Sample records for ecological forecasting team

  1. DEVELOPING THE CAPACITY TO MAKE ECOLOGICAL FORECASTS: ISSUES, GAPS, AND NEEDS

    EPA Science Inventory

    This presentation highlights results and recommendations of the interagency writing team on ecological forecasting. The writing team is part of the Interagency Working Group on Earth Observations (IWGEO) and involves participants from EPA, NOAA, NASA, USGS, NSF, and the Smithson...

  2. Ecological Forecasting of Vibrio sp. in U.S. Coastal Waters Using an Operational Platform, a Pilot Project of the NOAA Ecological Forecasting Roadmap. Development of Web based Tools and Forecasts to Help the Public Avoid Exposure to Vibrio vulnificus and Shell Fish Harvesters Avoid Dangerous Concentrations of Vibrio parahaemolyticus.

    NASA Astrophysics Data System (ADS)

    Daniels, R. M.; Jacobs, J. M.; Paranjpye, R.; Lanerolle, L. W.

    2016-02-01

    The Pathogens group of the NOAA Ecological Forecasting Roadmap has begun a range of efforts to monitor and predict potential pathogen occurrences in shellfish and in U.S. Coastal waters. NOAA/NCOSS along with NMFS/NWFSC have led the Pathogens group and the development of web based tools and forecasts for both Vibrio vulnificus and Vibrio parahaemolyticus. A strong relationship with FDA has allowed the team to develop forecasts that will serve U.S. shellfish harvesters and consumers. NOAA/NOS/CSDL has provided modeling expertise to help the group use the hydrodynamic models and their forecasts of physical variables that drive the ecological predictions. The NOAA/NWS/Ocean Prediction Center has enabled these ecological forecasting efforts by providing the infrastructure, computing knowledge and experience in an operational culture. Daily forecasts have been demonstrated and are available from the web for the Chesapeake Bay, Delaware Bay, Northern Gulf of Mexico, Tampa Bay, Puget Sound and Long Island Sound. The forecast systems run on a daily basis being fed by NOS model data from the NWS/NCEP super computers. New forecast tools including V. parahaemolyticus post harvest growth and doubling time in ambient air temperature will be described.

  3. Everglades Ecological Forecasting II: Utilizing NASA Earth Observations to Enhance the Capabilities of Everglades National Park to Monitor & Predict Mangrove Extent to Aid Current Restoration Efforts

    NASA Technical Reports Server (NTRS)

    Kirk, Donnie; Wolfe, Amy; Ba, Adama; Nyquist, Mckenzie; Rhodes, Tyler; Toner, Caitlin; Cabosky, Rachel; Gotschalk, Emily; Gregory, Brad; Kendall, Candace

    2016-01-01

    Mangroves act as a transition zone between fresh and salt water habitats by filtering and indicating salinity levels along the coast of the Florida Everglades. However, dredging and canals built in the early 1900s depleted the Everglades of much of its freshwater resources. In an attempt to assist in maintaining the health of threatened habitats, efforts have been made within Everglades National Park to rebalance the ecosystem and adhere to sustainably managing mangrove forests. The Everglades Ecological Forecasting II team utilized Google Earth Engine API and satellite imagery from Landsat 5, 7, and 8 to continuously create land-change maps over a 25 year period, and to allow park officials to continue producing maps in the future. In order to make the process replicable for project partners at Everglades National Park, the team was able to conduct a supervised classification approach to display mangrove regions in 1995, 2000, 2005, 2010 and 2015. As freshwater was depleted, mangroves encroached further inland and freshwater marshes declined. The current extent map, along with transition maps helped create forecasting models that show mangrove encroachment further inland in the year 2030 as well. This project highlights the changes to the Everglade habitats in relation to a changing climate and hydrological changes throughout the park.

  4. The ecological forecast horizon, and examples of its uses and determinants

    PubMed Central

    Petchey, Owen L; Pontarp, Mikael; Massie, Thomas M; Kéfi, Sonia; Ozgul, Arpat; Weilenmann, Maja; Palamara, Gian Marco; Altermatt, Florian; Matthews, Blake; Levine, Jonathan M; Childs, Dylan Z; McGill, Brian J; Schaepman, Michael E; Schmid, Bernhard; Spaak, Piet; Beckerman, Andrew P; Pennekamp, Frank; Pearse, Ian S; Vasseur, David

    2015-01-01

    Forecasts of ecological dynamics in changing environments are increasingly important, and are available for a plethora of variables, such as species abundance and distribution, community structure and ecosystem processes. There is, however, a general absence of knowledge about how far into the future, or other dimensions (space, temperature, phylogenetic distance), useful ecological forecasts can be made, and about how features of ecological systems relate to these distances. The ecological forecast horizon is the dimensional distance for which useful forecasts can be made. Five case studies illustrate the influence of various sources of uncertainty (e.g. parameter uncertainty, environmental variation, demographic stochasticity and evolution), level of ecological organisation (e.g. population or community), and organismal properties (e.g. body size or number of trophic links) on temporal, spatial and phylogenetic forecast horizons. Insights from these case studies demonstrate that the ecological forecast horizon is a flexible and powerful tool for researching and communicating ecological predictability. It also has potential for motivating and guiding agenda setting for ecological forecasting research and development. PMID:25960188

  5. Data Assimilation at FLUXNET to Improve Models towards Ecological Forecasting (Invited)

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2009-12-01

    Dramatically increased volumes of data from observational and experimental networks such as FLUXNET call for transformation of ecological research to increase its emphasis on quantitative forecasting. Ecological forecasting will also meet the societal need to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-based models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, today’s ecological models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting is data assimilation, which uses data to inform initial conditions and to help constrain a model during simulation to yield results that approximate reality as closely as possible. In an era with dramatically increased availability of data from observational and experimental networks, data assimilation is a key technique that helps convert the raw data into ecologically meaningful products so as to accelerate our understanding of ecological processes, test ecological theory, forecast changes in ecological services, and better serve the society. This talk will use examples to illustrate how data from FLUXNET have been assimilated with process-based models to improve estimates of model parameters and state variables; to quantify uncertainties in ecological forecasting arising from observations, models and their interactions; and to evaluate information contributions of data and model toward short- and long-term forecasting of ecosystem responses to global change.

  6. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  7. Iterative near-term ecological forecasting: Needs, opportunities, and challenges

    USGS Publications Warehouse

    Dietze, Michael C.; Fox, Andrew; Beck-Johnson, Lindsay; Betancourt, Julio L.; Hooten, Mevin B.; Jarnevich, Catherine S.; Keitt, Timothy H.; Kenney, Melissa A.; Laney, Christine M.; Larsen, Laurel G.; Loescher, Henry W.; Lunch, Claire K.; Pijanowski, Bryan; Randerson, James T.; Read, Emily; Tredennick, Andrew T.; Vargas, Rodrigo; Weathers, Kathleen C.; White, Ethan P.

    2018-01-01

    Two foundational questions about sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect these trajectories?” Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.

  8. Iterative near-term ecological forecasting: Needs, opportunities, and challenges.

    PubMed

    Dietze, Michael C; Fox, Andrew; Beck-Johnson, Lindsay M; Betancourt, Julio L; Hooten, Mevin B; Jarnevich, Catherine S; Keitt, Timothy H; Kenney, Melissa A; Laney, Christine M; Larsen, Laurel G; Loescher, Henry W; Lunch, Claire K; Pijanowski, Bryan C; Randerson, James T; Read, Emily K; Tredennick, Andrew T; Vargas, Rodrigo; Weathers, Kathleen C; White, Ethan P

    2018-02-13

    Two foundational questions about sustainability are "How are ecosystems and the services they provide going to change in the future?" and "How do human decisions affect these trajectories?" Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.

  9. Ecological Forecasting in the Applied Sciences Program and Input to the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Skiles, Joseph

    2015-01-01

    Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecosystems will change in the future in response to environmental factors. Further, Ecological Forecasting employs observations and models to predict the effects of environmental change on ecosystems. In doing so, it applies information from the physical, biological, and social sciences and promotes a scientific synthesis across the domains of physics, geology, chemistry, biology, and psychology. The goal is reliable forecasts that allow decision makers access to science-based tools in order to project changes in living systems. The next decadal survey will direct the development Earth Observation sensors and satellites for the next ten years. It is important that these new sensors and satellites address the requirements for ecosystem models, imagery, and other data for resource management. This presentation will give examples of these model inputs and some resources needed for NASA to continue effective Ecological Forecasting.

  10. Forecasting for a Remote Island: A Class Exercise.

    NASA Astrophysics Data System (ADS)

    Riordan, Allen J.

    2003-06-01

    Students enrolled in a satellite meteorology course at North Carolina State University, Raleigh, recently had an unusual opportunity to apply their forecast skills to predict wind and weather conditions for a remote site in the Southern Hemisphere. For about 40 days starting in early February 2001, students used satellite and model guidance to develop forecasts to support a research team stationed on Bouvet Island (54°26S, 3°24E). Internet products together with current output from NCEP's Aviation (AVN) model supported the activity. Wind forecasts were of particular interest to the Bouvet team because violent winds often developed unexpectedly and posed a safety hazard.Results were encouraging in that 24-h wind speed forecasts showed reasonable reliability over a wide range of wind speeds. Forecasts for 48 h showed only marginal skill, however. Two critical events were well forecasted-the major February storm with wind speeds of over 120 kt and a brief calm period following several days of strong winds in early March. The latter forecast proved instrumental in recovering the research team.

  11. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming

    NASA Astrophysics Data System (ADS)

    Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi

    2018-03-01

    The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.

  12. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

    NASA Astrophysics Data System (ADS)

    Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim

    2017-07-01

    Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagestad, Jerry D.; Bolte, John; Guzy, Michael

    During this final year of the Pacific Northwest Regional Collaboratory we focused significantly on continuing the relationship between technical teams and government end-users. The main theme of the year was integration. This took the form of data integration via our web portal and integration of our technologies with the end users. The PNWRC's technical portfolio is based on EOS strategies, and focuses on 'applications of national priority: water management, invasive species, coastal management and ecological forecasting.' The products of our technical approaches have been well received by the community of focused end-users. The objective this year was to broaden thatmore » community and develop external support to continue and operationalize product development.« less

  14. Improving Ecological Forecasting: Data Assimilation Enhances the Ecological Forecast Horizon of a Complex Food Web

    NASA Astrophysics Data System (ADS)

    Massoud, E. C.; Huisman, J.; Benincà, E.; Bouten, W.; Vrugt, J. A.

    2017-12-01

    Species abundances in ecological communities can display chaotic non-equilibrium dynamics. A characteristic feature of chaotic systems is that long-term prediction of the system's trajectory is fundamentally impossible. How then should we make predictions for complex multi-species communities? We explore data assimilation (DA) with the Ensemble Kalman Filter (EnKF) to fuse a two-predator-two-prey model with abundance data from a long term experiment of a plankton community which displays chaotic dynamics. The results show that DA improves substantially the predictability and ecological forecast horizon of complex community dynamics. In addition, we show that DA helps provide guidance on measurement design, for instance on defining the frequency of observations. The study presented here is highly innovative, because DA methods at the current stage are almost unknown in ecology.

  15. Ecological Forecasting: Microbial Contamination and Atmospheric Loadings of Nutrients to Land and Water

    EPA Science Inventory

    The development of ecological forecasts, namely, methodologies to predict the chemical, biological, and physical changes in terrestrial and aquatic ecosystems is desirable so that effective strategies for reducing the adverse impacts of human activities and extreme natural events...

  16. How will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability.

    PubMed

    Fitzpatrick, Matthew C; Blois, Jessica L; Williams, John W; Nieto-Lugilde, Diego; Maguire, Kaitlin C; Lorenz, David J

    2018-03-23

    Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information. © 2018 John Wiley & Sons Ltd.

  17. The Texas Children's Hospital immunization forecaster: conceptualization to implementation.

    PubMed

    Cunningham, Rachel M; Sahni, Leila C; Kerr, G Brady; King, Laura L; Bunker, Nathan A; Boom, Julie A

    2014-12-01

    Immunization forecasting systems evaluate patient vaccination histories and recommend the dates and vaccines that should be administered. We described the conceptualization, development, implementation, and distribution of a novel immunization forecaster, the Texas Children's Hospital (TCH) Forecaster. In 2007, TCH convened an internal expert team that included a pediatrician, immunization nurse, software engineer, and immunization subject matter experts to develop the TCH Forecaster. Our team developed the design of the model, wrote the software, populated the Excel tables, integrated the software, and tested the Forecaster. We created a table of rules that contained each vaccine's recommendations, minimum ages and intervals, and contraindications, which served as the basis for the TCH Forecaster. We created 15 vaccine tables that incorporated 79 unique dose states and 84 vaccine types to operationalize the entire United States recommended immunization schedule. The TCH Forecaster was implemented throughout the TCH system, the Indian Health Service, and the Virginia Department of Health. The TCH Forecast Tester is currently being used nationally. Immunization forecasting systems might positively affect adherence to vaccine recommendations. Efforts to support health care provider utilization of immunization forecasting systems and to evaluate their impact on patient care are needed.

  18. KSC-06pd1285

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral forecast facility in Florida, media were able to meet members of the weather team who review data used for forecasts as part of a tour of the facility. The team will play a role in the July 1 launch of Space Shuttle Discovery on mission STS-121. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  19. A study on the epidemiological characteristics and infectious forecast model of malaria at Guangzhou Airport among Chinese returnees from Africa.

    PubMed

    Wu, Hui-Ming; Fang, Zhi-Qiang; Zhao, Dang; Chen, Yan-Ling; Liu, Chuan-Ge; Liang, Xi

    2017-07-04

    Cross-border malaria transmission in China is a major component of Chinese imported malaria cases. Such cases mostly are travellers returning from malaria endemic countries in Africa. By investigating malaria infectious status among Chinese worker in Africa, this study analysed the malaria risk factors, in order to establish infectious forecast model. Chinese returnees data from Africa were collected at Guangzhou Baiyun International Airport, Guangzhou, China between August 2015 and March 2016 and were included in the cross-sectional and retrospective survey. A total of 1492 respondents were included in the study with the majority consisting of junior middle school educated male. Most of them are manual and technical workers hired by companies, with average of 37.04 years of age. Overall malaria incidence rate of the population was 8.98% (134/1492), and there were no significant differences regarding age, gender, occupation, or team. Forecast model was developed on the basis of malaria risk factors including working country, local ecological environment type, work duration and intensity of mosquito bite prevention. The survey suggested that malaria incidence was high among Chinese travellers who had worked in Africa countries of heavy malaria burden. Further research on the frequency and severity of clinical episodes among Chinese travellers having worked in Africa is needed.

  20. 78 FR 14775 - Proposed Information Collection; Comment Request; Survey of Coastal Managers To Assess Needs for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... Collection; Comment Request; Survey of Coastal Managers To Assess Needs for Ecological Forecasts AGENCY... . SUPPLEMENTARY INFORMATION: I. Abstract This request is for a new survey of coastal managers to determine their needs and potential uses for ecological forecasts or scenarios. Coastal managers would be staff from...

  1. Near Real-time Ecological Forecasting of Peatland Responses to Warming and CO2 Treatment through EcoPAD-SPRUCE

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Jiang, J.; Stacy, M.; Ricciuto, D. M.; Hanson, P. J.; Sundi, N.; Luo, Y.

    2016-12-01

    Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our Ecological Platform for Assimilation of Data (EcoPAD) facilitates the integration of current best knowledge from models, manipulative experimentations, observations and other modern techniques and provides both near real-time and long-term forecasting of ecosystem dynamics. As a case study, the web-based EcoPAD platform synchronizes real- or near real-time field measurements from the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment experiment, assimilates multiple data streams into process based models, enhances timely feedback between modelers and experimenters, and ultimately improves ecosystem forecasting and makes best utilization of current knowledge. In addition to enable users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, and (v) conduct ecological forecasting, EcoPAD-SPRUCE automated the workflow from real-time data acquisition, model simulation to result visualization. EcoPAD-SPRUCE promotes seamless feedback between modelers and experimenters, hand in hand to make better forecasting of future changes. The framework of EcoPAD-SPRUCE (with flexible API, Application Programming Interface) is easily portable and will benefit scientific communities, policy makers as well as the general public.

  2. Ecological forecasts: An emerging imperative

    Treesearch

    James S. Clark; Steven R. Carpenter; Mary Barber; Scott Collins; Andy Dobson; Jonathan A. Foley; David M. Lodge; Mercedes Pascual; Roger Pielke; William Pizer; Cathy Pringle; Walter V. Reid; Kenneth A. Rose; Osvaldo Sala; William H. Schlesinger; Diana H. Wall; David Wear

    2001-01-01

    Planning and decision-making can be improved by access to reliable forecasts of ecosystem state, ecosystem services, and natural capital. Availability of new data sets, together with progress in computation and statistics, will increase our ability to forecast ecosystem change. An agenda that would lead toward a capacity to produce, evaluate, and communicate forecasts...

  3. Transitioning a Chesapeake Bay Ecological Prediction System to Operations

    NASA Astrophysics Data System (ADS)

    Brown, C.; Green, D. S.; Eco Forecasters

    2011-12-01

    Ecological prediction of the impacts of physical, chemical, biological, and human-induced change on ecosystems and their components, encompass a wide range of space and time scales, and subject matter. They vary from predicting the occurrence and/or transport of certain species, such harmful algal blooms, or biogeochemical constituents, such as dissolved oxygen concentrations, to large-scale ecosystem responses and higher trophic levels. The timescales of ecological prediction, including guidance and forecasts, range from nowcasts and short-term forecasts (days), to intraseasonal and interannual outlooks (weeks to months), to decadal and century projections in climate change scenarios. The spatial scales range from small coastal inlets to basin and global scale biogeochemical and ecological forecasts. The types of models that have been used include conceptual, empirical, mechanistic, and hybrid approaches. This presentation will identify the challenges and progress toward transitioning experimental model-based ecological prediction into operational guidance and forecasting. Recent efforts are targeting integration of regional ocean, hydrodynamic and hydrological models and leveraging weather and water service infrastructure to enable the prototyping of an operational ecological forecast capability for the Chesapeake Bay and its tidal tributaries. A path finder demonstration predicts the probability of encountering sea nettles (Chrysaora quinquecirrha), a stinging jellyfish. These jellyfish can negatively impact safety and economic activities in the bay and an impact-based forecast that predicts where and when this biotic nuisance occurs may help management effects. The issuance of bay-wide nowcasts and three-day forecasts of sea nettle probability are generated daily by forcing an empirical habitat model (that predicts the probability of sea nettles) with real-time and 3-day forecasts of sea-surface temperature (SST) and salinity (SSS). In the first demonstration phase, the sea surface temperature (SST) and sea surface salinity (SSS) fields are generated by the Chesapeake Bay Operational Forecast System (CBOFS2), a 3-dimensional hydrodynamic model developed and operated by NOAA's National Ocean Service and run operationally at the National Weather Service National Centers for Environmental Prediction (NCEP). Importantly, this system is readily modified to predict the probability of other important target organisms, such as harmful algal blooms, biogeochemical constituents, such as dissolved oxygen concentration, and water-borne pathogens. Extending this initial effort includes advancement of a regional coastal ocean modeling testbed and proving ground. Such formal collaboration is intended to accelerate transition to operations and increase confidence and use of forecast guidance. The outcome will be improved decision making by emergency and resource managers, scientific researchers and the general public. The presentation will describe partnership plans for this testbed as well as the potential implications for the services and research community.

  4. Wind Forecasting for Yacht Racing at the 1991 Pan American Games.

    NASA Astrophysics Data System (ADS)

    Powell, Mark D.

    1993-01-01

    The U.S. Sailing Team competed successfully at the 1991 Pan American Games despite having no previous experience with the sailing conditions off Havana, Cuba. One of the key factors in the team's success was meteorological support in the form of wind climate analysis; application of sea breeze forecasting typical of the south Florida area, modified by tropical weather systems; and effective preregatta briefing.

  5. Storming ahead

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Fourteen tropical storms, nine hurricanes, and four intense hurricanes with winds above 111 mph. That's the forecast for hurricane activity in the Atlantic Basin for the upcoming hurricane season which extends from June 1 through November 30, 1999, according to a Colorado State Hurricane Forecast team led by William Gray, professor of atmospheric science. The forecast supports an earlier report by the team.Hurricane activity, said Gray will be similar to 1998—which yielded 14 tropical storms, 10 hurricanes, and 3 intense storms. These numbers are significantly higher than the long-term statistical averages of 9.3, 5.8, and 2.2, annually.

  6. EcoPAD, an interactive platform for near real-time ecological forecasting by assimilating data into model

    NASA Astrophysics Data System (ADS)

    MA, S.; Huang, Y.; Stacy, M.; Jiang, J.; Sundi, N.; Ricciuto, D. M.; Hanson, P. J.; Luo, Y.; Saruta, V.

    2017-12-01

    Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our study presents a smart system - Ecological Platform for Assimilation of Data (EcoPAD) - which streamlines web request-response, data management, model execution, result storage and visualization. EcoPAD allows users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, (v) conduct ecological forecasting, and (vi) detect ecosystem acclimation to climate change. One of the key innovations of the web-based EcoPAD is the automated near- or real-time forecasting of ecosystem dynamics with uncertainty fully quantified. The user friendly webpage enables non-modelers to explore their data for simulation and data assimilation. As a case study, we applied EcoPAD to the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment project in the northern peatland, assimilated multiple data streams into a process based ecosystem model, enhanced timely feedback between modelers and experimenters, ultimately improved ecosystem forecasting and made better use of current knowledge. Built in a framework with flexible API, EcoPAD is easily portable and will benefit scientific communities, policy makers as well as the general public.

  7. An Agent-Based Interface to Terrestrial Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Nemani, Ramakrishna; Pang, Wan-Lin; Votava, Petr; Etzioni, Oren

    2004-01-01

    This paper describes a flexible agent-based ecological forecasting system that combines multiple distributed data sources and models to provide near-real-time answers to questions about the state of the Earth system We build on novel techniques in automated constraint-based planning and natural language interfaces to automatically generate data products based on descriptions of the desired data products.

  8. Rate of recovery from perturbations as a means to forecast future stability of living systems.

    PubMed

    Ghadami, Amin; Gourgou, Eleni; Epureanu, Bogdan I

    2018-06-18

    Anticipating critical transitions in complex ecological and living systems is an important need because it is often difficult to restore a system to its pre-transition state once the transition occurs. Recent studies demonstrate that several indicators based on changes in ecological time series can indicate that the system is approaching an impending transition. An exciting question is, however, whether we can predict more characteristics of the future system stability using measurements taken away from the transition. We address this question by introducing a model-less forecasting method to forecast catastrophic transition of an experimental ecological system. The experiment is based on the dynamics of a yeast population, which is known to exhibit a catastrophic transition as the environment deteriorates. By measuring the system's response to perturbations prior to transition, we forecast the distance to the upcoming transition, the type of the transition (i.e., catastrophic/non-catastrophic) and the future equilibrium points within a range near the transition. Experimental results suggest a strong potential for practical applicability of this approach for ecological systems which are at risk of catastrophic transitions, where there is a pressing need for information about upcoming thresholds.

  9. Results from the second year of a collaborative effort to forecast influenza seasons in the United States.

    PubMed

    Biggerstaff, Matthew; Johansson, Michael; Alper, David; Brooks, Logan C; Chakraborty, Prithwish; Farrow, David C; Hyun, Sangwon; Kandula, Sasikiran; McGowan, Craig; Ramakrishnan, Naren; Rosenfeld, Roni; Shaman, Jeffrey; Tibshirani, Rob; Tibshirani, Ryan J; Vespignani, Alessandro; Yang, Wan; Zhang, Qian; Reed, Carrie

    2018-02-24

    Accurate forecasts could enable more informed public health decisions. Since 2013, CDC has worked with external researchers to improve influenza forecasts by coordinating seasonal challenges for the United States and the 10 Health and Human Service Regions. Forecasted targets for the 2014-15 challenge were the onset week, peak week, and peak intensity of the season and the weekly percent of outpatient visits due to influenza-like illness (ILI) 1-4 weeks in advance. We used a logarithmic scoring rule to score the weekly forecasts, averaged the scores over an evaluation period, and then exponentiated the resulting logarithmic score. Poor forecasts had a score near 0, and perfect forecasts a score of 1. Five teams submitted forecasts from seven different models. At the national level, the team scores for onset week ranged from <0.01 to 0.41, peak week ranged from 0.08 to 0.49, and peak intensity ranged from <0.01 to 0.17. The scores for predictions of ILI 1-4 weeks in advance ranged from 0.02-0.38 and was highest 1 week ahead. Forecast skill varied by HHS region. Forecasts can predict epidemic characteristics that inform public health actions. CDC, state and local health officials, and researchers are working together to improve forecasts. Published by Elsevier B.V.

  10. Development of a Decision Support System for Monitoring, Reporting, Forecasting Ecological Conditions of the Appalachian Trail

    Treesearch

    Y. Wang; R. Nemani; F. Dieffenbach; K. Stolte; G. Holcomb

    2010-01-01

    This paper introduces a collaborative multi-agency effort to develop an Appalachian Trail (A.T.) MEGA-Transect Decision Support System (DSS) for monitoring, reporting and forecasting ecological conditions of the A.T. and the surrounding lands. The project is to improve decision-making on management of the A.T. by providing a coherent framework for data integration,...

  11. Toward a Marine Ecological Forecasting System

    DTIC Science & Technology

    2010-06-01

    advance. Two beaches in Lake Michigan have been selected for initial implementation. Forecasting Coral Bleaching in relation to Ocean Temperatures...The coral reef is a unique and very rich ecosystem which supports a vast array of animal and plant species. Corals form the structural and...ecological foundation of the reef system, and consist of a symbiotic relationship between the coral animal (polyp) and associated algae (zooxanthellae

  12. Sources and Sinks: Elucidating Mechanisms, Documenting Patterns, and Forecasting Impacts

    DTIC Science & Technology

    2017-01-18

    Molecular Ecology 17: 3628-3639. Fazio III, V. W., Miles, D. B., & White, M. M. 2004. Genetic differentiation in the endangered Black-capped Vireo...exploration of accuracy and power. Molecular Ecology 13: 55–65. Raymond, M., & Rousset, F. 1995. GENEPOP (version 1.2): population genetics software for...SUPPLEMENTAL GENETICS MEMO Sources and Sinks: Elucidating Mechanisms, Documenting Patterns, and Forecasting Impacts SERDP Project RC-2120

  13. Ecological forecasting in the presence of abrupt regime shifts

    NASA Astrophysics Data System (ADS)

    Dippner, Joachim W.; Kröncke, Ingrid

    2015-10-01

    Regime shifts may cause an intrinsic decrease in the potential predictability of marine ecosystems. In such cases, forecasts of biological variables fail. To improve prediction of long-term variability in environmental variables, we constructed a multivariate climate index and applied it to forecast ecological time series. The concept is demonstrated herein using climate and macrozoobenthos data from the southern North Sea. Special emphasis is given to the influence of selection of length of fitting period to the quality of forecast skill especially in the presence of regime shifts. Our results indicate that the performance of multivariate predictors in biological forecasts is much better than that of single large-scale climate indices, especially in the presence of regime shifts. The approach used to develop the index is generally applicable to all geographical regions in the world and to all areas of marine biology, from the species level up to biodiversity. Such forecasts are of vital interest for practical aspects of the sustainable management of marine ecosystems and the conservation of ecosystem goods and services.

  14. Biological Invasions: A Challenge In Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Schnase, J. L.; Smith, J. A.; Stohlgren, T. J.; Graves, S.; Trees, C.; Rood, Richard (Technical Monitor)

    2002-01-01

    The spread of invasive species is one of the most daunting environmental, economic, and human-health problems facing the United States and the World today. It is one of several grand challenge environmental problems being considered by NASA's Earth Science Vision for 2025. The invasive species problem is complex and presents many challenges. Developing an invasive species predictive capability could significantly advance the science and technology of ecological forecasting.

  15. Improving Polar Motion Predictions Using AAM χ1 and χ2 Forecasts

    NASA Astrophysics Data System (ADS)

    Ratcliff, J. T.; Gross, R. S.

    2017-12-01

    The uncertainty in our knowledge of the Earth's changing orientation in space is a majorsource of error in tracking and navigating interplanetary spacecraft. Because the Earth'sorientation changes rapidly and unpredictably, measurements must be acquired frequentlyand processed rapidly in order to meet the near-real-time Earth orientation requirements ofthe interplanetary spacecraft navigation teams. The Kalman Earth Orientation Filter (KEOF)is used to combine GPS polar motion and LOD measurements, Very Long Baseline Interferometry(VLBI) polar motion and UT measurements, along with other publicly available Earth orientationmeasurements including proxy measurements such as atmospheric angular momentum (AAM),in order to generate and deliver the required polar motion and UT1 Earth orientation parametersto the spacecraft navigation teams. Short-term predictions of the EOPs are produced in order toprovide the navigation teams with an uninterrupted series of Earth orientation parameters. WhileAAM 𝜒3 forecasts are used as a proxy LOD forecast to improve UT1 predictions, Polar Motionpredictions had not been similarly treated. In order to evaluate the effectiveness off AAM 𝜒1 and 𝜒2forecasts on improving Polar Motion predictions we reprocessed one year (Jan.-Dec. 2015) of EOP measurementsto include the 𝜒1 and 𝜒2 components of National Centers for Environmental Prediction (NCEP)AAM daily 5-day forecasts. Inclusion of AAM 𝜒1 and 𝜒2 forecasts into EOP predictions was foundto improve the accuracy of the Polar Motion 5-day predictions by 33% in the X-component and 34% in the Y-component.

  16. A Decision Support System for Ecosystem-Based Management of Tropical Coral Reef Environments

    NASA Astrophysics Data System (ADS)

    Muller-Karger, F. E.; Eakin, C.; Guild, L. S.; Nemani, R. R.; Hu, C.; Lynds, S. E.; Li, J.; Vega-Rodriguez, M.; Coral Reef Watch Decision Support System Team

    2010-12-01

    We review a new collaborative program established between the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to augment the NOAA Coral Reef Watch decision-support system. NOAA has developed a Decision Support System (DSS) under the Coral Reef Watch (CRW) program to forecast environmental stress in coral reef ecosystems around the world. This DSS uses models and 50 km Advanced Very High Resolution Radiometer (AVHRR) to generate “HotSpot” and Degree Heating Week coral bleaching indices. These are used by scientists and resource managers around the world. These users, including National Marine Sanctuary managers, have expressed the need for higher spatial resolution tools to understand local issues. The project will develop a series of coral bleaching products at higher spatial resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR data. We will generate and validate products at 1 km resolution for the Caribbean Sea and Gulf of Mexico, and test global assessments at 4 and 50 km. The project will also incorporate the Global Coral Reef Millennium Map, a 30-m resolution thematic classification of coral reefs developed by the NASA Landsat-7 Science Team, into the CRW. The Millennium Maps help understand the geomorphology of individual reefs around the world. The products will be available through the NOAA CRW and UNEP-WCMC web portals. The products will help users formulate policy options and management decisions. The augmented DSS has a global scope, yet it addresses the needs of local resource managers. The work complements efforts to map and monitor coral reef communities in the U.S. territories by NOAA, NASA, and the USGS, and is a contribution to international efforts in ecological forecasting of coral reefs under changing environments, coral reef research, resource management, and conservation. Acknowledgement: Funding is provided by the NASA Ecological Forecasting application area and by NOAA NESDIS.

  17. KSC-06pd1276

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, a member of the weather team looks over the weather balloons inside. The release of a Rawinsonde weather balloon was planned as part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  18. KSC-06pd1275

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, a member of the weather team prepares a Rawinsonde weather balloon for release. The release was planned as part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  19. Final Report, 2011-2014. Forecasting Carbon Storage as Eastern Forests Age. Joining Experimental and Modeling Approaches at the UMBS AmeriFlux Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Peter; Bohrer, Gil; Gough, Christopher

    2015-03-12

    At the University of Michigan Biological Station (UMBS) AmeriFlux sites (US-UMB and US-UMd), long-term C cycling measurements and a novel ecosystem-scale experiment are revealing physical, biological, and ecological mechanisms driving long-term trajectories of C cycling, providing new data for improving modeling forecasts of C storage in eastern forests. Our findings provide support for previously untested hypotheses that stand-level structural and biological properties constrain long-term trajectories of C storage, and that remotely sensed canopy structural parameters can substantially improve model forecasts of forest C storage. Through the Forest Accelerated Succession ExperimenT (FASET), we are directly testing the hypothesis that forest Cmore » storage will increase due to increasing structural and biological complexity of the emerging tree communities. Support from this project, 2011-2014, enabled us to incorporate novel physical and ecological mechanisms into ecological, meteorological, and hydrological models to improve forecasts of future forest C storage in response to disturbance, succession, and current and long-term climate variation« less

  20. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. W.; Hood, Raleigh R.; Long, Wen

    The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates daily nowcasts and three-day forecasts of several environmental variables, such as sea-surface temperature and salinity, the concentrations of chlorophyll, nitrate, and dissolved oxygen, and the likelihood of encountering several noxious species, including harmful algal blooms and water-borne pathogens, for the purpose of monitoring the Bay's ecosystem. While the physical and biogeochemical variables are forecast mechanistically using the Regional Ocean Modeling System configured for the Chesapeake Bay, the species predictions are generated using a novel mechanistic empirical approach, whereby real-time output from the coupled physical biogeochemical model drives multivariate empirical habitat modelsmore » of the target species. The predictions, in the form of digital images, are available via the World Wide Web to interested groups to guide recreational, management, and research activities. Though full validation of the integrated forecasts for all species is still a work in progress, we argue that the mechanistic–empirical approach can be used to generate a wide variety of short-term ecological forecasts, and that it can be applied in any marine system where sufficient data exist to develop empirical habitat models. This paper provides an overview of this system, its predictions, and the approach taken.« less

  1. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Contacts Change Log Events Calendar People Numerical Forecast Systems Ensemble and Post Processing Team

  2. Bicycle and pedestrian travel demand forecasting : summary of data collection activities

    DOT National Transportation Integrated Search

    1997-09-01

    This report summarizes data collection activities performed at eight different sites in Texas urban areas. The data : were collected to help develop and test bicycle and pedestrian travel demand forecasting techniques. The : research team collected d...

  3. Predictive ecology: systems approaches

    PubMed Central

    Evans, Matthew R.; Norris, Ken J.; Benton, Tim G.

    2012-01-01

    The world is experiencing significant, largely anthropogenically induced, environmental change. This will impact on the biological world and we need to be able to forecast its effects. In order to produce such forecasts, ecology needs to become more predictive—to develop the ability to understand how ecological systems will behave in future, changed, conditions. Further development of process-based models is required to allow such predictions to be made. Critical to the development of such models will be achieving a balance between the brute-force approach that naively attempts to include everything, and over simplification that throws out important heterogeneities at various levels. Central to this will be the recognition that individuals are the elementary particles of all ecological systems. As such it will be necessary to understand the effect of evolution on ecological systems, particularly when exposed to environmental change. However, insights from evolutionary biology will help the development of models even when data may be sparse. Process-based models are more common, and are used for forecasting, in other disciplines, e.g. climatology and molecular systems biology. Tools and techniques developed in these endeavours can be appropriated into ecological modelling, but it will also be necessary to develop the science of ecoinformatics along with approaches specific to ecological problems. The impetus for this effort should come from the demand coming from society to understand the effects of environmental change on the world and what might be performed to mitigate or adapt to them. PMID:22144379

  4. NEON: the first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure

    Treesearch

    Thomas U. Kampe; Brian R. Johnson; Michele Kuester; Michael Keller

    2010-01-01

    The National Ecological Observatory Network (NEON) is an ecological observation platform for discovering, understanding and forecasting the impacts of climate change, land use change, and invasive species on continental-scale ecology. NEON will operate for 30 years and gather long-term data on ecological response changes and on feedbacks with the geosphere, hydrosphere...

  5. Information Theory Broadens the Spectrum of Molecular Ecology and Evolution.

    PubMed

    Sherwin, W B; Chao, A; Jost, L; Smouse, P E

    2017-12-01

    Information or entropy analysis of diversity is used extensively in community ecology, and has recently been exploited for prediction and analysis in molecular ecology and evolution. Information measures belong to a spectrum (or q profile) of measures whose contrasting properties provide a rich summary of diversity, including allelic richness (q=0), Shannon information (q=1), and heterozygosity (q=2). We present the merits of information measures for describing and forecasting molecular variation within and among groups, comparing forecasts with data, and evaluating underlying processes such as dispersal. Importantly, information measures directly link causal processes and divergence outcomes, have straightforward relationship to allele frequency differences (including monotonicity that q=2 lacks), and show additivity across hierarchical layers such as ecology, behaviour, cellular processes, and nongenetic inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Hendrik F.

    The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.

  7. Chesapeake Bay Forecast System: Oxygen Prediction for the Sustainable Ecosystem Management

    NASA Astrophysics Data System (ADS)

    Mathukumalli, B.; Long, W.; Zhang, X.; Wood, R.; Murtugudde, R. G.

    2010-12-01

    The Chesapeake Bay Forecast System (CBFS) is a flexible, end-to-end expert prediction tool for decision makers that will provide customizable, user-specified predictions and projections of the region’s climate, air and water quality, local chemistry, and ecosystems at days to decades. As a part of CBFS, the long-term water quality data were collected and assembled to develop ecological models for the sustainable management of the Chesapeake Bay. Cultural eutrophication depletes oxygen levels in this ecosystem particularly in summer which has several negative implications on the structure and function of ecosystem. In order to understand dynamics and prediction of spatially-explicit oxygen levels in the Bay, an empirical process based ecological model is developed with long-term control variables (water temperature, salinity, nitrogen and phosphorus). Statistical validation methods were employed to demonstrate usability of predictions for management purposes and the predicted oxygen levels are quite faithful to observations. The predicted oxygen values and other physical outputs from downscaling of regional weather and climate predictions, or forecasts from hydrodynamic models can be used to forecast various ecological components. Such forecasts would be useful for both recreational and commercial users of the bay (for example, bass fishing). Furthermore, this work can also be used to predict extent of hypoxia/anoxia not only from anthropogenic nutrient pollution, but also from global warming. Some hindcasts and forecasts are discussed along with the ongoing efforts at a mechanistic ecosystem model to provide prognostic oxygen predictions and projections and upper trophic modeling using an energetics approach.

  8. The Betting Odds Rating System: Using soccer forecasts to forecast soccer.

    PubMed

    Wunderlich, Fabian; Memmert, Daniel

    2018-01-01

    Betting odds are frequently found to outperform mathematical models in sports related forecasting tasks, however the factors contributing to betting odds are not fully traceable and in contrast to rating-based forecasts no straightforward measure of team-specific quality is deducible from the betting odds. The present study investigates the approach of combining the methods of mathematical models and the information included in betting odds. A soccer forecasting model based on the well-known ELO rating system and taking advantage of betting odds as a source of information is presented. Data from almost 15.000 soccer matches (seasons 2007/2008 until 2016/2017) are used, including both domestic matches (English Premier League, German Bundesliga, Spanish Primera Division and Italian Serie A) and international matches (UEFA Champions League, UEFA Europe League). The novel betting odds based ELO model is shown to outperform classic ELO models, thus demonstrating that betting odds prior to a match contain more relevant information than the result of the match itself. It is shown how the novel model can help to gain valuable insights into the quality of soccer teams and its development over time, thus having a practical benefit in performance analysis. Moreover, it is argued that network based approaches might help in further improving rating and forecasting methods.

  9. The Betting Odds Rating System: Using soccer forecasts to forecast soccer

    PubMed Central

    Memmert, Daniel

    2018-01-01

    Betting odds are frequently found to outperform mathematical models in sports related forecasting tasks, however the factors contributing to betting odds are not fully traceable and in contrast to rating-based forecasts no straightforward measure of team-specific quality is deducible from the betting odds. The present study investigates the approach of combining the methods of mathematical models and the information included in betting odds. A soccer forecasting model based on the well-known ELO rating system and taking advantage of betting odds as a source of information is presented. Data from almost 15.000 soccer matches (seasons 2007/2008 until 2016/2017) are used, including both domestic matches (English Premier League, German Bundesliga, Spanish Primera Division and Italian Serie A) and international matches (UEFA Champions League, UEFA Europe League). The novel betting odds based ELO model is shown to outperform classic ELO models, thus demonstrating that betting odds prior to a match contain more relevant information than the result of the match itself. It is shown how the novel model can help to gain valuable insights into the quality of soccer teams and its development over time, thus having a practical benefit in performance analysis. Moreover, it is argued that network based approaches might help in further improving rating and forecasting methods. PMID:29870554

  10. Realizing NASA's Goal of Societal Benefits From Earth Observations in Mesoamerica Through the SERVIR Project

    NASA Astrophysics Data System (ADS)

    Hardin, D. M.; Irwin, D.; Sever, T.; Graves, S.

    2006-12-01

    One of the goals of NASA's Applied Sciences Program is to manifest societal benefits from the vast store of Earth Observations through partnerships with public, private and academic organizations. The SERVIR project represents an early success toward this goal. By combining Earth Observations from NASA missions, results from environmental models and decision support tools from its partners the SERVIR project has produced an integrated systems solution that is yielding societal benefits for the region of Mesoamerica. The architecture of the SERVIR system consists of an operational facility in Panama with regional nodes in Costa Rica, Nicaragua, Honduras, Guatemala, El Salvador and Belize plus a Rapid Prototyping Center (RPC), located in Huntsville, Alabama. The RPC, funded by NASA's Applied Sciences Division, and developed by the Information Technology and Systems Center at the University of Alabama in Huntsville, and NASA Marshall Space Flight Center, produces scientifically strong decision support products and applications. When mature, the products and applications migrate to the operational center in Panama. There, they are available to environmental ministers and decision makers in Mesoamerica. In June 2004, the SERVIR project was contacted by the environmental ministry of El Salvador, which urgently requested remote sensing imagery of the location, direction, and extent of a HAB event off the coast of El Salvador and Guatemala. Using MODIS data the SERVIR team developed a value added product that predicts the location, direction, and extent of HABs. The products are produced twice daily and are used by the El Salvadoran and Guatemalan governments to alert their tourism and fishing industries of potential red tide events. This has enabled these countries to save millions of dollars for their industries as well as improve the health of harvested fish. In the area of short term weather forecasting the SERVIR team, in collaboration with the NASA Short-term Prediction Research and Transition (SpoRT) Center, generates 24 hour-forecasts twice daily utilizing the Weather Research and Forecast Model (WRF). Originally aimed at forecasts for the United States, the SPoRT team extended their work to cover the Mesoamerican region. Following testing at the RPC the system was installed in Panama and is currently producing forecasts that are used by tour guides, boat captains on river and ocean fishing tours, and cruise ship captains. This capability fits perfectly with NASA's goals since an existing project was modified, at minimal cost, to provide societal benefits to the population of a different geographic region. On June 30, 2006 several new applications matured and the inventory of decision support products was significantly expanded. As a result the SERVIR website was reorganized to reflect the changes. The degree of change was sufficient for the developers to designate it as a new release of SERVIR. The applications include a Real-Time Image Viewer, a customized version of NASA World Wind for Mesoamerica known as SERVIR- VIZ (developed by IAGT) and the SERVIR Data Portal (developed by the Water Center of the Humid Tropics Latin America and the Caribbean). The success of the SERVIR project is reflected by its choice by NASA as the decision support system for the Ecological Forecasting National Application. The SERVIR model is also under consideration for other regions of the globe. Potential areas for development are Africa, South America and the Caribbean.

  11. Temporal ecology in the Anthropocene.

    PubMed

    Wolkovich, E M; Cook, B I; McLauchlan, K K; Davies, T J

    2014-11-01

    Two fundamental axes - space and time - shape ecological systems. Over the last 30 years spatial ecology has developed as an integrative, multidisciplinary science that has improved our understanding of the ecological consequences of habitat fragmentation and loss. We argue that accelerating climate change - the effective manipulation of time by humans - has generated a current need to build an equivalent framework for temporal ecology. Climate change has at once pressed ecologists to understand and predict ecological dynamics in non-stationary environments, while also challenged fundamental assumptions of many concepts, models and approaches. However, similarities between space and time, especially related issues of scaling, provide an outline for improving ecological models and forecasting of temporal dynamics, while the unique attributes of time, particularly its emphasis on events and its singular direction, highlight where new approaches are needed. We emphasise how a renewed, interdisciplinary focus on time would coalesce related concepts, help develop new theories and methods and guide further data collection. The next challenge will be to unite predictive frameworks from spatial and temporal ecology to build robust forecasts of when and where environmental change will pose the largest threats to species and ecosystems, as well as identifying the best opportunities for conservation. © 2014 John Wiley & Sons Ltd/CNRS.

  12. Improving hydrologic disaster forecasting and response for transportation by assimilating and fusing NASA and other data sets : final report.

