An Integrated Approach to Recruiting and Retaining Appalachian Engineering Students
ERIC Educational Resources Information Center
Winn, Gary; Hensel, Robin; Curtis, Reagan; Taylor, Lydotta M.; Cilento, Gene
2012-01-01
Recruiting and retaining Appalachian engineering students is difficult for a variety of ecological and cultural reasons. At West Virginia University an NSF STEP grant has allowed the development of specific interventions to evolve from an ecological model we describe here. The interventions include web-based, realistic engineering design exercises…
Introductory guide to integrated ecological framework.
DOT National Transportation Integrated Search
2014-10-01
This guide introduces the Integrated Ecological Framework (IEF) to Texas Department of Transportation : (TxDOT) engineers and planners. IEF is step-by-step approach to integrating ecological and : transportation planning with the goal of avoiding imp...
An important early development in the description of ecological engineering as a discipline was the recognition that respective Chinese and Western approaches existed, having developed more-or-less independently. The "meeting" of East and West that occurred in the 1980s and 1990s...
The Importance of Industrial Ecology in Engineering Education for Sustainable Development
ERIC Educational Resources Information Center
Biswas, Wahidul K.
2012-01-01
Purpose: The purpose of this paper is to show how industrial ecology can facilitate the achievement of sustainable development through its incorporation into an engineering curriculum. Design/methodology/approach: A model has been developed for assessing sustainability learning outcomes due to the incorporation of the concept of industrial ecology…
Achleitner, Stefan; De Toffol, Sara; Engelhard, Carolina; Rauch, Wolfgang
2005-04-01
The European Water framework directive (WFD) is probably the most important environmental management directive that has been enacted over the last decade in the European Union. The directive aims at achieving an overall good ecological status in all European water bodies. In this article, we discuss the implementation steps of the WFD and their implications for environmental engineering practice while focusing on rivers as the main receiving waters. Arising challenges for engineers and scientists are seen in the quantitative assessment of water quality, where standardized systems are needed to estimate the biological status. This is equally of concern in engineering planning, where the prediction of ecological impacts is required. Studies dealing with both classification and prediction of the ecological water quality are reviewed. Further, the combined emission-water quality approach is discussed. Common understanding of this combined approach is to apply the most stringent of either water quality or emission standard to a certain case. In contrast, for example, the Austrian water act enables the application of only the water quality based approach--at least on a temporary basis.
Interdisciplinary Industrial Ecology Education: Recommendations for an Inclusive Pedagogical Model
ERIC Educational Resources Information Center
Sharma, Archana
2009-01-01
Industrial ecology education is being developed and delivered predominantly within the domains of engineering and management. Such an approach could prove somewhat limiting to the broader goal of developing industrial ecology as an integrated knowledge base inclusive of diverse disciplines, contributing to sustainable development. This paper…
Blouin, Manuel; Sery, Nicolas; Cluzeau, Daniel; Brun, Jean-Jacques; Bédécarrats, Alain
2013-08-01
Energy crisis, climate changes, and biodiversity losses have reinforced the drive for more ecologically-based approaches for environmental management. Such approaches are characterized by the use of organisms rather than energy-consuming technologies. Although earthworms are believed to be potentially useful organisms for managing ecosystem services, there is actually no quantification of such a trend in literature. This bibliometric analysis aimed to measure the evolution of the association of "earthworms" and other terms such as ecosystem services (primary production, nutrient cycling, carbon sequestration, soil structure, and pollution remediation), "ecological engineering" or "biodiversity," to assess their convergence or divergence through time. In this aim, we calculated the similarity index, an indicator of the paradigmatic proximity defined in applied epistemology, for each year between 1900 and 2009. We documented the scientific fields and the geographical origins of the studies, as well as the land uses, and compare these characteristics with a 25 years old review on earthworm management. The association of earthworm related keywords with ecosystem services related keywords was increasing with time, reflecting the growing interest in earthworm use in biodiversity and ecosystem services management. Conversely, no significant increase in the association between earthworms and disciplines such as ecological engineering or restoration ecology was observed. This demonstrated that general ecologically-based approaches have yet to emerge and that there is little exchange of knowledge, methods or concepts among balkanized application realms. Nevertheless, there is a strong need for crossing the frontiers between fields of application and for developing an umbrella discipline to provide a framework for the use of organisms to manage ecosystem services.
Supporting productive thinking: The semiotic context for Cognitive Systems Engineering (CSE).
Flach, John
2017-03-01
The central thesis of this paper is that Rasmussen framed his approach to Cognitive Systems Engineering from the perspective of a Triadic Semiotic Model. This frame became the context for integrating multiple intellectual threads including Control Theory, Information Theory, Ecological Psychology, and Gestalt Psychology into a coherent theoretical framework. The case is made that the triadic semiotic framework is essential for a complete appreciation of the constructs that were central to Rasmussen's approach: Abstraction Hierarchy, Skill-Rules-Knowledge Model, Ecological Interface Design, and Proactive Risk Management. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Multi-Scale Approach to Assess and Restore Ecosystems in a Watershed Context
2013-09-01
Laguna Formation .. Mehrten Formation .. Metamorphic Rocks , Undifferentiated .. Modesto Formation. Upper Unit c=J North Merced Gravel .. Riverbank...distribution is unlimited. The US Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental...watershed assessment procedure that can be used to evaluate existing ecological conditions as well as proposed changes. The approach employs indicators
Niche construction theory: a practical guide for ecologists.
Odling-Smee, John; Erwin, Douglas H; Palkovacs, Eric P; Feldman, Marcus W; Laland, Kevin N
2013-03-01
Niche construction theory (NCT) explicitly recognizes environmental modication by organisms ("niche construction") and their legacy overtime ("ecological inheritance") to be evolutionary processes in their own right. Here we illustrate how niche construction theory provides usedl conceptual tools and theoretical insights for integrating ecosystem ecology and evolutionary theory. We begin by briefly describing NCT, and illustrating how it deifers from conventional evolutionary approaches. We then distinguish between two aspects ofniche construction--environment alteration and subsequent evolution in response to constructed environments--equating the first of these with "ecosystem engineering." We describe some of the ecological and evolutionary impacts on ecosystems of niche construction, ecosystem engineering and ecological inheritance, and illustrate how these processes trigger ecological and evolutionary feedbacks and leave detectable ecological signatures that are open to investigation. FIinally, we provide a practical guide to how NCT could be deployed by ecologists and evolutionary biologists to aeplore ecoeoolutionay dynamics. We suggest that, by highlighting the ecological and evolutionay ramifications of changes that organisms bring about in ecosystems, NCT helps link ecosystem ecology to evolutionary biology, potentially leading to a deeper understanding of how ecosystems change over time.
ERIC Educational Resources Information Center
Sonnert, Gerhard; Fox, Mary Frank
2012-01-01
Using longitudinal and multi-institutional data, this article takes an innovative approach in its analyses of gender differences in grade point averages (GPA) among undergraduate students in biology, the physical sciences, and engineering over a 16-year period. Assessed are hypotheses about (a) the gender ecology of science/engineering and (b) the…
Coggan, Nicole V; Hayward, Matthew W; Gibb, Heloise
2018-02-28
Ecosystem engineers have been widely studied for terrestrial systems, but global trends in research encompassing the range of taxa and functions have not previously been synthesised. We reviewed contemporary understanding of engineer fauna in terrestrial habitats and assessed the methods used to document patterns and processes, asking: (a) which species act as ecosystem engineers and with whom do they interact? (b) What are the impacts of ecosystem engineers in terrestrial habitats and how are they distributed? (c) What are the primary methods used to examine engineer effects and how have these developed over time? We considered the strengths, weaknesses and gaps in knowledge related to each of these questions and suggested a conceptual framework to delineate "significant impacts" of engineering interactions for all terrestrial animals. We collected peer-reviewed publications examining ecosystem engineer impacts and created a database of engineer species to assess experimental approaches and any additional covariates that influenced the magnitude of engineer impacts. One hundred and twenty-two species from 28 orders were identified as ecosystem engineers, performing five ecological functions. Burrowing mammals were the most researched group (27%). Half of all studies occurred in dry/arid habitats. Mensurative studies comparing sites with and without engineers (80%) were more common than manipulative studies (20%). These provided a broad framework for predicting engineer impacts upon abundance and species diversity. However, the roles of confounding factors, processes driving these patterns and the consequences of experimentally adjusting variables, such as engineer density, have been neglected. True spatial and temporal replication has also been limited, particularly for emerging studies of engineer reintroductions. Climate change and habitat modification will challenge the roles that engineers play in regulating ecosystems, and these will become important avenues for future research. We recommend future studies include simulation of engineer effects and experimental manipulation of engineer densities to determine the potential for ecological cascades through trophic and engineering pathways due to functional decline. We also recommend improving knowledge of long-term engineering effects and replication of engineer reintroductions across landscapes to better understand how large-scale ecological gradients alter the magnitude of engineering impacts. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A
2016-06-01
Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia
2014-05-01
While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.
functions. The strategic placement of dredged materials in locations that mimic natural process promoted additional ecological benefits, especially...regarding wading bird and infaunal habitat, thus adhering to Engineering With Nature (EWN) processes. The multifactor approach improved the wetland
Fang, Yiping
2013-09-01
The three-rivers headwater region (THRHR) of Qinghai province, China plays a key role as source of fresh water and ecosystem services for central and eastern China. Global warming and human activities in the THRHR have threatened the ecosystem since the 1980s. Therefore, the Chinese government has included managing of the THRHR in the national strategy since 2003. The State Integrated Test and Demonstration Region of the THRHR highlights the connection with social engineering (focus on improving people's livelihood and well-being) in managing nature reserves. Based on this program, this perspective attempts a holistic analysis of the strategic role of the THRHR, requirements for change, indices of change, and approaches to change. Long-term success of managing nature reserves requires effective combination of ecological conservation, economic development, and social progress. Thus, the philosophy of social engineering should be employed as a strategy to manage the THRHR.
The littoral zone in the Three Gorges Reservoir, China: challenges and opportunities.
Yuan, Xing-zhong; Zhang, Yue-wei; Liu, Hong; Xiong, Sen; Li, Bo; Deng, Wei
2013-10-01
For flood control purpose, the water level of the Three Gorges Reservoir (TGR) varies significantly. The annual reservoir surface elevation amplitude is about 30 m behind the dam. Filling of the reservoir has created about 349 km(2) of newly flooded riparian zone. The average flooding period lasts for more than 6 months, from mid-October to late April. The dam and its associated reservoir provide flood control, power generation, and navigation, but there are also many environmental challenges. The littoral zone is the important part of the TGR, once its eco-health and stability are damaged,which will directly endanger the ecological safety of the whole reservoir area and even the Yangtze River Basin. So, understanding the great ecological opportunities which are hidden in littoral zone of TGR (LZTGR) and putting forward approaches to solve the environmental problems are very important. LZTGR involves a wide field of problems, such as the landslides, potential water pollution, soil erosion, biodiversity loss, land cover changes, and other issues. The Three Gorges dam (TGD) is a major trigger of environmental change in the Yangtze River. The landslides, water quality, soil erosion, loss of biodiversity, dam operation, and challenge for land use are closely interrelated across spatial and temporal scales. Therefore, the ecological and environmental impacts caused by TGD are necessarily complex and uncertain. LZTGR is not only a great environmental challenge but also an ecological opportunity for us. In fact, LZTGR is an important structural unit of TGR ecosystem and has special ecosystem services function. Vegetation growing in LZTGR is therefore a valuable resource due to accumulation of carbon and nutrients. Everyone thinks that the ecological approach to the problem is needed. If properly designed, dike-pond systems, littoral woods systems, and re-created waterfowl habitats will have the capacity to capture nutrients from uplands and obstruct soil erosion. Ecological engineering approaches can therefore reduce environmental impacts of LZTGR and optimize ecological services. In view of the current situation and existing ecological problems of LZTGR, according to function demands such as environmental purification, biodiversity conservation, and vegetation carbon sink enhancement, we should explore the eco-friendly utilization mode of resources in LZTGR. Ecological engineering approaches might minimize the impacts or optimize the ecological services. Natural regeneration and ecological restoration in LZTGR are valuable for soil erosion decrease, pollutant purification, biodiversity conservation, carbon sink increase, and ecosystem health maintenance in TGR.
Systems management techniques and problems
NASA Technical Reports Server (NTRS)
1971-01-01
Report is reviewed which discusses history and trends of systems management, its basic principles, and nature of problems that lend themselves to systems approach. Report discusses systems engineering as applied to weapons acquisition, ecology, patient monitoring, and retail merchandise operations.
NASA Technical Reports Server (NTRS)
Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.
1993-01-01
Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.
Building 'blue': An eco-engineering framework for foreshore developments.
Mayer-Pinto, M; Johnston, E L; Bugnot, A B; Glasby, T M; Airoldi, L; Mitchell, A; Dafforn, K A
2017-03-15
Urbanisation in terrestrial systems has driven architects, planners, ecologists and engineers to collaborate on the design and creation of more sustainable structures. Examples include the development of 'green infrastructure' and the introduction of wildlife corridors that mitigate urban stressors and provide positive ecological outcomes. In contrast, efforts to minimise the impacts of urban developments in marine environments have been far more restricted in their extent and scope, and have often overlooked the ecological role of the built environment as potential habitat. Urban foreshore developments, i.e. those built on the interface of intertidal and/or subtidal zones, have the potential to incorporate clear multi-functional outcomes, by supporting novel ecosystems. We present a step-by-step eco-engineering framework for 'building blue' that will allow coastal managers to facilitate planning and construction of sustainable foreshore developments. Adopting such an approach will incorporate ecological principles, thereby mitigating some of the environmental impacts, creating more resilient urban infrastructure and environments, and maximising benefits to the multiple stakeholders and users of marine urban waterfronts. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bespalov, V.; Kotlyarova, E.
2017-10-01
In modern conditions of a stable urban areas development special place is occupied by the problem of ecological security of built-up areas, including residential, recreational, industrial areas and objects of transport and engineering infrastructure. The main results of the study are to establish the basis of formation of the concept of choice of energy-efficient technologies and tools of forming an ecologically efficient “green frame” of urban areas on the basis of a single integrated scientific concept. Analysis allowed us to divide the measures for improvement into the following main groups: organizational and planning, engineering and technical and special engineering and environmental. The significance of these results for the construction industry, including transport infrastructure, is to increase the level of environmental safety in the construction and reconstruction of urban areas due to the organization of their improvement on the basis suggested by the authors scientific approach. Its basis is integrated accounting of the natural and climatic features of the landscaping territory, the types and level of environmental impact of negative anthropogenic factors, the features of architectural and planning solutions of the existing or projected on the studied area, the structure and types of green spaces and their functional ecological properties.
2016-01-01
Reef restoration activities have proliferated in response to the need to mitigate coral declines and recover lost reef structure, function, and ecosystem services. Here, we describe the recent shift from costly and complex engineering solutions to recover degraded reef structure to more economical and efficient ecological approaches that focus on recovering the living components of reef communities. We review the adoption and expansion of the coral gardening framework in the Caribbean and Western Atlantic where practitioners now grow and outplant 10,000’s of corals onto degraded reefs each year. We detail the steps for establishing a gardening program as well as long-term goals and direct and indirect benefits of this approach in our region. With a strong scientific basis, coral gardening activities now contribute significantly to reef and species recovery, provide important scientific, education, and outreach opportunities, and offer alternate livelihoods to local stakeholders. While challenges still remain, the transition from engineering to ecological solutions for reef degradation has opened the field of coral reef restoration to a wider audience poised to contribute to reef conservation and recovery in regions where coral losses and recruitment bottlenecks hinder natural recovery. PMID:27781176
Lirman, Diego; Schopmeyer, Stephanie
2016-01-01
Reef restoration activities have proliferated in response to the need to mitigate coral declines and recover lost reef structure, function, and ecosystem services. Here, we describe the recent shift from costly and complex engineering solutions to recover degraded reef structure to more economical and efficient ecological approaches that focus on recovering the living components of reef communities. We review the adoption and expansion of the coral gardening framework in the Caribbean and Western Atlantic where practitioners now grow and outplant 10,000's of corals onto degraded reefs each year. We detail the steps for establishing a gardening program as well as long-term goals and direct and indirect benefits of this approach in our region. With a strong scientific basis, coral gardening activities now contribute significantly to reef and species recovery, provide important scientific, education, and outreach opportunities, and offer alternate livelihoods to local stakeholders. While challenges still remain, the transition from engineering to ecological solutions for reef degradation has opened the field of coral reef restoration to a wider audience poised to contribute to reef conservation and recovery in regions where coral losses and recruitment bottlenecks hinder natural recovery.
NASA Astrophysics Data System (ADS)
Bowles, C.
2013-12-01
Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of the Sacramento River Valley.
THE EMERGENCE OF ECOLOGICAL ENGINEERING AS A DISCIPLINE
Pioneering efforts in the field of ecological engineering research and practice have proven to be tremendous strides toward establishing a new engineering discipline with a science base in ecology. Case studies, demonstrations and applications pertaining to restoration, rehabili...
A Systems-Level Approach to Characterizing Effects of ENMs in Terrestrial Organisms and Ecosystems
Engineered nanomaterials (ENMs) represent a new regulatory challenge because of their unique properties and their potential to interact with ecological organisms at various developmental stages, in numerous environmental compartments. Traditional toxicity tests have proven to be...
A framework for evaluating disciplinary contributions to river restoration
G. E. Grant
2008-01-01
As river restoration has matured into a global-scale intervention in rivers, a broader range of technical disciplines are informing restoration goals, strategies, approaches, and methods. The ecological, geomotphological, hydrological, and engineering sciences each bring a distinct focus and set of perspectives and tools, and are themselves embedded in a larger context...
Methodological approaches for studying the microbial ecology of drinking water distribution systems.
Douterelo, Isabel; Boxall, Joby B; Deines, Peter; Sekar, Raju; Fish, Katherine E; Biggs, Catherine A
2014-11-15
The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Tsunami Project: Integrating engineering, natural and social sciences into post-tsunami surveys
NASA Astrophysics Data System (ADS)
McAdoo, B. G.; Goff, J. R.; Fritz, H. M.; Cochard, R.; Kong, L. S.
2009-12-01
Complexities resulting from recent tsunamis in the Solomon Islands (2007), Java (2006) and Sumatra (2004, 2005) have demonstrated the need for an integrated, interdisciplinary team of engineers, natural and social scientists to better understand the nature of the disaster. Documenting the complex interactions in the coupled human-environment system necessitate a coordinated, interdisciplinary approach that combines the strengths of engineering, geoscience, ecology and social science. Engineers, modelers and geoscientists untangle the forces required to leave an imprint of a tsunami in the geologic record. These same forces affect ecosystems that provide services from buffers to food security; therefore coastal ecologists play a vital role. It is also crucial to understand the social structures that contribute to disasters, so local or regional policy experts, planners, economists, etc. should be included. When these experts arrive in a disaster area as part of an Interdisciplinary Tsunami Survey Team, the interactions between the systems can be discussed in the field, and site-specific data can be collected. A diverse team in the field following a tsunami shares critical resources and discoveries in real-time, making the survey more efficient. Following the 2006 Central Java earthquake and tsunami, civil engineers covered broad areas quickly, collecting ephemeral water level data and communicating areas of interest to the geologists, who would follow to do the slower sediment data collection. The 2007 Solomon Islands earthquake and tsunami caused extensive damage to the coral reef, which highlighting the need to have an ecologist on the team who was able to identify species and their energy tolerance. Rather than diluting the quality of post-tsunami data collection, this approach in fact strengthens it- engineers and geoscientists no longer have to indentify coral or mangrove species, nor do ecologists evaluate the velocity of a wave as it impacted a forested coastline. Interviews, a core element of post-tsunami surveys and which most US academic institutions require human-subject training to complete, can be undertaken by social scientists trained to ask pertinent questions to both the natural scientists and engineers, and those that will illuminate the underlying weaknesses of the social institutions that contributed to the magnitude of the disaster. Data collected by interdisciplinary teams provides baseline data that can set the redevelopment process off on the right track. Geoscientists constrain the location, frequency and magnitude of hazards, and how they affect the landscape. Ecologists document the interaction of hazards with ecosystems and evaluate their risk reduction role. Engineers and modelers constrain the effects of a hazard on the built environment. A coupled human-environment approach at the intersection of the physical, ecological and the built environments provides the right kind of data decision makers need to build back better in the most ecologically and economically sustainable manner.
Evolutionary engineering for industrial microbiology.
Vanee, Niti; Fisher, Adam B; Fong, Stephen S
2012-01-01
Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Perry J.; Kottenstette, Richard Joseph; Crouch, Shannon M.
The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achievedmore » with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.« less
Microbial Consortia Engineering for Cellular Factories: in vitro to in silico systems
Bernstein, Hans C; Carlson, Ross P
2012-01-01
This mini-review discusses the current state of experimental and computational microbial consortia engineering with a focus on cellular factories. A discussion of promising ecological theories central to community resource usage is presented to facilitate interpretation of consortial designs. Recent case studies exemplifying different resource usage motifs and consortial assembly templates are presented. The review also highlights in silico approaches to design and to analyze consortia with an emphasis on stoichiometric modeling methods. The discipline of microbial consortia engineering possesses a widely accepted potential to generate highly novel and effective bio-catalysts for applications from biofuels to specialty chemicals to enhanced mineral recovery. PMID:24688677
Requirements for psychological models to support design: Towards ecological task analysis
NASA Technical Reports Server (NTRS)
Kirlik, Alex
1991-01-01
Cognitive engineering is largely concerned with creating environmental designs to support skillful and effective human activity. A set of necessary conditions are proposed for psychological models capable of supporting this enterprise. An analysis of the psychological nature of the design product is used to identify a set of constraints that models must meet if they can usefully guide design. It is concluded that cognitive engineering requires models with resources for describing the integrated human-environment system, and that these models must be capable of describing the activities underlying fluent and effective interaction. These features are required in order to be able to predict the cognitive activity that will be required given various design concepts, and to design systems that promote the acquisition of fluent, skilled behavior. These necessary conditions suggest that an ecological approach can provide valuable resources for psychological modeling to support design. Relying heavily on concepts from Brunswik's and Gibson's ecological theories, ecological task analysis is proposed as a framework in which to predict the types of cognitive activity required to achieve productive behavior, and to suggest how interfaces can be manipulated to alleviate certain types of cognitive demands. The framework is described in terms, and illustrated with an example from the previous research on modeling skilled human-environment interaction.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... modeling; atmospheric science and engineering; ecology and ecological risk assessment; epidemiology... assessment; environmental modeling; industrial ecology; environmental engineering; environmental medicine... ``Ethics Requirements for Advisors'' link on the blue navigational bar on the SAB Web site at http://www...
The impact of nanotechnology on the US EPA and related research needs has been described in the Agency’s Nanotechnology White Paper1,2 and ORD’s Research Strategy3. The US EPA’s NMs environmental, health and ecological effects research is conducted in its Chemical Safety for Sus...
Synthetic Ecology of Microbes: Mathematical Models and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zomorrodi, Ali R.; Segre, Daniel
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Lastly, we present our outlook on key aspects of microbial ecosystems andmore » synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.« less
Synthetic Ecology of Microbes: Mathematical Models and Applications
Zomorrodi, Ali R.; Segre, Daniel
2015-11-11
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Lastly, we present our outlook on key aspects of microbial ecosystems andmore » synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.« less
Environmental Designer Drugs: When Transformation May Not Eliminate Risk
2015-01-01
Environmental transformation processes, including those occurring in natural and engineered systems, do not necessarily drastically alter molecular structures of bioactive organic contaminants. While the majority of generated transformation products are likely benign, substantial conservation of structure in transformation products can imply conservation or even creation of bioactivity across multiple biological end points and thus incomplete mitigation of ecological risk. Therefore, focusing solely on parent compound removal for contaminants of higher relative risk, the most common approach to fate characterization, provides no mechanistic relationship to potential biological effects and is inadequate as a comprehensive metric for reduction of ecological risks. Here, we explore these phenomena for endocrine-active steroid hormones, focusing on examples of conserved bioactivity and related implications for fate assessment, regulatory approaches, and research opportunities. PMID:25216024
Fluvial geomorphology and river engineering: future roles utilizing a fluvial hydrosystems framework
NASA Astrophysics Data System (ADS)
Gilvear, David J.
1999-12-01
River engineering is coming under increasing public scrutiny given failures to prevent flood hazards and economic and environmental concerns. This paper reviews the contribution that fluvial geomorphology can make in the future to river engineering. In particular, it highlights the need for fluvial geomorphology to be an integral part in engineering projects, that is, to be integral to the planning, implementation, and post-project appraisal stages of engineering projects. It should be proactive rather than reactive. Areas in which geomorphologists will increasingly be able to complement engineers in river management include risk and environmental impact assessment, floodplain planning, river audits, determination of instream flow needs, river restoration, and design of ecologically acceptable channels and structures. There are four key contributions that fluvial geomorphology can make to the engineering profession with regard to river and floodplain management: to promote recognition of lateral, vertical, and downstream connectivity in the fluvial system and the inter-relationships between river planform, profile, and cross-section; to stress the importance of understanding fluvial history and chronology over a range of time scales, and recognizing the significance of both palaeo and active landforms and deposits as indicators of levels of landscape stability; to highlight the sensitivity of geomorphic systems to environmental disturbances and change, especially when close to geomorphic thresholds, and the dynamics of the natural systems; and to demonstrate the importance of landforms and processes in controlling and defining fluvial biotopes and to thus promote ecologically acceptable engineering. Challenges facing fluvial geomorphology include: gaining full acceptance by the engineering profession; widespread utilization of new technologies including GPS, GIS, image analysis of satellite and airborne remote sensing data, computer-based hydraulic modeling and geophysical techniques; dovetailing engineering approaches to the study of river channels which emphasize reach-scale flow resistance, shear stresses, and material strength with catchment scale geomorphic approaches, empirical predictions, bed and bank processes, landform evolution, and magnitude-frequency concepts; producing accepted river channel typologies; fundamental research aimed at producing more reliable deterministic equations for prediction of bed and bank stability and bedload transport; and collaboration with aquatic biologists to determine the role and importance of geomorphologically and hydraulically defined habitats.
NASA Astrophysics Data System (ADS)
Jixia, Huang; Qibin, Zhang; Jing, Tan; Depeng, Yue; Quansheng, Ge
2018-04-01
Forestry ecological engineering projects in Western China include the Three-North Shelter Forest Project (TNSFP), the Natural Forest Protection Project (NFPP), the Grain for Green Project (GGP) and the Beijing-Tianjin Sandstorm Source Project (BTSSP). Such projects play an important role in the control of dust weather in Western China. In this research, data on the frequency of sandstorms, sand-blowing and dust-floating weather, the area of four forestry ecological engineering projects, wind, rainfall and vegetation coverage from 2000 to 2010 were collected based on the unit of prefecture-level cities in Inner Mongolia. The panel-data model was used to analyze the quantitative association between forestry ecological engineering and dust weather. The results indicate that wind has a strong promotional effect on dust weather, while forestry ecological engineering and rainfall have a containment effect. In addition, the impacts of the four studied forestry ecological engineering projects on dust weather differ. For every increase of 1000 km2 in the Three-North Shelter Forest Project, the annual number of days of sandstorm weather decreased by 4 days. Similarly, for every increase of 1000 km2 in the Beijing-Tianjin Sandstorm Source Project, the sand-blowing weather decreased by 4.4 days annually. In addition, NFPP and GGP have a more obvious inhibitory effect on the dust-floating weather.
Industrial ecology: Quantitative methods for exploring a lower carbon future
NASA Astrophysics Data System (ADS)
Thomas, Valerie M.
2015-03-01
Quantitative methods for environmental and cost analyses of energy, industrial, and infrastructure systems are briefly introduced and surveyed, with the aim of encouraging broader utilization and development of quantitative methods in sustainable energy research. Material and energy flow analyses can provide an overall system overview. The methods of engineering economics and cost benefit analysis, such as net present values, are the most straightforward approach for evaluating investment options, with the levelized cost of energy being a widely used metric in electricity analyses. Environmental lifecycle assessment has been extensively developed, with both detailed process-based and comprehensive input-output approaches available. Optimization methods provide an opportunity to go beyond engineering economics to develop detailed least-cost or least-impact combinations of many different choices.
Increasing the reliability of ecological models using modern software engineering techniques
Robert M. Scheller; Brian R. Sturtevant; Eric J. Gustafson; Brendan C. Ward; David J. Mladenoff
2009-01-01
Modern software development techniques are largely unknown to ecologists. Typically, ecological models and other software tools are developed for limited research purposes, and additional capabilities are added later, usually in an ad hoc manner. Modern software engineering techniques can substantially increase scientific rigor and confidence in ecological models and...
Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, William
The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uraniummore » processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.« less
The dynamic effects of sea level rise on low-gradient coastal landscapes: A review
Passeri, Davina L.; Hagen, Scott C.; Medeiros, Stephen C.; Bilskie, Matthew V.; Alizad, Karim; Wang, Dingbao
2015-01-01
Coastal responses to sea level rise (SLR) include inundation of wetlands, increased shoreline erosion, and increased flooding during storm events. Hydrodynamic parameters such as tidal ranges, tidal prisms, tidal asymmetries, increased flooding depths and inundation extents during storm events respond nonadditively to SLR. Coastal morphology continually adapts toward equilibrium as sea levels rise, inducing changes in the landscape. Marshes may struggle to keep pace with SLR and rely on sediment accumulation and the availability of suitable uplands for migration. Whether hydrodynamic, morphologic, or ecologic, the impacts of SLR are interrelated. To plan for changes under future sea levels, coastal managers need information and data regarding the potential effects of SLR to make informed decisions for managing human and natural communities. This review examines previous studies that have accounted for the dynamic, nonlinear responses of hydrodynamics, coastal morphology, and marsh ecology to SLR by implementing more complex approaches rather than the simplistic “bathtub” approach. These studies provide an improved understanding of the dynamic effects of SLR on coastal environments and contribute to an overall paradigm shift in how coastal scientists and engineers approach modeling the effects of SLR, transitioning away from implementing the “bathtub” approach. However, it is recommended that future studies implement a synergetic approach that integrates the dynamic interactions between physical and ecological environments to better predict the impacts of SLR on coastal systems.
Defining the Ecological Coefficient of Performance for an Aircraft Propulsion System
NASA Astrophysics Data System (ADS)
Şöhret, Yasin
2018-05-01
The aircraft industry, along with other industries, is considered responsible these days regarding environmental issues. Therefore, the performance evaluation of aircraft propulsion systems should be conducted with respect to environmental and ecological considerations. The current paper aims to present the ecological coefficient of performance calculation methodology for aircraft propulsion systems. The ecological coefficient performance is a widely-preferred performance indicator of numerous energy conversion systems. On the basis of thermodynamic laws, the methodology used to determine the ecological coefficient of performance for an aircraft propulsion system is parametrically explained and illustrated in this paper for the first time. For a better understanding, to begin with, the exergy analysis of a turbojet engine is described in detail. Following this, the outputs of the analysis are employed to define the ecological coefficient of performance for a turbojet engine. At the end of the study, the ecological coefficient of performance is evaluated parametrically and discussed depending on selected engine design parameters and performance measures. The author asserts the ecological coefficient of performance to be a beneficial indicator for researchers interested in aircraft propulsion system design and related topics.
The importance of ecological memory for trophic rewilding as an ecosystem restoration approach.
Schweiger, Andreas H; Boulangeat, Isabelle; Conradi, Timo; Davis, Matt; Svenning, Jens-Christian
2018-06-06
Increasing human pressure on strongly defaunated ecosystems is characteristic of the Anthropocene and calls for proactive restoration approaches that promote self-sustaining, functioning ecosystems. However, the suitability of novel restoration concepts such as trophic rewilding is still under discussion given fragmentary empirical data and limited theory development. Here, we develop a theoretical framework that integrates the concept of 'ecological memory' into trophic rewilding. The ecological memory of an ecosystem is defined as an ecosystem's accumulated abiotic and biotic material and information legacies from past dynamics. By summarising existing knowledge about the ecological effects of megafauna extinction and rewilding across a large range of spatial and temporal scales, we identify two key drivers of ecosystem responses to trophic rewilding: (i) impact potential of (re)introduced megafauna, and (ii) ecological memory characterising the focal ecosystem. The impact potential of (re)introduced megafauna species can be estimated from species properties such as lifetime per capita engineering capacity, population density, home range size and niche overlap with resident species. The importance of ecological memory characterising the focal ecosystem depends on (i) the absolute time since megafauna loss, (ii) the speed of abiotic and biotic turnover, (iii) the strength of species interactions characterising the focal ecosystem, and (iv) the compensatory capacity of surrounding source ecosystems. These properties related to the focal and surrounding ecosystems mediate material and information legacies (its ecological memory) and modulate the net ecosystem impact of (re)introduced megafauna species. We provide practical advice about how to quantify all these properties while highlighting the strong link between ecological memory and historically contingent ecosystem trajectories. With this newly established ecological memory-rewilding framework, we hope to guide future empirical studies that investigate the ecological effects of trophic rewilding and other ecosystem-restoration approaches. The proposed integrated conceptual framework should also assist managers and decision makers to anticipate the possible trajectories of ecosystem dynamics after restoration actions and to weigh plausible alternatives. This will help practitioners to develop adaptive management strategies for trophic rewilding that could facilitate sustainable management of functioning ecosystems in an increasingly human-dominated world. © 2018 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Tellman, B.; Schwarz, B.
2014-12-01
This talk describes the development of a web application to predict and communicate vulnerability to floods given publicly available data, disaster science, and geotech cloud capabilities. The proof of concept in Google Earth Engine API with initial testing on case studies in New York and Utterakhand India demonstrates the potential of highly parallelized cloud computing to model socio-ecological disaster vulnerability at high spatial and temporal resolution and in near real time. Cloud computing facilitates statistical modeling with variables derived from large public social and ecological data sets, including census data, nighttime lights (NTL), and World Pop to derive social parameters together with elevation, satellite imagery, rainfall, and observed flood data from Dartmouth Flood Observatory to derive biophysical parameters. While more traditional, physically based hydrological models that rely on flow algorithms and numerical methods are currently unavailable in parallelized computing platforms like Google Earth Engine, there is high potential to explore "data driven" modeling that trades physics for statistics in a parallelized environment. A data driven approach to flood modeling with geographically weighted logistic regression has been initially tested on Hurricane Irene in southeastern New York. Comparison of model results with observed flood data reveals a 97% accuracy of the model to predict flooded pixels. Testing on multiple storms is required to further validate this initial promising approach. A statistical social-ecological flood model that could produce rapid vulnerability assessments to predict who might require immediate evacuation and where could serve as an early warning. This type of early warning system would be especially relevant in data poor places lacking the computing power, high resolution data such as LiDar and stream gauges, or hydrologic expertise to run physically based models in real time. As the data-driven model presented relies on globally available data, the only real time data input required would be typical data from a weather service, e.g. precipitation or coarse resolution flood prediction. However, model uncertainty will vary locally depending upon the resolution and frequency of observed flood and socio-economic damage impact data.
[Comprehensive evaluation and selection of urban eco-engineering virescent trees in Shenyang City].
Lu, Min; Jiang, Fengqi; Li, Yingjie
2004-07-01
Urban virescence eco-engineering is the core of urban eco-environmental construction, which can promote urban sustainable development. In urban virescence eco-engineering, the comprehensive evaluation of ecological adapt-ability and ecological effect of urban plants is the scientific basis of rational application and selection of urban garden plants. The ecological effect and integrative functions of urban virescence eco-engineering depend upon the selection and layout of garden plants. Using the methods of garden expert consultation and evaluation, this paper established systematically integrative evaluation and application indices of virescence plants in Shenyang City, from the aspects of ecological adaptability, ecological effect, beautification effect, resistance to plant diseases and insect pests, anti-pollution and economic results. According to garden experts evaluation and location of Shenyang, 200 sorts of virescence trees were evaluated and classified on the basis of the comprehensive evaluation system of virescence trees, and using cold resistance, drought resistance, barren resistance, plant diseases and insect pests resistance, anti-pollution, ornamental quality and ecological effects as the indexes. The results showed that the number of first rank trees was 58, the second was 93, methods of third was 38, and the fourth was 11, ranked by integrative performance.
Integrating ecology into biotechnology.
McMahon, Katherine D; Martin, Hector Garcia; Hugenholtz, Philip
2007-06-01
New high-throughput culture-independent molecular tools are allowing the scientific community to characterize and understand the microbial communities underpinning environmental biotechnology processes in unprecedented ways. By creatively leveraging these new data sources, microbial ecology has the potential to transition from a purely descriptive to a predictive framework, in which ecological principles are integrated and exploited to engineer systems that are biologically optimized for the desired goal. But to achieve this goal, ecology, engineering and microbiology curricula need to be changed from the very root to better promote interdisciplinarity.
NASA Astrophysics Data System (ADS)
Sonis, M.
Socio-ecological dynamics emerged from the field of Mathematical SocialSciences and opened up avenues for re-examination of classical problems of collective behavior in Social and Spatial sciences. The ``engine" of this collective behavior is the subjective mental evaluation of level of utilities in the future, presenting sets of composite socio-economic-temporal-locational advantages. These dynamics present new laws of collective multi-population behavior which are the meso-level counterparts of the utility optimization individual behavior. The central core of the socio-ecological choice dynamics includes the following first principle of the collective choice behavior of ``Homo Socialis" based on the existence of ``collective consciousness": the choice behavior of ``Homo Socialis" is a collective meso-level choice behavior such that the relative changes in choice frequencies depend on the distribution of innovation alternatives between adopters of innovations. The mathematical basis of the Socio-Ecological Dynamics includes two complementary analytical approaches both based on the use of computer modeling as a theoretical and simulation tool. First approach is the ``continuous approach" --- the systems of ordinary and partial differential equations reflecting the continuous time Volterra ecological formalism in a form of antagonistic and/or cooperative collective hyper-games between different sub-sets of choice alternatives. Second approach is the ``discrete approach" --- systems of difference equations presenting a new branch of the non-linear discrete dynamics --- the Discrete Relative m-population/n-innovations Socio-Spatial Dynamics (Dendrinos and Sonis, 1990). The generalization of the Volterra formalism leads further to the meso-level variational principle of collective choice behavior determining the balance between the resulting cumulative social spatio-temporal interactions among the population of adopters susceptible to the choice alternatives and the cumulative equalization of the power of elites supporting different choice alternatives. This balance governs the dynamic innovation choice process and constitutes the dynamic meso-level counterpart of the micro-economic individual utility maximization principle.
Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant ...
ERIC Educational Resources Information Center
Lundholm, Cecilia
2004-01-01
Describes how first-year civil engineering students interpreted the content and structure of an ecology course. Students' learning processes were analysed from an intentional perspective, i.e. a perspective that takes into account the students' educational aims and conceptions of the study situation. Interviews were carried out with six civil…
Controlled ecological life-support system - Use of plants for human life-support in space
NASA Technical Reports Server (NTRS)
Chamberland, D.; Knott, W. M.; Sager, J. C.; Wheeler, R.
1992-01-01
Scientists and engineers within NASA are conducting research which will lead to development of advanced life-support systems that utilize higher plants in a unique approach to solving long-term life-support problems in space. This biological solution to life-support, Controlled Ecological Life-Support System (CELSS), is a complex, extensively controlled, bioengineered system that relies on plants to provide the principal elements from gas exchange and food production to potable water reclamation. Research at John F. Kennedy Space Center (KSC) is proceeding with a comprehensive investigation of the individual parts of the CELSS system at a one-person scale in an approach called the Breadboard Project. Concurrently a relatively new NASA sponsored research effort is investigating plant growth and metabolism in microgravity, innovative hydroponic nutrient delivery systems, and use of highly efficient light emitting diodes for artificial plant illumination.
Comparative genomics of xylose-fermenting fungi for enhanced biofuel production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlbach, Dana J.; Kuo, Alan; Sato, Trey K.
Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes,more » mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.« less
de Langre, Emmanuel
2012-03-15
The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.
Pack rats (Neotoma spp.): Keystone ecological engineers?
USDA-ARS?s Scientific Manuscript database
The potential role of two species of pack rats (Neotoma albigula and Neotoma micropus) as keystone ecological engineers was examined by estimating the species diversity of invertebrates living in the nest middens, and nitrogen mineralization rates in soils associated with the middens. Although pack-...
Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.
Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H
2013-11-01
Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. © 2013 John Wiley & Sons Ltd/CNRS.
Teng, Ming-jun; Zeng, Li-xiong; Xiao, Wen-fa; Zhou, Zhi-xiang; Huang, Zhi-lin; Wang, Peng-cheng; Dian, Yuan-yong
2014-12-01
The Three Gorges Reservoir area (TGR area) , one of the most sensitive ecological zones in China, has dramatically changes in ecosystem configurations and services driven by the Three Gorges Engineering Project and its related human activities. Thus, understanding the dynamics of ecosystem configurations, ecological processes and ecosystem services is an attractive and critical issue to promote regional ecological security of the TGR area. The remote sensing of environment is a promising approach to the target and is thus increasingly applied to and ecosystem dynamics of the TGR area on mid- and macro-scales. However, current researches often showed controversial results in ecological and environmental changes in the TGR area due to the differences in remote sensing data, scale, and land-use/cover classification. Due to the complexity of ecological configurations and human activities, challenges still exist in the remote-sensing based research of ecological and environmental changes in the TGR area. The purpose of this review was to summarize the research advances in remote sensing of ecological and environmental changes in the TGR area. The status, challenges and trends of ecological and environmental remote-sensing in the TGR area were further discussed and concluded in the aspect of land-use/land-cover, vegetation dynamics, soil and water security, ecosystem services, ecosystem health and its management. The further researches on the remote sensing of ecological and environmental changes were proposed to improve the ecosystem management of the TGR area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neitzel, D.A.; McKenzie, D.H.
To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact andmore » review biological information needed for intake design.« less
Engineering works and the tidal Chesapeake
NASA Technical Reports Server (NTRS)
Hargis, W. J., Jr.
1972-01-01
The tidal tributaries of the ocean and coastal areas of the mid-Atlantic region and the ecological significance of engineering projects are discussed. The effects of engineering works on maritime environments and resources, with the Chesapeake Bay as the area of prime interest are examined. Significant engineering projects, both actual and proposed, are described. The conflict of navigational demands and maintenance of an estuarine environment for commercial and sport fishing and recreation is described. Specific applications of remote sensors for analyzing ecological conditions of the bay are included.
NASA Astrophysics Data System (ADS)
von der Thannen, Magdalena; Paratscha, Roman; Smutny, Roman; Lampalzer, Thomas; Strauss, Alfred; Rauch, Hans Peter
2016-04-01
Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. In this context soil bioengineering techniques are often used as standalone solutions or in combination with conventional engineering structures. It is a construction technique that uses biological components for hydraulic and civil engineering solutions. In general it pursues the same objectives as conventional civil engineering structures. Currently the used assessment methods for soil bioengineering structures are referencing technically, ecologically and socio-economically. In a modern engineering approach additionally, environmental impacts and potential added values should be considered. The research project E-Protect aims at developing Environmental Life Cycle Assessment (LCA) models for this special field of alpine protective constructions. Both, the Cumulative Energy Demand (CED) and the Global Warming Potential (GWP) should be considered in an Environmental LCA over the whole life cycle of an engineering structure. The life cycle itself can be divided into three phases: the construction phase, the use phase and the end of life phase. The paper represents a concept to apply an Environmental LCA model for soil bioengineering structures. Beside the construction phase of these structures particular attention will be given to the use phase. It is not only important in terms of engineering effects but also plays an important role for positive carbon footprint due to the growing plants of soil bioengineering structures in contrast to conventional structures. Innovative Environmental LCA models will be applied to soil bioengineering structures which provide a new transparency for the responsible planners and stakeholders, by pointing out the total consumption of resources in all construction phases and components.
Ashbolt, Nicholas J.
2015-01-01
Major waterborne (enteric) pathogens are relatively well understood and treatment controls are effective when well managed. However, water-based, saprozoic pathogens that grow within engineered water systems (primarily within biofilms/sediments) cannot be controlled by water treatment alone prior to entry into water distribution and other engineered water systems. Growth within biofilms or as in the case of Legionella pneumophila, primarily within free-living protozoa feeding on biofilms, results from competitive advantage. Meaning, to understand how to manage water-based pathogen diseases (a sub-set of saprozoses) we need to understand the microbial ecology of biofilms; with key factors including biofilm bacterial diversity that influence amoebae hosts and members antagonistic to water-based pathogens, along with impacts from biofilm substratum, water temperature, flow conditions and disinfectant residual—all control variables. Major saprozoic pathogens covering viruses, bacteria, fungi and free-living protozoa are listed, yet today most of the recognized health burden from drinking waters is driven by legionellae, non-tuberculous mycobacteria (NTM) and, to a lesser extent, Pseudomonas aeruginosa. In developing best management practices for engineered water systems based on hazard analysis critical control point (HACCP) or water safety plan (WSP) approaches, multi-factor control strategies, based on quantitative microbial risk assessments need to be developed, to reduce disease from largely opportunistic, water-based pathogens. PMID:26102291
NASA Astrophysics Data System (ADS)
Perkins, Matthew J.; Ng, Terence P. T.; Dudgeon, David; Bonebrake, Timothy C.; Leung, Kenneth M. Y.
2015-12-01
Globally, coastlines are under pressure as coastal human population growth and urbanization continues, while climatic change leads to stormier seas and rising tides. These trends create a strong and sustained demand for land reclamation and infrastructure protection in coastal areas, requiring engineered coastal defence structures such as sea walls. Here, we review the nature of ecological impacts of coastal structures on intertidal ecosystems, seek to understand the extent to which ecological engineering can mitigate these impacts, and evaluate the effectiveness of mitigation as a tool to contribute to conservation of intertidal habitats. By so doing, we identify critical knowledge gaps to inform future research. Coastal structures alter important physical, chemical and biological processes of intertidal habitats, and strongly impact community structure, inter-habitat linkages and ecosystem services while also driving habitat loss. Such impacts occur diffusely across localised sites but scale to significant regional and global levels. Recent advances in ecological engineering have focused on developing habitat complexity on coastal structures to increase biodiversity. 'Soft' engineering options maximise habitat complexity through inclusion of natural materials, species and processes, while simultaneously delivering engineering objectives such as coastal protection. Soft options additionally sustain multiple services, providing greater economic benefits for society, and resilience to climatic change. Currently however, a lack of inclusion and economic undervaluation of intertidal ecosystem services may undermine best practice in coastline management. Importantly, reviewed evidence shows mitigation and even restoration do not support intertidal communities or processes equivalent to pre-disturbance conditions. Crucially, an absence of comprehensive empirical baseline biodiversity data, or data comprising additional ecological parameters such as ecosystem functions and services, prohibits quantification of absolute and relative magnitudes of ecological impacts due to coastal structures or effectiveness of mitigation interventions. This knowledge deficit restricts evaluation of the potential of ecological engineering to contribute to conservation policies for intertidal habitats. To improve mitigation design and effectiveness, a greater focus on in-situ research is needed, requiring stronger and timely collaboration between government agencies, construction partners and research scientists.
Microbial ecology-based engineering of Microbial Electrochemical Technologies.
Koch, Christin; Korth, Benjamin; Harnisch, Falk
2018-01-01
Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Supercomputer modeling of hydrogen combustion in rocket engines
NASA Astrophysics Data System (ADS)
Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye
2013-08-01
Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.
NASA Astrophysics Data System (ADS)
Marek, W.; Śliwiński, K.
2016-09-01
The publication presents the results of tests to determine the impact of using waste fuels, alcohol, to power the engine, on the ecological parameters of the combustion engine. Alternatively fuelled with a mixture of iso- and n-butanol, indicated with "X" and "END, and gasoline and a mixture of fuel and alcohol. The object of the study was a four-stroke engine with spark ignition designed to work with a generator. Motor power was held by the modified system of pneumatic injection using hot exhaust gases developed by Prof. Stanislaw Jarnuszkiewicz, controlled by modern mechatronic systems. Tests were conducted at a constant speed for the intended use of the engine. The subject of the research was to determine the control parameters such as ignition timing, mixture composition and the degree of exhaust gas recirculation on the ecological parameters of the engine. Tests were carried out using partially quality power control. In summary we present the findings of this phase of the study.
