, and migration. We believe that this modality can be used in studies of cell-ECM interaction during angiogenesis, wound healing, and metastasis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Mohamed, Wasima; Ray, Sibnath; Brazill, Derrick; Baskar, Ramamurthy
2017-01-01
A number of organisms possess several isoforms of protein kinase C but little is known about the significance of any specific isoform during embryogenesis and development. To address this we characterized a PKC ortholog (PkcA; DDB_G0288147) in Dictyostelium discoideum. pkcA expression switches from prestalk in mound to prespore in slug, indicating a dynamic expression pattern. Mutants lacking the catalytic domain of PkcA (pkcA−) did not exhibit tip dominance. A striking phenotype of pkcA− was the formation of an aggregate with a central hollow, and aggregates later fragmented to form small mounds, each becoming a fruiting body. Optical density wave patterns of cAMP in the late aggregates showed several cAMP wave generation centers. We attribute these defects in pkcA− to impaired cAMP signaling, altered cell motility and decreased expression of the cell adhesion molecules – CadA and CsaA. pkcA− slugs showed ectopic expression of ecmA in the prespore region. Further, the use of a PKC-specific inhibitor, GF109203X that inhibits the activity of catalytic domain phenocopied pkcA−. PMID:26183108
Extracellular Matrix and the Mechanics of Large Artery Development
Cheng, Jeffrey K.; Wagenseil, Jessica E.
2012-01-01
The large, elastic arteries, as their name suggests, provide elastic distention and recoil during the cardiac cycle in vertebrate animals. The arteries are distended from the pressure of ejecting blood during active contraction of the left ventricle (LV) during systole, and recoil to their original dimensions during relaxation of the LV during diastole. The cyclic distension occurs with minimal energy loss, due to the elastic properties of one of the major structural extracellular matrix (ECM) components, elastin. The maximum distension is limited to prevent damage to the artery by another major ECM component, collagen. The mix of ECM components in the wall largely determines the passive mechanical behavior of the arteries and the subsequent load on the heart during systole. While much research has focused on initial artery formation, there has been less attention on the continuing development of the artery to produce the mature composite wall complete with endothelial cells (ECs), smooth muscle cells (SMCs), and the necessary mix of ECM components for proper cardiovascular function. This review focuses on the physiology of large artery development, including SMC differentiation and ECM production. The effects of hemodynamic forces and ECM deposition on the evolving arterial structure and function are discussed. Human diseases and mouse models with genetic mutations in ECM proteins that affect large artery development are summarized. A review of constitutive models and growth and remodeling theories is presented, along with future directions to improve understanding of ECM and the mechanics of large artery development. PMID:22584609
Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring
Xue, Meilang; Jackson, Christopher J.
2015-01-01
Significance: When a cutaneous injury occurs, the wound heals via a dynamic series of physiological events, including coagulation, granulation tissue formation, re-epithelialization, and extracellular matrix (ECM) remodeling. The final stage can take many months, yet the new ECM forms a scar that never achieves the flexibility or strength of the original tissue. In certain circumstances, the normal scar is replaced by pathological fibrotic tissue, which results in hypertrophic or keloid scars. These scars cause significant morbidity through physical dysfunction and psychological stress. Recent Advances and Critical Issues: The cutaneous ECM comprises a complex assortment of proteins that was traditionally thought to simply provide structural integrity and scaffolding characteristics. However, recent findings show that the ECM has multiple functions, including, storage and delivery of growth factors and cytokines, tissue repair and various physiological functions. Abnormal ECM reconstruction during wound healing contributes to the formation of hypertrophic and keloid scars. Whereas adult wounds heal with scarring, the developing foetus has the ability to heal wounds in a scarless fashion by regenerating skin and restoring the normal ECM architecture, strength, and function. Recent studies show that the lack of inflammation in fetal wounds contributes to this perfect healing. Future Directions: Better understanding of the exact roles of ECM components in scarring will allow us to produce therapeutic agents to prevent hypertrophic and keloid scars. This review will focus on the components of the ECM and their role in both physiological and pathological (hypertrophic and keloid) cutaneous scar formation. PMID:25785236
High matrix metalloproteinase activity is a hallmark of periapical granulomas.
de Paula-Silva, Francisco Wanderley Garcia; D'Silva, Nisha J; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine
2009-09-01
The inability to distinguish periapical cysts from granulomas before performing root canal treatment leads to uncertainty in treatment outcomes because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Because matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed by using one-way analysis of variance followed by the Tukey test. We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the MMP family. Compared with cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs) in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared with cysts. Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas unlike periapical cysts.