    DOT National Transportation Integrated Search

    2017-04-15

    In this 3-year project, the research team developed the Hydrologic Disaster Forecast and Response (HDFR) system, a set of integrated software tools for end users that streamlines hydrologic prediction workflows involving automated retrieval of hetero...

  13. 77 FR 69436 - JPSS Polar Satellite-Gap Mitigation-Request for Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ... positive steps to mitigate the negative impacts to NOAA's numerical weather forecasts that could be...-satellite data, weather modeling, and data assimilation improvements. NOAA is convening teams of internal... of NOAA's numerical weather forecasts should we experience a loss of polar satellite environmental...

  14. ECOLOGICAL FORECASTING FOR WATERSHEDS

    EPA Science Inventory

    To effectively manage watersheds, the assessment of watershed ecological response to physicochemical stressors such as nutrients, sediments, pathogens, and toxics over broad spatial and temporal scales is needed. Assessments at this level of complexity requires the development of...

  15. Forecasting Periodic Trends: A Semester-Long Team Exercise for Nonscience Majors

    ERIC Educational Resources Information Center

    Tierney, John

    2008-01-01

    Team learning is an effective means of teaching that can contribute toward increased student interest. This article describes a team learning exercise developed for a course for nonscience majors. Students are randomly assigned numbers (atomic numbers) the first day of class. Each student builds a portfolio of information for their element. In the…

  16. The psychology of intelligence analysis: drivers of prediction accuracy in world politics.

    PubMed

    Mellers, Barbara; Stone, Eric; Atanasov, Pavel; Rohrbaugh, Nick; Metz, S Emlen; Ungar, Lyle; Bishop, Michael M; Horowitz, Michael; Merkle, Ed; Tetlock, Philip

    2015-03-01

    This article extends psychological methods and concepts into a domain that is as profoundly consequential as it is poorly understood: intelligence analysis. We report findings from a geopolitical forecasting tournament that assessed the accuracy of more than 150,000 forecasts of 743 participants on 199 events occurring over 2 years. Participants were above average in intelligence and political knowledge relative to the general population. Individual differences in performance emerged, and forecasting skills were surprisingly consistent over time. Key predictors were (a) dispositional variables of cognitive ability, political knowledge, and open-mindedness; (b) situational variables of training in probabilistic reasoning and participation in collaborative teams that shared information and discussed rationales (Mellers, Ungar, et al., 2014); and (c) behavioral variables of deliberation time and frequency of belief updating. We developed a profile of the best forecasters; they were better at inductive reasoning, pattern detection, cognitive flexibility, and open-mindedness. They had greater understanding of geopolitics, training in probabilistic reasoning, and opportunities to succeed in cognitively enriched team environments. Last but not least, they viewed forecasting as a skill that required deliberate practice, sustained effort, and constant monitoring of current affairs. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  17. Hurricane Sandy: Caught in the eye of the storm and a city's adaptation response

    NASA Astrophysics Data System (ADS)

    Orton, P. M.; Horton, R. M.; Blumberg, A. F.; Rosenzweig, C.; Solecki, W.; Bader, D.

    2015-12-01

    The NOAA RISA program has funded the seven-institution Consortium for Climate Risk in the Urban Northeast (CCRUN) for the past five years to serve stakeholder needs in assessing and managing risks from climate variability and change. When Hurricane Sandy struck, we were in an ideal position, making flood forecasts and communicating NOAA forecasts to the public with dozens of media placements, translating the poorly understood flood forecasts into human dimensions. In 2013 and 2015, by request of New York City (NYC), we worked through the NYC Panel on Climate Change to deliver updated climate risk assessment reports, to be used in the post-Sandy rebuilding and resiliency efforts. These utilized innovative methodologies for probabilistic local and regional sea level change projections, and contrasted methods of dynamic versus (the more common) static flood mapping. We participated in a federal-academic partnership that developed a Sea Level Tool for Sandy Recovery that integrates CCRUN sea level rise projections with policy-relevant FEMA flood maps, and now several updated flood maps and coastal flood mapping tools (NOAA, FEMA, and USACE) incorporate our projections. For the adaptation response, we helped develop NYC's $20 billion flood adaptation plan, and we were on a winning team under the Housing and Urban Development Rebuild By Design (RBD) competition, a few of the many opportunities that arose with negligible additional funding and which CCRUN funds supported. Our work at times disrupted standard lines of thinking, but NYC showed an openness to altering course. In one case we showed that an NYC plan of wetland restoration in Jamaica Bay would provide no reduction in flooding unless deep-dredged channels circumventing them were shallowed or narrowed. In another, the lead author's RBD team challenged the notion at one location that levees were the solution to accelerating sea level rise, developing a plan to use ecological breakwaters and layered components of physical and social resilience. CCRUN has succeeded in winning another five years of RISA funding, and this will enable us to continue our climate risk and adaptation work for the entire Urban Northeast.

  18. Integrating models with data in ecology and palaeoecology: advances towards a model-data fusion approach.

    PubMed

    Peng, Changhui; Guiot, Joel; Wu, Haibin; Jiang, Hong; Luo, Yiqi

    2011-05-01

    It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process-based ecological models and data in cohesive, systematic ways. Model-data fusion (MDF) is an emerging area of research in ecology and palaeoecology. It provides a new quantitative approach that offers a high level of empirical constraint over model predictions based on observations using inverse modelling and data assimilation (DA) techniques. Increasing demands to integrate model and data methods in the past decade has led to MDF utilization in palaeoecology, ecology and earth system sciences. This paper reviews key features and principles of MDF and highlights different approaches with regards to DA. After providing a critical evaluation of the numerous benefits of MDF and its current applications in palaeoecology (i.e., palaeoclimatic reconstruction, palaeovegetation and palaeocarbon storage) and ecology (i.e. parameter and uncertainty estimation, model error identification, remote sensing and ecological forecasting), the paper discusses method limitations, current challenges and future research direction. In the ongoing data-rich era of today's world, MDF could become an important diagnostic and prognostic tool in which to improve our understanding of ecological processes while testing ecological theory and hypotheses and forecasting changes in ecosystem structure, function and services. © 2011 Blackwell Publishing Ltd/CNRS.

  19. About the Mid-Continent Ecology Division (MED) of EPA's National Health and Environmental Effects Research Laboratory

    EPA Pesticide Factsheets

    The Mid-Continent Ecology Division (MED) conducts innovative research and predictive modeling to document and forecast the effects of pollutants on the integrity of watersheds and freshwater ecosystems.

  20. INTEGRATED SCIENCE FOR ECOSYSTEM CHALLENGES - ISEC

    EPA Science Inventory

    In support of the National Science and Technology Council's cross-Agency priority of Integrated Science for Ecological Challenges (ISEC) EPA is conducting research to improve capabilities in the area of regional vulnerability assessment and ecological forecasting. EPA's research...

  1. The big data-big model (BDBM) challenges in ecological research

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2015-12-01

    The field of ecology has become a big-data science in the past decades due to development of new sensors used in numerous studies in the ecological community. Many sensor networks have been established to collect data. For example, satellites, such as Terra and OCO-2 among others, have collected data relevant on global carbon cycle. Thousands of field manipulative experiments have been conducted to examine feedback of terrestrial carbon cycle to global changes. Networks of observations, such as FLUXNET, have measured land processes. In particular, the implementation of the National Ecological Observatory Network (NEON), which is designed to network different kinds of sensors at many locations over the nation, will generate large volumes of ecological data every day. The raw data from sensors from those networks offer an unprecedented opportunity for accelerating advances in our knowledge of ecological processes, educating teachers and students, supporting decision-making, testing ecological theory, and forecasting changes in ecosystem services. Currently, ecologists do not have the infrastructure in place to synthesize massive yet heterogeneous data into resources for decision support. It is urgent to develop an ecological forecasting system that can make the best use of multiple sources of data to assess long-term biosphere change and anticipate future states of ecosystem services at regional and continental scales. Forecasting relies on big models that describe major processes that underlie complex system dynamics. Ecological system models, despite great simplification of the real systems, are still complex in order to address real-world problems. For example, Community Land Model (CLM) incorporates thousands of processes related to energy balance, hydrology, and biogeochemistry. Integration of massive data from multiple big data sources with complex models has to tackle Big Data-Big Model (BDBM) challenges. Those challenges include interoperability of multiple, heterogeneous data sets; intractability of structural complexity of big models; equifinality of model structure selection and parameter estimation; and computational demand of global optimization with Big Models.

  2. An Improved Approach for Forecasting Ecological Impacts from Future Drilling in Unconventional Shale Oil and Gas Plays.

    PubMed

    Wolaver, Brad D; Pierre, Jon Paul; Ikonnikova, Svetlana A; Andrews, John R; McDaid, Guinevere; Ryberg, Wade A; Hibbitts, Toby J; Duran, Charles M; Labay, Benjamin J; LaDuc, Travis J

    2018-04-13

    Directional well drilling and hydraulic fracturing has enabled energy production from previously inaccessible resources, but caused vegetation conversion and landscape fragmentation, often in relatively undisturbed habitats. We improve forecasts of future ecological impacts from unconventional oil and gas play developments using a new, more spatially-explicit approach. We applied an energy production outlook model, which used geologic and economic data from thousands of wells and three oil price scenarios, to map future drilling patterns and evaluate the spatial distribution of vegetation conversion and habitat impacts. We forecast where future well pad construction may be most intense, illustrating with an example from the Eagle Ford Shale Play of Texas. We also illustrate the ecological utility of this approach using the Spot-tailed Earless Lizard (Holbrookia lacerata) as the focal species, which historically occupied much of the Eagle Ford and awaits a federal decision for possible Endangered Species Act protection. We found that ~17,000-45,500 wells would be drilled 2017‒2045 resulting in vegetation conversion of ~26,485-70,623 ha (0.73-1.96% of pre-development vegetation), depending on price scenario ($40-$80/barrel). Grasslands and row crop habitats were most affected (2.30 and 2.82% areal vegetation reduction). Our approach improves forecasts of where and to what extent future energy development in unconventional plays may change land-use and ecosystem services, enabling natural resource managers to anticipate and direct on-the-ground conservation actions to places where they will most effectively mitigate ecological impacts of well pads and associated infrastructure.

  3. Multi-Scale 4DVAR Assimilation of Glider Teams on the North Carolina Shelf

    NASA Astrophysics Data System (ADS)

    Osborne, J. J. V.; Carrier, M.; Book, J. W.; Barron, C. N.; Rice, A. E.; Rowley, C. D.; Smedstad, L.; Souopgui, I.; Teague, W. J.

    2017-12-01

    We demonstrate a method to assimilate glider profile data from multiple gliders in close proximity ( 10 km or less). Gliders were deployed in a field experiment from 17 May until 4 June 2017, north of Cape Hatteras and inshore of the Gulf Stream. Gliders were divided into two teams, generally two or three gliders per team. One team was tasked with station keeping and the other with moving and sampling regions of high variability in temperature and salinity. Glider data are assimilated into the Relocatable Navy Coastal Ocean Model (RELO NCOM) with four dimensional variational assimilation (NCOM-4DVAR). RELO NCOM is used by the US Navy to predict the ocean. RELO NCOM is a baroclinic, Boussinesq, free-surface, and hydrostatic ocean model with a flexible sigma-z vertical coordinate. Two domains are used, one focused north and one focused south of Cape Hatteras. The domains overlap near the gliders, thus providing two forecasts near the gliders. Both domains have 1 km horizontal resolution. Data are assimilated in a newly-developed multi-scale data-processing and assimilating approach using NCOM-4DVAR. This enables NCOM-4DVAR to use many more observations than standard NCOM-4DVAR, improving the analysis and forecast. Assimilation experiments use station-keeping glider data, moving glider data, or all glider data. Sea surface temperature (SST) data and satellite altimeter (SSH) data are also assimilated. An additional experiment omits glider data but still assimilates SST and SSH data. Conductivity, temperature, and depth (CTD) profiles from the R/V Savannah are used for validation, including data from an underway CTD (UCTD). Data from glider teams have the potential to significantly improve model forecasts. Missions using teams of gliders can be planned to maximize data assimilation for optimal impact on model predictions.

  4. Leveraging organismal biology to forecast the effects of climate change.

    PubMed

    Buckley, Lauren B; Cannistra, Anthony F; John, Aji

    2018-04-26

    Despite the pressing need for accurate forecasts of ecological and evolutionary responses to environmental change, commonly used modelling approaches exhibit mixed performance because they omit many important aspects of how organisms respond to spatially and temporally variable environments. Integrating models based on organismal phenotypes at the physiological, performance and fitness levels can improve model performance. We summarize current limitations of environmental data and models and discuss potential remedies. The paper reviews emerging techniques for sensing environments at fine spatial and temporal scales, accounting for environmental extremes, and capturing how organisms experience the environment. Intertidal mussel data illustrate biologically important aspects of environmental variability. We then discuss key challenges in translating environmental conditions into organismal performance including accounting for the varied timescales of physiological processes, for responses to environmental fluctuations including the onset of stress and other thresholds, and for how environmental sensitivities vary across lifecycles. We call for the creation of phenotypic databases to parameterize forecasting models and advocate for improved sharing of model code and data for model testing. We conclude with challenges in organismal biology that must be solved to improve forecasts over the next decade.acclimation, biophysical models, ecological forecasting, extremes, microclimate, spatial and temporal variability.

  5. Evaluation of Multi-Model Ensemble System for Seasonal and Monthly Prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Van den Dool, H. M.

    2013-12-01

    Since August 2011, the realtime seasonal forecasts of U.S. National Multi-Model Ensemble (NMME) have been made on 8th of each month by NCEP Climate Prediction Center (CPC). During the first year, the participating models were NCEP/CFSv1&2, GFDL/CM2.2, NCAR/U.Miami/COLA/CCSM3, NASA/GEOS5, IRI/ ECHAM-a & ECHAM-f for the realtime NMME forecast. The Canadian Meteorological Center CanCM3 and CM4 replaced the CFSv1 and IRI's models in the second year. The NMME team at CPC collects three variables, including precipitation, 2-meter temperature and sea surface temperature from each modeling center on a 1x1 global grid, removes systematic errors, makes the grand ensemble mean with equal weight for each model and constructs a probability forecast with equal weight for each member. The team then provides the NMME forecast to the operational CPC forecaster responsible for the seasonal and monthly outlook each month. Verification of the seasonal and monthly prediction from NMME is conducted by calculating the anomaly correlation (AC) from the 30-year hindcasts (1982-2011) of individual model and NMME ensemble. The motivation of this study is to provide skill benchmarks for future improvements of the NMME seasonal and monthly prediction system. The experimental (Phase I) stage of the project already supplies routine guidance to users of the NMME forecasts.

  6. Science in 60 - The Forecast Calls for Flu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Valle, Sara

    What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus, or Zika were going to spread? Using real-time data from Wikipedia and social media, Sara Del Valle and her team from Los Alamos National Laboratory have developed a global disease-forecasting system that will improve the way we respond to epidemics. Using this model, individuals and public health officials can monitor disease incidence and implement strategies — such as vaccination campaigns, communicating to the public and allocating resources — to stay one step ahead of infectious disease spread.

  7. Global Climate Teleconnections to Forecast Increased Risk of Vector-Borne Animal and Human Disease Transmission

    USDA-ARS?s Scientific Manuscript database

    We willexamine how climate teleconnect ions and variability impact vector biology and vector borne disease ecology, and demonstrate that global climate monitoring can be used to anticipate and forecast epidemics and epizootics. In this context we willexamine significant worldwide weather anomalies t...

  8. The method of planning the energy consumption for electricity market

    NASA Astrophysics Data System (ADS)

    Russkov, O. V.; Saradgishvili, S. E.

    2017-10-01

    The limitations of existing forecast models are defined. The offered method is based on game theory, probabilities theory and forecasting the energy prices relations. New method is the basis for planning the uneven energy consumption of industrial enterprise. Ecological side of the offered method is disclosed. The program module performed the algorithm of the method is described. Positive method tests at the industrial enterprise are shown. The offered method allows optimizing the difference between planned and factual consumption of energy every hour of a day. The conclusion about applicability of the method for addressing economic and ecological challenges is made.

  9. About the Atlantic Ecology Division (AED) of EPA's National Health and Environmental Effects Research Laboratory

    EPA Pesticide Factsheets

    The Atlantic Ecology Division (AED), conducts innovative research and predictive modeling to assess and forecast the risks of anthropogenic stressors to near coastal waters and their watersheds, to develop tools to support resilient watersheds.

  10. Major Risks, Uncertain Outcomes: Making Ensemble Forecasts Work for Multiple Audiences

    NASA Astrophysics Data System (ADS)

    Semmens, K. A.; Montz, B.; Carr, R. H.; Maxfield, K.; Ahnert, P.; Shedd, R.; Elliott, J.

    2017-12-01

    When extreme river levels are possible in a community, effective communication of weather and hydrologic forecasts is critical to protect life and property. Residents, emergency personnel, and water resource managers need to make timely decisions about how and when to prepare. Uncertainty in forecasting is a critical component of this decision-making, but often poses a confounding factor for public and professional understanding of forecast products. In 2016 and 2017, building on previous research about the use of uncertainty forecast products, and with funding from NOAA's CSTAR program, East Carolina University and Nurture Nature Center (a non-profit organization with a focus on flooding issues, based in Easton, PA) conducted a research project to understand how various audiences use and interpret ensemble forecasts showing a range of hydrologic forecast possibilities. These audiences include community residents, emergency managers and water resource managers. The research team held focus groups in Jefferson County, WV and Frederick County, MD, to test a new suite of products from the National Weather Service's Hydrologic Ensemble Forecast System (HEFS). HEFS is an ensemble system that provides short and long-range forecasts, ranging from 6 hours to 1 year, showing uncertainty in hydrologic forecasts. The goal of the study was to assess the utility of the HEFS products, identify the barriers to proper understanding of the products, and suggest modifications to product design that could improve the understandability and accessibility for residential, emergency managers, and water resource managers. The research team worked with the Sterling, VA Weather Forecast Office and the Middle Atlantic River Forecast center to develop a weather scenario as the basis of the focus group discussions, which also included pre and post session surveys. This presentation shares the findings from those focus group discussions and surveys, including recommendations for revisions to HEFS products to improve accessibility of the forecast tools for various audiences. The presentation will provide a broad perspective on the range of graphic design considerations that affected how the public responded to products and will provide an overview of lessons learned about how product design can influence decision-making by users.

  11. Structuring Process Evaluation to Forecast Use and Sustainability of an Intervention: Theory and Data From the Efficacy Trial for Lunch Is in the Bag.

    PubMed

    Roberts-Gray, Cindy; Sweitzer, Sara J; Ranjit, Nalini; Potratz, Christa; Rood, Magdalena; Romo-Palafox, Maria Jose; Byrd-Williams, Courtney E; Briley, Margaret E; Hoelscher, Deanna M

    2017-08-01

    A cluster-randomized trial at 30 early care and education centers (Intervention = 15, waitlist Control = 15) showed the Lunch Is in the Bag intervention increased parents' packing of fruits, vegetables, and whole grains in their preschool children's bag lunches (parent-child dyads = 351 Intervention, 282 Control). To examine the utility of structuring the trial's process evaluation to forecast use, sustainability, and readiness of the intervention for wider dissemination and implementation. Pretrial, the research team simulated user experience to forecast use of the intervention. Multiattribute evaluation of user experience measured during the trial assessed use and sustainability of the intervention. Thematic analysis of posttrial interviews with users evaluated sustained use and readiness for wider dissemination. Moderate use was forecast by the research team. Multiattribute evaluation of activity logs, surveys, and observations during the trial indicated use consistent with the forecast except that prevalence of parents reading the newsletters was greater (83% vs. 50%) and hearing their children talk about the classroom was less (4% vs. 50%) than forecast. Early care and education center-level likelihood of sustained use was projected to be near zero. Posttrial interviews indicated use was sustained at zero centers. Structuring the efficacy trial's process evaluation as a progression of assessments of user experience produced generally accurate forecasts of use and sustainability of the intervention at the trial sites. This approach can assist interpretation of trial outcomes, aid decisions about dissemination of the intervention, and contribute to translational science for improving health.

  12. Communicating Uncertainty in Volcanic Ash Forecasts: Decision-Making and Information Preferences

    NASA Astrophysics Data System (ADS)

    Mulder, Kelsey; Black, Alison; Charlton-Perez, Andrew; McCloy, Rachel; Lickiss, Matthew

    2016-04-01

    The Robust Assessment and Communication of Environmental Risk (RACER) consortium, an interdisciplinary research team focusing on communication of uncertainty with respect to natural hazards, hosted a Volcanic Ash Workshop to discuss issues related to volcanic ash forecasting, especially forecast uncertainty. Part of the workshop was a decision game in which participants including forecasters, academics, and members of the Aviation Industry were given hypothetical volcanic ash concentration forecasts and asked whether they would approve a given flight path. The uncertainty information was presented in different formats including hazard maps, line graphs, and percent probabilities. Results from the decision game will be presented with a focus on information preferences, understanding of the forecasts, and whether different formats of the same volcanic ash forecast resulted in different flight decisions. Implications of this research will help the design and presentation of volcanic ash plume decision tools and can also help advise design of other natural hazard information.

  13. Chaos and Forecasting - Proceedings of the Royal Society Discussion Meeting

    NASA Astrophysics Data System (ADS)

    Tong, Howell

    1995-04-01

    The Table of Contents for the full book PDF is as follows: * Preface * Orthogonal Projection, Embedding Dimension and Sample Size in Chaotic Time Series from a Statistical Perspective * A Theory of Correlation Dimension for Stationary Time Series * On Prediction and Chaos in Stochastic Systems * Locally Optimized Prediction of Nonlinear Systems: Stochastic and Deterministic * A Poisson Distribution for the BDS Test Statistic for Independence in a Time Series * Chaos and Nonlinear Forecastability in Economics and Finance * Paradigm Change in Prediction * Predicting Nonuniform Chaotic Attractors in an Enzyme Reaction * Chaos in Geophysical Fluids * Chaotic Modulation of the Solar Cycle * Fractal Nature in Earthquake Phenomena and its Simple Models * Singular Vectors and the Predictability of Weather and Climate * Prediction as a Criterion for Classifying Natural Time Series * Measuring and Characterising Spatial Patterns, Dynamics and Chaos in Spatially-Extended Dynamical Systems and Ecologies * Non-Linear Forecasting and Chaos in Ecology and Epidemiology: Measles as a Case Study

  14. Collaborative Initiative toward Developing River Forecasting in South America

    NASA Astrophysics Data System (ADS)

    Cabrera, R.

    2015-12-01

    In the United States, river floods have been discussed as early as 1884. Following a disastrous flooding in 1903, Congress passed legislation and river and flood services became a separate division within the U.S. Weather Bureau. The first River Forecast Center started in 1946 and today the whole country is served by thirteen River Forecast Centers. News from Latin American and Caribbean Countries often report of devastating flooding. However, river forecast services are not fully developed yet. This presentation suggests the utilization of a multinational collaborative approach toward the development of river forecasts in order to mitigate flooding in South America. The benefit of an international strategy resides in the strength created by a team of professionals with different capabilities and expertise.

  15. Science in 60 - The Forecast Calls for Flu

    ScienceCinema

    Del Valle, Sara

    2018-05-21

    What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus, or Zika were going to spread? Using real-time data from Wikipedia and social media, Sara Del Valle and her team from Los Alamos National Laboratory have developed a global disease-forecasting system that will improve the way we respond to epidemics. Using this model, individuals and public health officials can monitor disease incidence and implement strategies — such as vaccination campaigns, communicating to the public and allocating resources — to stay one step ahead of infectious disease spread.

  16. An Agent-Based Interface to Terrestrial Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Nemani, Ramakrishna; Pang, Wanlin; Votava, Petr

    2005-01-01

    The latest generation of NASA Earth Observing System (EOS) satellites has brought a new dimension to continuous monitoring of the living part of the Earth System, the biosphere. EOS data can now provide weekly global measures of vegetation productivity and ocean chlorophyll, and many related biophysical factors such as land cover changes or snowmelt rates. However, the highest economic value would come from forecasting impending conditions of the biosphere, to allow decision makers to mitigate dangers or exploit positive trends. NASA's strategic plan for the Earth Science Enterprise i d e n a s ecological forecasting as a focus for research. Ecological forecasting predicts the effects of changes in the physical, chemical and biological environment on ecosystem activity. Possible applications of such a system include predicting shortfalls or bumper crops of agricultural production, populations of threatened or invasive species or wildfire danger in time to allow improves preparation and logistical efficiency. Petabytes of remote sensing data are now available to help measure, understand and forecast changes in the Earth system, but using these data effectively can be surprisingly hard. The volume and variety of data files and formats are daunting. Simple data management activities, such as locating and transferring files, changing file formats, gridding point data, and scaling and reprojecting gridded data, can consume far more personnel time and resources than the actual data analysis. Some scientists commit to a particular data source or resolution just because using anything different would be more effort that it's worth. Better tools can help, but most of the tools developed to date are little more than shell scripts; they lack the flexibility to meet the diverse needs of users and are difficult to extend to handle changes in available data sources.

  17. Stakeholders' perceptions of social-ecological systems and the information they use in the management of freshwater resources in Guanacaste, Costa Rica

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, G.; Babcock, M.; Small, M.; Grossmann, I.

    2014-12-01

    Climate change is expected to increase the chances of drought, and shift precipitation patterns in seasonally dry places. In some places, the heuristics or "rules of thumb" that stakeholders use may no longer be reliable for the effective management of water resources. This can have dire consequences for social and ecological systems, especially in developing countries. Scientists and policymakers view climate forecasts as one way for improving informed decision-making about freshwater resources. However, successful communication requires that stakeholders understand and are able to use such information. To develop effective communications, it is critical to characterize stakeholders' understanding of social-ecological systems as related to water, the type of information used to inform management decisions, and the perceived value of forecast information. To achieve our objective, we conducted 40 semi-structured interviews with farmers, water managers, hydroelectric utilities, local climate experts, tourism industry representatives, and members of the general public in the semi-arid region of Guanacaste, Costa Rica. People believe that they have enough water at this time however they believe that the region will become much drier in the future, which they attribute to climate change, El Nino/La Nina, and deforestation. With respect to the value of forecast information, we found that the scale of decision-making (e.g., irrigation district versus small farmer) was associated with a stakeholders' level of "technical sophistication" and trust in government. In future work, we will evaluate the prevalence of these beliefs and practices in the larger population in order to identify effective ways to tailor the presentation of forecast information for different audiences. This work provides insight into the development of forecast communications to improve the management of resources in development countries in the face of a changing climate.

  18. APPLICATION OF THE REGIONAL VULNERABILITY ASSESSMENT (REVA) INTEGRATION TOOL AND UNDERLYING METHODS FOR MULTI-SCALE DECISION MAKING

    EPA Science Inventory

    In support of the National Science and Technology Council's cross-Agency priority of Integrated Science for Ecological Challenges (ISEC) EPA is conducting research to improve capabilities in the area of regional vulnerability assessment and ecological forecasting. EPA's research...

  19. Pathways to designing and running an operational flood forecasting system: an adventure game!

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Pappenberger, Florian; Ramos, Maria-Helena; Cloke, Hannah; Crochemore, Louise; Giuliani, Matteo; Aalbers, Emma

    2017-04-01

    In the design and building of an operational flood forecasting system, a large number of decisions have to be taken. These include technical decisions related to the choice of the meteorological forecasts to be used as input to the hydrological model, the choice of the hydrological model itself (its structure and parameters), the selection of a data assimilation procedure to run in real-time, the use (or not) of a post-processor, and the computing environment to run the models and display the outputs. Additionally, a number of trans-disciplinary decisions are also involved in the process, such as the way the needs of the users will be considered in the modelling setup and how the forecasts (and their quality) will be efficiently communicated to ensure usefulness and build confidence in the forecasting system. We propose to reflect on the numerous, alternative pathways to designing and running an operational flood forecasting system through an adventure game. In this game, the player is the protagonist of an interactive story driven by challenges, exploration and problem-solving. For this presentation, you will have a chance to play this game, acting as the leader of a forecasting team at an operational centre. Your role is to manage the actions of your team and make sequential decisions that impact the design and running of the system in preparation to and during a flood event, and that deal with the consequences of the forecasts issued. Your actions are evaluated by how much they cost you in time, money and credibility. Your aim is to take decisions that will ultimately lead to a good balance between time and money spent, while keeping your credibility high over the whole process. This game was designed to highlight the complexities behind decision-making in an operational forecasting and emergency response context, in terms of the variety of pathways that can be selected as well as the timescale, cost and timing of effective actions.

  20. International Aftershock Forecasting: Lessons from the Gorkha Earthquake

    NASA Astrophysics Data System (ADS)

    Michael, A. J.; Blanpied, M. L.; Brady, S. R.; van der Elst, N.; Hardebeck, J.; Mayberry, G. C.; Page, M. T.; Smoczyk, G. M.; Wein, A. M.

    2015-12-01

    Following the M7.8 Gorhka, Nepal, earthquake of April 25, 2015 the USGS issued a series of aftershock forecasts. The initial impetus for these forecasts was a request from the USAID Office of US Foreign Disaster Assistance to support their Disaster Assistance Response Team (DART) which coordinated US Government disaster response, including search and rescue, with the Government of Nepal. Because of the possible utility of the forecasts to people in the region and other response teams, the USGS released these forecasts publicly through the USGS Earthquake Program web site. The initial forecast used the Reasenberg and Jones (Science, 1989) model with generic parameters developed for active deep continental regions based on the Garcia et al. (BSSA, 2012) tectonic regionalization. These were then updated to reflect a lower productivity and higher decay rate based on the observed aftershocks, although relying on teleseismic observations, with a high magnitude-of-completeness, limited the amount of data. After the 12 May M7.3 aftershock, the forecasts used an Epidemic Type Aftershock Sequence model to better characterize the multiple sources of earthquake clustering. This model provided better estimates of aftershock uncertainty. These forecast messages were crafted based on lessons learned from the Christchurch earthquake along with input from the U.S. Embassy staff in Kathmandu. Challenges included how to balance simple messaging with forecasts over a variety of time periods (week, month, and year), whether to characterize probabilities with words such as those suggested by the IPCC (IPCC, 2010), how to word the messages in a way that would translate accurately into Nepali and not alarm the public, and how to present the probabilities of unlikely but possible large and potentially damaging aftershocks, such as the M7.3 event, which had an estimated probability of only 1-in-200 for the week in which it occurred.

  1. Solar Storm GIC Forecasting: Solar Shield Extension Development of the End-User Forecasting System Requirements

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.

    2015-01-01

    A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.

  2. NCEP Operational HWRF Forecasting System

    Science.gov Websites

    NOAA logo - Click to go to the NOAA homepage EMC Hurricane Team NWS logo - Click to go to the NWS © 2018 | NOAA * NWS * NCEP * EMC * Hurricane Project Team DISCLAIMER: THIS INFORMATION IS PROVIDED AS GUIDANCE. IT REQUIRES INTERPRETATION BY HURRICANE SPECIALISTS AND SHOULD NOT BE CONSIDERED AS A FINAL

  3. Air Pollution Forecasts: An Overview

    PubMed Central

    Bai, Lu; Wang, Jianzhou; Lu, Haiyan

    2018-01-01

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227

  4. Air Pollution Forecasts: An Overview.

    PubMed

    Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan

    2018-04-17

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  5. An Integrated Ecological Modeling System for Assessing Impacts of Multiple Stressors on Stream and Riverine Ecosystem Services Within River Basins

    EPA Science Inventory

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat ...

  6. Assessing Upper-Level Winds on Day-of-Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.

    2012-01-01

    On the day-or-launch. the 45th Weather Squadron Launch Weather Officers (LWOS) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program (LSP). During launch operations, the payload launch team sometimes asks the LWO if they expect the upper level winds to change during the countdown but the LWOs did not have the capability to quickly retrieve or display the upper-level observations and compare them to the numerical weather prediction model point forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a capability in the form of a graphical user interface (GUI) that would allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center Doppler Radar Wind Profilers and Cape Canaveral Air Force Station rawinsondes and then overlay model point forecast profiles on the observation profiles to assess the performance of these models and graphically display them to the launch team. The AMU developed an Excel-based capability for the LWOs to assess the model forecast upper-level winds and compare them to observations. They did so by creating a GUI in Excel that allows the LWOs to first initialize the models by comparing the O-hour model forecasts to the observations and then to display model forecasts in 3-hour intervals from the current time through 12 hours.

  7. Ocean Model Impact Study for Coupled Hurricane Forecasting: An HFIP Initiative

    NASA Astrophysics Data System (ADS)

    Kim, H. S. S.; Halliwell, G. R., Jr.; Tallapragada, V.; Black, P. G.; Bond, N.; Chen, S.; Cione, J.; Cronin, M. F.; Ginis, I.; Liu, B.; Miller, L.; Jayne, S. R.; Sanabia, E.; Shay, L. K.; Uhlhorn, E.; Zhu, L.

    2016-02-01

    Established in 2009, the NOAA Hurricane Forecast Improvement Project (HFIP) is a ten-year project to promote accelerated improvements hurricane track and intensity forecasts (Gall et al. 2013). The Ocean Model Impact Tiger Team (OMITT) consisting of model developers and research scientists was formed as one of HFIP working groups in December 2014, to evaluate the impact of ocean coupling in tropical cyclone (TC) forecasts. The team investigated the ocean model impact in real cases for Category 3 Hurricane Edouard in 2014, using simulations and observations that were collected for different stages of the hurricane. Two Eastern North Pacific Hurricanes in 2015, Blanca and Dolores, are also of special interest. These two powerful Category 4 storms followed a similar track, however, they produced dramatically different ocean cooling, about 7.2oC for Hurricane Blanca but only about 2.7oC for Hurricane Dolores, and the corresponding intensity changes were negative 40 ms-1 and 20 ms-1, respectively. Two versions of operational HWRF and COAMPS-TC coupled prediction systems are employed in the study. These systems are configured to have 1D and 3D ocean dynamics coupled to the atmosphere. The ocean components are initialized separately with climatology, analysis and nowcast products to evaluate the impact of ocean initialization on hurricane forecasts. Real storm forecast experiments are being designed and performed with different levels of the ocean model complexity and various model configurations to study model sensitivity. In this talk, we report the OMITT activities conducted during the past year, present preliminary results of on-going investigation of air-sea interactions in the simulations, and discuss future plans toward improving coupled TC predictions. Gall, R., J. Franklin, F. Marks, E.N. Rappaport, and F. Toepfer, 2013: THE HURRICANE FORECAST IMPROVEMENT PROJECT. Bull. Amer. Meteor. Soc., 329-343.

  8. Weather modeling for hazard and consequence assessment operations during the 2006 Winter Olympic Games

    NASA Astrophysics Data System (ADS)

    Hayes, P.; Trigg, J. L.; Stauffer, D.; Hunter, G.; McQueen, J.

    2006-05-01

    Consequence assessment (CA) operations are those processes that attempt to mitigate negative impacts of incidents involving hazardous materials such as chemical, biological, radiological, nuclear, and high explosive (CBRNE) agents, facilities, weapons, or transportation. Incident types range from accidental spillage of chemicals at/en route to/from a manufacturing plant, to the deliberate use of radiological or chemical material as a weapon in a crowded city. The impacts of these incidents are highly variable, from little or no impact to catastrophic loss of life and property. Local and regional scale atmospheric conditions strongly influence atmospheric transport and dispersion processes in the boundary layer, and the extent and scope of the spread of dangerous materials in the lower levels of the atmosphere. Therefore, CA personnel charged with managing the consequences of CBRNE incidents must have detailed knowledge of current and future weather conditions to accurately model potential effects. A meteorology team was established at the U.S. Defense Threat Reduction Agency (DTRA) to provide weather support to CA personnel operating DTRA's CA tools, such as the Hazard Prediction and Assessment Capability (HPAC) tool. The meteorology team performs three main functions: 1) regular provision of meteorological data for use by personnel using HPAC, 2) determination of the best performing medium-range model forecast for the 12 - 48 hour timeframe and 3) provision of real-time help-desk support to users regarding acquisition and use of weather in HPAC CA applications. The normal meteorology team operations were expanded during a recent modeling project which took place during the 2006 Winter Olympic Games. The meteorology team took advantage of special weather observation datasets available in the domain of the Winter Olympic venues and undertook a project to improve weather modeling at high resolution. The varied and complex terrain provided a special challenge to the modelers on the meteorology team. Some of the Olympic venues were located in the mountains to the west of Torino, while the rest were located on the relatively flat plain in and around the cities of Pinerolo and Torino to the east. DTRA partners at Pennsylvania State University (PSU) and the U.S. National Center for Atmospheric Research (NCAR) established data collection and assimilation, and forecast modeling processes that used special weather station observations provided by the Area Previsione e Monitoraggio Ambientale of Italy's ARPA Piemonte. At PSU a version of the MM5 was especially prepared to use observation data to forecast weather in a four-nest configuration. Two other DTRA partners provided independent weather forecast models against which the PSU model data were compared. The U.S. Air Force Weather Agency provided its MM5 forecast model data and the U.S. National Oceanic and Atmospheric Administration's National Centers for Environmental Prediction provided data from a special version of their WRF model. The project produced many opportunities to improve the modeling and forecasting capability at DTRA. DTRA and its partners plan to expand upon this experience during upcoming field tests, and to further improve and expand the capability to provide accurate high-resolution weather forecast information to hazard and consequence assessment operations.

  9. Development of a decision support system for monitoring, reporting and forecasting ecological conditions of the Appalachian Trail

    USGS Publications Warehouse

    Wang, Yeqiao; Nemani, Ramakrishna; Dieffenbach, Fred; Stolte, Kenneth; Holcomb, Glenn B.; Robinson, Matt; Reese, Casey C.; McNiff, Marcia; Duhaime, Roland; Tierney, Geri; Mitchell, Brian; August, Peter; Paton, Peter; LaBash, Charles

    2010-01-01

    This paper introduces a collaborative multi-agency effort to develop an Appalachian Trail (A.T.) MEGA-Transect Decision Support System (DSS) for monitoring, reporting and forecasting ecological conditions of the A.T. and the surrounding lands. The project is to improve decisionmaking on management of the A.T. by providing a coherent framework for data integration, status reporting and trend analysis. The A.T. MEGA-Transect DSS is to integrate NASA multi-platform sensor data and modeling through the Terrestrial Observation and Prediction System (TOPS) and in situ measurements from A.T. MEGA-Transect partners to address identified natural resource priorities and improve resource management decisions.

  10. Application of Recent Advances in Forward Modeling of Emissions from Boreal and Temperate Wildfires to Real-time Forecasting of Aerosol and Trace Gas Concentrations

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Reid, J. S.; Kasischke, E. S.; Allen, D. J.

    2005-12-01

    The magnitude of trace gas and aerosol emissions from wildfires is a scientific problem with important implications for atmospheric composition, and is also integral to understanding carbon cycling in terrestrial ecosystems. Recent ecological research on modeling wildfire emissions has integrated theoretical advances derived from ecological fieldwork with improved spatial and temporal databases to produce "post facto" estimates of emissions with high spatial and temporal resolution. These advances have been shown to improve agreement with atmospheric observations at coarse scales, but can in principle be applied to applications, such as forecasting, at finer scales. However, several of the approaches employed in these forward models are incompatible with the requirements of real-time forecasting, requiring modification of data inputs and calculation methods. Because of the differences in data inputs used for real-time and "post-facto" emissions modeling, the key uncertainties in the forward problem are not necessarily the same for these two applications. However, adaptation of these advances in forward modeling to forecasting applications has the potential to improve air quality forecasts, and also to provide a large body of experimental data which can be used to constrain crucial uncertainties in current conceptual models of wildfire emissions. This talk describes a forward modeling method developed at the University of Maryland and its application to the Fire Locating and Modeling of Burning Emissions (FLAMBE) system at the Naval Research Laboratory. Methods for applying the outputs of the NRL aerosol forecasting system to the inverse problem of constraining emissions will also be discussed. The system described can use the feedback supplied by atmospheric observations to improve the emissions source description in the forecasting model, and can also be used for hypothesis testing regarding fire behavior and data inputs.

  11. [Applied ecology: retrospect and prospect].

    PubMed

    He, Xingyuan; Zeng, Dehui

    2004-10-01

    Applied ecology is evolved into a principal part of modern ecology that rapidly develops. The major stimulus for the development of applied ecology roots in seeking the solutions for the problems of human populations, resources and environments. Through four decades, the science of applied ecology has been becoming a huge group of disciplines. The future for the applied ecology should concern more with human-influenced and managed ecosystems, and acknowledge humans as the components of ecosystems. Nowadays and in future, the top-priorities in applied ecology should include following fields: sustainable ecosystems and biosphere, ecosystem services and ecological design, ecological assessment of genetically modified organisms, ecology of biological invasions, epidemical ecology, ecological forecasting, ecological process and its control. The authors believe that the comprehensive and active research hotspots coupled some new traits would occur around these fields in foreseeable future.

  12. Evaluation and economic value of winter weather forecasts

    NASA Astrophysics Data System (ADS)

    Snyder, Derrick W.

    State and local highway agencies spend millions of dollars each year to deploy winter operation teams to plow snow and de-ice roadways. Accurate and timely weather forecast information is critical for effective decision making. Students from Purdue University partnered with the Indiana Department of Transportation to create an experimental winter weather forecast service for the 2012-2013 winter season in Indiana to assist in achieving these goals. One forecast product, an hourly timeline of winter weather hazards produced daily, was evaluated for quality and economic value. Verification of the forecasts was performed with data from the Rapid Refresh numerical weather model. Two objective verification criteria were developed to evaluate the performance of the timeline forecasts. Using both criteria, the timeline forecasts had issues with reliability and discrimination, systematically over-forecasting the amount of winter weather that was observed while also missing significant winter weather events. Despite these quality issues, the forecasts still showed significant, but varied, economic value compared to climatology. Economic value of the forecasts was estimated to be 29.5 million or 4.1 million, depending on the verification criteria used. Limitations of this valuation system are discussed and a framework is developed for more thorough studies in the future.

  13. The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Eccles, J. V.; Reich, J. P.

    2010-12-01

    Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.

  14. The Ecology of Collaborative Work. Workscape 21: The Ecology of New Ways of Working.

    ERIC Educational Resources Information Center

    Becker, Franklin; Quinn, Kristen L.; Tennessen, Carolyn M.

    A study examined Chiat/Day inc. Advertising's team-based virtual office in which work could occur at any location inside or outside the office at any time. Three sites used three workplace strategies: full virtual (FV), modified virtual (MV), and conventional (C). Interviews, observations, and archival data were used to assess project teams doing…

  15. KSC-2011-2976

    NASA Image and Video Library

    2011-04-07

    CAPE CANAVERAL, Fla. - At the Cape Canaveral Air Force Station forecast facility in Florida, a member of the weather team demonstrates the effectiveness of the new weather radar display recently installed. The facility is operated by the U.S. Air Force 45th Weather Squadron and will generate a launch weather forecast for the scheduled July 8 lift off of space shuttle Atlantis on the STS-135 mission. Photo credit: NASA/Jack Pfaller

  16. KSC-2011-2975

    NASA Image and Video Library

    2011-04-07

    CAPE CANAVERAL, Fla. - At the Cape Canaveral Air Force Station forecast facility in Florida, a member of the weather team demonstrates the effectiveness of the new weather radar display recently installed. The facility is operated by the U.S. Air Force 45th Weather Squadron and will generate a launch weather forecast for the scheduled July 8 lift off of space shuttle Atlantis on the STS-135 mission. Photo credit: NASA/Jack Pfaller

  17. STS-114: Discovery L-2 Countdown Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    George Diller of NASA Public Affairs hosted this briefing. Pete Nickolenko, NASA Test Director; Scott Higgenbotham, STS-114 Payload-Mission Manager; Cathy Winters, Shuttle Weather Officer were present. Pete reports his team has completed the avionics system check ups, servicing of the cryogenic tanks will take about seven hours that day, and will perform engine system checks and pad close outs come evening. Pete also summarized other standard close out activities: check ups of the Orbiter and ground communications network, rotary service, structure retraction, and external tank load (ETL). Pete reported that the mission will be 12 days with two weather contingency days, and end of mission landing scheduled at Kennedy Space Center (KSC) at approximately 11:00 in the morning, Eastern time on July 25th. Scott briefly reported that all hardware is on board Discovery, closed out, and ready to fly. Cathy reported that hurricane Dennis moved to the North and looking forward to launch. She mentioned of a new hurricane looming and will be named Emily, spotted some crosswinds which will migrate to the west, there is 30% probability weather prohibiting launch. Cathy further gave current weather forecast supported with charts: the Launch Forecast, Tanking Forecast, SRB (Shuttle Solid Rocket Booster) Forecast, CONUS and TAL Launch Sites Forecast, and with 24 hours and 48 hours turn around plan. Launch constraints, weather, crosswinds, cloud cover, ground imagery system, launch countdown, launch crews, mission management simulations, launch team simulations were topics covered with the News Media.