The potential ecological consequences of the commercialization of genetically engineered (GD) crops have been the subject of intense debate, particularly when the GE crops are perennial and capable of outcrossing to wild relatives. The essential ecological impact issues for engi...
[Theory and practice of bionic cultivation of traditional Chinese medicine].
Liu, Dahui; Huang, Luqi; Guo, Lanping; Shao, Aijuan; Chen, Meilan
2009-03-01
The bionic cultivation of medicinal plant is an ecological cultivation pattern, which is adopting ecological engineering and modern agricultural techniques to simulate the natural ecosystem of wild medicinal plant community, and has been given greater attention on the agriculture of traditional Chinese medicine (TCM). It is also the cross subject that combines Chinese traditional medicine, agronomy, horticulture, ecology, agricultural engineering and management. Moreover, it has significant technology advantages of promoting the sustainable utilization of medicinal plant resources, improving the ecological environment and harmonizing man and nature. So it's important to develop the bionic cultivation of TCM.
NASA Astrophysics Data System (ADS)
Passeport, Elodie; Vidon, Philippe; Forshay, Kenneth J.; Harris, Lora; Kaushal, Sujay S.; Kellogg, Dorothy Q.; Lazar, Julia; Mayer, Paul; Stander, Emilie K.
2013-02-01
Excess nitrogen (N) in freshwater systems, estuaries, and coastal areas has well-documented deleterious effects on ecosystems. Ecological engineering practices (EEPs) may be effective at decreasing nonpoint source N leaching to surface and groundwater. However, few studies have synthesized current knowledge about the functioning principles, performance, and cost of common EEPs used to mitigate N pollution at the watershed scale. Our review describes seven EEPs known to decrease N to help watershed managers select the most effective techniques from among the following approaches: advanced-treatment septic systems, low-impact development (LID) structures, permeable reactive barriers, treatment wetlands, riparian buffers, artificial lakes and reservoirs, and stream restoration. Our results show a broad range of N-removal effectiveness but suggest that all techniques could be optimized for N removal by promoting and sustaining conditions conducive to biological transformations (e.g., denitrification). Generally, N-removal efficiency is particularly affected by hydraulic residence time, organic carbon availability, and establishment of anaerobic conditions. There remains a critical need for systematic empirical studies documenting N-removal efficiency among EEPs and potential environmental and economic tradeoffs associated with the widespread use of these techniques. Under current trajectories of N inputs, land use, and climate change, ecological engineering alone may be insufficient to manage N in many watersheds, suggesting that N-pollution source prevention remains a critical need. Improved understanding of N-removal effectiveness and modeling efforts will be critical in building decision support tools to help guide the selection and application of best EEPs for N management.
Excess nitrogen (N) in freshwater systems, estuaries, and coastal areas has well-documented deleterious effects on ecosystems. Ecological engineering practices (EEPs) may be effective at decreasing nonpoint source N leaching to surface and groundwater. However, few studies have s...
Performance considerations for high-definition head-mounted displays
NASA Technical Reports Server (NTRS)
Edwards, Oliver J.; Larimer, James; Gille, Jennifer
1992-01-01
Design image-optimization for helmet-mounted displays (HMDs) for military systems is presently discussed within the framework of a systems-engineering approach that encompasses (1) a description of natural targets in the field; (2) the characteristics of human visual perception; and (3) device specifications that directly relate to these ecological and human-factors parameters. Attention is given to target size and contrast and the relationship of the modulation transfer function to image resolution.
Parallel ecological networks in ecosystems
Olff, Han; Alonso, David; Berg, Matty P.; Eriksson, B. Klemens; Loreau, Michel; Piersma, Theunis; Rooney, Neil
2009-01-01
In ecosystems, species interact with other species directly and through abiotic factors in multiple ways, often forming complex networks of various types of ecological interaction. Out of this suite of interactions, predator–prey interactions have received most attention. The resulting food webs, however, will always operate simultaneously with networks based on other types of ecological interaction, such as through the activities of ecosystem engineers or mutualistic interactions. Little is known about how to classify, organize and quantify these other ecological networks and their mutual interplay. The aim of this paper is to provide new and testable ideas on how to understand and model ecosystems in which many different types of ecological interaction operate simultaneously. We approach this problem by first identifying six main types of interaction that operate within ecosystems, of which food web interactions are one. Then, we propose that food webs are structured among two main axes of organization: a vertical (classic) axis representing trophic position and a new horizontal ‘ecological stoichiometry’ axis representing decreasing palatability of plant parts and detritus for herbivores and detrivores and slower turnover times. The usefulness of these new ideas is then explored with three very different ecosystems as test cases: temperate intertidal mudflats; temperate short grass prairie; and tropical savannah. PMID:19451126
Linking biogeomorphic feedbacks from ecosystem engineer to landscape scale: a panarchy approach
NASA Astrophysics Data System (ADS)
Eichel, Jana
2017-04-01
Scale is a fundamental concept in both ecology and geomorphology. Therefore, scale-based approaches are a valuable tool to bridge the disciplines and improve the understanding of feedbacks between geomorphic processes, landforms, material and organisms and ecological processes in biogeomorphology. Yet, linkages between biogeomorphic feedbacks on different scales, e.g. between ecosystem engineering and landscape scale patterns and dynamics, are not well understood. A panarchy approach sensu Holling et al. (2002) can help to close this research gap and explain how structure and function are created in biogeomorphic ecosystems. Based on results from previous biogeomorphic research in Turtmann glacier foreland (Switzerland; Eichel, 2017; Eichel et al. 2013, 2016), a panarchy concept is presented for lateral moraine slope biogeomorphic ecosystems. It depicts biogeomorphic feedbacks on different spatiotemporal scales as a set of nested adaptive cycles and links them by 'remember' and 'revolt' connections. On a small scale (cm2 - m2; seconds to years), the life cycle of the ecosystem engineer Dryas octopetala L. is considered as an adaptive cycle. Biogeomorphic succession within patches created by geomorphic processes represents an intermediate scale adaptive cycle (m2 - ha, years to decades), while geomorphic and ecologic pattern development at a landscape scale (ha - km2, decades to centuries) can be illustrated by an adaptive cycle of ‚biogeomorphic patch dynamics' (Eichel, 2017). In the panarchy, revolt connections link the smaller scale adaptive cycles to larger scale cycles: on lateral moraine slopes, the development of ecosystem engineer biomass and cover controls the engineering threshold of the biogeomorphic feedback window (Eichel et al., 2016) and therefore the onset of the biogeomorphic phase during biogeomorphic succession. In this phase, engineer patches and biogeomorphic structures can be created in the patch mosaic of the landscape. Remember connections link larger scale adaptive cycles to smaller scale cycles: configuration and properties of the lateral moraine slope patch mosaic control patch recolonization during biogeomorphic succession, while the patch-internal disturbance regime determines when the engineer can establish (establishment threshold of the biogeomorphic feedback window). Jointly, biogeomorphic feedback adaptive cycles and their connections in the panarchy create structure and function in the lateral moraine slope biogeomorphic ecosystem. Thus, by linking feedbacks on different spatiotemporal scales in biogeomorphic ecosystems and explaining the creation of ecosystem structure and function, the panarchy concept represents a useful tool for future biogeomorphic research. Eichel, J. 2017. Biogeomorphic dynamics in the Turtmann glacier forefield, Switzerland. PhD thesis, University of Bonn. Eichel J, Corenblit D, Dikau R. 2016. Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window. Earth Surface Processes and Landforms 41: 406-419. DOI: 10.1002/esp.3859 Eichel J, Krautblatter M, Schmidtlein S, Dikau R. 2013. Biogeomorphic interactions in the Turtmann glacier forefield, Switzerland. Geomorphology 201 : 98-110. DOI: 10.1016/j.geomorph.2013.06.012 Holling CS, Gunderson LH, Peterson GD. 2002. Sustainability and Panarchies. In Panarchy: Understanding Transformations in Human and Natural Systems , . Island Press: Washington, D.C.; 63-102.
[Ecological and economic approaches to removing radioactively dangerous objects from service].
Korenkov, I P; Lashchenova, T N; Neveĭkin, P P; Shandala, N K; Veselov, E I; Maksimova, O A
2011-01-01
The paper considers major ecological and economic problems when removing radiation dangerous objects from service and rehabilitating the areas, which require their solution: the absence of specific guidelines for ranking the contaminated lands exposed to radioactive and chemical pollution from the potential risk to the population and environment; no clear criteria for ceasing area rehabilitation works; radiation exposure levels for the population living in the areas after rehabilitation; allowable levels of residual specific activity, and levels of heavy metals in soil, surface and underground water and bed sediment. The cost such works is the most important and decisive problem. A decision-making algorithm consisting of three main blocks: organizational-technical, engineering, geological and medicoecological measures is proposed to solve managerial, economic, and scientific problems.
Morand, S; Guégan, J-F
2008-08-01
This paper addresses how climate changes interact with other global changes caused by humans (habitat fragmentation, changes in land use, bioinvasions) to affect biodiversity. Changes in biodiversity at all levels (genetic, population and community) affect the functioning of ecosystems, in particular host-pathogen interactions, with major consequences in health ecology (emergence and re-emergence; the evolution of virulence and resistance). In this paper, the authors demonstrate that the biodiversity sciences, epidemiological theory and evolutionary ecology are indispensable in assessing the impact of climate changes, and also for modelling the evolution of host-pathogen interactions in a changing environment. The next step is to apply health ecology to the science of ecological engineering.
NASA Astrophysics Data System (ADS)
Jugie, Marion; Gob, Frédéric; Slawson, Deborah; Le-Coeur, Charles
2014-05-01
The EU Water Framework Directive (WFD, October 2000) mandated that the Member States of the European Union achieve the general objective of protection of aquatic ecology by 2015. European rivers and streams have to attain "good ecological status" through the preservation and restoration of aquatic environments. Member will have to ensure environmental continuity through "the adequate distribution of fish species and transport of sediments". In France, more than 61,000 transverse structures - mill dams, weirs, diversion gates - have been identified on rivers as being obstacles to ecological and sedimentary continuity. Because of their historical occupation by societies, rivers flowing in the Paris area have long been anthropized and artificialized. River courses, channel shape, sediment transport and hydrological regime modifications have tremendously transformed the hydrosystems surrounding the city of Paris. The Merantaise's catchment is one of this low energy river watershed, near Paris, that have been modified by historical engineering, especially during medieval-modern times and by the building of the Versailles Castle (XVIIth century). The hydraulic infrastructures are still there and impact the hydromorphogical conditions of the river (incision, lateral erosion, …). In addition to these ancient pressures a rapid and massive urbanization of the suburban areas has applied a new type of constraint to the hydrosystems in recent decades. This undermines the balance that was established following ancient engineering and disturbs the current functioning of the valley. These new types of land occupation have significantly altered the ecological circumstances and transformed the hydrological responses of rivers. In this study, we therefore seek to understand these processes of successive adjustments (ancient and recent) of a small river from the urban margins of the Orge watershed (to the south of Paris). We use a multi-scalar spatial and temporal approach to reconstruct the hydromorphological circumstances ancient and current, by hydrological chronicles and archives documentation.
Ecoengineering with Ecohydrology: Successes and failures in estuarine restoration
NASA Astrophysics Data System (ADS)
Elliott, Michael; Mander, Lucas; Mazik, Krysia; Simenstad, Charles; Valesini, Fiona; Whitfield, Alan; Wolanski, Eric
2016-07-01
Ecological Engineering (or Ecoengineering) is increasingly used in estuaries to re-create and restore ecosystems degraded by human activities, including reduced water flow or land poldered for agricultural use. Here we focus on ecosystem recolonization by the biota and their functioning and we separate Type A Ecoengineering where the physico-chemical structure is modified on the basis that ecological structure and functioning will then follow, and Type B Ecoengineering where the biota are engineered directly such as through restocking or replanting. Modifying the physical system to create and restore natural processes and habitats relies on successfully applying Ecohydrology, where suitable physical conditions, especially hydrography and sedimentology, are created to recover estuarine ecology by natural or human-mediated colonisation of primary producers and consumers, or habitat creation. This successional process then allows wading birds and fish to reoccupy the rehabilitated areas, thus restoring the natural food web and recreating nursery areas for aquatic biota. We describe Ecohydrology principles applied during Ecoengineering restoration projects in Europe, Australia, Asia, South Africa and North America. These show some successful and sustainable approaches but also others that were less than successful and not sustainable despite the best of intentions (and which may even have harmed the ecology). Some schemes may be 'good for the ecologists', as conservationists consider it successful that at least some habitat was created, albeit in the short-term, but arguably did little for the overall ecology of the area in space or time. We indicate the trade-offs between the short- and long-term value of restored and created ecosystems, the success at developing natural structure and functioning in disturbed estuaries, the role of this in estuarine and wetland management, and the costs and benefits of Ecoengineering to the socio-ecological system. These global case studies provide important lessons for both the science and management of estuaries, including that successful estuarine restoration is a complex and often difficult process, and that Ecoengineering with Ecohydrology aims to control and/or simulate natural ecosystem processes.
Numerical simulation of the pollution formed by exhaust jets at the ground running procedure
NASA Astrophysics Data System (ADS)
Korotaeva, T. A.; Turchinovich, A. O.
2016-10-01
The paper presents an approach that is new for aviation-related ecology. The approach allows defining spatial distribution of pollutant concentrations released at engine ground running procedure (GRP) using full gas-dynamic models. For the first time such a task is modeled in three-dimensional approximation in the framework of the numerical solution of the Navier-Stokes equations with taking into account a kinetic model of interaction between the components of engine exhaust and air. The complex pattern of gas-dynamic flow that occurs at the flow around an aircraft with the jet exhausts that interact with each other, air, jet blast deflector (JBD), and surface of the airplane has been studied in the present work. The numerical technique developed for calculating the concentrations of pollutants produced at the GRP stage permits to define level, character, and area of contamination more reliable and increase accuracy in definition of sanitary protection zones.
A novel critical infrastructure resilience assessment approach using dynamic Bayesian networks
NASA Astrophysics Data System (ADS)
Cai, Baoping; Xie, Min; Liu, Yonghong; Liu, Yiliu; Ji, Renjie; Feng, Qiang
2017-10-01
The word resilience originally originates from the Latin word "resiliere", which means to "bounce back". The concept has been used in various fields, such as ecology, economics, psychology, and society, with different definitions. In the field of critical infrastructure, although some resilience metrics are proposed, they are totally different from each other, which are determined by the performances of the objects of evaluation. Here we bridge the gap by developing a universal critical infrastructure resilience metric from the perspective of reliability engineering. A dynamic Bayesian networks-based assessment approach is proposed to calculate the resilience value. A series, parallel and voting system is used to demonstrate the application of the developed resilience metric and assessment approach.
Introducing Future Engineers to Sustainable Ecology Problems: A Case Study
ERIC Educational Resources Information Center
Filipkowski, A.
2011-01-01
The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and…
Engineering and Ecological Aspects of Dam Removal-An Overview
2006-09-01
indicated. Figure 3. Teton Dam failure, Idaho, 1976 BENEFITS AND COSTS OF DAMS Dams have provided and continue to provide a diverse...ERDC TN-EMRRP-SR-80 1 Engineering and Ecological Aspects of Dam Removal—An Overview September 2006 By Jock Conyngham1, J. Craig Fischenich1...High ______________________________________________________________________ OVERVIEW Decommissioning and removing dams has
Engineering innovation in healthcare: technology, ethics and persons.
Bowen, W Richard
2011-01-01
Engineering makes profound contributions to our health. Many of these contributions benefit whole populations, such as clean water and sewage treatment, buildings, dependable sources of energy, efficient harvesting and storage of food, and pharmaceutical manufacture. Thus, ethical assessment of these and other engineering activities has often emphasized benefits to communities. This is in contrast to medical ethics, which has tended to emphasize the individual patient affected by a doctor's actions. However technological innovation is leading to an entanglement of the activities, and hence ethical responsibilities, of healthcare professionals and engineering professionals. The article outlines three categories of innovation: assistive technologies, telehealthcare and quasi-autonomous systems. Approaches to engineering ethics are described and applied to these innovations. Such innovations raise a number of ethical opportunities and challenges, especially as the complexity of the technology increases. In particular the design and operation of the technologies require engineers to seek closer involvement with the persons benefiting from their work. Future innovation will require engineers to have a good knowledge of human biology and psychology. More particularly, healthcare engineers will need to prioritize each person's wellbeing, agency, human relationships and ecological self rather than technology, in the same way that doctors prioritize the treatment of persons rather than their diseases.
The Use of Hydrogen as a Fuel for Engines in the Energy Cycle of Remote Production Facilities
NASA Astrophysics Data System (ADS)
Ivanov, M. F.; Kiverin, A. D.; Smygalina, A. E.; Zaichenko, V. M.
2018-01-01
The approach to using hydrogen as fuel, which ensures the smooth operation of autonomous power systems that use renewable energy sources (wind or solar power installations) with the stochastic mode of power generation, has been presented. The fundamental possibility of implementing the nondetonation combustion of hydrogen via the addition of ecologically clean components or a small percentage of methane has been demonstrated by methods of mathematical modeling.
Phytoremediation of hazardous wastes. Technical report, 23--26 July 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCutcheon, S.C.; Wolfe, N.L.; Carreria, L.H.
1995-07-26
A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approachmore » 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.« less
Phytoremediation of hazardous wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCutcheon, S.C.; Wolfe, N.L.; Carreria, L.H.
1995-11-01
A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approachmore » 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.« less
Genetic Engineering of Alfalfa (Medicago sativa L.).
Wang, Dan; Khurshid, Muhammad; Sun, Zhan Min; Tang, Yi Xiong; Zhou, Mei Liang; Wu, Yan Min
2016-01-01
Alfalfa is excellent perennial legume forage for its extensive ecological adaptability, high nutrition value, palatability and biological nitrogen fixation. It plays a very important role in the agriculture, animal husbandry and ecological construction. It is cultivated in all continents. With the development of modern plant breeding and genetic engineering techniques, a large amount of work has been carried out on alfalfa. Here we summarize the recent research advances in genetic engineering of alfalfa breeding, including transformation, quality improvement, stress resistance and as a bioreactor. The review article can enables us to understand the research method, direction and achievements of genetic engineering technology of Alfalfa.
Functional groups of ecosystem engineers: a proposed classification with comments on current issues.
Berke, Sarah K
2010-08-01
Ecologists have long known that certain organisms fundamentally modify, create, or define habitats by altering the habitat's physical properties. In the past 15 years, these processes have been formally defined as "ecosystem engineering", reflecting a growing consensus that environmental structuring by organisms represents a fundamental class of ecological interactions occurring in most, if not all, ecosystems. Yet, the precise definition and scope of ecosystem engineering remains debated, as one should expect given the complexity, enormity, and variability of ecological systems. Here I briefly comment on a few specific current points of contention in the ecosystem engineering concept. I then suggest that ecosystem engineering can be profitably subdivided into four narrower functional categories reflecting four broad mechanisms by which ecosystem engineering occurs: structural engineers, bioturbators, chemical engineers, and light engineers. Finally, I suggest some conceptual model frameworks that could apply broadly within these functional groups.
Zhu, Pingyang; Lu, Zhongxian; Heong, Kongluen; Chen, Guihua; Zheng, Xusong; Xu, Hongxing; Yang, Yajun; Nicol, Helen I; Gurr, Geoff M
2014-01-01
Ecological engineering for pest management involves the identification of optimal forms of botanical diversity to incorporate into a farming system to suppress pests, by promoting their natural enemies. Whilst this approach has been extensively researched in many temperate crop systems, much less has been done for rice. This paper reports the influence of various plant species on the performance of a key natural enemy of rice planthopper pests, the predatory mirid bug, Cyrtorhinus lividipennis. Survival of adult males and females was increased by the presence of flowering Tagetes erecta, Trida procumbens, Emilia sonchifolia (Compositae), and Sesamum indicum (Pedaliaceae) compared with water or nil controls. All flower treatments resulted in increased consumption of brown plant hopper, Nilaparvata lugens, and for female C. lividipennis, S. indicum was the most favorable. A separate study with a wider range of plant species and varying densities of prey eggs showed that S. indicum most strongly promoted predation by C. lividipennis. Reflecting this, S. indicum gave a relatively high rate of prey search and low prey handling time. On this basis, S. indicum was selected for more detailed studies to check if its potential incorporation into the farming system would not inadvertently benefit Cnaphalocrocis medinalis and Marasmia patnalis, serious Lepidoptera pests of rice. Adult longevity and fecundity of both pests was comparable for S. indicum and water treatments and significantly lower than the honey solution treatment. Findings indicate that S. indicumis well suited for use as an ecological engineering plant in the margins of rice crops. Sesame indicum can be a valuable crop as well as providing benefits to C. lividipennis whilst denying benefit to key pests.
Afanas'ev, R V; Berezin, G I; Raznoschikov, V V
2006-01-01
Products of kerosene combustion in the present-day aeroengines contain more than 200 compounds of incomplete combustion, partial oxidation, and thermal decomposition of fuel and oil. Most of these are strong toxicants for humans. Increase of temperature in the turbine engine combustion chamber led to production of very toxic nitrogen oxides. In search for the ecologically safe and less toxic alternative attention of fuel engineers was drawn to liquefied natural gas which compares well and even excels kerosene in ecological, economic and many other respects.
Survivial Strategies in Bacterial Range Expansions
NASA Astrophysics Data System (ADS)
Frey, Erwin
2014-03-01
Bacterial communities represent complex and dynamic ecological systems. Different environmental conditions as well as bacterial interactions determine the establishment and sustainability of bacterial diversity. In this talk we discuss the competition of three Escherichia coli strains during range expansions on agar plates. In this bacterial model system, a colicin E2 producing strain C competes with a colicin resistant strain R and with a colicin sensitive strain S for new territory. Genetic engineering allows us to tune the growth rates of the strains and to study distinct ecological scenarios. These scenarios may lead to either single-strain dominance, pairwise coexistence, or to the coexistence of all three strains. In order to elucidate the survival mechanisms of the individual strains, we also developed a stochastic agent-based model to capture the ecological scenarios in silico. In a combined theoretical and experimental approach we are able to show that the level of biodiversity depends crucially on the composition of the inoculum, on the relative growth rates of the three strains, and on the effective reach of colicin toxicity.
[Medical and environmental aspects of the drinking water supply crisis].
Él'piner, L I
2013-01-01
Modern data determining drinking water supply crisis in Russia have been considered. The probability of influence of drinking water quality used by population on current negative demographic indices was shown. The necessity of taking into account interests of public health care in the process of formation of water management decisions was grounded. To achieve this goal the application of medical ecological interdisciplinary approach was proposed Its use is mostly effective in construction of goal-directed medical ecological sections for territorial schemes of the rational use and protection of water resources. Stages of the elaboration of these sections, providing the basing of evaluation and prognostic medical and environmental constructions on similar engineering studies of related disciplinary areas (hydrological, hydrogeological, hydrobiological, hydrochemical, environmental, socio-economic, technical and technological) were determined.
Introducing future engineers to sustainable ecology problems: a case study
NASA Astrophysics Data System (ADS)
Filipkowski, A.
2011-12-01
The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and industrial design. The energy, which they consume, is increasing the greenhouse effect and the waste poisons the environment. So far, most courses on ecology are offered to specialists in environmental engineering. These courses are filled with many details. The Warsaw Academy of Computer Science, Management and Administration teaches students in the direction of management and production engineering. Upon completion, the students receive the degree of 'engineer'. Their future work will mainly concern management of different types of industrial enterprises and they will be responsible for organising it in such a way as to avoid a dangerous contribution to environmental pollution and climate change. This is why it was decided to introduce a new course entitled 'Principles of Ecology and Environmental Management'. This course is quite broad, concerning almost all technical, law and organisational aspects of the problem. The presentation is made in a spectacular way, aiming to convince students that their future activity must be environmentally friendly. It contains information about international activities in ecology, legal aspects concerning pollution, technical and information methods of monitoring and, finally, the description of 'green' solutions. Altogether, 27 hours of lectures and 15 hours of discussions and students' presentations complete the course. Details of this course are described in this paper.
[Eutrophication control in local area by physic-ecological engineering].
Li, Qiu-Hua; Xia, Pin-Hua; Wu, Hong; Lin, Tao; Zhang, You-Chun; Li, Cun-Xiong; Chen, Li-Li; Yang, Fan
2012-07-01
An integrated physical and ecological engineering experiment for ecological remediation was performed at the Maixi River bay in Baihua Reservoir Guizhou Province, China. The results show that eutrophic parameters, such as total nitrogen, total phosphorus, chlorophyll a and chemical oxygen demand from the experimental site (enclosed water) were significantly lower than those of the reference site. The largest differences between the sites were 0.61 mg x L(-1), 0.041 mg x L(-1), 23.06 microg x L(-1), 8.4 mg x L(-1) respectively; experimental site transparency was > 1.50 m which was significantly higher than that of the reference site. The eutrophic index of the experimental site was oligo-trophic and mid-trophic, while the control site was mid-trophic state and eutrophic state. Phytoplankton abundance was 2 125.5 x 10(4) cells x L(-1) in June, 2011 at the control site,but phytoplankton abundance was lower at the experimental site with 33 x 10(4) cells x L(-1). Cyanobacteria dominated phytoplankton biomass at both sites, however the experimental site consisted of a higher proportion of diatoms and dinoflagellates. After more than one year of operation, the ecological engineering technology effectively controlled the occurrence of algae blooms, changed phytoplankton community structure, and controlled the negative impacts of eutrophication. Integrating physical and ecological engineering technology could improve water quality for reservoirs on the Guizhou plateau.
Industrial ecology Prosperity Game{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, D.; Boyack, K.; Berman, M.
1998-03-01
Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the systemmore » boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.« less
2006-05-01
Wetlands and Coastal Ecology Branch; Dr. David J. Tazik, Chief, Eco- system Evaluation and Engineering Division; and Dr. Edwin A. Theriot, Direc- tor, EL...wetlands (Euliss and Mushet 1996, Azous and Horner 2001, Bhaduri et al. 1997) and nutrient loading into those wetlands. The overall LU score is...Euliss, N. H., and Mushet , D. M. (1996). “Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region
NASA Technical Reports Server (NTRS)
Chamberland, Dennis
1992-01-01
The paper describes a higher-plant-based engineering paradigm for advanced life support in a Controlled Ecological Life Support System (CELSS) on the surface of the moon or Mars, called the CELSS Breadboard Project, designed at John F. Kennedy Space Center. Such a higher-plant-based system would use the plants for a direct food source, gas exchange, water reclamation, and plant residuals in a complex biological resource recovery scheme. The CELSS Breadboard Project utilizes a 'breadboard' approach of developing independent systems that are evaluated autonomously and are later interconnected. Such a scheme will enable evaluation of life support system methodologies tested for their efficiency in a life support system for habitats on the moon or Mars.
Metabolic Network Modeling of Microbial Communities
Biggs, Matthew B.; Medlock, Gregory L.; Kolling, Glynis L.
2015-01-01
Genome-scale metabolic network reconstructions and constraint-based analysis are powerful methods that have the potential to make functional predictions about microbial communities. Current use of genome-scale metabolic networks to characterize the metabolic functions of microbial communities includes species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the “enzyme-soup” approach, multi-scale modeling, and others. There are many challenges inherent to the field, including a need for tools that accurately assign high-level omics signals to individual community members, new automated reconstruction methods that rival manual curation, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be proportional advances in the fields of ecology, health science, and microbial community engineering. PMID:26109480
Romeis, Jörg; Raybould, Alan; Bigler, Franz; Candolfi, Marco P; Hellmich, Richard L; Huesing, Joseph E; Shelton, Anthony M
2013-01-01
Arthropods form a major part of the biodiversity in agricultural landscapes. Many species are valued because they provide ecosystem services, including biological control, pollination and decomposition, or because they are of conservation interest. Some arthropods reduce crop yield and quality, and conventional chemical pesticides, biological control agents and genetically engineered (GE) crops are used to control them. A common concern addressed in the ecological risk assessment (ERA) that precedes regulatory approval of these pest control methods is their potential to adversely affect valued non-target arthropods (NTAs). A key concept of ERA is early-tier testing using worst-case exposure conditions in the laboratory and surrogate test species that are most likely to reveal an adverse effect. If no adverse effects are observed in those species at high exposures, confidence of negligible ecological risk from the use of the pest control method is increased. From experience with chemical pesticides and biological control agents, an approach is proposed for selecting test species for early-tier ERA of GE arthropod-resistant crops. Surrogate species should be selected that most closely meet three criteria: (i) Potential sensitivity: species should be the most likely to be sensitive to the arthropod-active compound based on the known spectrum of activity of the active ingredient, its mode of action, and the phylogenetic relatedness of the test and target species; (ii) species should be representative of valued taxa or functional groups that are most likely to be exposed to the arthropod-active compound in the field; and (iii) Availability and reliability: suitable life-stages of the test species must be obtainable in sufficient quantity and quality, and validated test protocols must be available that allow consistent detection of adverse effects on ecologically relevant parameters. Our proposed approach ensures that the most suitable species are selected for testing and that the resulting data provide the most rigorous test of the risk hypothesis of no adverse effect in order to increase the quality and efficiency of ERAs for cultivation of GE crops. Copyright © 2012 Elsevier Ltd. All rights reserved.
Women Engineers and the Influence of Childhood Technologic Environment
ERIC Educational Resources Information Center
Mazdeh, Shahla
2011-01-01
This phenomenological multi-case study investigated the influence of women engineers' childhood exposure to engineering concepts on their preparation for an engineering profession. An ecologic model (Bronfenbrenner, 1979) was used as the conceptual framework of this research. Twelve professional women engineers from various age and…
Health Risks to Ecological Workers on Contaminated Sites - the Department of Energy as a Case Study
Burger, Joanna; Gochfeld, Michael
2016-01-01
Background At most contaminated sites the risk to workers focuses on those ‘hazardous waste workers’ directly exposed to chemicals or radionuclides, and to the elaborate approaches implemented to protecting their health and safety. Ecological workers generally are not considered. Objectives To explore the risks to the health and safety of ecological workers on sites with potential chemical and radiological exposures before, during or after remediation of contamination. To use the U.S. Department of Energy as a case study, and to develop concepts that apply generally to sites contaminated with hazardous or nuclear wastes, Methods Develop categories of ecological workers, describe their usual jobs, and provide information on the kinds of risks they face. Ecological activities include continued surveillance and monitoring work on any sites with residual contamination, subject to institutional controls and engineered barriers following closure as well as the restoration. Results The categories of ecological workers and their tasks include 1) Ecological characterization, mapping and monitoring, 2) biodiversity studies, 2) Contaminant fate and transport, 3) On-going industrial activities 4) Remediation activities (environmental management), 5) Environmental restoration, 6) Post-cleanup surveillance and monitoring, and 7) Post-closure future site activities. There are a set of functional activities that can occur with different frequencies and intensities, including visual inspection, collecting biological samples, collecting media physical samples, collecting biological debris, restoration planting, and maintaining ecosystems. Conclusions Ecological workers face different exposures and risks than other environmental cleanup workers. Many of their tasks mimic shift work with long hours leading to fatigue, and they are exposed to biological as well as chemical/radiological hazards. DOE and other entities need to examine the risks to ecological workers on site with an eye to risk reduction. PMID:27668128
Defining Resilience and Vulnerability Based on Ontology Engineering Approach
NASA Astrophysics Data System (ADS)
Kumazawa, T.; Matsui, T.; Endo, A.
2014-12-01
It is necessary to reflect the concepts of resilience and vulnerability into the assessment framework of "Human-Environmental Security", but it is also in difficulty to identify the linkage between both concepts because of the difference of the academic community which has discussed each concept. The authors have been developing the ontology which deals with the sustainability of the social-ecological systems (SESs). Resilience and vulnerability are also the concepts in the target world which this ontology covers. Based on this point, this paper aims at explicating the semantic relationship between the concepts of resilience and vulnerability based on ontology engineering approach. For this purpose, we first examine the definitions of resilience and vulnerability which the existing literatures proposed. Second, we incorporate the definitions in the ontology dealing with sustainability of SESs. Finally, we focus on the "Water-Energy-Food Nexus Index" to assess Human-Environmental Security, and clarify how the concepts of resilience and vulnerability are linked semantically through the concepts included in these index items.
Tracing the evolutionary path to nitrogen-fixing crops.
Delaux, Pierre-Marc; Radhakrishnan, Guru; Oldroyd, Giles
2015-08-01
Nitrogen-fixing symbioses between plants and bacteria are restricted to a few plant lineages. The plant partner benefits from these associations by gaining access to the pool of atmospheric nitrogen. By contrast, other plant species, including all cereals, rely only on the scarce nitrogen present in the soil and what they can glean from associative bacteria. Global cereal yields from conventional agriculture are dependent on the application of massive levels of chemical fertilisers. Engineering nitrogen-fixing symbioses into cereal crops could in part mitigate the economic and ecological impacts caused by the overuse of fertilisers and provide better global parity in crop yields. Comparative phylogenetics and phylogenomics are powerful tools to identify genetic and genomic innovations behind key plant traits. In this review we highlight recent discoveries made using such approaches and we discuss how these approaches could be used to help direct the engineering of nitrogen-fixing symbioses into cereals. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Evaluation of engineering foods for Controlled Ecological Life Support Systems (CELSS)
NASA Technical Reports Server (NTRS)
Karel, M.
1982-01-01
The feasibility of developing acceptable and reliable engineered foods for use in controlled ecological support systems (CELSS) was evaluated. Food resupply and regeneration are calculated, flow charts of food processes in a multipurpose food pilot plant are presented, and equipment for a multipurpose food pilot plant and potential simplification of processes are discussed. Food-waste treatment and water usage in food processing and preparation are also considered.
NASA Astrophysics Data System (ADS)
DeLong, S.; Henderson, W. M.
2012-12-01
The use of erosion control structures to mitigate or even reverse erosion and to restore ecological function along dryland channels (arroyos and gullies) has led to a long list of both successful and failed restoration efforts. We propose that successful implementation of "engineering" approaches to fluvial restoration that include in-channel control structures require either a quantitative approach to design (by scientists and engineers), or intimate on-the-ground knowledge, local observation, and a commitment to adapt and maintain restoration efforts in response to landscape change (by local land managers), or both. We further propose that the biophysical interactions among engineering, sedimentation, flood hydrology and vegetation reestablishment are what determine resilience to destructive extreme events that commonly cause erosion control structure failure. Our insights come from comprehensive monitoring of a remarkable experiment underway at Ranch San Bernardino, Sonora, MX. At this site, private landowners are working to restore ecosystem function to riparian corridors and former cieñega wetlands using cessation of grazing; vegetation planting; upland grass restoration; large scale rock gabions (up to 100 m wide) to encourage local sediment deposition and water storage; and large earthen berms (up to 900 m wide) with cement spillways that form reservoirs that fill rapidly with water and sediment. Well-planned and managed erosion control structures have been used elsewhere successfully in smaller gully networks, but we are unaware of a comparable attempt to use gabions and berms for the sole purpose of ecological restoration along >10 km of arroyo channels draining watersheds on the order of ~400 km2 and larger. We present an approach to monitoring the efficacy of arroyo channel restoration using terrestrial and airborne LiDAR, remote sensing, streamflow monitoring, shallow groundwater monitoring, hydrological modeling and field observation. Our methods allow us to directly quantify the magnitude of sedimentation (and hence reversal of arroyo cutting) upstream of in-channel structures as a function of hydrology, and to quantify the dampening of flood energy caused by erosion control structures and by the restoration of riparian vegetation. We are also able to create a surface water budget that constrains water storage and infiltration by monitoring streamflow at several places above, within, and downstream of restoration efforts. We also speculate on the resilience of such efforts. Quantifying the effects of the restoration efforts at Rancho San Bernardino may prove useful in guiding similar large-scale ecological restoration efforts elsewhere in degraded dryland landscapes.
Dafforn, Katherine A; Mayer-Pinto, Mariana; Morris, Rebecca L; Waltham, Nathan J
2015-08-01
Globally the coastal zone is suffering the collateral damage from continuing urban development and construction, expanding resource sectors, increasing population, regulation to river flow, and on-going land change and degradation. While protection of natural coastal habitat is recommended, balancing conservation with human services is now the challenge for managers. Marine infrastructure such as seawalls, marinas and offshore platforms is increasingly used to support and provide services, but has primarily been designed for engineering purposes without consideration of the ecological consequences. Increasingly developments are seeking alternatives to hard engineering and a range of ecological solutions has begun to replace or be incorporated into marine and coastal infrastructure. But too often, hard engineering remains the primary strategy because the tools for managers to implement ecological solutions are either lacking or not supported by policy and stakeholders. Here we outline critical research needs for marine urban development and emerging strategies that seek to mitigate the impacts of marine infrastructure. We present case studies to highlight the strategic direction necessary to support management decisions internationally. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, S. Y.; Zhang, B.; Cai, Z. F.
2010-05-01
This paper aims to present a biophysical understanding of the agricultural ecological engineering by emergy analysis for a farm biogas project in China as a representative case. Accounting for the resource inputs into and accumulation within the project, as well as the outputs to the social system, emergy analysis provides an empirical study in the biophysical dimension of the agricultural ecological engineering. Economic benefits and ecological economic benefits of the farm biogas project indicated by market value and emergy monetary value are discussed, respectively. Relative emergy-based indices such as renewability (R%), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are calculated to evaluate the environmental load and local sustainability of the concerned biogas project. The results show that the farm biogas project has more reliance on the local renewable resources input, less environmental pressure and higher sustainability compared with other typical agricultural systems. In addition, holistic evaluation and its policy implications for better operation and management of the biogas project are presented.
Improvement of ecological characteristics of the hydrogen diesel engine
NASA Astrophysics Data System (ADS)
Natriashvili, T.; Kavtaradze, R.; Glonti, M.
2018-02-01
In the article are considered the questions of influence of a swirl intensity of the shot and injector design on the ecological indices of the hydrogen diesel, little-investigated till now. The necessity of solution of these problems arises at conversion of the serial diesel engine into the hydrogen diesel. The mathematical model consists of the three-dimensional non-stationary equations of transfer and also models of turbulence and combustion. The numerical experiments have been carried out with the use of program code FIRE. The optimal values of parameters of the working process, ensuring improvement of the effective and ecological indices of the hydrogen diesel are determined.
Röling, Wilfred F. M.; van Bodegom, Peter M.
2014-01-01
Molecular ecology approaches are rapidly advancing our insights into the microorganisms involved in the degradation of marine oil spills and their metabolic potentials. Yet, many questions remain open: how do oil-degrading microbial communities assemble in terms of functional diversity, species abundances and organization and what are the drivers? How do the functional properties of microorganisms scale to processes at the ecosystem level? How does mass flow among species, and which factors and species control and regulate fluxes, stability and other ecosystem functions? Can generic rules on oil-degradation be derived, and what drivers underlie these rules? How can we engineer oil-degrading microbial communities such that toxic polycyclic aromatic hydrocarbons are degraded faster? These types of questions apply to the field of microbial ecology in general. We outline how recent advances in single-species systems biology might be extended to help answer these questions. We argue that bottom-up mechanistic modeling allows deciphering the respective roles and interactions among microorganisms. In particular constraint-based, metagenome-derived community-scale flux balance analysis appears suited for this goal as it allows calculating degradation-related fluxes based on physiological constraints and growth strategies, without needing detailed kinetic information. We subsequently discuss what is required to make these approaches successful, and identify a need to better understand microbial physiology in order to advance microbial ecology. We advocate the development of databases containing microbial physiological data. Answering the posed questions is far from trivial. Oil-degrading communities are, however, an attractive setting to start testing systems biology-derived models and hypotheses as they are relatively simple in diversity and key activities, with several key players being isolated and a high availability of experimental data and approaches. PMID:24723922
Ecologically sustainable weed management: How do we get from proof-of-concept to adoption?
Liebman, Matt; Baraibar, Bàrbara; Buckley, Yvonne; Childs, Dylan; Christensen, Svend; Cousens, Roger; Eizenberg, Hanan; Heijting, Sanne; Loddo, Donato; Merotto, Aldo; Renton, Michael; Riemens, Marleen
2016-07-01
Weed management is a critically important activity on both agricultural and non-agricultural lands, but it is faced with a daunting set of challenges: environmental damage caused by control practices, weed resistance to herbicides, accelerated rates of weed dispersal through global trade, and greater weed impacts due to changes in climate and land use. Broad-scale use of new approaches is needed if weed management is to be successful in the coming era. We examine three approaches likely to prove useful for addressing current and future challenges from weeds: diversifying weed management strategies with multiple complementary tactics, developing crop genotypes for enhanced weed suppression, and tailoring management strategies to better accommodate variability in weed spatial distributions. In all three cases, proof-of-concept has long been demonstrated and considerable scientific innovations have been made, but uptake by farmers and land managers has been extremely limited. Impediments to employing these and other ecologically based approaches include inadequate or inappropriate government policy instruments, a lack of market mechanisms, and a paucity of social infrastructure with which to influence learning, decision-making, and actions by farmers and land managers. We offer examples of how these impediments are being addressed in different parts of the world, but note that there is no clear formula for determining which sets of policies, market mechanisms, and educational activities will be effective in various locations. Implementing new approaches for weed management will require multidisciplinary teams comprised of scientists, engineers, economists, sociologists, educators, farmers, land managers, industry personnel, policy makers, and others willing to focus on weeds within whole farming systems and land management units. © 2016 by the Ecological Society of America.
Röling, Wilfred F M; van Bodegom, Peter M
2014-01-01
Molecular ecology approaches are rapidly advancing our insights into the microorganisms involved in the degradation of marine oil spills and their metabolic potentials. Yet, many questions remain open: how do oil-degrading microbial communities assemble in terms of functional diversity, species abundances and organization and what are the drivers? How do the functional properties of microorganisms scale to processes at the ecosystem level? How does mass flow among species, and which factors and species control and regulate fluxes, stability and other ecosystem functions? Can generic rules on oil-degradation be derived, and what drivers underlie these rules? How can we engineer oil-degrading microbial communities such that toxic polycyclic aromatic hydrocarbons are degraded faster? These types of questions apply to the field of microbial ecology in general. We outline how recent advances in single-species systems biology might be extended to help answer these questions. We argue that bottom-up mechanistic modeling allows deciphering the respective roles and interactions among microorganisms. In particular constraint-based, metagenome-derived community-scale flux balance analysis appears suited for this goal as it allows calculating degradation-related fluxes based on physiological constraints and growth strategies, without needing detailed kinetic information. We subsequently discuss what is required to make these approaches successful, and identify a need to better understand microbial physiology in order to advance microbial ecology. We advocate the development of databases containing microbial physiological data. Answering the posed questions is far from trivial. Oil-degrading communities are, however, an attractive setting to start testing systems biology-derived models and hypotheses as they are relatively simple in diversity and key activities, with several key players being isolated and a high availability of experimental data and approaches.
Release of genetically engineered insects: a framework to identify potential ecological effects
David, Aaron S; Kaser, Joe M; Morey, Amy C; Roth, Alexander M; Andow, David A
2013-01-01
Genetically engineered (GE) insects have the potential to radically change pest management worldwide. With recent approvals of GE insect releases, there is a need for a synthesized framework to evaluate their potential ecological and evolutionary effects. The effects may occur in two phases: a transitory phase when the focal population changes in density, and a steady state phase when it reaches a new, constant density. We review potential effects of a rapid change in insect density related to population outbreaks, biological control, invasive species, and other GE organisms to identify a comprehensive list of potential ecological and evolutionary effects of GE insect releases. We apply this framework to the Anopheles gambiae mosquito – a malaria vector being engineered to suppress the wild mosquito population – to identify effects that may occur during the transitory and steady state phases after release. Our methodology reveals many potential effects in each phase, perhaps most notably those dealing with immunity in the transitory phase, and with pathogen and vector evolution in the steady state phase. Importantly, this framework identifies knowledge gaps in mosquito ecology. Identifying effects in the transitory and steady state phases allows more rigorous identification of the potential ecological effects of GE insect release. PMID:24198955
Resilience in ecotoxicology: Toward a multiple equilibrium concept
Bundschuh, Mirco; Schulz, Ralf; Allen, Craig R.; Angeler, David G.
2017-01-01
The term resilience describes stress–response patterns across scientific disciplines. In ecology, advances have been made to clearly define resilience based on underlying mechanistic assumptions. Engineering resilience (rebound) is used to describe the ability of organisms to recover from adverse conditions (disturbances), which is termed the rate of recovery. By contrast, the ecological resilience definition considers a systemic change, that is, when ecosystems reorganize into a new regime following disturbance. Under this new regime, structural and functional aspects change considerably relative to the previous regime, without recovery. In this context, resilience is an emergent property of complex systems. In the present study, we argue that both definitions and uses are appropriate in ecotoxicology, and although the differences are subtle, the implications and uses are profoundly different. We discuss resilience concepts in ecotoxicology, where the prevailing view of resilience is engineering resilience from chemical stress. Ecological resilience may also be useful for describing systemic ecological changes because of chemical stress. We present quantitative methods that allow ecotoxicologists and risk managers to assess whether an ecosystem faces an impending regime shift or whether it has already undergone such a shift. We contend that engineering and ecological resilience help to distinguish ecotoxicological responses to chemical stressors mechanistically and thus have implications for theory, policy, and application.
The Genus Cladophora Kützing (Ulvophyceae) as a Globally Distributed Ecological Engineer.
Zulkifly, Shahrizim B; Graham, James M; Young, Erica B; Mayer, Robert J; Piotrowski, Michael J; Smith, Izak; Graham, Linda E
2013-02-01
The green algal genus Cladophora forms conspicuous nearshore populations in marine and freshwaters worldwide, commonly dominating peri-phyton communities. As the result of human activities, including the nutrient pollution of nearshore waters, Cladophora-dominated periphyton can form nuisance blooms. On the other hand, Cladophora has ecological functions that are beneficial, but less well appreciated. For example, Cladophora has previously been characterized as an ecological engineer because its complex structure fosters functional and taxonomic diversity of benthic microfauna. Here, we review classic and recent literature concerning taxonomy, cell biology, morphology, reproductive biology, and ecology of the genus Cladophora, to examine how this alga functions to modify habitats and influence littoral biogeochemistry. We review the evidence that Cladophora supports large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements, and that the high production of cellulose and hydrocarbons by Cladophora-dominated periphyton has the potential for diverse technological applications, including wastewater remediation coupled to renewable biofuel production. We postulate that well-known aspects of Cladophora morphology, hydrodynamically stable and perennial holdfasts, distinctively branched architecture, unusually large cell and sporangial size and robust cell wall construction, are major factors contributing to the multiple roles of this organism as an ecological engineer. © 2013 Phycological Society of America.
K.L. Hatcher; J.A. Jones
2013-01-01
Large river basins transfer the water signal from the atmosphere to the ocean. Climate change is widely expected to alter streamflow and potentially disrupt water management systems. We tested the ecological resilienceâcapacity of headwater ecosystems to sustain streamflow under climate changeâand the engineering resilienceâcapacity of dam and reservoir management to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanHorn, R.
1995-11-01
The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE) facility located in southeastern Idaho and occupies approximately 890 square miles on the northwestern portion of the eastern Snake River Plain. INEL has been devoted to nuclear energy research and related activities since its establishment in 1949. In the process of fulfilling this mission, wastes were generated, including radioactive and hazardous materials. Most materials were effectively stored or disposed of, however, some release of contaminants to the environment has occurred. For this reason, the INEL was listed by the US environmental Protection Agency on the National Priorities Listmore » (NPL), in November, 1989. This report describes the results of an ecological risk assessment performed for the Waste Area Groups 2 (WAG 2) at the INEL. It also summarizes the performance of screening level ecological risk assessments (SLERA).« less
Engineered containment and control systems: nurturing nature.