High Matrix Metalloproteinase Activity is a Hallmark of Periapical Granulomas
de Paula e Silva, Francisco Wanderley Garcia; D'Silva, Nisha J.; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine
2009-01-01
Introduction Inability to distinguish periapical cysts from granulomas prior to performing root canal treatment leads to uncertainty in treatment outcomes, because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Methods Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Since matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed using one-way ANOVA followed by Tukey test. Results We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the matrix metalloproteinase (MMP) family. Compared to cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs), in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared to cysts. Conclusion Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas, unlike periapical cysts. PMID:19720222
Ullah, Mujib; Sittinger, Michael; Ringe, Jochen
2013-01-01
Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. © 2013.
Lu, Jiaying; Liu, Qingmei; Wang, Lei; Tu, Wenzhen; Chu, Haiyan; Ding, Weifeng; Jiang, Shuai; Ma, Yanyun; Shi, Xiangguang; Pu, Weilin; Zhou, Xiaodong; Jin, Li; Wang, Jiucun; Wu, Wenyu
2017-05-01
Scleroderma is a fibrosis-related disorder characterized by cutaneous and internal organ fibrosis, and excessive collagen deposition in extracellular matrix (ECM) is a major cause of fibrosis. Transforming growth factor-β (TGF-β)/SMAD signaling has a central role in the pathogenesis of fibrosis by inducing abnormal collagen accumulation in ECM, and latent TGF-β-binding protein 4 (LTBP-4) affects the secretion of latent TGF-β to ECM. A previous study indicated that bleomycin (BLM) treatment increased LTBP-4 expression in lung fibroblasts of Thy-1 knockout mice with lung fibrosis, and LTBP-4 further promoted TGF-β bioavailability as well as SMAD3 phosphorylation. However, the expression and function of LTBP-4 in human scleroderma remain unclear. We aimed to investigate the potential role of LTBP-4 in scleroderma through clinical, in vivo and in vitro studies. LTBP-4 and TGF-β expressions were significantly upregulated in systemic scleroderma (SSc) patients' plasma compared with normal controls (LTBP-4, 1,215±100.2 vs 542.8±41.7 ng/ml, P<0.0001; TGF-β, 1.5±0.2 vs 0.7±0.1 ng/ml, P=0.0031), while no significant difference was found between localized scleroderma (LSc) and normal controls. The plasma concentrations of LTBP-4 and TGF-β were even higher in SSc patients with lung fibrosis (LTBP-4, 1462± 137.3 vs 892.8±113.4 ng/ml, P=0.0037; TGF-β, 2.0±0.4 vs 0.9±0.2 ng/ml, P=0.0212) and esophagus involvement (1390±134.4 vs 940.7±127.0 ng/ml, P=0.0269; TGF-β, 1.9±0.3 vs 0.9±0.2 ng/ml, P=0.0426). The area under receiver operating characteristics (ROC) curve of LTBP-4 was 0.86. Immunohistochemistry measurement also demonstrated a higher LTBP-4 expression in sclerotic skin tissue of LSc and SSc compared with normal controls. More positive fibroblasts were also found in BLM-induced scleroderma mouse model than the saline-treated group. In in vitro studies, knockdown of LTBP-4 in SSc skin fibroblasts prominently reduced downstream COL1A1, COL1A2, and COL3A1 mRNA level by 84%, 82%, and 43%, respectively, and other fibrosis-related genes' expression were also decreased. Furthermore, extracellular TGF-β level and the SMAD2/3 phosphorylation were inhibited through LTBP-4 knockdown treatment, suggesting that the knockdown of LTBP-4 reduced the collagen expression through TGF-β/SMAD signaling pathway. Taken together, these data suggest that LTBP-4 affects fibrotic process in scleroderma, and the high expression of LTBP-4 in SSc plasma may serve as a clinical biomarker in diagnosing this disease. In addition, this study also lays the theoretical foundation for targeting LTBP-4 as treatment of scleroderma.
Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia
2015-06-01
To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Madne, Tarunkumar Hemraj; Dockrell, Mark Edward Carl
2018-04-30
Alternative splicing is an important gene regulation process to distribute proteins in health and diseases. Extra Domain A+ Fibronectin (EDA+Fn) is an alternatively spliced form of fibronectin (Fn) protein, present in the extra cellular matrix (ECM) and a recognised marker of various pathologies. TGFβ1 has been shown to induce alternative splicing of EDA+Fn in many cell types. Podocytes are spectacular cell type and play a key role in filtration and synthesise ECM proteins in renal physiology and pathology. In our previous study we have demonstrated expression and alternative splicing of EDA+Fn in basal condition in human podocytes culture. TGFβ1 further induced the basal expression and alternative splicing of EDA+Fn through Alk5 receptor and SR proteins. In this study, we have investigated TGFβ1 mediated signalling involved in alternative splicing of EDA+Fn in human podocytes. We have performed western blotting to characterise the expression of the EDA+Fn protein and other signalling proteins and RT-PCR to look for signalling pathways involved in regulation of alternative splicing of EDA+Fn in conditionally immortalised human podocytes culture.We have used TGFβ1 as a stimulator and SB431542, SB202190 and LY294002 for inhibitory studies. In this work, we have demonstrated in human podocytes culture TGFβ1 2.5ng/ml induced phosphorylation of Smad1/5/8, Smad2 and Smad3 via the ALK5 receptor. TGFβ1 significantly induced the PI3K/Akt pathway and the PI3K/Akt pathway inhibitor LY294002 significantly downregulated basal as well as TGFβ1 induced alternative splicing of EDA+Fn in human podocytes. In addition to this, TGFβ1 significantly induced the p38 MAP kinase signalling pathway and p38 MAP kinase signalling pathway inhibitor SB202190 downregulated the TGFβ1-mediated alternative splicing of EDA+Fn in human podocytes. The results with PI3K and p38 MAP kinase signalling pathway suggest that inhibiting PI3K signalling pathway downregulated the basal alternative splicing of EDA+Fn in human podocytes and its the inhibition of p38 Map Kinase signalling pathway which had specifically downregulated the TGFβ1 mediated alternative splicing of EDA+Fn in human podocytes culture. Activation of TGFβ1-mediated Smad1/5/8 via Alk5 receptor suggests that TGFβ1 signalling pathway involved Alk5/Alk1 receptor axis signalling in human podocytes.
Guo, Bing; Greenwood, Paul L; Cafe, Linda M; Zhou, Guanghong; Zhang, Wangang; Dalrymple, Brian P
2015-03-13
This study aimed to identify markers for muscle growth rate and the different cellular contributors to cattle muscle and to link the muscle growth rate markers to specific cell types. The expression of two groups of genes in the longissimus muscle (LM) of 48 Brahman steers of similar age, significantly enriched for "cell cycle" and "ECM (extracellular matrix) organization" Gene Ontology (GO) terms was correlated with average daily gain/kg liveweight (ADG/kg) of the animals. However, expression of the same genes was only partly related to growth rate across a time course of postnatal LM development in two cattle genotypes, Piedmontese x Hereford (high muscling) and Wagyu x Hereford (high marbling). The deposition of intramuscular fat (IMF) altered the relationship between the expression of these genes and growth rate. K-means clustering across the development time course with a large set of genes (5,596) with similar expression profiles to the ECM genes was undertaken. The locations in the clusters of published markers of different cell types in muscle were identified and used to link clusters of genes to the cell type most likely to be expressing them. Overall correspondence between published cell type expression of markers and predicted major cell types of expression in cattle LM was high. However, some exceptions were identified: expression of SOX8 previously attributed to muscle satellite cells was correlated with angiogenesis. Analysis of the clusters and cell types suggested that the "cell cycle" and "ECM" signals were from the fibro/adipogenic lineage. Significant contributions to these signals from the muscle satellite cells, angiogenic cells and adipocytes themselves were not as strongly supported. Based on the clusters and cell type markers, sets of five genes predicted to be representative of fibro/adipogenic precursors (FAPs) and endothelial cells, and/or ECM remodelling and angiogenesis were identified. Gene sets and gene markers for the analysis of many of the major processes/cell populations contributing to muscle composition and growth have been proposed, enabling a consistent interpretation of gene expression datasets from cattle LM. The same gene sets are likely to be applicable in other cattle muscles and in other species.