  18. The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt.

    PubMed

    Viboud, Cécile; Sun, Kaiyuan; Gaffey, Robert; Ajelli, Marco; Fumanelli, Laura; Merler, Stefano; Zhang, Qian; Chowell, Gerardo; Simonsen, Lone; Vespignani, Alessandro

    2018-03-01

    Infectious disease forecasting is gaining traction in the public health community; however, limited systematic comparisons of model performance exist. Here we present the results of a synthetic forecasting challenge inspired by the West African Ebola crisis in 2014-2015 and involving 16 international academic teams and US government agencies, and compare the predictive performance of 8 independent modeling approaches. Challenge participants were invited to predict 140 epidemiological targets across 5 different time points of 4 synthetic Ebola outbreaks, each involving different levels of interventions and "fog of war" in outbreak data made available for predictions. Prediction targets included 1-4 week-ahead case incidences, outbreak size, peak timing, and several natural history parameters. With respect to weekly case incidence targets, ensemble predictions based on a Bayesian average of the 8 participating models outperformed any individual model and did substantially better than a null auto-regressive model. There was no relationship between model complexity and prediction accuracy; however, the top performing models for short-term weekly incidence were reactive models with few parameters, fitted to a short and recent part of the outbreak. Individual model outputs and ensemble predictions improved with data accuracy and availability; by the second time point, just before the peak of the epidemic, estimates of final size were within 20% of the target. The 4th challenge scenario - mirroring an uncontrolled Ebola outbreak with substantial data reporting noise - was poorly predicted by all modeling teams. Overall, this synthetic forecasting challenge provided a deep understanding of model performance under controlled data and epidemiological conditions. We recommend such "peace time" forecasting challenges as key elements to improve coordination and inspire collaboration between modeling groups ahead of the next pandemic threat, and to assess model forecasting accuracy for a variety of known and hypothetical pathogens. Published by Elsevier B.V.

  19. An ecological dynamics rationale to explain home advantage in professional football

    NASA Astrophysics Data System (ADS)

    Gama, José; Dias, Gonçalo; Couceiro, Micael; Passos, Pedro; Davids, Keith; Ribeiro, João

    2016-03-01

    Despite clear findings, research on home advantage in team sports lacks a comprehensive theoretical rationale for understanding why this phenomenon is so compelling. The aim of this study was to provide an explanatory theoretical rationale in ecological dynamics for the influence of home advantage observed in research on professional football. We recorded 30 competitive matches and analyzed 13958 passes, from one highly successful team in the Portuguese Premier League, during season 2010/2011. Performance data were analyzed using the Match Analysis Software—Amisco® (version 3.3.7.25), allowing us to characterize team activity profiles. Results were interpreted from an ecological dynamics perspective, explaining how task and environmental constraints of a competitive football setting required performers to continuously co-adapt to teammate behaviors. Despite slight differences in percentage of ball possession when playing home or away, the number of passes achieved by the team, while in possession of the ball, was quite different between home or away venues. When playing at home, the number of passes performed by the team was considerably higher than when playing away. The explanation proposed in this study for a home advantage effect can be understood from studying interpersonal coordination tendencies of team sports players as agents in a complex adaptive system.

  20. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  1. Surface Pressure Dependencies in the Geos-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  2. Resilient Sensor Networks with Spatiotemporal Interpolation of Missing Sensors: An Example of Space Weather Forecasting by Multiple Satellites

    PubMed Central

    Tokumitsu, Masahiro; Hasegawa, Keisuke; Ishida, Yoshiteru

    2016-01-01

    This paper attempts to construct a resilient sensor network model with an example of space weather forecasting. The proposed model is based on a dynamic relational network. Space weather forecasting is vital for a satellite operation because an operational team needs to make a decision for providing its satellite service. The proposed model is resilient to failures of sensors or missing data due to the satellite operation. In the proposed model, the missing data of a sensor is interpolated by other sensors associated. This paper demonstrates two examples of space weather forecasting that involves the missing observations in some test cases. In these examples, the sensor network for space weather forecasting continues a diagnosis by replacing faulted sensors with virtual ones. The demonstrations showed that the proposed model is resilient against sensor failures due to suspension of hardware failures or technical reasons. PMID:27092508

  3. Resilient Sensor Networks with Spatiotemporal Interpolation of Missing Sensors: An Example of Space Weather Forecasting by Multiple Satellites.

    PubMed

    Tokumitsu, Masahiro; Hasegawa, Keisuke; Ishida, Yoshiteru

    2016-04-15

    This paper attempts to construct a resilient sensor network model with an example of space weather forecasting. The proposed model is based on a dynamic relational network. Space weather forecasting is vital for a satellite operation because an operational team needs to make a decision for providing its satellite service. The proposed model is resilient to failures of sensors or missing data due to the satellite operation. In the proposed model, the missing data of a sensor is interpolated by other sensors associated. This paper demonstrates two examples of space weather forecasting that involves the missing observations in some test cases. In these examples, the sensor network for space weather forecasting continues a diagnosis by replacing faulted sensors with virtual ones. The demonstrations showed that the proposed model is resilient against sensor failures due to suspension of hardware failures or technical reasons.

  4. Strategies GeoCape Intelligent Observation Studies @ GSFC

    NASA Technical Reports Server (NTRS)

    Cappelaere, Pat; Frye, Stu; Moe, Karen; Mandl, Dan; LeMoigne, Jacqueline; Flatley, Tom; Geist, Alessandro

    2015-01-01

    This presentation provides information a summary of the tradeoff studies conducted for GeoCape by the GSFC team in terms of how to optimize GeoCape observation efficiency. Tradeoffs include total ground scheduling with simple priorities, ground scheduling with cloud forecast, ground scheduling with sub-area forecast, onboard scheduling with onboard cloud detection and smart onboard scheduling and onboard image processing. The tradeoffs considered optimzing cost, downlink bandwidth and total number of images acquired.

  5. Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems

    PubMed Central

    Russell, Bayden D.; Harley, Christopher D. G.; Wernberg, Thomas; Mieszkowska, Nova; Widdicombe, Stephen; Hall-Spencer, Jason M.; Connell, Sean D.

    2012-01-01

    Most studies that forecast the ecological consequences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple experiments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates. PMID:21900317

  6. Researcher Interview: Elaine Mardis

    Cancer.gov

    Elaine Mardis Ph.D., Professor of Medicine at Washington University School of Medicine, discusses her translational research applying genomics techniques to clinical trials, and forecasts the future of team science and cancer genomics.

  7. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept

    USGS Publications Warehouse

    Luoma, Samuel N.; Rainbow, Philip S.

    2005-01-01

    Ecological risks from metal contaminants are difficult to document because responses differ among species, threats differ among metals, and environmental influences are complex. Unifying concepts are needed to better tie together such complexities. Here we suggest that a biologically based conceptualization, the biodynamic model, provides the necessary unification for a key aspect in risk:  metal bioaccumulation (internal exposure). The model is mechanistically based, but empirically considers geochemical influences, biological differences, and differences among metals. Forecasts from the model agree closely with observations from nature, validating its basic assumptions. The biodynamic metal bioaccumulation model combines targeted, high-quality geochemical analyses from a site of interest with parametrization of key physiological constants for a species from that site. The physiological parameters include metal influx rates from water, influx rates from food, rate constants of loss, and growth rates (when high). We compiled results from 15 publications that forecast species-specific bioaccumulation, and compare the forecasts to bioaccumulation data from the field. These data consider concentrations that cover 7 orders of magnitude. They include 7 metals and 14 species of animals from 3 phyla and 11 marine, estuarine, and freshwater environments. The coefficient of determination (R2) between forecasts and independently observed bioaccumulation from the field was 0.98. Most forecasts agreed with observations within 2-fold. The agreement suggests that the basic assumptions of the biodynamic model are tenable. A unified explanation of metal bioaccumulation sets the stage for a realistic understanding of toxicity and ecological effects of metals in nature.

  8. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay.

    PubMed

    Jacobs, J M; Rhodes, M; Brown, C W; Hood, R R; Leight, A; Long, W; Wood, R

    2014-11-01

    To construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters of Chesapeake Bay for implementation in ecological forecasting systems. We evaluated and applied previously published qPCR assays to water samples (n = 1636) collected from Chesapeake Bay from 2007-2010 in conjunction with State water quality monitoring programmes. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Environmental parameters such as temperature, salinity and turbidity are capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  9. Applied Meteorology Unit Quarterly Report. First Quarter FY-13

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The AMU team worked on five tasks for their customers: (1) Ms. Crawford continued work on the objective lightning forecast task for airports in east-central Florida. (2) Ms. Shafer continued work on the task for Vandenberg Air Force Base to create an automated tool that will help forecasters relate pressure gradients to peak wind values. (3) Dr. Huddleston began work to develop a lightning timing forecast tool for the Kennedy Space Center/Cape Canaveral Air Force Station area. (3) Dr. Bauman began work on a severe weather forecast tool focused on east-central Florida. (4) Dr. Watson completed testing high-resolution model configurations for Wallops Flight Facility and the Eastern Range, and wrote the final report containing the AMU's recommendations for model configurations at both ranges.

  10. Ecological Forecasting Project Management with Examples

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.; Schmidt, Cindy; Estes, Maury; Turner, Woody

    2017-01-01

    Once scientists publish results of their projects and studies, all too often they end up on the shelf and are not otherwise used. The NASA Earth Science Division established its Applied Sciences Program (ASP) to apply research findings to help solve and manage real-world problems and needs. ASP-funded projects generally produce decision support systems for operational applications which are expected to last beyond the end of the NASA funding. Because of NASAs unique perspective of looking down on the Earth from space, ASP studies involve the use of remotely sensed information consisting of satellite data and imagery as well as information from sub-orbital platforms. ASP regularly solicits Earth science proposals that address one or more focus areas; disasters mitigation, ecological forecasting, health and air quality, and water resources. Reporting requirements for ASP-funded projects are different from those typical for research grants from NASA and other granting agencies, requiring management approaches different from other programs. This presentation will address the foregoing in some detail and give examples of three ASP-funded ecological forecasting projects that include: 1) the detection and survey of chimpanzee habitat in Africa from space, 2) harmful algal blooms (HABs) in the California Current System affecting aquaculture facilities and marine mammal populations, and 3) a call for the public to identify North America wildlife in Wisconsin using trail camera photos. Contact information to propose to ASP solicitations for those PIs interested is also provided.

  11. [Medico-ecological approaches to the integrated management of water resources].

    PubMed

    El'piner, L I

    2012-01-01

    The necessity of taking into account the interests of public health care informing and implementing solutions for water management has been substantiated. Scientific frameworks and regulatory sanitary legislative documents relating to various areas of water management have been considered. The possibilities and the importance of performing complex territory medical ecological forecasts of effects of changes in hydrological situation have been demonstrated.

  12. The Role of Conceptions of Value in Data Practices: A Multi-Case Study of Three Small Teams of Ecological Scientists

    ERIC Educational Resources Information Center

    Akmon, Dharma R.

    2014-01-01

    This dissertation examines the role of conceptions of data's value in data practices. Based on a study of three small teams of scientists carrying out ecological research at a biological station, my study addresses the following main question: How do scientists conceive of the value of their data, and how do scientists enact conceptions of value…

  13. The evolutionary time machine: forecasting how populations can adapt to changing environments using dormant propagules

    PubMed Central

    Orsini, Luisa; Schwenk, Klaus; De Meester, Luc; Colbourne, John K.; Pfrender, Michael E.; Weider, Lawrence J.

    2013-01-01

    Evolutionary changes are determined by a complex assortment of ecological, demographic and adaptive histories. Predicting how evolution will shape the genetic structures of populations coping with current (and future) environmental challenges has principally relied on investigations through space, in lieu of time, because long-term phenotypic and molecular data are scarce. Yet, dormant propagules in sediments, soils and permafrost are convenient natural archives of population-histories from which to trace adaptive trajectories along extended time periods. DNA sequence data obtained from these natural archives, combined with pioneering methods for analyzing both ecological and population genomic time-series data, are likely to provide predictive models to forecast evolutionary responses of natural populations to environmental changes resulting from natural and anthropogenic stressors, including climate change. PMID:23395434

  14. Iterative ecological forecasting: Needs, opportunities, and challenges

    USGS Publications Warehouse

    Dietze, Michael C.; Fox, Andrew; Betancourt, Julio L.; Hooten, Mevin B.; Jarnevich, Catherine S.; Keitt, Tim H.; Kenney, Melissa; Laney, Christine; Larsen, Laurel; Loescher, Henry W.; Lunch, Claire; Pijanowski, Bryan; Randerson, James T.; Read, Emily; Tredennick, Andrew T.; Weathers, Kathleen; White, Ethan P.

    2016-01-01

    A fundamental environmental challenge facing humanity in the 21st century and beyond is predicting the impacts of global environmental change. This challenge is complicated by the fact that we live on a non-stationary, unreplicated planet that is rapidly moving outside the envelope of natural variability into an historical non-analog world. In other words, while the past helps inform us about how the world has worked, it may no longer be the relevant frame of reference for management, conservation, and sustainability. In this future world the two questions at the foundation of sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect this trajectory?” These are, at their heart, questions about ecological forecasting.

  15. An Overview of Ecological Modeling and Machine Learning Research Within the U.S. National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2004-01-01

    In the early 1980 s NASA began research to understand global habitability and quantify the processes and fluxes between the Earth's vegetation and the biosphere. This effort evolved into the Earth Observing System Program which current encompasses 18 platforms and 80 sensors. During this time, the global environmental research community has evolved from a data poor to a data rich research area and is challenged to provide timely use of these new data. This talk will outline some of the data mining research NASA has funded in support for the environmental sciences in the Intelligent Systems project and will give a specific example in ecological forecasting, predicting the land surface properties given nowcasts and weather forecasts, using the Terrestrial Observation and Prediction System (TOPS).

  16. Using Collar worn Sensors to Forecast Thermal Strain in Military Working Dogs

    DTIC Science & Technology

    2016-04-22

    Using Collar-worn Sensors to Forecast Thermal Strain in Military Working Dogs James R. Williamson, Austin R. Hess, Christopher J. Smalt, Delsey M...Medicine Natick, MA 01760 Abstract—Military working dogs (MWDs) are at high risk of heat strain both during training and missions. Body heat in MWD...correlation of r=0.49 between actual and predicted Tc. I. INTRODUCTION Military Working Dogs (MWDs), working in a team with a handler, are susceptible

  17. Comparison of CMAQ Modeling Study with Discover-AQ 2014 Aircraft Measurements over Colorado

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Pan, L.; Lee, P.; Tong, D.; Kim, H. C.; Artz, R. S.

    2014-12-01

    NASA and NCAR jointly led a recent multiple platform-based (space, air and ground) measurement intensive to study air quality and to validate satellite data. The Discover-AQ/FRAPPE field experiment took place along the Colorado Front Range in July and August, 2014. The air quality modeling team of the NOAA Air Resources Laboratory was one of the three teams that provided real-time air quality forecasting for the campaign. The U.S. EPA Community Multi-scale Air Quality (CMAQ) Model was used with emission inventories based on the data set used by the NOAA National Air Quality Forecasting Capacity (NAQFC). By analyzing the forecast results calculated using aircraft measurements, it was found that CO emissions tended to be overestimated, while ethane emissions were underestimated. Biogenic VOCs were also underpredicted. Due to their relatively high altitude, ozone concentrations in Denver and the surrounding areas are affected by both local emissions and transported ozone. The modeled ozone was highly dependent on the meteorological predictions over this region. The complex terrain over the Rocky Mountains also contributed to the model uncertainty. This study discussed the causes of model biases, the forecast performance under different meteorology, and results from using different model grid resolutions. Several data assimilation techniques were further tested to improve the "post-analysis" performance of the modeling system for the period.

  18. Extending nonlinear analysis to short ecological time series.

    PubMed

    Hsieh, Chih-hao; Anderson, Christian; Sugihara, George

    2008-01-01

    Nonlinearity is important and ubiquitous in ecology. Though detectable in principle, nonlinear behavior is often difficult to characterize, analyze, and incorporate mechanistically into models of ecosystem function. One obvious reason is that quantitative nonlinear analysis tools are data intensive (require long time series), and time series in ecology are generally short. Here we demonstrate a useful method that circumvents data limitation and reduces sampling error by combining ecologically similar multispecies time series into one long time series. With this technique, individual ecological time series containing as few as 20 data points can be mined for such important information as (1) significantly improved forecast ability, (2) the presence and location of nonlinearity, and (3) the effective dimensionality (the number of relevant variables) of an ecological system.

  19. Gender-heterogeneous working groups produce higher quality science.

    PubMed

    Campbell, Lesley G; Mehtani, Siya; Dozier, Mary E; Rinehart, Janice

    2013-01-01

    Here we present the first empirical evidence to support the hypothesis that a gender-heterogeneous problem-solving team generally produced journal articles perceived to be higher quality by peers than a team comprised of highly-performing individuals of the same gender. Although women were historically underrepresented as principal investigators of working groups, their frequency as PIs at the National Center for Ecological Analysis and Synthesis is now comparable to the national frequencies in biology and they are now equally qualified, in terms of their impact on the accumulation of ecological knowledge (as measured by the h-index). While women continue to be underrepresented as working group participants, peer-reviewed publications with gender-heterogeneous authorship teams received 34% more citations than publications produced by gender-uniform authorship teams. This suggests that peers citing these publications perceive publications that also happen to have gender-heterogeneous authorship teams as higher quality than publications with gender uniform authorship teams. Promoting diversity not only promotes representation and fairness but may lead to higher quality science.

  20. Gender-Heterogeneous Working Groups Produce Higher Quality Science

    PubMed Central

    Campbell, Lesley G.; Mehtani, Siya; Dozier, Mary E.; Rinehart, Janice

    2013-01-01

    Here we present the first empirical evidence to support the hypothesis that a gender-heterogeneous problem-solving team generally produced journal articles perceived to be higher quality by peers than a team comprised of highly-performing individuals of the same gender. Although women were historically underrepresented as principal investigators of working groups, their frequency as PIs at the National Center for Ecological Analysis and Synthesis is now comparable to the national frequencies in biology and they are now equally qualified, in terms of their impact on the accumulation of ecological knowledge (as measured by the h-index). While women continue to be underrepresented as working group participants, peer-reviewed publications with gender-heterogeneous authorship teams received 34% more citations than publications produced by gender-uniform authorship teams. This suggests that peers citing these publications perceive publications that also happen to have gender-heterogeneous authorship teams as higher quality than publications with gender uniform authorship teams. Promoting diversity not only promotes representation and fairness but may lead to higher quality science. PMID:24205372

  1. Loglines. November - December 2011

    DTIC Science & Technology

    2011-12-01

    We started ... with a complete review of building production,” said Marcel Baril , the team’s supervisor. His team inventoried all the parts it...on] them with any problems or concerns that may arise,” he said. Baril said the team’s accomplishments came in part from efforts to educate... Baril said, customers began notifying DLA Aviation in advance of their parts requirements, and his team was able to forecast those demands and

  2. Predictability and Coupled Dynamics of MJO During DYNAMO

    DTIC Science & Technology

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predictability and Coupled Dynamics of MJO During DYNAMO ...Model (LIM) for MJO predictions and apply it in retrospective cross-validated forecast mode to the DYNAMO time period. APPROACH We are working as...a team to study MJO dynamics and predictability using several models as team members of the ONR DRI associated with the DYNAMO experiment. This is a

  3. Validation of the Kp Geomagnetic Index Forecast at CCMC

    NASA Astrophysics Data System (ADS)

    Frechette, B. P.; Mays, M. L.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) Space Weather Research Center (SWRC) sub-team provides space weather services to NASA robotic mission operators and science campaigns and prototypes new models, forecasting techniques, and procedures. The Kp index is a measure of geomagnetic disturbances for space weather in the magnetosphere such as geomagnetic storms and substorms. In this study, we performed validation on the Newell et al. (2007) Kp prediction equation from December 2010 to July 2017. The purpose of this research is to understand the Kp forecast performance because it's critical for NASA missions to have confidence in the space weather forecast. This research was done by computing the Kp error for each forecast (average, minimum, maximum) and each synoptic period. Then to quantify forecast performance we computed the mean error, mean absolute error, root mean square error, multiplicative bias and correlation coefficient. A contingency table was made for each forecast and skill scores were computed. The results are compared to the perfect score and reference forecast skill score. In conclusion, the skill score and error results show that the minimum of the predicted Kp over each synoptic period from the Newell et al. (2007) Kp prediction equation performed better than the maximum or average of the prediction. However, persistence (reference forecast) outperformed all of the Kp forecasts (minimum, maximum, and average). Overall, the Newell Kp prediction still predicts within a range of 1, even though persistence beats it.

  4. Generational forecasting in academic medicine: a unique method of planning for success in the next two decades.

    PubMed

    Howell, Lydia Pleotis; Joad, Jesse P; Callahan, Edward; Servis, Gregg; Bonham, Ann C

    2009-08-01

    Multigenerational teams are essential to the missions of academic health centers (AHCs). Generational forecasting using Strauss and Howe's predictive model, "the generational diagonal," can be useful for anticipating and addressing issues so that each generation is effective. Forecasts are based on the observation that cyclical historical events are experienced by all generations, but the response of each generation differs according to its phase of life and previous defining experiences. This article relates Strauss and Howe's generational forecasts to AHCs. Predicted issues such as work-life balance, indebtedness, and succession planning have existed previously, but they now have different causes or consequences because of the unique experiences and life stages of current generations. Efforts to address these issues at the authors' AHC include a work-life balance workgroup, expanded leave, and intramural grants.

  5. Intergroup relations in soccer finals: people's forecasts of the duration of emotional reactions of in-group and out-group soccer fans.

    PubMed

    Gaunt, Ruth; Sindic, Denis; Leyens, Jacques-Philippe

    2005-04-01

    The authors examined the hypothesis that people forecast a longer duration of uniquely human secondary emotions for their in-group than for an out-group. The authors conducted a field experiment in the setting of the European soccer championship. They asked Belgian participants to forecast the intensity with which their in-group Belgian fans or the out-group Turkish fans would experience various primary and secondary emotions in response to their team's victory or loss immediately after the Turkey-Belgium match and three days later. The results support the hypothesis. Moreover, and as the authors expected, they found no differences in the participants' forecasts of primary emotions. The authors discussed the implications of these findings for intergroup relations in general and for soccer fans' behavior in particular.

  6. Uncertainty quantification and reliability assessment in operational oil spill forecast modeling system.

    PubMed

    Hou, Xianlong; Hodges, Ben R; Feng, Dongyu; Liu, Qixiao

    2017-03-15

    As oil transport increasing in the Texas bays, greater risks of ship collisions will become a challenge, yielding oil spill accidents as a consequence. To minimize the ecological damage and optimize rapid response, emergency managers need to be informed with how fast and where oil will spread as soon as possible after a spill. The state-of-the-art operational oil spill forecast modeling system improves the oil spill response into a new stage. However uncertainty due to predicted data inputs often elicits compromise on the reliability of the forecast result, leading to misdirection in contingency planning. Thus understanding the forecast uncertainty and reliability become significant. In this paper, Monte Carlo simulation is implemented to provide parameters to generate forecast probability maps. The oil spill forecast uncertainty is thus quantified by comparing the forecast probability map and the associated hindcast simulation. A HyosPy-based simple statistic model is developed to assess the reliability of an oil spill forecast in term of belief degree. The technologies developed in this study create a prototype for uncertainty and reliability analysis in numerical oil spill forecast modeling system, providing emergency managers to improve the capability of real time operational oil spill response and impact assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Update on the NASA GEOS-5 Aerosol Forecasting and Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; da Silva, Arlindo; Aquila, Valentina; Bian, Huisheng; Buchard, Virginie; Castellanos, Patricia; Darmenov, Anton; Follette-Cook, Melanie; Govindaraju, Ravi; Keller, Christoph; hide

    2017-01-01

    GEOS-5 is the Goddard Earth Observing System model. GEOS-5 is maintained by the NASA Global Modeling and Assimilation Office. Core development is within GMAO,Goddard Atmospheric Chemistry and Dynamics Laboratory, and with external partners. Primary GEOS-5 functions: Earth system model for studying climate variability and change, provide research quality reanalyses for supporting NASA instrument teams and scientific community, provide near-real time forecasts of meteorology,aerosols, and other atmospheric constituents to support NASA airborne campaigns.

  8. KSC-06pd1283

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - A Rawinsonde weather balloon sails into the sky after release from the Cape Canaveral forecast facility in Florida. The release was planned as part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. Rawinsonde balloons are GPS-tracked and can collect such data as atmospheric pressure, temperature, humidity and wind speed and direction up to 100,000 feet. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  9. KSC-06pd1281

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral forecast facility in Florida, a worker carries a Rawinsonde weather balloon outside for release. Rawinsonde balloons are GPS-tracked and can collect such data as atmospheric pressure, temperature, humidity and wind speed and direction up to 100,000 feet. The release was planned as part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  10. KSC-06pd1282

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral forecast facility in Florida, a worker releases a Rawinsonde weather balloon outside for release. Rawinsonde balloons are GPS-tracked and can collect such data as atmospheric pressure, temperature, humidity and wind speed and direction up to 100,000 feet. The release was planned as part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  11. Transition of Suomi National Polar-Orbiting Partnership (S-NPP) Data Products for Operational Weather Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Smith, Matthew R.; Molthan, Andrew L.; Fuell, Kevin K.; Jedlovec, Gary J.

    2012-01-01

    SPoRT is a team of NASA/NOAA scientists focused on demonstrating the utility of NASA and future NOAA data and derived products on improving short-term weather forecasts. Work collaboratively with a suite of unique products and selected WFOs in an end-to-end transition activity. Stable funding from NASA and NOAA. Recognized by the science community as the "go to" place for transitioning experimental and research data to the operational weather community. Endorsed by NWS ESSD/SSD chiefs. Proven paradigm for transitioning satellite observations and modeling capabilities to operations (R2O). SPoRT s transition of NASA satellite instruments provides unique or higher resolution data products to complement the baseline suite of geostationary data available to forecasters. SPoRT s partnership with NWS WFOs provides them with unique imagery to support disaster response and local forecast challenges. SPoRT has years of proven experience in developing and transitioning research products to the operational weather community. SPoRT has begun work with CONUS and OCONUS WFOs to determine the best products for maximum benefit to forecasters. VIIRS has already proven to be another extremely powerful tool, enhancing forecasters ability to handle difficult forecasting situations.

  12. In Brief: Forecasting meningitis threats

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    The University Corporation for Atmospheric Research (UCAR), in conjunction with a team of health and weather organizations, has launched a project to provide weather forecasts to medical officials in Africa to help reduce outbreaks of meningitis. The forecasts will enable local health care providers to target vaccination programs more effectively. In 2009, meteorologists with the National Center for Atmospheric Research, which is managed by UCAR, will begin issuing 14-day forecasts of atmospheric conditions in Ghana. Later, UCAR plans to work closely with health experts from several African countries to design and test a decision support system to provide health officials with useful meteorological information. ``By targeting forecasts in regions where meningitis is a threat, we may be able to help vulnerable populations. Ultimately, we hope to build on this project and provide information to public health programs battling weather-related diseases in other parts of the world,'' said Rajul Pandya, director of UCAR's Community Building Program. Funding for the project comes from a $900,000 grant from Google.org, the philanthropic arm of the Internet search company.

  13. KSC-06pd1278

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, workers release an upper-level weather balloon while several newscasters watch. The release of the balloon was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  14. KSC-06pd1277

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, workers carry an upper-level weather balloon outside for release. The release was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  15. KSC-06pd1280

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - An upper-level weather balloon sails into the sky after release from the Cape Canaveral weather station in Florida. The release was planned as part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  16. Bridging the Gap Between NASA Earth Observations and Decision Makers Through the NASA Develop National Program

    NASA Astrophysics Data System (ADS)

    Remillard, C. M.; Madden, M.; Favors, J.; Childs-Gleason, L.; Ross, K. W.; Rogers, L.; Ruiz, M. L.

    2016-06-01

    The NASA DEVELOP National Program bridges the gap between NASA Earth Science and society by building capacity in both participants and partner organizations that collaborate to conduct projects. These rapid feasibility projects highlight the capabilities of satellite and aerial Earth observations. Immersion of decision and policy makers in these feasibility projects increases awareness of the capabilities of Earth observations and contributes to the tools and resources available to support enhanced decision making. This paper will present the DEVELOP model, best practices, and two case studies, the Colombia Ecological Forecasting project and the Miami-Dade County Ecological Forecasting project, that showcase the successful adoption of tools and methods for decision making. Through over 90 projects each year, DEVELOP is always striving for the innovative, practical, and beneficial use of NASA Earth science data.

  17. Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting.

    PubMed

    LaDeau, Shannon L; Glass, Gregory E; Hobbs, N Thompson; Latimer, Andrew; Ostfeld, Richard S

    2011-07-01

    Ecologists worldwide are challenged to contribute solutions to urgent and pressing environmental problems by forecasting how populations, communities, and ecosystems will respond to global change. Rising to this challenge requires organizing ecological information derived from diverse sources and formally assimilating data with models of ecological processes. The study of infectious disease has depended on strategies for integrating patterns of observed disease incidence with mechanistic process models since John Snow first mapped cholera cases around a London water pump in 1854. Still, zoonotic and vector-borne diseases increasingly affect human populations, and methods used to successfully characterize directly transmitted diseases are often insufficient. We use four case studies to demonstrate that advances in disease forecasting require better understanding of zoonotic host and vector populations, as well of the dynamics that facilitate pathogen amplification and disease spillover into humans. In each case study, this goal is complicated by limited data, spatiotemporal variability in pathogen transmission and impact, and often, insufficient biological understanding. We present a conceptual framework for data-model fusion in infectious disease research that addresses these fundamental challenges using a hierarchical state-space structure to (1) integrate multiple data sources and spatial scales to inform latent parameters, (2) partition uncertainty in process and observation models, and (3) explicitly build upon existing ecological and epidemiological understanding. Given the constraints inherent in the study of infectious disease and the urgent need for progress, fusion of data and expertise via this type of conceptual framework should prove an indispensable tool.

  18. Monitoring changes in exotic vegetation

    Treesearch

    Robert D. Sutter

    1998-01-01

    Ecological monitoring provides critical information for management decisions by measuring changes in managed and unmanaged populations, communities and ecological systems. It integrates ecology, goal and objective setting, sampling design, sampling methods, and statistical analysis. It is a topic that I, with a team of Nature Conservancy ecologists, teach in a six day...

  19. Flood Forecasting in Wales: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    How, Andrew; Williams, Christopher

    2015-04-01

    With steep, fast-responding river catchments, exposed coastal reaches with large tidal ranges and large population densities in some of the most at-risk areas; flood forecasting in Wales presents many varied challenges. Utilising advances in computing power and learning from best practice within the United Kingdom and abroad have seen significant improvements in recent years - however, many challenges still remain. Developments in computing and increased processing power comes with a significant price tag; greater numbers of data sources and ensemble feeds brings a better understanding of uncertainty but the wealth of data needs careful management to ensure a clear message of risk is disseminated; new modelling techniques utilise better and faster computation, but lack the history of record and experience gained from the continued use of more established forecasting models. As a flood forecasting team we work to develop coastal and fluvial forecasting models, set them up for operational use and manage the duty role that runs the models in real time. An overview of our current operational flood forecasting system will be presented, along with a discussion on some of the solutions we have in place to address the challenges we face. These include: • real-time updating of fluvial models • rainfall forecasting verification • ensemble forecast data • longer range forecast data • contingency models • offshore to nearshore wave transformation • calculation of wave overtopping

  20. Gulf of Mexico Ecological Forecasting - Atlantic Bluefin Tuna Population Assessment and Management using Synthetic Aperture Radar (SAR) Data

    NASA Astrophysics Data System (ADS)

    Laygo, K.; Jones, I.; Huerta, J.; Holt, B.

    2010-12-01

    Atlantic Bluefin Tuna (Thunnus thynnus) is one of the largest vertebrates in the world and is in high demand in sushi markets. It is a highly political species and is managed internationally by the International Commission for the Conservation of Atlantic Tuna. The Gulf of Mexico and the Mediterranean Sea are the only two known spawning sites in the world. However, there is a large variance in estimates of adult Atlantic Tuna spawning. This research focuses on extending Earth science research results to existing decision-making systems, National Oceanic and Atmospheric Administration (NOAA) and the National Marine Fisheries Service (NMFS)for population assessment and management of Atlantic Bluefin Tuna. The research team is a multi-sector and multi-disciplinary team composed of government (NOAA_NMFS), academic (University of South Florida Institute for Marine Remote Sensing) and commercial (Roffer’s Ocean Fishing Forecasting Service, Inc.) institutions. Their goal is to reduce the variance in the estimates of adult Bluefin Tuna spawning stock abundance in the Gulf of Mexico (GOM). Therefore, this paper will be derived from the innovative use of several earth orbiting satellites focusing on the use of synthetic aperture radar (SAR) data to identify Sargassum, which is a floating marine algae that may be relevant to the presence of Bluefin Tuna aggregations. The SAR imagery will be examined in combination with MODIS and MERIS Chlorophyll-a products to detect fine-scale surface current shear, eddy and frontal features, as well as biological slicks due to the presence of Sargassum. In addition, wind records from NOAA buoy data will be studied to analyze wind patterns in the Gulf of Mexico. The fine-resolution, all-weather capabilities of SAR provide a valuable complement to optical/IR sensors, which are often impacted by cloud cover. This study will provide an assessment of whether or not SAR can contribute to decision support efforts relevant to commercial fisheries through the improvement of the understanding of environmental conditions relative to Tuna. The critically endangered Atlantic Bluefin Tuna (Thunnus thynnus)

  1. The new Met Office strategy for seasonal forecasts

    NASA Astrophysics Data System (ADS)

    Hewson, T. D.

    2012-04-01

    In October 2011 the Met Office began issuing a new-format UK seasonal forecast, called "The 3-month Outlook". Government interest in a UK-relevant product had been heightened by infrastructure issues arising during the severe cold of previous winters. At the same time there was evidence that the Met Office's "GLOSEA4" long range forecasting system exhibited some hindcast skill for the UK, that was comparable to its hindcast skill for the larger (and therefore less useful) 'northern Europe' region. Also, the NAO- and AO- signals prevailing in the previous two winters had been highlighted by the GLOSEA4 model well in advance. This presentation will initially give a brief overview of GLOSEA4, describing key features such as evolving sea-ice, a well-resolved stratosphere, and the perturbation strategy. Skill measures will be shown, along with forecasts for the last 3 winters. The new structure 3-month outlook will then be described and presented. Previously, our seasonal forecasts had been based on a tercile approach. The new format outlook aims to substantially improve upon this by illustrating graphically, and with text, the full range of possible outcomes, and by placing those outcomes in the context of climatology. In one key component the forecast pdfs (probability density functions) are displayed alongside climatological pdfs. To generate the forecast pdf we take the bias-corrected GLOSEA4 output (42 members), and then incorporate, via expert team, all other relevant information. Firstly model forecasts from other centres are examined. Then external 'forcing factors', such as solar, and the state of the land-ocean-ice system, are referenced, assessing how well the models represent their influence, and bringing in statistical relationships where appropriate. The expert team thereby decides upon any changes to the GLOSEA4 data, employing an interactive tool to shift, expand or contract the forecast pdfs accordingly. The full modification process will be illustrated during the presentation. Another key component of the 3-month outlook is the focus it places on potential hazards and impacts. To date specific references have been made to snow and ice disruption, to replenishment expectation for regions suffering water supply shortages, and to windstorm frequency. This aspect will be discussed, showing also some subjective verification. In future we hope to extend the 3-month outlook framework to other parts of the world, notably Africa, a region where the Met Office, with DfID support, is working collaboratively to improve real-time long range forecasts. Brief reference will also be made to such activities.

  2. Novel Methods in Disease Biogeography: A Case Study with Heterosporosis

    PubMed Central

    Escobar, Luis E.; Qiao, Huijie; Lee, Christine; Phelps, Nicholas B. D.

    2017-01-01

    Disease biogeography is currently a promising field to complement epidemiology, and ecological niche modeling theory and methods are a key component. Therefore, applying the concepts and tools from ecological niche modeling to disease biogeography and epidemiology will provide biologically sound and analytically robust descriptive and predictive analyses of disease distributions. As a case study, we explored the ecologically important fish disease Heterosporosis, a relatively poorly understood disease caused by the intracellular microsporidian parasite Heterosporis sutherlandae. We explored two novel ecological niche modeling methods, the minimum-volume ellipsoid (MVE) and the Marble algorithm, which were used to reconstruct the fundamental and the realized ecological niche of H. sutherlandae, respectively. Additionally, we assessed how the management of occurrence reports can impact the output of the models. Ecological niche models were able to reconstruct a proxy of the fundamental and realized niche for this aquatic parasite, identifying specific areas suitable for Heterosporosis. We found that the conceptual and methodological advances in ecological niche modeling provide accessible tools to update the current practices of spatial epidemiology. However, careful data curation and a detailed understanding of the algorithm employed are critical for a clear definition of the assumptions implicit in the modeling process and to ensure biologically sound forecasts. In this paper, we show how sensitive MVE is to the input data, while Marble algorithm may provide detailed forecasts with a minimum of parameters. We showed that exploring algorithms of different natures such as environmental clusters, climatic envelopes, and logistic regressions (e.g., Marble, MVE, and Maxent) provide different scenarios of potential distribution. Thus, no single algorithm should be used for disease mapping. Instead, different algorithms should be employed for a more informed and complete understanding of the pathogen or parasite in question. PMID:28770215

  3. Ability of matrix models to explain the past and predict the future of plant populations.

    USGS Publications Warehouse

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  4. Ability of matrix models to explain the past and predict the future of plant populations.

    PubMed

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.

  5. Types of Creativity and Visualization in Teams of Different Educational Specialization

    ERIC Educational Resources Information Center

    Blazhenkova, Olesya; Kozhevnikov, Maria

    2016-01-01

    This research is the first to examine different types of creativity dimensions in relation to different types of visualization on a team level, by comparing adolescences' teams of different specialization (visual artist, scientists, and humanities) during a complex creative task in an ecologically valid educational setting First, the difference…

  6. Forecasting Temporal Dynamics of Cutaneous Leishmaniasis in Northeast Brazil

    PubMed Central

    Lewnard, Joseph A.; Jirmanus, Lara; Júnior, Nivison Nery; Machado, Paulo R.; Glesby, Marshall J.; Ko, Albert I.; Carvalho, Edgar M.; Schriefer, Albert; Weinberger, Daniel M.

    2014-01-01

    Introduction Cutaneous leishmaniasis (CL) is a vector-borne disease of increasing importance in northeastern Brazil. It is known that sandflies, which spread the causative parasites, have weather-dependent population dynamics. Routinely-gathered weather data may be useful for anticipating disease risk and planning interventions. Methodology/Principal Findings We fit time series models using meteorological covariates to predict CL cases in a rural region of Bahía, Brazil from 1994 to 2004. We used the models to forecast CL cases for the period 2005 to 2008. Models accounting for meteorological predictors reduced mean squared error in one, two, and three month-ahead forecasts by up to 16% relative to forecasts from a null model accounting only for temporal autocorrelation. Significance These outcomes suggest CL risk in northeastern Brazil might be partially dependent on weather. Responses to forecasted CL epidemics may include bolstering clinical capacity and disease surveillance in at-risk areas. Ecological mechanisms by which weather influences CL risk merit future research attention as public health intervention targets. PMID:25356734

  7. Forecasting temporal dynamics of cutaneous leishmaniasis in Northeast Brazil.

    PubMed

    Lewnard, Joseph A; Jirmanus, Lara; Júnior, Nivison Nery; Machado, Paulo R; Glesby, Marshall J; Ko, Albert I; Carvalho, Edgar M; Schriefer, Albert; Weinberger, Daniel M

    2014-10-01

    Cutaneous leishmaniasis (CL) is a vector-borne disease of increasing importance in northeastern Brazil. It is known that sandflies, which spread the causative parasites, have weather-dependent population dynamics. Routinely-gathered weather data may be useful for anticipating disease risk and planning interventions. We fit time series models using meteorological covariates to predict CL cases in a rural region of Bahía, Brazil from 1994 to 2004. We used the models to forecast CL cases for the period 2005 to 2008. Models accounting for meteorological predictors reduced mean squared error in one, two, and three month-ahead forecasts by up to 16% relative to forecasts from a null model accounting only for temporal autocorrelation. These outcomes suggest CL risk in northeastern Brazil might be partially dependent on weather. Responses to forecasted CL epidemics may include bolstering clinical capacity and disease surveillance in at-risk areas. Ecological mechanisms by which weather influences CL risk merit future research attention as public health intervention targets.

  8. Building the team for team science

    USGS Publications Warehouse

    Read, Emily K.; O'Rourke, M.; Hong, G. S.; Hanson, P. C.; Winslow, Luke A.; Crowley, S.; Brewer, C. A.; Weathers, K. C.

    2016-01-01

    The ability to effectively exchange information and develop trusting, collaborative relationships across disciplinary boundaries is essential for 21st century scientists charged with solving complex and large-scale societal and environmental challenges, yet these communication skills are rarely taught. Here, we describe an adaptable training program designed to increase the capacity of scientists to engage in information exchange and relationship development in team science settings. A pilot of the program, developed by a leader in ecological network science, the Global Lake Ecological Observatory Network (GLEON), indicates that the training program resulted in improvement in early career scientists’ confidence in team-based network science collaborations within and outside of the program. Fellows in the program navigated human-network challenges, expanded communication skills, and improved their ability to build professional relationships, all in the context of producing collaborative scientific outcomes. Here, we describe the rationale for key communication training elements and provide evidence that such training is effective in building essential team science skills.

  9. Shared knowledge or shared affordances? Insights from an ecological dynamics approach to team coordination in sports.

    PubMed

    Silva, Pedro; Garganta, Júlio; Araújo, Duarte; Davids, Keith; Aguiar, Paulo

    2013-09-01

    Previous research has proposed that team coordination is based on shared knowledge of the performance context, responsible for linking teammates' mental representations for collective, internalized action solutions. However, this representational approach raises many questions including: how do individual schemata of team members become reformulated together? How much time does it take for this collective cognitive process to occur? How do different cues perceived by different individuals sustain a general shared mental representation? This representational approach is challenged by an ecological dynamics perspective of shared knowledge in team coordination. We argue that the traditional shared knowledge assumption is predicated on 'knowledge about' the environment, which can be used to share knowledge and influence intentions of others prior to competition. Rather, during competitive performance, the control of action by perceiving surrounding informational constraints is expressed in 'knowledge of' the environment. This crucial distinction emphasizes perception of shared affordances (for others and of others) as the main communication channel between team members during team coordination tasks. From this perspective, the emergence of coordinated behaviours in sports teams is based on the formation of interpersonal synergies between players resulting from collective actions predicated on shared affordances.

  10. Why preferring parametric forecasting to nonparametric methods?

    PubMed

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Long-term ensemble forecast of snowmelt inflow into the Cheboksary Reservoir under two different weather scenarios

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander; Moreydo, Vsevolod; Motovilov, Yury; Solomatine, Dimitri P.

    2018-04-01

    A long-term forecasting ensemble methodology, applied to water inflows into the Cheboksary Reservoir (Russia), is presented. The methodology is based on a version of the semi-distributed hydrological model ECOMAG (ECOlogical Model for Applied Geophysics) that allows for the calculation of an ensemble of inflow hydrographs using two different sets of weather ensembles for the lead time period: observed weather data, constructed on the basis of the Ensemble Streamflow Prediction methodology (ESP-based forecast), and synthetic weather data, simulated by a multi-site weather generator (WG-based forecast). We have studied the following: (1) whether there is any advantage of the developed ensemble forecasts in comparison with the currently issued operational forecasts of water inflow into the Cheboksary Reservoir, and (2) whether there is any noticeable improvement in probabilistic forecasts when using the WG-simulated ensemble compared to the ESP-based ensemble. We have found that for a 35-year period beginning from the reservoir filling in 1982, both continuous and binary model-based ensemble forecasts (issued in the deterministic form) outperform the operational forecasts of the April-June inflow volume actually used and, additionally, provide acceptable forecasts of additional water regime characteristics besides the inflow volume. We have also demonstrated that the model performance measures (in the verification period) obtained from the WG-based probabilistic forecasts, which are based on a large number of possible weather scenarios, appeared to be more statistically reliable than the corresponding measures calculated from the ESP-based forecasts based on the observed weather scenarios.