Clarke, James H; MacDonell, Margaret M; Smith, Ellen D; Dunn, R Jeffrey; Waugh, W Jody
2004-06-01
The development of engineered containment and control systems for contaminated sites must consider the environmental setting of each site. The behaviors of both contaminated materials and engineered systems are affected by environmental conditions that will continue to evolve over time as a result of such natural processes as climate change, ecological succession, pedogenesis, and landform changes. Understanding these processes is crucial to designing, implementing, and maintaining effective systems for sustained health and environmental protection. Traditional engineered systems such as landfill liners and caps are designed to resist natural processes rather than working with them. These systems cannot be expected to provide long-term isolation without continued maintenance. In some cases, full-scale replacement and remediation may be required within 50 years, at an effort and cost much higher than for the original cleanup. Approaches are being developed to define smarter containment and control systems for stewardship sites, considering lessons learned from implementing prescriptive waste disposal regulations enacted since the 1970s. These approaches more effectively involve integrating natural and engineered systems; enhancing sensors and predictive tools for evaluating performance; and incorporating information on failure events, including precursors and consequences, into system design and maintenance. An important feature is using natural analogs to predict environmental conditions and system responses over the long term, to accommodate environmental change in the design process, and, as possible, to engineer containment systems that mimic favorable natural systems. The key emphasis is harmony with the environment, so systems will work with and rely on natural processes rather than resisting them. Implementing these new integrated systems will reduce current requirements for active management, which are resource-intensive and expensive.
Ye, Yanmei; Wu, Cifang; Cheng, Chengbiao; Qiu, Lingzhang; Huang, Shengyu; Zheng, Ruihui
2002-09-01
The concept and characteristics of engineering designs on sustainable agricultural land consolidation project were discussed in this paper. Principles, basic methods and procedures of engineering designs on agricultural land consolidation project were put forward, which were successfully adopted for designing agricultural land consolidation in Xuemeiyang region of Changtai County, including diversity designs of sustainable land use, engineering designs of soil improvement, roads, ditches, and drains for protecting existent animal environments, and design of ecological shelter-forests in farmland. Moreover, from sustainable economic, ecological and social points, the results of these engineering designs were evaluated based on fouteen important indexes. After carrying out these engineeringdesigns, the eco-environments and agricultural production conditions were significantly improved, and the farm income was increased in planned regions.
The emergent field of industrial ecology (IE) has been described as the "science and engineering of sustainability" and the "technological core of sustainability." Some proponents of IE draw on metaphors from systems ecology and suggest that a design revolution is necessary t...
A striking profile: Soil ecological knowledge in restoration management and science
Mac A. Callaham; Charles C. Rhoades; Liam Heneghan
2008-01-01
Available evidence suggests that research in terrestrial restoration ecology has been dominated by the engineering and botanical sciences. Because restoration science is a relatively young discipline in ecology, the theoretical framework for this discipline is under development and new theoretical offerings appear regularly in the literature. In reviewing this...
Source Water Quality Monitoring Networks
Harmful Algal Blooms (HABs) are increasingly impacting aquatic systems, reducing provided ecological services and requiring expensive engineered solutions. HABs, particularly those dominated by cyanobacteria (cyanoHABs) are a public health, ecologic, and economic concern. Charac...
The future of fish passage science, engineering, and practice
Silva, Ana T.; Lucas, Martyn C.; Castro-Santos, Theodore R.; Katopodis, Christos; Baumgartner, Lee J.; Thiem, Jason D.; Aarestrup, Kim; Pompeu, Paulo S.; O'Brien, Gordon C.; Braun, Douglas C.; Burnett, Nicholas J.; Zhu, David Z.; Fjeldstad, Hans-Petter; Forseth, Torbjorn; Rajarathnam, Nallamuthu; Williams, John G.; Cooke, Steven J.
2018-01-01
Much effort has been devoted to developing, constructing and refining fish passage facilities to enable target species to pass barriers on fluvial systems, and yet, fishway science, engineering and practice remain imperfect. In this review, 17 experts from different fish passage research fields (i.e., biology, ecology, physiology, ecohydraulics, engineering) and from different continents (i.e., North and South America, Europe, Africa, Australia) identified knowledge gaps and provided a roadmap for research priorities and technical developments. Once dominated by an engineering‐focused approach, fishway science today involves a wide range of disciplines from fish behaviour to socioeconomics to complex modelling of passage prioritization options in river networks. River barrier impacts on fish migration and dispersal are currently better understood than historically, but basic ecological knowledge underpinning the need for effective fish passage in many regions of the world, including in biodiversity hotspots (e.g., equatorial Africa, South‐East Asia), remains largely unknown. Designing efficient fishways, with minimal passage delay and post‐passage impacts, requires adaptive management and continued innovation. While the use of fishways in river restoration demands a transition towards fish passage at the community scale, advances in selective fishways are also needed to manage invasive fish colonization. Because of the erroneous view in some literature and communities of practice that fish passage is largely a proven technology, improved international collaboration, information sharing, method standardization and multidisciplinary training are needed. Further development of regional expertise is needed in South America, Asia and Africa where hydropower dams are currently being planned and constructed.
Everard, Mark; Sharma, Om Prakash; Vishwakarma, Vinod Kumar; Khandal, Dharmendra; Sahu, Yogesh K; Bhatnagar, Rahul; Singh, Jitendra K; Kumar, Ritesh; Nawab, Asghar; Kumar, Amit; Kumar, Vivek; Kashyap, Anil; Pandey, Deep Narayan; Pinder, Adrian C
2018-01-15
Much of the developing world and areas of the developed world suffer water vulnerability. Engineering solutions enable technically efficient extraction and diversion of water towards areas of demand but, without rebalancing resource regeneration, can generate multiple adverse ecological and human consequences. The Banas River, Rajasthan (India), has been extensively developed for water diversion, particularly from the Bisalpur Dam from which water is appropriated by powerful urban constituencies dispossessing local people. Coincidentally, abandonment of traditional management, including groundwater recharge practices, is leading to increasingly receding and contaminated groundwater. This creates linked vulnerabilities for rural communities, irrigation schemes, urban users, dependent ecosystems and the multiple ecosystem services that they provide, compounded by climate change and population growth. This paper addresses vulnerabilities created by fragmented policy measures between rural development, urban and irrigation water supply and downstream consequences for people and wildlife. Perpetuating narrowly technocentric approaches to resource exploitation is likely only to compound emerging problems. Alternatively, restoration or innovation of groundwater recharge practices, particularly in the upper catchment, can represent a proven, ecosystem-based approach to resource regeneration with linked beneficial socio-ecological benefits. Hybridising an ecosystem-based approach with engineered methods can simultaneously increase the security of rural livelihoods, piped urban and irrigation supplies, and the vitality of river ecosystems and their services to beneficiaries. A renewed policy focus on local-scale water recharge practices balancing water extraction technologies is consistent with emerging Rajasthani policies, particularly Jal Swavlamban Abhiyan ('water self-reliance mission'). Policy reform emphasising recharge can contribute to water security and yield socio-economic outcomes through a systemic understanding of how the water system functions, and by connecting goals and budgets across multiple, currently fragmented policy areas. The underpinning principles of this necessary paradigm shift are proven and have wider geographic relevance, though context-specific research is required to underpin robust policy and practical implementation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chester, M.; Grimm, N. B.; Redman, C.; Miller, T.; McPherson, T.; Munoz-Erickson, T.; Chandler, D. G.
2015-12-01
Climate change is widely considered one of the greatest challenges to global sustainability, with extreme events being the most immediate way that people experience this phenomenon. Urban areas are particularly vulnerable to these events given their location, concentration of people, and increasingly complex and interdependent infrastructure. We are developing a conceptual framework for urban social-ecological-technological systems (SETS) that will allow researchers and practitioners to assess how infrastructure can be resilient, provide ecosystem services, improve social well being, and exploit new technologies in ways that benefit urban populations. The framework integrates the three domains of social and equity issues, environmental quality and protection, and technical/engineering aspects, to form a concept of infrastructure that occurs at the intersection of the domains. Examples show how the more common socioecological systems and socially sensitive engineering approaches that fail to incorporate the third dimension may elevate vulnerability to climate-related disaster. The SETS conceptual framework bridges currently siloed social science, environmental science, and engineering approaches to significantly advance research into the structure, function, and emergent properties of SETS. Extreme events like heat waves in Phoenix; coastal and urban flooding in the wake of superstorm Sandy and following hurricanes in Miami, FL; drought in Mexico; and urban flooding in Baltimore, Portland, San Juan PR, Syracuse, and Valdivia, Chile provide examples of the impacts of and vulnerability to extreme events that demand a new approach. The infrastructure of the future must be resilient, leverage ecosystem services, improve social well being, and exploit new technologies in ways that benefit all segments of urban populations and are appropriate to the particular urban contexts. These contexts are defined not only by the biophysical environment but also by culture and institutions of each place. We apply the SETS conceptual framework to nine western hemisphere cities in diverse settings, presenting hypotheses about the relative efficacy of strategies for resilient SETS infrastructure in cities contrasting in event type, biophysical setting, and cultural and institutional contexts.
Lecture and Laboratory Approaches to the Teaching of Ecology
ERIC Educational Resources Information Center
Cox, George W.
1970-01-01
Discusses the relationships of individual, population and ecosystem level approaches to ecology. Outlines how these approaches can be used in introductory college ecology courses. Emphasizes the importance of laboratory and field work and makes explicit suggestions. Outlines course sequences in the undergraduate systems ecology program at San…
NASA Astrophysics Data System (ADS)
Dempster, William; Allen, John P.
Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosys-tems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.
An Annotated Bibliography of CERC Coastal Ecology Research.
1980-06-01
the Atlantic and gulf coasts of the United States. The experimentation has been directed toward the use of sand fences and dune grasses to catch and...Pismo Clams ," MP 8-75, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Sept. 1975, NTIS AD No. A016 948. Three...aspects of the ecology of Pismo clams were investigated in Monterey Bay, California: distribution, reproduction cycle, and age and growth. Pismo clam
Microbial ecology of denitrification in biological wastewater treatment.
Lu, Huijie; Chandran, Kartik; Stensel, David
2014-11-01
Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dynamics and ecology of wood in world rivers
NASA Astrophysics Data System (ADS)
Picco, Lorenzo; Bertoldi, Walter; Comiti, Francesco
2017-02-01
Scientific investigation on fluvial wood (FW) has increased greatly during the last decades, mostly for the need to better comprehend and better manage the numerous and complex interactions between the river network and the riparian areas. Following the first two International Conferences on ;Wood in World Rivers;, held at the Oregon State University (USA) in October 2000 and at the University of Stirling (Scotland) in August 2006, the Third Conference was organized in Padova (Italy) in July 2015, by the University of Padova (Dept. Land and Agroforest Environment), University of Trento (Dept. Civil and Environmental Engineering) and Free University of Bolzano (Fac. Science and Technology). This Special Issue contains fifteen papers, thirteen presented during this third conference, which overall cover its main topics: (i) synthesis of the knowledge on physical dynamics and ecological interactions of wood in different geographical regions; (ii) building of a framework for interpreting and applying research results and management approaches; (iii) assessment of physical and biological responses of large wood in stream restoration processes; (iv) exploration of the links between physical and ecological dynamics of large wood, river management, and the communities and cultures in which they are; (v) promotion of a connection between geosciences and ecology which represents a challenge for restoration purposes.
NASA Astrophysics Data System (ADS)
Xu, Yan; Cai, Yanpeng; Sun, Tao; Yang, Zhifeng; Hao, Yan
2018-03-01
A multiphase finite-element hydrodynamic model and a phytoplankton simulation approach are coupled into a general modeling framework. It can help quantify impacts of land reclamation. Compared with previous studies, it has the following improvements: a) reflection of physical currents and suitable growth areas for phytoplankton, (b) advancement of a simulation method to describe the suitability of phytoplankton in the sea water. As the results, water velocity is 16.7% higher than that of original state without human disturbances. The related filling engineering has shortened sediment settling paths, weakened the vortex flow and reduced the capacity of material exchange. Additionally, coastal reclamation lead to decrease of the growth suitability index (GSI), thus it cut down the stability of phytoplankton species approximately 4-12%. The proposed GSI can be applied to the management of coastal reclamation for minimizing ecological impacts. It will be helpful for facilitating identifying suitable phytoplankton growth areas.
Barah, Pankaj; Bones, Atle M
2015-02-01
The biggest challenge for modern biology is to integrate multidisciplinary approaches towards understanding the organizational and functional complexity of biological systems at different hierarchies, starting from the subcellular molecular mechanisms (microscopic) to the functional interactions of ecological communities (macroscopic). The plant-insect interaction is a good model for this purpose with the availability of an enormous amount of information at the molecular and the ecosystem levels. Changing global climatic conditions are abruptly resetting plant-insect interactions. Integration of discretely located heterogeneous information from the ecosystem to genes and pathways will be an advantage to understand the complexity of plant-insect interactions. This review will present the recent developments in omics-based high-throughput experimental approaches, with particular emphasis on studying plant defence responses against insect attack. The review highlights the importance of using integrative systems approaches to study plant-insect interactions from the macroscopic to the microscopic level. We analyse the current efforts in generating, integrating and modelling multiomics data to understand plant-insect interaction at a systems level. As a future prospect, we highlight the growing interest in utilizing the synthetic biology platform for engineering insect-resistant plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Beyond positivist ecology: toward an integrated ecological ethics.
Norton, Bryan G
2008-12-01
A post-positivist understanding of ecological science and the call for an "ecological ethic" indicate the need for a radically new approach to evaluating environmental change. The positivist view of science cannot capture the essence of environmental sciences because the recent work of "reflexive" ecological modelers shows that this requires a reconceptualization of the way in which values and ecological models interact in scientific process. Reflexive modelers are ecological modelers who believe it is appropriate for ecologists to examine the motives for their choices in developing models; this self-reflexive approach opens the door to a new way of integrating values into public discourse and to a more comprehensive approach to evaluating ecological change. This reflexive building of ecological models is introduced through the transformative simile of Aldo Leopold, which shows that learning to "think like a mountain" involves a shift in both ecological modeling and in values and responsibility. An adequate, interdisciplinary approach to ecological valuation, requires a re-framing of the evaluation questions in entirely new ways, i.e., a review of the current status of interdisciplinary value theory with respect to ecological values reveals that neither of the widely accepted theories of environmental value-neither economic utilitarianism nor intrinsic value theory (environmental ethics)-provides a foundation for an ecologically sensitive evaluation process. Thus, a new, ecologically sensitive, and more comprehensive approach to evaluating ecological change would include an examination of the metaphors that motivate the models used to describe environmental change.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, sociology, cultural anthropology, economics, ornithology, oceanography, fisheries...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, sociology, cultural anthropology, economics, ornithology, oceanography, fisheries...
Resilience in ecotoxicology: Toward a multiple equilibrium concept.
Bundschuh, Mirco; Schulz, Ralf; Schäfer, Ralf B; Allen, Craig R; Angeler, David G
2017-10-01
The term resilience describes stress-response patterns across scientific disciplines. In ecology, advances have been made to clearly define resilience based on underlying mechanistic assumptions. Engineering resilience (rebound) is used to describe the ability of organisms to recover from adverse conditions (disturbances), which is termed the rate of recovery. By contrast, the ecological resilience definition considers a systemic change, that is, when ecosystems reorganize into a new regime following disturbance. Under this new regime, structural and functional aspects change considerably relative to the previous regime, without recovery. In this context, resilience is an emergent property of complex systems. In the present study, we argue that both definitions and uses are appropriate in ecotoxicology, and although the differences are subtle, the implications and uses are profoundly different. We discuss resilience concepts in ecotoxicology, where the prevailing view of resilience is engineering resilience from chemical stress. Ecological resilience may also be useful for describing systemic ecological changes because of chemical stress. We present quantitative methods that allow ecotoxicologists and risk managers to assess whether an ecosystem faces an impending regime shift or whether it has already undergone such a shift. We contend that engineering and ecological resilience help to distinguish ecotoxicological responses to chemical stressors mechanistically and thus have implications for theory, policy, and application. Environ Toxicol Chem 2017;36:2574-2580. © 2017 SETAC. © 2017 SETAC.
Gülci, Sercan; Akay, Abdullah Emin
2015-12-01
Major roads cause barrier effect and fragmentation on wildlife habitats that are suitable places for feeding, mating, socializing, and hiding. Due to wildlife collisions (Wc), human-wildlife conflicts result in lost lives and loss of biodiversity. Geographical information system (GIS)-based multi criteria evaluation (MCE) methods have been successfully used in short-term planning of road networks considering wild animals. Recently, wildlife passages have been effectively utilized as road engineering structures provide quick and certain solutions for traffic safety and wildlife conservation problems. GIS-based MCE methods provide decision makers with optimum location for ecological passages based on habitat suitability models (HSMs) that classify the areas based on ecological requirements of target species. In this study, ecological passages along Motorway 52 within forested areas in Mediterranean city of Osmaniye in Turkey were evaluated. Firstly, HSM coupled with nine eco-geographic decision variables were developed based on ecological requirements of roe deer (Capreolus capreolus) that were chosen as target species. Then specified decision variables were evaluated using GIS-based weighted linear combination (WLC) method to estimate movement corridors and mitigation points along the motorway. In the solution process, two linkage nodes were evaluated for eco-passages which were determined based on the least-cost movement corridor intersecting with the motorway. One of the passages was identified as a natural wildlife overpass while the other was suggested as underpass construction. The results indicated that computer-based models provide accurate and quick solutions for positioning ecological passages to reduce environmental effects of road networks on wild animals.
A Two-Ocean Bouillabaisse: Science, Politics, and the Central American Sea-Level Canal Controversy.
Keiner, Christine
2017-11-01
As the Panama Canal approached its fiftieth anniversary in the mid-1960s, U.S. officials concerned about the costs of modernization welcomed the technology of peaceful nuclear excavation to create a new waterway at sea level. Biologists seeking a share of the funds slated for radiological-safety studies called attention to another potential effect which they deemed of far greater ecological and evolutionary magnitude - marine species exchange, an obscure environmental issue that required the expertise of underresourced life scientists. An enterprising endeavor to support Smithsonian naturalists, especially marine biologists at the Smithsonian Tropical Research Institute in Panama, wound up sparking heated debates - between biologists and engineers about the oceans' biological integrity and among scientists about whether the megaproject represented a research opportunity or environmental threat. A National Academy of Sciences panel chaired by Ernst Mayr failed to attract congressional funding for its 10-year baseline research program, but did create a stir in the scientific and mainstream press about the ecological threats that the sea-level canal might unleash upon the Atlantic and Pacific. This paper examines how the proposed megaproject sparked a scientific and political conversation about the risks of mixing the oceans at a time when many members of the scientific and engineering communities still viewed the seas as impervious to human-facilitated change.
Automated reverse engineering of nonlinear dynamical systems.
Bongard, Josh; Lipson, Hod
2007-06-12
Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated "reverse engineering" approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, botany, hydrology, limnology, habitat biology, wildlife biology, biometrics, sociology...
Partly cloudy with a chance of migration: Weather, radars, and aeroecology
USDA-ARS?s Scientific Manuscript database
Aeroecology is an emerging scientific discipline that integrates atmospheric science, terrestrial science, geography, ecology, computer science, computational biology, and engineering to further the understanding of ecological patterns and processes. The unifying concept underlying this new transdis...
Evolving Communicative Complexity: Insight from Rodents and Beyond
2012-01-01
Group size in animal societies: the potential role of social and ecological limitations in the group-living fish , Paragobiodon xanthosomus. Ethology... Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA 2Human Research and Engineering Directorate, Perceptual Sciences...evolve is an active question in behavioural ecology . Sciurid rodents (ground squirrels, prairie dogs and marmots) provide an excellent model system for
A bottom up approach for engineering catchments through sustainable runoff management
NASA Astrophysics Data System (ADS)
Wilkinson, M.; Quinn, P. F.; Jonczyk, J.; Burke, S.
2010-12-01
There is no doubt that our catchments are under great stress. There have been many accounts around the world of severe flood events and water quality issues within channels. As a result of these, ecological habitats in rivers are also under pressure. Within the United Kingdom, all these issues have been identified as key target areas for policy. Traditionally this has been managed by a policy driven top down approach which is usually ineffective. A one ‘size fits all’ attitude often does not work. This paper presents a case study in northern England whereby a bottom up approach is applied to multipurpose managing of catchments at the source (in the order of 1-10km2). This includes simultaneous tackling of water quality, flooding and ecological issues by creating sustainable runoff management solutions such as storage ponds, wetlands, beaver dams and willow riparian features. In order to identify the prevailing issues in a specific catchment, full and transparent stakeholder engagement is essential, with everybody who has a vested interest in the catchment being involved from the beginning. These problems can then be dealt with through the use of a novel catchment management toolkit, which is transferable to similar scale catchments. However, evidence collected on the ground also allows for upscaling of the toolkit. The process gathers the scientific evidence about the effectiveness of existing or new measures, which can really change the catchment functions. Still, we need to get better at communicating the science to policy makers and policy therefore must facilitate a bottom up approach to land and water management. We show a test site for this approach in the Belford burn catchment (6km2), northern England. This catchment has problems with flooding and water quality. Increased sediment loads are affecting the nearby estuary which is an important ecological zone and numerous floods have affected the local village. A catchment engineering toolkit has been developed that puts in place novel measures to tackle diffuse pollution and reduce flood risk whilst collecting the science needed to influence the policy about these measures. This has been possible through four key practices: full stakeholder engagement, a problem solving agenda set in place, a bottom up approach to solving problems, and the collection of the appropriate science to support the benefits. Hands on, multi-objective work is the most cost effective way to manage catchments. Tackling water quality issues and controlling fast pathway runoff at the source in partnership with farmers and local landowners has proved to be the key to success. Tackling issues in sub-catchments can lead to solving problems at the catchment scale.
Proposal and Research Direction of Soil Mass Organic Reorganization
NASA Astrophysics Data System (ADS)
Zhang, Lu; Han, Jichang
2018-01-01
Land engineering as a new discipline has been temporarily outrageous. The proposition of soil body organic reorganization undoubtedly enriches the research content for the construction of land engineering disciplines. Soil body organic reconstruction is designed to study how to realize the ecological ecology of the land by studying the external force of nature, to study the influence of sunlight, wind and water on soil body, how to improve the soil physical structure, to further strengthen the research of biological enzymes and microbes, and promote the release and utilization of beneficial inert elements in soil body. The emerging of frontier scientific research issues with soil body organic reorganization to indicate directions for the future development of soil engineering.
Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM
NASA Astrophysics Data System (ADS)
Piercy, C.; Swannack, T. M.
2012-12-01
Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.
General Properties for an Agrawal Thermal Engine
NASA Astrophysics Data System (ADS)
Paéz-Hernández, Ricardo T.; Chimal-Eguía, Juan Carlos; Sánchez-Salas, Norma; Ladino-Luna, Delfino
2018-04-01
This paper presents a general property of endoreversible thermal engines known as the Semisum property previously studied in a finite-time thermodynamics context for a Curzon-Ahlborn (CA) engine but now extended to a simplified version of the CA engine studied by Agrawal in 2009 (A simplified version of the Curzon-Ahlborn engine, European Journal of Physics 30 (2009), 1173). By building the Ecological function, proposed by Angulo-Brown (An ecological optimization criterion for finite-time heat engines, Journal of Applied Physics 69 (1991), 7465-7469) in 1991, and considering two heat transfer laws an analytical expression is obtained for efficiency and power output which depends only on the heat reservoirs' temperature. When comparing the existing efficiency values of real power plants and the theoretical efficiencies obtained in this work, it is observed that the Semisum property is satisfied. Moreover, for the Newton and the Dulong-Petit heat transfer laws the existence of the g function is demonstrated and we confirm that in a Carnot-type thermal engine there is a general property independent of the heat transfer law used between the thermal reservoirs and the working substance.
NASA Astrophysics Data System (ADS)
Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah
2015-09-01
Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.
In search of an adaptive social-ecological approach to understanding a tropical city
A.E. Lugo; C.M. Concepcion; L.E. Santiago-Acevedo; T.A. Munoz-Erickson; J.C. Verdejo Ortiz; R. Santiago-Bartolomei; J. Forero-Montana; C.J. Nytch; H. Manrique; W. Colon-Cortes
2012-01-01
This essay describes our effort to develop a practical approach to the integration of the social and ecological sciences in the context of a Latin-American city such as San Juan, Puerto Rico. We describe our adaptive social-ecological approach in the historical context of the developing paradigms of the Anthropocene, new integrative social and ecological sciences, and...
A Tale of Four Stories: Soil Ecology, Theory, Evolution and the Publication System
Barot, Sébastien; Blouin, Manuel; Fontaine, Sébastien; Jouquet, Pascal; Lata, Jean-Christophe; Mathieu, Jérôme
2007-01-01
Background Soil ecology has produced a huge corpus of results on relations between soil organisms, ecosystem processes controlled by these organisms and links between belowground and aboveground processes. However, some soil scientists think that soil ecology is short of modelling and evolutionary approaches and has developed too independently from general ecology. We have tested quantitatively these hypotheses through a bibliographic study (about 23000 articles) comparing soil ecology journals, generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Findings We have shown that soil ecology is not well represented in generalist ecology journals and that soil ecologists poorly use modelling and evolutionary approaches. Moreover, the articles published by a typical soil ecology journal (Soil Biology and Biochemistry) are cited by and cite low percentages of articles published in generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Conclusion This confirms our hypotheses and suggests that soil ecology would benefit from an effort towards modelling and evolutionary approaches. This effort should promote the building of a general conceptual framework for soil ecology and bridges between soil ecology and general ecology. We give some historical reasons for the parsimonious use of modelling and evolutionary approaches by soil ecologists. We finally suggest that a publication system that classifies journals according to their Impact Factors and their level of generality is probably inadequate to integrate “particularity” (empirical observations) and “generality” (general theories), which is the goal of all natural sciences. Such a system might also be particularly detrimental to the development of a science such as ecology that is intrinsically multidisciplinary. PMID:18043755
NASA Astrophysics Data System (ADS)
Ramaswami, A.
2016-12-01
Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K.R.; Kumar, E. (2016). Meta-Principles for developing smart, sustainable, and healthy cities, Science, 352(6288), 940-3. Ramaswami, A., et al. A Social-Ecological Infrastructural Systems Framework for Inter-Disciplinary Study of Sustainable City-Systems. J. Ind Ecol, 16(6): 801-813, 2012.
A Multidisciplinary Course in Bioengineering.
ERIC Educational Resources Information Center
Bienkowski, Paul R.; And Others
1989-01-01
Outlines a graduate course, "Microbial Systems Analysis," for students in chemical and environmental engineering or engineering mechanics, as well as microbiology, ecology and biotechnology. Describes the objectives, structure and laboratory experiments for the course. (YP)
NASA Astrophysics Data System (ADS)
Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.
2017-07-01
Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology.
Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.
2017-01-01
Abstract Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long‐term experiments on physical‐chemical‐biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology. PMID:28919651
ERIC Educational Resources Information Center
Huckaba, Charles E.; Griffin, Ann
1983-01-01
Describes development of an interdisciplinary engineering course called "Social Aspects of the Technical Decision Process." Course content includes such interdisciplinary topics as alternative energy, ecology, and urban planning, which represent traditional engineering concepts. However, social and historical dimensions are built into topics.…
Theoretical ecology without species
NASA Astrophysics Data System (ADS)
Tikhonov, Mikhail
The sequencing-driven revolution in microbial ecology demonstrated that discrete ``species'' are an inadequate description of the vast majority of life on our planet. Developing a novel theoretical language that, unlike classical ecology, would not require postulating the existence of species, is a challenge of tremendous medical and environmental significance, and an exciting direction for theoretical physics. Here, it is proposed that community dynamics can be described in a naturally hierarchical way in terms of population fluctuation eigenmodes. The approach is applied to a simple model of division of labor in a multi-species community. In one regime, effective species with a core and accessory genome are shown to naturally appear as emergent concepts. However, the same model allows a transition into a regime where the species formalism becomes inadequate, but the eigenmode description remains well-defined. Treating a community as a black box that expresses enzymes in response to resources reveals mathematically exact parallels between a community and a single coherent organism with its own fitness function. This coherence is a generic consequence of division of labor, requires no cooperative interactions, and can be expected to be widespread in microbial ecosystems. Harvard Center of Mathematical Sciences and Applications;John A. Paulson School of Engineering and Applied Sciences.
[Urban ecological risk assessment: a review].
Wang, Mei-E; Chen, Wei-Ping; Peng, Chi
2014-03-01
With the development of urbanization and the degradation of urban living environment, urban ecological risks caused by urbanization have attracted more and more attentions. Based on urban ecology principles and ecological risk assessment frameworks, contents of urban ecological risk assessment were reviewed in terms of driven forces, risk resources, risk receptors, endpoints and integrated approaches for risk assessment. It was suggested that types and degrees of urban economical and social activities were the driven forces for urban ecological risks. Ecological functional components at different levels in urban ecosystems as well as the urban system as a whole were the risk receptors. Assessment endpoints involved in changes of urban ecological structures, processes, functional components and the integrity of characteristic and function. Social-ecological models should be the major approaches for urban ecological risk assessment. Trends for urban ecological risk assessment study should focus on setting a definite protection target and criteria corresponding to assessment endpoints, establishing a multiple-parameter assessment system and integrative assessment approaches.
Systems approaches for coastal hazard assessment and resilience
Hagen, Scott C.; Passeri, Davina L.; Bilskie, Matthew V.; DeLorme, Denise E.; Yoskowitz, David
2017-01-01
The framework presented herein supports a changing paradigm in the approaches used by coastal researchers, engineers, and social scientists to model the impacts of climate change and sea level rise (SLR) in particular along low-gradient coastal landscapes. Use of a System of Systems (SoS) approach to the coastal dynamics of SLR is encouraged to capture the nonlinear feedbacks and dynamic responses of the bio-geo-physical coastal environment to SLR, while assessing the social, economic, and ecologic impacts. The SoS approach divides the coastal environment into smaller subsystems such as morphology, ecology, and hydrodynamics. Integrated models are used to assess the dynamic responses of subsystems to SLR; these models account for complex interactions and feedbacks among individual systems, which provides a more comprehensive evaluation of the future of the coastal system as a whole. Results from the integrated models can be used to inform economic services valuations, in which economic activity is connected back to bio-geo-physical changes in the environment due to SLR by identifying changes in the coastal subsystems, linking them to the understanding of the economic system and assessing the direct and indirect impacts to the economy. These assessments can be translated from scientific data to application through various stakeholder engagement mechanisms, which provide useful feedback for accountability as well as benchmarks and diagnostic insights for future planning. This allows regional and local coastal managers to create more comprehensive policies to reduce the risks associated with future SLR and enhance coastal resilience.
Ethorobotics: A New Approach to Human-Robot Relationship
Miklósi, Ádám; Korondi, Péter; Matellán, Vicente; Gácsi, Márta
2017-01-01
Here we aim to lay the theoretical foundations of human-robot relationship drawing upon insights from disciplines that govern relevant human behaviors: ecology and ethology. We show how the paradox of the so called “uncanny valley hypothesis” can be solved by applying the “niche” concept to social robots, and relying on the natural behavior of humans. Instead of striving to build human-like social robots, engineers should construct robots that are able to maximize their performance in their niche (being optimal for some specific functions), and if they are endowed with appropriate form of social competence then humans will eventually interact with them independent of their embodiment. This new discipline, which we call ethorobotics, could change social robotics, giving a boost to new technical approaches and applications. PMID:28649213
Eco-logical successes : third edition, September 2012
DOT National Transportation Integrated Search
2012-09-01
Eco-Logical: An Ecosystem Approach to Developing Infrastructure Projects outlines an ecosystem-scale approach to prioritizing, developing, and delivering infrastructure projects. Eco-Logical emphasizes interagency collaboration in order to create inf...
Reverse Ecology: from systems to environments and back.
Levy, Roie; Borenstein, Elhanan
2012-01-01
The structure of complex biological systems reflects not only their function but also the environments in which they evolved and are adapted to. Reverse Ecology-an emerging new frontier in Evolutionary Systems Biology-aims to extract this information and to obtain novel insights into an organism's ecology. The Reverse Ecology framework facilitates the translation of high-throughput genomic data into large-scale ecological data, and has the potential to transform ecology into a high-throughput field. In this chapter, we describe some of the pioneering work in Reverse Ecology, demonstrating how system-level analysis of complex biological networks can be used to predict the natural habitats of poorly characterized microbial species, their interactions with other species, and universal patterns governing the adaptation of organisms to their environments. We further present several studies that applied Reverse Ecology to elucidate various aspects of microbial ecology, and lay out exciting future directions and potential future applications in biotechnology, biomedicine, and ecological engineering.
Genetic engineering possibilities for CELSS: A bibliography and summary of techniques
NASA Technical Reports Server (NTRS)
Johnson, E. J.
1982-01-01
A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. VanHorn; N. L. Hampton; R. C. Morris
This document presents reference material for conducting screening level ecological risk assessments (SLERAs)for the waste area groups (WAGs) at the Idaho National Engineering Laboratory. Included in this document are discussions of the objectives of and processes for conducting SLERAs. The Environmental Protection Agency ecological risk assessment framework is closely followed. Guidance for site characterization, stressor characterization, ecological effects, pathways of contaminant migration, the conceptual site model, assessment endpoints, measurement endpoints, analysis guidance, and risk characterization are included.
2007-12-01
germination studies. In Seeds: Ecology , biogeography, and evolution of dormancy and germination, 5-26. London: Academic Press. Campbell, J. J. 2005...D., and C. W. Boylen. 1989. Eurasian watermilfoil seed ecology from an oligotrophic and eutrophic lake. J. Aquat. Plant Manage. 27:119-121...and S. Wyllie-Echeverria. 2005. Buoy-deployed seeding: Demonstration of a new eelgrass (Zostera marina L.) planting method. Ecological Engineering
2012-09-01
ecological processes involve the invasion of non-native (exotic) species (USEPA 1999). Through direct biotic interactions (predation and competition) and...indirect interactions ( ecological engineering and habitat modification), invasive species can disrupt the natural population dynamics of native...species (USEPA 1999). Invasives can include noxious plants (i.e., plants that are listed by a state because of their unfavorable economic or ecological
NASA Astrophysics Data System (ADS)
Corenblit, Dov; Baas, Andreas C. W.; Bornette, Gudrun; Darrozes, José; Delmotte, Sébastien; Francis, Robert A.; Gurnell, Angela M.; Julien, Frédéric; Naiman, Robert J.; Steiger, Johannes
2011-06-01
This review article presents recent advances in the field of biogeomorphology related to the reciprocal coupling between Earth surface processes and landforms, and ecological and evolutionary processes. The aim is to present to the Earth Science community ecological and evolutionary concepts and associated recent conceptual developments for linking geomorphology and biota. The novelty of the proposed perspective is that (1) in the presence of geomorphologic-engineer species, which modify sediment and landform dynamics, natural selection operating at the scale of organisms may have consequences for the physical components of ecosystems, and particularly Earth surface processes and landforms; and (2) in return, these modifications of geomorphologic processes and landforms often feed back to the ecological characteristics of the ecosystem (structure and function) and thus to biological characteristics of engineer species and/or other species (adaptation and speciation). The main foundation concepts from ecology and evolutionary biology which have led only recently to an improved conception of landform dynamics in geomorphology are reviewed and discussed. The biogeomorphologic macroevolutionary insights proposed explicitly integrate geomorphologic niche-dimensions and processes within an ecosystem framework and reflect current theories of eco-evolutionary and ecological processes. Collectively, these lead to the definition of an integrated model describing the overall functioning of biogeomorphologic systems over ecological and evolutionary timescales.
Batterman, Stuart; Eisenberg, Joseph; Hardin, Rebecca; Kruk, Margaret E.; Lemos, Maria Carmen; Michalak, Anna M.; Mukherjee, Bhramar; Renne, Elisha; Stein, Howard; Watkins, Cristy; Wilson, Mark L.
2009-01-01
Objective Even when initially successful, many interventions aimed at reducing the toll of water-related infectious disease have not been sustainable over longer periods of time. Here we review historical practices in water-related infectious disease research and propose an interdisciplinary public health oriented systems approach to research and intervention design. Data sources On the basis of the literature and the authors’ experiences, we summarize contributions from key disciplines and identify common problems and trends. Practices in developing countries, where the disease burden is the most severe, are emphasized. Data extraction We define waterborne and water-associated vectorborne diseases and identify disciplinary themes and conceptual needs by drawing from ecologic, anthropologic, engineering, political/economic, and public health fields. A case study examines one of the classes of water-related infectious disease. Data synthesis The limited success in designing sustainable interventions is attributable to factors that include the complexity and interactions among the social, ecologic, engineering, political/economic, and public health domains; incomplete data; a lack of relevant indicators; and most important, an inadequate understanding of the proximal and distal factors that cause water-related infectious disease. Fundamental change is needed for research on water-related infectious diseases, and we advocate a systems approach framework using an ongoing evidence-based health outcomes focus with an extended time horizon. The examples and case study in the review show many opportunities for interdisciplinary collaborations, data fusion techniques, and other advances. Conclusions The proposed framework will facilitate research by addressing the complexity and divergent scales of problems and by engaging scientists in the disciplines needed to tackle these difficult problems. Such research can enhance the prevention and control of water-related infectious diseases in a manner that is sustainable and focused on public health outcomes. PMID:19654908
Engineering Challenges for Closed Ecological System facilities
NASA Astrophysics Data System (ADS)
Dempster, William; Nelson, Mark; Allen, John P.
2012-07-01
Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.
Integrated approaches to long-term studies of urban ecological systems
Nancy B. Grimm; J. Morgan Grove; Steward T.A. Pickett; Charles L. Redman
2000-01-01
Urban ecological systems present multiple challenges to ecologistsâpervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory.
ISOLATED WETLANDS AND THEIR FUNCTIONS: AN ECOLOGICAL PERSPECTIVE
The recent U.S. Supreme Court case of Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC) has had profound implications on the legal status of isolated wetlands. As a result of this decision, policymakers need ecological information on the definit...
[Impacts of farmland consolidation on farmland landscape].
Deng, Jinsong; Wang, Ke; Li, Jun; Xu, Junfeng; Shen, Zhangquan; Gao, Yurong
2006-01-01
Farmland consolidation is the act of regulating, improving, and comprehensively renovating the structure, quality, and layout of field, water, road, forestry, and village in the countryside in a certain area by means of administration, economy, law, and engineering techniques according to the goal and usage defined by land use planning, so as to improve farmland use rate and its output rate, to increase farmland area, and to achieve better productive, living, and ecological environment. Recently, farmland consolidation has been carried out all over the country, especially in its economy-developed regions. But, unscientific planning and unsuitable farmland consolidation engineering have negative effects on field ecological system. In this paper, based on the technology of GIS and RS, the basic theories and methods of landscape ecology and a compositive grading method were applied to analysis the dynamics of farmland landscape fragmentation in Tongxiang county. The results showed that the farmland landscape fragmentation in this county was strongly affected by consolidation. More attention should be paid to the protection of farmland landscape during consolidation, and to avoid or decrease the negative effects resulted from unscientific planning and unsuitable farmland consolidation engineering.
Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles
Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc
2012-01-01
A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical (“closed loop”) resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems. PMID:23251638
Urban Landscape Architecture in the Reshaping of the Contemporary Cityscape
NASA Astrophysics Data System (ADS)
Ananiadou-Tzimopoulou, Maria; Bourlidou, Anastasia
2017-10-01
The contemporary urban landscape is the evolving image of dynamic social, economic and ecological changes and heterogeneity. It constitutes the mirror of history, natural and cultural, urban processes, as well as locations of hybrid character, such as degraded and fragmented spaces within the urban fabric or in the city boundaries -areas in between, infrastructures, post-industrial and waterfront sites, but also potential grounds for urban development. Along with the awakening of the global ecological awareness and the ongoing discussion on sustainability issues, the cityscape with its new attributes, constitutes a challenging field of research and planning for various disciplines, further more than landscape architecture, such as architecture, planning, ecology, environment and engineering. This paper focuses on the role of urban landscape architecture, via its theory and practice, in the reshaping of the city territory. It aspires to broaden the discussion concerning the upgrading of the contemporary cities, aiming firstly at the determination of a wider vocabulary for the urban landscape and its design, and secondly at the highlighting of landscape architecture’s contribution to the sustainable perspective of urban design and planning. The methodology is based on a comparative research implemented both on a theoretical level and on a level of applied work. Urban landscape architecture is described through theory and practice, along with correlative approaches deriving mainly from landscape urbanism and secondarily from the field of architecture. Urban landscape is approached as a socio-ecological and perceptual legible, a territory of culture, process and production; operating as an entity of ecological, infrastructural systems and planning needs, it is also regarded as a precedent for urban development. Furthermore, the research is supported by selected European and International urban landscape projects, presented in a cohesive multiscalar approach, from the node to the region. Theory is reflected upon: a/smaller scale projects-cultural landscapes, b/infrastructural projects, c/extended process territories and d/grand metropolitan projects. The particular case studies constitute representative design approaches dealing with the urban complexity and are hierarchized on qualitative criteria, spatial and functional; they are indicative of the spectrum of project’s scale, type of intervention -redesign, reclamation, reuse, planning, but also of the project’s operational value -cultural, infrastructural, strategic. They stress the importance of landscape’s flexible and open-ended nature and ultimately, they underline the crucial role of urban landscape architecture, within transdisciplinarity and sustainable design strategies, in the regeneration of the contemporary cityscape.
The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility
NASA Astrophysics Data System (ADS)
Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman
2013-11-01
In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.
Ecological Feasibility Studies in Restoration Decision Making
NASA Astrophysics Data System (ADS)
Hopfensperger, Kristine N.; Engelhardt, Katharina A. M.; Seagle, Steven W.
2007-06-01
The restoration of degraded systems is essential for maintaining the provision of valuable ecosystem services, including the maintenance of aesthetic values. However, restoration projects often fail to reach desired goals for a variety of ecologic, financial, and social reasons. Feasibility studies that evaluate whether a restoration effort should even be attempted can enhance restoration success by highlighting potential pitfalls and gaps in knowledge before the design phase of a restoration. Feasibility studies also can bring stakeholders together before a restoration project is designed to discuss potential disagreements. For these reasons, a feasibility study was conducted to evaluate the efficacy of restoring a tidal freshwater marsh in the Potomac River near Alexandria, Virginia. The study focused on science rather than engineering questions, and thus differed in approach from other feasibility studies that are mostly engineering driven. The authors report the framework they used to conduct a feasibility study to inform other potential restoration projects with similar goals. The seven steps of the framework encompass (1) initiation of a feasibility study, (2) compilation of existing data, (3) collection of current site information, (4) examination of case studies, (5) synthesis of information in a handbook, (6) meeting with selected stakeholders, and (7) evaluation of meeting outcomes. By conducting a feasibility study using the seven-step framework, the authors set the stage for conducting future compliance studies and enhancing the chance of a successful restoration.
Eco-Design of River Fishways for Upstream Passage: Application for Hanfeng Dam, Pengxi River, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gary E.; Rainey, William S.
2012-05-20
This paper provides a scientific approach to eco-design of river fishways to allow upstream movement of fish past new and existing dams in China. This eco-design approach integrates principles of fish ecology/behavior and engineering, a scientific field also known as bio-engineering or eco-hydraulics. We define a fishway as a structure or mechanism to convey fish upstream past a dam. Man-made or natural stream beds can be part of the fishway mechanism. Fish include bony and non-bony fishes, and upstream passage is the concern here, not downstream passage. The problem is dams block access to upstream habitat used for spawning, rearing,more » and refuge, i.e., dams decrease habitat connectivity. A solution to alleviate this problem is to design fishways, preferably while the dam is being designed, but if necessary, as retrofits afterward to provide a route that fish can and will use to pass safely upstream without undue delay. Our eco-design approach for fishways involves eight steps: 1) identify the primary species of importance; 2) understand basic ecology and behavior of these fish; 3) characterize the environmental conditions where passage is or will be blocked; 4 identify fishway alternatives and select a preferred alternative; 5) establish eco-design criteria for the fishway, either from management agencies or, if necessary, developed specifically for the given site; 6) where needed, identify and perform research required to resolve critical uncertainties and finalize the eco-design criteria; 7) apply the eco-design criteria and site-specific considerations to design the fishway, involving peer-review by local stakeholders in the process; 8) build the fishway, monitor its effectiveness, and apply the lessons learned. Example fishways are described showing a range of eco-designs depending on the dam site and fish species of concern. We apply the eco-design principles to recommend an approach and next steps for a fishway to pass fish upstream at Hanfeng Dam, an existing regulating dam forming Hanfeng Lake on the Pengxi River near Kaixian, China.« less
ERIC Educational Resources Information Center
Kuo, Shih-Yun; Jackson, Nancy L.
2014-01-01
Studies suggest that at engineering universities, where the percentage of males and engineering majors is high, pro-environmental attitudes are likely to be weak and may not change. The 15-item New Ecological Paradigm (NEP) scale was used to measure differences in student attitudes before and after an environmental studies course. Results revealed…
Guiding bioprocess design by microbial ecology.
Volmer, Jan; Schmid, Andreas; Bühler, Bruno
2015-06-01
Industrial bioprocess development is driven by profitability and eco-efficiency. It profits from an early stage definition of process and biocatalyst design objectives. Microbial bioprocess environments can be considered as synthetic technical microbial ecosystems. Natural systems follow Darwinian evolution principles aiming at survival and reproduction. Technical systems objectives are eco-efficiency, productivity, and profitable production. Deciphering technical microbial ecology reveals differences and similarities of natural and technical systems objectives, which are discussed in this review in view of biocatalyst and process design and engineering strategies. Strategies for handling opposing objectives of natural and technical systems and for exploiting and engineering natural properties of microorganisms for technical systems are reviewed based on examples. This illustrates the relevance of considering microbial ecology for bioprocess design and the potential for exploitation by synthetic biology strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Gene Flow Project at the US Environmental Protection Agency, Western Ecology Division is developing methodologies for ecological risk assessments of transgene flow using Agrostis and Brassica engineered with CP4 EPSPS genes that confer resistance to glyphosate herbicide. In ...
Human Ecology: An Approach to the Science Laboratory.
ERIC Educational Resources Information Center
Bybee, Rodger W.; And Others
1981-01-01
Discusses the use of and recommends a new direction for laboratory work within the context of teaching human ecology for science and social science teachers and compares traditional and human ecological approaches to science laboratory work. (CS)
Ecological Approaches to Understanding Human Crowding.
ERIC Educational Resources Information Center
Baron, Reuben M.
1979-01-01
Characteristics of the ecological approach to perception are presented. The affordance concept and its relevance is emphasized. Human crowding is discussed in affordance terms. There is a comparison given between present affordance analysis and ecological analysis. (Author/SA)
Kushniruk, A; Nohr, C; Jensen, S; Borycki, E M
2013-01-01
The objective of this paper is to explore human factors approaches to understanding the use of health information technology (HIT) by extending usability engineering approaches to include analysis of the impact of clinical context through use of clinical simulations. Methods discussed are considered on a continuum from traditional laboratory-based usability testing to clinical simulations. Clinical simulations can be conducted in a simulation laboratory and they can also be conducted in real-world settings. The clinical simulation approach attempts to bring the dimension of clinical context into stronger focus. This involves testing of systems with representative users doing representative tasks, in representative settings/environments. Application of methods where realistic clinical scenarios are used to drive the study of users interacting with systems under realistic conditions and settings can lead to identification of problems and issues with systems that may not be detected using traditional usability engineering methods. In conducting such studies, careful consideration is needed in creating ecologically valid test scenarios. The evidence obtained from such evaluation can be used to improve both the usability and safety of HIT. In addition, recent work has shown that clinical simulations, in particular those conducted in-situ, can lead to considerable benefits when compared to the costs of running such studies. In order to bring context of use into the testing of HIT, clinical simulation, involving observing representative users carrying out tasks in representative settings, holds considerable promise.
Conceptualizing Ecology: A Learning Cycle Approach.
ERIC Educational Resources Information Center
Lauer, Thomas E.