  12. The human ecology of tornadoes.

    PubMed

    Aguirre, B E; Saenz, R; Edmiston, J; Yang, N; Agramonte, E; Stuart, D L

    1993-11-01

    This paper offers an empirical test of the impact of human ecological patterns and other known correlates on tornado occurrence. It uses the National Severe Storms Forecast Center's information on tornadoes from 1950 through 1990 and employs ecological data from the U.S. Bureau of the Census and the Environmental Protection Agency. The results show that metropolitan and other urban counties have higher odds of tornado occurrence than rural counties, and that the probability of occurrence of tornadoes increases with increases in the number of previous tornadoes. The paper assesses the meaning of this finding for demographers, atmospheric scientists, engineers, and disaster managers.

  13. Forecasting Ecological Genomics: High-Tech Animal Instrumentation Meets High-Throughput Sequencing

    PubMed Central

    Shafer, Aaron B. A.; Northrup, Joseph M.; Wikelski, Martin; Wittemyer, George; Wolf, Jochen B. W.

    2016-01-01

    Recent advancements in animal tracking technology and high-throughput sequencing are rapidly changing the questions and scope of research in the biological sciences. The integration of genomic data with high-tech animal instrumentation comes as a natural progression of traditional work in ecological genetics, and we provide a framework for linking the separate data streams from these technologies. Such a merger will elucidate the genetic basis of adaptive behaviors like migration and hibernation and advance our understanding of fundamental ecological and evolutionary processes such as pathogen transmission, population responses to environmental change, and communication in natural populations. PMID:26745372

  14. Science Results from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR): Progress Report

    NASA Technical Reports Server (NTRS)

    Evans, Diane L. (Editor); Plaut, Jeffrey (Editor)

    1996-01-01

    The Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is the most advanced imaging radar system to fly in Earth orbit. Carried in the cargo bay of the Space Shuttle Endeavour in April and October of 1994, SIR-C/X-SAR simultaneously recorded SAR data at three wavelengths (L-, C-, and X-bands; 23.5, 5.8, and 3.1 cm, respectively). The SIR-C/X-SAR Science Team consists of 53 investigator teams from more than a dozen countries. Science investigations were undertaken in the fields of ecology, hydrology, ecology, and oceanography. This report contains 44 investigator team reports and several additional reports from coinvestigators and other researchers.

  15. Value of the GENS Forecast Ensemble as a Tool for Adaptation of Economic Activity to Climate Change

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Alpert, J. C.; Kordzakhia, M.

    2009-12-01

    In an atmosphere of uncertainty as to the magnitude and direction of climate change in upcoming decades, one adaptation mechanism has emerged with consensus support: the upgrade and dissemination of spatially-resolved, accurate forecasts tailored to the needs of users. Forecasting can facilitate the changeover from dependence on climatology that is increasingly out of date. The best forecasters are local, but local forecasters face great constraints in some countries. Indeed, it is no coincidence that some areas subject to great weather variability and strong processes of climate change are economically vulnerable: mountainous regions, for example, where heavy and erratic flooding can destroy the value built up by households over years. It follows that those best placed to benefit from forecasting upgrades may not be those who have invested in the greatest capacity to date. More-flexible use of the global forecasts may contribute to adaptation. NOAA anticipated several years ago that their forecasts could be used in new ways in the future, and accordingly prepared sockets for easy access to their archives. These could be used to empower various national and regional capacities. Verification to identify practical lead times for the economically important variables is a needed first step. This presentation presents the verification that our team has undertaken, a pilot effort in which we considered variables of interest to economic actors in several lower income countries, cf. shepherds in a remote area of Central Asia, and verified the ensemble forecasts of those variables.

  16. Adapting National Water Model Forecast Data to Local Hyper-Resolution H&H Models During Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Singhofen, P.

    2017-12-01

    The National Water Model (NWM) is a remarkable undertaking. The foundation of the NWM is a 1 square kilometer grid which is used for near real-time modeling and flood forecasting of most rivers and streams in the contiguous United States. However, the NWM falls short in highly urbanized areas with complex drainage infrastructure. To overcome these shortcomings, the presenter proposes to leverage existing local hyper-resolution H&H models and adapt the NWM forcing data to them. Gridded near real-time rainfall, short range forecasts (18-hour) and medium range forecasts (10-day) during Hurricane Irma are applied to numerous detailed H&H models in highly urbanized areas of the State of Florida. Coastal and inland models are evaluated. Comparisons of near real-time rainfall data are made with observed gaged data and the ability to predict flooding in advance based on forecast data is evaluated. Preliminary findings indicate that the near real-time rainfall data is consistently and significantly lower than observed data. The forecast data is more promising. For example, the medium range forecast data provides 2 - 3 days advanced notice of peak flood conditions to a reasonable level of accuracy in most cases relative to both timing and magnitude. Short range forecast data provides about 12 - 14 hours advanced notice. Since these are hyper-resolution models, flood forecasts can be made at the street level, providing emergency response teams with valuable information for coordinating and dispatching limited resources.

  17. Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry

    DOE PAGES

    Bessa, Ricardo; Möhrlen, Corinna; Fundel, Vanessa; ...

    2017-09-14

    Around the world wind energy is starting to become a major energy provider in electricity markets, as well as participating in ancillary services markets to help maintain grid stability. The reliability of system operations and smooth integration of wind energy into electricity markets has been strongly supported by years of improvement in weather and wind power forecasting systems. Deterministic forecasts are still predominant in utility practice although truly optimal decisions and risk hedging are only possible with the adoption of uncertainty forecasts. One of the main barriers for the industrial adoption of uncertainty forecasts is the lack of understanding ofmore » its information content (e.g., its physical and statistical modeling) and standardization of uncertainty forecast products, which frequently leads to mistrust towards uncertainty forecasts and their applicability in practice. Our paper aims at improving this understanding by establishing a common terminology and reviewing the methods to determine, estimate, and communicate the uncertainty in weather and wind power forecasts. This conceptual analysis of the state of the art highlights that: (i) end-users should start to look at the forecast's properties in order to map different uncertainty representations to specific wind energy-related user requirements; (ii) a multidisciplinary team is required to foster the integration of stochastic methods in the industry sector. Furthermore, a set of recommendations for standardization and improved training of operators are provided along with examples of best practices.« less

  18. Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessa, Ricardo; Möhrlen, Corinna; Fundel, Vanessa

    Around the world wind energy is starting to become a major energy provider in electricity markets, as well as participating in ancillary services markets to help maintain grid stability. The reliability of system operations and smooth integration of wind energy into electricity markets has been strongly supported by years of improvement in weather and wind power forecasting systems. Deterministic forecasts are still predominant in utility practice although truly optimal decisions and risk hedging are only possible with the adoption of uncertainty forecasts. One of the main barriers for the industrial adoption of uncertainty forecasts is the lack of understanding ofmore » its information content (e.g., its physical and statistical modeling) and standardization of uncertainty forecast products, which frequently leads to mistrust towards uncertainty forecasts and their applicability in practice. Our paper aims at improving this understanding by establishing a common terminology and reviewing the methods to determine, estimate, and communicate the uncertainty in weather and wind power forecasts. This conceptual analysis of the state of the art highlights that: (i) end-users should start to look at the forecast's properties in order to map different uncertainty representations to specific wind energy-related user requirements; (ii) a multidisciplinary team is required to foster the integration of stochastic methods in the industry sector. Furthermore, a set of recommendations for standardization and improved training of operators are provided along with examples of best practices.« less

  19. KSC-06pd1279

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - Under the watchful eyes of the media, an upper-level weather balloon begins its lift into the sky. The release of the balloon at the Cape Canaveral weather station in Florida was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  20. Strategic guidelines of a megalopolis’s development: new industrialization and ecological tension

    NASA Astrophysics Data System (ADS)

    Lavrikova, Yulia; Akberdina, Victoria; Mezentseva, Elena

    2017-06-01

    The article is devoted to the integration of environmental concerns in the development strategy of the metropolis. The authors substantiate the relationship of the new industrialization and reduce the burden on the environment. For example, a large city in Russia - Ekaterinburg - projections and strategic directions of ecological development of the city for the period up to 2035. The basis for the forecast were the methods of aggregation of economic sectors, functional relationship and forecasting algorithms. The article describes three scenarios for the development of Ekaterinburg, the results of calculations by the author’s method. The authors have shown the relationship of industrial development of the metropolis and the anthropogenic load, which is assessed using such indicators as emissions of harmful substances into the atmosphere, discharges of sewage, green spaces per inhabitant. The authors note that the ecological security of the residents is directly related to the improvement of controllability of the municipal economy, the increased control in the field of the environment, reduction of environmental burden on humans and the environment, zoning of the city with a goal differential application of indicators of the quality of the environment.

  1. AWIPS II Application Development, a SPoRT Perspective

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.; Smith, Matthew; McGrath, Kevin M.

    2014-01-01

    The National Weather Service (NWS) is deploying its next-generation decision support system, called AWIPS II (Advanced Weather Interactive Processing System II). NASA's Short-term Prediction Research and Transition (SPoRT) Center has developed several software 'plug-ins' to extend the capabilities of AWIPS II. SPoRT aims to continue its mission of improving short-term forecasts by providing NASA and NOAA products on the decision support system used at NWS weather forecast offices (WFOs). These products are not included in the standard Satellite Broadcast Network feed provided to WFOs. SPoRT has had success in providing support to WFOs as they have transitioned to AWIPS II. Specific examples of transitioning SPoRT plug-ins to WFOs with newly deployed AWIPS II systems will be presented. Proving Ground activities (GOES-R and JPSS) will dominate SPoRT's future AWIPS II activities, including tool development as well as enhancements to existing products. In early 2012 SPoRT initiated the Experimental Product Development Team, a group of AWIPS II developers from several institutions supporting NWS forecasters with innovative products. The results of the team's spring and fall 2013 meeting will be presented. Since AWIPS II developers now include employees at WFOs, as well as many other institutions related to weather forecasting, the NWS has dealt with a multitude of software governance issues related to the difficulties of multiple remotely collaborating software developers. This presentation will provide additional examples of Research-to-Operations plugins, as well as an update on how governance issues are being handled in the AWIPS II developer community.

  2. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  3. Solutions Network Formulation Report. Integrating Salinity Measurements from Aquarius into the Harmful Algal Blooms Observing System

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Lewis, David; Hilbert, Kent

    2007-01-01

    This Candidate Solution suggests the use of Aquarius sea surface salinity measurements to improve the NOAA/NCDDC (National Oceanic and Atmospheric Administration s National Coastal Data Development Center) HABSOS (Harmful Algal Blooms Observing System) DST (decision support tool) by enhancing development and movement forecasts of HAB events as well as potential species identification. In the proposed configuration, recurring salinity measurements from the Aquarius mission would augment HABSOS sea surface temperature and in situ ocean current measurements. Thermohaline circulation observations combined with in situ measurements increase the precision of HAB event movement forecasting. These forecasts allow coastal managers and public health officials to make more accurate and timely warnings to the public and to better direct science teams to event sites for collection and further measurements.

  4. Forecasting a winner for Malaysian Cup 2013 using soccer simulation model

    NASA Astrophysics Data System (ADS)

    Yusof, Muhammad Mat; Fauzee, Mohd Soffian Omar; Latif, Rozita Abdul

    2014-07-01

    This paper investigates through soccer simulation the calculation of the probability for each team winning Malaysia Cup 2013. Our methodology used here is we predict the outcomes of individual matches and then we simulate the Malaysia Cup 2013 tournament 5000 times. As match outcomes are always a matter of uncertainty, statistical model, in particular a double Poisson model is used to predict the number of goals scored and conceded for each team. Maximum likelihood estimation is use to measure the attacking strength and defensive weakness for each team. Based on our simulation result, LionXII has a higher probability in becoming the winner, followed by Selangor, ATM, JDT and Kelantan. Meanwhile, T-Team, Negeri Sembilan and Felda United have lower probabilities to win Malaysia Cup 2013. In summary, we find that the probability for each team becominga winner is small, indicating that the level of competitive balance in Malaysia Cup 2013 is quite high.

  5. Experimental droughts with rainout shelters: A methodological review

    USDA-ARS?s Scientific Manuscript database

    Forecast increases in the frequency, intensity and duration of droughts with climate change may have extreme and extensive ecological consequences. There are currently hundreds of published, ongoing and new drought experiments worldwide aimed to assess ecosystem sensitivities to drought and identify...

  6. Using HexSim to simulate complex species, landscape, and stressor interactions

    EPA Science Inventory

    Background / Question / Methods The use of simulation models in conservation biology, landscape ecology, and other disciplines is increasing. Models are essential tools for researchers who, for example, need to forecast future conditions, weigh competing recovery and mitigation...

  7. Development of an ecological classification system for the Cooper Creek watershed of the Chattahoochee National Forest: a first approximation

    Treesearch

    W. Henry McNab; Ronald B. Stephens; Erika M. Mavity; Joanne E. Baggs; James M. Wentworth; Richard D. Rightmyer; Alex J. Jaume; Brian D. Jackson; Michael P. Joyce

    2015-01-01

    The 2004 management plan for the Chattahoochee National Forest states that many future resource objectives and goals have an ecological basis. Assessment of resource needs in the Cooper Creek watershed area of the southern Appalachian Mountains of north Georgia were identified with awareness of ecological constraints and suitability. An interdisciplinary team of...

  8. Improved management of small pelagic fisheries through seasonal climate prediction.

    PubMed

    Tommasi, Désirée; Stock, Charles A; Pegion, Kathleen; Vecchi, Gabriel A; Methot, Richard D; Alexander, Michael A; Checkley, David M

    2017-03-01

    Populations of small pelagic fish are strongly influenced by climate. The inability of managers to anticipate environment-driven fluctuations in stock productivity or distribution can lead to overfishing and stock collapses, inflexible management regulations inducing shifts in the functional response to human predators, lost opportunities to harvest populations, bankruptcies in the fishing industry, and loss of resilience in the human food supply. Recent advances in dynamical global climate prediction systems allow for sea surface temperature (SST) anomaly predictions at a seasonal scale over many shelf ecosystems. Here we assess the utility of SST predictions at this "fishery relevant" scale to inform management, using Pacific sardine as a case study. The value of SST anomaly predictions to management was quantified under four harvest guidelines (HGs) differing in their level of integration of SST data and predictions. The HG that incorporated stock biomass forecasts informed by skillful SST predictions led to increases in stock biomass and yield, and reductions in the probability of yield and biomass falling below socioeconomic or ecologically acceptable levels. However, to mitigate the risk of collapse in the event of an erroneous forecast, it was important to combine such forecast-informed harvest controls with additional harvest restrictions at low biomass. © 2016 by the Ecological Society of America.

  9. Salmon Habitat Modeling Using VELMA

    EPA Science Inventory

    An EPA Western Ecology Division (WED) watershed modeling team has developed a watershed simulation model, VELMA, that state and federal agencies are interested in using for salmon recovery planning in the Pacific Northwest. Team member Bob McKane has been invited to serve on an e...

  10. Hydro-ecological degradation due to human impacts in the Twin Streams Watershed, Auckland, New Zealand

    NASA Astrophysics Data System (ADS)

    Torrecillas Nunez, C.; Miguel-rodriguez, A.

    2012-12-01

    As a collaborative project between the Faculties of Engineering of the University of Sinaloa, Mexico and the University of Auckland, an inter-disciplinary team researched historical information, monitoring results and modelling completed over the last ten years to establish the cause-effect relationship of development and human impacts in the watershed and recommend strategies to offset them .The research program analyzed the performance of the Twin Streams watershed over time with modelling of floods, hydrological disturbance indicators, analysis of water quality and ecological information, cost / benefit, harbor modelling and contaminant loads. The watershed is located in the west of Auckland and comprises 10,356 hectare: 8.19% ecologically protected area, 29.70% buffer zone, 6.67% peri-urban, 30.98% urban, 16.04% parks, and 8.42% other; average impermeability is 19.1%. Current population is 129,475 (2011) forecast to grow to 212,798 by 2051. The watershed includes 317.5 km of streams that drain to the Waitemata Harbor. The human impact can be traced back to the 1850s when the colonial settlers logged the native forests, dammed streams and altered the channel hydro-ecology resulting in significant erosion, sediment and changes to flows. In the early 1900s native vegetation started to regenerate in the headwaters, while agriculture and horticulture become established in rest of the watershed leading to the use of quite often very harmful pesticides and insecticides, such as DDT which is still detected in current environmental monitoring programs, and more erosion and channel alterations. As land become unproductive in the 1950s it stared to be urbanized, followed by more intensive urban development in the 1990s. Curiously there was no regulatory regime to control land use in the early stages and consequently over 400 houses were built in the floodplains, as well there were no legislation to control environmental impacts until 1991. Consequently today there is a wide range of impacts due to human actions which will exacerbated by future development as the population in the watershed is forecast to increase by at least 65% and the likely impacts of global warming. The rural watershed generates sediment which smothers the streams and harbor, while the urban watershed is the source of point and diffuse contamination with heavy metals which damage ecosystems. Evidence of impacts is given by the extent of flooding, reduced ecological flows and sampling results showing that more than 50% of the sites do not comply with environmental guidelines for: water clarity, turbidity, suspended solids, nitrogen, phosphorus, copper, zinc, conductivity, Dieldrin, DDT, Dissolved Oxygen, E.Coli, macroinvertebrates ,etc. , with water quality deteriorating progressively downstream where there is greater urbanization. But perhaps the most stunning evidence of the impacts was established by comparing aerial photographs of the 1940s and 2006 and seeing the build-up of sediments in the estuaries, the change in vegetation cover and discolored water. It is highly likely that the tipping point was reached before urbanization started but there is no doubt that urban development has accelerated the impacts, which has been corroborated by studies in other watersheds in Auckland.

  11. Detection of Rift Valley fever viral activity in Kenya by satellite remote sensing imagery

    NASA Technical Reports Server (NTRS)

    Linthicum, Kenneth J.; Bailey, Charles L.; Davies, F. Glyn; Tucker, Compton J.

    1987-01-01

    Data from the advanced very high resolution radiometer on board the National Oceanic and Atmospheric Administration's polar-orbiting meteorological satellites have been used to infer ecological parameters associated with Rift Valley fever (RVF) viral activity in Kenya. An indicator of potential viral activity was produced from satellite data for two different ecological regions in Kenya, where RVF is enzootic. The correlation between the satellite-derived green vegetation index and the ecological parameters associated with RVF virus suggested that satellite data may become a forecasting tool for RVF in Kenya and, perhaps, in other areas of sub-Saharan Africa.

  12. From Research to Operations: Transitioning Noaa's Lake Erie Harmful Algal Bloom Forecast System

    NASA Astrophysics Data System (ADS)

    Kavanaugh, K. E.; Stumpf, R. P.

    2016-02-01

    A key priority of NOAA's Harmful Algal Bloom Operational Forecast System (HAB-OFS) is to leverage the Ecological Forecasting Roadmap to systematically transition to operations scientifically mature HAB forecasts in regions of the country where there is a strong user need identified and an operational framework can be supported. While in the demonstration phase, the Lake Erie HAB forecast has proven its utility. Over the next two years, NOAA will be transitioning the Lake Erie HAB forecast to operations with an initial operating capability established in the HAB OFS' operational infrastructure by the 2016 bloom season. Blooms of cyanobacteria are a recurring problem in Lake Erie, and the dominant bloom forming species, Microcystis aeruginosa, produces a toxin called microcystin that is poisonous to humans, livestock and pets. Once the toxins have contaminated the source water used for drinking water, it is costly for public water suppliers to remove them. As part of the Lake Erie HAB forecast demonstration, NOAA has provided information regarding the cyanobacterial blooms in a biweekly Experimental HAB Bulletin, which includes information about the current and forecasted distribution, toxicity, potential for vertical mixing or scum formation, mixing of the water column, and predictions of bloom decline. Coastal resource managers, public water suppliers and public health officials use the Experimental HAB Bulletins to respond to and mitigate the impacts of cyanobacterial blooms. The transition to operations will benefit stakeholders through ensuring that future Lake Erie HAB forecast products are sustained, systematic, reliable, and robust. Once operational, the forecasts will continue to be assessed and improvements will be made based on the results of emerging scientific research. In addition, the lessons learned from the Lake Erie transition will be used to streamline the process for future HAB forecasts presently in development.

  13. [Ecological carrying capacity and Chongming Island's ecological construction].

    PubMed

    Wang, Kaiyun; Zou, Chunjing; Kong, Zhenghong; Wang, Tianhou; Chen, Xiaoyong

    2005-12-01

    This paper overviewed the goals of Chongming Island's ecological construction and its background, analyzed the current eco-economic status and constraints of the Island, and put forward some scientific issues on its ecological construction. It was suggested that for the resources-saving and sustainable development of the Island, the researches on its ecological construction should be based on its ecological carrying capacity, fully take the regional characteristics into consideration, and refer the successful development modes at home and abroad. The carrying capacity study should ground on systemic and dynamic views, give a thorough evaluation of the Island's present carrying capacity, simulate its possible changes, and forecast its demands and risks. Operable countermeasures to promote the Island's carrying capacity should be worked out, new industry structure, population scale, and optimized distribution projects conforming to regional carrying capacity should be formulated, and effective ecological security alarming and control system should be built, with the aim of providing suggestions and strategic evidences for the decision-making of economic development and sustainable environmental resources use of the region.

  14. Sub-Seasonal Climate Forecast Rodeo

    NASA Astrophysics Data System (ADS)

    Webb, R. S.; Nowak, K.; Cifelli, R.; Brekke, L. D.

    2017-12-01

    The Bureau of Reclamation, as the largest water wholesaler and the second largest producer of hydropower in the United States, benefits from skillful forecasts of future water availability. Researchers, water managers from local, regional, and federal agencies, and groups such as the Western States Water Council agree that improved precipitation and temperature forecast information at the sub-seasonal to seasonal (S2S) timescale is an area with significant potential benefit to water management. In response, and recognizing NOAA's leadership in forecasting, Reclamation has partnered with NOAA to develop and implement a real-time S2S forecasting competition. For a year, solvers are submitting forecasts of temperature and precipitation for weeks 3&4 and 5&6 every two weeks on a 1x1 degree grid for the 17 western state domain where Reclamation operates. The competition began on April 18, 2017 and the final real-time forecast is due April 3, 2018. Forecasts are evaluated once observational data become available using spatial anomaly correlation. Scores are posted on a competition leaderboard hosted by the National Integrated Drought Information System (NIDIS). The leaderboard can be accessed at: https://www.drought.gov/drought/sub-seasonal-climate-forecast-rodeo. To be eligible for cash prizes - which total $800,000 - solvers must outperform two benchmark forecasts during the real-time competition as well as in a required 11-year hind-cast. To receive a prize, competitors must grant a non-exclusive license to practice their forecast technique and make it available as open source software. At approximately one quarter complete, there are teams outperforming the benchmarks in three of the four competition categories. With prestige and monetary incentives on the line, it is hoped that the competition will spur innovation of improved S2S forecasts through novel approaches, enhancements to established models, or otherwise. Additionally, the competition aims to raise awareness on the S2S forecast need and the potential benefits- which extend beyond water management - to drought preparedness, public health, and other sectors.

  15. Building Professional and Technical Skills in the Use of Earth Observations through the NASA DEVELOP National Program: Best Practices & Lessons Learned

    NASA Astrophysics Data System (ADS)

    Crepps, G.; Ross, K. W.; Childs-Gleason, L. M.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.; Clayton, A.

    2017-12-01

    The NASA DEVELOP National Program offers 10-week research opportunities to participants to work on rapid feasibility projects utilizing NASA Earth observations in a variety of applications, including ecological forecasting, water resources, disasters, and health and air quality. DEVELOP offers a unique collaborative environment in which students, recent graduates, and transitioning career professionals are placed on interdisciplinary teams to conduct projects. DEVELOP offers a variety of opportunities and resources to build participants technical skills in remote sensing and GIS, as well as interpersonal and leadership skills. As a capacity building program, DEVELOP assesses participants' growth by using entrance and exit personal growth assessments, as well as gathering general program feedback through an exit survey. All of this information is fed back into the program for continual improvement. DEVELOP also offers a progression of opportunities through which participants can advance through the program, allowing participants to build a diverse set of technical and leadership skills. This presentation will explore best practices including the use of pre- and post-growth assessments, offering advanced leadership opportunities, and overall capacity building impacts on participants.

  16. The Ecological Areawide Management (TEAM) of leafy spurge program of the United States Department of Agriculture-Agricultural Research Service.

    PubMed

    Anderson, Gerald L; Prosser, Chad W; Wendel, Lloyd E; Delfosse, Ernest S; Faust, Robert M

    2003-01-01

    The Ecological Areawide Management (TEAM) of Leafy Spurge program was developed to focus research and control efforts on a single weed, leafy spurge, and demonstrate the effectiveness of a coordinated, biologically based, integrated pest management program (IPM). This was accomplished through partnerships and teamwork that clearly demonstrated the advantages of the biologically based IPM approach. However, the success of regional weed control programs horizontally across several states and provinces also requires a vertical integration of several sectors of society. Awareness and education are the essential elements of vertical integration. Therefore, a substantial effort was made to produce a wide variety of information products specifically designed to educate different segments of society. During its tenure, land managers and agency decision makers have seen the potential of using the TEAM approach to accelerate the regional control of leafy spurge. The example set by the TEAM organization and participants is viewed as a model for future weed-control efforts.

  17. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post streamline the interaction of analysis, forecast, and post-processing systems within NCEP. The NEMS Force, and will eventually provide support to the community through the Developmental Test Center (DTC

  18. NWS Mobile Weather

    Science.gov Websites

    Astronomical Data Tsunami Full Site FAQ Site Info Feedback Click map for forecast jQuery Mobile Framework = Requested Location Satellite Visible (Vis) Infrared (IR) Regional Vis Regional IR Legal Mobile site Product : NWS Internet Team Privacy Policy Mobile Page Feedback Full Survey Tweet feedback (#nwsmobileweb

  19. NERACOOS | weather | ocean | marine forecast | waves | buoy | marine

    Science.gov Websites

    to address today's highly complex ocean and coastal challenges through integrated graduate education Avery Point campus faculty, staff and students carry out cutting-edge research in coastal oceanography Ocean Data Products team Regional Coastal Observing Systems: Alaska * Pacific Northwest * Central and

  20. National Centers for Environmental Prediction

    Science.gov Websites

    Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Products People GLOBAL CLIMATE & WEATHER MODELING Global Forecast System (GFS) products - Please see

  1. National Centers for Environmental Prediction

    Science.gov Websites

    / VISION | About EMC EMC > GEFS > OPERATIONAL PRODUCTS Home Operational Products Experimental Data Global Ensemble products posted by the GEFS model team are experimental analysis and forecast products , and you will find them listed under the "Experimental Data" section of our web site. The

  2. Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation, 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merz, Norm

    2009-02-18

    The overarching goals of the 'Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation' Project (BPA Project No.2002-011-00) are to: (1) assess abiotic and biotic factors (i.e., geomorphologic, hydrological, aquatic and riparian/floodplain communities) in determining a definitive composition of ecological integrity, (2) develop strategies to assess and mitigate losses of ecosystem functions, and (3) produce a regional operational loss assessment framework. To produce a scientifically defensible, repeatable, and complete assessment tool, KTOI assembled a team of top scientists in the fields of hydrology, hydraulics, ornithology, entomology, statistics, and river ecology, among other expertise. This advisory team is knownmore » as the Research Design and Review Team (RDRT). The RDRT scientists drive the review, selection, and adaptive management of the research designs to evaluate the ecologic functions lost due to the operation of federal hydropower facilities. The unique nature of this project (scientific team, newest/best science, adaptive management, assessment of ecological functions, etc.) has been to work in a dynamic RDRT process. In addition to being multidisciplinary, this model KTOI project provides a stark contrast to the sometimes inflexible process (review, re-review, budgets, etc.) of the Columbia River Basin Fish and Wildlife Program. The project RDRT is assembled annually, with subgroups meeting as needed throughout the year to address project issues, analyses, review, and interpretation. Activities of RDRT coordinated and directed the selection of research and assessment methodologies appropriate for the Kootenai River Watershed and potential for regional application in the Columbia River Basin. The entire RDRT continues to meet annually to update and discuss project progress. RDRT Subcontractors work in smaller groups throughout the year to meet project objectives. Determining the extent to which ecological systems are experiencing anthropogenic disturbance and change in structure and function is critical for long term conservation of biotic diversity in the face of changing landscapes and land use. KTOI and the RDRT propose a concept based on incorporating hydrologic, aquatic, and terrestrial components into an operations-based assessment framework to assess ecological losses as shown in Figure E-1.« less

  3. [Ecological security early-warning in Zhoushan Islands based on variable weight model].

    PubMed

    Zhou, Bin; Zhong, Lin-sheng; Chen, Tian; Zhou, Rui

    2015-06-01

    Ecological security early warning, as an important content of ecological security research, is of indicating significance in maintaining regional ecological security. Based on driving force, pressure, state, impact and response (D-P-S-I-R) framework model, this paper took Zhoushan Islands in Zhejiang Province as an example to construct the ecological security early warning index system, test degrees of ecological security early warning of Zhoushan Islands from 2000 to 2012 by using the method of variable weight model, and forecast ecological security state of 2013-2018 by Markov prediction method. The results showed that the variable weight model could meet the study needs of ecological security early warning of Zhoushan Islands. There was a fluctuant rising ecological security early warning index from 0.286 to 0.484 in Zhoushan Islands between year 2000 and 2012, in which the security grade turned from "serious alert" into " medium alert" and the indicator light turned from "orange" to "yellow". The degree of ecological security warning was "medium alert" with the light of "yellow" for Zhoushan Islands from 2013 to 2018. These findings could provide a reference for ecological security maintenance of Zhoushan Islands.

  4. FIELD EVALUATION OF IN-SITU TREATMENTS TO REDUCE SOIL-LEAD BIOAVAILABILITY: INTRODUCTION & BACKGROUND

    EPA Science Inventory

    The In-place Inactivation and Natural Ecological Restoration Technologies (IINERT) Soil-Metals Action Team was established in 11/95 as one of several Action Teams under the USEPA Remediation Technologies Development Forum (RTDF). Its primary goal was to examine in situ remediatio...

  5. IS REMOVAL THE ONLY OPTION: IN SITU REMEDIATION OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    The In-place Inactivation and Natural Ecological Restoration Technologies (IINERT) Soil-Metals Action Team was established in 11/95 as one of several Action Teams under the USEPA Remediation Technologies Development Forum (RTDF). Its primary goal was to examine in situ remediatio...

  6. A POTENTIAL ECOFORECAST FOR PROTOZOAL INFECTIONS OF THE EASTERN OYSTER (CRASSOSTREA VIRGINICA)

    EPA Science Inventory

    McLaughlin, Shawn M. and Stephen J. Jordan. 2003. Potential Ecoforecast for Protozoal Infections of the Eastern Oyster (Crassostrea virginica) in the Upper Chesapeake Bay. In: Ecological Forecasting: New Tools for Coastal Marine Ecosystem Management. Nathalie Valette-Silver and D...

  7. Diagnostic Assessment of the Ecological Risk of EDCs in Complex Mixtures

    EPA Science Inventory

    Although it is important to be able to forecast the potential endocrine toxicity of chemical mixtures that could enter aquatic environments, in many instances there is a need to determine possible effects of endocrine-active chemicals already present in complex environmental mixt...

  8. The Design and Implementation of Eco-Evolutionary PVA Models: An Integrative Approach Using HexSim

    EPA Science Inventory

    To persist into the future, species of conservation concern must remain both demographically and genetically viable. Developing mitigation and recovery strategies to ensure species’ viability necessitates the use of forecasting models that can incorporate ecological and/or...

  9. Statistical models of temperature in the Sacramento-San Joaquin delta under climate-change scenarios and ecological implications

    USGS Publications Warehouse

    Wagner, R.W.; Stacey, M.; Brown, L.R.; Dettinger, M.

    2011-01-01

    Changes in water temperatures caused by climate change in California's Sacramento-San Joaquin Delta will affect the ecosystem through physiological rates of fishes and invertebrates. This study presents statistical models that can be used to forecast water temperature within the Delta as a response to atmospheric conditions. The daily average model performed well (R2 values greater than 0.93 during verification periods) for all stations within the Delta and San Francisco Bay provided there was at least 1 year of calibration data. To provide long-term projections of Delta water temperature, we forced the model with downscaled data from climate scenarios. Based on these projections, the ecological implications for the delta smelt, a key species, were assessed based on temperature thresholds. The model forecasts increases in the number of days above temperatures causing high mortality (especially along the Sacramento River) and a shift in thermal conditions for spawning to earlier in the year. ?? 2011 The Author(s).

  10. First Assessment of Itaipu Dam Ensemble Inflow Forecasting System

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Machado Vieira Lisboa, Auder; Gomes Villa Trinidad, Giovanni; Rógenes Monteiro Pontes, Paulo; Collischonn, Walter; Tucci, Carlos; Costa Buarque, Diogo

    2017-04-01

    Inflow forecasting for Hydropower Plants (HPP) Dams is one of the prominent uses for hydrological forecasts. A very important HPP in terms of energy generation for South America is the Itaipu Dam, located in the Paraná River, between Brazil and Paraguay countries, with a drainage area of 820.000km2. In this work, we present the development of an ensemble forecasting system for Itaipu, operational since November 2015. The system is based in the MGB-IPH hydrological model, includes hydrodynamics simulations of the main river, and is run every day morning forced by seven different rainfall forecasts: (i) CPTEC-ETA 15km; (ii) CPTEC-BRAMS 5km; (iii) SIMEPAR WRF Ferrier; (iv) SIMEPAR WRF Lin; (v) SIMEPAR WRF Morrison; (vi) SIMEPAR WRF WDM6; (vii) SIMEPAR MEDIAN. The last one (vii) corresponds to the median value of SIMEPAR WRF model versions (iii to vi) rainfall forecasts. Besides the developed system, the "traditional" method for inflow forecasting generation for the Itaipu Dam is also run every day. This traditional method consists in the approximation of the future inflow based on the discharge tendency of upstream telemetric gauges. Nowadays, after all the forecasts are run, the hydrology team of Itaipu develop a consensus forecast, based on all obtained results, which is the one used for the Itaipu HPP Dam operation. After one year of operation a first evaluation of the Ensemble Forecasting System was conducted. Results show that the system performs satisfactory for rising flows up to five days lead time. However, some false alarms were also issued by most ensemble members in some cases. And not in all cases the system performed better than the traditional method, especially during hydrograph recessions. In terms of meteorological forecasts, some members usage are being discontinued. In terms of the hydrodynamics representation, it seems that a better information of rivers cross section could improve hydrographs recession curves forecasts. Those opportunities for improvements are currently being addressed in the system next update.

  11. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE PAGES

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara; ...

    2017-06-16

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  12. Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge.

    PubMed

    Biggerstaff, Matthew; Alper, David; Dredze, Mark; Fox, Spencer; Fung, Isaac Chun-Hai; Hickmann, Kyle S; Lewis, Bryan; Rosenfeld, Roni; Shaman, Jeffrey; Tsou, Ming-Hsiang; Velardi, Paola; Vespignani, Alessandro; Finelli, Lyn

    2016-07-22

    Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts.

  13. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  14. Grandparent Education for Assisted Living Facilities

    ERIC Educational Resources Information Center

    Strom, Robert D.; Strom, Paris S.

    2017-01-01

    The assisted living population is forecast to increase at a rapid rate. Quality of life for residents should be improved by giving greater attention to their cognitive, emotional, and social needs. A university lifespan development team provided a grandparent education course at a large assisted living facility with the assistance of 20 resident…

  15. Multivariate Models of Adult Pacific Salmon Returns

    PubMed Central

    Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  16. Identification and Prediction of Fish Assemblages in Streams of the Albemarle-Pamlico Basin, USA

    EPA Science Inventory

    Set within the Ecological Services Research Program (ESRP) of USEPA’s Office of Research and Development, a multi-disciplinary research collaborative (MEERT –Multimedia Ecological Exposure Research Team) has taken on a challenge to develop a regional assessment of several ecosyst...

  17. A Pirate's Life: A Model and a Metaphor for Learning.

    ERIC Educational Resources Information Center

    Solomon, David L.

    2002-01-01

    Discusses various ways in which context may be interpreted to enhance learning and performance; illustrates domains of learning using a hockey team as an example; and suggests implications for learning, performance, and instructional design. Highlights include an ecological systems model; and examples of individual development, team learning, and…

  18. Crossing Boundaries in Undergraduate Biology Education

    ERIC Educational Resources Information Center

    Vanderklein, Dirk; Munakata, Mika; McManus, Jason

    2016-01-01

    In an effort to make mathematics relevant to biology students, the authors developed two modules that sought to integrate mathematics and ecology instruction to differing degrees. The modules were developed by a team of biology and mathematics educators and were implemented in an ecology course using three different instructional methods for three…

  19. The role of ecological dynamics in analysing performance in team sports.

    PubMed

    Vilar, Luís; Araújo, Duarte; Davids, Keith; Button, Chris

    2012-01-01

    Performance analysis is a subdiscipline of sports sciences and one-approach, notational analysis, has been used to objectively audit and describe behaviours of performers during different subphases of play, providing additional information for practitioners to improve future sports performance. Recent criticisms of these methods have suggested the need for a sound theoretical rationale to explain performance behaviours, not just describe them. The aim of this article was to show how ecological dynamics provides a valid theoretical explanation of performance in team sports by explaining the formation of successful and unsuccessful patterns of play, based on symmetry-breaking processes emerging from functional interactions between players and the performance environment. We offer the view that ecological dynamics is an upgrade to more operational methods of performance analysis that merely document statistics of competitive performance. In support of our arguments, we refer to exemplar data on competitive performance in team sports that have revealed functional interpersonal interactions between attackers and defenders, based on variations in the spatial positioning of performers relative to each other in critical performance areas, such as the scoring zones. Implications of this perspective are also considered for practice task design and sport development programmes.

  20. Time-specific ecologic niche models forecast the risk of hemorrhagic fever with renal syndrome in Dongting Lake district, China, 2005-2010.

    PubMed

    Liu, Hai-Ning; Gao, Li-Dong; Chowell, Gerardo; Hu, Shi-Xiong; Lin, Xiao-Ling; Li, Xiu-Jun; Ma, Gui-Hua; Huang, Ru; Yang, Hui-Suo; Tian, Huaiyu; Xiao, Hong

    2014-01-01

    Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies. We employed statistical models to analyze HFRS case data together with environmental data from the Dongting Lake district during 2005-2010. Specifically, time-specific ecologic niche models (ENMs) were used to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across geographic areas. Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755). Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons. High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas were smaller in March, May and August compared with those identified for June, July and October to December. Both normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors. Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and temporal risk of HFRS.

  1. Physiologically grounded metrics of model skill: a case study estimating heat stress in intertidal populations

    PubMed Central

    Kish, Nicole E.; Helmuth, Brian; Wethey, David S.

    2016-01-01

    Models of ecological responses to climate change fundamentally assume that predictor variables, which are often measured at large scales, are to some degree diagnostic of the smaller-scale biological processes that ultimately drive patterns of abundance and distribution. Given that organisms respond physiologically to stressors, such as temperature, in highly non-linear ways, small modelling errors in predictor variables can potentially result in failures to predict mortality or severe stress, especially if an organism exists near its physiological limits. As a result, a central challenge facing ecologists, particularly those attempting to forecast future responses to environmental change, is how to develop metrics of forecast model skill (the ability of a model to predict defined events) that are biologically meaningful and reflective of underlying processes. We quantified the skill of four simple models of body temperature (a primary determinant of physiological stress) of an intertidal mussel, Mytilus californianus, using common metrics of model performance, such as root mean square error, as well as forecast verification skill scores developed by the meteorological community. We used a physiologically grounded framework to assess each model's ability to predict optimal, sub-optimal, sub-lethal and lethal physiological responses. Models diverged in their ability to predict different levels of physiological stress when evaluated using skill scores, even though common metrics, such as root mean square error, indicated similar accuracy overall. Results from this study emphasize the importance of grounding assessments of model skill in the context of an organism's physiology and, especially, of considering the implications of false-positive and false-negative errors when forecasting the ecological effects of environmental change. PMID:27729979

  2. Making detailed predictions makes (some) predictions worse

    NASA Astrophysics Data System (ADS)

    Kelly, Theresa F.

    In this paper, we investigate whether making detailed predictions about an event makes other predictions worse. Across 19 experiments, 10,895 participants, and 415,960 predictions about 724 professional sports games, we find that people who made detailed predictions about sporting events (e.g., how many hits each baseball team would get) made worse predictions about more general outcomes (e.g., which team would win). We rule out that this effect is caused by inattention or fatigue, thinking too hard, or a differential reliance on holistic information about the teams. Instead, we find that thinking about game-relevant details before predicting winning teams causes people to give less weight to predictive information, presumably because predicting details makes information that is relatively useless for predicting the winning team more readily accessible in memory and therefore incorporated into forecasts. Furthermore, we show that this differential use of information can be used to predict what kinds of games will and will not be susceptible to the negative effect of making detailed predictions.

  3. Development of requirements for environmental specimen banking in ecological monitoring (exemplified by the Chernobyl NPP accident area).

    PubMed

    Borzilov, V A

    1993-11-01

    Development of requirements for a data bank for natural media as a system of intercorrelated parameters to estimate system states are determined. The problems of functional agreement between experimental and calculation methods are analysed when organizing the ecological monitoring. The methods of forming the environmental specimen bank to estimate and forecast radioactive contamination and exposure dose are considered to be exemplified by the peculiarities of the spatial distribution of radioactive contamination in fields. Analysed is the temporal dynamics of contamination for atmospheric air, soil and water.

  4. Real-time anomaly detection for very short-term load forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jian; Hong, Tao; Yue, Meng

    Although the recent load information is critical to very short-term load forecasting (VSTLF), power companies often have difficulties in collecting the most recent load values accurately and timely for VSTLF applications. This paper tackles the problem of real-time anomaly detection in most recent load information used by VSTLF. This paper proposes a model-based anomaly detection method that consists of two components, a dynamic regression model and an adaptive anomaly threshold. The case study is developed using the data from ISO New England. This paper demonstrates that the proposed method significantly outperforms three other anomaly detection methods including two methods commonlymore » used in the field and one state-of-the-art method used by a winning team of the Global Energy Forecasting Competition 2014. Lastly, a general anomaly detection framework is proposed for the future research.« less

  5. Real-time anomaly detection for very short-term load forecasting

    DOE PAGES

    Luo, Jian; Hong, Tao; Yue, Meng

    2018-01-06

    Although the recent load information is critical to very short-term load forecasting (VSTLF), power companies often have difficulties in collecting the most recent load values accurately and timely for VSTLF applications. This paper tackles the problem of real-time anomaly detection in most recent load information used by VSTLF. This paper proposes a model-based anomaly detection method that consists of two components, a dynamic regression model and an adaptive anomaly threshold. The case study is developed using the data from ISO New England. This paper demonstrates that the proposed method significantly outperforms three other anomaly detection methods including two methods commonlymore » used in the field and one state-of-the-art method used by a winning team of the Global Energy Forecasting Competition 2014. Lastly, a general anomaly detection framework is proposed for the future research.« less

  6. Applied Meteorology Unit Quarterly Report, Second Quarter FY-13

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Shafer, Jaclyn; Huddleston, Lisa

    2013-01-01

    The AMU team worked on six tasks for their customers: (1) Ms. Crawford continued work on the objective lightning forecast task for airports in east-central Florida, and began work on developing a dual-Doppler analysis with local Doppler radars, (2) Ms. Shafer continued work for Vandenberg Air Force Base on an automated tool to relate pressure gradients to peak winds, (3) Dr. Huddleston continued work to develop a lightning timing forecast tool for the Kennedy Space Center/Cape Canaveral Air Force Station area, (4) Dr. Bauman continued work on a severe weather forecast tool focused on east-central Florida, (5) Mr. Decker began developing a wind pairs database for the Launch Services Program to use when evaluating upper-level winds for launch vehicles, and (6) Dr. Watson began work to assimilate observational data into the high-resolution model configurations, she created for Wallops Flight Facility and the Eastern Range.

  7. Spatial occupancy models for predicting metapopulation dynamics and viability following reintroduction

    USGS Publications Warehouse

    Chandler, Richard B.; Muths, Erin L.; Sigafus, Brent H.; Schwalbe, Cecil R.; Jarchow, Christopher J.; Hossack, Blake R.

    2015-01-01

    Synthesis and applications. This work demonstrates how spatio-temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual-level data.

  8. PROTOZOAL INFECTIONS OF THE EASTERN OYSTER (CRASSOSTREA VIRGINICA) IN THE UPPER CHESAPEAKE BAY: A POTENTIAL ECOLOGICAL FORECAST

    EPA Science Inventory

    Perkinsus marinus and Haplosporidium nelsoni cause devasting infections in populations of the eastern oyster, Crassostrea virginica, along the US Atlantic coast and Gulf of Mexico. Salinity and temperature are considered major controlling factors in the prevalence and infection i...

  9. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability

    Treesearch

    James W. N. Steenberg; Andrew A. Millward; David J. Nowak; Pamela J. Robinson; Alexis Ellis

    2016-01-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to...

  10. Ecosystem Services Modeling Infrastructures: Simile/MIMES (Gund Institute) and FRAMES/3MRA (US EPA) Integrated Modeling for Forecasting

    EPA Science Inventory

    The Ecological Research Program (ERP) of the EPA Office of Research and Development has the vision of a comprehensive theory and practice for characterizing, quantifying, and valuing ecosystem services and their relationship to human well-being for environmental decision making. ...

  11. The role of mesocosm studies in ecological risk analysis

    USGS Publications Warehouse

    Boyle, Terence P.; Fairchild, James F.

    1997-01-01

    Mesocosms have been primarily used as research tools for the evaluation of the fate and effects of xenobiotic chemicals at the population, community, and ecosystem levels of biological organization. This paper provides suggestions for future applications of mesocosm research. Attention should be given to the configuration of mesocosm parameters to explicitly study regional questions of ecological interest. The initial physical, chemical, and biological conditions within mesocosms should be considered as factors shaping the final results of experiments. Certain fundamental questions such as the ecological inertia and resilience of systems with different initial ecological properties should be addressed. Researchers should develop closer working relationships with mathematical modelers in linking computer models to the outcomes of mesocosm studies. Mesocosm tests, linked with models, could enable managers and regulators to forecast the regional consequences of chemicals released into the environment.

  12. Use of temperature to improve West Nile virus forecasts

    PubMed Central

    Schneider, Zachary D.; Caillouet, Kevin A.; Campbell, Scott R.; Damian, Dan; Irwin, Patrick; Jones, Herff M. P.; Townsend, John

    2018-01-01

    Ecological and laboratory studies have demonstrated that temperature modulates West Nile virus (WNV) transmission dynamics and spillover infection to humans. Here we explore whether inclusion of temperature forcing in a model depicting WNV transmission improves WNV forecast accuracy relative to a baseline model depicting WNV transmission without temperature forcing. Both models are optimized using a data assimilation method and two observed data streams: mosquito infection rates and reported human WNV cases. Each coupled model-inference framework is then used to generate retrospective ensemble forecasts of WNV for 110 outbreak years from among 12 geographically diverse United States counties. The temperature-forced model improves forecast accuracy for much of the outbreak season. From the end of July until the beginning of October, a timespan during which 70% of human cases are reported, the temperature-forced model generated forecasts of the total number of human cases over the next 3 weeks, total number of human cases over the season, the week with the highest percentage of infectious mosquitoes, and the peak percentage of infectious mosquitoes that on average increased absolute forecast accuracy 5%, 10%, 12%, and 6%, respectively, over the non-temperature forced baseline model. These results indicate that use of temperature forcing improves WNV forecast accuracy and provide further evidence that temperature influences rates of WNV transmission. The findings provide a foundation for implementation of a statistically rigorous system for real-time forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for public health officials and mosquito control programs. PMID:29522514

  13. Climate Prediction Center - Outlooks: UV Alert Forecast

    Science.gov Websites

    Organization Search Go Search the CPC Go About Us Our Mission Who We Are Contact Us CPC Information CPC Web Team USA.gov is the U.S. Government's official Web portal to all Federal, state and local government Web resources and services. HOME > Stratosphere Home > Stratosphere UV Index > UV Alert

  14. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Contacts Change Log Events Calendar Numerical Forecast Systems NCEP Model Analysis and Guidance Page [< Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court

  15. The Virtual Factory Teaching System (VFTS): Project Review and Results.

    ERIC Educational Resources Information Center

    Kazlauskas, E. J.; Boyd, E. F., III; Dessouky, M. M.

    This paper presents a review of the Virtual Factory Teaching (VFTS) project, a Web-based, multimedia collaborative learning network. The system allows students, working alone or in teams, to build factories, forecast demand for products, plan production, establish release rules for new work into the factory, and set scheduling rules for…

  16. Inferring Structure and Forecasting Dynamics on Evolving Networks

    DTIC Science & Technology

    2016-01-05

    Graphs ........................................................................................................................ 23 7. Sacred Values...5) Team Formation; (6) Games of Graphs; (7) Sacred Values and Legitimacy in Network Interactions; (8) Network processes in Geo-Social Context. 1...Authority, Cooperation and Competition in Religious Networks Key Papers: McBride 2015a [72] and McBride 2015b [73] McBride (2015a) examines

  17. Climate Prediction Center - Outlooks: Current UV Index Forecast Map

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Service NOAA Center for Weather and Climate Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland 20740 Page Author: Climate Prediction Center Internet Team Disclaimer

  18. CCMC: Serving research and space weather communities with unique space weather services, innovative tools and resources

    NASA Astrophysics Data System (ADS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti; Maddox, Marlo

    2015-04-01

    With the addition of Space Weather Research Center (a sub-team within CCMC) in 2010 to address NASA’s own space weather needs, CCMC has become a unique entity that not only facilitates research through providing access to the state-of-the-art space science and space weather models, but also plays a critical role in providing unique space weather services to NASA robotic missions, developing innovative tools and transitioning research to operations via user feedback. With scientists, forecasters and software developers working together within one team, through close and direct connection with space weather customers and trusted relationship with model developers, CCMC is flexible, nimble and effective to meet customer needs. In this presentation, we highlight a few unique aspects of CCMC/SWRC’s space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases, and educating and engaging the next generation of space weather scientists.

  19. From recording discrete actions to studying continuous goal-directed behaviours in team sports.

    PubMed

    Correia, Vanda; Araújo, Duarte; Vilar, Luís; Davids, Keith

    2013-01-01

    This paper highlights the importance of examining interpersonal interactions in performance analysis of team sports, predicated on the relationship between perception and action, compared to the traditional cataloguing of actions by individual performers. We discuss how ecological dynamics may provide a potential unifying theoretical and empirical framework to achieve this re-emphasis in research. With reference to data from illustrative studies on performance analysis and sport expertise, we critically evaluate some of the main assumptions and methodological approaches with regard to understanding how information influences action and decision-making during team sports performance. Current data demonstrate how the understanding of performance behaviours in team sports by sport scientists and practitioners may be enhanced with a re-emphasis in research on the dynamics of emergent ongoing interactions. Ecological dynamics provides formal and theoretically grounded descriptions of player-environment interactions with respect to key performance goals and the unfolding information of competitive performance. Developing these formal descriptions and explanations of sport performance may provide a significant contribution to the field of performance analysis, supporting design and intervention in both research and practice.

  20. Rough Precipitation Forecasts based on Analogue Method: an Operational System

    NASA Astrophysics Data System (ADS)

    Raffa, Mario; Mercogliano, Paola; Lacressonnière, Gwendoline; Guillaume, Bruno; Deandreis, Céline; Castanier, Pierre

    2017-04-01

    In the framework of the Climate KIC partnership, has been funded the project Wat-Ener-Cast (WEC), coordinated by ARIA Technologies, having the goal to adapt, through tailored weather-related forecast, the water and energy operations to the increased weather fluctuation and to climate change. The WEC products allow providing high quality forecast suited in risk and opportunities assessment dashboard for water and energy operational decisions and addressing the needs of sewage/water distribution operators, energy transport & distribution system operators, energy manager and wind energy producers. A common "energy water" web platform, able to interface with newest smart water-energy IT network have been developed. The main benefit by sharing resources through the "WEC platform" is the possibility to optimize the cost and the procedures of safety and maintenance team, in case of alerts and, finally to reduce overflows. Among the different services implemented on the WEC platform, ARIA have developed a product having the goal to support sewage/water distribution operators, based on a gradual forecast information system ( at 48hrs/24hrs/12hrs horizons) of heavy precipitation. For each fixed deadline different type of operation are implemented: 1) 48hour horizon, organisation of "on call team", 2) 24 hour horizon, update and confirm the "on call team", 3) 12 hour horizon, secure human resources and equipment (emptying storage basins, pipes manipulations …). More specifically CMCC have provided a statistical downscaling method in order to provide a "rough" daily local precipitation at 24 hours, especially when high precipitation values are expected. This statistical technique consists of an adaptation of analogue method based on ECMWF data (analysis and forecast at 24 hours). One of the most advantages of this technique concerns a lower computational burden and budget compared to running a Numerical Weather Prediction (NWP) model, also if, of course it provides only this specific atmospheric variable without a complete description of the weather situation. In the first phase, the method considers a selection of analogous situations in terms of mean sea level pressure, specific humidity and total precipitation. In the second one, a subset of observations data is extracted according to the analogues found. The research of analogues consists of cascading filters designed to find the most similar weather situation in a historical archive of ECMWF analysis. The method has been calibrated in the period between 2008 and 2011, over different France weather stations (Paris, Meaux, La Londe Les Maures etc) in order to forecast extreme rainfall events. The results of the operational demonstrator, which has been running since September 2016 over the same France weather stations, show good performances in terms of prediction of extreme events at 24hrs horizon, meant as daily quantitative precipitation greater than 93th percentile of distribution, with a relative low false alarm rate.

  1. Use of Temperature to Improve West Nile Virus Forecasts

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; DeFelice, N.; Schneider, Z.; Little, E.; Barker, C.; Caillouet, K.; Campbell, S.; Damian, D.; Irwin, P.; Jones, H.; Townsend, J.

    2017-12-01

    Ecological and laboratory studies have demonstrated that temperature modulates West Nile virus (WNV) transmission dynamics and spillover infection to humans. Here we explore whether the inclusion of temperature forcing in a model depicting WNV transmission improves WNV forecast accuracy relative to a baseline model depicting WNV transmission without temperature forcing. Both models are optimized using a data assimilation method and two observed data streams: mosquito infection rates and reported human WNV cases. Each coupled model-inference framework is then used to generate retrospective ensemble forecasts of WNV for 110 outbreak years from among 12 geographically diverse United States counties. The temperature-forced model improves forecast accuracy for much of the outbreak season. From the end of July until the beginning of October, a timespan during which 70% of human cases are reported, the temperature-forced model generated forecasts of the total number of human cases over the next 3 weeks, total number of human cases over the season, the week with the highest percentage of infectious mosquitoes, and the peak percentage of infectious mosquitoes that were on average 5%, 10%, 12%, and 6% more accurate, respectively, than the baseline model. These results indicate that use of temperature forcing improves WNV forecast accuracy and provide further evidence that temperatures influence rates of WNV transmission. The findings help build a foundation for implementation of a statistically rigorous system for real-time forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for public health officials and mosquito control programs.

  2. Final recovery plan of the southwestern willow flycatcher (Empidonax traillii extimus)

    Treesearch

    Deborah M. Finch; Stephen I. Rothstein; Jon C. Boren; William L. Graf; Jerry L. Holechek; Barbara E. Kus; Robert M. Marshall; Molly M. Pohl; Susan J. Sferra; Mark K. Sogge; Julie C. Stromberg; Bradley A. Valentine; Mary J. Whitfield; Sartor O. Williams

    2002-01-01

    The Southwestern Willow Flycatcher Recovery Team is composed of a Technical Subgroup (pg. ii), six Implementation Subgroups (Appendix A), and a Tribal Working Group. The Technical Subgroup consists of 14 academic scientists, researchers, and resource managers with a wide range of expertise in avian biology and ecology, southwestern willow flycatcher ecology, cowbird...

  3. Ecology and conservation of the Marbled Murrelet

    Treesearch

    C. John Ralph; George L. Hunt; Martin G. Raphael; John F. Piatt

    1995-01-01

    This report on the Marbled Murrelet (Brachyramphus marmoratus) was compiled and editied by the interagency Marbled Murrelet Conservation Assessment Core Team. The 37 Chapters cover both original studies and literature reviews of many aspects of the species’ biology, ecology, and conservation needs. It includes new information on the forest habitat...

  4. A Model of Practice in Special Education: Dynamic Ecological Analysis

    ERIC Educational Resources Information Center

    Hannant, Barbara; Lim, Eng Leong; McAllum, Ruth

    2010-01-01

    Dynamic Ecological Analysis (DEA) is a model of practice which increases a teams' efficacy by enabling the development of more effective interventions through collaboration and collective reflection. This process has proved to be useful in: a) clarifying thinking and problem-solving, b) transferring knowledge and thinking to significant parties,…

  5. Redesigning a Curriculum for Inquiry: An Ecology Case Study

    ERIC Educational Resources Information Center

    Spronken-Smith, R. A.; Walker, R.; Dickinson, K. J. M.; Closs, G. P.; Lord, J. M.; Harland, T.

    2011-01-01

    This article reports on an interdisciplinary ecology degree that was redesigned to provide more research activity for undergraduates. A case study approach explored how the teaching team constructed a curriculum that used inquiry activities. The development of an inquiry curriculum was enabled by a University audit focusing on the links between…

  6. Monitoring and forecasting local landslide hazard in the area of Longyearbyen, Svalbard - early progress and experiences from the Autumn 2016 events

    NASA Astrophysics Data System (ADS)

    Wang, Thea; Krøgli, Ingeborg; Boje, Søren; Colleuille, Hervé

    2017-04-01

    Since 2013 the Norwegian Water Resources and Energy Directorate (NVE) has operated a landslide early warning system (LEWS) for mainland Norway. The Svalbard islands, situated 800 km north of the Norwegian mainland, and 1200 km from the North Pole, are not part of the conventional early warning service. However, following the fatal snow avalanche event 19 Dec. 2015 in the settlement of Longyearbyen (78° north latitude), local authorities and the NVE have initiated monitoring of the hydro-meteorological conditions for the area of Longyearbyen, as an extraordinary precaution. Two operational forecasting teams from the NVE; the snow avalanche and the landslide hazard forecasters, perform hazard assessment related to snow avalanches, slush flows, debris flows, shallow slides and local flooding. This abstract will focus on recent experiences made by the landslide hazard team during the autumn 2016 landslide events, caused by a record setting wet and warm summer and autumn of 2016. The general concept of the Norwegian LEWS is based on frequency intervals of extreme hydro-meteorological conditions. This general concept has been transposed to the Longyearbyen area. Although the climate is considerably colder and drier than mainland Norway, experiences so far are positive and seem useful to the local authorities. Initially, the landslide hazard evaluation was intended to consider only slush flow hazard during the snow covered season. However, due to the extraordinary warm and wet summer and autumn 2016, the landslide hazard forecasters unexpectedly had to issue warnings for the local authorities due to increased risk of shallow landslides and debris flows. This was done in close cooperation with the Norwegian Meteorological Institute, who provided weather forecasts from the recently developed weather prediction model, AROME-Arctic. Two examples, from 14-15 Oct and 8-9 Nov 2016, will be given to demonstrate how the landslide hazard assessment for the Longyearbyen area is carried out. Several aspects contrast hazard monitoring and forecasting on the mainland, such as the challenges that transpire with sparse observations of hydrometeorologial variables, landslide inventories and hydrological simulations. Particular challenges that are faced on Svalbard, are the even greater remoteness of the settlements and the strong effect permafrost has on the soil structure. The planned development for improving the monitoring of slush avalanches and landslide hazards in the Longyearbyen area will also be presented.

  7. Forecasting system predicts presence of sea nettles in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Brown, Christopher W.; Hood, Raleigh R.; Li, Zhen; Decker, Mary Beth; Gross, Thomas F.; Purcell, Jennifer E.; Wang, Harry V.

    Outbreaks of noxious biota, which occur in both aquatic and terrestrial systems, can have considerable negative economic impacts. For example, an increasing frequency of harmful algal blooms worldwide has negatively affected the tourism industry in many regions. Such impacts could be mitigated if the conditions that give rise to these outbreaks were known and could be monitored. Recent advances in technology and communications allow us to continuously measure and model many environmental factors that are responsible for outbreaks of certain noxious organisms. A new prototype ecological forecasting system predicts the likelihood of occurrence of the sea nettle (Chrysaora quinquecirrha), a stinging jellyfish, in the Chesapeake Bay.

  8. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    SUsskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  9. A CPT for Improving Turbulence and Cloud Processes in the NCEP Global Models

    NASA Astrophysics Data System (ADS)

    Krueger, S. K.; Moorthi, S.; Randall, D. A.; Pincus, R.; Bogenschutz, P.; Belochitski, A.; Chikira, M.; Dazlich, D. A.; Swales, D. J.; Thakur, P. K.; Yang, F.; Cheng, A.

    2016-12-01

    Our Climate Process Team (CPT) is based on the premise that the NCEP (National Centers for Environmental Prediction) global models can be improved by installing an integrated, self-consistent description of turbulence, clouds, deep convection, and the interactions between clouds and radiative and microphysical processes. The goal of our CPT is to unify the representation of turbulence and subgrid-scale (SGS) cloud processes and to unify the representation of SGS deep convective precipitation and grid-scale precipitation as the horizontal resolution decreases. We aim to improve the representation of small-scale phenomena by implementing a PDF-based SGS turbulence and cloudiness scheme that replaces the boundary layer turbulence scheme, the shallow convection scheme, and the cloud fraction schemes in the GFS (Global Forecast System) and CFS (Climate Forecast System) global models. We intend to improve the treatment of deep convection by introducing a unified parameterization that scales continuously between the simulation of individual clouds when and where the grid spacing is sufficiently fine and the behavior of a conventional parameterization of deep convection when and where the grid spacing is coarse. We will endeavor to improve the representation of the interactions of clouds, radiation, and microphysics in the GFS/CFS by using the additional information provided by the PDF-based SGS cloud scheme. The team is evaluating the impacts of the model upgrades with metrics used by the NCEP short-range and seasonal forecast operations.

  10. Anthropogenic range contractions bias species climate change forecasts

    NASA Astrophysics Data System (ADS)

    Faurby, Søren; Araújo, Miguel B.

    2018-03-01

    Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suitability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be reliable without acknowledging anthropogenic influences on contemporary ranges.

  11. The structure of parasite communities in fish hosts: ecology meets geography and climate.

    PubMed

    Poulin, R

    2007-09-01

    Parasite communities in fish hosts are not uniform in space: their diversity, composition and abundance vary across the geographical range of a host species. Increasingly urgently, we need to understand the geographic component of parasite communities to better predict how they will respond to global climate change. Patterns of geographical variation in the abundance of parasite populations, and in the diversity and composition of parasite communities, are explored here, and the ways in which they may be affected by climate change are discussed. The time has come to transform fish parasite ecology from a mostly descriptive discipline into a predictive science, capable of integrating complex ecological data to generate forecasts about the future state of host-parasite systems.

  12. High-Temperature Fluid-Wall Reactor Technology Research, Test and Evaluation Performed at Naval Construction Battalion Center, Gulfport, MS, for the USAF Installation/Restoration Program

    DTIC Science & Technology

    1988-01-01

    under field conditions. Sampling and analytical laboratory activities were performed by Ecology and Environment, Inc., and California Analytical...the proposed AER3 test conditions. All test samples would be obtained onsite by Ecology and Environment, Inc., of Buffalo, New York, and sent to...ensuring its safe operation. Ecology and Environment performed onsite verification sampling. This activity was coordinated with the Huber project team

  13. The Super Tuesday Outbreak: Forecast Sensitivities to Single-Moment Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.; Lapenta, William M.

    2008-01-01

    Forecast precipitation and radar characteristics are used by operational centers to guide the issuance of advisory products. As operational numerical weather prediction is performed at increasingly finer spatial resolution, convective precipitation traditionally represented by sub-grid scale parameterization schemes is now being determined explicitly through single- or multi-moment bulk water microphysics routines. Gains in forecasting skill are expected through improved simulation of clouds and their microphysical processes. High resolution model grids and advanced parameterizations are now available through steady increases in computer resources. As with any parameterization, their reliability must be measured through performance metrics, with errors noted and targeted for improvement. Furthermore, the use of these schemes within an operational framework requires an understanding of limitations and an estimate of biases so that forecasters and model development teams can be aware of potential errors. The National Severe Storms Laboratory (NSSL) Spring Experiments have produced daily, high resolution forecasts used to evaluate forecast skill among an ensemble with varied physical parameterizations and data assimilation techniques. In this research, high resolution forecasts of the 5-6 February 2008 Super Tuesday Outbreak are replicated using the NSSL configuration in order to evaluate two components of simulated convection on a large domain: sensitivities of quantitative precipitation forecasts to assumptions within a single-moment bulk water microphysics scheme, and to determine if these schemes accurately depict the reflectivity characteristics of well-simulated, organized, cold frontal convection. As radar returns are sensitive to the amount of hydrometeor mass and the distribution of mass among variably sized targets, radar comparisons may guide potential improvements to a single-moment scheme. In addition, object-based verification metrics are evaluated for their utility in gauging model performance and QPF variability.

  14. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, John M.; Rhodes, M.; Brown, C. W.

    The aim is to construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Conclusions: Environmental parameters such as temperature, salinity and turbidity aremore » capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions.« less

  15. A method for estimating vulnerability of Douglas-fir growth to climate change in the Northwestern U.S.

    Treesearch

    J.S. Littell; D.L. Peterson

    2005-01-01

    Borrowing from landscape ecology, atmospheric science, and integrated assessment, we aim to understand the complex interactions that determine productivity in montane forests and utilize such relationships to forecast montane forest vulnerability under global climate change. Specifically, we identify relationships for precipitation and temperature that govern the...

  16. A Bayesian approach to multisource forest area estimation

    Treesearch

    Andrew O. Finley

    2007-01-01

    In efforts such as land use change monitoring, carbon budgeting, and forecasting ecological conditions and timber supply, demand is increasing for regional and national data layers depicting forest cover. These data layers must permit small area estimates of forest and, most importantly, provide associated error estimates. This paper presents a model-based approach for...

  17. Predicting fecundity of fathead minnows (Pimephales promelas) exposed toeEndocrine-disrupting chemicals using a MATLAB®-based model of oocyte growth dynamics

    EPA Science Inventory

    Fish spawning is often used as an integrated measure of reproductive toxicity, and an indicator of aquatic ecosystem health in the context of forecasting potential population-level effects considered important for ecological risk assessment. Consequently, there is a need for fle...

  18. LINKING GREAT WATERSHEDS AND RIVERS TO FORECAST THE IMPACT OF NUTRIENTS ON LARGE RECEIVING WATERS

    EPA Science Inventory

    Assessment of our nation's waters, as per sections 305(b) and 303(d) of the Clean Water Act, indicates that approximately 40% are impacted by chemical and non-chemical stressors that impair designated beneficial uses and ecological habitat. Excess nutrients are often listed as a ...

  19. Recruitment dynamics in complex life cycles. [of organisms living in marine rocky zone

    NASA Technical Reports Server (NTRS)

    Roughgarden, Jonathan; Possingham, Hugh; Gaines, Steven

    1988-01-01

    Factors affecting marine population fluctuations are discussed with particular attention given to a common barnacle species of the Pacific coast of North America. It is shown how models combining larval circulation with adult interactions can potentially forecast population fluctuations. These findings demonstrate how processes in different ecological habitats are coupled.

  20. Empirically Derived Optimal Growth Equations For Hardwoods and Softwoods in Arkansas

    Treesearch

    Don C. Bragg

    2002-01-01

    Accurate growth projections are critical to reliable forest models, and ecologically based simulators can improve siivicultural predictions because of their sensitivity to change and their capacity to produce long-term forecasts. Potential relative increment (PRI) optimal diameter growth equations for loblolly pine, shortleaf pine, sweetgum, and white oak were fit to...

  1. Unlocking the climate riddle in forested ecosystems

    Treesearch

    Greg C. Liknes; Christopher W. Woodall; Brian F. Walters; Sara A. Goeking

    2012-01-01

    Climate information is often used as a predictor in ecological studies, where temporal averages are typically based on climate normals (30-year means) or seasonal averages. While ensemble projections of future climate forecast a higher global average annual temperature, they also predict increased climate variability. It remains to be seen whether forest ecosystems...

  2. Ecohydrological drought monitoring and prediction using a land data assimilation system

    NASA Astrophysics Data System (ADS)

    Sawada, Y.; Koike, T.

    2017-12-01

    Despite the importance of the ecological and agricultural aspects of severe droughts, few drought monitor and prediction systems can forecast the deficit of vegetation growth. To address this issue, we have developed a land data assimilation system (LDAS) which can simultaneously simulate soil moisture and vegetation dynamics. By assimilating satellite-observed passive microwave brightness temperature, which is sensitive to both surface soil moisture and vegetation water content, we can significantly improve the skill of a land surface model to simulate surface soil moisture, root zone soil moisture, and leaf area index (LAI). We run this LDAS to generate a global ecohydrological land surface reanalysis product. In this presentation, we will demonstrate how useful this new reanalysis product is to monitor and analyze the historical mega-droughts. In addition, using the analyses of soil moistures and LAI as initial conditions, we can forecast the ecological and hydrological conditions in the middle of droughts. We will present our recent effort to develop a near real time ecohydrological drought monitoring and prediction system in Africa by combining the LDAS and the atmospheric seasonal prediction.

  3. Transition to Operations Plans for GPM Datasets

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Jedlovec, Gary; Case, Jonathan; Leroy, Anita; Molthan, Andrew; Bell, Jordan; Fuell, Kevin; Stano, Geoffrey

    2013-01-01

    Founded in 2002 at the National Space Science Technology Center at Marshall Space Flight Center in Huntsville, AL. Focused on transitioning unique NASA and NOAA observations and research capabilities to the operational weather community to improve short-term weather forecasts on a regional and local scale. NASA directed funding; NOAA funding from Proving Grounds (PG). Demonstrate capabilities experimental products to weather applications and societal benefit to prepare forecasters for the use of data from next generation of operational satellites. Objective of this poster is to highlight SPoRT's research to operations (R2O) paradigm and provide examples of work done by the team with legacy instruments relevant to GPM in order to promote collaborations with groups developing GPM products.

  4. [Ecology suitability study of Ephedra intermedia].

    PubMed

    Ma, Xiao-Hui; Lu, You-Yuan; Huang, De-Dong; Zhu, Tian-Tian; Lv, Pei-Lin; Jin, Ling

    2017-06-01

    The study aims at predicting ecological suitability of Ephedra intermedia in China by using maximum entropy Maxent model combined with GIS, and finding the main ecological factors affecting the distribution of E. intermedia suitability in appropriate growth area. Thirty-eight collected samples of E. intermedia and E. intermedia and 116 distribution information from CVH information using ArcGIS technology were analyzed. MaxEnt model was applied to forecast the E. intermedia in our country's ecology. E. intermedia MaxEnt ROC curve model training data and testing data sets the AUC value was 0.986 and 0.958, respectively, which were greater than 0.9, tending to be 1.The calculated E. intermedia habitat suitability by the model showed a high accuracy and credibility, which indicated that MaxEnt model could well predict the potential distribution area of E. intermedia in China. Copyright© by the Chinese Pharmaceutical Association.

  5. Comparison of Ensemble Mean and Deterministic Forecasts for Long-Range Airlift Fuel Planning

    DTIC Science & Technology

    2014-03-27

    honors in volleyball . In 2002, she transferred to the University of Oklahoma, where she earned a bachelor’s degree in Meteorology and was com- missioned...instrumental in safely estab- lishing remotely-piloted aircraft operations. She was a member of the Air Force Women’s Volleyball team in 2007, 2009, and 2010, as

  6. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Ice group works on sea ice analysis from satellite, sea ice modeling, and ice-atmosphere-ocean / VISION | About EMC Analysis Drift Model KISS Model Numerical Forecast Systems The Polar and Great Lakes

  7. Ecology and conservation of lynx in the United States

    Treesearch

    Leonard F. Ruggiero; Keith B. Aubry; Steven W. Buskirk; Gary M. Koehler; Charles J. Krebs; Kevin S. McKelvey; John R. Squires

    1999-01-01

    Once found throughout the Rocky Mountains and forests of the northern states, the lynx now hides in pockets of its former range while feeding mostly on small animals like snowshoe hares. A team of government and university scientists review the newest scientific knowledge of this unique cat's history, distribution, and ecology. The chapters on this web site...

  8. Perceptions of School Administration Team Members Concerning Inclusion in Israel: Are They in Congruence with the Ecological Sustainable Perspective?

    ERIC Educational Resources Information Center

    Shani, Michal; Ram, Drorit

    2015-01-01

    Based on an ecological perspective, inclusive education should involve two essential components: a shared ideology of providing a culturally responsive educational system where the needs of every child are met and a school policy geared towards the implementation of inclusion practices, with collaborations among staff members who create…

  9. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore.

    PubMed

    Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S Y; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R

    2016-09-01

    With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore's dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369-1375; http://dx.doi.org/10.1289/ehp.1509981.

  10. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation: Forecast With Data Assimilation

    DOE PAGES

    Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang; ...

    2017-08-18

    We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less

  11. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation: Forecast With Data Assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang

    We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less

  12. NASA Ames DEVELOP Interns Collaborate with the South Bay Salt Pond Restoration Project to Monitor and Study Restoration Efforts using NASA's Satellites

    NASA Technical Reports Server (NTRS)

    Newcomer, Michelle E.; Kuss, Amber Jean; Nguyen, Andrew; Schmidt, Cynthia L.

    2012-01-01

    In the past, natural tidal marshes in the south bay were segmented by levees and converted into ponds for use in salt production. In an effort to provide habitat for migratory birds and other native plants and animals, as well as to rebuild natural capital, the South Bay Salt Pond Restoration Project (SBSPRP) is focused on restoring a portion of the over 15,000 acres of wetlands in California's South San Francisco Bay. The process of restoration begins when a levee is breached; the bay water and sediment flow into the ponds and eventually restore natural tidal marshes. Since the spring of 2010 the NASA Ames Research Center (ARC) DEVELOP student internship program has collaborated with the South Bay Salt Pond Restoration Project (SBSPRP) to study the effects of these restoration efforts and to provide valuable information to assist in habitat management and ecological forecasting. All of the studies were based on remote sensing techniques -- NASA's area of expertise in the field of Earth Science, and used various analytical techniques such as predictive modeling, flora and fauna classification, and spectral detection, to name a few. Each study was conducted by a team of aspiring scientists as a part of the DEVELOP program at Ames.

  13. Integrating NASA Earth Observations into the Global Indicator Framework for Monitoring the United Nations' Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Crepps, G.; Gotschalk, E.; Childs-Gleason, L. M.; Favors, J.; Ruiz, M. L.; Allsbrook, K. N.; Rogers, L.; Ross, K. W.

    2016-12-01

    The NASA DEVELOP National Program conducts rapid 10-week feasibility projects that build decision makers' capacity to utilize NASA Earth observations in their decision making. Teams, in collaboration with partner organizations, conduct projects that create end products such as maps, analyses, and automated tools tailored for their partners' specific decision making needs. These projects illustrate the varied applications about which Earth observations can assist in making better informed decisions, such topics as land use changes, ecological forecasting, public health, and species habitats. As a capacity building program, DEVELOP is interested in understanding how these end products are utilized once the project is over and if Earth observations become a regular tool in the partner's decision making toolkit. While DEVELOP's niche is short-term projects, to assess the impacts of these projects, a longer-term scale is needed. As a result, DEVELOP has created a project strength metrics, and partner assessments, pre- and post-project, as well as a follow up form. This presentation explores the challenges in both quantitative and qualitative assessments of valuing the contributions of these Earth observation tools. This proposal lays out the assessment framework created within the program, and illustrates case studies in which projects have been assessed and long-term partner use of tools examined and quantified.

  14. Making ecological models adequate

    USGS Publications Warehouse

    Getz, Wayne M.; Marshall, Charles R.; Carlson, Colin J.; Giuggioli, Luca; Ryan, Sadie J.; Romañach, Stephanie; Boettiger, Carl; Chamberlain, Samuel D.; Larsen, Laurel; D'Odorico, Paolo; O'Sullivan, David

    2018-01-01

    Critical evaluation of the adequacy of ecological models is urgently needed to enhance their utility in developing theory and enabling environmental managers and policymakers to make informed decisions. Poorly supported management can have detrimental, costly or irreversible impacts on the environment and society. Here, we examine common issues in ecological modelling and suggest criteria for improving modelling frameworks. An appropriate level of process description is crucial to constructing the best possible model, given the available data and understanding of ecological structures. Model details unsupported by data typically lead to over parameterisation and poor model performance. Conversely, a lack of mechanistic details may limit a model's ability to predict ecological systems’ responses to management. Ecological studies that employ models should follow a set of model adequacy assessment protocols that include: asking a series of critical questions regarding state and control variable selection, the determinacy of data, and the sensitivity and validity of analyses. We also need to improve model elaboration, refinement and coarse graining procedures to better understand the relevancy and adequacy of our models and the role they play in advancing theory, improving hind and forecasting, and enabling problem solving and management.

  15. Lawrence Livermore National Laboratory Experimental Test Site, Site 300, Biological Review, January 1, 2009 through December 31, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, Lisa E.; Woollett, Jim S.

    2014-01-01

    The Lawrence Livermore National Laboratory’s (LLNL’s) Environmental Restoration Department (ERD) is required to conduct an ecological review at least every five years to ensure that biological and contaminant conditions in areas undergoing remediation have not changed such that existing conditions pose an ecological hazard (Dibley et al. 2009a). This biological review is being prepared by the Natural Resources Team within LLNL’s Environmental Functional Area (EFA) to support the 2013 five-year ecological review.

  16. Team Synergies in Sport: Theory and Measures

    PubMed Central

    Araújo, Duarte; Davids, Keith

    2016-01-01

    Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual’s behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group behaviors, team sport performance, ecological dynamics, performance analysis. PMID:27708609

  17. Team Synergies in Sport: Theory and Measures.

    PubMed

    Araújo, Duarte; Davids, Keith

    2016-01-01

    Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual's behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group behaviors, team sport performance, ecological dynamics, performance analysis.

  18. Fine‐resolution conservation planning with limited climate‐change information

    USGS Publications Warehouse

    Shah, Payal; Mallory, Mindy L.; Ando , Amy W.; Guntenspergen, Glenn R.

    2017-01-01

    Climate‐change induced uncertainties in future spatial patterns of conservation‐related outcomes make it difficult to implement standard conservation‐planning paradigms. A recent study translates Markowitz's risk‐diversification strategy from finance to conservation settings, enabling conservation agents to use this diversification strategy for allocating conservation and restoration investments across space to minimize the risk associated with such uncertainty. However, this method is information intensive and requires a large number of forecasts of ecological outcomes associated with possible climate‐change scenarios for carrying out fine‐resolution conservation planning. We developed a technique for iterative, spatial portfolio analysis that can be used to allocate scarce conservation resources across a desired level of subregions in a planning landscape in the absence of a sufficient number of ecological forecasts. We applied our technique to the Prairie Pothole Region in central North America. A lack of sufficient future climate information prevented attainment of the most efficient risk‐return conservation outcomes in the Prairie Pothole Region. The difference in expected conservation returns between conservation planning with limited climate‐change information and full climate‐change information was as large as 30% for the Prairie Pothole Region even when the most efficient iterative approach was used. However, our iterative approach allowed finer resolution portfolio allocation with limited climate‐change forecasts such that the best possible risk‐return combinations were obtained. With our most efficient iterative approach, the expected loss in conservation outcomes owing to limited climate‐change information could be reduced by 17% relative to other iterative approaches.

  19. Time-Specific Ecologic Niche Models Forecast the Risk of Hemorrhagic Fever with Renal Syndrome in Dongting Lake District, China, 2005–2010

    PubMed Central

    Lin, Xiao-Ling; Li, Xiu-Jun; Ma, Gui-Hua; Huang, Ru; Yang, Hui-Suo; Tian, Huaiyu; Xiao, Hong

    2014-01-01

    Background Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies. Methodology/Principal Findings We employed statistical models to analyze HFRS case data together with environmental data from the Dongting Lake district during 2005–2010. Specifically, time-specific ecologic niche models (ENMs) were used to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across geographic areas. Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755). Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons. High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas were smaller in March, May and August compared with those identified for June, July and October to December. Both normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors. Conclusions/Significance Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and temporal risk of HFRS. PMID:25184252

  20. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming

    PubMed Central

    Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre

    2013-01-01

    Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. PMID:23505245

  1. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming.

    PubMed

    Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre

    2013-06-01

    Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. © 2013 Blackwell Publishing Ltd.

  2. Incorporating Topics That Aren't Distance-Friendly into an Online Program: One Development Team's Experience

    ERIC Educational Resources Information Center

    Schaefer, Valentin; Doner, Sue; Pivnick, Janet

    2013-01-01

    The Native Species and Natural Processes certificate at the University of Victoria is an advanced-level online program of four courses to introduce students to state-of-the-art topics in the field of ecological restoration. The program posed some unique challenges for course developers. The development team needed to find ways to create online…

  3. The Geostationary Lighting Mapper (GLM) for GOES-R: A New Operational Capability to Improve Storm Forecasts and Warnings

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R.; Koshak, William J.; Petersen, W. A.; Carey, L.; Mah, D.

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series is a follow on to the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral (3x), spatial (4x), and temporal (5x) resolution for the Advanced Baseline Imager (ABI). The GLM, an optical transient detector and imager operating in the near-IR at 777.4 nm will map all (in-cloud and cloud-to-ground) lighting flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and facilitate Day-1 user readiness for this new capability.

  4. Near real-time forecasting for cholera decision making in Haiti after Hurricane Matthew

    PubMed Central

    Camacho, Anton; Grandesso, Francesco; Cohuet, Sandra; Lemaitre, Joseph C.; Rinaldo, Andrea

    2018-01-01

    Computational models of cholera transmission can provide objective insights into the course of an ongoing epidemic and aid decision making on allocation of health care resources. However, models are typically designed, calibrated and interpreted post-hoc. Here, we report the efforts of a team from academia, field research and humanitarian organizations to model in near real-time the Haitian cholera outbreak after Hurricane Matthew in October 2016, to assess risk and to quantitatively estimate the efficacy of a then ongoing vaccination campaign. A rainfall-driven, spatially-explicit meta-community model of cholera transmission was coupled to a data assimilation scheme for computing short-term projections of the epidemic in near real-time. The model was used to forecast cholera incidence for the months after the passage of the hurricane (October-December 2016) and to predict the impact of a planned oral cholera vaccination campaign. Our first projection, from October 29 to December 31, predicted the highest incidence in the departments of Grande Anse and Sud, accounting for about 45% of the total cases in Haiti. The projection included a second peak in cholera incidence in early December largely driven by heavy rainfall forecasts, confirming the urgency for rapid intervention. A second projection (from November 12 to December 31) used updated rainfall forecasts to estimate that 835 cases would be averted by vaccinations in Grande Anse (90% Prediction Interval [PI] 476-1284) and 995 in Sud (90% PI 508-2043). The experience gained by this modeling effort shows that state-of-the-art computational modeling and data-assimilation methods can produce informative near real-time projections of cholera incidence. Collaboration among modelers and field epidemiologists is indispensable to gain fast access to field data and to translate model results into operational recommendations for emergency management during an outbreak. Future efforts should thus draw together multi-disciplinary teams to ensure model outputs are appropriately based, interpreted and communicated. PMID:29768401

  5. Near real-time forecasting for cholera decision making in Haiti after Hurricane Matthew.

    PubMed

    Pasetto, Damiano; Finger, Flavio; Camacho, Anton; Grandesso, Francesco; Cohuet, Sandra; Lemaitre, Joseph C; Azman, Andrew S; Luquero, Francisco J; Bertuzzo, Enrico; Rinaldo, Andrea

    2018-05-01

    Computational models of cholera transmission can provide objective insights into the course of an ongoing epidemic and aid decision making on allocation of health care resources. However, models are typically designed, calibrated and interpreted post-hoc. Here, we report the efforts of a team from academia, field research and humanitarian organizations to model in near real-time the Haitian cholera outbreak after Hurricane Matthew in October 2016, to assess risk and to quantitatively estimate the efficacy of a then ongoing vaccination campaign. A rainfall-driven, spatially-explicit meta-community model of cholera transmission was coupled to a data assimilation scheme for computing short-term projections of the epidemic in near real-time. The model was used to forecast cholera incidence for the months after the passage of the hurricane (October-December 2016) and to predict the impact of a planned oral cholera vaccination campaign. Our first projection, from October 29 to December 31, predicted the highest incidence in the departments of Grande Anse and Sud, accounting for about 45% of the total cases in Haiti. The projection included a second peak in cholera incidence in early December largely driven by heavy rainfall forecasts, confirming the urgency for rapid intervention. A second projection (from November 12 to December 31) used updated rainfall forecasts to estimate that 835 cases would be averted by vaccinations in Grande Anse (90% Prediction Interval [PI] 476-1284) and 995 in Sud (90% PI 508-2043). The experience gained by this modeling effort shows that state-of-the-art computational modeling and data-assimilation methods can produce informative near real-time projections of cholera incidence. Collaboration among modelers and field epidemiologists is indispensable to gain fast access to field data and to translate model results into operational recommendations for emergency management during an outbreak. Future efforts should thus draw together multi-disciplinary teams to ensure model outputs are appropriately based, interpreted and communicated.

  6. Ocean acidification affects competition for space: projections of community structure using cellular automata.

    PubMed

    McCoy, Sophie J; Allesina, Stefano; Pfister, Catherine A

    2016-03-16

    Historical ecological datasets from a coastal marine community of crustose coralline algae (CCA) enabled the documentation of ecological changes in this community over 30 years in the Northeast Pacific. Data on competitive interactions obtained from field surveys showed concordance between the 1980s and 2013, yet also revealed a reduction in how strongly species interact. Here, we extend these empirical findings with a cellular automaton model to forecast ecological dynamics. Our model suggests the emergence of a new dominant competitor in a global change scenario, with a reduced role of herbivory pressure, or trophic control, in regulating competition among CCA. Ocean acidification, due to its energetic demands, may now instead play this role in mediating competitive interactions and thereby promote species diversity within this guild. © 2016 The Author(s).

  7. Fire rehabilitation decisions at landscape scales: utilizing state-and-transition models developed through disturbance response grouping of ecological sites

    USDA-ARS?s Scientific Manuscript database

    Recognizing the utility of ecological sites and the associated state-and-transition model (STM) for decision support, the Bureau of Land Management in Nevada partnered with Nevada NRCS and the University of Nevada, Reno (UNR) in 2009 with the goal of creating a team that could (1) expedite developme...