2003-01-01
Proposes a teaching strategy to teach ecological concepts and terminology through the use of games and simulations. Includes examples from physiological ecology, population ecology, and ecosystem ecology. (Author/SOE)
Cadenasso, M L; Pickett, S T A; Groffman, P M; Band, L E; Brush, G S; Galvin, M F; Grove, J M; Hagar, G; Marshall, V; McGrath, B P; O'Neil-Dunne, J P M; Stack, W P; Troy, A R
2008-01-01
Conservation in urban areas typically focuses on biodiversity and large green spaces. However, opportunities exist throughout urban areas to enhance ecological functions. An important function of urban landscapes is retaining nitrogen thereby reducing nitrate pollution to streams and coastal waters. Control of nonpoint nitrate pollution in urban areas was originally based on the documented importance of riparian zones in agricultural and forested ecosystems. The watershed and boundary frameworks have been used to guide stream research and a riparian conservation strategy to reduce nitrate pollution in urban streams. But is stream restoration and riparian-zone conservation enough? Data from the Baltimore Ecosystem Study and other urban stream research indicate that urban riparian zones do not necessarily prevent nitrate from entering, nor remove nitrate from, streams. Based on this insight, policy makers in Baltimore extended the conservation strategy throughout larger watersheds, attempting to restore functions that no longer took place in riparian boundaries. Two urban revitalization projects are presented as examples aimed at reducing nitrate pollution to stormwater, streams, and the Chesapeake Bay. An adaptive cycle of ecological urban design synthesizes the insights from the watershed and boundary frameworks, from new data, and from the conservation concerns of agencies and local communities. This urban example of conservation based on ameliorating nitrate water pollution extends the initial watershed-boundary approach along three dimensions: 1) from riparian to urban land-water-scapes; 2) from discrete engineering solutions to ecological design approaches; and 3) from structural solutions to inclusion of individual, household, and institutional behavior.
NASA Astrophysics Data System (ADS)
Prajapati, A. S.; Panchal, K.; Subramanian, R. B.; Patel, D. H.; Sudhir, A. P.; Dave, B. R.
2015-12-01
Global demand for energy has grown with the development of new industries, requiring constant improvement and search for new sources of energy. One of the challenges today is releasing the energy of glucose that nature has cleverly locked into lignocellulosic biomass. Potent and efficient enzyme preparations need to be developed for the enzymatic saccharification process to be more economical. Approaches like enzyme engineering, reconstitution of enzyme mixtures and bioprospecting for superior enzymes are gaining importance. The ocean is considered to be a great reservoir of biodiversity. Because enzymes have unequalled advantages, many industries are keenly interested in adapting enzymatic methods for their processes. Microbial communities in marine environments are ecologically relevant as intermediaries of energy and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. The exploitation of marine bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology. Several industrial enzymes are derived from terrestrial sources, whereas, marine environment which encompasses about 71 percent of the earth's surface and a vast resources for useful enzymes, remain unexplored. Marine microorganisms take active part in the mineralization of complex organic matter through degradative pathways of their metabolism. Bacteria from marine environments secrete different enzymes based on their habitat and their ecological functions. Therefore marine microbial enzymes have become the focal point of interest. Even though many of these enzymes are being isolated, the efficiency of hydrolysis is very poor. This could be overcome by altering the substrate specificity of lignocellulases. Protein engineering could prove to be useful to improve the catalytic function these enzymes.
Model based estimation of sediment erosion in groyne fields along the River Elbe
NASA Astrophysics Data System (ADS)
Prohaska, Sandra; Jancke, Thomas; Westrich, Bernhard
2008-11-01
River water quality is still a vital environmental issue, even though ongoing emissions of contaminants are being reduced in several European rivers. The mobility of historically contaminated deposits is key issue in sediment management strategy and remediation planning. Resuspension of contaminated sediments impacts the water quality and thus, it is important for river engineering and ecological rehabilitation. The erodibility of the sediments and associated contaminants is difficult to predict due to complex time depended physical, chemical, and biological processes, as well as due to the lack of information. Therefore, in engineering practice the values for erosion parameters are usually assumed to be constant despite their high spatial and temporal variability, which leads to a large uncertainty of the erosion parameters. The goal of presented study is to compare the deterministic approach assuming constant critical erosion shear stress and an innovative approach which takes the critical erosion shear stress as a random variable. Furthermore, quantification of the effective value of the critical erosion shear stress, its applicability in numerical models, and erosion probability will be estimated. The results presented here are based on field measurements and numerical modelling of the River Elbe groyne fields.
Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.
Lion, Sébastien
2018-01-01
Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.
Environmental risk assessment of a genetically-engineered microorganism: Erwinia carotovora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orvos, D.R.
1989-01-01
Environmental use of genetically-engineered microorganisms (GEMs) has raised concerns over potential ecological impact. Development of microcosm systems useful in preliminary testing for risk assessment will provide useful information for predicting potential structural, functional, and genetic effects of GEM release. This study was executed to develop techniques that may be useful in risk assessment and microbial ecology, to ascertain which parameters are useful in determining risk and to predict risk from releasing an engineered strain of Erwinia carotovora. A terrestrial microcosm system for use in GEM risk assessment studies was developed for use in assessing alterations of microbial structure and functionmore » that may be caused by introducing the engineered strain of E. carotovora. This strain is being developed for use as a biological control agent for plant soft rot. Parameters that were monitored included survival and intraspecific competition of E. carotovora, structural effects upon both total bacterial populations and numbers of selected bacterial genera, effects upon activities of dehydrogenase and alkaline phosphatase, effects upon soil nutrients, and potential for gene transfer into or out of the engineered strain.« less
Climate change and adaptational impacts in coastal systems: the case of sea defences.
Firth, Louise B; Mieszkowska, Nova; Thompson, Richard C; Hawkins, Stephen J
2013-09-01
We briefly review how coastal ecosystems are responding to and being impacted by climate change, one of the greatest challenges facing society today. In adapting to rising and stormier seas associated with climate change, coastal defence structures are proliferating and becoming dominant coastal features, particularly in urbanised areas. Whilst the primary function of these structures is to protect coastal property and infrastructure, they inevitably have a significant secondary impact on the local environment and ecosystems. In this review we outline some of the negative and positive effects of these structures on physical processes, impacts on marine species, and the novel engineering approaches that have been employed to improve the ecological value of these structures in recent years. Finally we outline guidelines for an environmentally sensitive approach to design of such structures in the marine environment.
Activist engineering: changing engineering practice by deploying praxis.
Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E
2015-02-01
In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?
The raison d'être of chemical ecology.
Raguso, Robert A; Agrawal, Anurag A; Douglas, Angela E; Jander, Georg; Kessler, André; Poveda, Katja; Thaler, Jennifer S
2015-03-01
Chemical ecology is a mechanistic approach to understanding the causes and consequences of species interactions, distribution, abundance, and diversity. The promise of chemical ecology stems from its potential to provide causal mechanisms that further our understanding of ecological interactions and allow us to more effectively manipulate managed systems. Founded on the notion that all organisms use endogenous hormones and chemical compounds that mediate interactions, chemical ecology has flourished over the past 50 years since its origin. In this essay we highlight the breadth of chemical ecology, from its historical focus on pheromonal communication, plant-insect interactions, and coevolution to frontier themes including community and ecosystem effects of chemically mediated species interactions. Emerging approaches including the -omics, phylogenetic ecology, the form and function of microbiomes, and network analysis, as well as emerging challenges (e.g., sustainable agriculture and public health) are guiding current growth of this field. Nonetheless, the directions and approaches we advocate for the future are grounded in classic ecological theories and hypotheses that continue to motivate our broader discipline.
Galway, Lindsay P; Parkes, Margot W; Allen, Diana; Takaro, Tim K
2016-01-01
The shortcomings of public health research informed by reductionist and fragmented biomedical approaches and the emergence of wicked problems are fueling a renewed interest in ecological approaches in public health. Despite the central role of interdisciplinarity in the context of ecological approaches in public health research, inadequate attention has been given to the specific challenge of doing interdisciplinary research in practice. As a result, important knowledge gaps exist with regards to the practice of interdisciplinary research. We argue that explicit attention towards the challenge of doing interdisciplinary research is critical in order to effectively apply ecological approaches to public health issues. This paper draws on our experiences developing and conducting an interdisciplinary research project exploring the links among climate change, water, and health to highlight five specific insights which we see as relevant to building capacity for interdisciplinary research specifically, and which have particular relevance to addressing the integrative challenges demanded by ecological approaches to address public health issues. These lessons include: (i) the need for frameworks that facilitate integration; (ii) emphasize learning-by-doing; (iii) the benefits of examining issues at multiple scales; (iv) make the implicit, explicit; and (v) the need for reflective practice. By synthesizing and sharing experiences gained by engaging in interdisciplinary inquiries using an ecological approach, this paper responds to a growing need to build interdisciplinary research capacity as a means for advancing the ecological public health agenda more broadly.
Galway, Lindsay P.; Parkes, Margot W.; Allen, Diana; Takaro, Tim K.
2016-01-01
The shortcomings of public health research informed by reductionist and fragmented biomedical approaches and the emergence of wicked problems are fueling a renewed interest in ecological approaches in public health. Despite the central role of interdisciplinarity in the context of ecological approaches in public health research, inadequate attention has been given to the specific challenge of doing interdisciplinary research in practice. As a result, important knowledge gaps exist with regards to the practice of interdisciplinary research. We argue that explicit attention towards the challenge of doing interdisciplinary research is critical in order to effectively apply ecological approaches to public health issues. This paper draws on our experiences developing and conducting an interdisciplinary research project exploring the links among climate change, water, and health to highlight five specific insights which we see as relevant to building capacity for interdisciplinary research specifically, and which have particular relevance to addressing the integrative challenges demanded by ecological approaches to address public health issues. These lessons include: (i) the need for frameworks that facilitate integration; (ii) emphasize learning-by-doing; (iii) the benefits of examining issues at multiple scales; (iv) make the implicit, explicit; and (v) the need for reflective practice. By synthesizing and sharing experiences gained by engaging in interdisciplinary inquiries using an ecological approach, this paper responds to a growing need to build interdisciplinary research capacity as a means for advancing the ecological public health agenda more broadly. PMID:29546171
Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.
Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J
2015-04-01
Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.
Carrying photosynthesis genes increases ecological fitness of cyanophage in silico.
Hellweger, Ferdi L
2009-06-01
Several viruses infecting marine cyanobacteria carry photosynthesis genes (e.g. psbA, hli) that are expressed, yield proteins (D1, HLIP) and help maintain the cell's photosynthesis apparatus during the latent period. This increases energy and speeds up virus production, allowing for a reduced latent period (a fitness benefit), but it also increases the DNA size, which slows down new virus production and reduces burst size (a fitness cost). How do these genes affect the net ecological fitness of the virus? Here, this question is explored using a combined systems biology and systems ecology ('systems bioecology') approach. A novel agent-based model simulates individual cyanobacteria cells and virus particles, each with their own genes, transcripts, proteins and other properties. The effect of D1 and HLIP proteins is explicitly considered using a mechanistic photosynthesis component. The model is calibrated to the available database for Prochlorococcus ecotype MED4 and podovirus P-SSP7. Laboratory- and field-scale in silico survival, competition and evolution (gene packaging error) experiments with wild type and genetically engineered viruses are performed to develop vertical survival and fitness profiles, and to determine the optimal gene content. The results suggest that photosynthesis genes are nonessential, increase fitness in a manner correlated with irradiance, and that the wild type has an optimal gene content.
Genetic Engineering and Human Mental Ecology: Interlocking Effects and Educational Considerations.
Affifi, Ramsey
2017-01-01
This paper describes some likely semiotic consequences of genetic engineering on what Gregory Bateson has called "the mental ecology" (1979) of future humans, consequences that are less often raised in discussions surrounding the safety of GMOs (genetically modified organisms). The effects are as follows: an increased 1) habituation to the presence of GMOs in the environment, 2) normalization of empirically false assumptions grounding genetic reductionism, 3) acceptance that humans are capable and entitled to decide what constitutes an evolutionary improvement for a species, 4) perception that the main source of creativity and problem solving in the biosphere is anthropogenic. Though there are some tensions between them, these effects tend to produce self-validating webs of ideas, actions, and environments, which may reinforce destructive habits of thought. Humans are unlikely to safely develop genetic technologies without confronting these escalating processes directly. Intervening in this mental ecology presents distinct challenges for educators, as will be discussed.
Maltby, John; Day, Liz; Hall, Sophie
2015-01-01
The current paper presents a new measure of trait resilience derived from three common mechanisms identified in ecological theory: Engineering, Ecological and Adaptive (EEA) resilience. Exploratory and confirmatory factor analyses of five existing resilience scales suggest that the three trait resilience facets emerge, and can be reduced to a 12-item scale. The conceptualization and value of EEA resilience within the wider trait and well-being psychology is illustrated in terms of differing relationships with adaptive expressions of the traits of the five-factor personality model and the contribution to well-being after controlling for personality and coping, or over time. The current findings suggest that EEA resilience is a useful and parsimonious model and measure of trait resilience that can readily be placed within wider trait psychology and that is found to contribute to individual well-being. PMID:26132197
Production of ecosystem services depends on the ecological community structure at a given location. Ecosystem engineering species (EES) can strongly determine community structure, but do they consequently determine the production of ecosystem services? We explore this question ...
Sustainable water management under future uncertainty with eco-engineering decision scaling
NASA Astrophysics Data System (ADS)
Poff, N. Leroy; Brown, Casey M.; Grantham, Theodore E.; Matthews, John H.; Palmer, Margaret A.; Spence, Caitlin M.; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F.; Dominique, Kathleen C.; Baeza, Andres
2016-01-01
Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.
Integrating ecological and engineering concepts of resilience in microbial communities
Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; ...
2015-12-01
We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the twomore » concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.« less
Sustainable water management under future uncertainty with eco-engineering decision scaling
Poff, N LeRoy; Brown, Casey M; Grantham, Theodore E.; Matthews, John H; Palmer, Margaret A.; Spence, Caitlin M; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F; Dominique, Kathleen C; Baeza, Andres
2015-01-01
Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.
Gao, Yuan; Zhang, Chuanrong; He, Qingsong; Liu, Yaolin
2017-06-15
Ecological security is an important research topic, especially urban ecological security. As highly populated eco-systems, cities always have more fragile ecological environments. However, most of the research on urban ecological security in literature has focused on evaluating current or past status of the ecological environment. Very little literature has carried out simulation or prediction of future ecological security. In addition, there is even less literature exploring the urban ecological environment at a fine scale. To fill-in the literature gap, in this study we simulated and predicted urban ecological security at a fine scale (district level) using an improved Cellular Automata (CA) approach. First we used the pressure-state-response (PSR) method based on grid-scale data to evaluate urban ecological security. Then, based on the evaluation results, we imported the geographically weighted regression (GWR) concept into the CA model to simulate and predict urban ecological security. We applied the improved CA approach in a case study-simulating and predicting urban ecological security for the city of Wuhan in Central China. By comparing the simulated ecological security values from 2010 using the improved CA model to the actual ecological security values of 2010, we got a relatively high value of the kappa coefficient, which indicates that this CA model can simulate or predict well future development of ecological security in Wuhan. Based on the prediction results for 2020, we made some policy recommendations for each district in Wuhan.
Managing ecological drought and flood within a nature-based approach. Reality or illusion?
NASA Astrophysics Data System (ADS)
Halbac-Cotoara-Zamfir, Rares; Finger, David; Stolte, Jannes
2017-04-01
Water hazards events, emphasized by an improperly implemented water management, may lead to ecological degradation of ecosystems. Traditional water management has generally sought to dampen the natural variability of water flows in different types of ecosystems to attain steady and dependable water supplies for domestic and industrial uses, irrigation, navigation, and hydropower, and to moderate extreme water conditions such as floods and droughts. Ecological drought can be defined as a prolonged and widespread deficit in available water supplies — including changes in natural and managed hydrology — that create multiple stresses across ecosystems, becomes a critical concern among researchers being a phenomenon much more complex than the other types of drought and requesting a specific approach. The impact of drought on ecosystem services lead to the necessity of identifying and implementing eco-reclamation measures which can generate better ecological answers to droughts. Ecological flood is the type of flood analyzed in full consideration with ecological issues, in the analyze process being approached 4 key aspects: connectivity of water system, landscapes of river and lakes, mobility of water bodies, and safety of flood control. As a consequence, both ecological drought and ecological flood represents high challenges for ecological sustainable water management in the process of identifying structural and non-structural measures for covering human demands without causing affected ecosystems to degrade or simplify. An ecological flood and drought control system will combine both the needs of the ecosystems as well as and flood and drought control measures. The components ecosystems' natural flow regime defined by magnitude, frequency, duration and peak timing (high or low flows) interact to maintain the ecosystem productivity. This productivity can be impaired by altered flow regimes generally due to structural measures designed to control flooding. However, from an ecological perspective, floods are not disasters in the sense that human society typically views them. Considering all previous aspects, it is clear that events like floods and droughts can't be avoided, but the hydrological extremes related to these events can be sustainable managed using a series of actions based on two inter-connected approaches: prevention approach and post-event management approach. The main objective remains the necessity of limiting the consequences of water hazards on socio-economic sectors but also the need of quickly and sustainable recovering after an event like this. However, the question still remains valid: Ecological flood and ecological drought can be managed through a nature-based approach? This paper will focus on a theoretical analysis of these "ecological" hydro-meteorological events and will debate a possible nature-based approach for their sustainable management.
ASSESSING THE ECOLOGICAL CONDITION OF WETLANDS AT THE CATCHMENT SCALE
We describe an approach to assessing the ecological condition of two classes of wetlands in the Nanticoke River watershed, a subwatershed in the Chesapeake Bay drainage of North America. We used the hydrogeomorphic (HGM) approach to assess the ecological condition of wetlands al...
Designing Flood Management Systems for Joint Economic and Ecological Robustness
NASA Astrophysics Data System (ADS)
Spence, C. M.; Grantham, T.; Brown, C. M.; Poff, N. L.
2015-12-01
Freshwater ecosystems across the United States are threatened by hydrologic change caused by water management operations and non-stationary climate trends. Nonstationary hydrology also threatens flood management systems' performance. Ecosystem managers and flood risk managers need tools to design systems that achieve flood risk reduction objectives while sustaining ecosystem functions and services in an uncertain hydrologic future. Robust optimization is used in water resources engineering to guide system design under climate change uncertainty. Using principles introduced by Eco-Engineering Decision Scaling (EEDS), we extend robust optimization techniques to design flood management systems that meet both economic and ecological goals simultaneously across a broad range of future climate conditions. We use three alternative robustness indices to identify flood risk management solutions that preserve critical ecosystem functions in a case study from the Iowa River, where recent severe flooding has tested the limits of the existing flood management system. We seek design modifications to the system that both reduce expected cost of flood damage while increasing ecologically beneficial inundation of riparian floodplains across a wide range of plausible climate futures. The first robustness index measures robustness as the fraction of potential climate scenarios in which both engineering and ecological performance goals are met, implicitly weighting each climate scenario equally. The second index builds on the first by using climate projections to weight each climate scenario, prioritizing acceptable performance in climate scenarios most consistent with climate projections. The last index measures robustness as mean performance across all climate scenarios, but penalizes scenarios with worse performance than average, rewarding consistency. Results stemming from alternate robustness indices reflect implicit assumptions about attitudes toward risk and reveal the tradeoffs between using structural and non-structural flood management strategies to ensure economic and ecological robustness.
NASA Astrophysics Data System (ADS)
Holden, Patricia A.
2017-03-01
Jusup et al. [1] appeal to mathematical physicists, and to biologists, by providing the theoretical basis for dynamic energy budget (DEB) modeling of individual organisms and populations, while emphasizing model simplicity, universality, and applicability to real world problems. Comments herein regard the disciplinary tensions proposed by the authors and suggest that-in addition to important applications in eco- and specifically nano-toxicology-there are opportunities for DEB frameworks to inform relative complexity in microbial ecological process modeling. This commentary also suggests another audience for bridging DEB theory and application-engineers solving environmental problems.
Smith, B R
2009-01-01
Most major cities worldwide face urban water management challenges relating to drinking supply, stormwater and wastewater treatment, and ecological preservation. In light of climate change and finite natural resources, addressing these challenges in sustainable ways will require innovative solutions arising from interdisciplinary collaboration. This article summarizes five major urban water management strategies that bridge the fields of engineering, ecology, landscape architecture, and urban planning. A conceptual implementation of these strategies is demonstrated through a design for a small constructed wetland treatment system in San Francisco, California. The proposed decentralized system described in this article consists of a detention basin, vegetated and open free water surface wetlands, and ultraviolet disinfection. In wet weather, the system would detain and treat combined sewer discharges (CSD), and in dry weather it would treat residential greywater for toilet flushing and irrigation in a nearby neighborhood. It is designed to adapt over time to changing climatic conditions and treatment demands. Importantly, this proposal demonstrates how constructed wetland engineers can incorporate multiple benefits into their systems, offering a vision of how wastewater infrastructure can be an attractive community, educational, recreational, and habitat amenity through the integration of engineering, ecology, and landscape design.
Controlled Ecological Life Support System: Research and Development Guidelines
NASA Technical Reports Server (NTRS)
Mason, R. M. (Editor); Carden, J. L. (Editor)
1982-01-01
Results of a workshop designed to provide a base for initiating a program of research and development of controlled ecological life support systems (CELSS) are summarized. Included are an evaluation of a ground based manned demonstration as a milestone in CELSS development, and a discussion of development requirements for a successful ground based CELSS demonstration. Research recommendations are presented concerning the following topics: nutrition and food processing, food production, waste processing, systems engineering and modelling, and ecology-systems safety.
Research on the energy and ecological efficiency of mechanical equipment remanufacturing systems
NASA Astrophysics Data System (ADS)
Shi, Junli; Cheng, Jinshi; Ma, Qinyi; Wang, Yajun
2017-08-01
According to the characteristics of mechanical equipment remanufacturing system, the dynamic performance of energy consumption and emission is explored, the equipment energy efficiency and emission analysis model is established firstly, and then energy and ecological efficiency analysis method of the remanufacturing system is put forward, at last, the energy and ecological efficiency of WD615.87 automotive diesel engine remanufacturing system as an example is analyzed, the way of energy efficiency improvementnt and environmental friendly mechanism of remanufacturing process is put forward.
Maltby, John; Day, Liz; Hall, Sophie S; Chivers, Sally
2017-10-01
Research suggests that trait resilience may be best understood within an ecological resilient systems theory, comprising engineering, ecological, and adaptive capacity resilience. However, there is no evidence as to how this theory translates to specific life domains. Data from two samples (the United States, n = 1,278; the United Kingdom, n = 211) facilitated five studies that introduce the Domain-Specific Resilient Systems Scales for assessing ecological resilient systems theory within work, health, marriage, friendships, and education. The Domain-Specific Resilient Systems Scales are found to predict unique variance in job satisfaction, lower job burnout, quality-of-life following illness, marriage commitment, and educational engagement, while controlling for factors including sex, age, personality, cognitive ability, and trait resilience. The findings also suggest a distinction between the three resilience dimensions in terms of the types of systems to which they contribute. Engineering resilience may contribute most to life domains where an established system needs to be maintained, for example, one's health. Ecological resilience may contribute most to life domains where the system needs sustainability in terms of present and future goal orientation, for example, one's work. Adaptive Capacity may contribute most to life domains where the system needs to be retained, preventing it from reaching a crisis state, for example, work burnout.
Ecological perspectives on synthetic biology: insights from microbial population biology
Escalante, Ana E.; Rebolleda-Gómez, María; Benítez, Mariana; Travisano, Michael
2015-01-01
The metabolic capabilities of microbes are the basis for many major biotechnological advances, exploiting microbial diversity by selection or engineering of single strains. However, there are limits to the advances that can be achieved with single strains, and attention has turned toward the metabolic potential of consortia and the field of synthetic ecology. The main challenge for the synthetic ecology is that consortia are frequently unstable, largely because evolution by constituent members affects their interactions, which are the basis of collective metabolic functionality. Current practices in modeling consortia largely consider interactions as fixed circuits of chemical reactions, which greatly increases their tractability. This simplification comes at the cost of essential biological realism, stripping out the ecological context in which the metabolic actions occur and the potential for evolutionary change. In other words, evolutionary stability is not engineered into the system. This realization highlights the necessity to better identify the key components that influence the stable coexistence of microorganisms. Inclusion of ecological and evolutionary principles, in addition to biophysical variables and stoichiometric modeling of metabolism, is critical for microbial consortia design. This review aims to bring ecological and evolutionary concepts to the discussion on the stability of microbial consortia. In particular, we focus on the combined effect of spatial structure (connectivity of molecules and cells within the system) and ecological interactions (reciprocal and non-reciprocal) on the persistence of microbial consortia. We discuss exemplary cases to illustrate these ideas from published studies in evolutionary biology and biotechnology. We conclude by making clear the relevance of incorporating evolutionary and ecological principles to the design of microbial consortia, as a way of achieving evolutionarily stable and sustainable systems. PMID:25767468
U.S. EPA 's Office of Research and Development is using a landscape approach to assess the ecological/hydrologic functions of geographically isolated wetlands in the mid-western, southern, and western regions of the United States. Geographically isolated wetlands are considered t...
Ecology and evolution of plant–pollinator interactions
Mitchell, Randall J.; Irwin, Rebecca E.; Flanagan, Rebecca J.; Karron, Jeffrey D.
2009-01-01
Background Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. Scope In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come. PMID:19482881
Ecology and evolution of plant-pollinator interactions.
Mitchell, Randall J; Irwin, Rebecca E; Flanagan, Rebecca J; Karron, Jeffrey D
2009-06-01
Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant-pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant-Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.
NASA Astrophysics Data System (ADS)
Larsen, Annegret; Lane, Stuart; Larsen, Joshua
2017-04-01
Beavers (Castor fiber, Castor canadensis) have the ability to actively engineer their habitat, which they can do most effectively in lower order streams and their floodplains. Hence, this engineering has the potential to alter the hydrology, geomorphology, biogeochemistry, and ecology of river systems and the feedbacks between them. Thus, the beaver is often referred to as an 'ecosystem engineer' and is reflected in their recognition as a key species when restoring ecosystems. This capacity to engineer low order streams also shapes a range of positive and negative perceptions on their influence. On the one hand they may be perceived as capable of undermining existing river engineering schemes and the land use of associated floodplains, and on the other hand beavers may provide an alternative to traditional 'hard' engineering, potentially improving river restoration success. The aim of this review is to summarize research to date on the impacts of beavers on stream and floodplain hydrology, geomorphology, water-quality and ecology, and the feedbacks between them. Our review shows that: (1) research has been focused heavily on North American streams, with far less research outside this North American context; (2) there is a tendency to investigate beaver impacts from the perspective of individual disciplines, to the detriment of considering broader process feedbacks, notably at the interface of hydro-geomorphology and riparian ecology; (3) it remains unclear to which extent beavers genuinely engineered streams prior to human impact, pointing to the need for longer term (millennium scale) studies on how beavers have changed river-floodplain systems. Crucially, we conclude that the investigation of the effects of beavers on streams and floodplains, especially in a longer-term, and their use for river restoration can only be understood through the thorough investigation of antecedent hydro-geomorphic conditions which takes account of the ways in which beavers and humans have interacted together over many centuries.
Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors
Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; Earles, Jennifer E.; Phillips, Jana; Joyner, Dominique C.; Elias, Dwayne A.; Bailey, Kathryn L.; Hurt, Richard A.; Preheim, Sarah P.; Sanders, Matthew C.; Yang, Joy; Mueller, Marcella A.; Brooks, Scott; Watson, David B.; Zhang, Ping; He, Zhili; Dubinsky, Eric A.; Adams, Paul D.; Arkin, Adam P.; Fields, Matthew W.; Zhou, Jizhong; Alm, Eric J.
2015-01-01
ABSTRACT Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. PMID:25968645
Ecological literacy and beyond: Problem-based learning for future professionals.
Lewinsohn, Thomas M; Attayde, José Luiz; Fonseca, Carlos Roberto; Ganade, Gislene; Jorge, Leonardo Ré; Kollmann, Johannes; Overbeck, Gerhard E; Prado, Paulo Inácio; Pillar, Valério D; Popp, Daniela; da Rocha, Pedro L B; Silva, Wesley Rodrigues; Spiekermann, Annette; Weisser, Wolfgang W
2015-03-01
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.
Man and the Environment: The Need for a More Realistic Approach to Teaching Ecology.
ERIC Educational Resources Information Center
Evans, Stewart M.
1988-01-01
This article argues that Biology syllabi give insufficient attention to the role humans play in the ecological processes and interactions with their environment. Discussed are ecological studies in urban and managed habitats, using a multidisciplinary approach, and including a global perspective. (CW)
U.S. EPA is using a landscape ecology approach to assess the ecological/hydrologic functions and related human values of depressional wetlands along coastal Texas, considered to be vulnerable to human disturbance. Many of those wetlands may be at high risk because of recent court...
ERIC Educational Resources Information Center
Hodges, Bert H.
2007-01-01
Ecological approaches (e.g. [Gibson, J.J., 1979. "The Ecological Approach to Visual Perception." Houghton-Mifflin, Boston]) to psychology and language are selectively reviewed, focusing on social learning. Is social learning (e.g., acquiring language) a matter of conformity [Tomasello, M., 2006. "Acquiring linguistic…
Baer, H A
1996-12-01
This essay presents an effort to incorporate the "environment" into critical medical anthropology. Rather than relying upon the multifactorial approach characteristic of medical ecology or biocultural approaches in medical anthropology, it urges critical medical anthropologists to turn to the burgeoning literature on eco-Marxism, eco-socialism, or political ecology in their efforts to develop a political ecology of health. Given that political ecologists generally advocate democratic eco-socialism as a meaningful alternative to the capitalist world system, this essay also presents a critical examination of the environmental record of post-revolutionary societies.
An integrated remote sensing approach for identifying ecological range sites. [parker mountain
NASA Technical Reports Server (NTRS)
Jaynes, R. A.
1983-01-01
A model approach for identifying ecological range sites was applied to high elevation sagebrush-dominated rangelands on Parker Mountain, in south-central Utah. The approach utilizes map information derived from both high altitude color infrared photography and LANDSAT digital data, integrated with soils, geological, and precipitation maps. Identification of the ecological range site for a given area requires an evaluation of all relevant environmental factors which combine to give that site the potential to produce characteristic types and amounts of vegetation. A table is presented which allows the user to determine ecological range site based upon an integrated use of the maps which were prepared. The advantages of identifying ecological range sites through an integrated photo interpretation/LANDSAT analysis are discussed.
The power of simplicity: a fast-and-frugal heuristics approach to performance science.
Raab, Markus; Gigerenzer, Gerd
2015-01-01
Performance science is a fairly new multidisciplinary field that integrates performance domains such as sports, medicine, business, and the arts. To give its many branches a structure and its research a direction, it requires a theoretical framework. We demonstrate the applications of this framework with examples from sport and medicine. Because performance science deals mainly with situations of uncertainty rather than known risks, the needed framework can be provided by the fast-and-frugal heuristics approach. According to this approach, experts learn to rely on heuristics in an adaptive way in order to make accurate decisions. We investigate the adaptive use of heuristics in three ways: the descriptive study of the heuristics in the cognitive "adaptive toolbox;" the prescriptive study of their "ecological rationality," that is, the characterization of the situations in which a given heuristic works; and the engineering study of "intuitive design," that is, the design of transparent aids for making better decisions.
The power of simplicity: a fast-and-frugal heuristics approach to performance science
Raab, Markus; Gigerenzer, Gerd
2015-01-01
Performance science is a fairly new multidisciplinary field that integrates performance domains such as sports, medicine, business, and the arts. To give its many branches a structure and its research a direction, it requires a theoretical framework. We demonstrate the applications of this framework with examples from sport and medicine. Because performance science deals mainly with situations of uncertainty rather than known risks, the needed framework can be provided by the fast-and-frugal heuristics approach. According to this approach, experts learn to rely on heuristics in an adaptive way in order to make accurate decisions. We investigate the adaptive use of heuristics in three ways: the descriptive study of the heuristics in the cognitive “adaptive toolbox;” the prescriptive study of their “ecological rationality,” that is, the characterization of the situations in which a given heuristic works; and the engineering study of “intuitive design,” that is, the design of transparent aids for making better decisions. PMID:26579051
Management applications of discontinuity theory | Science ...
1.Human impacts on the environment are multifaceted and can occur across distinct spatiotemporal scales. Ecological responses to environmental change are therefore difficult to predict, and entail large degrees of uncertainty. Such uncertainty requires robust tools for management to sustain ecosystem goods and services and maintain resilient ecosystems. 2.We propose an approach based on discontinuity theory that accounts for patterns and processes at distinct spatial and temporal scales, an inherent property of ecological systems. Discontinuity theory has not been applied in natural resource management and could therefore improve ecosystem management because it explicitly accounts for ecological complexity. 3.Synthesis and applications. We highlight the application of discontinuity approaches for meeting management goals. Specifically, discontinuity approaches have significant potential to measure and thus understand the resilience of ecosystems, to objectively identify critical scales of space and time in ecological systems at which human impact might be most severe, to provide warning indicators of regime change, to help predict and understand biological invasions and extinctions and to focus monitoring efforts. Discontinuity theory can complement current approaches, providing a broader paradigm for ecological management and conservation This manuscript provides insight on using discontinuity approaches to aid in managing complex ecological systems. In part
Beiras, Ricardo; Durán, Iria
2014-12-01
Some relevant shortcomings have been identified in the current approach for the classification of ecological status in marine water bodies, leading to delays in the fulfillment of the Water Framework Directive objectives. Natural variability makes difficult to settle fixed reference values and boundary values for the Ecological Quality Ratios (EQR) for the biological quality elements. Biological responses to environmental degradation are frequently of nonmonotonic nature, hampering the EQR approach. Community structure traits respond only once ecological damage has already been done and do not provide early warning signals. An alternative methodology for the classification of ecological status integrating chemical measurements, ecotoxicological bioassays and community structure traits (species richness and diversity), and using multivariate analyses (multidimensional scaling and cluster analysis), is proposed. This approach does not depend on the arbitrary definition of fixed reference values and EQR boundary values, and it is suitable to integrate nonlinear, sensitive signals of ecological degradation. As a disadvantage, this approach demands the inclusion of sampling sites representing the full range of ecological status in each monitoring campaign. National or international agencies in charge of coastal pollution monitoring have comprehensive data sets available to overcome this limitation.
NASA Astrophysics Data System (ADS)
Rao, Yunzhang; Gu, Ruizhi; Guo, Ruikai; Zhang, Xueyan
2017-01-01
Whereas mining activities produce the raw materials that are crucial to economic growth, such activities leave extensive scarring on the land, contributing to the waste of valuable land resources and upsetting the ecological environment. The aim of this study is therefore to investigate various ecological technologies to restore metallurgical mine wastelands. These technologies include measures such as soil amelioration, vegetation restoration, different vegetation planting patterns, and engineering technologies. The Longnan Rare Earth Mine in the Jiangxi Province of China is used as the case study. The ecological restoration process provides a favourable reference for the restoration of a metallurgical mine wasteland.
Application of Microfluidics in Experimental Ecology: The Importance of Being Spatial.
Nagy, Krisztina; Ábrahám, Ágnes; Keymer, Juan E; Galajda, Péter
2018-01-01
Microfluidics is an emerging technology that is used more and more in biology experiments. Its capabilities of creating precisely controlled conditions in cellular dimensions make it ideal to explore cell-cell and cell-environment interactions. Thus, a wide spectrum of problems in microbial ecology can be studied using engineered microbial habitats. Moreover, artificial microfluidic ecosystems can serve as model systems to test ecology theories and principles that apply on a higher level in the hierarchy of biological organization. In this mini review we aim to demonstrate the versatility of microfluidics and the diversity of its applications that help the advance of microbiology, and in more general, experimental ecology.
Engineered nanoparticles represent a unique hazard to human health and the environment because their inherent characteristics differ significantly from commonly used chemicals and bulk forms of materials. The U.S. Environmental Protection Agency (EPA) is responsible for protecti...
The rapidly expanding field of nanotechnology is introducing a large number and diversity of engineered nanomaterials into research and commerce with concordant uncertainty regarding the potential adverse health and ecological effects. With costs and time of traditional animal to...
Monitoring automotive oil degradation: analytical tools and onboard sensing technologies.
Mujahid, Adnan; Dickert, Franz L
2012-09-01
Engine oil experiences a number of thermal and oxidative phases that yield acidic products in the matrix consequently leading to degradation of the base oil. Generally, oil oxidation is a complex process and difficult to elucidate; however, the degradation pathways can be defined for almost every type of oil because they mainly depend on the mechanical status and operating conditions. The exact time of oil change is nonetheless difficult to predict, but it is of great interest from an economic and ecological point of view. In order to make a quick and accurate decision about oil changes, onboard assessment of oil quality is highly desirable. For this purpose, a variety of physical and chemical sensors have been proposed along with spectroscopic strategies. We present a critical review of all these approaches and of recent developments to analyze the exact lifetime of automotive engine oil. Apart from their potential for degradation monitoring, their limitations and future perspectives have also been investigated.
Complexity in Nature and Society: Complexity Management in the Age of Globalization
NASA Astrophysics Data System (ADS)
Mainzer, Klaus
The theory of nonlinear complex systems has become a proven problem-solving approach in the natural sciences from cosmic and quantum systems to cellular organisms and the brain. Even in modern engineering science self-organizing systems are developed to manage complex networks and processes. It is now recognized that many of our ecological, social, economic, and political problems are also of a global, complex, and nonlinear nature. What are the laws of sociodynamics? Is there a socio-engineering of nonlinear problem solving? What can we learn from nonlinear dynamics for complexity management in social, economic, financial and political systems? Is self-organization an acceptable strategy to handle the challenges of complexity in firms, institutions and other organizations? It is a main thesis of the talk that nature and society are basically governed by nonlinear and complex information dynamics. How computational is sociodynamics? What can we hope for social, economic and political problem solving in the age of globalization?.
Natural shorelines promote the stability of fish communities in an urbanized coastal system.
Scyphers, Steven B; Gouhier, Tarik C; Grabowski, Jonathan H; Beck, Michael W; Mareska, John; Powers, Sean P
2015-01-01
Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions.
Natural Shorelines Promote the Stability of Fish Communities in an Urbanized Coastal System
Scyphers, Steven B.; Gouhier, Tarik C.; Grabowski, Jonathan H.; Beck, Michael W.; Mareska, John; Powers, Sean P.
2015-01-01
Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions. PMID:26039407
Engineering Ecosystems and Synthetic Ecologies#
Mee, Michael T; Wang, Harris H
2012-01-01
Microbial ecosystems play an important role in nature. Engineering these systems for industrial, medical, or biotechnological purposes are important pursuits for synthetic biologists and biological engineers moving forward. Here, we provide a review of recent progress in engineering natural and synthetic microbial ecosystems. We highlight important forward engineering design principles, theoretical and quantitative models, new experimental and manipulation tools, and possible applications of microbial ecosystem engineering. We argue that simply engineering individual microbes will lead to fragile homogenous populations that are difficult to sustain, especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and temporal resolution needed for truly programmable biology. PMID:22722235
Social-Ecological Resilience and Environmental Education: Synopsis, Application, Implications
ERIC Educational Resources Information Center
Plummer, Ryan
2010-01-01
The resilience approach is rooted in ecology and is being advanced as a means to understand change in social-ecological systems. How can resilience be applied to understanding change in social systems, including in environmental education? In probing this question the main resilience approaches are described, the manner in which they may be…
Ecology of Mind: A Batesonian Systems Thinking Approach to Curriculum Enactment
ERIC Educational Resources Information Center
Bloom, Jeffrey W.
2012-01-01
This article proposes a Batesonian systems thinking and ecology of mind approach to enacting curriculum. The key ideas for the model include ecology of mind, relationships, systems, systems thinking, pattern thinking, abductive thinking, and context. These ideas provide a basis for a recursive, three-part model involving developing (a) depth of…
Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai
2015-12-01
In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. © 2015 Authors; published by Portland Press Limited.
Veselov, E I
2011-01-01
The article deals with specifying systemic approach to ecologic safety of objects with radiation jeopardy. The authors presented stages of work and algorithm of decisions on preserving reliability of storage for radiation jeopardy waste. Findings are that providing ecologic safety can cover 3 approaches: complete exemption of radiation jeopardy waste, removal of more dangerous waste from present buildings and increasing reliability of prolonged localization of radiation jeopardy waste at the initial place. The systemic approach presented could be realized at various radiation jeopardy objects.
NASA Astrophysics Data System (ADS)
Kim, J.
2016-12-01
Considering high levels of uncertainty, epistemological conflicts over facts and values, and a sense of urgency, normal paradigm-driven science will be insufficient to mobilize people and nation toward sustainability. The conceptual framework to bridge the societal system dynamics with that of natural ecosystems in which humanity operates remains deficient. The key to understanding their coevolution is to understand `self-organization.' Information-theoretic approach may shed a light to provide a potential framework which enables not only to bridge human and nature but also to generate useful knowledge for understanding and sustaining the integrity of ecological-societal systems. How can information theory help understand the interface between ecological systems and social systems? How to delineate self-organizing processes and ensure them to fulfil sustainability? How to evaluate the flow of information from data through models to decision-makers? These are the core questions posed by sustainability science in which visioneering (i.e., the engineering of vision) is an essential framework. Yet, visioneering has neither quantitative measure nor information theoretic framework to work with and teach. This presentation is an attempt to accommodate the framework of self-organizing hierarchical open systems with visioneering into a common information-theoretic framework. A case study is presented with the UN/FAO's communal vision of climate-smart agriculture (CSA) which pursues a trilemma of efficiency, mitigation, and resilience. Challenges of delineating and facilitating self-organizing systems are discussed using transdisciplinary toold such as complex systems thinking, dynamic process network analysis and multi-agent systems modeling. Acknowledgments: This study was supported by the Korea Meteorological Administration Research and Development Program under Grant KMA-2012-0001-A (WISE project).
Harris, Meagan J; Stinson, Jonah; Landis, Wayne G
2017-07-01
We conducted a regional-scale integrated ecological and human health risk assessment by applying the relative risk model with Bayesian networks (BN-RRM) to a case study of the South River, Virginia mercury-contaminated site. Risk to four ecological services of the South River (human health, water quality, recreation, and the recreational fishery) was evaluated using a multiple stressor-multiple endpoint approach. These four ecological services were selected as endpoints based on stakeholder feedback and prioritized management goals for the river. The BN-RRM approach allowed for the calculation of relative risk to 14 biotic, human health, recreation, and water quality endpoints from chemical and ecological stressors in five risk regions of the South River. Results indicated that water quality and the recreational fishery were the ecological services at highest risk in the South River. Human health risk for users of the South River was low relative to the risk to other endpoints. Risk to recreation in the South River was moderate with little spatial variability among the five risk regions. Sensitivity and uncertainty analysis identified stressors and other parameters that influence risk for each endpoint in each risk region. This research demonstrates a probabilistic approach to integrated ecological and human health risk assessment that considers the effects of chemical and ecological stressors across the landscape. © 2017 Society for Risk Analysis.
Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...
ERIC Educational Resources Information Center
McNichol, Heidi; Davis, Julie Margaret; O'Brien, Katherine R.
2011-01-01
In this study, engineers and educators worked together to adapt and apply the ecological footprint (EF) methodology to an early learning centre in Brisbane, Australia. Results were analysed to determine how environmental impact can be reduced at the study site and more generally across early childhood settings. It was found that food, transport…
REECo activities and sample logistics in support of the Nevada Applied Ecology Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wireman, D.L.; Rosenberry, C.E. Jr.; White, M.G.
Activities and sample logistics of Reynolds Electrical and Engineering Co., Inc. (REECo), in support of the Nevada Applied Ecology Group (NAEG), are discussed in this summary report. Activities include the collection, preparation, and shipment of samples of soils, vegetation, and small animals collected at Pu-contaminated areas of the Nevada Test Site and Tonopah Test Range. (CH)
Durantin, Gautier; Scannella, Sébastien; Gateau, Thibault; Delorme, Arnaud; Dehais, Frédéric
2015-01-01
Working memory (WM) is a key executive function for operating aircraft, especially when pilots have to recall series of air traffic control instructions. There is a need to implement tools to monitor WM as its limitation may jeopardize flight safety. An innovative way to address this issue is to adopt a Neuroergonomics approach that merges knowledge and methods from Human Factors, System Engineering, and Neuroscience. A challenge of great importance for Neuroergonomics is to implement efficient brain imaging techniques to measure the brain at work and to design Brain Computer Interfaces (BCI). We used functional near infrared spectroscopy as it has been already successfully tested to measure WM capacity in complex environment with air traffic controllers (ATC), pilots, or unmanned vehicle operators. However, the extraction of relevant features from the raw signal in ecological environment is still a critical issue due to the complexity of implementing real-time signal processing techniques without a priori knowledge. We proposed to implement the Kalman filtering approach, a signal processing technique that is efficient when the dynamics of the signal can be modeled. We based our approach on the Boynton model of hemodynamic response. We conducted a first experiment with nine participants involving a basic WM task to estimate the noise covariances of the Kalman filter. We then conducted a more ecological experiment in our flight simulator with 18 pilots who interacted with ATC instructions (two levels of difficulty). The data was processed with the same Kalman filter settings implemented in the first experiment. This filter was benchmarked with a classical pass-band IIR filter and a Moving Average Convergence Divergence (MACD) filter. Statistical analysis revealed that the Kalman filter was the most efficient to separate the two levels of load, by increasing the observed effect size in prefrontal areas involved in WM. In addition, the use of a Kalman filter increased the performance of the classification of WM levels based on brain signal. The results suggest that Kalman filter is a suitable approach for real-time improvement of near infrared spectroscopy signal in ecological situations and the development of BCI.
Durantin, Gautier; Scannella, Sébastien; Gateau, Thibault; Delorme, Arnaud; Dehais, Frédéric
2016-01-01
Working memory (WM) is a key executive function for operating aircraft, especially when pilots have to recall series of air traffic control instructions. There is a need to implement tools to monitor WM as its limitation may jeopardize flight safety. An innovative way to address this issue is to adopt a Neuroergonomics approach that merges knowledge and methods from Human Factors, System Engineering, and Neuroscience. A challenge of great importance for Neuroergonomics is to implement efficient brain imaging techniques to measure the brain at work and to design Brain Computer Interfaces (BCI). We used functional near infrared spectroscopy as it has been already successfully tested to measure WM capacity in complex environment with air traffic controllers (ATC), pilots, or unmanned vehicle operators. However, the extraction of relevant features from the raw signal in ecological environment is still a critical issue due to the complexity of implementing real-time signal processing techniques without a priori knowledge. We proposed to implement the Kalman filtering approach, a signal processing technique that is efficient when the dynamics of the signal can be modeled. We based our approach on the Boynton model of hemodynamic response. We conducted a first experiment with nine participants involving a basic WM task to estimate the noise covariances of the Kalman filter. We then conducted a more ecological experiment in our flight simulator with 18 pilots who interacted with ATC instructions (two levels of difficulty). The data was processed with the same Kalman filter settings implemented in the first experiment. This filter was benchmarked with a classical pass-band IIR filter and a Moving Average Convergence Divergence (MACD) filter. Statistical analysis revealed that the Kalman filter was the most efficient to separate the two levels of load, by increasing the observed effect size in prefrontal areas involved in WM. In addition, the use of a Kalman filter increased the performance of the classification of WM levels based on brain signal. The results suggest that Kalman filter is a suitable approach for real-time improvement of near infrared spectroscopy signal in ecological situations and the development of BCI. PMID:26834607
National Research Program of the Water Resources Division, U.S. Geological Survey: Fiscal Year 1988
Friedman, Linda C.; Donato, Christine N.