  8. A Public-Private-Acadmic Partnership to Advance Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen

    The National Center for Atmospheric Research (NCAR) is pleased to have led a partnership to advance the state-of-the-science of solar power forecasting by designing, developing, building, deploying, testing, and assessing the SunCast™ Solar Power Forecasting System. The project has included cutting edge research, testing in several geographically- and climatologically-diverse high penetration solar utilities and Independent System Operators (ISOs), and wide dissemination of the research results to raise the bar on solar power forecasting technology. The partners include three other national laboratories, six universities, and industry partners. This public-private-academic team has worked in concert to perform use-inspired research to advance solarmore » power forecasting through cutting-edge research to advance both the necessary forecasting technologies and the metrics for evaluating them. The project has culminated in a year-long, full-scale demonstration of provide irradiance and power forecasts to utilities and ISOs to use in their operations. The project focused on providing elements of a value chain, beginning with the weather that causes a deviation from clear sky irradiance and progresses through monitoring and observations, modeling, forecasting, dissemination and communication of the forecasts, interpretation of the forecast, and through decision-making, which produces outcomes that have an economic value. The system has been evaluated using metrics developed specifically for this project, which has provided rich information on model and system performance. Research was accomplished on the very short range (0-6 hours) Nowcasting system as well as on the longer term (6-72 hour) forecasting system. The shortest range forecasts are based on observations in the field. The shortest range system, built by Brookhaven National Laboratory (BNL) and based on Total Sky Imagers (TSIs) is TSICast, which operates on the shortest time scale with a latency of only a few minutes and forecasts that currently go out to about 15 min. This project has facilitated research in improving the hardware and software so that the new high definition cameras deployed at multiple nearby locations allow discernment of the clouds at varying levels and advection according to the winds observed at those levels. Improvements over “smart persistence” are about 29% for even these very short forecasts. StatCast is based on pyranometer data measured at the site as well as concurrent meteorological observations and forecasts. StatCast is based on regime-dependent artificial intelligence forecasting techniques and has been shown to improve on “smart persistence” forecasts by 15-50%. A second category of short-range forecasting systems employ satellite imagery and use that information to discern clouds and their motion, allowing them to project the clouds, and the resulting blockage of irradiance, in time. CIRACast (the system produced by the Cooperative Institute for Atmospheric Research [CIRA] at Colorado State University) was already one of the more advanced cloud motion systems, which is the reason that team was brought to this project. During the project timeframe, the CIRA team was able to advance cloud shadowing, parallax removal, and implementation of better advecting winds at different altitudes. CIRACast shows generally a 25-40% improvement over Smart Persistence between sunrise and approximately 1600 UTC (Coordinated Universal Time) . A second satellite-based system, MADCast (Multi-sensor Advective Diffusive foreCast system), assimilates data from multiple satellite imagers and profilers to assimilate a fully three-dimensional picture of the cloud into the dynamic core of WRF. During 2015, MADCast (provided at least 70% improvement over Smart Persistence, with most of that skill being derived during partly cloudy conditions. That allows advection of the clouds via the Weather Research and Forecasting (WRF) model dynamics directly. After WRF-Solar™ showed initial success, it was also deployed in nowcasting mode with coarser runs out to 6 hours made hourly. It provided improvements on the order of 50-60% over Smart Persistence for forecasts up to 1600 UTC. The advantages of WRF-Solar-Nowcasting and MADCast were then blended to develop the new MAD-WRF model that incorporates the most important features of each of those models, both assimilating satellite cloud fields and using WRF-So far physics to develop and dissipate clouds. MAE improvements for MAD-WRF for forecasts from 3-6 hours are improved over WRF-Solar-Now by 20%. While all the Nowcasting system components by themselves provide improvement over Smart Persistence, the largest benefit is derived when they are smartly blended together by the Nowcasting Integrator to produce an integrated forecast. The development of WRF-Solar™ under this project has provided the first numerical weather prediction (NWP) model specifically designed to meet the needs of irradiance forecasting. The first augmentation improved the solar tracking algorithm to account for deviations associated with the eccentricity of the Earth’s orbit and the obliquity of the Earth. Second, WRF-Solar™ added the direct normal irradiance (DNI) and diffuse (DIF) components from the radiation parameterization to the model output. Third, efficient parameterizations were implemented to either interpolate the irradiance in between calls to the expensive radiative transfer parameterization, or to use a fast radiative transfer code that avoids computing three-dimensional heating rates but provides the surface irradiance. Fourth, a new parameterization was developed to improve the representation of absorption and scattering of radiation by aerosols (aerosol direct effect). A fifth advance is that the aerosols now interact with the cloud microphysics, altering the cloud evolution and radiative properties, an effect that has been traditionally only implemented in atmospheric computationally costly chemistry models. A sixth development accounts for the feedbacks that sub-grid scale clouds produce in shortwave irradiance as implemented in a shallow cumulus parameterization Finally, WRF-Solar™ also allows assimilation of infrared irradiances from satellites to determine the three dimensional cloud field, allowing for an improved initialization of the cloud field that increases the performance of short-range forecasts. We find that WRF-Solar™ can improve clear sky irradiance prediction by 15-80% over a standard version of WRF, depending on location and cloud conditions. In a formal comparison to the NAM baseline, WRF-Solar™ showed improvements in the Day-Ahead forecast of 22-42%. The SunCast™ system requires substantial software engineering to blend all of the new model components as well as existing publically available NWP model runs. To do this we use an expert system for the Nowcasting blender and the Dynamic Integrated foreCast (DICast®) system for the NWP models. These two systems are then blended, we use an empirical power conversion method to convert the irradiance predictions to power, then apply an analog ensemble (AnEn) approach to further tune the forecast as well as to estimate its uncertainty. The AnEn module decreased RMSE (root mean squared error) by 17% over the blended SunCast™ power forecasts and provided skill in the probabilistic forecast with a Brier Skill Score of 0.55. In addition, we have also developed a Gridded Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share funds. An economic evaluation based on Production Cost Modeling in the Public Service Company of Colorado showed that the observed 50% improvement in forecast accuracy will save their customers $819,200 with the projected MW deployment for 2024. Using econometrics, NCAR has scaled this savings to a national level and shown that an annual expected savings for this 50% forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased solar deployment. This amounts to a $455M discounted savings over the 26 year period of analysis.« less

  9. Religious Environmental Education? The New School Curriculum in Indonesia

    ERIC Educational Resources Information Center

    Parker, Lyn

    2017-01-01

    Indonesia is now considered as a lower-middle-income country (The World Bank 2014) with decades of sustained economic growth. Recent forecasts predict that by 2050 it will be the fourth largest economy in the world (PWC 2015). Indonesia is well endowed with tropical rainforests, coral reefs, and other priority ecological systems, but there is…

  10. The Global Precipitation Measurement (GPM) Mission contributions to hydrology and societal applications

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D.; Huffman, G. J.; Skofronick Jackson, G.

    2016-12-01

    Too much or too little rain can serve as a tipping point for triggering catastrophic flooding and landslides or widespread drought. Knowing when, where and how much rain is falling globally is vital to understanding how vulnerable areas may be more or less impacted by these disasters. The Global Precipitation Measurement (GPM) mission provides near real-time precipitation data worldwide that is used by a broad range of end users, from tropical cyclone forecasters to agricultural modelers to researchers evaluating the spread of diseases. The GPM constellation provides merged, multi-satellite data products at three latencies that are critical for research and societal applications around the world. This presentation will outline current capabilities in using accurate and timely information of precipitation to directly benefit society, including examples of end user applications within the tropical cyclone forecasting, disasters response, agricultural forecasting, and disease tracking communities, among others. The presentation will also introduce some of the new visualization and access tools developed by the GPM team.

  11. Toward Global Real Time Hydrologic Modeling - An "Open" View From the Trenches

    NASA Astrophysics Data System (ADS)

    Nelson, J.

    2015-12-01

    Big Data has become a popular term to describe the exponential growth of data and related cyber infrastructure to process it so that better analysis can be performed and lead to improved decision-making. How are we doing in the hydrologic sciences? As part of a significant collaborative effort that brought together scientists from public, private, and academic organizations a new transformative hydrologic forecasting modeling infrastructure has been developed. How was it possible to go from deterministic hydrologic forecasts largely driven through manual interactions at 3600 stations to automated 15-day ensemble forecasts at 2.67 million stations? Earth observations of precipitation, temperature, moisture, and other atmospheric and land surface conditions form the foundation of global hydrologic forecasts, but this project demonstrates a critical component to harness these resources can be summed up in one word: OPEN. Whether it is open data sources, open software solutions with open standards, or just being open to collaborations and building teams across institutions, disciplines, and international boundaries, time and time again through my involvement in the development of a high-resolution real time global hydrologic forecasting model I have discovered that in every aspect the sum has always been greater than the parts. While much has been accomplished, much more remains to be done, but the most important lesson learned has been to the degree that we can remain open and work together, the greater our ability will be to use big data hydrologic modeling resources to solve the world's most vexing water related challenges. This presentation will demonstrate a transformational global real time hydrologic forecasting application based on downscaled ECMWF ensemble forecasts, RAPID routing, and Tethys Platform for cloud computing and visualization with discussions of the human and cyber infrastructure connections that make it successful and needs moving forward.

  12. Integrating Satellite Measurements from Polar-orbiting instruments into Smoke Disperson Forecasts

    NASA Astrophysics Data System (ADS)

    Smith, N.; Pierce, R. B.; Barnet, C.; Gambacorta, A.; Davies, J. E.; Strabala, K.

    2015-12-01

    The IDEA-I (Infusion of Satellite Data into Environmental Applications-International) is a real-time system that currently generates trajectory-based forecasts of aerosol dispersion and stratospheric intrusions. Here we demonstrate new capabilities that use satellite measurements from the Joint Polar Satellite System (JPSS) Suomi-NPP (S-NPP) instruments (operational since 2012) in the generation of trajectory-based predictions of smoke dispersion from North American wildfires. Two such data products are used, namely the Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth (AOD) and the combined Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) NOAA-Unique CrIS-ATMS Processing System (NUCAPS) carbon monoxide (CO) retrievals. The latter is a new data product made possible by the release of full spectral-resolution CrIS measurements since December 2014. Once NUCAPS CO becomes operationally available it will be used in real-time applications such as IDEA-I along with VIIRS AOD and meteorological forecast fields to support National Weather Service (NWS) Incident Meteorologist (IMET) and air quality management decision making. By combining different measurements, the information content of the IDEA-I transport and dispersion forecast is improved within the complex terrain features that dominate the Western US and Alaska. The primary user community of smoke forecasts is the Western regions of the National Weather Service (NWS) and US Environmental Protection Agency (EPA) due to the significant impacts of wildfires in these regions. With this we demonstrate the quality of the smoke dispersion forecasts that can be achieved by integrating polar-orbiting satellite measurements with forecast models to enable on-site decision support services for fire incident management teams and other real-time air quality agencies.

  13. Evaluation of the North American Multi-Model Ensemble System for Monthly and Seasonal Prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Q.

    2014-12-01

    Since August 2011, the real time seasonal forecasts of the U.S. National Multi-Model Ensemble (NMME) have been made on 8th of each month by NCEP Climate Prediction Center (CPC). The participating models were NCEP/CFSv1&2, GFDL/CM2.2, NCAR/U.Miami/COLA/CCSM3, NASA/GEOS5, IRI/ ECHAM-a & ECHAM-f in the first year of the real time NMME forecast. Two Canadian coupled models CMC/CanCM3 and CM4 joined in and CFSv1 and IRI's models dropped out in the second year. The NMME team at CPC collects monthly means of three variables, precipitation, temperature at 2m and sea surface temperature from each modeling center on a 1x1 global grid, removes systematic errors, makes the grand ensemble mean in equal weight for each model mean and probability forecast with equal weight for each member of each model. This provides the NMME forecast locked in schedule for the CPC operational seasonal and monthly outlook. The basic verification metrics of seasonal and monthly prediction of NMME are calculated as an evaluation of skill, including both deterministic and probabilistic forecasts for the 3-year real time (August, 2011- July 2014) period and the 30-year retrospective forecast (1982-2011) of the individual models as well as the NMME ensemble. The motivation of this study is to provide skill benchmarks for future improvements of the NMME seasonal and monthly prediction system. We also want to establish whether the real time and hindcast periods (used for bias correction in real time) are consistent. The experimental phase I of the project already supplies routine guidance to users of the NMME forecasts.

  14. Examining the value of global seasonal reference evapotranspiration forecasts to support FEWS NET’s food insecurity outlooks

    USGS Publications Warehouse

    Shukla, Shraddhanand; McEvoy, Daniel; Hobbins, Michael; Husak, Gregory; Huntington, Justin; Funk, Chris; Macharia, Denis; Verdin, James P.

    2017-01-01

    The Famine Early Warning Systems Network (FEWS NET) team provides food insecurity outlooks for several developing countries in Africa, Central Asia, and Central America. This study describes development of a new global reference evapotranspiration (ETo) seasonal reforecast and skill evaluation with a particular emphasis on the potential use of this dataset by the FEWS NET to support food insecurity early warning. The ETo reforecasts span the 1982-2009 period and are calculated following ASCE’s formulation of Penman-Monteith method driven by seasonal climate forecasts of monthly mean temperature, humidity, wind speed, and solar radiation from NCEP’s CFSv2 and NASA’s GEOS-5 models. The skill evaluation using deterministic and probabilistic scores, focuses on the December-February (DJF), March-May (MAM), June-August (JJA) and September-November (SON) seasons. The results indicate that ETo forecasts are a promising tool for early warning of drought and food insecurity. Globally, the regions where forecasts are most skillful (correlation >0.35 at lead-2) include Western U.S., northern parts of South America, parts of Sahel region and Southern Africa. The FEWS NET regions where forecasts are most skillful (correlation >0.35 at lead-3) include Northern Sub-Saharan Africa (DJF, dry season), Central America (DJF, dry season), parts of East Africa (JJA, wet Season), Southern Africa (JJA, dry season), and Central Asia (MAM, wet season). A case study over parts of East Africa for the JJA season shows that ETo forecasts in combination with the precipitation forecasts could have provided early warning of recent severe drought events (e.g., 2002, 2004, 2009) that contributed to substantial food insecurity in the region.

  15. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  16. Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.

  17. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    PubMed

    Crase, Beth; Liedloff, Adam; Vesk, Peter A; Fukuda, Yusuke; Wintle, Brendan A

    2014-08-01

    Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment-only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment-only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate forecasts lead to ineffective prioritization of conservation activities and potentially to avoidable species extinctions. © 2014 John Wiley & Sons Ltd.

  18. An Operational System for Surveillance and Ecological Forecasting of West Nile Virus Outbreaks

    NASA Astrophysics Data System (ADS)

    Wimberly, M. C.; Davis, J. K.; Vincent, G.; Hess, A.; Hildreth, M. B.

    2017-12-01

    Mosquito-borne disease surveillance has traditionally focused on tracking human cases along with the abundance and infection status of mosquito vectors. For many of these diseases, vector and host population dynamics are also sensitive to climatic factors, including temperature fluctuations and the availability of surface water for mosquito breeding. Thus, there is a potential to strengthen surveillance and predict future outbreaks by monitoring environmental risk factors using broad-scale sensor networks that include earth-observing satellites. The South Dakota Mosquito Information System (SDMIS) project combines entomological surveillance with gridded meteorological data from NASA's North American Land Data Assimilation System (NLDAS) to generate weekly risk maps for West Nile virus (WNV) in the north-central United States. Critical components include a mosquito infection model that smooths the noisy infection rate and compensates for unbalanced sampling, and a human infection model that combines the entomological risk estimates with lagged effects of meteorological variables from the North American Land Data Assimilation System (NLDAS). Two types of forecasts are generated: long-term forecasts of statewide risk extending through the entire WNV season, and short-term forecasts of the geographic pattern of WNV risk in the upcoming week. Model forecasts are connected to public health actions through decision support matrices that link predicted risk levels to a set of phased responses. In 2016, the SDMIS successfully forecast an early start to the WNV season and a large outbreak of WNV cases following several years of low transmission. An evaluation of the 2017 forecasts will also be presented. Our experiences with the SDMIS highlight several important lessons that can inform future efforts at disease early warning. These include the value of integrating climatic models with recent observations of infection, the critical role of automated workflows to facilitate the timely integration of multiple data streams, the need for effective synthesis and visualization of forecasts, and the importance of linking forecasts to specific public health responses.

  19. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    NASA Technical Reports Server (NTRS)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the course of 2009-2010, student teams carried out two independent research projects focused on the Chesapeake Bay Watershed. The first investigated the threat of invasive species to forests in Maryland. The second investigated the detection of winter cover crops throughout the watershed from satellite data.

  20. A Case Study on a Combination NDVI Forecasting Model Based on the Entropy Weight Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shengzhi; Ming, Bo; Huang, Qiang

    It is critically meaningful to accurately predict NDVI (Normalized Difference Vegetation Index), which helps guide regional ecological remediation and environmental managements. In this study, a combination forecasting model (CFM) was proposed to improve the performance of NDVI predictions in the Yellow River Basin (YRB) based on three individual forecasting models, i.e., the Multiple Linear Regression (MLR), Artificial Neural Network (ANN), and Support Vector Machine (SVM) models. The entropy weight method was employed to determine the weight coefficient for each individual model depending on its predictive performance. Results showed that: (1) ANN exhibits the highest fitting capability among the four orecastingmore » models in the calibration period, whilst its generalization ability becomes weak in the validation period; MLR has a poor performance in both calibration and validation periods; the predicted results of CFM in the calibration period have the highest stability; (2) CFM generally outperforms all individual models in the validation period, and can improve the reliability and stability of predicted results through combining the strengths while reducing the weaknesses of individual models; (3) the performances of all forecasting models are better in dense vegetation areas than in sparse vegetation areas.« less

  1. Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios

    PubMed Central

    Varela, Sara; Larkin, Daniel J.; Phelps, Nicholas B. D.

    2017-01-01

    Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species’ suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain. PMID:28704433

  2. Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios.

    PubMed

    Romero-Alvarez, Daniel; Escobar, Luis E; Varela, Sara; Larkin, Daniel J; Phelps, Nicholas B D

    2017-01-01

    Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species' suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain.

  3. Seasonal forecasting for water resource management: the example of CNR Genissiat dam on the Rhone River in France

    NASA Astrophysics Data System (ADS)

    Dommanget, Etienne; Bellier, Joseph; Ben Daoud, Aurélien; Graff, Benjamin

    2014-05-01

    Compagnie Nationale du Rhône (CNR) has been granted the concession to operate the Rhone River from the Swiss border to the Mediterranean Sea since 1933 and carries out three interdependent missions: navigation, irrigation and hydropower production. Nowadays, CNR generates one quarter of France's hydropower electricity. The convergence of public and private interests around optimizing the management of water resources throughout the French Rhone valley led CNR to develop hydrological models dedicated to discharge seasonal forecasting. Indeed, seasonal forecasting is a major issue for CNR and water resource management, in order to optimize long-term investments of the produced electricity, plan dam maintenance operations and anticipate low water period. Seasonal forecasting models have been developed on the Genissiat dam. With an installed capacity of 420MW, Genissiat dam is the first of the 19 CNR's hydropower plants. Discharge forecasting at Genissiat dam is strategic since its inflows contributes to 20% of the total Rhone average discharge and consequently to 40% of the total Rhone hydropower production. Forecasts are based on hydrological statistical models. Discharge on the main Rhone River tributaries upstream Genissiat dam are forecasted from 1 to 6 months ahead thanks to multiple linear regressions. Inputs data of these regressions are identified depending on river hydrological regimes and periods of the year. For the melting season, from spring to summer, snow water equivalent (SWE) data are of major importance. SWE data are calculated from Crocus model (Météo France) and SLF's model (Switzerland). CNR hydro-meteorological forecasters assessed meteorological trends regarding precipitations for the next coming months. These trends are used to generate stochastically precipitation scenarios in order to complement regression data set. This probabilistic approach build a decision-making supports for CNR's water resource management team and provides them with seasonal forecasts and their confidence interval. After a presentation of CNR methodology, results for the years 2011 and 2013 will illustrate CNR's seasonal forecasting models ability. These years are of particular interest regarding water resource management seeing that they are, respectively, unusually dry and snowy. Model performances will be assessed in comparison with historical climatology thanks to CRPS skill score.

  4. Routine High-Resolution Forecasts/Analyses for the Pacific Disaster Center: User Manual

    NASA Technical Reports Server (NTRS)

    Roads, John; Han, J.; Chen, S.; Burgan, R.; Fujioka, F.; Stevens, D.; Funayama, D.; Chambers, C.; Bingaman, B.; McCord, C.; hide

    2001-01-01

    Enclosed herein is our HWCMO user manual. This manual constitutes the final report for our NASA/PDC grant, NASA NAG5-8730, "Routine High Resolution Forecasts/Analysis for the Pacific Disaster Center". Since the beginning of the grant, we have routinely provided experimental high resolution forecasts from the RSM/MSM for the Hawaii Islands, while working to upgrade the system to include: (1) a more robust input of NCEP analyses directly from NCEP; (2) higher vertical resolution, with increased forecast accuracy; (3) faster delivery of forecast products and extension of initial 1-day forecasts to 2 days; (4) augmentation of our basic meteorological and simplified fireweather forecasts to firedanger and drought forecasts; (5) additional meteorological forecasts with an alternate mesoscale model (MM5); and (6) the feasibility of using our modeling system to work in higher-resolution domains and other regions. In this user manual, we provide a general overview of the operational system and the mesoscale models as well as more detailed descriptions of the models. A detailed description of daily operations and a cost analysis is also provided. Evaluations of the models are included although it should be noted that model evaluation is a continuing process and as potential problems are identified, these can be used as the basis for making model improvements. Finally, we include our previously submitted answers to particular PDC questions (Appendix V). All of our initially proposed objectives have basically been met. In fact, a number of useful applications (VOG, air pollution transport) are already utilizing our experimental output and we believe there are a number of other applications that could make use of our routine forecast/analysis products. Still, work still remains to be done to further develop this experimental weather, climate, fire danger and drought prediction system. In short, we would like to be a part of a future PDC team, if at all possible, to further develop and apply the system for the Hawaiian and other Pacific Islands as well as the entire Pacific Basin.

  5. Blending ecology and evolution using emerging technologies to determine species distributions with a non-native pathogen in a changing climate

    Treesearch

    K. Waring; S. Cushman; A. Eckert; L. Flores-Renteria; H. Lintz; R. Sniezko; C. Still; C. Wehenkel; A. Whipple; M. Wing

    2017-01-01

    A collaborative team of researchers from the United States and Mexico has begun an exciting new research project funded by The National Science Foundation’s Macrosystems Biology program. The project will study ecological and evolutionary processes affecting the distribution of southwestern white pine (Pinus strobiformis), an important tree species of mixed conifer...

  6. Remote-sensing based approach to forecast habitat quality under climate change scenarios.

    PubMed

    Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.

  7. Remote-sensing based approach to forecast habitat quality under climate change scenarios

    PubMed Central

    Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501

  8. Cognitive methodology for forecasting oil and gas industry using pattern-based neural information technologies

    NASA Astrophysics Data System (ADS)

    Gafurov, O.; Gafurov, D.; Syryamkin, V.

    2018-05-01

    The paper analyses a field of computer science formed at the intersection of such areas of natural science as artificial intelligence, mathematical statistics, and database theory, which is referred to as "Data Mining" (discovery of knowledge in data). The theory of neural networks is applied along with classical methods of mathematical analysis and numerical simulation. The paper describes the technique protected by the patent of the Russian Federation for the invention “A Method for Determining Location of Production Wells during the Development of Hydrocarbon Fields” [1–3] and implemented using the geoinformation system NeuroInformGeo. There are no analogues in domestic and international practice. The paper gives an example of comparing the forecast of the oil reservoir quality made by the geophysicist interpreter using standard methods and the forecast of the oil reservoir quality made using this technology. The technical result achieved shows the increase of efficiency, effectiveness, and ecological compatibility of development of mineral deposits and discovery of a new oil deposit.

  9. Verification of Ensemble Forecasts for the New York City Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.

    2012-12-01

    The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble forecasts is needed to verify that the post-processed forecasts are unbiased, statistically reliable, and preserve the skill inherent in the "raw" NWS ensemble forecasts. A verification procedure and set of metrics will be presented that provide an objective assessment of ensemble forecasts. The procedure will be applied to both raw ensemble hindcasts and to post-processed ensemble hindcasts. The verification metrics will be used to validate proper functioning of the post-processor and to provide a benchmark for comparison of different types of forecasts. For example, current NWS ensemble forecasts are based on climatology, using each historical year to generate a forecast trace. The NWS Hydrologic Ensemble Forecast System (HEFS) under development will utilize output from both the National Oceanic Atmospheric Administration (NOAA) Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFS). Incorporating short-term meteorological forecasts and longer-term climate forecast information should provide sharper, more accurate forecasts. Hindcasts from HEFS will enable New York City to generate verification results to validate the new forecasts and further fine-tune system operating rules. Project verification results will be presented for different watersheds across a range of seasons, lead times, and flow levels to assess the quality of the current ensemble forecasts.

  10. Fine-resolution conservation planning with limited climate-change information.

    PubMed

    Shah, Payal; Mallory, Mindy L; Ando, Amy W; Guntenspergen, Glenn R

    2017-04-01

    Climate-change induced uncertainties in future spatial patterns of conservation-related outcomes make it difficult to implement standard conservation-planning paradigms. A recent study translates Markowitz's risk-diversification strategy from finance to conservation settings, enabling conservation agents to use this diversification strategy for allocating conservation and restoration investments across space to minimize the risk associated with such uncertainty. However, this method is information intensive and requires a large number of forecasts of ecological outcomes associated with possible climate-change scenarios for carrying out fine-resolution conservation planning. We developed a technique for iterative, spatial portfolio analysis that can be used to allocate scarce conservation resources across a desired level of subregions in a planning landscape in the absence of a sufficient number of ecological forecasts. We applied our technique to the Prairie Pothole Region in central North America. A lack of sufficient future climate information prevented attainment of the most efficient risk-return conservation outcomes in the Prairie Pothole Region. The difference in expected conservation returns between conservation planning with limited climate-change information and full climate-change information was as large as 30% for the Prairie Pothole Region even when the most efficient iterative approach was used. However, our iterative approach allowed finer resolution portfolio allocation with limited climate-change forecasts such that the best possible risk-return combinations were obtained. With our most efficient iterative approach, the expected loss in conservation outcomes owing to limited climate-change information could be reduced by 17% relative to other iterative approaches. © 2016 Society for Conservation Biology.

  11. Research on water shortage risks and countermeasures in North China

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiang; Fang, Wenxuan; Wu, Ziqin

    2017-05-01

    In the paper, a grey forecasting model and a population growth model are established for forecasting water resources supply and demand situation in the region, and evaluating the scarcity of water resources thereof in order to solve the problem of water shortage in North China. A concrete plan for alleviating water resources pressure is proposed with AHP as basis, thereby discussing the feasibility of the plan. Firstly, water resources supply and demand in the future 15 years are predicted. There are four sources for the demand of water resources mainly: industry, agriculture, ecology and resident living. Main supply sources include surface water and underground water resources. A grey forecasting method is adopted for predicting in the paper aiming at water resources demands since industrial, agricultural and ecological water consumption data have excessive decision factors and the correlation is relatively fuzzy. Since residents' water consumption is determined by per capita water consumption and local population, a logistic growth model is adopted to forecast the population. The grey forecasting method is used for predicting per capita water consumption, and total water demand can be obtained finally. International calculation standards are adopted as reference aiming at water supply. The grey forecasting method is adopted for forecasting surface water quantity and underground water quantity, and water resources supply is obtained finally. Per capita water availability in the region is calculated by comparing the water resources supply and demand. Results show that per capita water availability in the region is only 283 cubic meters this year, people live in serious water shortage region, who will suffer from water shortage state for long time. Then, sensitivity analysis is applied for model test. The test result is excellent, and the prediction results are more accurate. In the paper, the following measures are proposed for improving water resources condition in the region according to prediction results, such as construction of reservoirs, sewage treatment, water diversion project and other measures. A detailed water supply plan is formulated. Water supply weights of all measures are determined according to the AHP model. Solution is sought after original models are improved. Results show that water resources quantity per capita will be up to 2170 cubic meters or so this year, people suffer from moderate water shortage in the region, which can meet people's life needs and economic development needs basically. In addition, water resources quantity per capita is increased year by year, and it can reach mild water shortage level after 2030. In a word, local water resources dilemma can be effectively solved by the plan actually, and thoughts can be provided for decision makers.

  12. A Public-Private-Academic Partnership to Advance Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis, Melinda; Benjamin, Stan; James, Eric

    Executive Summary NOAA is making major contributions to the solar forecasting project in three areas. First, it is improving its forecasts of solar irradiance, clouds, and aerosols in its numerical weather prediction models. Second, it is providing advanced satellite products for DOE's FOA awardees to use in their forecast systems. Third, it is using high-quality ground-based measurements from SURFRAD and ISIS stations to verify and validate forecast model output. This reports covers results from all three areas for the period May 1, 2014 - April 30, 2015. Modeling In its modeling effort, NOAA continues work to improve the skill ofmore » solar forecasts from the Earth System Research Lab (ESRL) research versions of the 13-km Rapid Refresh (RAP) and the 3-km High-Resolution Rapid Refresh (HRRR) models, which are in turn transitioned into operations at the National Centers for Environmental Prediction (NCEP). A major milestone was achieved in September 2014 with the initial operational implementation of the HRRR at NCEP. In the ESRL research versions of the models, testing and development, in both real-time runs and retrospective experiments, is guided by an extensive in-house verification system. Early in the SFIP project, we developed the capability to verify our model forecasts against the high-quality surface radiation measurements from the SURFRAD and ISIS networks. This highlighted some shortcomings with the RAP and HRRR forecasts of incoming shortwave radiation. Most of our effort during Phase 1 of SFIP was focused on addressing these problems with a variety of model system improvements. The RAP and HRRR models during the warm season of 2014 had a noticeable warm and dry bias in near-surface conditions over most of the central and eastern United States, and our new SURFRAD/ISIS verification revealed that there was also a large excess of incoming global horizontal irradiance in the models. We hypothesized that a lack of cloud cover (particularly low-level cloud cover) in the models was resulting in too much heating of the land surface. This, in turn, caused unrealistically strong surface heat fluxes and turbulent mixing in the planetary boundary layer (PBL), which further reduced the already deficient cloud cover. We addressed these issues with a combination of data assimilation system modifications and model physics improvements. Many of our data assimilation changes were made with a view towards improving the near-term representation of clouds and precipitation. One of these changes involved better accounting for regions of weak reflectivity in the RAP cloud / hydrometeor assimilation system, in order to improve the representation of light precipitation in the RAP initial conditions and provide more realistic initial cloud cover. Additional modifications more accurately accounted for radar beam blockage and data gaps (particularly in the western United States), which improves shorter lead times forecasts of clouds and precipitation. We have also tested the assimilation of new data sources within the RAP and the HRRR, including radar radial velocity data and surface mesonet observations. Within the HRRR, we have tested the cycling of the 3-km land surface fields to allow a higher-resolution treatment of land surface processes. In terms of model physics development for SFIP, we have implemented a shallow cumulus scheme within the RAP, and have made numerous improvements to the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme to address insufficient low-level cloud cover in the models. We have conducted tests incorporating the radiation effects of (parameterized) boundary-layer clouds within the modified MYNN PBL scheme (independent of the convective schemes). The Grell-Freitas-Olson shallow cumulus scheme has also been tested within the 3-km HRRR. Finally, we have also modified the RUC land surface model (LSM) treatment of the vegetation wilting point, reducing it to increase evapotranspiration and increase cloud cover in the boundary layer. All of these changes work in tandem to significantly improve the model forecasts of cloud cover, incoming shortwave radiation, and near-surface temperature and moisture. Satellite The role of NOAA/NESDIS in the Solar Forecasting Improvement Project is to provide Advanced Satellite Products (ASPs) for the two forecasting teams at NCAR and IBM. The ASPs are cloud, surface, and atmosphere products derived from geostationary satellite imagery at the highest possible spatial and temporal resolution - such quantities as cloud mask, cloud probability, cloud transmission, cloud top height, cloud top temperature, cloud effective particle size, etc. Ancillary data, such as elevation and numerical weather prediction fields are provided in the files at the same resolution as well. There are at this time 147 different variables in the ASP output, including quality flags and processing information. The main goals for Year 1 of the project were to implement an Advanced Satellite Products system for the use of the IBM and NCAR teams, begin validation, and make any needed changes based on feedback from the teams. ASP files are being produced every GOES Imager acquisition, which occur on a 15-30 minute schedule. Processing is done on a dedicated computer, with a turn-around time of 8-21 minutes from image acquisition to results available on ftp. Several helpful visualizations of the data are also created for users on web pages. Users have been provided with a document titled "User's Guide for 1km Cloud Products Derived from GOES Imager Data using CLAVR-x", which discusses the basics of the source imagery, the process by which it is turned into Advanced Satellite Products, and considerations users should make when using the data. Validation of selected variables from the older 4km version of the products was also included. Future work will concentrate on validation of the 1km products and improving the turn-around time, product variety, and product quality as needed. Ground Observations In the ground-based measurement effort, NOAA's main objectives are to provide high quality radiation products for validation and verification of short-term to day-ahead solar forecasts. More specifically for the three year project, our goals include (1) Maintaining and providing data from our 7 SURFRAD and 7 ISIS; (2) Update ISIS radiation measurements from 3 min to 1 min data: (3) Purchase and install new pyrheliometers for direct solar irradiance measurements at the 7 SURFRAD sites; (4) Building, testing, and deploying two mobile SURFRAD stations at two utility plants in collaboration with DOE sponsored partners, and includes ongoing maintenance and processing of the data at the mobile sites; (5) Upgrading the data acquisition and communications at 7 SURFRAD sites and 7 ISIS sites; (6) Providing radiation data at the 7 SURFRAD sites in near real-time; (7) Develop and provide aerosol optical depth and cloud images and cloud fraction at our two mobile sites; (8) Provide data recovery rates each year; (9) Provide temporally and spatially averaged radiation products for comparison to HRRR and RAP solar forecasts and advanced satellite products; (10) Provide a data-set for analysis of conversion of direct and diffuse to sloped surfaces; (11) and as time permits develop and provide spectral solar irradiance, cloud optical depth and spectral albedo from the mobile sites. Milestones this year include working with the DOE sponsored teams to find locations to deploy two mobile SURFRAD stations. One existing unit was deployed at a 30MW PV facility in the San Luis Valley in collaboration with Xcel and the NCAR team in August, 2014. The second unit was built and tested at our facilities in Boulder, CO and deployed near Green Mountain Power's Education Center in Rutland, VT in collaboration with Green Mountain Power and the IBM Team in October, 2014. Data processing was implemented and the radiation data from these two mobile sites have been made available on our ftp server in near real-time. We also are providing images and cloud fraction from the TSI cameras for these two mobile sites on our ftp site. Another milestone was upgrading our data acquisition and communication systems at 7 SURFRAD and 7 ISIS sites. We accelerated our schedule for these upgrades to provide timely radiation products. These upgrades allow more reliable and near-real time radiation data delivery to the DOE sponsored teams to meet their goals. Lastly, we changed the data rate at the ISIS sites from 3 min to 1 min.« less

  13. The Arctic Boreal Vulnerability Experiment: Observing, Understanding, and Predicting Social-Ecological Change in the Far North

    NASA Astrophysics Data System (ADS)

    Mack, M. C.; Goetz, S. J.; Kasischke, E. S.; Kimball, J. S.; Boelman, N.

    2015-12-01

    In the high northern latitudes, climate is warming more rapidly than anywhere else on Earth, transforming vulnerable arctic tundra and boreal forest landscapes. These changes are altering the structure and function of energy, water and carbon cycles, producing significant feedbacks to regional and global climate through changes in energy, water and carbon cycles. These changes are also challenging local and global society. At the local level, communities seek to adapt to new social-ecological regimes. At the global level, changing arctic and boreal systems are increasing becoming the focus of policy discussions at all levels of decision-making. National and international scientific efforts associated with a new NASA field campaign, the Arctic-Boreal Vulnerability Experiment (ABOVE) will advance our ability to observe, understand and predict the complex, multiscale and non-linear processes that are confronting the natural and social systems in this rapidly changing region. Over the next decade, the newly assembled ABOVE Science Team will pursue this overarching question: "How vulnerable or resilient are ecosystems and society to environmental change in the Arctic and boreal region of western North America?" Through integration of remote sensing and in situ observations with modeling of both ecological and social systems, the ABOVE Science Team will advance an interdisciplinary understanding of the Far North. In this presentation, we will discuss the conceptual basis for the ABOVE Field Campaign, describe Science Team composition and timeline, and update the community on activities. In addition, we will reflect on the visionary role of Dr. Diane Wickland, retired NASA Terrestrial Ecology Program Manager and lead of the Carbon Cycle & Ecosystems Focus Area, in the development and commencement of ABOVE.

  14. Scenario studies as a synthetic and integrative research activity for Long-Term Ecological Research

    Treesearch

    Jonathan R. Thompson; Arnim Wiek; Frederick J. Swanson; Stephen R. Carpenter; Nancy Fresco; Teresa Hollingsworth; Thomas A. Spies; David R. Foster

    2012-01-01

    Scenario studies have emerged as a powerful approach for synthesizing diverse forms of research and for articulating and evaluating alternative socioecological futures. Unlike predictive modeling, scenarios do not attempt to forecast the precise or probable state of any variable at a given point in the future. Instead, comparisons among a set of contrasting scenarios...

  15. Is optimism real?

    PubMed

    Simmons, Joseph P; Massey, Cade

    2012-11-01

    Is optimism real, or are optimistic forecasts just cheap talk? To help answer this question, we investigated whether optimistic predictions persist in the face of large incentives to be accurate. We asked National Football League football fans to predict the winner of a single game. Roughly half (the partisans) predicted a game involving their favorite team, and the other half (the neutrals) predicted a game involving 2 teams they were neutral about. Participants were promised either a small incentive ($5) or a large incentive ($50) for correctly predicting the game's winner. Optimism emerged even when incentives were large, as partisans were much more likely than neutrals to predict partisans' favorite teams to win. Strong optimism also emerged among participants whose responses to follow-up questions strongly suggested that they believed the predictions they made. This research supports the claim that optimism is real. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  16. Improving the Army’s Next Effort in Technology Forecasting

    DTIC Science & Technology

    2010-09-01

    Health Maintenance— ability to make the robotic system more robust and to provide maintenance capabilities for self -monitoring, diagnostics, and...exhibit a verity of responses, including self -sensing and self - healing activities.43 A team of chemists and materials scientists led by the Moore...ultimately lead to i) applications in vehicles, including self -repairing armor, rubber , and coatings resistant to chemical agents, ii) aerospace

  17. Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; O'Brien, Raymond

    2015-01-01

    Cloud computing capabilities have rapidly expanded within the private sector, offering new opportunities for meteorological applications. Collaborations between NASA Marshall, NASA Ames, and contractor partners led to evaluations of private (NASA) and public (Amazon) resources for executing short-term NWP systems. Activities helped the Marshall team further understand cloud capabilities, and benchmark use of cloud resources for NWP and other applications

  18. A Research on Development of The Multi-mode Flood Forecasting System Version Management

    NASA Astrophysics Data System (ADS)

    Shen, J.-C.; Chang, C. H.; Lien, H. C.; Wu, S. J.; Horng, M. J.

    2009-04-01

    With the global economy and technological development, the degree of urbanization and population density relative to raise. At the same time, a natural buffer space and resources year after year, the situation has been weakened, not only lead to potential environmental disasters, more and more serious, disaster caused by the economy, loss of natural environment at all levels has been expanded. In view of this, the active participation of all countries in the world cross-sectoral integration of disaster prevention technology research and development, in addition, the specialized field of disaster prevention technology, science and technology development, network integration technology, high-speed data transmission and information to support the establishment of mechanisms for disaster management The decision-making and cross-border global disaster information network building and other related technologies, has become the international anti-disaster science and technology development trends, this trend. Naturally a few years in Taiwan, people's lives and property losses caused by many problems related to natural disaster prevention and disaster prevention and the establishment of applications has become a very important. For FEWS_Taiwan, flood warning system developed by the Delft Hydraulics and introduced the Water Resources Agency (WRA), it provides those functionalities for users to modify contents to add the basins, regions, data sources, models and etc. Despite this advantage, version differences due to different users or different teams yet bring about the difficulties on synchronization and integration.At the same time in different research teams will also add different modes of meteorological and hydrological data. From the government perspective of WRA, the need to plan standard operation procedures for system integration demands that the effort for version control due to version differences must be cost down or yet canceled out. As for FEWS_Taiwan, this paper proposed the feasible avenues and solutions to smoothly integrate different configurations from different teams. In the current system has been completed by 20 of Taiwan's main rivers in the building of the basic structure of the flood forecasting. And regular updating of the relevant parameters, using the new survey results, in order to have a better flood forecasting results.

  19. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore

    PubMed Central

    Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S.Y.; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R.

    2015-01-01

    Background: With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. Objectives: We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. Methods: We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Results: Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore’s dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Conclusions: Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Citation: Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369–1375; http://dx.doi.org/10.1289/ehp.1509981 PMID:26662617

  20. Meeting summary - Coastal meteorology and oceanography: Report of the third prospectus development team of the U.S. Weather Research Program to NOAA and NSF

    USGS Publications Warehouse

    Rotunno, R.; Pietrafesa, L.J.; Allen, J.S.; Colman, B.R.; Dorman, C.M.; Kreitzberg, C.W.; Lord, S.J.; McPhee, M.G.; Mellor, G.L.; Mooers, C.N.K.; Niiler, P.P.; Pielke, R.A.; Powell, M.D.; Rogers, D.P.; Smith, J.D.; Xie, Lingtian; Carbone, R.

    1996-01-01

    U.S. Weather Research Program (USWRP) prospectus development teams (PDTs) are small groups of scientists that are convened by the USWRP lead scientist on a one-time basis to discuss critical issues and to provide advice related to future directions of the program. PDTs are a principal source of information for the Science Advisory Committee, which is a standing committee charged with the duty of making recommendations to the Program Office based upon overall program objectives. PDT-1 focused on theoretical issues, and PDT-2 on observational issues; PDT-3 is the first of several to focus on more specialized topics. PDT-3 was convened to identify forecasting problems related to U.S. coastal weather and oceanic conditions, and to suggest likely solution strategies. There were several overriding themes that emerged from the discussion. First, the lack of data in and over critical regions of the ocean, particularly in the atmospheric boundary layer, and the upper-ocean mixed layer were identified as major impediments to coastal weather prediction. Strategies for data collection and dissemination, as well as new instrument implementation, were discussed. Second, fundamental knowledge of air-sea fluxes and boundary layer structure in situations where there is significant mesoscale variability in the atmosphere and ocean is needed. Companion field studies and numerical prediction experiments were discussed. Third, research prognostic models suggest that future operational forecast models pertaining to coastal weather will be high resolution and site specific, and will properly treat effects of local coastal geography, orography, and ocean state. The view was expressed that the exploration of coupled air-sea models of the coastal zone would be a particularly fruitful area of research. PDT-3 felt that forecasts of land-impacting tropical cyclones, Great Lakes-affected weather, and coastal cyclogenesis, in particular, would benefit from such coordinated modeling and field efforts. Fourth, forecasting for Arctic coastal zones is limited by our understanding of how sea ice forms. The importance of understanding air-sea fluxes and boundary layers in the presence of ice formation was discussed. Finally, coastal flash flood forecasting via hydrologic models is limited by the present accuracy of measured and predicted precipitation and storm surge events. Strategies for better ways to improve the latter were discussed.

  1. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall is critical for end-of-season outcomes. Finally we show that, in terms of forecasting spatial patterns of SM anomalies, the skill of this agricultural drought forecast system is generally greater (> 0.8 correlation) during drought years. This means that this system might be particularity useful for identifying the events that present the greatest risk to the region.

  2. Realizing the potential of ecosystem services: a framework for relating ecological changes to economic benefits.

    PubMed

    Wainger, Lisa; Mazzotta, Marisa

    2011-10-01

    Increasingly government agencies are seeking to quantify the outcomes of proposed policy options in terms of ecosystem service benefits, yet conflicting definitions and ad hoc approaches to measuring ecosystem services have created confusion regarding how to rigorously link ecological change to changes in human well-being. Here, we describe a step-by-step framework for producing ecological models and metrics that can effectively serve an economic-benefits assessment of a proposed change in policy or management. A focus of the framework is developing comparable units of ecosystem goods and services to support decision-making, even if outcomes cannot be monetized. Because the challenges to translating ecological changes to outcomes appropriate for economic analyses are many, we discuss examples that demonstrate practical methods and approaches to overcoming data limitations. The numerous difficult decisions that government agencies must make to fairly use and allocate natural resources provides ample opportunity for interdisciplinary teams of natural and social scientists to improve methods for quantifying changes in ecosystem services and their effects on human well-being. This framework is offered with the intent of promoting the success of such teams as they support managers in evaluating the equivalency of ecosystem service offsets and trades, establishing restoration and preservation priorities, and more generally, in developing environmental policy that effectively balances multiple perspectives.

  3. Sea Ice Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin

    2015-01-01

    The recent decline in perennial sea ice cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea ice extent would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the ice cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea ice extent for the month of September (the month of the annual extent minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea Ice Outlook (SIO) but recently came under the auspices of the Sea Ice Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea ice extent from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic ice extent of 5.030.41 million km2.

  4. Forecasting natural hazards, performance of scientists, ethics, and the need for transparency

    PubMed Central

    Guzzetti, Fausto

    2016-01-01

    Landslides are one of several natural hazards. As other natural hazards, landslides are difficult to predict, and their forecasts are uncertain. The uncertainty depends on the poor understanding of the phenomena that control the slope failures, and on the inherent complexity and chaotic nature of the landslides. This is similar to other natural hazards, including hurricanes, earthquakes, volcanic eruptions, floods, and droughts. Due to the severe impact of landslides on the population, the environment, and the economy, forecasting landslides is of scientific interest and of societal relevance, and scientists attempting to forecast landslides face known and new problems intrinsic to the multifaceted interactions between science, decision-making, and the society. The problems include deciding on the authority and reliability of individual scientists and groups of scientists, and evaluating the performances of individual scientists, research teams, and their institutions. Related problems lay in the increasing subordination of research scientists to politics and decision-makers, and in the conceptual and operational models currently used to organize and pay for research, based on apparently objective criteria and metrics, considering science as any other human endeavor, and favoring science that produces results of direct and immediate application. The paper argues that the consequences of these problems have not been considered fully. PMID:27695154

  5. Forecasting natural hazards, performance of scientists, ethics, and the need for transparency.

    PubMed

    Guzzetti, Fausto

    2016-10-20

    Landslides are one of several natural hazards. As other natural hazards, landslides are difficult to predict, and their forecasts are uncertain. The uncertainty depends on the poor understanding of the phenomena that control the slope failures, and on the inherent complexity and chaotic nature of the landslides. This is similar to other natural hazards, including hurricanes, earthquakes, volcanic eruptions, floods, and droughts. Due to the severe impact of landslides on the population, the environment, and the economy, forecasting landslides is of scientific interest and of societal relevance, and scientists attempting to forecast landslides face known and new problems intrinsic to the multifaceted interactions between science, decision-making, and the society. The problems include deciding on the authority and reliability of individual scientists and groups of scientists, and evaluating the performances of individual scientists, research teams, and their institutions. Related problems lay in the increasing subordination of research scientists to politics and decision-makers, and in the conceptual and operational models currently used to organize and pay for research, based on apparently objective criteria and metrics, considering science as any other human endeavor, and favoring science that produces results of direct and immediate application. The paper argues that the consequences of these problems have not been considered fully.

  6. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  7. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers. During launch operations, the payload/launch team sometimes asks the LWOs if they expect the upper-level winds to change during the countdown. The LWOs used numerical weather prediction model point forecasts to provide the information, but did not have the capability to quickly retrieve or adequately display the upper-level observations and compare them directly in the same display to the model point forecasts to help them determine which model performed the best. The LWOs requested the Applied Meteorology Unit (AMU) develop a graphical user interface (GUI) that will plot upper-level wind speed and direction observations from the Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Profiling System (AMPS) rawinsondes with point forecast wind profiles from the National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM), Rapid Refresh (RAP) and Global Forecast System (GFS) models to assess the performance of these models. The AMU suggested adding observations from the NASA 50 MHz wind profiler and one of the US Air Force 915 MHz wind profilers, both located near the Kennedy Space Center (KSC) Shuttle Landing Facility, to supplement the AMPS observations with more frequent upper-level profiles. Figure 1 shows a map of KSC/CCAFS with the locations of the observation sites and the model point forecasts.

  8. CCMC: bringing space weather awareness to the next generation

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.

    2017-12-01

    Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper atmosphere, for near real-time and historical space weather events.

  9. Vaccine trials in the developing world: operational lessons learnt from a phase IV poliomyelitis vaccine trial in South Africa.

    PubMed

    Geldenhuys, H; Waggie, Z; Jacks, M; Geldenhuys, M; Traut, L; Tameris, M; Hatherill, M; Hanekom, W A; Sutter, R; Hussey, G; Mahomed, H

    2012-08-31

    Conducting vaccine trials in developing nations is necessary but operationally complex. We describe operational lessons learnt from a phase IV poliomyelitis vaccine trial in a semi-rural region of South Africa. We reviewed operational data collected over the duration of the trial with respect to staff recruitment and training, participant recruitment and retention, and cold chain maintenance. RESULTS-LESSONS LEARNT: The recruitment model we used that relied on the 24h physical presence of a team member in the birthing unit was expensive and challenging to manage. Forecasting of enrolment rates was complicated by incomplete baseline data and by the linear nature of forecasts that do not take into account changing variables. We found that analyzing key operational data to monitor progress of the trial enabled us to identify problem areas timeously, and to facilitate a collegial problem-solving process by the extended trial team. Pro-actively nurturing a working relationship with the public sector health care system and the community was critical to our success. Despite the wide geographical area and lack of fixed addresses, we maintained an excellent retention rate through community assistance and the use of descriptive residential information. Training needs of team members were ongoing and dynamic and we discovered that these needs that were best met by an in-house, targeted and systemized training programme. The use of vaccine refrigerators instead of standard frost-free refrigerators is cost-effective and necessary to maintain the cold-chain. Operational challenges of a vaccine trial in developing world populations include inexperienced staff, the close liaison required between researchers and public health care services, impoverished participants that require complex recruitment and retention strategies, and challenges of distance and access. These challenges can be overcome by innovative strategies that allow for the unique characteristics of the setting, trial population, and trial team. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Transition from Research to Operations: Assessing Value of Experimental Forecast Products within the NWSFO Environment

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Wohlman, Richard; Bradshaw, Tom; Burks, Jason; Jedlovec, Gary; Goodman, Steve; Darden, Chris; Meyer, Paul

    2003-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NWS forecast operations and decision-making. To meet long-term program expectations, it is not sufficient simply to give forecasters sophisticated workstations or new forecast products without fully assessing the ways in which they will be utilized. Close communication must be established between the research and operational communities so that developers have a complete understanding of user needs. In turn, forecasters must obtain a more comprehensive knowledge of the modeling and sensing tools available to them. A major goal of the SPoRT Program is to develop metrics and conduct assessment studies with NWS forecasters to evaluate the impacts and benefits of ESE experimental products on forecast skill. At a glance the task seems relatively straightforward. However, performing assessment of experimental products in an operational environment is demanding. Given the tremendous time constraints placed on NWS forecasters, it is imperative that forecaster input be obtained in a concise unobtrusive manor. Great care must also be taken to ensure that forecasters understand their participation will eventually benefit them and WFO operations in general. Two requirements of the assessment plan developed under the SPoRT activity are that it 1) Can be implemented within the WFO environment; and 2) Provide tangible results for BOTH the research and operational communities. Supplemental numerical quantitative precipitation forecasts (QPF) were chosen as the first experimental SPoRT product to be evaluated during a Pilot Assessment Program conducted 1 May 2003 within the Huntsville AL National Weather Service Forecast Office. Forecast time periods were broken up into six- hour bins ranging from zero to twenty-four hours. Data were made available for display in AWIPS on an operational basis so they could be efficiently incorporated into the forecast process. The methodology used to assess the value of experimental QPFs compared to available operational products is best described as a three-tier approach involving both forecasters and research scientists. Tier-one is a web-based survey completed by duty forecasters on the aviation and public desks. The survey compiles information on how the experimental product was used in the forecast decision making process. Up to 6 responses per twenty-four hours can be compiled during a precipitation event. Tier-two consists of an event post mortem and experimental product assessment performed daily by the NASA/NWS Liaison. Tier-three is a detailed breakdown/analysis of specific events targeted by either the NWS SO0 or SPoRT team members. The task is performed by both NWS and NASA research scientists and may be conducted once every couple of months. The findings from the Pilot Assessment Program will be reported at the meeting.

  11. Where Do the Sand-Dust Storms Come From?: Conversations with Specialists from the Exploring Sand-Dust Storms Scientific Expedition Team

    ERIC Educational Resources Information Center

    Shixin, Liu

    2004-01-01

    This article relates the different views from specialists of the scientific expedition team for the exploration of the origin of sand-dust storms. They observed and examined on-site the ecological environment of places of origin for sand-dust storms, and tried to find out causes of sand-dust storm and what harm it can cause in the hope of…

  12. Air Quality Cumulative Effects Assessment for U.S. Air Force Bases.

    DTIC Science & Technology

    1998-01-29

    forecasted activities. Consideration of multimedia effects and transmedia impacts is important, however, in CEA. Any quantification method developed...substantive areas, such as water quality, ecology, planing, archeology , and landscape architecture? 9. Are there public concerns due to the impact risks of...methods developed for CEA should consider multimedia effects and transmedia impacts. Portions of this research can be used, or modified, to address other

  13. Making Invasion models useful for decision makers; incorporating uncertainty, knowledge gaps, and decision-making preferences

    Treesearch

    Denys Yemshanov; Frank H Koch; Mark Ducey

    2015-01-01

    Uncertainty is inherent in model-based forecasts of ecological invasions. In this chapter, we explore how the perceptions of that uncertainty can be incorporated into the pest risk assessment process. Uncertainty changes a decision maker’s perceptions of risk; therefore, the direct incorporation of uncertainty may provide a more appropriate depiction of risk. Our...

  14. Examining the value of global seasonal reference evapotranspiration forecasts tosupport FEWS NET's food insecurity outlooks

    NASA Astrophysics Data System (ADS)

    Shukla, S.; McEvoy, D.; Hobbins, M.; Husak, G. J.; Huntington, J. L.; Funk, C.; Verdin, J.; Macharia, D.

    2017-12-01

    The Famine Early Warning Systems Network (FEWS NET) team provides food insecurity outlooks for several developing countries in Africa, Central Asia, and Central America. Thus far in terms of agroclimatic conditions that influence food insecurity, FEWS NET's primary focus has been on the seasonal precipitation forecasts while not adequately accounting for the atmospheric evaporative demand, which is also directly related to agricultural production and hence food insecurity, and is most often estimated by reference evapotranspiration (ETo). This presentation reports on the development of a new global ETo seasonal reforecast and skill evaluation with a particular emphasis on the potential use of this dataset by the FEWS NET to support food insecurity early warning. The ETo reforecasts span the 1982-2009 period and are calculated following ASCE's formulation of Penman-Monteith method driven by seasonal climate forecasts of monthly mean temperature, humidity, wind speed, and solar radiation from NCEP's CFSv2 and NASA's GEOS-5 models. The skill evaluation using deterministic and probabilistic scores focuses on the December-February (DJF), March-May (MAM), June-August (JJA) and September-November (SON) seasons. The results indicate that ETo forecasts are a promising tool for early warning of drought and food insecurity. The FEWS NET regions with promising level of skill (correlation >0.35 at lead times of 3 months) include Northern Sub-Saharan Africa (DJF, dry season), Central America (DJF, dry season), parts of East Africa (JJA, wet Season), Southern Africa (JJA, dry season), and Central Asia (MAM, wet season). A case study over parts of East Africa for the JJA season shows that, in combination with the precipitation forecasts, ETo forecasts could have provided early warning of recent severe drought events (e.g., 2002, 2004, 2009) that contributed to substantial food insecurity in the region.

  15. Visualizing Coastal Erosion, Overwash and Coastal Flooding in New England

    NASA Astrophysics Data System (ADS)

    Young Morse, R.; Shyka, T.

    2017-12-01

    Powerful East Coast storms and their associated storm tides and large, battering waves can lead to severe coastal change through erosion and re-deposition of beach sediment. The United States Geological Survey (USGS) has modeled such potential for geological response using a storm-impact scale that compares predicted elevations of hurricane-induced water levels and associated wave action to known elevations of coastal topography. The resulting storm surge and wave run-up hindcasts calculate dynamic surf zone collisions with dune structures using discrete regime categories of; "collision" (dune erosion), "overwash" and "inundation". The National Weather Service (NWS) recently began prototyping this empirical technique under the auspices of the North Atlantic Regional Team (NART). Real-time erosion and inundation forecasts were expanded to include both tropical and extra-tropical cyclones along vulnerable beaches (hotspots) on the New England coast. Preliminary results showed successful predictions of impact during hurricane Sandy and several intense Nor'easters. The forecasts were verified using observational datasets, including "ground truth" reports from Emergency Managers and storm-based, dune profile measurements organized through a Maine Sea Grant partnership. In an effort to produce real-time visualizations of this forecast output, the Northeastern Regional Association of Coastal Ocean Observing Systems (NERACOOS) and the Gulf of Maine Research Institute (GMRI) partnered with NART to create graphical products of wave run-up levels for each New England "hotspot". The resulting prototype system updates the forecasts twice daily and allows users the ability to adjust atmospheric and sea state input into the calculations to account for model errors and forecast uncertainty. This talk will provide an overview of the empirical wave run-up calculations, the system used to produce forecast output and a demonstration of the new web based tool.

  16. Forecasting near-surface weather conditions and precipitation in Alaska's Prince William Sound with the PWS-WRF modeling system

    NASA Astrophysics Data System (ADS)

    Olsson, Peter Q.; Volz, Karl P.; Liu, Haibo

    2013-07-01

    In the summer of 2009, several scientific teams engaged in a field program in Prince William Sound (PWS), Alaska to test an end-to-end atmosphere/ocean prediction system specially designed for this region. The "Sound Predictions Field Experiment" (FE) was a test of the PWS-Observing System (PWS-OS) and the culmination of a five-year program to develop an observational and prediction system for the Sound. This manuscript reports on results of an 18-day high-resolution atmospheric forecasting field project using the Weather Research and Forecasting (WRF) model.Special attention was paid to surface meteorological properties and precipitation. Upon reviewing the results of the real-time forecasts, modifications were incorporated in the PWS-WRF modeling system in an effort to improve objective forecast skill. Changes were both geometric (model grid structure) and physical (different physics parameterizations).The weather during the summer-time FE was typical of the PWS in that it was characterized by a number of minor disturbances rotating around an anchored low, but with no major storms in the Gulf of Alaska. The basic PWS-WRF modeling system as implemented operationally for the FE performed well, especially considering the extremely complex terrain comprising the greater PWS region.Modifications to the initial PWS-WRF modeling system showed improvement in predicting surface variables, especially where the ambient flow interacted strongly with the terrain. Prediction of precipitation on an accumulated basis was more accurate than prediction on a day-to-day basis. The 18-day period was too short to provide reliable assessment and intercomparison of the quantitative precipitation forecasting (QPF) skill of the PWS-WRF model variants.

  17. Public Response to Hurricane Rita Forecasts Along the Texas Coast: An Undergraduate Research Study Linking Science and Society

    NASA Astrophysics Data System (ADS)

    Morss, R. E.; Zhang, F.

    2006-12-01

    One mechanism for creating more usable science is familiarizing scientists with societal use of and needs for scientific information. We will describe an effort to so in the university educational system, through a semester-long class for meteorology students that involved a research project on public perception and use of hurricane forecasts. Hurricane Rita made landfall near the Texas-Louisiana border in September 2005, causing major damage and disruption. As Rita approached the Gulf Coast, significant uncertainties in the track and intensity forecasts, combined with the aftermath of Hurricane Katrina, led to major evacuations along the Texas coast and significant traffic jams in the broader Houston area. In the spring semester of 2006, seven undergraduate and three graduate meteorology students at Texas A&M University participated in a student research project to investigate the societal impacts of Hurricane Rita and its forecasts. The research team, including the students, developed a structured interview questionnaire to explore coastal residents' hurricane preparation and evacuation decisions and their use and perception of Hurricane Rita forecasts. The students then conducted 120 in-person interviews in the Texas Gulf Coast cities of Galveston, Port Arthur, and Houston. The study was designed to both answer key research questions and provide students with first- hand knowledge about how the public perceives hurricane risk and uses weather forecasts. We will report findings from the survey, as well as the educational benefits described by the students. We hope that the project can serve as a model for classroom-based student research projects at other universities, to give more science students opportunities to learn first-hand about people's perceptions and use of scientific information.

  18. Climate Prediction Center - 6-10 and 8-14 Day Prognostic Discussions

    Science.gov Websites

    About Us Our Mission Who We Are Contact Us CPC Information CPC Web Team 6-10 Day outlooks are issued DISCUSSIONS FOR 6 TO 10 AND 8 TO 14 DAY OUTLOOKS NWS CLIMATE PREDICTION CENTER COLLEGE PARK MD 300 PM EDT SAT CONSISTENCY ISSUES. IN THESE CASES, FORECASTS ARE MANUALLY DRAWN BUT A FULL DISCUSSION IS NOT ISSUED. THE

  19. Greener Driving Lessons: Oxymoron or Opportunity?

    ERIC Educational Resources Information Center

    Altieri, Tim

    2001-01-01

    Recommends the use of an ecosensitive approach to driving lessons as an avenue to reinforce ecological principles. This approach is useful to driving education teachers as well as to interdisciplinary teams of teachers. (DDR)

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakafuji, Dora; Gouveia, Lauren

    This project supports development of the next generation, integrated energy management infrastructure (EMS) able to incorporate advance visualization of behind-the-meter distributed resource information and probabilistic renewable energy generation forecasts to inform real-time operational decisions. The project involves end-users and active feedback from an Utility Advisory Team (UAT) to help inform how information can be used to enhance operational functions (e.g. unit commitment, load forecasting, Automatic Generation Control (AGC) reserve monitoring, ramp alerts) within two major EMS platforms. Objectives include: Engaging utility operations personnel to develop user input on displays, set expectations, test and review; Developing ease of use and timelinessmore » metrics for measuring enhancements; Developing prototype integrated capabilities within two operational EMS environments; Demonstrating an integrated decision analysis platform with real-time wind and solar forecasting information and timely distributed resource information; Seamlessly integrating new 4-dimensional information into operations without increasing workload and complexities; Developing sufficient analytics to inform and confidently transform and adopt new operating practices and procedures; Disseminating project lessons learned through industry sponsored workshops and conferences;Building on collaborative utility-vendor partnership and industry capabilities« less

  1. Customizing WRF-Hydro for the Laurentian Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Pei, L.; Gochis, D.; Mason, L.; Sampson, K. M.; Dugger, A. L.; Read, L.; McCreight, J. L.; Xiao, C.; Lofgren, B. M.; Anderson, E. J.; Chu, P. Y.

    2017-12-01

    To advance the state of the art in regional hydrological forecasting, and to align with operational deployment of the National Water Model, a team of scientists has been customizing WRF-Hydro (the Weather Research and Forecasting model - Hydrological modeling extension package) to the entirety (including binational land and lake surfaces) of the Laurentian Great Lakes basin. Objectives of this customization project include opererational simulation and forecasting of the Great Lakes water balance and, in the short-term, research-oriented insights into modeling one- and two-way coupled lake-atmosphere and near-shore processes. Initial steps in this project have focused on overcoming inconsistencies in land surface hydrographic datasets between the United States and Canada. Improvements in the model's current representation of lake physics and stream routing are also critical components of this effort. Here, we present an update on the status of this project, including a synthesis of offline tests with WRF-Hydro based on the newly developed Great Lakes hydrographic data, and an assessment of the model's ability to simulate seasonal and multi-decadal hydrological response across the Great Lakes.

  2. Controlled ecological life support system: Transportation analysis

    NASA Technical Reports Server (NTRS)

    Gustan, E.; Vinopal, T.

    1982-01-01

    This report discusses a study utilizing a systems analysis approach to determine which NASA missions would benefit from controlled ecological life support system (CELSS) technology. The study focuses on manned missions selected from NASA planning forecasts covering the next half century. Comparison of various life support scenarios for the selected missions and characteristics of projected transportation systems provided data for cost evaluations. This approach identified missions that derived benefits from a CELSS, showed the magnitude of the potential cost savings, and indicated which system or combination of systems would apply. This report outlines the analytical approach used in the evaluation, describes the missions and systems considered, and sets forth the benefits derived from CELSS when applicable.

  3. Communicating Climate Change - Weather Forecast Need Assessment and Information Dissemination Mechanism to Farmers in Nepal

    NASA Astrophysics Data System (ADS)

    Panthi, J., Sr.

    2014-12-01

    Climate Change is becoming one of the major threats to the fragile Himalayan ecosystem. It is affecting all sectors mainly fresh water, agriculture, forest, biodiversity and species. The subsistence agriculture system of Nepal is mainly rain-fed; therefore, climate change and climate extremes do have direct impacts on it. Weather extremes like droughts, floods and landslides long-lasting fog, hot and cold waves are affecting the agriculture sectors of Nepal. As human-induced climate change has already showing its impacts and it is going to be there for a long time to come, it is paramount importance to move towards the adaptation. Early warning system is an effective way for reducing the impacts of disasters. Forecasting of weather parameters (temperature, precipitation, and wind) helps farmers for their preparedness activities. With consultation with farmers and other relevant institutions, a research project was carried out, for the first time in Nepal, to identify the forecast information need to farmers and their dissemination mechanism. Community consultation workshops, key informant survey, and field observations were the techniques used for this research. Two ecological locations: Bageshwori VDC in Banke (plain) and Dhaibung VDC in Rasuwa (mountain) were taken as the pilot sites for this assessment. People in both the districts are dependent highly on agriculture and the weather extremes like hailstone, untimely rainfall; droughts are affecting their agriculture practices. They do not have confidence in the weather forecast information disseminated by the government of Nepal currently being done because it is a general forecast not done for a smaller domain and the forecast is valid only for 24 hours. The weather forecast need to the farmers in both the sites are: rainfall (intensity, duration and time), drought, and hailstone but in Banke, people wished to have the information of heat and cold waves too as they are affecting their wheat and tomato crops respectively the most. The mechanism of dissemination of the forecast information has been identified and agreed as local radio/FM, mobile telephoning to community leader and displaying and daily updating the forecast information in community hoarding boards.

  4. Spatial nonlinearities: Cascading effects in the earth system

    USGS Publications Warehouse

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  5. Forecasting transitions in systems with high-dimensional stochastic complex dynamics: a linear stability analysis of the tangled nature model.

    PubMed

    Cairoli, Andrea; Piovani, Duccio; Jensen, Henrik Jeldtoft

    2014-12-31

    We propose a new procedure to monitor and forecast the onset of transitions in high-dimensional complex systems. We describe our procedure by an application to the tangled nature model of evolutionary ecology. The quasistable configurations of the full stochastic dynamics are taken as input for a stability analysis by means of the deterministic mean-field equations. Numerical analysis of the high-dimensional stability matrix allows us to identify unstable directions associated with eigenvalues with a positive real part. The overlap of the instantaneous configuration vector of the full stochastic system with the eigenvectors of the unstable directions of the deterministic mean-field approximation is found to be a good early warning of the transitions occurring intermittently.

  6. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS, intelligent use of the quality indicators, and forecast verification.

  7. Ecological bridges and barriers in pelagic ecosystems

    NASA Astrophysics Data System (ADS)

    Briscoe, Dana K.; Hobday, Alistair J.; Carlisle, Aaron; Scales, Kylie; Eveson, J. Paige; Arrizabalaga, Haritz; Druon, Jean Noel; Fromentin, Jean-Marc

    2017-06-01

    Many highly mobile species are known to use persistent pathways or corridors to move between habitat patches in which conditions are favorable for particular activities, such as breeding or foraging. In the marine realm, environmental variability can lead to the development of temporary periods of anomalous oceanographic conditions that can connect individuals to areas of habitat outside a population's usual range, or alternatively, restrict individuals from areas usually within their range, thus acting as ecological bridges or ecological barriers. These temporary features can result in novel or irregular trophic interactions and changes in population spatial dynamics, and, therefore, may have significant implications for management of marine ecosystems. Here, we provide evidence of ecological bridges and barriers in different ocean regions, drawing upon five case studies in which particular oceanographic conditions have facilitated or restricted the movements of individuals from highly migratory species. We discuss the potential population-level significance of ecological bridges and barriers, with respect to the life history characteristics of different species, and inter- and intra-population variability in habitat use. Finally, we summarize the persistence of bridge dynamics with time, our ability to monitor bridges and barriers in a changing climate, and implications for forecasting future climate-mediated ecosystem change.

  8. Score Matrix for HWBI Forecast Model

    EPA Pesticide Factsheets

    2000-2010 Annual State-Scale Service and Domain scores used to support the approach for forecasting EPA's Human Well-Being Index. A modeling approach was developed based relationship function equations derived from select economic, social and ecosystem final goods and service scores and calculated human well-being index and related domain scores. These data are being used in a secondary capacity. The foundational data and scoring techniques were originally described in: a) U.S. EPA. 2012. Indicators and Methods for Constructing a U.S. Human Well-being Index (HWBI) for Ecosystem Services Research. Report. EPA/600/R-12/023. pp. 121; and b) U.S. EPA. 2014. Indicators and Methods for Evaluating Economic, Ecosystem and Social Services Provisioning. Report. EPA/600/R-14/184. pp. 174. Mode Smith, L. M., Harwell, L. C., Summers, J. K., Smith, H. M., Wade, C. M., Straub, K. R. and J.L. Case (2014).This dataset is associated with the following publication:Summers , K., L. Harwell , and L. Smith. A Model For Change: An Approach for Forecasting Well-Being From Service-Based Decisions. ECOLOGICAL INDICATORS. Elsevier Science Ltd, New York, NY, USA, 69: 295-309, (2016).

  9. wfip2.model/refcst.02.fcst.01

    DOE Data Explorer

    Macduff, Matt

    2017-10-26

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  10. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  11. Approaches to advancescientific understanding of macrosystems ecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Ofir; Ball, Becky; Bond-Lamberty, Benjamin

    Macrosystem ecological studies inherently investigate processes that interact across multiple spatial and temporal scales, requiring intensive sampling and massive amounts of data from diverse sources to incorporate complex cross-scale and hierarchical interactions. Inherent challenges associated with these characteristics include high computational demands, data standardization and assimilation, identification of important processes and scales without prior knowledge, and the need for large, cross-disciplinary research teams that conduct long-term studies. Therefore, macrosystem ecology studies must utilize a unique set of approaches that are capable of encompassing these methodological characteristics and associated challenges. Several case studies demonstrate innovative methods used in current macrosystem ecologymore » studies.« less

  12. Forecast of Antarctic Sea Ice and Meteorological Fields

    NASA Astrophysics Data System (ADS)

    Barreira, S.; Orquera, F.

    2017-12-01

    Since 2001, we have been forecasting the climatic fields of the Antarctic sea ice (SI) and surface air temperature, surface pressure and precipitation anomalies for the Southern Hemisphere at the Meteorological Department of the Argentine Naval Hydrographic Service with different techniques that have evolved with the years. Forecast is based on the results of Principal Components Analysis applied to SI series (S-Mode) that gives patterns of temporal series with validity areas (these series are important to determine which areas in Antarctica will have positive or negative SI anomalies based on what happen in the atmosphere) and, on the other hand, to SI fields (T-Mode) that give us the form of the SI fields anomalies based on a classification of 16 patterns. Each T-Mode pattern has unique atmospheric fields associated to them. Therefore, it is possible to forecast whichever atmosphere variable we decide for the Southern Hemisphere. When the forecast is obtained, each pattern has a probability of occurrence and sometimes it is necessary to compose more than one of them to obtain the final result. S-Mode and T-Mode are monthly updated with new data, for that reason the forecasts improved with the increase of cases since 2001. We used the Monthly Polar Gridded Sea Ice Concentrations database derived from satellite information generated by NASA Team algorithm provided monthly by the National Snow and Ice Data Center of USA that begins in November 1978. Recently, we have been experimenting with multilayer Perceptron (neuronal network) with supervised learning and a back-propagation algorithm to improve the forecast. The Perceptron is the most common Artificial Neural Network topology dedicated to image pattern recognition. It was implemented through the use of temperature and pressure anomalies field images that were associated with a the different sea ice anomaly patterns. The variables analyzed included only composites of surface air temperature and pressure anomalies to simplify the density of input data and avoid a non-converging solution. Sea ice and atmospheric variables forecast can be checked every month at our web page http://www.hidro.gob.ar/smara/sb/sb.asp and at World Meteorological web page (Global Cryosphere Watch) http://globalcryospherewatch.org/state_of_cryo/seaice/.

  13. Using HPC within an operational forecasting configuration

    NASA Astrophysics Data System (ADS)

    Jagers, H. R. A.; Genseberger, M.; van den Broek, M. A. F. H.

    2012-04-01

    Various natural disasters are caused by high-intensity events, for example: extreme rainfall can in a short time cause major damage in river catchments, storms can cause havoc in coastal areas. To assist emergency response teams in operational decisions, it's important to have reliable information and predictions as soon as possible. This starts before the event by providing early warnings about imminent risks and estimated probabilities of possible scenarios. In the context of various applications worldwide, Deltares has developed an open and highly configurable forecasting and early warning system: Delft-FEWS. Finding the right balance between simulation time (and hence prediction lead time) and simulation accuracy and detail is challenging. Model resolution may be crucial to capture certain critical physical processes. Uncertainty in forcing conditions may require running large ensembles of models; data assimilation techniques may require additional ensembles and repeated simulations. The computational demand is steadily increasing and data streams become bigger. Using HPC resources is a logical step; in different settings Delft-FEWS has been configured to take advantage of distributed computational resources available to improve and accelerate the forecasting process (e.g. Montanari et al, 2006). We will illustrate the system by means of a couple of practical applications including the real-time dynamic forecasting of wind driven waves, flow of water, and wave overtopping at dikes of Lake IJssel and neighboring lakes in the center of The Netherlands. Montanari et al., 2006. Development of an ensemble flood forecasting system for the Po river basin, First MAP D-PHASE Scientific Meeting, 6-8 November 2006, Vienna, Austria.

  14. Predicting phenology by integrating ecology, evolution and climate science

    USGS Publications Warehouse

    Pau, Stephanie; Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan; Kraft, Nathan J.B.; Bolmgren, Kjell; Betancourt, Julio L.; Cleland, Elsa E.

    2011-01-01

    Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology — the timing of life-history events. Phenology has well-demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species' reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.

  15. Football experts versus sports economists: Whose forecasts are better?

    PubMed

    Frick, Bernd; Wicker, Pamela

    2016-08-01

    Given the uncertainty of outcome in sport, predicting the outcome of sporting contests is a major topic in sport sciences. This study examines the accuracy of expert predictions in the German Bundesliga and compares their predictions to those of sports economists. Prior to the start of each season, a set of distinguished experts (head coaches and players) express their subjective evaluations of the teams in school grades. While experts may be driven by irrational sentiments and may therefore systematically over- or underestimate specific teams, sports economists use observable characteristics to predict season outcomes. The latter typically use team wage bills given the positive pay-performance relationship as well as other factors (average team age, tenure, appearances on national team, and attendance). Using data from 15 consecutive Bundesliga seasons, the predictive accuracy of expert evaluations and sports economists is analysed. The results of separate estimations show that relative grade and relative wage bill significantly affect relative points, while age, tenure, appearances, and attendance are insignificant. In a joint model, relative grade and relative wage bill are still statistically significant, suggesting that the two types of predictions are complements rather than substitutes. Consequently, football experts and sports economists seem to rely on completely different sources of information when making their predictions.

  16. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2016-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  17. Can High-resolution WRF Simulations Be Used for Short-term Forecasting of Lightning?

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Lapenta, W.; McCaul, E. W., Jr.; LaCasse, K.; Petersen, W.

    2006-01-01

    A number of research teams have begun to make quasi-operational forecast simulations at high resolution with models such as the Weather Research and Forecast (WRF) model. These model runs have used horizontal meshes of 2-4 km grid spacing, and thus resolved convective storms explicitly. In the light of recent global satellite-based observational studies that reveal robust relationships between total lightning flash rates and integrated amounts of precipitation-size ice hydrometeors in storms, it is natural to inquire about the capabilities of these convection-resolving models in representing the ice hydrometeor fields faithfully. If they do, this might make operational short-term forecasts of lightning activity feasible. We examine high-resolution WRF simulations from several Southeastern cases for which either NLDN or LMA lightning data were available. All the WRF runs use a standard microphysics package that depicts only three ice species, cloud ice, snow and graupel. The realism of the WRF simulations is examined by comparisons with both lightning and radar observations and with additional even higher-resolution cloud-resolving model runs. Preliminary findings are encouraging in that they suggest that WRF often makes convective storms of the proper size in approximately the right location, but they also indicate that higher resolution and better hydrometeor microphysics would be helpful in improving the realism of the updraft strengths, reflectivity and ice hydrometeor fields.

  18. Weather Support for the 2002 Winter Olympic and Paralympic Games.

    NASA Astrophysics Data System (ADS)

    Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.

    2002-02-01

    The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.

  19. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2017-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  20. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    NASA Astrophysics Data System (ADS)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  1. Real-time short-term forecast of water inflow into Bureyskaya reservoir

    NASA Astrophysics Data System (ADS)

    Motovilov, Yury

    2017-04-01

    During several recent years, a methodology for operational optimization in hydrosystems including forecasts of the hydrological situation has been developed on example of Burea reservoir. The forecasts accuracy improvement of the water inflow into the reservoir during planning of water and energy regime was one of the main goals for implemented research. Burea river is the second left largest Amur tributary after Zeya river with its 70.7 thousand square kilometers watershed and 723 km-long river course. A variety of natural conditions - from plains in the southern part to northern mountainous areas determine a significant spatio-temporal variability in runoff generation patterns and river regime. Bureyskaya hydropower plant (HPP) with watershed area 65.2 thousand square kilometers is a key station in the Russian Far Eastern energy system providing its reliable operation. With a spacious reservoir, Bureyskaya HPP makes a significant contribution to the protection of the Amur region from catastrophic floods. A physically-based distributed model of runoff generation based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform has been developed for the Burea River basin. The model describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface, ground and river flow. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The model setup for Bureya river basin included watershed and river network schematization with GIS module by DEM analysis, meteorological time-series preparation, model calibration and validation against historical observations. The results showed good model performance as compared to observed inflow data into the Bureya reservoir and high diagnostic potential of data-modeling system of the runoff formation. With the use of this system the following flowchart for short-range forecasting inflow into Bureyskoe reservoir and forecast correction technique using continuously updated hydrometeorological data has been developed: 1 - Daily renewal of weather observations and forecasts database via the Internet; 2 - Daily runoff calculation from the beginning of the current year to current date is conducted; 3 - Short-range (up to 7 days) forecast is generated based on weather forecast. The idea underlying the model assimilation of newly obtained hydro meteorological information to adjust short-range hydrological forecasts lies in the assumption of the forecast errors inertia. Then the difference between calculated and observed streamflow at the forecast release date is "scattered" with specific weights to calculated streamflow for the forecast lead time. During 2016 this forecasts method of the inflow into the Bureyskaya reservoir up to 7 days is tested in online mode. Satisfactory evaluated short-range inflow forecast success rate is obtained. Tests of developed method have shown strong sensitivity to the results of short-term precipitation forecasts.

  2. Eco-morphological Real-time Forecasting tool to predict hydrodynamic, sediment and nutrient dynamic in Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Messina, F.; Meselhe, E. A.; Buckman, L.; Twight, D.

    2017-12-01

    Louisiana coastal zone is one of the most productive and dynamic eco-geomorphic systems in the world. This unique natural environment has been alternated by human activities and natural processes such as sea level rise, subsidence, dredging of canals for oil and gas production, the Mississippi River levees which don't allow the natural river sediment. As a result of these alterations land loss, erosion and flood risk are becoming real issues for Louisiana. Costal authorities have been studying the benefits and effects of several restoration projects, e.g. freshwater and sediment diversions. The protection of communities, wildlife and of the unique environments is a high priority in this region. The Water Institute of the Gulf, together with Deltares, has developed a forecasting and information system for a pilot location in Coastal Louisiana, specifically for Barataria Bay and Breton Sound Basins in the Mississippi River Deltaic Plain. The system provides a 7-day forecast of water level, salinity, and temperature, under atmospheric and coastal forecasted conditions, such as freshwater riverine inflow, rainfall, evaporation, wind, and tide. The system also forecasts nutrient distribution (e.g., Chla and dissolved oxygen) and sediment transport. The Flood Early Warning System FEWS is used as a platform to import multivariate data from several sources, use them to monitor the pilot location and to provide boundary conditions to the model. A hindcast model is applied to compare the model results to the observed data, and to provide the initial condition to the forecast model. This system represents a unique tool which provides valuable information regarding the overall conditions of the basins. It offers the opportunity to adaptively manage existing and planned diversions to meet certain salinity and water level targets or thresholds while maximizing land-building goals. Moreover, water quality predictions provide valuable information on the current ecological conditions of the area. Real time observations and model predictions can be used as guidance to decision makers regarding the operation of control structures in response to forecasted weather or river flood events. Coastal communities can benefit from water level, salinity and water quality forecast to manage their activities.

  3. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage

    NASA Astrophysics Data System (ADS)

    Turnbull, S. J.

    2017-12-01

    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.

  4. Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM, at a spatial resolution of 0.5 deg by 0.5 deg. Assimilation of Quality Controlled AIRS temperature profiles down to pg resulted in significantly improved forecast skill compared to that obtained from experiments when all data used operationally by NCEP, except for AIRS data, is assimilated. These forecasts were also significantly better than to those obtained when AIRS radiances (rather than temperature profiles) are assimilated, which is the way AIRS data is used operationally by NCEP and ECMWF.

  5. Coastal Marsh Monitoring for Persistent Saltwater Intrusion

    NASA Technical Reports Server (NTRS)

    Hall, Callie M.

    2008-01-01

    This viewgraph presentation reviews NASA's work on the project that supports the Gulf of Mexico Alliance (GOMA) Governors Action Plan to monitor the coastal wetlands for saltwater intrusion. The action items that relate to the task are: (1) Obtain information on projected relative sea level rise, subsidence, and storm vulnerability to help prioritize conservation projects, including restoration, enhancement, and acquisition, and (2) Develop and apply ecosystem models to forecast the habitat structure and succession following hurricane disturbance and changes in ecological functions and services that impact vital socio-economic aspects of coastal systems. The objectives of the program are to provide resource managers with remote sensing products that support ecosystem forecasting models requiring salinity and inundation data. Specifically, the proposed work supports the habitat-switching modules in the Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) model, which provides scientific evaluation for restoration management.

  6. Forecasting and evaluating patterns of energy development in southwestern Wyoming

    USGS Publications Warehouse

    Garman, Steven L.

    2015-01-01

    The effects of future oil and natural gas development in southwestern Wyoming on wildlife populations are topical to conservation of the sagebrush steppe ecosystem. To aid in understanding these potential effects, the U.S. Geological Survey developed an Energy Footprint simulation model that forecasts the amount and pattern of energy development under different assumptions of development rates and well-drilling methods. The simulated disturbance patterns produced by the footprint model are used to assess the potential effects on wildlife habitat and populations. A goal of this modeling effort is to use measures of energy production (number of simulated wells), well-pad and road-surface disturbance, and potential effects on wildlife to identify build-out designs that minimize the physical and ecological footprint of energy development for different levels of energy production and development costs.

  7. Forecasting Global Point Rainfall using ECMWF's Ensemble Forecasting System

    NASA Astrophysics Data System (ADS)

    Pillosu, Fatima; Hewson, Timothy; Zsoter, Ervin; Baugh, Calum

    2017-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts), in collaboration with the EFAS (European Flood Awareness System) and GLOFAS (GLObal Flood Awareness System) teams, has developed a new operational system that post-processes grid box rainfall forecasts from its ensemble forecasting system to provide global probabilistic point-rainfall predictions. The project attains a higher forecasting skill by applying an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. In turn this approach facilitates identification of cases in which very localized extreme totals are much more likely. This approach aims also to improve the rainfall input required in different hydro-meteorological applications. Flash flood forecasting, in particular in urban areas, is a good example. In flash flood scenarios precipitation is typically characterised by high spatial variability and response times are short. In this case, to move beyond radar based now casting, the classical approach has been to use very high resolution hydro-meteorological models. Of course these models are valuable but they can represent only very limited areas, may not be spatially accurate and may give reasonable results only for limited lead times. On the other hand, our method aims to use a very cost-effective approach to downscale global rainfall forecasts to a point scale. It needs only rainfall totals from standard global reporting stations and forecasts over a relatively short period to train it, and it can give good results even up to day 5. For these reasons we believe that this approach better satisfies user needs around the world. This presentation aims to describe two phases of the project: The first phase, already completed, is the implementation of this new system to provide 6 and 12 hourly point-rainfall accumulation probabilities. To do this we use a limited number of physically relevant global model parameters (i.e. convective precipitation ratio, speed of steering winds, CAPE - Convective Available Potential Energy - and solar radiation), alongside the rainfall forecasts themselves, to define the "weather types" that in turn define the expected sub-grid variability. The calibration and computational strategy intrinsic to the system will be illustrated. The quality of the global point rainfall forecasts is also illustrated by analysing recent case studies in which extreme totals and a greatly elevated flash flood risk could be foreseen some days in advance but especially by a longer-term verification that arises out of retrospective global point rainfall forecasting for 2016. The second phase, currently in development, is focussing on the relationships with other relevant geographical aspects, for instance, orography and coastlines. Preliminary results will be presented. These are promising but need further study to fully understand their impact on the spatial distribution of point rainfall totals.

  8. Forecasting waste compositions: A case study on plastic waste of electronic display housings.

    PubMed

    Peeters, Jef R; Vanegas, Paul; Kellens, Karel; Wang, Feng; Huisman, Jaco; Dewulf, Wim; Duflou, Joost R

    2015-12-01

    Because of the rapid succession of technological developments, the architecture and material composition of many products used in daily life have drastically changed over the last decades. As a result, well-adjusted recycling technologies need to be developed and installed to cope with these evolutions. This is essential to guarantee continued access to materials and to reduce the ecological impact of our material consumption. However, limited information is currently available on the material composition of arising waste streams and even less on how these waste streams will evolve. Therefore, this paper presents a methodology to forecast trends in the material composition of waste streams. To demonstrate the applicability and value of the proposed methodology, it is applied to forecast the evolution of plastic housing waste from flat panel display (FPD) TVs, FPD monitors, cathode ray tube (CRT) TVs and CRT monitors. The results of the presented forecasts indicate that a wide variety of plastic types and additives, such as flame retardants, are found in housings of similar products. The presented case study demonstrates that the proposed methodology allows the identification of trends in the evolution of the material composition of waste streams. In addition, it is demonstrated that the recycling sector will need to adapt its processes to deal with the increasing complexity of plastics of end-of-life electronic displays while respecting relevant directives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Biology and ecology of Irukandji jellyfish (Cnidaria: Cubozoa).

    PubMed

    Gershwin, Lisa-ann; Richardson, Anthony J; Winkel, Kenneth D; Fenner, Peter J; Lippmann, John; Hore, Russell; Avila-Soria, Griselda; Brewer, David; Kloser, Rudy J; Steven, Andy; Condie, Scott

    2013-01-01

    Irukandji stings are a leading occupational health and safety issue for marine industries in tropical Australia and an emerging problem elsewhere in the Indo-Pacific and Caribbean. Their mild initial sting frequently results in debilitating illness, involving signs of sympathetic excess including excruciating pain, sweating, nausea and vomiting, hypertension and a feeling of impending doom; some cases also experience acute heart failure and pulmonary oedema. These jellyfish are typically small and nearly invisible, and their infestations are generally mysterious, making them scary to the general public, irresistible to the media, and disastrous for tourism. Research into these fascinating species has been largely driven by the medical profession and focused on treatment. Biological and ecological information is surprisingly sparse, and is scattered through grey literature or buried in dispersed publications, hampering understanding. Given that long-term climate forecasts tend toward conditions favourable to jellyfish ecology, that long-term legal forecasts tend toward increasing duty-of-care obligations, and that bioprospecting opportunities exist in the powerful Irukandji toxins, there is a clear need for information to help inform global research and robust management solutions. We synthesise and contextualise available information on Irukandji taxonomy, phylogeny, reproduction, vision, behaviour, feeding, distribution, seasonality, toxins, and safety. Despite Australia dominating the research in this area, there are probably well over 25 species worldwide that cause the syndrome and it is an understudied problem in the developing world. Major gaps in knowledge are identified for future research: our lack of clarity on the socio-economic impacts, and our need for time series and spatial surveys of the species, make this field particularly enticing. © 2013 Elsevier Ltd. All rights reserved.

  10. wfip2.model/realtime.hrrr_esrl.graphics.01 (Model: Real Time)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  11. wfip2.model/realtime.rap_esrl.icbc.01 (Model: Real Time)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  12. wfip2.model/refcst.01.fcst.02 (Model: Year-Long Reforecast)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  13. wfip2.model/refcst.coldstart.icbc.02 (Model: Year-Long Reforecast)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  14. wfip2.model/realtime.hrrr_esrl.icbc.01 (Model: Real Time)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  15. wfip2.model/realtime.rap_esrl.graphics.01 (Model: Real Time)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  16. wfip2.model/refcst.01.fcst.01 (Model: Year-Long Reforecast)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  17. wfip2.model/refcst.coldstart.icbc.01 (Model: Year-Long Reforecast)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  18. wfip2.model/refcst.02.fcst.02 (Model: Year-Long Reforecast)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  19. Life Forecasting as a Logistics Technique.

    DTIC Science & Technology

    1982-01-01

    Two examples of RCM applications were investigated directly by the MIT project team: the T53-L-13B engine for the UH -lH Helicopter and the M- 60 Tank...for RCM activities. The candidate systems and the respective 4 readiness commands were the UH -lH helicopter (TSARCOM), TOY Weapon System (MIRCOM), M...have capability for developing Failure Modes and Effects Analyses ( FMEA ). 5. Accurate and dependable field or test data are generally not available. 6

  20. High Impact Weather Forecasts and Warnings with the GOES-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group Lightning Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.

  1. GRIP Collaboration Portal: Information Management for a Hurricane Field Campaign

    NASA Astrophysics Data System (ADS)

    Conover, H.; Kulkarni, A.; Garrett, M.; Smith, T.; Goodman, H. M.