1989-01-01
The National Research Program (NRP) of the US Geological Survey 's Water Resources Division (WRD) had its beginnings in the late 1950 's when ' core research ' was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, ecology, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation 's water resources. The NRP is located principally in Reston, VA, Denver, CO, and Menlo Park , CA. The NRP is subdivided into six disciplines as follows: (1) Ecology; (2) Geomorphology and Sediment Transport; (3) Groundwater Chemistry; (4) Groundwater Hydrology; (5) Surface Water Chemistry; and (6) Surface Water Hydrology. The report provides current information about the NRP on an annual basis. Organized by the six research disciplines, the volume contains a summary of the problem, objective, approach, and progress for each project that was active during fiscal year 1988.
S.T.A. Pickett; M.L. Cadenasso; M.J. Grove; C.H. Nilon; R.V. Pouyat; W.C. Zipperer
2001-01-01
Ecological studies of terrestrial urban systems have been approached along several kinds of contrasts: ecology in as opposed to ecology of cities; biogeochemical compared to organismal perspectives, land use planning versus biological, and disciplinary versus interdisciplinary. In order to point out how urban ecological studies are poised for significant integration,...
Reuter, H.; Jopp, F.; Blanco-Moreno, J. M.; Damgaard, C.; Matsinos, Y.; DeAngelis, D.L.
2010-01-01
A continuing discussion in applied and theoretical ecology focuses on the relationship of different organisational levels and on how ecological systems interact across scales. We address principal approaches to cope with complex across-level issues in ecology by applying elements of hierarchy theory and the theory of complex adaptive systems. A top-down approach, often characterised by the use of statistical techniques, can be applied to analyse large-scale dynamics and identify constraints exerted on lower levels. Current developments are illustrated with examples from the analysis of within-community spatial patterns and large-scale vegetation patterns. A bottom-up approach allows one to elucidate how interactions of individuals shape dynamics at higher levels in a self-organisation process; e.g., population development and community composition. This may be facilitated by various modelling tools, which provide the distinction between focal levels and resulting properties. For instance, resilience in grassland communities has been analysed with a cellular automaton approach, and the driving forces in rodent population oscillations have been identified with an agent-based model. Both modelling tools illustrate the principles of analysing higher level processes by representing the interactions of basic components.The focus of most ecological investigations on either top-down or bottom-up approaches may not be appropriate, if strong cross-scale relationships predominate. Here, we propose an 'across-scale-approach', closely interweaving the inherent potentials of both approaches. This combination of analytical and synthesising approaches will enable ecologists to establish a more coherent access to cross-level interactions in ecological systems. ?? 2010 Gesellschaft f??r ??kologie.
Space Power Engineering Problems
NASA Astrophysics Data System (ADS)
Senkevich, V. P.
2002-01-01
Development of space power engineering in the first half of XXI century shall be aimed at preventing the forthcoming energy crisis and ecological catastrophes. The problem can be solved through using solar energy being perpetual, endless, and ecologically safe. As of now, issues on the development and employment of solar power stations and its beaming to the ground stations in the SHF band are put on the agenda. The most pressing problem is to develop orbital solar reflectors to illuminate towns in the polar regions, agricultural regions, and areas of processing sea products. Space-based technologies can be used to deal with typhoons, green house effects, and "ozone holes". Recently, large, frameless film structures formed by centrifugal forces offer the promise of structures for orbital power plants, reflectors, and solar sails. A big success is achieved in the development of power generating solar array elements of amorphous silicon. These innovations would make the development of orbital solar power plants dozens of times cheaper. Such solar arrays shall be used in the nearest future on heavy communication satellites and the Earth remote sensing platforms for generation of 140-160 kW at a specific power beyond 300 W/kg. The cargo traffic needed to develop and maintain the orbital power plants and reflector systems could be equipped with solar sails as the future low thrust propulsion. In 2000, the mankind witnessed an unexpected beginning of energy crisis along with strong hydro- meteorological events (typhoons, floods) that shocked the USA, the Western Europe, England, Japan, and other countries. The total damage is estimated as 90 billions of dollars. The mankind is approaching a boundary beyond which its further existence would depend on how people would learn to control weather and use ecologically safe power sources. Space technology base on the research potential accumulated in the previous century could serve for the solution of this problem.
Techno-ecological synergy: a framework for sustainable engineering.
Bakshi, Bhavik R; Ziv, Guy; Lepech, Michael D
2015-02-03
Even though the importance of ecosystems in sustaining all human activities is well-known, methods for sustainable engineering fail to fully account for this role of nature. Most methods account for the demand for ecosystem services, but almost none account for the supply. Incomplete accounting of the very foundation of human well-being can result in perverse outcomes from decisions meant to enhance sustainability and lost opportunities for benefiting from the ability of nature to satisfy human needs in an economically and environmentally superior manner. This paper develops a framework for understanding and designing synergies between technological and ecological systems to encourage greater harmony between human activities and nature. This framework considers technological systems ranging from individual processes to supply chains and life cycles, along with corresponding ecological systems at multiple spatial scales ranging from local to global. The demand for specific ecosystem services is determined from information about emissions and resource use, while the supply is obtained from information about the capacity of relevant ecosystems. Metrics calculate the sustainability of individual ecosystem services at multiple spatial scales and help define necessary but not sufficient conditions for local and global sustainability. Efforts to reduce ecological overshoot encourage enhancement of life cycle efficiency, development of industrial symbiosis, innovative designs and policies, and ecological restoration, thus combining the best features of many existing methods. Opportunities for theoretical and applied research to make this framework practical are also discussed.
Thermodynamic and themoeconomic optimization of isothermal endoreversible chemical engine models
NASA Astrophysics Data System (ADS)
Ocampo-García, A.; Barranco-Jiménez, M. A.; Angulo-Brown, F.
2017-12-01
A branch of finite-time thermodynamics (FTT) is the thermoeconomical analysis of simplified power plant models. The most studied models are those of the Curzon-Ahlborn (CA) and Novikov-Chambadal types. In the decade of 90's of the past century, the FTT analysis of thermal engines was extended to chemical engines. In the present paper we made a thermoeconomical analysis of heat engines and chemical engines of the CA and Novikov types. This study is carried out for isothermal endoreversible chemical engine models with a linear mass transfer law and under three different modes of thermodynamic performance (maximum power, maximum ecological function and maximum efficient power).
The blue mud shrimp, Upogebia pugettensis, the bay ghost shrimp, Neotrypaea californiensis, and eelgrass, Zostera marina are endemic ecosystem engineers that define the ecological structure and function of estuaries along the Pacific coast of the US as significantly as do marshes...
Going "Green": Environmental Jobs for Scientists and Engineers
ERIC Educational Resources Information Center
Ramey, Alice
2009-01-01
Green is often used as a synonym for environmental or ecological, especially as it relates to products and activities aimed at minimizing damage to the planet. Scientists and engineers have long had important roles in the environmental movement. Their expertise is focused on a variety of issues, including increasing energy efficiency, improving…
US EPA's Ecological Risk Assessment Support Center ...
BackgroundThe ERASC provides technical information and addresses scientific questions of concern or interest on topics relevant to ecological risk assessment at hazardous waste sites for EPA's Office of Solid Waste and Emergency Response (OSWER) personnel and the Office of Resource Conservation and Recovery (ORCR) staff. Requests are channeled to ERASC through the Ecological Risk Assessment Forum (ERAF). To assess emerging and complex scientific issues that require expert judgment, the ERASC relies on the expertise of scientists and engineers located throughout EPA's Office of Research and Development (ORD) labs and centers.ResponseERASC develops responses that reflect the state of the science for ecological risk assessment and also provides a communication point for the distribution of the responses to other interested parties. For further information, contact Ecology_ERASC@epa.gov or call 513-569-7940.
Huang, Yu; Sun, Jie; Li, Aimin; Xie, Xianchuan
2018-05-01
In this study, an integrated approach named the '333' strategy was applied to pollution control in the Jialu River, in northern China, which is heavily burdened with anthropogenic pollution. Due to a deficiency of the natural ecological inflow, the Jialu River receives predominantly industrial and municipal effluent. The '333' strategy is composed of three steps of pollution control including industrial point-source pollution control, advanced treatment of municipal wastewater, and ecological restoration; three increased stringency emission standards; and three stages of reclamation. Phase 1 of the '333' strategy focuses on industrial point-source pollution control; phase 2 aims to harness municipal wastewater and minimize sewage effluents using novel techniques for advanced water purification; phase 3 of the '333' strategy focuses on the further purification of effluents flowing into Jialu River with the employment of an engineering-based ecological restoration project. The application of the '333' strategy resulted in the development of novel techniques for water purification including modified magnetic resins (NDMP resin), a two-stage internal circulation anaerobic reactor (IC reactor) and an ecological restoration system. The results indicate that water quality in the river was significantly improved, with increased concentrations of dissolved oxygen (DO), as well as reduction of COD by 42.8% and NH 3 -N by 61.4%. In addition, it was observed that the total population of phytoplankton in treated river water notably increased from only one prior to restoration to 8 following restoration. This system also provides a tool for pollution control of other similar industrial and anthropogenic source polluted rivers.
Reguero, Borja G; Beck, Michael W; Agostini, Vera N; Kramer, Philip; Hancock, Boze
2018-03-15
Coastal communities in tropical environments are at increasing risk from both environmental degradation and climate change and require urgent local adaptation action. Evidences show coral reefs play a critical role in wave attenuation but relatively little direct connection has been drawn between these effects and impacts on shorelines. Reefs are rarely assessed for their coastal protection service and thus not managed for their infrastructure benefits, while widespread damage and degradation continues. This paper presents a systematic approach to assess the protective role of coral reefs and to examine solutions based on the reef's influence on wave propagation patterns. Portions of the shoreline of Grenville Bay, Grenada, have seen acute shoreline erosion and coastal flooding. This paper (i) analyzes the historical changes in the shoreline and the local marine, (ii) assess the role of coral reefs in shoreline positioning through a shoreline equilibrium model first applied to coral reef environments, and (iii) design and begin implementation of a reef-based solution to reduce erosion and flooding. Coastline changes in the bay over the past 6 decades are analyzed from bathymetry and benthic surveys, historical imagery, historical wave and sea level data and modeling of wave dynamics. The analysis shows that, at present, the healthy and well-developed coral reefs system in the southern bay keeps the shoreline in equilibrium and stable, whereas reef degradation in the northern bay is linked with severe coastal erosion. A comparison of wave energy modeling for past bathymetry indicates that degradation of the coral reefs better explains erosion than changes in climate and historical sea level rise. Using this knowledge on how reefs affect the hydrodynamics, a reef restoration solution is designed and studied to ameliorate the coastal erosion and flooding. A characteristic design provides a modular design that can meet specific engineering, ecological and implementation criteria. Four pilot units were implemented in 2015 and are currently being field-tested. This paper presents one of the few existing examples available to date of a reef restoration project designed and engineered to deliver risk reduction benefits. The case study shows how engineering and ecology can work together in community-based adaptation. Our findings are particularly important for Small Island States on the front lines of climate change, who have the most to gain from protecting and managing coral reefs as coastal infrastructure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Baier, André
2013-12-01
A group of engineering students at the Technical University of Berlin, Germany, designed a course on engineering ethics. The core element of the developed Blue Engineering course are self-contained teaching-units, "building blocks". These building blocks typically cover one complex topic and make use of various teaching methods using moderators who lead discussions, rather than experts who lecture. Consequently, the students themselves started to offer the credited course to their fellow students who take an active role in further developing the course themselves.
Cumming, Graeme S; Allen, Craig R
2017-09-01
Conservation biology and applied ecology increasingly recognize that natural resource management is both an outcome and a driver of social, economic, and ecological dynamics. Protected areas offer a fundamental approach to conserving ecosystems, but they are also social-ecological systems whose ecological management and sustainability are heavily influenced by people. This editorial, and the papers in the invited feature that it introduces, discuss three emerging themes in social-ecological systems approaches to understanding protected areas: (1) the resilience and sustainability of protected areas, including analyses of their internal dynamics, their effectiveness, and the resilience of the landscapes within which they occur; (2) the relevance of spatial context and scale for protected areas, including such factors as geographic connectivity, context, exchanges between protected areas and their surrounding landscapes, and scale dependency in the provision of ecosystem services; and (3) efforts to reframe what protected areas are and how they both define and are defined by the relationships of people and nature. These emerging themes have the potential to transform management and policy approaches for protected areas and have important implications for conservation, in both theory and practice. © 2017 by the Ecological Society of America.
A non-extensive thermodynamic theory of ecological systems
NASA Astrophysics Data System (ADS)
Van Xuan, Le; Khac Ngoc, Nguyen; Lan, Nguyen Tri; Viet, Nguyen Ai
2017-06-01
After almost 30 years of development, it is not controversial issue that the so-called Tsallis entropy provides a useful approach to studying the complexity where the non-additivity of the systems under consideration is frequently met. Also, in the ecological research, Tsallis entropy, or in other words, q-entropy has been found itself as a generalized approach to define a range of diversity indices including Shannon-Wiener and Simpson indices. As a further stage of development in theoretical research, a thermodynamic theory based on Tsallis entropy or diversity indices in ecology has to be constructed for ecological systems to provide knowledge of ecological macroscopic behaviors. The standard method of theoretical physics is used in the manipulation and the equivalence between phenomenological thermodynamics and ecological aspects is the purpose of the ongoing research. The present work is in the line of the authors research to implement Tsallis non-extensivity approach to obtain the most important thermodynamic quantities of ecological systems such as internal energy Uq and temperature Tq based on a given modeled truncated Boltzmann distribution of the Whittaker plot for a dataset. These quantities have their own ecological meaning, especially the temperature Tq provides the insight of equilibrium condition among ecological systems as it is well-known in 0th law of thermodynamics.
Peng, Changhui; Guiot, Joel; Wu, Haibin; Jiang, Hong; Luo, Yiqi
2011-05-01
It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process-based ecological models and data in cohesive, systematic ways. Model-data fusion (MDF) is an emerging area of research in ecology and palaeoecology. It provides a new quantitative approach that offers a high level of empirical constraint over model predictions based on observations using inverse modelling and data assimilation (DA) techniques. Increasing demands to integrate model and data methods in the past decade has led to MDF utilization in palaeoecology, ecology and earth system sciences. This paper reviews key features and principles of MDF and highlights different approaches with regards to DA. After providing a critical evaluation of the numerous benefits of MDF and its current applications in palaeoecology (i.e., palaeoclimatic reconstruction, palaeovegetation and palaeocarbon storage) and ecology (i.e. parameter and uncertainty estimation, model error identification, remote sensing and ecological forecasting), the paper discusses method limitations, current challenges and future research direction. In the ongoing data-rich era of today's world, MDF could become an important diagnostic and prognostic tool in which to improve our understanding of ecological processes while testing ecological theory and hypotheses and forecasting changes in ecosystem structure, function and services. © 2011 Blackwell Publishing Ltd/CNRS.
FY 1999 Laboratory Directed Research and Development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
PJ Hughes
2000-06-13
A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.
Abbas, Farhat; Ke, Yanguo; Yu, Rangcai; Yue, Yuechong; Amanullah, Sikandar; Jahangir, Muhammad Muzammil; Fan, Yanping
2017-11-01
Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.
Weston, David J.; Turetsky, Merritt R.; Johnson, Matthew G.; ...
2017-10-27
Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even ‘extend’ to influence community structure and ecosystem level processes. The progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Therefore, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. We introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration,more » biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.« less
Ecological risks of DOE`s programmatic environmental restoration alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representativemore » facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, David J.; Turetsky, Merritt R.; Johnson, Matthew G.
Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even ‘extend’ to influence community structure and ecosystem level processes. The progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Therefore, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. We introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration,more » biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.« less
Weston, David J; Turetsky, Merritt R; Johnson, Matthew G; Granath, Gustaf; Lindo, Zoë; Belyea, Lisa R; Rice, Steven K; Hanson, David T; Engelhardt, Katharina A M; Schmutz, Jeremy; Dorrepaal, Ellen; Euskirchen, Eugénie S; Stenøien, Hans K; Szövényi, Péter; Jackson, Michelle; Piatkowski, Bryan T; Muchero, Wellington; Norby, Richard J; Kostka, Joel E; Glass, Jennifer B; Rydin, Håkan; Limpens, Juul; Tuittila, Eeva-Stiina; Ullrich, Kristian K; Carrell, Alyssa; Benscoter, Brian W; Chen, Jin-Gui; Oke, Tobi A; Nilsson, Mats B; Ranjan, Priya; Jacobson, Daniel; Lilleskov, Erik A; Clymo, R S; Shaw, A Jonathan
2018-01-01
Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses. © 2017 UT-Battelle New Phytologist © 2017 New Phytologist Trust.
The true meaning of 'exotic species' as a model for genetically engineered organisms.
Regal, P J
1993-03-15
The exotic or non-indigenous species model for deliberately introduced genetically engineered organisms (GEOs) has often been misunderstood or misrepresented. Yet proper comparisons of of ecologically competent GEOs to the patterns of adaptation of introduced species have been highly useful among scientists in attempting to determine how to apply biological theory to specific GEO risk issues, and in attempting to define the probabilities and scale of ecological risks with GEOs. In truth, the model predicts that most projects may be environmentally safe, but a significant minority may be very risky. The model includes a history of institutional follies that also should remind workers of the danger of oversimplifying biological issues, and warn against repeating the sorts of professional misjudgements that have too often been made in introducing organisms to new settings. We once expected that the non-indigenous species model would be refined by more analysis of species eruptions, ecological genetics, and the biology of select GEOs themselves, as outlined. But there has been political resistance to the effective regulation of GEOs, and a bureaucratic tendency to focus research agendas on narrow data collection. Thus there has been too little promotion by responsible agencies of studies to provide the broad conceptual base for truly science-based regulation. In its presently unrefined state, the non-indigenous species comparison would overestimate the risks of GEOs if it were (mis)applied to genetically disrupted, ecologically crippled GEOs, but in some cases of wild-type organisms with novel engineered traits, it could greatly underestimate the risks. Further analysis is urgently needed.
Kämpfer, Christoph; Seiler, Thomas-Benjamin; Beger, Anna-Lena; Jacobs, Georg; Löwer, Manuel; Moser, Franziska; Reimer, Julia; Trautz, Martin; Usadel, Björn; Wormit, Alexandra; Hollert, Henner
2017-01-01
Technical product harvesting (TEPHA) is a newly developing interdisciplinary approach in which bio-based production is investigated from a technical and ecological perspective. Society's demand for ecologically produced and sustainably operable goods is a key driver for the substitution of conventional materials like metals or plastics through bio-based alternatives. Technical product harvesting of near net shape grown components describes the use of suitable biomass for the production of technical products through influencing the natural shape of plants during their growth period. The use of natural materials may show positive effects on the amount of non-renewable resource consumption. This also increases the product recyclability at the end of its life cycle. Furthermore, through the near net shape growth of biomass, production steps can be reduced. As a consequence such approaches may save energy and the needed resources like crude oil, coal or gas. The derived near net shape grown components are not only considered beneficial from an environmental point of view. They can also have mechanical advantages through an intrinsic topology optimization in contrast to common natural materials, which are influenced in their shape after harvesting. In order to prove these benefits a comprehensive, interdisciplinary scientific strategy is needed. Here, both mechanical investigations and life cycle assessment as a method of environmental evaluation are used.
Skelly, Chris; Weinstein, Phil
2003-01-01
Campylobacteriosis, like many human diseases, has its own ecology in which the propagation of human infection and disease depends on pathogen survival and finding new hosts in order to replicate and sustain the pathogen population. The complexity of this process, a process common to other enteric pathogens, has hampered control efforts. Many unknowns remain, resulting in a poorly understood disease ecology. To provide structure to these unknowns and help direct further research and intervention, we propose an eco-environmental modeling approach for campylobacteriosis. This modeling approach follows the pathogen population as it moves through the environments that define the physical structure of its ecology. In this paper, we term the ecologic processes and environments through which these populations move "pathogen survival trajectories." Although such a modeling approach could have veterinary applications, our emphasis is on human campylobacteriosis and focuses on human exposures to Campylobacter through feces, food, and aquatic environments. The pathogen survival trajectories that lead to human exposure include ecologic filters that limit population size, e.g., cooking food to kill Campylobacter. Environmental factors that influence the size of the pathogen reservoirs include temperature, nutrient availability, and moisture availability during the period of time the pathogen population is moving through the environment between infected and susceptible hosts. We anticipate that the modeling approach proposed here will work symbiotically with traditional epidemiologic and microbiologic research to help guide and evaluate the acquisition of new knowledge about the ecology, eventual intervention, and control of campylobacteriosis. PMID:12515674
Automated reverse engineering of nonlinear dynamical systems
Bongard, Josh; Lipson, Hod
2007-01-01
Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated “reverse engineering” approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future. PMID:17553966
Development and application of biotechnologies in the metal mining industry.
Johnson, D Barrie
2013-11-01
Metal mining faces a number of significant economic and environmental challenges in the twenty-first century for which established and emerging biotechnologies may, at least in part, provide the answers. Bioprocessing of mineral ores and concentrates is already used in variously engineered formats to extract base (e.g., copper, cobalt, and nickel) and precious (gold and silver) metals in mines throughout the world, though it remains a niche technology. However, current projections of an increasing future need to use low-grade primary metal ores, to reprocess mine wastes, and to develop in situ leaching technologies to extract metals from deep-buried ore bodies, all of which are economically more amenable to bioprocessing than conventional approaches (e.g., pyrometallurgy), would suggest that biomining will become more extensively utilized in the future. Recent research has also shown that bioleaching could be used to process a far wider range of metal ores (e.g., oxidized ores) than has previously been the case. Biotechnologies are also being developed to control mine-related pollution, including securing mine wastes (rocks and tailings) by using "ecological engineering" approaches, and also to remediate and recover metals from waste waters, such as acid mine drainage. This article reviews the current status of biotechnologies within the mining sector and considers how these may be developed and applied in future years.
NASA Astrophysics Data System (ADS)
Cooper, Gregory; Dearing, John
2017-04-01
Annual fish production from the Chilika lagoon is worth US25-million/year, underpinning the livelihoods of 35,000 fishers and 200,000 secondary dependants. The system has a legacy of collapse, transitioning from annual production rates of 9000 tonnes to 1300 tonnes during the late-1980s, with resulting livelihood losses triggering the first recorded instances of economic migration from Chilika. Despite engineered recovery since 2000, the future persistence of Chilika's resource stock is uncertain. Climate change may strengthen freshwater and sediment delivery, promoting ecohydrological degradation through tidal outlet sedimentation, reduced salinity and freshwater weed growth. Simultaneously, human population growth, fleet motorisation and consumption demands threaten overexploitation driven collapse. These critical social-ecological drivers and feedbacks are projected into future by integrating system dynamics modelling with Monte Carlo inputs. Sustainable pathways are identified from outputs producing social-ecologically desirable futures, such as mid-century catch equalling maximum sustainable yield. The 'safe and just operating space' metaphor is regionalised by the limits of sustainable trajectories, such as the permissible number of active fishers, motorised boats and juvenile catch under alternative governance scenarios. These critical thresholds suggest policy-relevant guardrails for the sustainable governance of Chilika, in order to avoid regional productivity collapse, ecological degradation and livelihood losses. Benefits and trade-offs of alternative governance approaches are also discussed, aiding the optimisation of future regulatory decision-making.
A spatially constrained ecological classification: rationale, methodology and implementation
Franz Mora; Louis Iverson; Louis Iverson
2002-01-01
The theory, methodology and implementation for an ecological and spatially constrained classification are presented. Ecological and spatial relationships among several landscape variables are analyzed in order to define a new approach for a landscape classification. Using ecological and geostatistical analyses, several ecological and spatial weights are derived to...
Gene expression profiling--Opening the black box of plant ecosystem responses to global change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leakey, A.D.B.; Ainsworth, E.A.; Bernard, S.M.
The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in modelmore » and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.« less
ERIC Educational Resources Information Center
Sebestian, Sandiyao
2013-01-01
The ecological approach, based on the RTLB Toolkit that guides RTLBs in New Zealand, is one of the seven principles used for interventions for students with learning and behaviour concerns. As a result of a paradigm shift moving from a functional limitations perspective to a more inclusive/ecological perspective in 1999, RTLBs have been trained…
Denys Yemshanov; Frank H. Koch; D. Barry Lyons; Mark Ducey; Klaus Koehler
2012-01-01
Aim Uncertainty has been widely recognized as one of the most critical issues in predicting the expansion of ecological invasions. The uncertainty associated with the introduction and spread of invasive organisms influences how pest management decision makers respond to expanding incursions. We present a model-based approach to map risk of ecological invasions that...
Biological invasions, ecological resilience and adaptive governance
Chaffin, Brian C.; Garmestani, Ahjond S.; Angeler, David G.; Herrmann, Dustin L.; Stow, Craig A.; Nystrom, Magnus; Sendzimir, Jan; Hopton, Matthew E.; Kolasa, Jurek; Allen, Craig R.
2016-01-01
In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services.
Integrating fuzzy logic, optimization, and GIS for ecological impact assessments.
Bojórquez-Tapia, Luis A; Juárez, Lourdes; Cruz-Bello, Gustavo
2002-09-01
Appraisal of ecological impacts has been problematic because of the behavior of ecological system and the responses of these systems to human intervention are far from fully understood. While it has been relatively easy to itemize the potential ecological impacts, it has been difficult to arrive at accurate predictions of how these impacts affect populations, communities, or ecosystems. Furthermore, the spatial heterogeneity of ecological systems has been overlooked because its examination is practically impossible through matrix techniques, the most commonly used impact assessment approach. Besides, the public has become increasingly aware of the importance of the EIA in decision-making and thus the interpretation of impact significance is complicated further by the different value judgments of stakeholders. Moreover, impact assessments are carried out with a minimum of data, high uncertainty, and poor conceptual understanding. Hence, the evaluation of ecological impacts entails the integration of subjective and often conflicting judgments from a variety of experts and stakeholders. The purpose of this paper is to present an environmental impact assessment approach based on the integration fuzzy logic, geographical information systems and optimization techniques. This approach enables environmental analysts to deal with the intrinsic imprecision and ambiguity associated with the judgments of experts and stakeholders, the description of ecological systems, and the prediction of ecological impacts. The application of this approach is illustrated through an example, which shows how consensus about impact mitigation can be attained within a conflict resolution framework.
Biological invasions, ecological resilience and adaptive governance.
Chaffin, Brian C; Garmestani, Ahjond S; Angeler, David G; Herrmann, Dustin L; Stow, Craig A; Nyström, Magnus; Sendzimir, Jan; Hopton, Matthew E; Kolasa, Jurek; Allen, Craig R
2016-12-01
In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services. Copyright © 2016. Published by Elsevier Ltd.
Integrating Fuzzy Logic, Optimization, and GIS for Ecological Impact Assessments
NASA Astrophysics Data System (ADS)
Bojórquez-Tapia, Luis A.; Juárez, Lourdes; Cruz-Bello, Gustavo
2002-09-01
Appraisal of ecological impacts has been problematic because of the behavior of ecological system and the responses of these systems to human intervention are far from fully understood. While it has been relatively easy to itemize the potential ecological impacts, it has been difficult to arrive at accurate predictions of how these impacts affect populations, communities, or ecosystems. Furthermore, the spatial heterogeneity of ecological systems has been overlooked because its examination is practically impossible through matrix techniques, the most commonly used impact assessment approach. Besides, the public has become increasingly aware of the importance of the EIA in decision-making and thus the interpretation of impact significance is complicated further by the different value judgments of stakeholders. Moreover, impact assessments are carried out with a minimum of data, high uncertainty, and poor conceptual understanding. Hence, the evaluation of ecological impacts entails the integration of subjective and often conflicting judgments from a variety of experts and stakeholders. The purpose of this paper is to present an environmental impact assessment approach based on the integration fuzzy logic, geographical information systems and optimization techniques. This approach enables environmental analysts to deal with the intrinsic imprecision and ambiguity associated with the judgments of experts and stakeholders, the description of ecological systems, and the prediction of ecological impacts. The application of this approach is illustrated through an example, which shows how consensus about impact mitigation can be attained within a conflict resolution framework.
NASA Astrophysics Data System (ADS)
Bashkirova, N. N.; Lessovaia, S. N.
2018-01-01
The complexity of socio-economic issues of mono-cities located in the ecologically unfavorable regions of Eurasia was disclosed. The economically strategic role of city-forming mining enterprises and their impact on ecological situation was revealed. The general conception of settling the socio-economic problems of mono-cities located in ecologically unfavorable regions was worked out. Various approached to the concentration of financial resources for economic and ecological sustainable development of the regions located on the north of Eurasia holding nature protection actions were submitted. Based on performed critical analysis of the positive international experience of ecological taxation some approaches to reforming current Russian system of ecological taxation were suggested. It was revealed that increasing the social responsibilities of business in the field of waste recycling, environmental protection and monitoring of ecological conditions of territories and state and business co-operation are the most efficient opportunities in settling socio-economic issues of ecologically unfavorable regions.
[International trends of applied ecology and its future development in China].
Zhou, Qixing; Sun, Shunjiang
2002-07-01
Internationally applied ecology was born around 25-40 years ago in order to adapt and serve the needs of mitigating increasingly environmental pollution and ecological destroy in developed western countries at that time. All the times applied ecological principles thus underpin most efforts at solving increasingly deterioration of natural resources and serious eco-environmental problems as its keystone and researching kernel with the development of the subject. At the advent of the 21st century, human beings enter into the age of applied ecology. There are five international features of applied ecology, including more attention to many-sided applications, special emphasis on the intersection with engineering, strongly keeping on mutual links with basic ecology, omnidirectional adoption of new methods and new technology, and side-by-side trends of microcosmic mechanisms and macroscopical regulation. Although we must connect with international applied ecology and absorb distillates from the subject in developed western countries, development of applied ecology in China in the future, in particular, at the beginnings of the 21st century should not deviate from aiming at the solution of increasingly environmental pollution and ecological destroy that is one of the most important basic situations of the country.
Interdisciplinary Pathways for Urban Metabolism Research
NASA Astrophysics Data System (ADS)
Newell, J. P.
2011-12-01
With its rapid rise as a metaphor to express coupled natural-human systems in cities, the concept of urban metabolism is evolving into a series of relatively distinct research frameworks amongst various disciplines, with varying definitions, theories, models, and emphases. In industrial ecology, housed primarily within the disciplinary domain of engineering, urban metabolism research has focused on quantifying material and energy flows into, within, and out of cities, using methodologies such as material flow analysis and life cycle assessment. In the field of urban ecology, which is strongly influenced by ecology and urban planning, research focus has been placed on understanding and modeling the complex patterns and processes of human-ecological systems within urban areas. Finally, in political ecology, closely aligned with human geography and anthropology, scholars theorize about the interwoven knots of social and natural processes, material flows, and spatial structures that form the urban metabolism. This paper offers three potential interdisciplinary urban metabolism research tracks that might integrate elements of these three "ecologies," thereby bridging engineering and the social and physical sciences. First, it presents the idea of infrastructure ecology, which explores the complex, emergent interdependencies between gray (water and wastewater, transportation, etc) and green (e.g. parks, greenways) infrastructure systems, as nested within a broader socio-economic context. For cities to be sustainable and resilient over time-space, the theory follows, these is a need to understand and redesign these infrastructure linkages. Second, there is the concept of an urban-scale carbon metabolism model which integrates consumption-based material flow analysis (including goods, water, and materials), with the carbon sink and source dynamics of the built environment (e.g. buildings, etc) and urban ecosystems. Finally, there is the political ecology of the material urban metabolism, which adds spatial differentiation to materials flows and form, as well as a focus on equity, access, and governance dimensions of the urban metabolism.
NASA Astrophysics Data System (ADS)
Xian, W.; Chen, Y.; Chen, J.; Luo, X.; Shao, H.
2018-04-01
According to the overall requirements of ecological construction and environmental protection, rely on the national key ecological engineering, strengthen ecological environmental restoration and protection, improve forest cover, control soil erosion, construct important ecological security barrier in poor areas, inhibit poverty alleviation through ecological security in this area from environmental damage to the vicious cycle of poverty. Obviously, the dynamic monitoring of ecological security in contiguous destitute areas of Sichuan province has a policy sense of urgency and practical significance. This paper adopts RS technology and GIS technology to select the Luhe region of Jinchuan county and Ganzi prefecture as the research area, combined with the characteristics of ecological environment in poor areas, the impact factors of ecological environment are determined as land use type, terrain slope, vegetation cover, surface water, soil moisture and other factors. Using the ecological environmental safety assessment model, the ecological environment safety index is calculated. According to the index, the ecological environment safety of the research area is divided into four levels. The ecological environment safety classification map of 1990 in 2009 is obtained. It can be seen that with the human modern life and improve their economic level, the surrounding environment will be destroyed, because the research area ecological environment is now in good, the ecological environment generally tends to be stable. We should keep its ecological security good and improve local economic income. The relationship between ecological environmental security and economic coordinated development in poor areas has very important strategic significance.
Dean E. Pearson
2010-01-01
Indirect interactions are important for structuring ecological systems. However, research on indirect effects has been heavily biased toward top-down trophic interactions, and less is known about other indirect-interaction pathways. As autogenic ecosystem engineers, plants can serve as initiators of nontrophic indirect interactions that, like top-down pathways, can...
Vital Affordances, Occupying Niches: An Ecological Approach to Disability and Performance
ERIC Educational Resources Information Center
Dokumaci, Arseli
2017-01-01
This article proposes a new conceptual approach to disability and performance through a contribution that comes entirely from outside the disciplines; a re-theorisation of Gibson's [1979. "The Ecological Approach to Visual Perception". Hillsdale: Lawrence Erlbaum Associates] theory of affordances. Drawing on three visual ethnographies…
Loreto, R G; Hughes, D P
2016-01-01
It is assumed that social life can lead to the rapid spread of infectious diseases and outbreaks. In ants, disease outbreaks are rare and the expression of collective behaviors is invoked to explain the absence of epidemics in natural populations. Here, we address the ecological approach employed by many studies that have notably focused (89% of the studies) on two genera of generalist fungal parasites (Beauveria and Metarhizium). We ask whether these are the most representative models to study the evolutionary ecology of ant-fungal parasite interactions. To assess this, we critically examine the literature on ants and their interactions with fungal parasites from the past 114years (1900-2014). We discuss how current evolutionary ecology approaches emerged from studies focused on the biological control of pest ants. We also analyzed the ecological relevance of the laboratory protocols used in evolutionary ecology studies employing generalist parasites, as well as the rare natural occurrence of these parasites on ants. After a detailed consideration of all the publications, we suggest that using generalist pathogens such as Beauveria and Metarhizium is not an optimal approach if the goal is to study the evolutionary ecology of disease in ants. We conclude by advocating for approaches that incorporate greater realism. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Xun-Wen; Wong, James Tsz-Fung; Ng, Charles Wang-Wai; Wong, Ming-Hung
2016-04-01
Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.
Multi-Scale Approach to Understanding Source-Sink Dynamics of Amphibians
2015-12-01
spotted salamander, A. maculatum) at Fort Leonard Wood (FLW), Missouri. We used a multi-faceted approach in which we combined ecological , genetic...spotted salamander, A. maculatum) at Fort Leonard Wood , Missouri through a combination of intensive ecological field studies, genetic analyses, and...spatial demographic networks to identify optimal locations for wetland construction and restoration. Ecological Applications. Walls, S. C., Ball, L. C
Microbiome engineering: Current applications and its future.
Foo, Jee Loon; Ling, Hua; Lee, Yung Seng; Chang, Matthew Wook
2017-03-01
Microbiomes exist in all ecosystems and are composed of diverse microbial communities. Perturbation to microbiomes brings about undesirable phenotypes in the hosts, resulting in diseases and disorders, and disturbs the balance of the associated ecosystems. Engineering of microbiomes can be used to modify structures of the microbiota and restore ecological balance. Consequently, microbiome engineering has been employed for improving human health and agricultural productivity. The importance and current applications of microbiome engineering, particularly in humans, animals, plants and soil is reviewed. Furthermore, we explore the challenges in engineering microbiome and the future of this field, thus providing perspectives and outlook of microbiome engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The human ecology of tornadoes.
Aguirre, B E; Saenz, R; Edmiston, J; Yang, N; Agramonte, E; Stuart, D L
1993-11-01
This paper offers an empirical test of the impact of human ecological patterns and other known correlates on tornado occurrence. It uses the National Severe Storms Forecast Center's information on tornadoes from 1950 through 1990 and employs ecological data from the U.S. Bureau of the Census and the Environmental Protection Agency. The results show that metropolitan and other urban counties have higher odds of tornado occurrence than rural counties, and that the probability of occurrence of tornadoes increases with increases in the number of previous tornadoes. The paper assesses the meaning of this finding for demographers, atmospheric scientists, engineers, and disaster managers.
Enhancing quantitative approaches for assessing community resilience
Chuang, W. C.; Garmestani, A.S.; Eason, T. N.; Spanbauer, T. L.; Fried-Peterson, H. B.; Roberts, C.P.; Sundstrom, Shana M.; Burnett, J.L.; Angeler, David G.; Chaffin, Brian C.; Gunderson, L.; Twidwell, Dirac; Allen, Craig R.
2018-01-01
Scholars from many different intellectual disciplines have attempted to measure, estimate, or quantify resilience. However, there is growing concern that lack of clarity on the operationalization of the concept will limit its application. In this paper, we discuss the theory, research development and quantitative approaches in ecological and community resilience. Upon noting the lack of methods that quantify the complexities of the linked human and natural aspects of community resilience, we identify several promising approaches within the ecological resilience tradition that may be useful in filling these gaps. Further, we discuss the challenges for consolidating these approaches into a more integrated perspective for managing social-ecological systems.
Enhancing quantitative approaches for assessing community resilience.
Chuang, W C; Garmestani, A; Eason, T N; Spanbauer, T L; Fried-Petersen, H B; Roberts, C P; Sundstrom, S M; Burnett, J L; Angeler, D G; Chaffin, B C; Gunderson, L; Twidwell, D; Allen, C R
2018-05-01
Scholars from many different intellectual disciplines have attempted to measure, estimate, or quantify resilience. However, there is growing concern that lack of clarity on the operationalization of the concept will limit its application. In this paper, we discuss the theory, research development and quantitative approaches in ecological and community resilience. Upon noting the lack of methods that quantify the complexities of the linked human and natural aspects of community resilience, we identify several promising approaches within the ecological resilience tradition that may be useful in filling these gaps. Further, we discuss the challenges for consolidating these approaches into a more integrated perspective for managing social-ecological systems. Published by Elsevier Ltd.
Yang, Shan; Wang, Yu-ting
2011-03-01
Based on the theories and methods of ecological footprint, the concept of marine ecological footprint was proposed. According to the characteristics of marine environment in Jiangsu Province, five sub-models of marine ecological footprints, including fishery, transporation, marine engineering construction, marine energy, and tidal flat, were constructed. The equilibrium factors of the five marine types were determined by using improved entropy method, and the marine footprints and capacities in Jiangsu Province from 2000 to 2008 were calculated and analyzed. In 2000-2008, the marine ecology footprint per capita in Jiangsu Province increased nearly seven times, from 36.90 hm2 to 252.94 hm2, and the ecological capacity per capita grew steadily, from 105.01 hm2 to 185.49 hm2. In 2000, the marine environment in the Province was in a state of ecological surplus, and the marine economy was in a weak sustainable development state. Since 2004, the marine ecological environment deteriorated sharply, with ecological deficit up to 109660.5 hm2, and the sustainability of marine economy declined. The high ecological footprint of fishery was the main reason for the ecological deficit. Tidal flat was the important reserve resource for the sustainable development of marine economy in Jiangsu Province.
Cumming, Graeme S.; Allen, Craig R.
2017-01-01
Conservation biology and applied ecology increasingly recognize that natural resource management is both an outcome and a driver of social, economic, and ecological dynamics. Protected areas offer a fundamental approach to conserving ecosystems, but they are also social-ecological systems whose ecological management and sustainability are heavily influenced by people. This editorial, and the papers in the invited feature that it introduces, discuss three emerging themes in social-ecological systems approaches to understanding protected areas: (1) the resilience and sustainability of protected areas, including analyses of their internal dynamics, their effectiveness, and the resilience of the landscapes within which they occur; (2) the relevance of spatial context and scale for protected areas, including such factors as geographic connectivity, context, exchanges between protected areas and their surrounding landscapes, and scale dependency in the provision of ecosystem services; and (3) efforts to reframe what protected areas are and how they both define and are defined by the relationships of people and nature. These emerging themes have the potential to transform management and policy approaches for protected areas and have important implications for conservation, in both theory and practice.
Exploring Resilience of Canadian Rivers to Climate Change
NASA Astrophysics Data System (ADS)
Creed, I. F.; Paltsev, A.; Accatino, F.; Aldred, D. A.; Guo, J.; Lehner, B.; Ouellet Dallaire, C. O.
2015-12-01
Climate change is leading to a hydrological intensification (i.e., wet areas and periods are becoming wetter; dry areas and periods are becoming drier). Impacts of climate change across Canada will vary, and Canadians would benefit from insights as to where these impacts will occur and what these impacts will be in order to be in a position to effectively respond to these changes. Resilience is a term that is often used - and occasionally misused. We make the distinction between engineering resilience and ecological resilience. Engineering resilience assumes that a system may exist in only one stable equilibrium state, and measures the system's resistance to change. In contrast, ecological resilience assumes that a system may exist in multiple equilibrium states and measures the magnitude of change a system can absorb before shifting from one equilibrium state to another. We adopt the concept of engineering resilience and explore the ability of riverscapes (rivers and their watersheds) to maintain or quickly return to an equilibrium state in response to changing climatic conditions. We use the Budyko curve to examine interactions of climate and water yield in riverscapes across Canada. The Budyko curve describes the relationship between a riverscape's potential evapotranspiration (PET) and its actual evapotranspiration (AET) both normalized by precipitation (P) - i.e., the curve describes AET/P as a function of PET/P. We define elasticity is a measure of a system's ability to maintain this relationship consistent with the Budyko curve as climate changes (ratio of range of PET/P to range of AET/P between different climate periods). We classify each riverscape as resilient (elasticity > 1) or non-resilient (elasticity ≤ 1) in response to climate change - exploring both past and future climate change scenarios. This Budyko approach enables us to characterize the resilience of riverscapes, predict their vulnerability to climate change, and propose management measures that will enable societies to adapt to climate change.
Preface: Bridging the gap between theory and practice on the upper Mississippi River
Lubinski, Kenneth S.
1995-01-01
In July 1994, the Upper Mississippi River (UMR) served as a nexus for coalescing scientific information and management issues related to worldwide floodplain river ecosystems. The objective of the conference ‘Sustaining the Ecological Integrity of Large Floodplain Rivers: Application of Ecological Knowledge to River Management’, was to provide presentations of current ideas from the scientific community. To translate the many lessons learned on other river systems to operational decisions on the UMR, a companion workshop for managers and the general public was held immediately after the conference.An immediate local need for such sharing has existed for several years, as the U.S. Corps of Engineers is currently planning commercial navigation activities that will influence the ecological integrity of the river over the next half century. Recently, other equally important management issues have surfaced, including managing the river as an element of the watershed, and assessing its ecological value as a system instead of a collection of parts (Upper Mississippi River Conservation Committee, 1993). Regional and state natural resource agencies are becoming more convinced that they need to address these issues within their own authorities, however spatially limited, rather than relying on the U.S. Corps of Engineers to manage the ecosystem as an adjunct to its purpose of navigation support.
Management applications of discontinuity theory
Angeler, David G.; Allen, Craig R.; Barichievy, Chris; Eason, Tarsha; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance H.; Knutson, Melinda; Nash, Kirsty L.; Nelson, R. John; Nystrom, Magnus; Spanbauer, Trisha; Stow, Craig A.; Sundstrom, Shana M.
2015-01-01
Human impacts on the environment are multifaceted and can occur across distinct spatiotemporal scales. Ecological responses to environmental change are therefore difficult to predict, and entail large degrees of uncertainty. Such uncertainty requires robust tools for management to sustain ecosystem goods and services and maintain resilient ecosystems.We propose an approach based on discontinuity theory that accounts for patterns and processes at distinct spatial and temporal scales, an inherent property of ecological systems. Discontinuity theory has not been applied in natural resource management and could therefore improve ecosystem management because it explicitly accounts for ecological complexity.Synthesis and applications. We highlight the application of discontinuity approaches for meeting management goals. Specifically, discontinuity approaches have significant potential to measure and thus understand the resilience of ecosystems, to objectively identify critical scales of space and time in ecological systems at which human impact might be most severe, to provide warning indicators of regime change, to help predict and understand biological invasions and extinctions and to focus monitoring efforts. Discontinuity theory can complement current approaches, providing a broader paradigm for ecological management and conservation.
Resilience concepts in psychiatry demonstrated with bipolar disorder.
Angeler, David G; Allen, Craig R; Persson, Maj-Liz
2018-02-09
The term resilience describes stress-response patterns of subjects across scientific disciplines. In ecology, advances have been made to clearly distinguish resilience definitions based on underlying mechanistic assumptions. Engineering resilience (rebound) is used for describing the ability of subjects to recover from adverse conditions (disturbances), and is the rate of recovery. In contrast, the ecological resilience definition considers a systemic change: when complex systems (including humans) respond to disturbances by reorganizing into a new regime (stable state) where structural and functional aspects have fundamentally changed relative to the prior regime. In this context, resilience is an emergent property of complex systems. We argue that both resilience definitions and uses are appropriate in psychology and psychiatry, but although the differences are subtle, the implications and uses are profoundly different. We borrow from the field of ecology to discuss resilience concepts in the mental health sciences. In psychology and psychiatry, the prevailing view of resilience is adaptation to, coping with, and recovery (engineering resilience) from adverse social and environmental conditions. Ecological resilience may be useful for describing vulnerability, onset, and the irreversibility patterns of mental disorders. We discuss this in the context of bipolar disorder. Rebound, adaptation, and coping are processes that are subsumed within the broader systemic organization of humans, from which ecological resilience emanates. Discerning resilience concepts in psychology and psychiatry has potential for a mechanistically appropriate contextualization of mental disorders at large. This might contribute to a refinement of theory and contextualize clinical practice within the broader systemic functioning of mental illnesses.
Social-ecological resilience and geomorphic systems
NASA Astrophysics Data System (ADS)
Chaffin, Brian C.; Scown, Murray
2018-03-01
Governance of coupled social-ecological systems (SESs) and the underlying geomorphic processes that structure and alter Earth's surface is a key challenge for global sustainability amid the increasing uncertainty and change that defines the Anthropocene. Social-ecological resilience as a concept of scientific inquiry has contributed to new understandings of the dynamics of change in SESs, increasing our ability to contextualize and implement governance in these systems. Often, however, the importance of geomorphic change and geomorphological knowledge is somewhat missing from processes employed to inform SES governance. In this contribution, we argue that geomorphology and social-ecological resilience research should be integrated to improve governance toward sustainability. We first provide definitions of engineering, ecological, community, and social-ecological resilience and then explore the use of these concepts within and alongside geomorphology in the literature. While ecological studies often consider geomorphology as an important factor influencing the resilience of ecosystems and geomorphological studies often consider the engineering resilience of geomorphic systems of interest, very few studies define and employ a social-ecological resilience framing and explicitly link the concept to geomorphic systems. We present five key concepts-scale, feedbacks, state or regime, thresholds and regime shifts, and humans as part of the system-which we believe can help explicitly link important aspects of social-ecological resilience inquiry and geomorphological inquiry in order to strengthen the impact of both lines of research. Finally, we discuss how these five concepts might be used to integrate social-ecological resilience and geomorphology to better understand change in, and inform governance of, SESs. To compound these dynamics of resilience, complex systems are nested and cross-scale interactions from smaller and larger scales relative to the system of interest can play formative roles during periods of collapse and reorganization. Large- and small-scale disturbances as well as large-scale system memory/capacity and small-scale innovation can have significant impacts on the trajectory of a reorganizing system (Gunderson and Holling, 2002; Chaffin and Gunderson, 2016). Attempts to measure the property of ecological resilience across complex systems amounts to attempts to measure the persistence of system-controlling variables, including processes, parameters, and important feedbacks, when the system is exposed to varying degrees of disturbance (Folke, 2016).
A social-ecological systems approach for environmental management.
Virapongse, Arika; Brooks, Samantha; Metcalf, Elizabeth Covelli; Zedalis, Morgan; Gosz, Jim; Kliskey, Andrew; Alessa, Lilian
2016-08-01
Urgent environmental issues are testing the limits of current management approaches and pushing demand for innovative approaches that integrate across traditional disciplinary boundaries. Practitioners, scholars, and policy-makers alike call for increased integration of natural and social sciences to develop new approaches that address the range of ecological and societal impacts of modern environmental issues. From a theoretical perspective, social-ecological systems (SES) science offers a compelling approach for improved environmental management through the application of transdisciplinary and resilience concepts. A framework for translating SES theory into practice, however, is lacking. In this paper, we define the key components of an SES-based environmental management approach. We offer recommendations for integrating an SES approach into existing environmental management practices. Results presented are useful for management professionals that seek to employ an SES environmental management approach and scholars aiming to advance the theoretical foundations of SES science for practical application. Published by Elsevier Ltd.
A discrimlnant function approach to ecological site classification in northern New England
James M. Fincher; Marie-Louise Smith
1994-01-01
Describes one approach to ecologically based classification of upland forest community types of the White and Green Mountain physiographic regions. The classification approach is based on an intensive statistical analysis of the relationship between the communities and soil-site factors. Discriminant functions useful in distinguishing between types based on soil-site...
Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems
Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh
2016-01-01
We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can be used to analyze complex “omics” data and to infer and optimize metabolic processes. Thereby, SMN models are suitable to capitalize on advances in high-throughput molecular and metabolic data generation. SMN models are starting to be applied to describe microbial interactions during wastewater treatment, in-situ bioremediation, microalgae blooms methanogenic fermentation, and bioplastic production. Despite their current challenges, we envisage that SMN models have future potential for the design and development of novel growth media, biochemical pathways and synthetic microbial associations. PMID:27242701
1992-12-01
engineering support for completed studies--namely, the wetlands, slime mold , and bird species and communities studies performed in Wisconsin-appears in previous...3 4. ENGINEERING SUPPORT ACTIVITIES 4.1 Soil Amoeba Growth Chambers 4.1.1 Background 3 The soil amoeba and now-completed slime mold studies both...cultures of soil amoeba and slime mold to the earth’s ambient temperature. It is also desirable to expose the cultures to the same EM environment that they
NASA Technical Reports Server (NTRS)
1979-01-01
The research and development sequences and priorities for CELSS development were established for each of the following areas: nutrition and food processing, food production, waste processing, systems engineering/modeling, and ecology-systems safety.
The pasty propellant rocket engine development
NASA Astrophysics Data System (ADS)
Kukushkin, V. I.; Ivanchenko, A. N.
1993-06-01
The paper describes a newly developed pasty propellant rocket engine (PPRE) and the combustion process and presents results of performance tests. It is shown that, compared with liquid propellant rocket engines, the PPREs can regulate the thrust level within a wider range, are safer ecologically, and have better weight characteristics. Compared with solid propellant rocket engines, the PPREs may be produced with lower costs and more safely, are able to regulate thrust performance within a wider range, and are able to offer a greater scope for the variation of the formulation components and propellant characteristics. Diagrams of the PPRE are included.
Space shuttle orbit maneuvering engine reusable thrust chamber
NASA Technical Reports Server (NTRS)
1972-01-01
A data dump is presented containing space shuttle orbiter maneuvering engine performance, weight, envelope, and interface pressure requirements for candidate propellant combinations (NTO/MMH, NTO50-50, LOX/MMH, LOX/50-50, LOX/N2H4, LOX/C3H8, and LOX/RP-1) and cooling concepts (regenerative and dump/film). These data are presented parametrically for the thrust, chamber pressure, nozzle expansion ratio, and engine mixture ratio ranges of interest. Also included is information describing sensitivity to system changes; reliability, maintainability and safety; development programs and associated critical technology areas; engine cost comparisons during development and operation; and ecological effects.
Ecological, Pedagogical, Public Rhetoric
ERIC Educational Resources Information Center
Rivers, Nathaniel A.; Weber, Ryan P.
2011-01-01
Public rhetoric pedagogy can benefit from an ecological perspective that sees change as advocated not through a single document but through multiple mundane and monumental texts. This article summarizes various approaches to rhetorical ecology, offers an ecological read of the Montgomery bus boycotts, and concludes with pedagogical insights on a…
Enriching Mental Health Mobile Assessment and Intervention with Situation Awareness †
Soares Teles, Ariel; Rocha, Artur; José da Silva e Silva, Francisco; Correia Lopes, João; O’Sullivan, Donal; Van de Ven, Pepijn; Endler, Markus
2017-01-01
Current mobile devices allow the execution of sophisticated applications with the capacity for identifying the user situation, which can be helpful in treatments of mental disorders. In this paper, we present SituMan, a solution that provides situation awareness to MoodBuster, an ecological momentary assessment and intervention mobile application used to request self-assessments from patients in depression treatments. SituMan has a fuzzy inference engine to identify patient situations using context data gathered from the sensors embedded in mobile devices. Situations are specified jointly by the patient and mental health professional, and they can represent the patient’s daily routine (e.g., “studying”, “at work”, “working out”). MoodBuster requests mental status self-assessments from patients at adequate moments using situation awareness. In addition, SituMan saves and displays patient situations in a summary, delivering them for consultation by mental health professionals. A first experimental evaluation was performed to assess the user satisfaction with the approaches to define and identify situations. This experiment showed that SituMan was well evaluated in both criteria. A second experiment was performed to assess the accuracy of the fuzzy engine to infer situations. Results from the second experiment showed that the fuzzy inference engine has a good accuracy to identify situations. PMID:28075417
Enriching Mental Health Mobile Assessment and Intervention with Situation Awareness.
Soares Teles, Ariel; Rocha, Artur; José da Silva E Silva, Francisco; Correia Lopes, João; O'Sullivan, Donal; Van de Ven, Pepijn; Endler, Markus
2017-01-10
Current mobile devices allow the execution of sophisticated applications with the capacity for identifying the user situation, which can be helpful in treatments of mental disorders. In this paper, we present SituMan , a solution that provides situation awareness to MoodBuster , an ecological momentary assessment and intervention mobile application used to request self-assessments from patients in depression treatments. SituMan has a fuzzy inference engine to identify patient situations using context data gathered from the sensors embedded in mobile devices. Situations are specified jointly by the patient and mental health professional, and they can represent the patient's daily routine (e.g., "studying", "at work", "working out"). MoodBuster requests mental status self-assessments from patients at adequate moments using situation awareness. In addition, SituMan saves and displays patient situations in a summary, delivering them for consultation by mental health professionals. A first experimental evaluation was performed to assess the user satisfaction with the approaches to define and identify situations. This experiment showed that SituMan was well evaluated in both criteria. A second experiment was performed to assess the accuracy of the fuzzy engine to infer situations. Results from the second experiment showed that the fuzzy inference engine has a good accuracy to identify situations.
Leveraging ecological theory to guide natural product discovery.
Smanski, Michael J; Schlatter, Daniel C; Kinkel, Linda L
2016-03-01
Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random 'fishing expeditions' for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.
Li, Mengdi; Fan, Juntao; Zhang, Yuan; Guo, Fen; Liu, Lusan; Xia, Rui; Xu, Zongxue; Wu, Fengchang
2018-05-15
Aiming to protect freshwater ecosystems, river ecological restoration has been brought into the research spotlight. However, it is challenging for decision makers to set appropriate objectives and select a combination of rehabilitation acts from numerous possible solutions to meet ecological, economic, and social demands. In this study, we developed a systematic approach to help make an optimal strategy for watershed restoration, which incorporated ecological security assessment and multi-objectives optimization (MOO) into the planning process to enhance restoration efficiency and effectiveness. The river ecological security status was evaluated by using a pressure-state-function-response (PSFR) assessment framework, and MOO was achieved by searching for the Pareto optimal solutions via Non-dominated Sorting Genetic Algorithm II (NSGA-II) to balance tradeoffs between different objectives. Further, we clustered the searched solutions into three types in terms of different optimized objective function values in order to provide insightful information for decision makers. The proposed method was applied in an example rehabilitation project in the Taizi River Basin in northern China. The MOO result in the Taizi River presented a set of Pareto optimal solutions that were classified into three types: I - high ecological improvement, high cost and high benefits solution; II - medial ecological improvement, medial cost and medial economic benefits solution; III - low ecological improvement, low cost and low economic benefits solution. The proposed systematic approach in our study can enhance the effectiveness of riverine ecological restoration project and could provide valuable reference for other ecological restoration planning. Copyright © 2018 Elsevier B.V. All rights reserved.
Implementing Eco-Logical 2014-2015 Annual Report
DOT National Transportation Integrated Search
2015-12-01
The Eco-Logical approach offers an ecosystem-based framework for integrated infrastructure and natural resource planning, project development, and delivery. The 2014/2015 Implementing Eco-Logical Program Annual Report provides updates on the Federal ...
A Trait-Based Approach to Advance Coral Reef Science.
Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R; Darling, Emily S; Falster, Daniel S; Huang, Danwei; Keith, Sally A; Mizerek, Toni; Pandolfi, John M; Putnam, Hollie M; Baird, Andrew H
2016-06-01
Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Binucleation to breed new plant species adaptable to their environments
Moustafa, Khaled
2015-01-01
Classical plant breeding approaches may fall short to breed new plant species of high environmental and ecological interests. Biotechnological and genetic manipulations, on the other hand, may hold more effective capabilities to circumvent the limitations of sexual incompatibility and conventional breeding programs. Given that plant cells encompass multiple copies of organellar genomes (mitochondrial and plastidial genomes), an important question could be raised about whether an artificial attempt to duplicate the nuclear genome might also be conceivable through a binucleation approach (generating plant cells with 2 nuclei from 2 different plant species) for potential production of new polyploidies that would characterize new plant species. Since the complexities of plant genomes are the result of multiple genome duplications, an artificial binucleation approach would thus be of some interest to eventually varying plant genomes and producing new polyploidy from related or distal plant species. Here, I discuss the potentiality of such an approach to engineer binucleated plant cells as a germ of new plant species to fulfill some environmental applications such as increasing the biodiversity and breeding new species adaptable to harsh environmental stresses and increasing green surfaces to reduce atmospheric pollutions in arid lands with poor vegetation. PMID:26322577
Analysis on Key Points of Construction and Management of Municipal Landscape Engineering
NASA Astrophysics Data System (ADS)
Liang, Mingxia; Fei, Cheng
2018-02-01
At present, China has made great efforts to promote the construction of ecological civilization and promote the development of ecological protection and environmental construction. It has important practical significance to maintain the ecological balance and environmental quality of our country. Especially with the gradual improvement in people’s awareness of environmental protection, so that the green of the city also put forward higher requirements at the same time with the rising of the level of urbanization. In the process of urban landscape construction, the rational planning of urban landscaping involves a lot of subject knowledge. In the green process, we should fully consider the system of urban development and construction in China, based on the design of urban development and long-term planning of the landscaping project. In addition, we must also consider the traditional layout of the city area and the physical and geographical situation and so on, to enhance the objective and scientific nature of urban landscape. Therefore, it is of great practical significance to ensure the quality of landscaping in the effective management of municipal landscape engineering.
Barriers to adaptive reasoning in community ecology.
McLachlan, Athol J; Ladle, Richard J
2011-08-01
Recent high-profile calls for a more trait-focused approach to community ecology have the potential to open up novel research areas, generate new insights and to transform community ecology into a more predictive science. However, a renewed emphasis on function and phenotype also requires a fundamental shift in approach and research philosophy within community ecology to more fully embrace evolutionary reasoning. Such a subject-wise transformation will be difficult due to at least four factors: (1) the historical development of the academic discipline of ecology and its roots as a descriptive science; (2) the dominating role of the ecosystem concept in the driving of contemporary ecological thought; (3) the practical difficulties associated with defining and identifying (phenotypic) adaptations, and; (4) scaling effects in ecology; the difficulty of teasing apart the overlapping and shifting hierarchical processes that generate the observed environment-trait correlations in nature. We argue that the ability to predict future ecological conditions through a sufficient understanding of ecological processes will not be achieved without the placement of the concept of adaptation at the centre of ecology, with influence radiating outwards through all the related (and rapidly specializing) sub-disciplines. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.
Environmental Pollution: Sanitary Engineering and Industrial Waste.
1977-07-01
and closed ecological systems which may prove beneficial to ongoing research and operations for controlling environmental pollution . Corporate Author-Monitoring Agency, Subject, Title and Personal Author are provided. (Author)
Photography equipment and techniques. A survey of NASA developments
NASA Technical Reports Server (NTRS)
Derr, A. J.
1972-01-01
The Apollo program has been the most complex exploration ever attempted by man, requiring extensive research, development, and engineering in most of the sciences before the leap through space could begin. Photography has been used at each step of the way to document the efforts and activities, isolate mistakes, reveal new phenomena, and to record much that cannot be seen by the human eye. At the same time, the capabilities of photography were extended because of the need of meeting space requirements. The results of this work have been applied to community planning and ecology, for example, as well as to space and engineering. Special uses of standard equipment, modifications and new designs, as well as film combinations that indicate actual or potential ecological problems are described.
Civic Ecology: Linking Social and Ecological Approaches in Extension
ERIC Educational Resources Information Center
Krasny, Marianne E.; Tidball, Keith G.
2010-01-01
Civic ecology refers to the philosophy and science of community forestry, community gardening, watershed enhancement, and other volunteer-driven restoration practices in cities and elsewhere. Such practices, although often viewed as initiatives to improve a degraded environment, also foster social attributes of resilient social-ecological systems,…
Empowering Learning through Natural, Human, and Building Ecologies.
ERIC Educational Resources Information Center
Kobet, Robert J.
This article asserts that it is critical to understand the connections between human ecology and building ecology to create humane environments that show inspiration and creativity and that also serve diverse needs. It calls for efforts to: (1) construct an environmental education approach that fuses the three ecologies (natural, human, and…
Quantifying ecological thresholds from response surfaces
Heather E. Lintz; Bruce McCune; Andrew N. Gray; Katherine A. McCulloh
2011-01-01
Ecological thresholds are abrupt changes of ecological state. While an ecological threshold is a widely accepted concept, most empirical methods detect them in time or across geographic space. Although useful, these approaches do not quantify the direct drivers of threshold response. Causal understanding of thresholds detected empirically requires their investigation...
Treating powerless minorities through an ecosystem approach.
Chung, W S; Pardeck, J T
1997-01-01
An ecological approach to social work practice for a minority based on an ecosystem-oriented assessment-intervention model is presented. Strengths and limitations of the ecological perspective for practice are emphasized (in the context of power dynamics). A case study is presented.
Improving low health literacy and patient engagement: A social ecological approach.
McCormack, Lauren; Thomas, Veronica; Lewis, Megan A; Rudd, Rima
2017-01-01
This article posits four principal objectives related to the overarching goal of broadening the conceptualization of health literacy. We propose a social ecological approach to health literacy and patient engagement by illustrating how this multilevel approach offers an array of strategic options for interventions. A social ecological approach supports a broader understanding of health literacy that aligns with increased patient engagement. The ecological model highlights the importance of context, demonstrates how health literacy and patient engagement are inextricably connected, and gives rise to strategies to enhance them both. We illustrate the five multilevel intervention strategies for addressing low health literacy and promoting patient engagement: accumulation, amplification, facilitation, cascade, and convergence strategies. In addition, we provide a theoretical foundation to facilitate the development of interventions to enhance health literacy and ultimately increase patient engagement. The practice implications of adopting a broader social ecological perspective to address low health literacy shifts the field from thinking about individual educational interventions to how individual interventions may be augmented or supported by interventions at additional levels of influence. The potential benefit of adopting a multilevel intervention approach is that combining interventions could produce synergies that are greater than interventions that only utilize one level of influence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Evaluation of engineering foods for closed Ecological Life Support System (CELSS)
NASA Technical Reports Server (NTRS)
Karel, M.
1982-01-01
A nutritionally adequate and acceptable diet was evaluated and developed. A design for a multipurpose food plant is discussed. The types and amounts of foods needed to be regenerated in a partially closed ecological life support system (PCELSS) were proposed. All steps of food processes to be utilized in the multipurpose food plant of PCELSS were also considered. Equipment specifications, simplification of the proposed processes, and food waste treatment were analyzed.
Okamoto, Scott K.; LeCroy, Craig Winston; Tann, Sheila S.; Rayle, Andrea Dixon; Kulis, Stephen; Dustman, Patricia; Berceli, David
2011-01-01
This paper describes a five-stage approach toward conducting an ecologically based assessment with Indigenous youth populations, and the implications of this approach for the development and implementation of culturally grounded prevention interventions. A description of a pilot study funded by the National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) focused on drug use and American Indian youth is presented as one model for operationalizing ecologically based assessment with Indigenous youth populations, and issues related to translating the pilot study into a prevention intervention are discussed. This paper suggests that ecologically based assessment can serve as a foundation for culturally grounded prevention interventions, promoting the social and ecological validity of those interventions. PMID:16534658
Griffen, Blaine D; Riley, Megan E; Cannizzo, Zachary J; Feller, Ilka C
2017-10-01
Ecosystem engineers alter environments by creating, modifying or destroying habitats. The indirect impacts of ecosystem engineering on trophic interactions should depend on the combination of the spatial distribution of engineered structures and the foraging behaviour of consumers that use these structures as refuges. In this study, we assessed the indirect effects of ecosystem engineering by a wood-boring beetle in a neotropical mangrove forest system. We identified herbivory patterns in a dwarf mangrove forest on the archipelago of Twin Cays, Belize. Past wood-boring activity impacted more than one-third of trees through the creation of tree holes that are now used, presumably as predation or thermal refuge, by the herbivorous mangrove tree crab Aratus pisonii. The presence of these refuges had a significant impact on plant-animal interactions; herbivory was more than fivefold higher on trees influenced by tree holes relative to those that were completely isolated from these refuges. Additionally, herbivory decreased exponentially with increasing distance from tree holes. We use individual-based simulation modelling to demonstrate that the creation of these herbivory patterns depends on a combination of the use of engineered tree holes for refuge by tree crabs, and the use of two behaviour patterns in this species-site fidelity to a "home tree," and more frequent foraging near their home tree. We demonstrate that understanding the spatial distribution of herbivory in this system depends on combining both the use of ecosystem engineering structures with individual behavioural patterns of herbivores. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
2013/2014 Eco-Logical program annual report
DOT National Transportation Integrated Search
2014-12-01
The Eco-Logical approach offers an ecosystem-based framework for integrated infrastructure and natural resource planning, project development, and delivery. The 2013/2014 Eco-Logical Program Annual Report provides updates on the Federal Highway Admin...
The information science of microbial ecology.
Hahn, Aria S; Konwar, Kishori M; Louca, Stilianos; Hanson, Niels W; Hallam, Steven J
2016-06-01
A revolution is unfolding in microbial ecology where petabytes of 'multi-omics' data are produced using next generation sequencing and mass spectrometry platforms. This cornucopia of biological information has enormous potential to reveal the hidden metabolic powers of microbial communities in natural and engineered ecosystems. However, to realize this potential, the development of new technologies and interpretative frameworks grounded in ecological design principles are needed to overcome computational and analytical bottlenecks. Here we explore the relationship between microbial ecology and information science in the era of cloud-based computation. We consider microorganisms as individual information processing units implementing a distributed metabolic algorithm and describe developments in ecoinformatics and ubiquitous computing with the potential to eliminate bottlenecks and empower knowledge creation and translation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Genome-scale engineering for systems and synthetic biology
Esvelt, Kevin M; Wang, Harris H
2013-01-01
Genome-modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre-defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome-scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering. PMID:23340847
Huang, Jia Hang; Liu, Jin Fu; Lin, Zhi Wei; Zheng, Shi Qun; He, Zhong Sheng; Zhang, Hui Guang; Li, Wen Zhou
2017-01-01
Designing the nature reserves is an effective approach to protecting biodiversity. The traditional approaches to designing the nature reserves could only identify the core area for protecting the species without specifying an appropriate land area of the nature reserve. The site selection approaches, which are based on mathematical model, can select part of the land from the planning area to compose the nature reserve and to protect specific species or ecosystem. They are useful approaches to alleviating the contradiction between ecological protection and development. The existing site selection methods do not consider the ecological differences between each unit and has the bottleneck of computational efficiency in optimization algorithm. In this study, we first constructed the ecological value assessment system which was appropriated for forest ecosystem and that was used for calculating ecological value of Daiyun Mountain and for drawing its distribution map. Then, the Ecological Set Covering Problem (ESCP) was established by integrating the ecological values and then the Space-ecology Set Covering Problem (SSCP) was generated based on the spatial compactness of ESCP. Finally, the STS algorithm which possessed good optimizing performance was utilized to search the approximate optimal solution under diverse protection targets, and the optimization solution of the built-up area of Daiyun Mountain was proposed. According to the experimental results, the difference of ecological values in the spatial distribution was obvious. The ecological va-lue of selected sites of ESCP was higher than that of SCP. SSCP could aggregate the sites with high ecological value based on ESCP. From the results, the level of the aggregation increased with the weight of the perimeter. We suggested that the range of the existing reserve could be expanded for about 136 km 2 and the site of Tsuga longibracteata should be included, which was located in the northwest of the study area. Our research aimed at providing an optimization scheme for the sustai-nable development of Daiyun Mountain nature reserve and the optimal allocation of land resource, and a novel idea for designing the nature reserve of forest ecosystem in China.
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu
2017-04-01
Hydrologic science has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, further progress has been hampered by problems posed by the presence of heterogeneity, especially subsurface heterogeneity, at all scales. The inability to measure or map subsurface heterogeneity everywhere prevented further development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of subsurface heterogeneity everywhere is a new earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological and pedological processes, each operating at a different rate, which have helped to shape the landscapes that we see in nature, including the heterogeneity below that we do not see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it, without loss of information, with the ecosystem function they perform. Guided by this new earth system science perspective, development of hydrologic science is now guided by altogether new questions and new approaches to address them, compared to the purely physical, fluid mechanics based approaches that we inherited from the past. In the emergent Anthropocene, the co-evolutionary view is expanded further to involve interactions and feedbacks with human-social processes as well. In this lecture, I will present key milestones in the transformation of hydrologic science from Engineering Hydrology to Earth System Science, and what this means for hydrologic observations, theory development and predictions.
Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële
2014-01-01
Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.
Kenow, Kevin P.; Gretchen Benjamin,; Tim Schlagenhaft,; Ruth Nissen,; Mary Stefanski,; Gary Wege,; Scott A. Jutila,; Newton, Teresa J.
2016-01-01
The Upper Mississippi River (UMR) has been developed and subsequently managed for commercial navigation by the U.S. Army Corps of Engineers (USACE). The navigation pools created by a series of lock and dams initially provided a complex of aquatic habitats that supported a variety of fish and wildlife. However, biological productivity declined as the pools aged. The River Resources Forum, an advisory body to the St. Paul District of the USACE, established a multiagency Water Level Management Task Force (WLMTF) to evaluate the potential of water level management to improve ecological function and restore the distribution and abundance of fish and wildlife habitat. The WLMTF identified several water level management options and concluded that summer growing season drawdowns at the pool scale offered the greatest potential to provide habitat benefits over a large area. Here we summarize the process followed to plan and implement pool-wide drawdowns on the UMR, including involvement of stakeholders in decision making, addressing requirements to modify reservoir operating plans, development and evaluation of drawdown alternatives, pool selection, establishment of a monitoring plan, interagency coordination, and a public information campaign. Three pool-wide drawdowns were implemented within the St. Paul District and deemed successful in providing ecological benefits without adversely affecting commercial navigation and recreational use of the pools. Insights are provided based on more than 17 years of experience in planning and implementing drawdowns on the UMR.
Stochastic Community Assembly: Does It Matter in Microbial Ecology?
Zhou, Jizhong; Ning, Daliang
2017-12-01
Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Suwondo; Darmadi; Yunus, M.
2018-01-01
The development process has resulted in deforestation. A comprehensive study is needed to obtain an objective solution by integrating the ecological dimension and human dimension. This study was conducted within Balai Raja Wildlife Reserve (BRWR), Bengkalis Regency, Riau Province, Indonesia. We used the social-ecological systems (SES) approach based on local characteristics, categorized into ecological status, social status and actors. Each factoris ranked using Multi-Dimensional Scaling (MDS).BRWR sustainability levels are in moderate condition. The ecological dimension is in a less sustainable state, with leverage: (1) forest conversion; (2) local ecological knowledge; (3) high conservation value. The social dimension is in a less sustainable state, with leverage: (1) community empowerment; (2) social conflict; (3) participation in landscape management. Dimensions actors are on a fairly sustainable status, with leverage: (1) institutional interaction; (2) stakeholder’s commitment; (3) law enforcement. We recommend strengthening community empowerment, local ecological knowledge, interaction, and stakeholder commitment
Sean A. Parks; Lisa M. Holsinger; Morgan A. Voss; Rachel A. Loehman; Nathaniel P. Robinson
2018-01-01
Landsat-based fire severity datasets are an invaluable resource for monitoring and research purposes. These gridded fire severity datasets are generally produced with pre- and post-fire imagery to estimate the degree of fire-induced ecological change. Here, we introduce methods to produce three Landsat-based fire severity metrics using the Google Earth Engine (GEE)...
NASA Astrophysics Data System (ADS)
Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.
2016-08-01
The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel assemblies. Based on analysis of modern engineering solutions on SNF regeneration, it has been concluded that new reprocessing technologies should meet the ecological safety requirements, provide a more extensive use of the resource base of nuclear engineering, allow the production of valuable and trace elements on an industrial scale, and decrease radioactive waste release.
Feasibility study of a soil-based rubberized CLSM.
Wu, Jason Y; Tsai, Mufan
2009-02-01
The development of beneficial uses of recycled scrap tires is always in great demand around the world. The disposal of on-site surplus excavated soil and the production of standard engineering aggregates have also been facing increasing environmental and ecological challenges in congested islands, such as Taiwan. This paper presents an experimental study using recycled crumb rubber and native silty sand to produce a lightweight, soil-based, rubberized controlled low strength material (CLSM) for a bridge approach repair. To assess the technical feasibility of this material, the effects of weight ratios of cement-to-water (C/W) and water-to-solid (W/S), and of rubber content on the engineering properties for different mixtures were investigated. The presented test results include flowability, unit weight, strength, settlement potential, and bearing capacity. Based on the findings, we conclude that a soil-based rubberized CLSM with 40% sand by weight and an optimal design ratio of 0.7 for C/W and 0.35 for W/S can be used for the proposed bridge approach repair. Such a mixture has demonstrated acceptable flowability, strength, and bearing capacity. Its lower unit weight, negligible compressibility, and hydrocollapse potential also help ensure that detrimental settlement is unlikely to occur. The results illustrate a novel scheme of CLSM production, and suggest a beneficial alternative for the reduction of scrap tires as well as conservation of resources and environment.
Approaches to defining deltaic sustainability in the 21st century
NASA Astrophysics Data System (ADS)
Day, John W.; Agboola, Julius; Chen, Zhongyuan; D'Elia, Christopher; Forbes, Donald L.; Giosan, Liviu; Kemp, Paul; Kuenzer, Claudia; Lane, Robert R.; Ramachandran, Ramesh; Syvitski, James; Yañez-Arancibia, Alejandro
2016-12-01
Deltas are among the most productive and economically important of global ecosystems but unfortunately they are also among the most threatened by human activities. Here we discuss deltas and human impact, several approaches to defining deltaic sustainability and present a ranking of sustainability. Delta sustainability must be considered within the context of global biophysical and socioeconomic constraints that include thermodynamic limitations, scale and embeddedness, and constraints at the level of the biosphere/geosphere. The development, functioning, and sustainability of deltas are the result of external and internal inputs of energy and materials, such as sediments and nutrients, that include delta lobe development, channel switching, crevasse formation, river floods, storms and associated waves and storm surges, and tides and other ocean currents. Modern deltas developed over the past several thousand years with relatively stable global mean sea level, predictable material inputs from drainage basins and the sea, and as extremely open systems. Human activity has changed these conditions to make deltas less sustainable, in that they are unable to persist through time structurally or functionally. Deltaic sustainability can be considered from geomorphic, ecological, and economic perspectives, with functional processes at these three levels being highly interactive. Changes in this functioning can lead to either enhanced or diminished sustainability, but most changes have been detrimental. There is a growing understanding that the trajectories of global environmental change and cost of energy will make achieving delta sustainability more challenging and limit options for management. Several delta types are identified in terms of sustainability including those in arid regions, those with high and low energy-intensive management systems, deltas below sea level, tropical deltas, and Arctic deltas. Representative deltas are ranked on a sustainability range. Success in sustainable delta management will depend on utilizing natural delta functioning and an ecological engineering approach.
Quantitative approaches in climate change ecology
Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J
2011-01-01
Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.
Franco, Antonio; Price, Oliver R; Marshall, Stuart; Jolliet, Olivier; Van den Brink, Paul J; Rico, Andreu; Focks, Andreas; De Laender, Frederik; Ashauer, Roman
2017-03-01
Current regulatory practice for chemical risk assessment suffers from the lack of realism in conventional frameworks. Despite significant advances in exposure and ecological effect modeling, the implementation of novel approaches as high-tier options for prospective regulatory risk assessment remains limited, particularly among general chemicals such as down-the-drain ingredients. While reviewing the current state of the art in environmental exposure and ecological effect modeling, we propose a scenario-based framework that enables a better integration of exposure and effect assessments in a tiered approach. Global- to catchment-scale spatially explicit exposure models can be used to identify areas of higher exposure and to generate ecologically relevant exposure information for input into effect models. Numerous examples of mechanistic ecological effect models demonstrate that it is technically feasible to extrapolate from individual-level effects to effects at higher levels of biological organization and from laboratory to environmental conditions. However, the data required to parameterize effect models that can embrace the complexity of ecosystems are large and require a targeted approach. Experimental efforts should, therefore, focus on vulnerable species and/or traits and ecological conditions of relevance. We outline key research needs to address the challenges that currently hinder the practical application of advanced model-based approaches to risk assessment of down-the-drain chemicals. Integr Environ Assess Manag 2017;13:233-248. © 2016 SETAC. © 2016 SETAC.
Eco-logical successes : second edition, January 2012
DOT National Transportation Integrated Search
2012-01-01
In 2006, leaders from eight Federal agencies signed the interagency document EcoLogical: An Ecosystem Approach to Developing Infrastructure Projects. Eco-Logical is a document that outlines a shared vision of how to develop infrastructure projects in...
Sustainable ecological systems: Implementing an ecological approach to land management
W. Wallace Covington; Leonard F. DeBano
1994-01-01
This conference brought together scientiests and managers from federal, state, and local agencies, along with private-sector interests, to examine key concepts involving sustainable ecological systems, and ways in which to apply these concepts to ecosystem management. Session topics were: ecological consequenses of land and water use changes, biology of rare and...
ERIC Educational Resources Information Center
Small, Neil; Raghavan, Raghu; Pawson, Nicole
2013-01-01
Transition planning using a person-centred approach has, in the main, failed to shape service provision. We offer an alternative based on an ecological understanding of human development linked to public health approaches that prioritise whole system planning. A total of 43 young people with intellectual disabilities, in Bradford, England, who…
Ecology, Democracy, and Green Schools: An Integrated Framework
ERIC Educational Resources Information Center
Kensler, Lisa A. W.
2012-01-01
Sustainability is the integration of ecological, social, and economic approaches to ensuring healthy local and global communities for present and future generations. Although environmental science and social studies teachers have assumed primary responsibility for sustainability related programs and initiatives, whole school approaches to teaching…
Towards a macrosystems approach for successful coastal ...
Managing coastal resources for resiliency and sustainability often requires integrative, multi-disciplinary approaches across varying spatial and temporal scales to engage stakeholders and inform decision-makers. We discuss case studies integrating wetland ecology, economics, sociology and other disciplines to help solve management problems, especially those concerning increasing nutrient loads and climate change (e.g., accelerated sea level rise, increased flooding, warming temperatures). One goal of the macrosystems approach is to provide the science necessary to assess tradeoffs for different management, restoration, and climate adaptation actions. In the first case study we examine the conversion of a cranberry farm in New England to a freshwater wetland with connectivity to Cape Cod Bay (MA). A second example examines climate adaptation actions in coastal wetlands of the northeastern US to mitigate accelerated sea level rise. Various restoration actions (e.g., dam removal, hydrological engineering) and climate adaptation interventions (e.g., living shoreline, thin layer sediment application) are underway, and we discuss the adaptive management and macrosystems approaches for each example. One focus of management actions is the provision of select ecosystem services. For each study, we discuss tradeoffs in the provision of services from different actions. By presenting examples of how a macrosystems approach works in practice, we hope to show its transferabi
Restoration ecology: The state of an emerging field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairns, J. Jr.; Heckman, J.R.
1996-12-31
The field of restoration ecology represents an emerging synthesis of ecological theory and concern about human impact on the natural world. Restoration ecology can be viewed as the study of how to repair anthropogenic damage to the integrity of ecological systems. However, attempts to repair ecological damage should not diminish protection of existing healthy ecosystems. Restoration ecology allows for the testing of ecological theories; however, restoration ecology is not limited to, nor is it a subdiscipline of, the field of ecology. Restoration ecology requires approaches that integrate ecology and environmental sciences, economics, sociology, and politics. This review illustrates these pointsmore » by providing a conceptual map of the origin, present practices, and future directions of the field. 97 refs., 4 tabs.« less
An Ecological Approach to the Design of UAV Ground Control Station (GCS) Status Displays
NASA Technical Reports Server (NTRS)
Dowell, Susan; Morphew, Ephimia; Shively, Jay
2003-01-01
Use of UAVs in military and commercial applications will continue to increase. However, there has been limited research devoted to UAV GCS design. The current study employed an ecological approach to interfac e design. Ecological Interface Design (EID) can be characterized as r epresenting the properties of a system, such that an operator is enco uraged to use skill-based behavior when problem solving. When more ef fortful cognitive processes become necessary due to unfamiliar situations, the application of EID philosophy supports the application of kn owledge-based behavior. With advances toward multiple UAV command and control, operators need GCS interfaces designed to support understan ding of complex systems. We hypothesized that use of EID principles f or the display of UAV status information would result in better opera tor performance and situational awareness, while decreasing workload. Pilots flew a series of missions with three UAV GCS displays of statu s information (Alphanumeric, Ecological, and Hybrid display format). Measures of task performance, Situational Awareness, and workload dem onstrated the benefits of using an ecological approach to designing U AV GCS displays. The application of ecological principles to the design of UAV GCSs is a promising area for improving UAV operations.
Psychoactive substances and the political ecology of mental distress
2012-01-01
The goal of this paper is to both understand and depathologize clinically significant mental distress related to criminalized contact with psychoactive biotic substances by employing a framework known as critical political ecology of health and disease from the subdiscipline of medical geography. The political ecology of disease framework joins disease ecology with the power-calculus of political economy and calls for situating health-related phenomena in their broad social and economic context, demonstrating how large-scale global processes are at work at the local level, and giving due attention to historical analysis in understanding the relevant human-environment relations. Critical approaches to the political ecology of health and disease have the potential to incorporate ever-broadening social, political, economic, and cultural factors to challenge traditional causes, definitions, and sociomedical understandings of disease. Inspired by the patient-centered medical diagnosis critiques in medical geography, this paper will use a critical political ecology of disease approach to challenge certain prevailing sociomedical interpretations of disease, or more specifically, mental disorder, found in the field of substance abuse diagnostics and the related American punitive public policy regimes of substance abuse prevention and control, with regards to the use of biotic substances. It will do this by first critically interrogating the concept of "substances" and grounding them in an ecological context, reviewing the history of both the development of modern substance control laws and modern substance abuse diagnostics, and understanding the biogeographic dimensions of such approaches. It closes with proposing a non-criminalizing public health approach for regulating human close contact with psychoactive substances using the example of cannabis use. PMID:22257499
University of Georgia: Birthplace of public higher education in America
; Colleges Agricultural and Environmental Sciences Arts and Sciences Business Ecology Education Engineering Botanical Garden of Georgia School- and college-based outreach College of Agricultural & Environmental
Gao, Yuan; Zhang, Chuanrong; He, Qingsong; Liu, Yaolin
2017-01-01
Ecological security is an important research topic, especially urban ecological security. As highly populated eco-systems, cities always have more fragile ecological environments. However, most of the research on urban ecological security in literature has focused on evaluating current or past status of the ecological environment. Very little literature has carried out simulation or prediction of future ecological security. In addition, there is even less literature exploring the urban ecological environment at a fine scale. To fill-in the literature gap, in this study we simulated and predicted urban ecological security at a fine scale (district level) using an improved Cellular Automata (CA) approach. First we used the pressure-state-response (PSR) method based on grid-scale data to evaluate urban ecological security. Then, based on the evaluation results, we imported the geographically weighted regression (GWR) concept into the CA model to simulate and predict urban ecological security. We applied the improved CA approach in a case study—simulating and predicting urban ecological security for the city of Wuhan in Central China. By comparing the simulated ecological security values from 2010 using the improved CA model to the actual ecological security values of 2010, we got a relatively high value of the kappa coefficient, which indicates that this CA model can simulate or predict well future development of ecological security in Wuhan. Based on the prediction results for 2020, we made some policy recommendations for each district in Wuhan. PMID:28617348
1982-11-01
populations suffered damage due to the elimination of bottomland hard- wood , and the loss of habitat and edge have adversely affected rabbit popula...Dowell and Teresa Herrin provided many helpful documents. Tom Nash and Bruce Stebbings, U.S. Fish and Wildlife Service’s Ecological Services Division...Environment and Ecological Services, respect- ively, were reviewed at the Kansas City, Missouri Area Office and the Regional Office in Denver, Colorado. These
Terrestrial Soundscapes: Status of Ecological Research in Natural and Human-Dominated Landscapes.
Pijanowski, Bryan Christopher
2016-01-01
Soundscape ecological research in terrestrial systems is relatively new. In this paper, I present a brief summary of the origins of this research area, describe research questions related to several research thrusts that are ongoing, summarize several soundscape projects that exist and how these relate to the research thrusts, and briefly describe the work of a global network of scientists, musicians, and engineers that are attempting to move this new field forward.
Redefining ecological ethics: science, policy, and philosophy at Cape Horn.
Frodeman, Robert
2008-12-01
In the twentieth century, philosophy (especially within the United States) embraced the notion of disciplinary expertise: philosophical research consists of working with and writing for other philosophers. Projects that involve non-philosophers earn the deprecating title of "applied" philosophy. The University of North Texas (UNT) doctoral program in philosophy exemplifies the possibility of a new model for philosophy, where graduate students are trained in academic philosophy and in how to work with scientists, engineers, and policy makers. This "field" (rather than "applied") approach emphasizes the inter- and transdisciplinary nature of the philosophical enterprise where theory and practice dialectically inform one another. UNT's field station in philosophy at Cape Horn, Patagonia, Chile is one site for developing this ongoing experiment in the theory and practice of interdisciplinary philosophic research and education.
Defining acceptable levels for ecological indicators: an approach for considering social values.
Smyth, Robyn L; Watzin, Mary C; Manning, Robert E
2007-03-01
Ecological indicators can facilitate an adaptive management approach, but only if acceptable levels for those indicators have been defined so that the data collected can be interpreted. Because acceptable levels are an expression of the desired state of the ecosystem, the process of establishing acceptable levels should incorporate not just ecological understanding but also societal values. The goal of this research was to explore an approach for defining acceptable levels of ecological indicators that explicitly considers social perspectives and values. We used a set of eight indicators that were related to issues of concern in the Lake Champlain Basin. Our approach was based on normative theory. Using a stakeholder survey, we measured respondent normative evaluations of varying levels of our indicators. Aggregated social norm curves were used to determine the level at which indicator values shifted from acceptable to unacceptable conditions. For seven of the eight indicators, clear preferences were interpretable from these norm curves. For example, closures of public beaches because of bacterial contamination and days of intense algae bloom went from acceptable to unacceptable at 7-10 days in a summer season. Survey respondents also indicated that the number of fish caught from Lake Champlain that could be safely consumed each month was unacceptably low and the number of streams draining into the lake that were impaired by storm water was unacceptably high. If indicators that translate ecological conditions into social consequences are carefully selected, we believe the normative approach has considerable merit for defining acceptable levels of valued ecological system components.
Defining Acceptable Levels for Ecological Indicators: An Approach for Considering Social Values
NASA Astrophysics Data System (ADS)
Smyth, Robyn L.; Watzin, Mary C.; Manning, Robert E.
2007-03-01
Ecological indicators can facilitate an adaptive management approach, but only if acceptable levels for those indicators have been defined so that the data collected can be interpreted. Because acceptable levels are an expression of the desired state of the ecosystem, the process of establishing acceptable levels should incorporate not just ecological understanding but also societal values. The goal of this research was to explore an approach for defining acceptable levels of ecological indicators that explicitly considers social perspectives and values. We used a set of eight indicators that were related to issues of concern in the Lake Champlain Basin. Our approach was based on normative theory. Using a stakeholder survey, we measured respondent normative evaluations of varying levels of our indicators. Aggregated social norm curves were used to determine the level at which indicator values shifted from acceptable to unacceptable conditions. For seven of the eight indicators, clear preferences were interpretable from these norm curves. For example, closures of public beaches because of bacterial contamination and days of intense algae bloom went from acceptable to unacceptable at 7-10 days in a summer season. Survey respondents also indicated that the number of fish caught from Lake Champlain that could be safely consumed each month was unacceptably low and the number of streams draining into the lake that were impaired by storm water was unacceptably high. If indicators that translate ecological conditions into social consequences are carefully selected, we believe the normative approach has considerable merit for defining acceptable levels of valued ecological system components.
Robles, Hugo; Martin, Kathy
2014-01-01
Through physical state changes in biotic or abiotic materials, ecosystem engineers modulate resource availability to other organisms and are major drivers of evolutionary and ecological dynamics. Understanding whether and how ecosystem engineers are interchangeable for resource users in different habitats is a largely neglected topic in ecosystem engineering research that can improve our understanding of the structure of communities. We addressed this issue in a cavity-nest web (1999–2011). In aspen groves, the presence of mountain bluebird (Sialia currucoides) and tree swallow (Tachycineta bicolour) nests was positively related to the density of cavities supplied by northern flickers (Colaptes auratus), which provided the most abundant cavities (1.61 cavities/ha). Flickers in aspen groves provided numerous nesting cavities to bluebirds (66%) and swallows (46%), despite previous research showing that flicker cavities are avoided by swallows. In continuous mixed forests, however, the presence of nesting swallows was mainly related to cavity density of red-naped sapsuckers (Sphyrapicus nuchalis), which provided the most abundant cavities (0.52 cavities/ha), and to cavity density of hairy woodpeckers (Picoides villosus), which provided few (0.14 cavities/ha) but high-quality cavities. Overall, sapsuckers and hairy woodpeckers provided 86% of nesting cavities to swallows in continuous forests. In contrast, the presence of nesting bluebirds in continuous forests was associated with the density of cavities supplied by all the ecosystem engineers. These results suggest that (i) habitat type may mediate the associations between ecosystem engineers and resource users, and (ii) different ecosystem engineers may be interchangeable for resource users depending on the quantity and quality of resources that each engineer supplies in each habitat type. We, therefore, urge the incorporation of the variation in the quantity and quality of resources provided by ecosystem engineers across habitats into models that assess community dynamics to improve our understanding of the importance of ecosystem engineers in shaping ecological communities. PMID:24587211
Robles, Hugo; Martin, Kathy
2014-01-01
Through physical state changes in biotic or abiotic materials, ecosystem engineers modulate resource availability to other organisms and are major drivers of evolutionary and ecological dynamics. Understanding whether and how ecosystem engineers are interchangeable for resource users in different habitats is a largely neglected topic in ecosystem engineering research that can improve our understanding of the structure of communities. We addressed this issue in a cavity-nest web (1999-2011). In aspen groves, the presence of mountain bluebird (Sialia currucoides) and tree swallow (Tachycineta bicolour) nests was positively related to the density of cavities supplied by northern flickers (Colaptes auratus), which provided the most abundant cavities (1.61 cavities/ha). Flickers in aspen groves provided numerous nesting cavities to bluebirds (66%) and swallows (46%), despite previous research showing that flicker cavities are avoided by swallows. In continuous mixed forests, however, the presence of nesting swallows was mainly related to cavity density of red-naped sapsuckers (Sphyrapicus nuchalis), which provided the most abundant cavities (0.52 cavities/ha), and to cavity density of hairy woodpeckers (Picoides villosus), which provided few (0.14 cavities/ha) but high-quality cavities. Overall, sapsuckers and hairy woodpeckers provided 86% of nesting cavities to swallows in continuous forests. In contrast, the presence of nesting bluebirds in continuous forests was associated with the density of cavities supplied by all the ecosystem engineers. These results suggest that (i) habitat type may mediate the associations between ecosystem engineers and resource users, and (ii) different ecosystem engineers may be interchangeable for resource users depending on the quantity and quality of resources that each engineer supplies in each habitat type. We, therefore, urge the incorporation of the variation in the quantity and quality of resources provided by ecosystem engineers across habitats into models that assess community dynamics to improve our understanding of the importance of ecosystem engineers in shaping ecological communities.
A quantitative framework for assessing ecological resilience
Quantitative approaches to measure and assess resilience are needed to bridge gaps between science, policy, and management. In this paper, we suggest a quantitative framework for assessing ecological resilience. Ecological resilience as an emergent ecosystem phenomenon can be de...
CASE STUDY CRITIQUE; UPPER CLINCH CASE STUDY
Case study critique: Upper Clinch case study (from Research on Methods for Integrating Ecological Economics and Ecological Risk Assessment: A Trade-off Weighted Index Approach to Integrating Economics and Ecological Risk Assessment). This critique answers the questions: 1) does ...
Introduction to environmental engineering
NASA Astrophysics Data System (ADS)
Šalić, Anita; Zelić, Bruno
2018-02-01
Nowadays we can easily say that environmental engineering is truly an interdisciplinary science. Combining biology, ecology, geology, geography, mathematics, chemistry, agronomy, medicine, economy, etc. environmental engineering strives to use environmental understanding and advancements in technology to serve mankind by decreasing production of environmental hazards and the effects of those hazards already present in the soil, water, and air. Major activities of environmental engineer involve water supply, waste water and solid management, air and noise pollution control, environmental sustainability, environmental impact assessment, climate changes, etc. And all this with only one main goal - to prevent or reduce undesirable impacts of human activities on the environment. To ensure we all have tomorrow.
The contribution of bacterial genome engineering to sustainable development.
Reuß, Daniel R; Commichau, Fabian M; Stülke, Jörg
2017-09-01
The United Nations' Sustainable Development Goals define important challenges for the prosperous development of mankind. To reach several of these goals, among them the production of value-added compounds, improved economic and ecologic balance of production processes, prevention of climate change and protection of ecosystems, the use of engineered bacteria can make valuable contributions. We discuss the strategies for genome engineering and how they can be applied to meet the United Nations' goals for sustainable development. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.
Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination,more » even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.« less
Predicting ecological roles in the rhizosphere using metabolome and transportome modeling
Larsen, Peter E.; Collart, Frank R.; Dai, Yang; ...
2015-09-02
The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter ofmore » plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less
Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter E.; Collart, Frank R.; Dai, Yang
2015-09-02
The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad's ecological role in the rhizosphere: a biofilm, biocontrol agent, promotermore » of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism's transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less
The application of 'omics tools to biologically based monitoring and surveillance of aquatic environments shows considerable promise for complementing chemical monitoring in ecological risk assessments. However, few of the current approaches offer the ability to sample ecological...
Emulating natural disturbance regimes: an emerging approach for sustainable forest management
M. North; W Keeton
2008-01-01
Sustainable forest management integrates ecological, social, and economic objectives. To achieve the former, researchers and practitioners are modifying silvicultural practices based on concepts from successional and landscape ecology to provide a broader array of ecosystem functions than is associated with conventional approaches. One...
Classification and description of world formation types
D. Faber-Langendoen; T. Keeler-Wolf; D. Meidinger; C. Josse; A. Weakley; D. Tart; G. Navarro; B. Hoagland; S. Ponomarenko; G. Fults; Eileen Helmer
2016-01-01
An ecological vegetation classification approach has been developed in which a combination of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types. This approach can help support international, national, and subnational classification efforts. The...
NASA Astrophysics Data System (ADS)
Ault, Phyllis Campbell
Native Americans, and particularly Native women, are not proportionally represented in higher education, or in science, mathematics, technology, and engineering fields. This study examined an out-of-school science education program which combined traditional Native American cultural and ecological knowledge with Western science in conducting authentic field studies. A qualitative, embedded case study approach was used to explore how young Native American women were influenced by an out-of-school program integrating a culturally responsive approach and experiential research projects. Within this context of combined cultures, three significant domains emerged: field study in science, sense of place, and networks of supportive relationships. These domains interacted with the aspirations of the eight Native women in the study. Using interview transcripts, reflective writings, and participant data, the study explored the blending of Indigenous and Western science in "communities of practice" (e.g., fisheries biology, restoration ecology, and forestry). The eight Native women in this study participated as young adolescents and later returned as counselors. Interviews focused on their postsecondary aspirations and choices. Findings validated previous research on the value of infusing Traditional Ecological Knowledge and Western science for Native students. The study found the combination of culturally responsive pedagogy and authentic experiences in "communities-of-practice" held a beneficial influence on postsecondary pathways. The importance of respect and friendships fostered through the program was associated with resilience and perseverance in educational aspirations. Immersion in field study with Native peers as well as Native and non-Native researchers was a catalyst for all the women, in a number of different ways, such as: deeper involvement with the Native community, strengthening cultural and academic identity, inspiration to learn more about their cultural heritage, and interest in pursuing science or science-related careers. Commitments to "giving back" to the community, stewardship, and activism emerged as significant outcomes. The experience created a safe, empowering place to be Native, "crazy, a scientist, and a fish geek"---all at once.
Turbokon scientific and production implementation company—25 years of activity
NASA Astrophysics Data System (ADS)
Favorskii, O. N.; Leont'ev, A. I.; Milman, O. O.
2016-05-01
The main results of studies performed at ZAO Turbokon NPVP in cooperation with leading Russian scientific organizations during 25 years of its activity in the field of development of unique ecologically clean electric power and heat production technologies are described. They include the development and experimental verification using prototypes and full-scale models of highly efficient air-cooled condensers for steam turbines, a high temperature gas steam turbine for stationary and transport power engineering, a nonfuel technology of electric power production using steam turbine installations with a unit power of 4-20 MW at gas-main pipelines and industrial boiler houses and heat stations. The results of efforts in the field of reducing vibroactivity of power equipment for transport installations are given. Basic directions of further research for increasing the efficiency and ecological safety of home power engineering are discussed.
USDA-ARS?s Scientific Manuscript database
The development of ecological sites as management units has emerged as a highly effective land management framework, but its utility has been limited by spatial ambiguity of ecological site locations in the U.S., lack of ecological site concepts in many other parts of the world, and the inability to...
ERIC Educational Resources Information Center
MacMillan, Karen; Komar, Jennifer
2018-01-01
This article describes a classroom exercise that is designed to help students understand the basic tenets of population ecology (also known as organizational ecology). The macro-level, longitudinal approach to understanding organizations can be difficult for students to conceptualize as it involves systems thinking. This exercise makes the theory…
EcoEvo-MAPS: An Ecology and Evolution Assessment for Introductory through Advanced Undergraduates
ERIC Educational Resources Information Center
Summers, Mindi M.; Couch, Brian A.; Knight, Jennifer K.; Brownell, Sara E.; Crowe, Alison J.; Semsar, Katharine; Wright, Christian D.; Smith, Michelle K.
2018-01-01
A new assessment tool, Ecology and Evolution--Measuring Achievement and Progression in Science or EcoEvo-MAPS, measures student thinking in ecology and evolution during an undergraduate course of study. EcoEvo-MAPS targets foundational concepts in ecology and evolution and uses a novel approach that asks students to evaluate a series of…
Towards Engineering Biological Systems in a Broader Context.
Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P
2016-02-27
Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Testing Natureserve's ecological integrity assessment model in Michigan and Indiana
NatureServe, in partnership with member programs from the Natural Heritage Network and federal agencies, has developed an assessment of ecosystems condition, structured around the concept of ecological integrity. Our multi-metric approach for our Ecological Integrity Assessment m...
EPA APPROACH TO EVALUATION OF INDICATORS FOR ECOLOGICAL RISK ASSESSMENT
The U.S. Environmental Protection Agency's Office of Research and Development (ORD) is continuing research efforts initiated by the Environmental Monitoring and Assessment Program (EMAP) on ecological indicator development. An ORD Ecological Indicators Working Group has been form...
NASA Astrophysics Data System (ADS)
Glazer, B. T.; Chan, C. S. Y.; Mcallister, S.; Leavitt, A.; Emerson, D.
2015-12-01
Microbial mats are formed by microorganisms working in coordinated symbiosis, often benefitting the community by controlling the local geochemical or physical environment. Thus, the ecology of the mat depends on the individual roles of microbes organized into niches within a larger architecture. Chemolithotrophic Fe-oxidizing bacteria (FeOB) form distinctive Fe oxyhydroxide biominerals which constitute the building blocks of the mat. However, the majority of our progress has been in understanding the overall community structure. Understanding the physical mat structure on the microbial scale is important to unraveling FeOB evolution, the biogeochemistry and ecology of Fe-rich habitats, and ultimately interpreting FeOB biosignatures in the rock record. Mats in freshwater and marine environments contain strikingly similar biomineral morphologies, yet they are formed by phylogenetically distinct microorganisms. This suggests that the overall architecture and underlying genetics of freshwater and marine mats has evolved to serve particular roles specific to Fe oxidation. Thus, we conducted a comparative study of Fe seep freshwater mats and marine hydrothermal mats. We have developed a new approach to sampling Fe mats in order to preserve the delicate structure for analysis by confocal and scanning electron microscopy. Our analyses of these intact mats show that freshwater and marine mats are similarly initiated by a single type of structure-former. These ecosystem engineers form either a hollow sheath or a twisted stalk biomineral during mat formation, with a highly directional structure. These microbes appear to be the vanguard organisms that anchor the community within oxygen/Fe(II) gradients, further allowing for community succession in the mat interior as evidenced by other mineralized morphologies. Patterns in biomineral thickness and directionality were indicative of redox gradients and temporal changes in the geochemical environment. These observations show that the FeOB create the structure of the environment for the entire microbial community, acting as environmental engineers. Furthermore, they leave behind distinctive signatures of environmental conditions (e.g. presence of oxygen, hydrothermal pulsing), which can be recorded in the rock record.
A comparison of approaches for estimating relative impacts of nonnative fishes
Lapointe, N.W.R.; Pendleton, R. M.; Angermeier, Paul
2012-01-01
Lack of standard methods for quantifying impact has hindered risk assessments of high-impact invaders. To understand methodological strengths and weaknesses, we compared five approaches (in parentheses) for quantifying impact of nonnative fishes: reviewing documented impacts in a large-scale database (review); surveying fish biologists regarding three categories of impact (socioeconomic, ecological, abundance); and estimating frequency of occurrence from existing collection records (collection). In addition, we compared game and nongame biologists’ ratings of game and nongame species. Although mean species ratings were generally correlated among approaches, we documented important discrepancies. The review approach required little effort but often inaccurately estimated impact in our study region (Mid-Atlantic United States). Game fishes received lower ratings from the socioeconomic approach, which yielded the greatest consistency among respondents. The ecological approach exhibited lower respondent bias but was sensitive to pre-existing perceptions of high-impact invaders. The abundance approach provided the least-biased assessment of region-specific impact but did not account for differences in per-capita effects among species. The collection approach required the most effort and did not provide reliable estimates of impact. Multiple approaches to assessing a species’ impact are instructive, but impact ratings must be interpreted in the context of methodological strengths and weaknesses and key management issues. A combination of our ecological and abundance approaches may be most appropriate for assessing ecological impact, whereas our socioeconomic approach is more useful for understanding social dimensions. These approaches are readily transferrable to other regions and taxa; if refined, they can help standardize the assessment of impacts of nonnative species.
Conducting an integrated analysis to evaluate the societal and ecological consequences of environmental management actions requires decisions about data collection, theory development, modeling and valuation. Approaching these decisions in coordinated fashion necessitates a syste...
A Social-Ecological Approach to Promote Self-Determination
ERIC Educational Resources Information Center
Walker, Hill M.; Calkins, Carl; Wehmeyer, Michael L.; Walker, Laura; Bacon, Ansley; Palmer, Susan B.; Jesien, George S.; Nygren, Margaret A.; Heller, Tamar; Gotto, George S.; Abery, Brian H.; Johnson, David R.
2011-01-01
This article describes a social-ecological approach for promoting and enhancing self-determination among individuals with developmental disabilities. A five-level model is presented, based on the interaction of person and environmental factors, that identifies a series of social mediator variables (i.e., social effectiveness, social capital,…
Industrial Ecology Approach to MSW Methodology Data Set
U.S. municipal solid waste data for the year 2012. This dataset is associated with the following publication:Smith , R., D. Sengupta, S. Takkellapati , and C. Lee. An industrial ecology approach to municipal solid wastemanagement: I. Methodology. Resources, Conservation and Recycling. Elsevier Science BV, Amsterdam, NETHERLANDS, 104: 311-316, (2015).
The Ecological Approach to Text Visualization.
ERIC Educational Resources Information Center
Wise, James A.
1999-01-01
Presents both theoretical and technical bases on which to build a "science of text visualization." The Spatial Paradigm for Information Retrieval and Exploration (SPIRE) text-visualization system, which images information from free-text documents as natural terrains, serves as an example of the "ecological approach" in its visual metaphor, its…
Natural disturbance and stand development principles for ecological forestry
Jerry F. Franklin; Robert J. Mitchell; Brian J. Palik
2007-01-01
Foresters use natural disturbances and stand development processes as models for silvicultural practices in broad conceptual ways. Incorporating an understanding of natural disturbance and stand development processes more fully into silvicultural practice is the basis for an ecological forestry approach. Such an approach must include 1) understanding the importance of...
As part of a broader exploratory effort to develop ecological risk assessment approaches to estimate potential chemical effects on non-target populations, we describe an approach for developing simple population models to estimate the extent to which acute effects on individual...
Questionnaire of Executive Function for Dancers: An Ecological Approach
ERIC Educational Resources Information Center
Wong, Alina; Rodriguez, Mabel; Quevedo, Liliana; de Cossio, Lourdes Fernandez; Borges, Ariel; Reyes, Alicia; Corral, Roberto; Blanco, Florentino; Alvarez, Miguel
2012-01-01
There is a current debate about the ecological validity of executive function (EF) tests. Consistent with the verisimilitude approach, this research proposes the Ballet Executive Scale (BES), a self-rating questionnaire that assimilates idiosyncratic executive behaviors of classical dance community. The BES was administrated to 149 adolescents,…
Earthly Matters: Learning Occurs When You Hear the Grass Singing.
ERIC Educational Resources Information Center
Birt, Deborah; Krug, Don H.; Sheridan, Mary
1997-01-01
Discusses the actions and approaches advanced during the 1996 Summer Colloquium, "Art and Ecology: Interdisciplinary Approaches to the Curriculum." Illustrates how action-oriented inquiry makes learning relevant to all people through exploring the poetry of place. The colloquium identified community ecological issues that could be examined through…
Conceptualizing Skill within a Participatory Ecological Approach to Outdoor Adventure
ERIC Educational Resources Information Center
Mullins, Philip M.
2014-01-01
To answer calls for an ecological approach to outdoor adventure that can respond to the crisis of sustainability, this paper suggests greater theoretical and empirical attention to skill and skill development as shaping participant interactions with and experiences of environments, landscapes, places, and inhabitants. The paper reviews calls for…
A genetically engineered microorganism, Pseudomonas putida PPO301 (pRO103), and the plasmidless parent strain, PPO301, were added at approximately 10 7 CFU/g of soil amended with 500 ppm of 2,4-dichlorophenoxyacete (2,4-D)(500 ug/g). he degradation of 2,4-D and the accumulation o...
NASA Astrophysics Data System (ADS)
Ali, A.; de Bie, C. A. J. M.; Scarrott, R. G.; Ha, N. T. T.; Skidmore, A. K.
2012-07-01
Both agricultural area expansion and intensification are necessary to cope with the growing demand for food, and the growing threat of food insecurity which is rapidly engulfing poor and under-privileged sections of the global population. Therefore, it is of paramount importance to have the ability to accurately estimate crop area and spatial distribution. Remote sensing has become a valuable tool for estimating and mapping cropland areas, useful in food security monitoring. This work contributes to addressing this broad issue, focusing on the comparative performance analysis of two mapping approaches (i) a hyper-temporal Normalized Difference Vegetation Index (NDVI) analysis approach and (ii) a Landscape-ecological approach. The hyper-temporal NDVI analysis approach utilized SPOT 10-day NDVI imagery from April 1998-December 2008, whilst the Landscape-ecological approach used multitemporal Landsat-7 ETM+ imagery acquired intermittently between 1992 and 2002. Pixels in the time-series NDVI dataset were clustered using an ISODATA clustering algorithm adapted to determine the optimal number of pixel clusters to successfully generalize hyper-temporal datasets. Clusters were then characterized with crop cycle information, and flooding information to produce an NDVI unit map of rice classes with flood regime and NDVI profile information. A Landscape-ecological map was generated using a combination of digitized homogenous map units in the Landsat-7 ETM+ imagery, a Land use map 2005 of the Mekong delta, and supplementary datasets on the regions terrain, geo-morphology and flooding depths. The output maps were validated using reported crop statistics, and regression analyses were used to ascertain the relationship between land use area estimated from maps, and those reported in district crop statistics. The regression analysis showed that the hyper-temporal NDVI analysis approach explained 74% and 76% of the variability in reported crop statistics in two rice crop and three rice crop land use systems respectively. In contrast, 64% and 63% of the variability was explained respectively by the Landscape-ecological map. Overall, the results indicate the hyper-temporal NDVI analysis approach is more accurate and more useful in exploring when, why and how agricultural land use manifests itself in space and time. Furthermore, the NDVI analysis approach was found to be easier to implement, was more cost effective, and involved less subjective user intervention than the landscape-ecological approach.
Barnosky, Anthony D.; Lindsey, Emily L.; Villavicencio, Natalia A.; Bostelmann, Enrique; Hadly, Elizabeth A.; Wanket, James; Marshall, Charles R.
2016-01-01
Loss of megafauna, an aspect of defaunation, can precipitate many ecological changes over short time scales. We examine whether megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We compare ecological impacts of late-Quaternary megafauna extinction in five American regions: southwestern Patagonia, the Pampas, northeastern United States, northwestern United States, and Beringia. We find that major ecological state shifts were consistent with expectations of defaunation in North American sites but not in South American ones. The differential responses highlight two factors necessary for defaunation to trigger lasting ecological state shifts discernable in the fossil record: (i) lost megafauna need to have been effective ecosystem engineers, like proboscideans; and (ii) historical contingencies must have provided the ecosystem with plant species likely to respond to megafaunal loss. These findings help in identifying modern ecosystems that are most at risk for disappearing should current pressures on the ecosystems’ large animals continue and highlight the critical role of both individual species ecologies and ecosystem context in predicting the lasting impacts of defaunation currently underway. PMID:26504219
Mángano, M. Gabriela; Buatois, Luis A.
2014-01-01
The rapid appearance of bilaterian clades at the beginning of the Phanerozoic is one of the most intriguing topics in macroevolution. However, the complex feedbacks between diversification and ecological interactions are still poorly understood. Here, we show that a systematic and comprehensive analysis of the trace-fossil record of the Ediacaran–Cambrian transition indicates that body-plan diversification and ecological structuring were decoupled. The appearance of a wide repertoire of behavioural strategies and body plans occurred by the Fortunian. However, a major shift in benthic ecological structure, recording the establishment of a suspension-feeder infauna, increased complexity of the trophic web, and coupling of benthos and plankton took place during Cambrian Stage 2. Both phases were accompanied by different styles of ecosystem engineering, but only the second one resulted in the establishment of the Phanerozoic-style ecology. In turn, the suspension-feeding infauna may have been the ecological drivers of a further diversification of deposit-feeding strategies by Cambrian Stage 3, favouring an ecological spillover scenario. Trace-fossil information strongly supports the Cambrian explosion, but allows for a short time of phylogenetic fuse during the terminal Ediacaran–Fortunian. PMID:24523279
Linking effects of anthropogenic debris to ecological impacts
Browne, Mark Anthony; Underwood, A. J.; Chapman, M. G.; Williams, Rob; Thompson, Richard C.; van Franeker, Jan A.
2015-01-01
Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the ‘health’, feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661
Mángano, M Gabriela; Buatois, Luis A
2014-04-07
The rapid appearance of bilaterian clades at the beginning of the Phanerozoic is one of the most intriguing topics in macroevolution. However, the complex feedbacks between diversification and ecological interactions are still poorly understood. Here, we show that a systematic and comprehensive analysis of the trace-fossil record of the Ediacaran-Cambrian transition indicates that body-plan diversification and ecological structuring were decoupled. The appearance of a wide repertoire of behavioural strategies and body plans occurred by the Fortunian. However, a major shift in benthic ecological structure, recording the establishment of a suspension-feeder infauna, increased complexity of the trophic web, and coupling of benthos and plankton took place during Cambrian Stage 2. Both phases were accompanied by different styles of ecosystem engineering, but only the second one resulted in the establishment of the Phanerozoic-style ecology. In turn, the suspension-feeding infauna may have been the ecological drivers of a further diversification of deposit-feeding strategies by Cambrian Stage 3, favouring an ecological spillover scenario. Trace-fossil information strongly supports the Cambrian explosion, but allows for a short time of phylogenetic fuse during the terminal Ediacaran-Fortunian.
NASA Astrophysics Data System (ADS)
Barnosky, Anthony D.; Lindsey, Emily L.; Villavicencio, Natalia A.; Bostelmann, Enrique; Hadly, Elizabeth A.; Wanket, James; Marshall, Charles R.
2016-01-01
Loss of megafauna, an aspect of defaunation, can precipitate many ecological changes over short time scales. We examine whether megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We compare ecological impacts of late-Quaternary megafauna extinction in five American regions: southwestern Patagonia, the Pampas, northeastern United States, northwestern United States, and Beringia. We find that major ecological state shifts were consistent with expectations of defaunation in North American sites but not in South American ones. The differential responses highlight two factors necessary for defaunation to trigger lasting ecological state shifts discernable in the fossil record: (i) lost megafauna need to have been effective ecosystem engineers, like proboscideans; and (ii) historical contingencies must have provided the ecosystem with plant species likely to respond to megafaunal loss. These findings help in identifying modern ecosystems that are most at risk for disappearing should current pressures on the ecosystems' large animals continue and highlight the critical role of both individual species ecologies and ecosystem context in predicting the lasting impacts of defaunation currently underway.
[Ecological design of ditches in agricultural land consolidation: a review].
Ye, Yan-mei; Wu, Ci-fang; Yu, Jing
2011-07-01
Agricultural land consolidation is a strong disturbance to farmland ecosystem. In traditional agricultural land consolidation, the main technical and economic indices for the design of ditches include the convenience for production and transportation, the allocation of water resources, and the improvement of water utilization, but short of ecological consideration, which has already affected the spread of agricultural species, caused the degradation of bio-habitat, and given obvious negative effects on the bio-competition mechanism, buffering and compensation capacity, and insect pests-resistance of farmland ecosystem. This paper summarized the functions of ecological ditches, and introduced the recent progress on the formations and construction designs of ecological ditches, tests of ecological engineering methods, and technologies and methods of choosing correct ecological materials. It was suggested that the future research should focus on the different functional requirements and specifications for different roads and ditches, and the characteristics and habitats of all the organisms and animals should be considered by the designers and constructors. Moreover, a comprehensive design which meets the ecological demands for the ditches' formations, structures, and regulatory sizes should be taken into account to solve the most of the problems listed above.
Timescales and the management of ecological systems.
Hastings, Alan
2016-12-20
Human management of ecological systems, including issues like fisheries, invasive species, and restoration, as well as others, often must be undertaken with limited information. This means that developing general principles and heuristic approaches is important. Here, I focus on one aspect, the importance of an explicit consideration of time, which arises because of the inherent limitations in the response of ecological systems. I focus mainly on simple systems and models, beginning with systems without density dependence, which are therefore linear. Even for these systems, it is important to recognize the necessary delays in the response of the ecological system to management. Here, I also provide details for optimization that show how general results emerge and emphasize how delays due to demography and life histories can change the optimal management approach. A brief discussion of systems with density dependence and tipping points shows that the same themes emerge, namely, that when considering issues of restoration or management to change the state of an ecological system, that timescales need explicit consideration and may change the optimal approach in important ways.
Ecological and evolutionary genomics of marine photosynthetic organisms.
Coelho, Susana M; Simon, Nathalie; Ahmed, Sophia; Cock, J Mark; Partensky, Frédéric
2013-02-01
Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms. © 2012 Blackwell Publishing Ltd.
Ecological Inventory Exemplars.
ERIC Educational Resources Information Center
Sobsey, Dick, Ed.
The document contains 20 ecological inventories (developed at the University of Minnesota and the University of Alberta) to help severely disabled students learn functional living skills. The ecological approach is designed to uncover the functions critical for success in specific environments which the student frequently encounters. Matching the…
Using a social-ecological systems (SES) perspective to examine wetland restoration helps decision-makers recognize interdependencies and relations between ecological and social components of coupled systems. Conceptual models are an invaluable tool to capture, visualize, and orga...
An objective and parsimonious approach for classifying natural flow regimes at a continental scale
Archfield, Stacey A.; Kennen, Jonathan G.; Carlisle, Daren M.; Wolock, David M.
2014-01-01
Hydro-ecological stream classification-the process of grouping streams by similar hydrologic responses and, by extension, similar aquatic habitat-has been widely accepted and is considered by some to be one of the first steps towards developing ecological flow targets. A new classification of 1543 streamgauges in the contiguous USA is presented by use of a novel and parsimonious approach to understand similarity in ecological streamflow response. This novel classification approach uses seven fundamental daily streamflow statistics (FDSS) rather than winnowing down an uncorrelated subset from 200 or more ecologically relevant streamflow statistics (ERSS) commonly used in hydro-ecological classification studies. The results of this investigation demonstrate that the distributions of 33 tested ERSS are consistently different among the classification groups derived from the seven FDSS. It is further shown that classification based solely on the 33 ERSS generally does a poorer job in grouping similar streamgauges than the classification based on the seven FDSS. This new classification approach has the additional advantages of overcoming some of the subjectivity associated with the selection of the classification variables and provides a set of robust continental-scale classes of US streamgauges. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Public ecology: an environmental science and policy for global society
David P. Robertson; R. Bruce Hull
2003-01-01
Public ecology exists at the interface of science and policy. Public ecology is an approach to environmental inquiry and decision making that does not expect scientific knowledge to be perfect or complete. Rather, public ecology requires that science be produced in collaboration with a wide variety of stakeholders in order to construct a body of knowledge that will...
Temporal ecology in the Anthropocene.
Wolkovich, E M; Cook, B I; McLauchlan, K K; Davies, T J
2014-11-01
Two fundamental axes - space and time - shape ecological systems. Over the last 30 years spatial ecology has developed as an integrative, multidisciplinary science that has improved our understanding of the ecological consequences of habitat fragmentation and loss. We argue that accelerating climate change - the effective manipulation of time by humans - has generated a current need to build an equivalent framework for temporal ecology. Climate change has at once pressed ecologists to understand and predict ecological dynamics in non-stationary environments, while also challenged fundamental assumptions of many concepts, models and approaches. However, similarities between space and time, especially related issues of scaling, provide an outline for improving ecological models and forecasting of temporal dynamics, while the unique attributes of time, particularly its emphasis on events and its singular direction, highlight where new approaches are needed. We emphasise how a renewed, interdisciplinary focus on time would coalesce related concepts, help develop new theories and methods and guide further data collection. The next challenge will be to unite predictive frameworks from spatial and temporal ecology to build robust forecasts of when and where environmental change will pose the largest threats to species and ecosystems, as well as identifying the best opportunities for conservation. © 2014 John Wiley & Sons Ltd/CNRS.
High value of ecological information for river connectivity restoration
Sethi, Suresh; O'Hanley, Jesse R.; Gerken, Jonathon; Ashline, Joshua; Bradley, Catherine
2017-01-01
ContextEfficient restoration of longitudinal river connectivity relies on barrier mitigation prioritization tools that incorporate stream network spatial structure to maximize ecological benefits given limited resources. Typically, ecological benefits of barrier mitigation are measured using proxies such as the amount of accessible riverine habitat.ObjectivesWe developed an optimization approach for barrier mitigation planning which directly incorporates the ecology of managed taxa, and applied it to an urbanizing salmon-bearing watershed in Alaska.MethodsA novel river connectivity metric that exploits information on the distribution and movement of managed taxon was embedded into a barrier prioritization framework to identify optimal mitigation actions given limited restoration budgets. The value of ecological information on managed taxa was estimated by comparing costs to achieve restoration targets across alternative barrier prioritization approaches.ResultsBarrier mitigation solutions informed by life history information outperformed those using only river connectivity proxies, demonstrating high value of ecological information for watershed restoration. In our study area, information on salmon ecology was typically valued at 0.8–1.2 M USD in costs savings to achieve a given benefit level relative to solutions derived only from stream network information, equating to 16–28% of the restoration budget.ConclusionsInvesting in ecological studies may achieve win–win outcomes of improved understanding of aquatic ecology and greater watershed restoration efficiency.
De Smet, Bart; Fournier, Jérôme; De Troch, Marleen; Vincx, Magda; Vanaverbeke, Jan
2015-01-01
The potential of ecosystem engineers to modify the structure and dynamics of food webs has recently been hypothesised from a conceptual point of view. Empirical data on the integration of ecosystem engineers and food webs is however largely lacking. This paper investigates the hypothesised link based on a field sampling approach of intertidal biogenic aggregations created by the ecosystem engineer Lanice conchilega (Polychaeta, Terebellidae). The aggregations are known to have a considerable impact on the physical and biogeochemical characteristics of their environment and subsequently on the abundance and biomass of primary food sources and the macrofaunal (i.e. the macro-, hyper- and epibenthos) community. Therefore, we hypothesise that L. conchilega aggregations affect the structure, stability and isotopic niche of the consumer assemblage of a soft-bottom intertidal food web. Primary food sources and the bentho-pelagic consumer assemblage of a L. conchilega aggregation and a control area were sampled on two soft-bottom intertidal areas along the French coast and analysed for their stable isotopes. Despite the structural impacts of the ecosystem engineer on the associated macrofaunal community, the presence of L. conchilega aggregations only has a minor effect on the food web structure of soft-bottom intertidal areas. The isotopic niche width of the consumer communities of the L. conchilega aggregations and control areas are highly similar, implying that consumer taxa do not shift their diet when feeding in a L. conchilega aggregation. Besides, species packing and hence trophic redundancy were not affected, pointing to an unaltered stability of the food web in the presence of L. conchilega. PMID:26496349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markwiese, J.T.; Ryti, R.T.; Hooten, M.M.
2001-02-01
This paper discusses current limitations for performing ecological risk assessments in dry environments (i.e., ecosystems that are characteristic of many DOE Facilities) and presents novel approaches to addressing ecological risk in such systems.
Student Development and Campus Ecology: A Rapprochement.
ERIC Educational Resources Information Center
Hurst, James C.
1987-01-01
Investigates campus ecology from several innovative perspectives, considering both theory and practice. Conceptualizes current functions of the student affairs administrator playing a key role in higher education and articulates how campus ecology and student development theories complement each other when applied through a systems approach to…
Social-ecological network analysis of scale mismatches in estuary watershed restoration.
Sayles, Jesse S; Baggio, Jacopo A
2017-03-07
Resource management boundaries seldom align with environmental systems, which can lead to social and ecological problems. Mapping and analyzing how resource management organizations in different areas collaborate can provide vital information to help overcome such misalignment. Few quantitative approaches exist, however, to analyze social collaborations alongside environmental patterns, especially among local and regional organizations (i.e., in multilevel governance settings). This paper develops and applies such an approach using social-ecological network analysis (SENA), which considers relationships among and between social and ecological units. The framework and methods are shown using an estuary restoration case from Puget Sound, United States. Collaboration patterns and quality are analyzed among local and regional organizations working in hydrologically connected areas. These patterns are correlated with restoration practitioners' assessments of the productivity of their collaborations to inform network theories for natural resource governance. The SENA is also combined with existing ecological data to jointly consider social and ecological restoration concerns. Results show potentially problematic areas in nearshore environments, where collaboration networks measured by density (percentage of possible network connections) and productivity are weakest. Many areas also have high centralization (a few nodes hold the network together), making network cohesion dependent on key organizations. Although centralization and productivity are inversely related, no clear relationship between density and productivity is observed. This research can help practitioners to identify where governance capacity needs strengthening and jointly consider social and ecological concerns. It advances SENA by developing a multilevel approach to assess social-ecological (or social-environmental) misalignments, also known as scale mismatches.
Social–ecological network analysis of scale mismatches in estuary watershed restoration
Sayles, Jesse S.
2017-01-01
Resource management boundaries seldom align with environmental systems, which can lead to social and ecological problems. Mapping and analyzing how resource management organizations in different areas collaborate can provide vital information to help overcome such misalignment. Few quantitative approaches exist, however, to analyze social collaborations alongside environmental patterns, especially among local and regional organizations (i.e., in multilevel governance settings). This paper develops and applies such an approach using social–ecological network analysis (SENA), which considers relationships among and between social and ecological units. The framework and methods are shown using an estuary restoration case from Puget Sound, United States. Collaboration patterns and quality are analyzed among local and regional organizations working in hydrologically connected areas. These patterns are correlated with restoration practitioners’ assessments of the productivity of their collaborations to inform network theories for natural resource governance. The SENA is also combined with existing ecological data to jointly consider social and ecological restoration concerns. Results show potentially problematic areas in nearshore environments, where collaboration networks measured by density (percentage of possible network connections) and productivity are weakest. Many areas also have high centralization (a few nodes hold the network together), making network cohesion dependent on key organizations. Although centralization and productivity are inversely related, no clear relationship between density and productivity is observed. This research can help practitioners to identify where governance capacity needs strengthening and jointly consider social and ecological concerns. It advances SENA by developing a multilevel approach to assess social–ecological (or social–environmental) misalignments, also known as scale mismatches. PMID:28223529
Lim, Chun Ping; Mai, Phuong Nguyen Quoc; Roizman Sade, Dan; Lam, Yee Cheong; Cohen, Yehuda
2016-01-01
Life of bacteria is governed by the physical dimensions of life in microscales, which is dominated by fast diffusion and flow at low Reynolds numbers. Microbial biofilms are structurally and functionally heterogeneous and their development is suggested to be interactively related to their microenvironments. In this study, we were guided by the challenging requirements of precise tools and engineered procedures to achieve reproducible experiments at high spatial and temporal resolutions. Here, we developed a robust precise engineering approach allowing for the quantification of real-time, high-content imaging of biofilm behaviour under well-controlled flow conditions. Through the merging of engineering and microbial ecology, we present a rigorous methodology to quantify biofilm development at resolutions of single micrometre and single minute, using a newly developed flow cell. We designed and fabricated a high-precision flow cell to create defined and reproducible flow conditions. We applied high-content confocal laser scanning microscopy and developed image quantification using a model biofilm of a defined opportunistic strain, Pseudomonas putida OUS82. We observed complex patterns in the early events of biofilm formation, which were followed by total dispersal. These patterns were closely related to the flow conditions. These biofilm behavioural phenomena were found to be highly reproducible, despite the heterogeneous nature of biofilm. PMID:28721252
Ecological and Political Economy Lenses for School Health Education: A Critical Pedagogy Shift
ERIC Educational Resources Information Center
Martinson, Marty; Elia, John P.
2018-01-01
Purpose: The purpose of this paper is to critically examine school health education in the USA and present alternative approaches for more critical and comprehensive health education. Design/methodology/approach: An ecological model framework is used to identify the limitations and opportunities for improvement in school health education in the…
Gang Involvement among Immigrant and Refugee Youth: A Developmental Ecological Systems Approach
ERIC Educational Resources Information Center
Goodrum, Nada M.; Chan, Wing Yi; Latzman, Robert D.
2015-01-01
Immigrant and refugee youth are at elevated risk for joining gangs, which, in turn, is associated with a host of maladaptive outcomes. Previous literature on risk and protective factors for immigrant and refugee youth gang involvement has been inconclusive. Applying a developmental ecological systems approach, this study investigated contextual…
The Rapid Benefit Indicators (RBI) Approach is an easy-to-use process for assessing restoration sites using non-monetary benefit indicators. The RBI uses readily-available data to estimate and quantify benefits to people around an ecological restoration site. It is a five step as...
Ecology Approach in Education and Health Care
ERIC Educational Resources Information Center
Bogdanova, Ruta; Šilina, Maruta; Renigere, Ruta
2017-01-01
In the 21st century, numerous complex challenges in education and health care have come to the fore, among them: 1) how to implement the ecological approach in the education process and health care practice; 2) how to implement study programmes in line with the education trends for "sustainable development" and the process of formation…
Integrative approaches to investigating human-natural systems: the Baltimore ecosystem study
Mary L. Cadenasso; Steward T.A. Pickett; Morgan J. Grove; Morgan J. Grove
2006-01-01
This paper presents an overview of the research approaches used to study metropolitan Baltimore (Maryland, USA) as an ecological system. The urban ecosystem is a complex of biophysical, social, and built components, and is studied by an interdisciplinary teamof biological, social, and physical scientists, and urban designers. Ecology ?of? themetropolis is addressed...
Classification and description of world formation types. Part II (Description of formation types)
D. Faber-Langendoen; T. Keeler-Wolf; D. Meidinger; C. Josse; A. Weakley; D. Tart; G. Navarro; B. Hoagland; S. Ponomarenko; J.P. Saucier; G. Fults; E. Helmer
2012-01-01
A vegetation-ecologic classification approach has been developed in which a combination of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types (Faber-Langendoen et al. 2012). This approach can help support international, national and subnational...
Classification and description of world formation types. Part. I (Introduction)
D. Faber-Langendoen; T. Keeler-Wolf; D. Meidinger; C. Josse; A. Weakley; D. Tart; G. Navarro; B. Hoagland; S. Ponomarenko; J.-P. Saucier; G. Fults; E. Helmer
2012-01-01
A vegetation-ecologic classification approach has been developed in which a combination of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types (Faber-Langendoen et al. 2012). This approach can help support international, national and subnational...
A Discourse Based Approach to the Language Documentation of Local Ecological Knowledge
ERIC Educational Resources Information Center
Odango, Emerson Lopez
2016-01-01
This paper proposes a discourse-based approach to the language documentation of local ecological knowledge (LEK). The knowledge, skills, beliefs, cultural worldviews, and ideologies that shape the way a community interacts with its environment can be examined through the discourse in which LEK emerges. 'Discourse-based' refers to two components:…
An Ecojustice Approach to Educational Reform in Adult Education
ERIC Educational Resources Information Center
Bowers, Chet A.
2017-01-01
This paper describes the key principles of an ecojustice approach to adult education. The author describes the cultural roots of the ecological crisis, the difference between ecological and individual intelligence and the linguistic colonization of the present by the past. The dangers of an overreliance on print are described and the need for a…
USDA-ARS?s Scientific Manuscript database
Compound-specific isotopic analysis of amino acids (CSIA-AA) has emerged in the last decade as a powerful approach for tracing the origins and fate of nitrogen in ecological and biogeochemical studies. This approach is based on the empirical knowledge that source AAs (i.e., phenylalanine), fractiona...
NASA Astrophysics Data System (ADS)
Joyce, Arthur A.; Goman, Michelle
2012-11-01
In this article we discuss two theoretical approaches to landscape studies in archaeology: the ecological and social/symbolic. We suggest that an integrated approach can provide a more effective means through which archaeologists and earth scientists can model the complex interplay between people and the environment. Our perspective views peoples' engagements with the landscape as simultaneously ecological and social, material and symbolic. To illustrate this synthetic approach we discuss our research from the highland and lowland regions of the Mexican state of Oaxaca using archaeological, ethnographic, ethnohistorical, paleoecological, and geomorphological data. In highland Oaxaca we examine the ways in which political and religious principles were embedded in the landscape as well as the social, symbolic, and material dimensions of anthropogenic landscape change during the Formative period. For the coastal lowlands, we discuss the social and ecological implications of the transition to sedentism and the effects of anthropogenic landscape change during the Formative period. We also examine the interplay between politics and land use during the Classic and Postclassic periods.
Trait-based approaches for understanding microbial biodiversity and ecosystem functioning
Krause, Sascha; Le Roux, Xavier; Niklaus, Pascal A.; Van Bodegom, Peter M.; Lennon, Jay T.; Bertilsson, Stefan; Grossart, Hans-Peter; Philippot, Laurent; Bodelier, Paul L. E.
2014-01-01
In ecology, biodiversity-ecosystem functioning (BEF) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEF of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEF using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEF studies are often inadequate to unravel BEF relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEF relationships and thus generating systematic principles in microbial ecology and more generally ecology. PMID:24904563
Predicting phenology by integrating ecology, evolution and climate science
Pau, Stephanie; Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan; Kraft, Nathan J.B.; Bolmgren, Kjell; Betancourt, Julio L.; Cleland, Elsa E.
2011-01-01
Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology — the timing of life-history events. Phenology has well-demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species' reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.
A Risk-Based Ecohydrological Approach to Assessing Environmental Flow Regimes
NASA Astrophysics Data System (ADS)
Mcgregor, Glenn B.; Marshall, Jonathan C.; Lobegeiger, Jaye S.; Holloway, Dean; Menke, Norbert; Coysh, Julie
2018-03-01
For several decades there has been recognition that water resource development alters river flow regimes and impacts ecosystem values. Determining strategies to protect or restore flow regimes to achieve ecological outcomes is a focus of water policy and legislation in many parts of the world. However, consideration of existing environmental flow assessment approaches for application in Queensland identified deficiencies precluding their adoption. Firstly, in managing flows and using ecosystem condition as an indicator of effectiveness, many approaches ignore the fact that river ecosystems are subjected to threatening processes other than flow regime alteration. Secondly, many focus on providing flows for responses without considering how often they are necessary to sustain ecological values in the long-term. Finally, few consider requirements at spatial-scales relevant to the desired outcomes, with frequent focus on individual places rather than the regions supporting sustainability. Consequently, we developed a risk-based ecohydrological approach that identifies ecosystem values linked to desired ecological outcomes, is sensitive to flow alteration and uses indicators of broader ecosystem requirements. Monitoring and research is undertaken to quantify flow-dependencies and ecological modelling is used to quantify flow-related ecological responses over an historical flow period. The relative risk from different flow management scenarios can be evaluated at relevant spatial-scales. This overcomes the deficiencies identified above and provides a robust and useful foundation upon which to build the information needed to support water planning decisions. Application of the risk assessment approach is illustrated here by two case studies.
Aristotle and Autism: Reconsidering a Radical Shift to Virtue Ethics in Engineering.
Furey, Heidi
2017-04-01
Virtue-based approaches to engineering ethics have recently received considerable attention within the field of engineering education. Proponents of virtue ethics in engineering argue that the approach is practically and pedagogically superior to traditional approaches to engineering ethics, including the study of professional codes of ethics and normative theories of behavior. This paper argues that a virtue-based approach, as interpreted in the current literature, is neither practically or pedagogically effective for a significant subpopulation within engineering: engineers with high functioning autism spectrum disorder (ASD). Because the main argument for adopting a character-based approach is that it could be more successfully applied to engineering than traditional rule-based or algorithmic ethical approaches, this oversight is problematic for the proponents of the virtue-based view. Furthermore, without addressing these concerns, the wide adoption of a virtue-based approach to engineering ethics has the potential to isolate individuals with ASD and to devalue their contributions to moral practice. In the end, this paper gestures towards a way of incorporating important insights from virtue ethics in engineering that would be more inclusive of those with ASD.
Environmental resource document for the Idaho National Engineering Laboratory. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irving, J.S.
This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.
1980-09-01
the past when these ties. zones were thought to have shifted in response In this study 21 maps (scale 1:6,000) of repre- to climatic changes . sentative...Alaska Grasses Roads Climate Permafrost Soil erosion Drainage Pipelines Vegetation Environmental engineering Restoration Erosion control Revegetation 20...of changes in the environment associated with the road, 3) documentation of flora and vegetation along the 577-km-long transect, 4) methodologies for
USSR Report, World Economy and International Relations, No. 1, January 1987
1987-05-22
food, ecology . The gap in the levels of economic development between states is becoming increasingly threatening, and the developing countries’ debt...practice of the safe development of nuclear power engineering. To "star wars," it proposes "star peace," that is, interaction in peaceful space, the...electric power engineering, industry and municipal services. Thus the construction of new heat and electric power plants using fuel oil was
Maltby, Lorraine; van den Brink, Paul J; Faber, Jack H; Marshall, Stuart
2018-04-15
The ecosystem services (ES) approach is gaining broad interest in regulatory and policy arenas for use in landscape management and ecological risk assessment. It has the potential to bring greater ecological relevance to the setting of environmental protection goals and to the assessment of the ecological risk posed by chemicals. A workshop, organised under the auspices of the Society of Environmental Toxicology and Chemistry Europe, brought together scientific experts from European regulatory authorities, the chemical industry and academia to discuss and evaluate the challenges associated with implementing an ES approach to chemical ecological risk assessment (ERA). Clear advantages of using an ES approach in prospective and retrospective ERA were identified, including: making ERA spatially explicit and of relevance to management decisions (i.e. indicating what ES to protect and where); improving transparency in communicating risks and trade-offs; integrating across multiple stressors, scales, habitats and policies. A number of challenges were also identified including: the potential for increased complexity in assessments; greater data requirements; limitations in linking endpoints derived from current ecotoxicity tests to impacts on ES. In principle, the approach was applicable to all chemical sectors, but the scale of the challenge of applying an ES approach to general chemicals with widespread and dispersive uses leading to broad environmental exposure, was highlighted. There was agreement that ES-based risk assessment should be based on the magnitude of impact rather than on toxicity thresholds. The need for more bioassays/tests with functional endpoints was recognized, as was the role of modelling and the need for ecological production functions to link measurement endpoints to assessment endpoints. Finally, the value of developing environmental scenarios that can be combined with spatial information on exposure, ES delivery and service provider vulnerability was recognized. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Marignani, Michela; Bruschi, Daniele; Astiaso Garcia, Davide; Frondoni, Raffaella; Carli, Emanuela; Pinna, Maria Silvia; Cumo, Fabrizio; Gugliermetti, Franco; Saatkamp, Arne; Doxa, Aggeliki; Queller, Emi Martín; Chaieb, Mohamed; Bou Dagher-Kharrat, Magda; El Zein, Rana; El Jeitani, Sarah; Khater, Carla; Mansour, Sophie; Al-Shami, Anwar; Harik, Ghinwa; Alameddine, Ibrahim; El-Fadel, Mutasem; Blasi, Carlo
2017-07-15
Interdisciplinarity and transdisciplinarity are the cornerstone for the future management of coastal ecosystems with many vulnerability and hazard indexes developed for this purpose, especially in the engineering literature, but with limited studies that considered ecological implications within a risk assessment. Similarly, the concept of prioritization of sites has been widely examined in biodiversity conservation studies, but only recently as an instrument for territory management. Considering coastal plant diversity at the species and community levels, and their vulnerability to three main potential hazards threatening coastal areas (oil spills, Hazardous and Noxious Substances pollution, fragmentation of natural habitats), the objective of this paper is to define an easy-to-use approach to locate and prioritize the areas more susceptible to those stressors, in order to have a practical instrument for risk management in the ordinary and extra-ordinary management of the coastline. The procedure has been applied at pilot areas in four Mediterranean countries (Italy, France, Lebanon and Tunisia). This approach can provide policy planners, decision makers and local communities an easy-to-use instrument able to facilitate the implementation of the ICZM (Integrated Coastal Zone Management) process in their territory. Copyright © 2017 Elsevier B.V. All rights reserved.
CONTRIBUTIONS OF ESTUARINE HABITAT TYPES TO THE ECOLOGICAL INTEGRITY OF A SMALL COVE
The U.S. EPA, NHEERL, Atlantic Ecology Division, is investigating ecosystem-level approaches to evaluate ecological integrity at multiple scales. The ultimate goal of our project is to develop an ecosystem-level tool to examine impacts of nitrogen pollution on biological integrit...
An industrial ecology approach to municipal solid waste management: I. Methodology
Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with e...
Phytoremediation, the use of green plants to treat and control wastes in water, soil, and air, is an important part of the new field of ecological engineering. In situ and ex situ applications are governed by site soil and water characteristics, nutrient sustainability, meteorolo...
7 CFR 600.2 - National headquarters.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., conservation education, and public affairs activities. (g) Strategic Natural Resource Issues. The Strategic... social sciences, conservation engineering, and ecological sciences. This deputy chief also is responsible... plant data) and five national institutes (grazing lands technology, social sciences, watershed science...
7 CFR 600.2 - National headquarters.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., conservation education, and public affairs activities. (g) Strategic Natural Resource Issues. The Strategic... social sciences, conservation engineering, and ecological sciences. This deputy chief also is responsible... plant data) and five national institutes (grazing lands technology, social sciences, watershed science...
7 CFR 600.2 - National headquarters.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., conservation education, and public affairs activities. (g) Strategic Natural Resource Issues. The Strategic... social sciences, conservation engineering, and ecological sciences. This deputy chief also is responsible... plant data) and five national institutes (grazing lands technology, social sciences, watershed science...
7 CFR 600.2 - National headquarters.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., conservation education, and public affairs activities. (g) Strategic Natural Resource Issues. The Strategic... social sciences, conservation engineering, and ecological sciences. This deputy chief also is responsible... plant data) and five national institutes (grazing lands technology, social sciences, watershed science...
Patek, S N; Summers, A P
2017-05-22
Invertebrate biomechanics focuses on mechanical analyses of non-vertebrate animals, which at root is no different in aim and technique from vertebrate biomechanics, or for that matter the biomechanics of plants and fungi. But invertebrates are special - they are fabulously diverse in form, habitat, and ecology and manage this without the use of hard, internal skeletons. They are also numerous and, in many cases, tractable in an experimental and field setting. In this Primer, we will probe three axes of invertebrate diversity: worms (Phylum Annelida), spiders (Class Arachnida) and insects (Class Insecta); three habitats: subterranean, terrestrial and airborne; and three integrations with other fields: ecology, engineering and evolution. Our goal is to capture the field of invertebrate biomechanics, which has blossomed from having a primary focus on discoveries at the interface of physics and biology to being inextricably linked with integrative challenges that span biology, physics, mathematics and engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kevin M. Potter; Frank H. Koch; Christopher M. Oswalt; Basil V. Iannone
2016-01-01
Context Fine-scale ecological data collected across broad regions are becoming increasingly available. Appropriate geographic analyses of these data can help identify locations of ecological concern. Objectives We present one such approach, spatial association of scalable hexagons (SASH), whichidentifies locations where ecological phenomena occur at greater...
A systematic approach to engineering ethics education.
Li, Jessica; Fu, Shengli
2012-06-01
Engineering ethics education is a complex field characterized by dynamic topics and diverse students, which results in significant challenges for engineering ethics educators. The purpose of this paper is to introduce a systematic approach to determine what to teach and how to teach in an ethics curriculum. This is a topic that has not been adequately addressed in the engineering ethics literature. This systematic approach provides a method to: (1) develop a context-specific engineering ethics curriculum using the Delphi technique, a process-driven research method; and (2) identify appropriate delivery strategies and instructional strategies using an instructional design model. This approach considers the context-specific needs of different engineering disciplines in ethics education and leverages the collaboration of engineering professors, practicing engineers, engineering graduate students, ethics scholars, and instructional design experts. The proposed approach is most suitable for a department, a discipline/field or a professional society. The approach helps to enhance learning outcomes and to facilitate ethics education curriculum development as part of the regular engineering curriculum.
Discussion on the Development of Green Chemistry and Chemical Engineering
NASA Astrophysics Data System (ADS)
Zhang, Yunshen
2017-11-01
Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.
ERIC Educational Resources Information Center
Newsome, Ratana
This competency-based preservice home economics teacher education module on technological, sociological, ecological, and environmental factors related to food is the first in a set of five modules on consumer education related to foods and nutrition. (This set is part of a larger series of sixty-seven modules on the Management Approach to Teaching…
Predictive ecology: systems approaches
Evans, Matthew R.; Norris, Ken J.; Benton, Tim G.
2012-01-01
The world is experiencing significant, largely anthropogenically induced, environmental change. This will impact on the biological world and we need to be able to forecast its effects. In order to produce such forecasts, ecology needs to become more predictive—to develop the ability to understand how ecological systems will behave in future, changed, conditions. Further development of process-based models is required to allow such predictions to be made. Critical to the development of such models will be achieving a balance between the brute-force approach that naively attempts to include everything, and over simplification that throws out important heterogeneities at various levels. Central to this will be the recognition that individuals are the elementary particles of all ecological systems. As such it will be necessary to understand the effect of evolution on ecological systems, particularly when exposed to environmental change. However, insights from evolutionary biology will help the development of models even when data may be sparse. Process-based models are more common, and are used for forecasting, in other disciplines, e.g. climatology and molecular systems biology. Tools and techniques developed in these endeavours can be appropriated into ecological modelling, but it will also be necessary to develop the science of ecoinformatics along with approaches specific to ecological problems. The impetus for this effort should come from the demand coming from society to understand the effects of environmental change on the world and what might be performed to mitigate or adapt to them. PMID:22144379
Burger, Joanna; Gochfeld, Michael; Bunn, Amoret; Downs, Janelle; Jeitner, Christian; Pittfield, Taryn; Salisbury, Jennifer
2016-01-01
Governmental agencies, regulators, health professionals, tribal leaders, and the public are faced with understanding and evaluating the effects of cleanup activities on species, populations, and ecosystems. While engineers and managers understand the processes involved in different remediation types such as capping, pump and treat, and natural attenuation, there is often a disconnect between (1) how ecologists view the influence of different types of remediation, (2) how the public perceives them, and (3) how engineers understand them. The overall goal of the present investigation was to define the components of remediation types (= functional remediation). Objectives were to (1) define and describe functional components of remediation, regardless of the remediation type, (2) provide examples of each functional remediation component, and (3) explore potential effects of functional remediation components in the post-cleanup phase that may involve continued monitoring and assessment. Functional remediation components include types, numbers, and intensity of people, trucks, heavy equipment, pipes, and drill holes, among others. Several components may be involved in each remediation type, and each results in ecological effects, ranging from trampling of plants, to spreading invasive species, to disturbing rare species, and to creating fragmented habitats. In some cases remediation may exert a greater effect on ecological receptors than leaving the limited contamination in place. A goal of this conceptualization is to break down functional components of remediation such that managers, regulators, and the public might assess the effects of timing, extent, and duration of different remediation options on ecological systems.
Possible ways of reducing the effect of thermal power facilities on the environment
NASA Astrophysics Data System (ADS)
Zroichikov, N. A.; Prokhorov, V. B.; Tupov, V. B.; Arkhipov, A. M.; Fomenko, M. V.
2015-02-01
The main trends in the integrated solution of thermal power engineering environmental problems are pointed out taking the Mosenergo power company as an example, and the data are given with respect to the structure of the power engineering equipment of the city of Moscow and its change, energy consumption, and generation of heat and electric energy. The dynamics of atmospheric air pollution of Moscow from 1990 to 2010, as well as the main measures on reducing the adverse effect of the power engineering equipment operation, is given. The results of original designs by the Department of Boiler Installations and Power Engineering Ecology (KU&EE) are given concerning the reduction of nitrogen oxides emissions and the decrease of the noise impact produced by the power engineering equipment.
First-order irreversible thermodynamic approach to a simple energy converter
NASA Astrophysics Data System (ADS)
Arias-Hernandez, L. A.; Angulo-Brown, F.; Paez-Hernandez, R. T.
2008-01-01
Several authors have shown that dissipative thermal cycle models based on finite-time thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of first-order irreversible thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function versus efficiency. In a previous work Stucki [J. W. Stucki, Eur. J. Biochem. 109, 269 (1980)] used a FOIT approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in adenosine triphosphate (ATP) synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state at both minimum entropy production and maximum efficiency simultaneously, by means of a conductance matching condition between extreme states of zero and infinite conductances, respectively. In the present work we show that all Stucki’s results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting of the simultaneous maximization of both the so-called ecological function and the efficiency.
Confinement of gene drive systems to local populations: A comparative analysis
Marshall, John M.; Hay, Bruce A.
2011-01-01
Mosquito-borne diseases such as malaria and dengue fever pose a major health problem through much of the world. One approach to disease prevention involves the use of selfish genetic elements to drive disease-refractory genes into wild mosquito populations. Recently engineered synthetic drive systems have provided encouragement for this strategy; but at the same time have been greeted with caution over the concern that transgenes may spread into countries and communities without their consent. Consequently, there is also interest in gene drive systems that, while strong enough to bring about local population replacement, are unable to establish themselves beyond a partially-isolated release site, at least during the testing phase. Here, we develop simple deterministic and stochastic models to compare the confinement properties of a variety of gene drive systems. Our results highlight several systems with desirable features for confinement – a high migration rate required to become established in neighboring populations, and low-frequency persistence in neighboring populations for moderate migration rates. Single-allele underdominance and single-locus engineered underdominance have the strongest confinement properties, but are difficult to engineer and require a high introduction frequency, respectively. Toxin-antidote systems such as Semele, Merea and two-locus engineered underdominance show promising confinement properties and require lower introduction frequencies. Killer-rescue is self-limiting in time, but is able to disperse to significant levels in neighboring populations. We discuss the significance of these results in the context of a phased release of transgenic mosquitoes, and the need for characterization of local ecology prior to a release. PMID:22094363
The Ecology of Human Development in Retrospect and Prospect.
ERIC Educational Resources Information Center
Bronfenbrenner, Urie
In attempting to define the "ecology" of human development, the term's history and connotations are discussed. The ecological approach requires that the person, the environment, and the relations between them be conceptualized in terms of systems, and subsystems within systems. The experimental situation is not limited to being…
Multilingual Language Policies and the Continua of Biliteracy: An Ecological Approach.
ERIC Educational Resources Information Center
Hornberger, Nancy H.
2002-01-01
Uses the metaphor of ecology of language to explore ideologies underlying multilingual language policies, and the continua of biliteracy framework as ecological heuristic for situating the challenges faced in implementing them. Considers community and classroom challenges inherent in implementing these new ideologies, as evident in Bolivia and…
EPA's Ecological Risk Assessment Support Center (ERASC) announced the release of the final report, Evaluating Ecological Risk to Invertebrate Receptors from PAHs in Sediments at Hazardous Waste Sites. The report provides an overview of an approach for assessing risk to ...
Efficacy of Two Different Instructional Methods Involving Complex Ecological Content
ERIC Educational Resources Information Center
Randler, Christoph; Bogner, Franz X.
2009-01-01
Teaching and learning approaches in ecology very often follow linear conceptions of ecosystems. Empirical studies with an ecological focus consistent with existing syllabi and focusing on cognitive achievement are scarce. Consequently, we concentrated on a classroom unit that offers learning materials and highlights the existing complexity rather…
Adaptive management is an approach for monitoring the response of ecological systems to different policies and practices and attempts to reduce the inherent uncertainty in ecological systems via system monitoring and iterative decision making and experimentation (Holling 1978). M...
Robust set-point regulation for ecological models with multiple management goals.
Guiver, Chris; Mueller, Markus; Hodgson, Dave; Townley, Stuart
2016-05-01
Population managers will often have to deal with problems of meeting multiple goals, for example, keeping at specific levels both the total population and population abundances in given stage-classes of a stratified population. In control engineering, such set-point regulation problems are commonly tackled using multi-input, multi-output proportional and integral (PI) feedback controllers. Building on our recent results for population management with single goals, we develop a PI control approach in a context of multi-objective population management. We show that robust set-point regulation is achieved by using a modified PI controller with saturation and anti-windup elements, both described in the paper, and illustrate the theory with examples. Our results apply more generally to linear control systems with positive state variables, including a class of infinite-dimensional systems, and thus have broader appeal.
Design concepts for bioreactors in space
NASA Technical Reports Server (NTRS)
Seshan, P. K.; Peterson, G. R.; Beard, B.; Dunlop, E. H.
1986-01-01
Microbial food sources are becoming viable and more efficient alternatives to conventional food sources especially in the context of Closed Ecological Life Support Systems (CELSS) in space habitats. Since bioreactor designs for terrestrial operation will not readily apply to conditions of microgravity, there is an urgent need to learn about the differences. These differences cannot be easily estimated due to the complex nature of the mass transport and mixing mechanisms in fermenters. Therefore, a systematic and expeditious experimental program must be undertaken to obtain the engineering data necessary to lay down the foundations of designing bioreactors for microgravity. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecrafts, space stations and other extra-terrestrial habitats.
Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia
Ben Said, Sami; Or, Dani
2017-01-01
The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of “microbial ecological power” observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to “discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems,” we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their potential applications. We briefly review existing tools to engineer such assemblies and optimize potential benefits resulting from the collective activity of their members. Prospective microbial consortia and proposed spatial configurations will be illustrated and preliminary calculations highlighting the advantages of SLMC over co-cultures will be presented, followed by a discussion of challenges and opportunities for moving forward with some designs. PMID:28670307
Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia.
Ben Said, Sami; Or, Dani
2017-01-01
The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of "microbial ecological power" observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to "discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems," we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their potential applications. We briefly review existing tools to engineer such assemblies and optimize potential benefits resulting from the collective activity of their members. Prospective microbial consortia and proposed spatial configurations will be illustrated and preliminary calculations highlighting the advantages of SLMC over co-cultures will be presented, followed by a discussion of challenges and opportunities for moving forward with some designs.
ERIC Educational Resources Information Center
Stark, Christina M.; Graham-Kiefer, Meredith L.; Devine, Carol M.; Dollahite, Jamie S.; Olson, Christine M.
2011-01-01
Objective: To assess the impact of an online continuing education course on the knowledge, skills, and self-efficacy of nutrition professionals to use an ecological approach to prevent childhood obesity. Design: Quasi-experimental design using intervention and delayed intervention comparison groups with pre/post-course assessments. Setting: Online…
ERIC Educational Resources Information Center
Trickett, Edison J.; Rowe, Hillary L.
2012-01-01
In recent years, ecological perspectives have become more visible in prevention, health promotion, and public health within the school context. Individually based approaches to understanding and changing behavior have been increasingly challenged by these perspectives because of their appreciation for contextual influences on individual behavior.…
Process-based models are required to manage ecological systems in a changing world
K. Cuddington; M.-J. Fortin; L.R. Gerber; A. Hastings; A. Liebhold; M. OConnor; C. Ray
2013-01-01
Several modeling approaches can be used to guide management decisions. However, some approaches are better fitted than others to address the problem of prediction under global change. Process-based models, which are based on a theoretical understanding of relevant ecological processes, provide a useful framework to incorporate specific responses to altered...
ERIC Educational Resources Information Center
Frantzich, Kirsten; Fels, Lynn
2018-01-01
This article presents a new approach to psychological practice that dwells within the somatic, expressive, imaginal, poetic, narrative, and performative. Embodied Theater Ecology (ETE) as a form of Performative Inquiry is introduced and presented. This approach involves the performative unfolding of unlanguaged stories that lie at the heart of our…
Linking environmental variability to population and community dynamics: Chapter 7
Pantel, Jelena H.; Pendleton, Daniel E.; Walters, Annika W.; Rogers, Lauren A.
2014-01-01
Linking population and community responses to environmental variability lies at the heart of ecology, yet methodological approaches vary and existence of broad patterns spanning taxonomic groups remains unclear. We review the characteristics of environmental and biological variability. Classic approaches to link environmental variability to population and community variability are discussed as are the importance of biotic factors such as life history and community interactions. In addition to classic approaches, newer techniques such as information theory and artificial neural networks are reviewed. The establishment and expansion of observing networks will provide new long-term ecological time-series data, and with it, opportunities to incorporate environmental variability into research. This review can help guide future research in the field of ecological and environmental variability.
Robles, Hugo; Martin, Kathy
2013-01-01
While ecosystem engineering is a widespread structural force of ecological communities, the mechanisms underlying the inter-specific associations between ecosystem engineers and resource users are poorly understood. A proper knowledge of these mechanisms is, however, essential to understand how communities are structured. Previous studies suggest that increasing the quantity of resources provided by ecosystem engineers enhances populations of resource users. In a long-term study (1995-2011), we show that the quality of the resources (i.e. tree cavities) provided by ecosystem engineers is also a key feature that explains the inter-specific associations in a tree cavity-nest web. Red-naped sapsuckers ( Sphyrapicus nuchalis ) provided the most abundant cavities (52% of cavities, 0.49 cavities/ha). These cavities were less likely to be used than other cavity types by mountain bluebirds ( Sialia currucoides ), but provided numerous nest-sites (41% of nesting cavities) to tree swallows ( Tachycineta bicolour ). Swallows experienced low reproductive outputs in northern flicker ( Colaptes auratus ) cavities compared to those in sapsucker cavities (1.1 vs. 2.1 fledglings/nest), but the highly abundant flickers (33% of cavities, 0.25 cavities/ha) provided numerous suitable nest-sites for bluebirds (58%). The relative shortage of cavities supplied by hairy woodpeckers ( Picoides villosus ) and fungal/insect decay (<10% of cavities each, <0.09 cavities/ha) provided fewer breeding opportunities (<15% of nests), but represented high quality nest-sites for both bluebirds and swallows. Because both the quantity and quality of resources supplied by different ecosystem engineers may explain the amount of resources used by each resource user, conservation strategies may require different management actions to be implemented for the key ecosystem engineer of each resource user. We, therefore, urge the incorporation of both resource quantity and quality into models that assess community dynamics to improve conservation actions and our understanding of ecological communities based on ecosystem engineering. PMID:24040324
Robles, Hugo; Martin, Kathy
2013-01-01
While ecosystem engineering is a widespread structural force of ecological communities, the mechanisms underlying the inter-specific associations between ecosystem engineers and resource users are poorly understood. A proper knowledge of these mechanisms is, however, essential to understand how communities are structured. Previous studies suggest that increasing the quantity of resources provided by ecosystem engineers enhances populations of resource users. In a long-term study (1995-2011), we show that the quality of the resources (i.e. tree cavities) provided by ecosystem engineers is also a key feature that explains the inter-specific associations in a tree cavity-nest web. Red-naped sapsuckers (Sphyrapicusnuchalis) provided the most abundant cavities (52% of cavities, 0.49 cavities/ha). These cavities were less likely to be used than other cavity types by mountain bluebirds (Sialiacurrucoides), but provided numerous nest-sites (41% of nesting cavities) to tree swallows (Tachycinetabicolour). Swallows experienced low reproductive outputs in northern flicker (Colaptesauratus) cavities compared to those in sapsucker cavities (1.1 vs. 2.1 fledglings/nest), but the highly abundant flickers (33% of cavities, 0.25 cavities/ha) provided numerous suitable nest-sites for bluebirds (58%). The relative shortage of cavities supplied by hairy woodpeckers (Picoidesvillosus) and fungal/insect decay (<10% of cavities each, <0.09 cavities/ha) provided fewer breeding opportunities (<15% of nests), but represented high quality nest-sites for both bluebirds and swallows. Because both the quantity and quality of resources supplied by different ecosystem engineers may explain the amount of resources used by each resource user, conservation strategies may require different management actions to be implemented for the key ecosystem engineer of each resource user. We, therefore, urge the incorporation of both resource quantity and quality into models that assess community dynamics to improve conservation actions and our understanding of ecological communities based on ecosystem engineering.
Urban Water and Riverine Quality: Participatory Science in Singapore
NASA Astrophysics Data System (ADS)
Higgitt, D. L.
2011-12-01
Singapore is a highly urbanised environment experiencing tropical monsoon hydrological regimes. A heavily engineered fluvial system has been developed over time to provide efficient drainage and reduce the area subject to flood risk. However, recent interest in ecosystem-based approaches to river management and the enhancement of the aesthetic and ecological 'quality' of riverine landscape, coupled with concerns about climate change, has challenged the prevailing engineering view. This is reflected in the Public Utility Board (PUB) ABC Waters Programme, which also seeks to develop community interest in riverine environments and engagement with water-related concerns. As part of a programme developing participatory GIS (PGIS) with school and university students, we have undertaken applications involving participant observation, reporting and analysis of water quality data and habitat quality based on a simplified version of the UK Environment Agency's River Habitat Survey. From an educational perspective, there is evidence that these PGIS initiatives raise environmental awareness and enhance geospatial thinking, particularly in relation to catchment management concepts. The extent to which participant-derived data can contribute to a citizen science of urban water quality and hence deliver some aspects of the community engagement sought after by the authorities, is a topic of debate.
TARGETED CAPTURE IN EVOLUTIONARY AND ECOLOGICAL GENOMICS
Jones, Matthew R.; Good, Jeffrey M.
2016-01-01
The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole genome sequencing in ecological and evolutionary genomic studies. High throughput targeted capture is one such strategy that involves the parallel enrichment of pre-selected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across labs focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to 1) increase the accessibility of targeted capture to researchers working in non-model taxa by discussing capture methods that circumvent the need of a reference genome, 2) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy, and 3) discuss the future of targeted capture and other genome partitioning approaches in light of the increasing accessibility of whole genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole genome sequencing. PMID:26137993
Ecology and conservation: contributions to One Health.
Cleaveland, S; Borner, M; Gislason, M
2014-08-01
Although One Health is widely promoted as a more effective approach towards human, animal and ecosystem health, the momentum is still driven largely by health professionals, predominantly from the veterinary sector. While few can doubt the merits of interdisciplinary One Health approaches to tackle complex health problems, operating across the disciplines still presents many challenges. This paper focuses on the contributions of partners from ecology and conservation to One Health approaches, and identifies four broad areas which could act as a focus for practical engagement and bring ecological and conservation objectives more to the forefront of the One Health agenda: i) developing initiatives with shared conservation and health objectives, particularly in and around protected areas and including programmes addressing human reproductive health and mental health; ii) broadening concepts of health to extend beyond indicators of disease to include the assessment of ecological impacts; iii) the integration of ecological and epidemiological monitoring systems within protected areas to support conservation management and wildlife disease surveillance; iv) building partnerships to bring conservation, health, development and animal welfare agencies together to combat threats to global biodiversity and health from the international trade in wildlife and wildlife products.
SCIENCE AND TECHNOLOGY OF CLEAN PROCESSING [EDITORIAL
Cleaner production methods, pollution prevention, and industrial ecology are the focuses of several journals in circulation. Aspects of cleaner products and processes are also implicitly covered in many established scientific and engineering journals. This journal has two main o...
A socio-ecological autopsy of the E. coli O157:H7 outbreak in Walkerton, Ontario, Canada.
Ali, S Harris
2004-06-01
The socio-political context of modern environmental health disasters tends to be defined as being outside the scope of official public health and epidemiological investigations into the causes of such disasters. On the other hand, popular accounts of these disasters tend to focus exclusively on the role of particular individuals and/or political actors, while minimizing the role of ecological factors. It is argued that an exclusive focus on either set of causal factors gives an incomplete or distorted picture of the origins of an environmental health disaster. In this paper, a socio-ecological analysis is developed to demonstrate how the largest outbreak of waterborne E. coli O157:H7 in Canadian history was the emergent product of a complex interplay and intertwining of social and ecological processes. The socio-ecological autopsy approach that is developed here traces the social and ecological chain of events that ultimately led to the outbreak and demonstrates, in particular, the need for investigative analysis to focus on the socio-ecological "incubation" of an environmental health disaster. Drawing from both the social sciences (particularly, the sociology of disasters and organizational sociology), and from the ecological sciences (particularly disease ecology), the analysis developed here responds to the call for the application of a more transdisciplinary approach to the study of contemporary environmental health problems.
Robinson, Nathaniel; Allred, Brady; Jones, Matthew; ...
2017-08-21
Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite derived NDVI is not always straight-forward, however, as satellite remote sensing datasets are inherently noisy due to cloud and atmospheric contamination, data processing failures, and instrument malfunction. Readily available NDVI products that account for these complexities are generally at coarse resolution; high resolution NDVI datasets are not conveniently accessible and developing them often presents numerous technical and methodologicalmore » challenges. Here, we address this deficiency by producing a Landsat derived, high resolution (30 m), long-term (30+ years) NDVI dataset for the conterminous United States. We use Google Earth Engine, a planetary-scale cloud-based geospatial analysis platform, for processing the Landsat data and distributing the final dataset. We use a climatology driven approach to fill missing data and validate the dataset with established remote sensing products at multiple scales. We provide access to the composites through a simple web application, allowing users to customize key parameters appropriate for their application, question, and region of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Nathaniel; Allred, Brady; Jones, Matthew
Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite derived NDVI is not always straight-forward, however, as satellite remote sensing datasets are inherently noisy due to cloud and atmospheric contamination, data processing failures, and instrument malfunction. Readily available NDVI products that account for these complexities are generally at coarse resolution; high resolution NDVI datasets are not conveniently accessible and developing them often presents numerous technical and methodologicalmore » challenges. Here, we address this deficiency by producing a Landsat derived, high resolution (30 m), long-term (30+ years) NDVI dataset for the conterminous United States. We use Google Earth Engine, a planetary-scale cloud-based geospatial analysis platform, for processing the Landsat data and distributing the final dataset. We use a climatology driven approach to fill missing data and validate the dataset with established remote sensing products at multiple scales. We provide access to the composites through a simple web application, allowing users to customize key parameters appropriate for their application, question, and region of interest.« less
Cultural Change: The How and the Why.
Varnum, Michael E W; Grossmann, Igor
2017-11-01
More than half a century of cross-cultural research has demonstrated group-level differences in psychological and behavioral phenomena, from values to attention to neural responses. However, cultures are not static, with several specific changes documented for cultural products, practices, and values. How and why do societies change? Here we juxtapose theory and insights from cultural evolution and social ecology. Evolutionary approaches enable an understanding of the how of cultural change, suggesting transmission mechanisms by which the contents of culture may change. Ecological approaches provide insights into the why of cultural change: They identify specific environmental pressures, which evoke shifts in psychology and thereby enable greater precision in predictions of specific cultural changes based on changes in ecological conditions. Complementary insights from the ecological and cultural evolutionary approaches can jointly clarify the process by which cultures change. We end by discussing the relevance of cultural change research for the contemporary societal shifts and by highlighting several critical challenges and future directions for the emerging field of cross-temporal research on culture and psychology.
NASA Astrophysics Data System (ADS)
Dearing, John A.; Bullock, Seth; Costanza, Robert; Dawson, Terry P.; Edwards, Mary E.; Poppy, Guy M.; Smith, Graham M.
2012-04-01
The `Perfect Storm' metaphor describes a combination of events that causes a surprising or dramatic impact. It lends an evolutionary perspective to how social-ecological interactions change. Thus, we argue that an improved understanding of how social-ecological systems have evolved up to the present is necessary for the modelling, understanding and anticipation of current and future social-ecological systems. Here we consider the implications of an evolutionary perspective for designing research approaches. One desirable approach is the creation of multi-decadal records produced by integrating palaeoenvironmental, instrument and documentary sources at multiple spatial scales. We also consider the potential for improved analytical and modelling approaches by developing system dynamical, cellular and agent-based models, observing complex behaviour in social-ecological systems against which to test systems dynamical theory, and drawing better lessons from history. Alongside these is the need to find more appropriate ways to communicate complex systems, risk and uncertainty to the public and to policy-makers.
Crook, David A; Lowe, Winsor H; Allendorf, Frederick W; Erős, Tibor; Finn, Debra S; Gillanders, Bronwyn M; Hadwen, Wade L; Harrod, Chris; Hermoso, Virgilio; Jennings, Simon; Kilada, Raouf W; Nagelkerken, Ivan; Hansen, Michael M; Page, Timothy J; Riginos, Cynthia; Fry, Brian; Hughes, Jane M
2015-11-15
Understanding the drivers and implications of anthropogenic disturbance of ecological connectivity is a key concern for the conservation of biodiversity and ecosystem processes. Here, we review human activities that affect the movements and dispersal of aquatic organisms, including damming of rivers, river regulation, habitat loss and alteration, human-assisted dispersal of organisms and climate change. Using a series of case studies, we show that the insight needed to understand the nature and implications of connectivity, and to underpin conservation and management, is best achieved via data synthesis from multiple analytical approaches. We identify four key knowledge requirements for progressing our understanding of the effects of anthropogenic impacts on ecological connectivity: autecology; population structure; movement characteristics; and environmental tolerance/phenotypic plasticity. Structuring empirical research around these four broad data requirements, and using this information to parameterise appropriate models and develop management approaches, will allow for mitigation of the effects of anthropogenic disturbance on ecological connectivity in aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.
Ecological connectivity networks in rapidly expanding cities.
Nor, Amal Najihah M; Corstanje, Ron; Harris, Jim A; Grafius, Darren R; Siriwardena, Gavin M
2017-06-01
Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow ( Passer montanus ) and Yellow-vented bulbul ( Pycnonotus goiavier ) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for biodiversity conservation and urban planning.
A scale-based approach to interdisciplinary research and expertise in sports.
Ibáñez-Gijón, Jorge; Buekers, Martinus; Morice, Antoine; Rao, Guillaume; Mascret, Nicolas; Laurin, Jérome; Montagne, Gilles
2017-02-01
After more than 20 years since the introduction of ecological and dynamical approaches in sports research, their promising opportunity for interdisciplinary research has not been fulfilled yet. The complexity of the research process and the theoretical and empirical difficulties associated with an integrated ecological-dynamical approach have been the major factors hindering the generalisation of interdisciplinary projects in sports sciences. To facilitate this generalisation, we integrate the major concepts from the ecological and dynamical approaches to study behaviour as a multi-scale process. Our integration gravitates around the distinction between functional (ecological) and execution (organic) scales, and their reciprocal intra- and inter-scale constraints. We propose an (epistemological) scale-based definition of constraints that accounts for the concept of synergies as emergent coordinative structures. To illustrate how we can operationalise the notion of multi-scale synergies we use an interdisciplinary model of locomotor pointing. To conclude, we show the value of this approach for interdisciplinary research in sport sciences, as we discuss two examples of task-specific dimensionality reduction techniques in the context of an ongoing project that aims to unveil the determinants of expertise in basketball free throw shooting. These techniques provide relevant empirical evidence to help bootstrap the challenging modelling efforts required in sport sciences.
Cortez, Michael H; Ellner, Stephen P
2010-11-01
The accumulation of evidence that ecologically important traits often evolve at the same time and rate as ecological dynamics (e.g., changes in species' abundances or spatial distributions) has outpaced theory describing the interplay between ecological and evolutionary processes with comparable timescales. The disparity between experiment and theory is partially due to the high dimensionality of models that include both evolutionary and ecological dynamics. Here we show how the theory of fast-slow dynamical systems can be used to reduce model dimension, and we use that body of theory to study a general predator-prey system exhibiting fast evolution in either the predator or the prey. Our approach yields graphical methods with predictive power about when new and unique dynamics (e.g., completely out-of-phase oscillations and cryptic dynamics) can arise in ecological systems exhibiting fast evolution. In addition, we derive analytical expressions for determining when such behavior arises and how evolution affects qualitative properties of the ecological dynamics. Finally, while the theory requires a separation of timescales between the ecological and evolutionary processes, our approach yields insight into systems where the rates of those processes are comparable and thus is a step toward creating a general ecoevolutionary theory.
Spash, Clive L; Aslaksen, Iulie
2015-08-15
In this paper we explore the discourses of ecology, environmental economics, new environmental pragmatism and social ecological economics as they relate to the value of ecosystems and biodiversity. Conceptualizing biodiversity and ecosystems as goods and services that can be represented by monetary values in policy processes is an economic discourse being increasingly championed by ecologists and conservation biologists. The latter promote a new environmental pragmatism internationally as hardwiring biodiversity and ecosystems services into finance. The approach adopts a narrow instrumentalism, denies value pluralism and incommensurability, and downplays the role of scientific knowledge. Re-establishing an ecological discourse in biodiversity policy implies a crucial role for biophysical indicators as independent policy targets, exemplified in this paper by the Nature Index for Norway. Yet, there is a recognisable need to go beyond a traditional ecological approach to one recognising the interconnections of social, ecological and economic problems. This requires reviving and relating to a range of alternative ecologically informed discourses, including an ecofeminist perspective, in order to transform the increasingly dominant and destructive relationship of humans separated from and domineering over Nature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Yan; Cai, Yanpeng; Sun, Tao; Yin, Xin'An; Tan, Qian
2017-06-30
An integrated indicator system was developed for determining synthetic environmental responses under multiple types of coastal reclamation engineering in the Yellow River estuary, China. Four types of coastal engineering works were analyzed, namely port construction, petroleum exploitation, fishery and aquaculture, and seawall defense. In addition, two areas with limited human disturbances were considered for comparison. From the weights of the response value for each indicator, port construction was determined to be the primary impact contributor among the four engineering works studies. Specifically, hydrodynamic conditions, ecological status, economic costs, and engineering intensity were on average 72.78%, 65.03%, 75.03%, and 66.35% higher than those of other engineering types. Furthermore, fishery and aquaculture impact on water quality was 42.51% higher than that of other engineering types, whereas seawall defense impact on landscape variation was 51.75% higher than that of other engineering types. The proposed indicator system may provide effective coastal management in future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Natural bacterial communities serve as quantitative geochemical biosensors.
Smith, Mark B; Rocha, Andrea M; Smillie, Chris S; Olesen, Scott W; Paradis, Charles; Wu, Liyou; Campbell, James H; Fortney, Julian L; Mehlhorn, Tonia L; Lowe, Kenneth A; Earles, Jennifer E; Phillips, Jana; Techtmann, Steve M; Joyner, Dominique C; Elias, Dwayne A; Bailey, Kathryn L; Hurt, Richard A; Preheim, Sarah P; Sanders, Matthew C; Yang, Joy; Mueller, Marcella A; Brooks, Scott; Watson, David B; Zhang, Ping; He, Zhili; Dubinsky, Eric A; Adams, Paul D; Arkin, Adam P; Fields, Matthew W; Zhou, Jizhong; Alm, Eric J; Hazen, Terry C
2015-05-12
Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts. Copyright © 2015 Smith et al.
Natural bacterial communities serve as quantitative geochemical biosensors
Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; ...
2015-05-12
Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination,more » even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.« less
Linking effects of anthropogenic debris to ecological impacts.
Browne, Mark Anthony; Underwood, A J; Chapman, M G; Williams, Rob; Thompson, Richard C; van Franeker, Jan A
2015-05-22
Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the 'health', feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Sexual selection and conflict as engines of ecological diversification.
Bonduriansky, Russell
2011-12-01
Ecological diversification presents an enduring puzzle: how do novel ecological strategies evolve in organisms that are already adapted to their ecological niche? Most attempts to answer this question posit a primary role for genetic drift, which could carry populations through or around fitness "valleys" representing maladaptive intermediate phenotypes between alternative niches. Sexual selection and conflict are thought to play an ancillary role by initiating reproductive isolation and thereby facilitating divergence in ecological traits through genetic drift or local adaptation. Here, I synthesize theory and evidence suggesting that sexual selection and conflict could play a more central role in the evolution and diversification of ecological strategies through the co-optation of sexual traits for viability-related functions. This hypothesis rests on three main premises, all of which are supported by theory and consistent with the available evidence. First, sexual selection and conflict often act at cross-purposes to viability selection, thereby displacing populations from the local viability optimum. Second, sexual traits can serve as preadaptations for novel viability-related functions. Third, ancestrally sex-limited sexual traits can be transferred between sexes. Consequently, by allowing populations to explore a broad phenotypic space around the current viability optimum, sexual selection and conflict could act as powerful drivers of ecological adaptation and diversification.
Study of solid rocket motors for a space shuttle booster. Volume 2, book 1: Analysis and design
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis of the factors which determined the selection of the solid rocket propellant engines for the space shuttle booster is presented. The 156 inch diameter, parallel burn engine was selected because of its transportability, cost effectiveness, and reliability. Other factors which caused favorable consideration are: (1) recovery and reuse are feasible and offer substantial cost savings, (2) abort can be easily accomplished. and (3) ecological effects are acceptable.
Army Engineer Divers: First In Port-Au-Prince Harbor
2010-12-01
to the pile once the concrete was poured. This step was com- pleted in a few minutes for each pile. Last, a prefabricated wooden form was emplaced...September-December 201010 Engineer This prefabricated wooden form was emplaced around a rebar cage at the top of damaged piles to hold concrete until it...the mainland into the harbor. Waste from tugboats and sewage from the mainland compounded ecological hazards. The only alternative for the Army and
Application of proteomics to ecology and population biology.
Karr, T L
2008-02-01
Proteomics is a relatively new scientific discipline that merges protein biochemistry, genome biology and bioinformatics to determine the spatial and temporal expression of proteins in cells, tissues and whole organisms. There has been very little application of proteomics to the fields of behavioral genetics, evolution, ecology and population dynamics, and has only recently been effectively applied to the closely allied fields of molecular evolution and genetics. However, there exists considerable potential for proteomics to impact in areas related to functional ecology; this review will introduce the general concepts and methodologies that define the field of proteomics and compare and contrast the advantages and disadvantages with other methods. Examples of how proteomics can aid, complement and indeed extend the study of functional ecology will be discussed including the main tool of ecological studies, population genetics with an emphasis on metapopulation structure analysis. Because proteomic analyses provide a direct measure of gene expression, it obviates some of the limitations associated with other genomic approaches, such as microarray and EST analyses. Likewise, in conjunction with associated bioinformatics and molecular evolutionary tools, proteomics can provide the foundation of a systems-level integration approach that can enhance ecological studies. It can be envisioned that proteomics will provide important new information on issues specific to metapopulation biology and adaptive processes in nature. A specific example of the application of proteomics to sperm ageing is provided to illustrate the potential utility of the approach.
Spatial-structural analysis of leafless woody riparian vegetation for hydraulic considerations
NASA Astrophysics Data System (ADS)
Weissteiner, Clemens; Jalonen, Johanna; Järvelä, Juha; Rauch, Hans Peter
2013-04-01
Woody riparian vegetation is a vital element of riverine environments. On one hand woody riparian vegetation has to be taken into account from a civil engineering point of view due to boundary shear stress and vegetation drag. On the other hand it has to be considered from a river ecological point of view due to shadowing effects and as a source of organic material for aquatic habitats. In hydrodynamic and hydro-ecological studies the effects of woody riparian vegetation on flow patterns are usually investigated on a very detailed level. On the contrary vegetation elements and their spatial patterns are generally analysed and discussed on the basis of an integral approach measuring for example basal diameters, heights and projected plant areas. For a better understanding of the influence of woody riparian vegetation on turbulent flow and on river ecology, it is essential to record and analyse plant data sets on the same level of quality as for hydrodynamic or hydro-ecologic purposes. As a result of the same scale of the analysis it is possible to incorporate riparian vegetation as a sub-model in the hydraulic analysis. For plant structural components, such as branches on different topological levels it is crucial to record plant geometrical parameters describing the habitus of the plant on branch level. An exact 3D geometrical model of real plants allows for an extraction of various spatial-structural plant parameters. In addition, allometric relationships help to summarize and describe plant traits of riparian vegetation. This paper focuses on the spatial-structural composition of leafless riparia woddy vegetation. Structural and spatial analyses determine detailed geometric properties of the structural components of the plants. Geometrical and topological parameters were recorded with an electro-magnetic scanning device. In total, 23 plants (willows, alders and birches) were analysed in the study. Data were recorded on branch level, which allowed for the development of a 3D geometric plant model. The results are expected to improve knowledge on how the architectural system and allometric relationships of the plants relate to ecological and hydrodynamic properties.
DeLonay, Aaron J.; Jacobson, Robert B.; Papoulias, Diana M.; Wildhaber, Mark L.; Chojnacki, Kimberly A.; Pherigo, Emily K.; Haas, Justin D.; Mestl, Gerald E.
2012-01-01
The Comprehensive Sturgeon Research Project is a multiyear, multiagency collaborative research framework developed to provide information to support pallid sturgeon recovery and Missouri River management decisions. The project strategy integrates field and laboratory studies of sturgeon reproductive ecology, early life history, habitat requirements, and physiology. The project scope of work is developed annually with cooperating research partners and in collaboration with the U.S. Army Corps of Engineers, Missouri River Recovery—Integrated Science Program. The research consists of several interdependent and complementary tasks that engage multiple disciplines. The research tasks in the 2010 scope of work primarily address spawning as a probable factor limiting pallid sturgeon survival and recovery, although limited pilot studies also have been initiated to examine the requirements of early life stages. The research is designed to inform management decisions affecting channel re-engineering, flow modification, and pallid sturgeon population augmentation on the Missouri River, and throughout the range of the species. Research and progress made through this project are reported to the U.S. Army Corps of Engineers annually. This annual report details the research effort and progress made by the Comprehensive Sturgeon Research Project during 2010.
Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.
Bibby, Kyle
2014-02-01
The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.
Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses.
Griffith, Daniel A; Peres-Neto, Pedro R
2006-10-01
Recently, analytical approaches based on the eigenfunctions of spatial configuration matrices have been proposed in order to consider explicitly spatial predictors. The present study demonstrates the usefulness of eigenfunctions in spatial modeling applied to ecological problems and shows equivalencies of and differences between the two current implementations of this methodology. The two approaches in this category are the distance-based (DB) eigenvector maps proposed by P. Legendre and his colleagues, and spatial filtering based upon geographic connectivity matrices (i.e., topology-based; CB) developed by D. A. Griffith and his colleagues. In both cases, the goal is to create spatial predictors that can be easily incorporated into conventional regression models. One important advantage of these two approaches over any other spatial approach is that they provide a flexible tool that allows the full range of general and generalized linear modeling theory to be applied to ecological and geographical problems in the presence of nonzero spatial autocorrelation.
Incorporating global components into ethics education.
Wang, George; Thompson, Russell G
2013-03-01
Ethics is central to science and engineering. Young engineers need to be grounded in how corporate social responsibility principles can be applied to engineering organizations to better serve the broader community. This is crucial in times of climate change and ecological challenges where the vulnerable can be impacted by engineering activities. Taking a global perspective in ethics education will help ensure that scientists and engineers can make a more substantial contribution to development throughout the world. This paper presents the importance of incorporating the global and cross culture components in the ethic education. The authors bring up a question to educators on ethics education in science and engineering in the globalized world, and its importance, necessity, and impendency. The paper presents several methods for discussion that can be used to identify the differences in ethics standards and practices in different countries; enhance the student's knowledge of ethics in a global arena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-05
The document contains the baseline human health risk assessment and the ecological risk assessment (ERA) for the Barter Island Distant Early Warning (DEW) Line radar installation. Fourteen sites at the Barter Island radar installation underwent remedial investigations (RIs) during the summer of 1993. The analytical data reported in the RI/FS form the basis for the human health and ecological risk assessment. The primary contaminants of concern at the 14 sites are diesel and gasoline from past spills and/or leaks.
Getting the message across: using ecological integrity to communicate with resource managers
Mitchell, Brian R.; Tierney, Geraldine L.; Schweiger, E. William; Miller, Kathryn M.; Faber-Langendoen, Don; Grace, James B.
2014-01-01
This chapter describes and illustrates how concepts of ecological integrity, thresholds, and reference conditions can be integrated into a research and monitoring framework for natural resource management. Ecological integrity has been defined as a measure of the composition, structure, and function of an ecosystem in relation to the system’s natural or historical range of variation, as well as perturbations caused by natural or anthropogenic agents of change. Using ecological integrity to communicate with managers requires five steps, often implemented iteratively: (1) document the scale of the project and the current conceptual understanding and reference conditions of the ecosystem, (2) select appropriate metrics representing integrity, (3) define externally verified assessment points (metric values that signify an ecological change or need for management action) for the metrics, (4) collect data and calculate metric scores, and (5) summarize the status of the ecosystem using a variety of reporting methods. While we present the steps linearly for conceptual clarity, actual implementation of this approach may require addressing the steps in a different order or revisiting steps (such as metric selection) multiple times as data are collected. Knowledge of relevant ecological thresholds is important when metrics are selected, because thresholds identify where small changes in an environmental driver produce large responses in the ecosystem. Metrics with thresholds at or just beyond the limits of a system’s range of natural variability can be excellent, since moving beyond the normal range produces a marked change in their values. Alternatively, metrics with thresholds within but near the edge of the range of natural variability can serve as harbingers of potential change. Identifying thresholds also contributes to decisions about selection of assessment points. In particular, if there is a significant resistance to perturbation in an ecosystem, with threshold behavior not occurring until well beyond the historical range of variation, this may provide a scientific basis for shifting an ecological assessment point beyond the historical range. We present two case studies using ongoing monitoring by the US National Park Service Vital Signs program that illustrate the use of an ecological integrity approach to communicate ecosystem status to resource managers. The Wetland Ecological Integrity in Rocky Mountain National Park case study uses an analytical approach that specifically incorporates threshold detection into the process of establishing assessment points. The Forest Ecological Integrity of Northeastern National Parks case study describes a method for reporting ecological integrity to resource managers and other decision makers. We believe our approach has the potential for wide applicability for natural resource management.
Evaluating European Climate Change Policy: An Ecological Justice Approach
ERIC Educational Resources Information Center
Muhovic-Dorsner, Kamala
2005-01-01
To date, the concept of ecological justice, when applied to international climate change policy, has largely focused on the North-South dichotomy and has yet to be extended to Central and Eastern European countries. This article argues that current formulations of climate change policy cannot address potential issues of ecological injustice to…
A comparative gradient approach as a tool for understanding and managing urban ecosystems
Christopher G. Boone; Elizabeth Cook; Sharon J. Hall; Marcia L. Nation; Nancy B. Grimm; Carol B. Raish; Deborah M. Finch; Abigail M. York
2012-01-01
To meet the grand challenges of the urban century - such as climate change, biodiversity loss, and persistent poverty - urban and ecological theory must contribute to integrated frameworks that treat social and ecological dynamics as interdependent. A socioecological framework that encapsulates theory from the social and ecological sciences will improve understanding...
Experiential Learning as a Constraint-Led Process: An Ecological Dynamics Perspective
ERIC Educational Resources Information Center
Brymer, Eric; Davids, Keith
2014-01-01
In this paper we present key ideas for an ecological dynamics approach to learning that reveal the importance of learner-environment interactions to frame outdoor experiential learning. We propose that ecological dynamics provides a useful framework for understanding the interacting constraints of the learning process and for designing learning…
Ecological support for rural land-use planning.
David M. Theobald; Thomas Spies; Jeff Kline; Bruce Maxwell; N. T. Hobbs; Virginia H. Dale
2005-01-01
How can ecologists be more effective in supporting ecologically informed rural land-use planning and policy? Improved decision making about rural lands requires careful consideration of how ecological information and analyses can inform specific planning and policy needs. We provide a brief overview of rural land-use planning, including recently developed approaches to...
An integrated conceptual framework for long-term social-ecological research
S.L. Collins; S.R. Carpenter; S.M. Swinton; D.E. Orenstein; D.L. Childers; T.L. Gragson; N.B. Grimm; J.M. Grove; S.L. Harlan; J.P. Kaye; A.K. Knapp; G.P. Kofinas; J.J. Magnuson; W.H. McDowell; J.M. Melack; L.A. Ogden; G.P. Robertson; M.D. Smith; A.C. Whitmer
2010-01-01
The global reach of human activities affects all natural ecosystems, so that the environment is best viewed as a social-ecological system. Consequently, a more integrative approach to environmental science, one that bridges the biophysical and social domains, is sorely needed. Although models and frameworks for social-ecological systems exist, few are explicitly...
Evolving Approaches and Technologies to Enhance the Role of Ecological Modeling in Decision Making
Eric Gustafson; John Nestler; Louis Gross; Keith M. Reynolds; Daniel Yaussy; Thomas P. Maxwell; Virginia H. Dale
2002-01-01
Understanding the effects of management activities is difficult for natural resource managers and decision makers because ecological systems are highly complex and their behavior is difficult to predict. Furthermore, the empirical studies necessary to illuminate all management questions quickly become logistically complicated and cost prohibitive. Ecological models...
Uncertainty analysis: an evaluation metric for synthesis science
Mark E. Harmon; Becky Fasth; Charles B. Halpern; James A. Lutz
2015-01-01
The methods for conducting reductionist ecological science are well known and widely used. In contrast, those used in the synthesis of ecological science (i.e., synthesis science) are still being developed, vary widely, and often lack the rigor of reductionist approaches. This is unfortunate because the synthesis of ecological parts into a greater whole is...
Nurses and teachers: partnerships for green health promotion.
Sendall, Marguerite C; Lidstone, John; Fleming, Marylou; Domocol, Michelle
2013-07-01
The term green health promotion is given to health promotion underpinned by the principles of ecological health and sustainability. Green health promotion is supported philosophically by global health promotion documents such as the 1986 Ottawa Charter for Health Promotion and the ecological public health movement. Green health promotion in schools means the practice, the principles of ecological health, and sustainability. A literature review revealed a paucity of publications about green health promotion in schools. Literature about nurses and health promotion in schools is generally found in nursing publications. Literature about ecological sustainability in schools is mostly found in teaching publications. This article explores the nexus between nursing and health promotion, and teachers and ecological sustainability. Collaborative partnerships between health and education do not capitalize on programs such as Health Promoting Schools and the School Based Youth Health Nurse Program in Queensland, Australia. The authors consider how collaborative partnerships between health and education in schools can work toward green health promotion. Nursing's approach to health promotion and education's approach to ecological sustainability need to be aligned to enhance green health promotion in schools. © 2013, American School Health Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, C.R.
1995-09-01
The US Department of Energy (DOE) is proposing to develop a geologic repository for disposing of high-level nuclear waste at Yucca Mountain, Nevada. In this commentary, the ecology program for the DOE`s Yucca Mountain Project is discussed from the perspective of state-of-the-art ecosystem analysis, environmental ethics, and standards of professional practice. Specifically at issue is the need by the Yucca Mountain ecology program to adopt an ecosystem approach that encompasses the current strategy based on population biology and community ecology alone. The premise here is that an ecosystem approach is essential for assessing the long-term potential environmental impacts at Yuccamore » Mountain in light of the thermal effects expected to be associated with heat from radioactive decay.« less
NASA Astrophysics Data System (ADS)
Makisha, Nikolay; Gogina, Elena
2017-11-01
Protection of water bodies has a strict dependence on reliable operation of engineering systems and facilities for water supply and sewage. The majority of these plants and stations has been constructed in 1970-1980's in accordance with rules and regulations of that time. So now most of them require reconstruction due to serious physical or/and technological wear. The current condition of water supply and sewage systems and facilities frequently means a hidden source of serious danger for normal life support and ecological safety of cities and towns. The article reveals an obtained experience and modern approaches for reconstruction of waste water and sludge treatment plants that proved their efficiency even if applied in limited conditions such as area limits, investments limits. The main directions of reconstruction: overhaul repair and partial modernization of existing facilities on the basis of initial project; - restoration and modernization of existing systems on the basis on the current documents and their current condition; upgrade of waste water treatment plants (WWTPs) performance on the basis of modern technologies and methods; reconstruction of sewage systems and facilities and treatment quality improvement.