    2010-12-01

    NASA’s Genesis and Rapid Intensification Processes (GRIP) experiment, carried out in August and September of 2010, was a complex operation, involving three aircraft and their crews based at different airports, a dozen instrument teams, mission scientists, weather forecasters, project coordinators and a variety of other participants. In addition, GRIP was coordinated with concurrent airborne missions: NOAA’s IFEX and then NSF-funded PREDICT. The GRIP Collaboration Portal was developed to facilitate communication within and between the different teams and serve as an information repository for the field campaign, providing a single access point for project documents, plans, weather forecasts, flight reports and quicklook data. The portal was developed using the Drupal open source content management framework. This presentation will cover both technology and participation issues. Specific examples include: Drupal’s large and diverse open source developer community is an advantage in that we were able to reuse many modules rather than develop capabilities from scratch, but integrating multiple modules developed by many people adds to the overall complexity of the site. Many of the communication capabilities provided by the site, such as discussion forums and blogs, were not used. Participants were diligent about posting necessary documents, but the favored communication method remained email. Drupal's developer-friendly nature allowed for quick development of the customized functionality needed to accommodate the rapidly changing requirements of GRIP experiment. DC-8 Overflight of Hurricane Earl during GRIP Mission

  2. Coping strategies and immune neglect in affective forecasting: Direct evidence and key moderators

    PubMed Central

    Hoerger, Michael

    2012-01-01

    Affective forecasting skills have important implications for decision making. However, recent research suggests that immune neglect – the tendency to overlook coping strategies that reduce future distress – may lead to affective forecasting problems. Prior evidence for immune neglect has been indirect. More direct evidence and a deeper understanding of immune neglect are vital to informing the design of future decision-support interventions. In the current study, young adults (N = 325) supplied predicted, actual, and recollected reactions to an emotionally-evocative interpersonal event, Valentine’s Day. Based on participants’ qualitative descriptions of the holiday, a team of raters reliably coded the effectiveness of their coping strategies. Supporting the immune neglect hypothesis, participants overlooked the powerful role of coping strategies when predicting their emotional reactions. Immune neglect was present not only for those experiencing the holiday negatively (non-daters) but also for those experiencing it positively (daters), suggesting that the bias may be more robust than originally theorized. Immune neglect was greater for immediate emotional reactions than more enduring reactions. Further, immune neglect was conspicuously absent from recollected emotional reactions. Implications for decision-support interventions are discussed. PMID:22375161

  3. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Brad; Blackwell, William

    2014-01-01

    Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.

  4. A comparative ecological risk assessment of Orimulsion and Fuel Oil No. 6 in the coastal marine environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwell, M.; Ault, J.; Gentile, J.

    1995-12-31

    The conduct of comparative ecological risk assessments (CERA) resulting from the release of anthropogenic stressors into coastal marine environments requires theoretical and methodological innovations to integrate contaminant exposure with populations at risk over time and space scales. Consequently, predicted risks must be scaled to allow comparisons of relative ecological impacts in three physical dimensions plus time. This study was designed to compare the risks from hypothetical spills of Orimulsion and Fuel Oil No. 6 into the Tampa Bay ecosystem. The CERA framework used in this study integrates numerical hydrodynamic and transport-and-fate, toxicological, and biological models with extensive spatially explicit databasesmore » that describe the distributions of critical species and habitats. The presentation of the comparative ecological risks is facilitated by visualization and GIS techniques to allow realistic comparisons of toxicant exposures and their co-occurrence with key biological resources over time and across the seascape. A scaling methodology is presented that uses toxicological data as scalars for graphically representing the ecological effects associated with exposure levels for each scenario simulation. The CERA model serves as an interactive tool for assessing the relative ecological consequences of a range of potential exposure scenarios and for forecasting the longer-term productivity of critical biological resources and habitats that are key to ecosystem structure and function.« less

  5. ALLOCATION OF MONITORING SITES FOR REGIONAL SURVEYS OF HYDROLOGIC UNITS

    EPA Science Inventory

    In order to characterize the ecological condition of Pacific Northwest watersheds and their aquatic ecosystems, interagency teams have developed the Aquatic and Riparian Effectiveness Monitoring Plan. Monitoring is targeted at the subwatershed scale (6th-field Hydrologic Unit Co...

  6. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling

    PubMed Central

    Escobar, Luis E.; Craft, Meggan E.

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks. PMID:27547199

  7. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling.

    PubMed

    Escobar, Luis E; Craft, Meggan E

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks.

  8. HEPS4Power - Extended-range Hydrometeorological Ensemble Predictions for Improved Hydropower Operations and Revenues

    NASA Astrophysics Data System (ADS)

    Bogner, Konrad; Monhart, Samuel; Liniger, Mark; Spririg, Christoph; Jordan, Fred; Zappa, Massimiliano

    2015-04-01

    In recent years large progresses have been achieved in the operational prediction of floods and hydrological drought with up to ten days lead time. Both the public and the private sectors are currently using probabilistic runoff forecast in order to monitoring water resources and take actions when critical conditions are to be expected. The use of extended-range predictions with lead times exceeding 10 days is not yet established. The hydropower sector in particular might have large benefits from using hydro meteorological forecasts for the next 15 to 60 days in order to optimize the operations and the revenues from their watersheds, dams, captions, turbines and pumps. The new Swiss Competence Centers in Energy Research (SCCER) targets at boosting research related to energy issues in Switzerland. The objective of HEPS4POWER is to demonstrate that operational extended-range hydro meteorological forecasts have the potential to become very valuable tools for fine tuning the production of energy from hydropower systems. The project team covers a specific system-oriented value chain starting from the collection and forecast of meteorological data (MeteoSwiss), leading to the operational application of state-of-the-art hydrological models (WSL) and terminating with the experience in data presentation and power production forecasts for end-users (e-dric.ch). The first task of the HEPS4POWER will be the downscaling and post-processing of ensemble extended-range meteorological forecasts (EPS). The goal is to provide well-tailored forecasts of probabilistic nature that should be reliable in statistical and localized at catchment or even station level. The hydrology related task will consist in feeding the post-processed meteorological forecasts into a HEPS using a multi-model approach by implementing models with different complexity. Also in the case of the hydrological ensemble predictions, post-processing techniques need to be tested in order to improve the quality of the forecasts against observed discharge. Analysis should be specifically oriented to the maximisation of hydroelectricity production. Thus, verification metrics should include economic measures like cost loss approaches. The final step will include the transfer of the HEPS system to several hydropower systems, the connection with the energy market prices and the development of probabilistic multi-reservoir production and management optimizations guidelines. The baseline model chain yielding three-days forecasts established for a hydropower system in southern-Switzerland will be presented alongside with the work-plan to achieve seasonal ensemble predictions.

  9. Examining Atmospheric and Ecological Drivers of Wildfires, Modeling Wildfire Occurrence in the Southwest United States, and Using Atmospheric Sounding Observations to Verify National Weather Service Spot Forecasts

    NASA Astrophysics Data System (ADS)

    Nauslar, Nicholas J.

    This dissertation is comprised of three different papers that all pertain to wildland fire applications. The first paper performs a verification analysis on mixing height, transport winds, and Haines Index from National Weather Service spot forecasts across the United States. The final two papers, which are closely related, examine atmospheric and ecological drivers of wildfire for the Southwest Area (SWA) (Arizona, New Mexico, west Texas, and Oklahoma panhandle) to better equip operational fire meteorologists and managers to make informed decisions on wildfire potential in this region. The verification analysis here utilizes NWS spot forecasts of mixing height, transport winds and Haines Index from 2009-2013 issued for a location within 50 km of an upper sounding location and valid for the day of the fire event. Mixing height was calculated from the 0000 UTC sounding via the Stull, Holzworth, and Richardson methods. Transport wind speeds were determined by averaging the wind speed through the boundary layer as determined by the three mixing height methods from the 0000 UTC sounding. Haines Index was calculated at low, mid, and high elevation based on the elevation of the sounding and spot forecast locations. Mixing height forecasts exhibited large mean absolute errors and biased towards over forecasting. Forecasts of transport wind speeds and Haines Index outperformed mixing height forecasts with smaller errors relative to their respective means. The rainfall and lightning associated with the North American Monsoon (NAM) can vary greatly intra- and inter-annually and has a large impact on wildfire activity across the SWA by igniting or suppressing wildfires. NAM onset thresholds and subsequent dates are determined for the SWA and each Predictive Service Area (PSA), which are sub-regions used by operational fire meteorologists to predict wildfire potential within the SWA, April through September from 1995-2013. Various wildfire activity thresholds using the number of wildfires and large wildfires identified days or time periods with increased wildfire activity for each PSA and the SWA. Self-organizing maps utilizing 500 and 700 hPa geopotential heights and precipitable water were implemented to identify atmospheric patterns contributing to the NAM onset and busy days/periods for each PSA and the SWA. Resulting SOM map types also showed the transition to, during, and from the NAM. Northward and eastward displacements of the subtropical ridge (i.e., four-corners high) over the SWA were associated with NAM onset, and a suppressed subtropical ridge and breakdown of the subtropical ridge map types over the SWA were associated with increased wildfire activity. We implemented boosted regression trees (BRT) to model wildfire occurrence for all and large wildfires for different wildfire types (i.e., lightning, human) across the SWA by PSA. BRT models for all wildfires demonstrated relatively small mean and mean absolute errors and showed better predictability on days with wildfires. Cross-validated accuracy assessments for large wildfires demonstrated the ability to discriminate between large wildfire and non-large wildfire days across all wildfire types. Measurements describing fuel conditions (i.e., 100 and 1000-hour dead fuel moisture, energy release component) were the most important predictors when considering all wildfire types and sizes. However, a combination of fuels and atmospheric predictors (i.e., lightning, temperature) proved most predictive for large wildfire occurrence, and the number of relevant predictors increases for large wildfires indicating more conditions need to align to support large wildfires.

  10. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  11. Storm-based Cloud-to-Ground Lightning Probabilities and Warnings

    NASA Astrophysics Data System (ADS)

    Calhoun, K. M.; Meyer, T.; Kingfield, D.

    2017-12-01

    A new cloud-to-ground (CG) lightning probability algorithm has been developed using machine-learning methods. With storm-based inputs of Earth Networks' in-cloud lightning, Vaisala's CG lightning, multi-radar/multi-sensor (MRMS) radar derived products including the Maximum Expected Size of Hail (MESH) and Vertically Integrated Liquid (VIL), and near storm environmental data including lapse rate and CAPE, a random forest algorithm was trained to produce probabilities of CG lightning up to one-hour in advance. As part of the Prototype Probabilistic Hazard Information experiment in the Hazardous Weather Testbed in 2016 and 2017, National Weather Service forecasters were asked to use this CG lightning probability guidance to create rapidly updating probability grids and warnings for the threat of CG lightning for 0-60 minutes. The output from forecasters was shared with end-users, including emergency managers and broadcast meteorologists, as part of an integrated warning team.

  12. A 'Knowledge Ecologies' Analysis of Co-designing Water and Sanitation Services in Alaska.

    PubMed

    Fam, Dena; Sofoulis, Zoë

    2017-08-01

    Willingness to collaborate across disciplinary boundaries is necessary but not sufficient for project success. This is a case study of a transdisciplinary project whose success was constrained by contextual factors that ultimately favoured technical and scientific forms of knowledge over the cultural intelligence that might ensure technical solutions were socially feasible. In response to Alaskan Water and Sewer Challenge (AWSC), an international team with expertise in engineering, consultative design and public health formed in 2013 to collaborate on a two-year project to design remote area water and sanitation systems in consultation with two native Alaskan communities. Team members were later interviewed about their experiences. Project processes are discussed using a 'Knowledge Ecology' framework, which applies principles of ecosystems analysis to knowledge ecologies, identifying the knowledge equivalents of 'biotic' and 'abiotic' factors and looking at their various interactions. In a positivist 'knowledge integration' perspective, different knowledges are like Lego blocks that combine with other 'data sets' to create a unified structure. The knowledge ecology framework highlights how interactions between different knowledges and knowledge practitioners ('biotic factors') are shaped by contextual ('abiotic') factors: the conditions of knowledge production, the research policy and funding climate, the distribution of research resources, and differential access to enabling infrastructures (networks, facilities). This case study highlights the importance of efforts to negotiate between different knowledge frameworks, including by strategic use of language and precepts that help translate social research into technical design outcomes that are grounded in social reality.

  13. Time series model for forecasting the number of new admission inpatients.

    PubMed

    Zhou, Lingling; Zhao, Ping; Wu, Dongdong; Cheng, Cheng; Huang, Hao

    2018-06-15

    Hospital crowding is a rising problem, effective predicting and detecting managment can helpful to reduce crowding. Our team has successfully proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in the schistosomiasis and hand, foot, and mouth disease forecasting study. In this paper, our aim is to explore the application of the hybrid ARIMA-NARNN model to track the trends of the new admission inpatients, which provides a methodological basis for reducing crowding. We used the single seasonal ARIMA (SARIMA), NARNN and the hybrid SARIMA-NARNN model to fit and forecast the monthly and daily number of new admission inpatients. The root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to compare the forecasting performance among the three models. The modeling time range of monthly data included was from January 2010 to June 2016, July to October 2016 as the corresponding testing data set. The daily modeling data set was from January 4 to September 4, 2016, while the testing time range included was from September 5 to October 2, 2016. For the monthly data, the modeling RMSE and the testing RMSE, MAE and MAPE of SARIMA-NARNN model were less than those obtained from the single SARIMA or NARNN model, but the MAE and MAPE of modeling performance of SARIMA-NARNN model did not improve. For the daily data, all RMSE, MAE and MAPE of NARNN model were the lowest both in modeling stage and testing stage. Hybrid model does not necessarily outperform its constituents' performances. It is worth attempting to explore the reliable model to forecast the number of new admission inpatients from different data.

  14. The HEPEX Seasonal Streamflow Forecast Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Schepen, A.; Bennett, J.; Mendoza, P. A.; Ramos, M. H.; Wetterhall, F.; Pechlivanidis, I.

    2016-12-01

    The Hydrologic Ensemble Prediction Experiment (HEPEX; www.hepex.org) has launched an international seasonal streamflow forecasting intercomparison project (SSFIP) with the goal of broadening community knowledge about the strengths and weaknesses of various operational approaches being developed around the world. While some of these approaches have existed for decades (e.g. Ensemble Streamflow Prediction - ESP - in the United States and elsewhere), recent years have seen the proliferation of new operational and experimental streamflow forecasting approaches. These have largely been developed independently in each country, thus it is difficult to assess whether the approaches employed in some centers offer more promise for development than others. This motivates us to establish a forecasting testbed to facilitate a diagnostic evaluation of a range of different streamflow forecasting approaches and their components over a common set of catchments, using a common set of validation methods. Rather than prescribing a set of scientific questions from the outset, we are letting the hindcast results and notable differences in methodologies on a watershed-specific basis motivate more targeted analyses and sub-experiments that may provide useful insights. The initial pilot of the testbed involved two approaches - CSIRO's Bayesian joint probability (BJP) and NCAR's sequential regression - for two catchments, each designated by one of the teams (the Murray River, Australia, and Hungry Horse reservoir drainage area, USA). Additional catchments/approaches are in the process of being added to the testbed. To support this CSIRO and NCAR have developed data and analysis tools, data standards and protocols to formalize the experiment. These include requirements for cross-validation, verification, reference climatologies, and common predictands. This presentation describes the SSFIP experiments, pilot basin results and scientific findings to date.

  15. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  16. Forecast Informed Reservoir Operations: Bringing Science and Decision-Makers Together to Explore Use of Hydrometeorological Forecasts to Support Future Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Ralph, F. M.; Jasperse, J.

    2017-12-01

    Forecast Informed Reservoir Operations (FIRO) is a proposed strategy that is exploring inorporation of improved hydrometeorological forecasts of land-falling atmospheric rivers on the U.S. West Coast into reservoir operations. The first testbed for this strategy is Lake Mendocino, which is located in the East Fork of the 1485 mi2 Russian River Watershed in northern California. This project is guided by the Lake Mendocino FIRO Steering Committee (SC). The SC is an ad hoc committee that consists of water managers and scientists from several federal, state, and local agencies, and universities who have teamed to evaluate whether current or improved technology and scientific understanding can be utilized to improve water supply reliability, enhance flood mitigation and support recovery of listed salmon for the Russian River of northern California. In 2015, the SC created a detailed work plan, which included a Preliminary Viability Assessment, which has now been completed. The SC developed a vision that operational efficiency would be improved by using forecasts to inform decisions about releasing or storing water. FIRO would use available reservoir storage in an efficient manner by (1) better forecasting inflow (or lack of inflow) with enhanced technology, and (2) adapting operation in real time to meet the need for storage, rather than making storage available just in case it is needed. The envisioned FIRO strategy has the potential to simultaneously improve water supply reliability, flood protection, and ecosystem outcomes through a more efficient use of existing infrastructure while requiring minimal capital improvements in the physical structure of the dam. This presentation will provide an overview of the creation of the FIRO SC and how it operates, and describes the lessons learned through this partnership. Results in the FIRO Preliminary Viability Assessment will be summarized and next steps described.

  17. The GOES-R GeoStationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.

  18. Geographically Isolated Wetlands Research Workshop Summary

    EPA Science Inventory

    During the week of November 18–21, 2013, a team of research scientists from federal, academic, and non-profit research institutions across North America met at the Joseph W. Jones Ecological Research Center in Newton, Georgia to articulate the state of the science, identify...

  19. PHOTOCHEMICAL AIR POLLUTANT EFFECTS ON MIXED CONIFER ECOSYSTEMS

    EPA Science Inventory

    In 1972, a multi-disciplinary team of ecologists assembled to monitor and analyze some of the ecological consequences of photochemical oxidant air pollutants in California Mixed Conifer Forest ecosystems of the San Bernardino Mountains east of Los Angeles. The purposes included g...

  20. Integration of research infrastructures and ecosystem models toward development of predictive ecology

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.

    2017-12-01

    The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure facilities to model simulation, data assimilation, and ecological forecasting.

  1. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on the appropriate applications for the 45 WS mission. These include forecasting the onset of lightning, the cessation of lightning, convective winds, and hopefully the inference of electrical fields in clouds. This presentation will report on the results achieved so far in the project.

  2. Practice effects on intra-team synergies in football teams.

    PubMed

    Silva, Pedro; Chung, Dante; Carvalho, Thiago; Cardoso, Tiago; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2016-04-01

    Developing synchronised player movements for fluent competitive match play is a common goal for coaches of team games. An ecological dynamics approach advocates that intra-team synchronization is governed by locally created information, which specifies shared affordances responsible for synergy formation. To verify this claim we evaluated coordination tendencies in two newly-formed teams of recreational players during association football practice games, weekly, for fifteen weeks (thirteen matches). We investigated practice effects on two central features of synergies in sports teams - dimensional compression and reciprocal compensation here captured through near in-phase modes of coordination and time delays between coupled players during forward and backwards movements on field while attacking and defending. Results verified that synergies were formed and dissolved rapidly as a result of the dynamic creation of informational properties, perceived as shared affordances among performers. Practising once a week led to small improvements in the readjustment delays between co-positioning team members, enabling faster regulation of coordinated team actions. Mean values of the number of player and team synergies displayed only limited improvements, possibly due to the timescales of practice. No relationship between improvements in dimensional compression and reciprocal compensation were found for number of shots, amount of ball possession and number of ball recoveries made. Findings open up new perspectives for monitoring team coordination processes in sport. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Design of Field Experiments for Adaptive Sampling of the Ocean with Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Ooi, B. H.; Cho, W.; Dao, M. H.; Tkalich, P.; Patrikalakis, N. M.

    2010-05-01

    Due to the highly non-linear and dynamical nature of oceanic phenomena, the predictive capability of various ocean models depends on the availability of operational data. A practical method to improve the accuracy of the ocean forecast is to use a data assimilation methodology to combine in-situ measured and remotely acquired data with numerical forecast models of the physical environment. Autonomous surface and underwater vehicles with various sensors are economic and efficient tools for exploring and sampling the ocean for data assimilation; however there is an energy limitation to such vehicles, and thus effective resource allocation for adaptive sampling is required to optimize the efficiency of exploration. In this paper, we use physical oceanography forecasts of the coastal zone of Singapore for the design of a set of field experiments to acquire useful data for model calibration and data assimilation. The design process of our experiments relied on the oceanography forecast including the current speed, its gradient, and vorticity in a given region of interest for which permits for field experiments could be obtained and for time intervals that correspond to strong tidal currents. Based on these maps, resources available to our experimental team, including Autonomous Surface Craft (ASC) are allocated so as to capture the oceanic features that result from jets and vortices behind bluff bodies (e.g., islands) in the tidal current. Results are summarized from this resource allocation process and field experiments conducted in January 2009.

  4. The use of a high resolution model in a private environment.

    NASA Astrophysics Data System (ADS)

    van Dijke, D.; Malda, D.

    2009-09-01

    The commercial organisation MeteoGroup uses high resolution modelling for multiple purposes. MeteoGroup uses the Weather Research and Forecasting Model (WRF®1). WRF is used in the operational environment of several MeteoGroup companies across Europe. It is also used in hindcast studies, for example hurricane tracking, wind climate computation and deriving boundary conditions for air quality models. A special operational service was set up for our tornado chasing team that uses high resolution flexible WRF data to chase for super cells and tornados in the USA during spring. Much effort is put into the development and improvement of the pre- and post-processing of the model. At MeteoGroup the static land-use data has been extended and adjusted to improve temperature and wind forecasts. The system has been modified such that sigma level input data from the global ECMWF model can be used for initialisation. By default only pressure level data could be used. During the spin-up of the model synoptical observations are nudged. A program to adjust possible initialisation errors of several surface parameters in coastal areas has been implemented. We developed an algorithm that computes cloud fractions using multiple direct model output variables. Forecasters prefer to use weather codes for their daily forecasts to detect severe weather. For this usage we developed model weather codes using a variety of direct model output and our own derived variables. 1 WRF® is a registered trademark of the University Corporation for Atmospheric Research (UCAR)

  5. High Resolution Trajectory-Based Smoke Forecasts Using VIIRS Aerosol Optical Depth and NUCAPS Carbon Monoxide Retrievals

    NASA Astrophysics Data System (ADS)

    Pierce, R. B.; Smith, N.; Barnet, C.; Barnet, C. D.; Kondragunta, S.; Davies, J. E.; Strabala, K.

    2016-12-01

    We use Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth (AOD) and combined Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) NOAA-Unique CrIS-ATMS Processing System (NUCAPS) carbon monoxide (CO) retrievals to initialize trajectory-based, high spatial resolution North American smoke dispersion forecasts during the May 2016 Fort McMurray wildfire in northern Alberta and the July 2016 Soberanes Fire in Northern California. These two case studies illustrate how long range transport of wild fire smoke can adversely impact surface air quality thousands of kilometers downwind and how local topographic flow can lead to complex transport patterns near the wildfire source region. The NUCAPS CO retrievals are shown to complement the high resolution VIIRS AOD retrievals by providing retrievals in partially cloudy scenes and also providing information on the vertical distribution of the wildfire smoke. This work addresses the need for low latency, web-based, high resolution forecasts of smoke dispersion for use by NWS Incident Meteorologists (IMET) to support on-site decision support services for fire incident management teams. The primary user community for the IDEA-I smoke forecasts is the Western regions of the NWS and US EPA due to the significant impacts of wildfires in these regions. Secondary users include Alaskan NWS offices and Western State and Local air quality management agencies such as the Western Regional Air Partnership (WRAP).

  6. Distribution and Food Habits of Juvenile Salmonids in the Duwamish Estuary, Washington, 1980

    DTIC Science & Technology

    1981-03-01

    E.O. Salo, K. Garrison, and L. Matheson. 1979. Fish ecology studies in the Nisqually Reach area of southern Puget Sound , Washington. Univ. of Wash...Washington Department of Fisheries (WDF) indicate that Gteen River fall chinook are one of the largest naturally spawning stocks of this species in Puget Sound ...1977 Puget Sound summer-fall chinook methodology: Escapement estimates and goals, run size forecasts, and in-season run size updates. State of Wash

  7. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change.

    PubMed

    Valladares, Fernando; Matesanz, Silvia; Guilhaumon, François; Araújo, Miguel B; Balaguer, Luis; Benito-Garzón, Marta; Cornwell, Will; Gianoli, Ernesto; van Kleunen, Mark; Naya, Daniel E; Nicotra, Adrienne B; Poorter, Hendrik; Zavala, Miguel A

    2014-11-01

    Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic plasticity will affect species distributions in a warming climate. We first developed a conceptual model linking plasticity and niche breadth, providing five alternative intraspecific scenarios that are consistent with existing literature. Secondly, we used ecological niche-modeling techniques to quantify the impact of each intraspecific scenario on the distribution of a virtual species across a geographically realistic setting. Finally, we performed an analogous modeling exercise using real data on the climatic niches of different tree provenances. We show that when population differentiation is accounted for and dispersal is restricted, forecasts of species range shifts under climate change are even more pessimistic than those using the conventional assumption of homogeneously high plasticity across a species' range. Suitable population-level data are not available for most species so identifying general patterns of population differentiation could fill this gap. However, the literature review revealed contrasting patterns among species, urging greater levels of integration among empirical, modeling and theoretical research on intraspecific phenotypic variation. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  8. wfip2.model/retro.hrrr.01.fcst.01 (Model: 10-Day Retrospective)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  9. wfip2.model/retro.hrrr.02.fcst.01 (Model: 10-Day Retrospective)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  10. wfip2.model/retro.hrrr.02.fcst.02 (Model: 10-Day Retrospective)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  11. wfip2.model/retro.rap.01.fcst.01 (Model: 10-Day Retrospective)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  12. wfip2.model/realtime.hrrr_wfip2.graphics.02 (Model: Real Time)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  13. wfip2.model/retro.rap.02.fcst.01 (Model: 10-Day Retrospective)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  14. wfip2.model/realtime.hrrr_wfip2.icbc.02 (Model: Real Time)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  15. wfip2.model/retro.hrrr.01.fcst.02 (Model: 10-Day Retrospective)

    DOE Data Explorer

    Macduff, Matt

    2017-10-27

    The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.

  16. Army Needs to Improve the Reliability of the Spare Parts Forecasts It Submits to the Defense Logistics Agency

    DTIC Science & Technology

    2014-09-29

    In response to this finding, AMC is initiating a Depot Material Requirements Planning ( MRP ) Integrated Process Team (IPT) from which one objective...methodologies for DOF reviews and corrective actions by AMC and its component organizations. The target completion date for the Depot MRP IPT is June...implemented a matrix for MRP SOW where the aviation programs were updated in Production LMP 1QFY14. Army Materiel Command (cont’d) Management

  17. Executive Skills 21: A Forecast of Leadership Skills and Associated Competencies Required by Naval Hospital Administrators into the 21st Century

    DTIC Science & Technology

    1996-12-01

    the Future of Public Health Nursing : A Case for Primary Health Care ." Pnhlic Health Nursing 101, no. 1 (1993): 13-8. Berger, S, S. Sudman. "Giving...Interdisciplinary Team Building." Nursing Administration Quarterly 5 (Sep/Oct 1989): 213-20. Feiedrich, N. "Physician and Managed Care : Practical Ways Hospitals...Linderman, C. A. Priorities Within the Health Care Svstem: A Delphi Survey. Kansas City, KA: American Academy of Nursing , 1981. Linderman, CA

  18. Estimated flood-inundation maps for Cowskin Creek in western Wichita, Kansas

    USGS Publications Warehouse

    Studley, Seth E.

    2003-01-01

    The October 31, 1998, flood on Cowskin Creek in western Wichita, Kansas, caused millions of dollars in damages. Emergency management personnel and flood mitigation teams had difficulty in efficiently identifying areas affected by the flooding, and no warning was given to residents because flood-inundation information was not available. To provide detailed information about future flooding on Cowskin Creek, high-resolution estimated flood-inundation maps were developed using geographic information system technology and advanced hydraulic analysis. Two-foot-interval land-surface elevation data from a 1996 flood insurance study were used to create a three-dimensional topographic representation of the study area for hydraulic analysis. The data computed from the hydraulic analyses were converted into geographic information system format with software from the U.S. Army Corps of Engineers' Hydrologic Engineering Center. The results were overlaid on the three-dimensional topographic representation of the study area to produce maps of estimated flood-inundation areas and estimated depths of water in the inundated areas for 1-foot increments on the basis of stream stage at an index streamflow-gaging station. A Web site (http://ks.water.usgs.gov/Kansas/cowskin.floodwatch) was developed to provide the public with information pertaining to flooding in the study area. The Web site shows graphs of the real-time streamflow data for U.S. Geological Survey gaging stations in the area and monitors the National Weather Service Arkansas-Red Basin River Forecast Center for Cowskin Creek flood-forecast information. When a flood is forecast for the Cowskin Creek Basin, an estimated flood-inundation map is displayed for the stream stage closest to the National Weather Service's forecasted peak stage. Users of the Web site are able to view the estimated flood-inundation maps for selected stages at any time and to access information about this report and about flooding in general. Flood recovery teams also have the ability to view the estimated flood-inundation map pertaining to the most recent flood. The availability of these maps and the ability to monitor the real-time stream stage through the U.S. Geological Survey Web site provide emergency management personnel and residents with information that is critical for evacuation and rescue efforts in the event of a flood as well as for post-flood recovery efforts.

  19. Science-Based Strategies for Sustaining Coral Ecosystems

    USGS Publications Warehouse

    ,

    2009-01-01

    Coral ecosystems and their natural capital are at risk. Greenhouse gas emissions, overfishing, and harmful land-use practices are damaging our coral reefs. Overwhelming scientific evidence indicates that the threats are serious, and if they are left unchecked, the ecological and social consequences will be significant and widespread. Although the primary stressors to coral ecosystems are known, science-based strategies are needed to more accurately explain natural processes and forecast human-induced change. Collaborations among managers and scientists and enhanced mapping, monitoring, research, and modeling can lead to effective mitigation plans. U.S. Geological Survey scientists and their partners assess coral ecosystem history, ecology, vulnerability, and resiliency and provide study results to decisionmakers who may devise policies to sustain coral resources and the essential goods and services they provide.

  20. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees

    USGS Publications Warehouse

    2009-01-01

    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  1. Using Geographic Information System-based Ecologic Niche Models to Forecast the Risk of Hantavirus Infection in Shandong Province, China

    PubMed Central

    Wei, Lan; Qian, Quan; Wang, Zhi-Qiang; Glass, Gregory E.; Song, Shao-Xia; Zhang, Wen-Yi; Li, Xiu-Jun; Yang, Hong; Wang, Xian-Jun; Fang, Li-Qun; Cao, Wu-Chun

    2011-01-01

    Hemorrhagic fever with renal syndrome (HFRS) is an important public health problem in Shandong Province, China. In this study, we combined ecologic niche modeling with geographic information systems (GIS) and remote sensing techniques to identify the risk factors and affected areas of hantavirus infections in rodent hosts. Land cover and elevation were found to be closely associated with the presence of hantavirus-infected rodent hosts. The averaged area under the receiver operating characteristic curve was 0.864, implying good performance. The predicted risk maps based on the model were validated both by the hantavirus-infected rodents' distribution and HFRS human case localities with a good fit. These findings have the applications for targeting control and prevention efforts. PMID:21363991

  2. Impacts of invasive plants on Sandhill Crane (Grus canadensis) roosting habitat

    USGS Publications Warehouse

    Kessler, Andrew C.; Merchant, James W.; Allen, Craig R.; Shultz, Steven D.

    2011-01-01

    Invasive plants continue to spread in riparian ecosystems, causing both ecological and economic damage. This research investigated the impacts of common reed, purple loosestrife, riparian shrubland, and riparian woodlands on the quality and quantity of sandhill crane roosting habitat in the central Platte River, Nebraska, using a discrete choice model. A more detailed investigation of the impacts of common reed on sandhill crane roosting habitat was performed by forecasting a spread or contraction of this invasive plant. The discrete choice model indicates that riparian woodlands had the largest negative impact on sandhill crane roosting habitat. The forecasting results predict that a contraction of common reed could increase sandhill crane habitat availability by 50%, whereas an expansion could reduce the availability by as much as 250%. This suggests that if the distribution of common reed continues to expand in the central Platte River the availability of sandhill crane roosting habitat would likely be greatly reduced.

  3. Predicting diet and consumption rate differences between and within species using gut ecomorphology.

    PubMed

    Griffen, Blaine D; Mosblack, Hallie

    2011-07-01

    1. Rapid environmental changes and pressing human needs to forecast the consequences of environmental change are increasingly driving ecology to become a predictive science. The need for effective prediction requires both the development of new tools and the refocusing of existing tools that may have previously been used primarily for purposes other than prediction. One such tool that historically has been more descriptive in nature is ecomorphology (the study of relationships between ecological roles and morphological adaptations of species and individuals). 2. Here, we examine relationships between diet and gut morphology for 15 species of brachyuran crabs, a group of pervasive and highly successful consumers for which trophic predictions would be highly valuable. 3. We show that patterns in crab stomach volume closely match some predictions of metabolic theory and demonstrate that individual diet differences and associated morphological variation reflect, at least in some instances, individual choice or diet specialization. 4. We then present examples of how stomach volume can be used to predict both the per cent herbivory of brachyuran crabs and the relative consumption rates of individual crabs. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  4. Challenges and Experiences of Building Multidisciplinary Datasets across Cultures

    NASA Astrophysics Data System (ADS)

    Jamiyansharav, K.; Laituri, M.; Fernandez-Gimenez, M.; Fassnacht, S. R.; Venable, N. B. H.; Allegretti, A. M.; Reid, R.; Baival, B.; Jamsranjav, C.; Ulambayar, T.; Linn, S.; Angerer, J.

    2017-12-01

    Efficient data sharing and management are key challenges to multidisciplinary scientific research. These challenges are further complicated by adding a multicultural component. We address the construction of a complex database for social-ecological analysis in Mongolia. Funded by the National Science Foundation (NSF) Dynamics of Coupled Natural and Human (CNH) Systems, the Mongolian Rangelands and Resilience (MOR2) project focuses on the vulnerability of Mongolian pastoral systems to climate change and adaptive capacity. The MOR2 study spans over three years of fieldwork in 36 paired districts (Soum) from 18 provinces (Aimag) of Mongolia that covers steppe, mountain forest steppe, desert steppe and eastern steppe ecological zones. Our project team is composed of hydrologists, social scientists, geographers, and ecologists. The MOR2 database includes multiple ecological, social, meteorological, geospatial and hydrological datasets, as well as archives of original data and survey in multiple formats. Managing this complex database requires significant organizational skills, attention to detail and ability to communicate within collective team members from diverse disciplines and across multiple institutions in the US and Mongolia. We describe the database's rich content, organization, structure and complexity. We discuss lessons learned, best practices and recommendations for complex database management, sharing, and archiving in creating a cross-cultural and multi-disciplinary database.

  5. Foundations of translational ecology

    USGS Publications Warehouse

    Enquist, Carolyn A. F.; Jackson, Stephen T.; Garfin, Gregg M.; Davis, Frank W.; Gerber, Leah R.; Littell, Jeremy; Tank, Jennifer L.; Terando, Adam; Wall, Tamara U.; Halpern, Benjamin S.; Morelli, Toni L.; Hiers, J. Kevin; McNie, Elizabeth; Stephenson, Nathan L.; Williamson, Matthew A.; Woodhouse, Connie A.; Yung, Laurie; Brunson, Mark W.; Hall, Kimberly R.; Hallett, Lauren M.; Lawson, Dawn M.; Moritz, Max A.; Nydick, Koren R.; Pairis, Amber; Ray, Andrea J.; Regan, Claudia M.; Safford, Hugh D.; Schwartz, Mark W.; Shaw, M. Rebecca

    2017-01-01

    Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today's complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist–practitioner partnerships. The creativity and context‐specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use‐driven, actionable science. Moreover, addressing research questions that arise from on‐the‐ground management issues – as opposed to the top‐down or expert‐oriented perspectives of traditional science – can foster the high levels of trust and commitment that are critical for long‐term, sustained engagement between partners.

  6. STS-114: Discovery Day 13 Mission Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    LeRoy Cain, STS-114 Ascent/Entry Flight Director, takes a solo stand with the Press in this briefing. He reports that the vehicle is in good shape, consumable status is excellent, and the shuttle crew is in high spirits and preparing for de-orbit and landing. LeRoy and his team have completed the entry system check up, flight control check up, reactor control system check up, and noted that all are at nominal performance; weather forecast is very good, the Entry team is ready and looking forward to de-orbit and landing at the Kennedy Space Center on Monday, August 8th. Re-entry, personal feelings, Columbia accident, data gathering, consumable situation, back up sites, weather, communication block out, night and day landing, and Commander Collin's piloting skills during night flight are some of the topics covered with the News media.

  7. THE LEARNING BARGE: ENVIRONMENTAL + CULTURAL ECOLOGIES ON THE ELIZABETH RIVER

    EPA Science Inventory

    A University of Virginia interdisciplinary student team will design and fabricate the Learning Barge—a floating environmental education field station powered solely by site-based solar and wind energy systems. The 32’x120’ barge will support a contained be...

  8. Exemplary Programs in Secondary School Biology.

    ERIC Educational Resources Information Center

    McComas, William F.; Penick, John E.

    1989-01-01

    Summarizes 10 exemplary programs which address topics on individualized biology, a modified team approach, limnology, physical anthropology, the relevance of biology to society, ecology, and health. Provides names and addresses of contact persons for further information. Units cover a broad range of abilities and activities. (RT)

  9. ECOSYSTEM MODELING IN COBSCOOK BAY, MAINE:A SUMMARY, PERSPECTIVE, AND LOOK FORWARD

    EPA Science Inventory

    In the mid-1990s, an interdisciplinary, multi-institutional team of scientists was assembled to address basic issues concerning biological productivity and the unique co-occurrence of many unusual ecological features in Cobscook Bay, Maine. Cobscook Bay is a geologically complex,...

  10. Analysis on Heavy Metal Distribution in Overlying Deposit and Pollution Characteristics in Rivers around Dahongshan Fe&Cu Mine in Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Huang, Qianrui; Cheng, Xianfeng; Qi, Wufu; Xu, Jun; Yang, Shuran

    2017-12-01

    Dahongshan Fe&Cu mine in Yunnan Province was endowed with the title of “National Green Mine Pilots” by Chinese Ministry of Land and Resources in April 2013. In order to verify the implementation effects of the green mine and better drive the construction of the green mine by other mine enterprises in Yunnan, the project team investigated overlying deposit in rivers around the Dahongshan mine in the wet season (August) of 2016, investigated mine enterprises, and applied the Potential Ecological Risk Index to evaluate potential ecological hazards of heavy metal pollution in overlying deposit. The results showed that all sampling points were less than 105, indicating the lower ecological hazard degree.

  11. Climate, Water, and Human Health: Large Scale Hydroclimatic Controls in Forecasting Cholera Epidemics

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2009-12-01

    Despite ravaging the continents through seven global pandemics in past centuries, the seasonal and interannual variability of cholera outbreaks remain a mystery. Previous studies have focused on the role of various environmental and climatic factors, but provided little or no predictive capability. Recent findings suggest a more prominent role of large scale hydroclimatic extremes - droughts and floods - and attempt to explain the seasonality and the unique dual cholera peaks in the Bengal Delta region of South Asia. We investigate the seasonal and interannual nature of cholera epidemiology in three geographically distinct locations within the region to identify the larger scale hydroclimatic controls that can set the ecological and environmental ‘stage’ for outbreaks and have significant memory on a seasonal scale. Here we show that two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large scale climatic controls prevail in the region. An implication of our findings is that extreme climatic events such as prolonged droughts, record floods, and major cyclones may cause major disruption in the ecosystem and trigger large epidemics. We postulate that a quantitative understanding of the large-scale hydroclimatic controls and dominant processes with significant system memory will form the basis for forecasting such epidemic outbreaks. A multivariate regression method using these predictor variables to develop probabilistic forecasts of cholera outbreaks will be explored. Forecasts from such a system with a seasonal lead-time are likely to have measurable impact on early cholera detection and prevention efforts in endemic regions.

  12. Using neural networks for prediction of air pollution index in industrial city

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.; Panchenko, A. A.; Safarov, A. M.

    2017-10-01

    This scientific paper is dedicated to the use of artificial neural networks for the ecological prediction of state of the atmospheric air of an industrial city for capability of the operative environmental decisions. In the paper, there is also the described development of two types of prediction models for determining of the air pollution index on the basis of neural networks: a temporal (short-term forecast of the pollutants content in the air for the nearest days) and a spatial (forecast of atmospheric pollution index in any point of city). The stages of development of the neural network models are briefly overviewed and description of their parameters is also given. The assessment of the adequacy of the prediction models, based on the calculation of the correlation coefficient between the output and reference data, is also provided. Moreover, due to the complexity of perception of the «neural network code» of the offered models by the ordinary users, the software implementations allowing practical usage of neural network models are also offered. It is established that the obtained neural network models provide sufficient reliable forecast, which means that they are an effective tool for analyzing and predicting the behavior of dynamics of the air pollution in an industrial city. Thus, this scientific work successfully develops the urgent matter of forecasting of the atmospheric air pollution index in industrial cities based on the use of neural network models.

  13. Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1992-01-01

    Lockheed personnel, along with team member subcontractors and consultants, have performed a preliminary design for the LAWS Instrument. Breadboarding and testing of a LAWS class laser have also been performed. These efforts have demonstrated that LAWS is a feasible Instrument and can be developed with existing state-of-the-art technology. Only a commitment to fund the instrument development and deployment is required to place LAWS in orbit and obtain the anticipated science and operational forecasting benefits. The LAWS Science Team was selected in 1988-89 as were the competing LAWS phase 1/2 contractor teams. The LAWS Science Team developed requirements for the LAWS Instrument, and the NASA/LAWS project office defined launch vehicle and platform design constraints. From these requirements and constraints, the lockheed team developed LAWS Instrument concepts and configurations. A system designed to meet these requirements and constraints is outlined. The LAWS primary subsystem and interfaces - laser, optical, and receiver/processor - required to assemble a lidar are identified. Also identified are the support subsystems required for the lidar to function from space: structures and mechanical, thermal, electrical, and command and data management. The Lockheed team has developed a preliminary design of a LAWS Instrument System consisting of these subsystems and interfaces which will meet the requirements and objectives of the Science Team. This final report provides a summary of the systems engineering analyses and trades of the LAWS. Summaries of the configuration, preliminary designs of the subsystems, testing recommendations, and performance analysis are presented. Environmental considerations associated with deployment of LAWS are discussed. Finally, the successful LAWS laser breadboard effort is discussed along with the requirements and test results.

  14. HYDROGEOLOGIC SETTING AND CHARACTERISTICS OF RIPARIAN MEADOW COMPLEXES IN THE MOUNTAINS OF CENTRAL NEVADA: A CASE STUDY

    EPA Science Inventory

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems threatened by stream incision. An interdisciplinary team from government and academia is investigating the origin, setting, and biological--physical interrelations...

  15. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Phosphorus Reduction Efforts in the Florida Everglades

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2009-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the CERP. Specifically, GPM measurements could augment in situ precipitation data that are used to model agricultural phosphorus discharged into the Everglades. This solution benefits society by aiding water resource managers in identifying effective phosphorus reduction scenarios and thereby returning the Everglades to a more natural state. This solution supports the Water Management, Coastal Management, and Ecological Forecasting National Applications.

  16. The GOES-R Series Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas M.

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument development. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (an engineering development unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms

  17. The Goes-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved storm diagnostic capability with the Advanced Baseline Imager. The GLM will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. In this paper we will report on new Nowcasting and storm warning applications being developed and evaluated at various NOAA Testbeds.

  18. Evaluation of candidate geomagnetic field models for IGRF-11

    NASA Astrophysics Data System (ADS)

    Finlay, C. C.; Maus, S.; Beggan, C. D.; Hamoudi, M.; Lowes, F. J.; Olsen, N.; Thébault, E.

    2010-10-01

    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was agreed in December 2009 by a task force appointed by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD. New spherical harmonic main field models for epochs 2005.0 (DGRF-2005) and 2010.0 (IGRF-2010), and predictive linear secular variation for the interval 2010.0-2015.0 (SV-2010-2015) were derived from weighted averages of candidate models submitted by teams led by DTU Space, Denmark (team A); NOAA/NGDC, U.S.A. (team B); BGS, U.K. (team C); IZMIRAN, Russia (team D); EOST, France (team E); IPGP, France (team F); GFZ, Germany (team G) and NASA-GSFC, U.S.A. (team H). Here, we report the evaluations of candidate models carried out by the IGRF-11 task force during October/November 2009 and describe the weightings used to derive the new IGRF-11 model. The evaluations include calculations of root mean square vector field differences between the candidates, comparisons of the power spectra, and degree correlations between the candidates and a mean model. Coefficient by coefficient analysis including determination of weighting factors used in a robust estimation of mean coefficients is also reported. Maps of differences in the vertical field intensity at Earth's surface between the candidates and weighted mean models are presented. Candidates with anomalous aspects are identified and efforts made to pinpoint both troublesome coefficients and geographical regions where large variations between candidates originate. A retrospective analysis of IGRF-10 main field candidates for epoch 2005.0 and predictive secular variation candidates for 2005.0-2010.0 using the new IGRF-11 models as a reference is also reported. The high quality and consistency of main field models derived using vector satellite data is demonstrated; based on internal consistency DGRF-2005 has a formal root mean square vector field error over Earth's surface of 1.0 nT. Difficulties nevertheless remain in accurately forecasting field evolution only five years into the future.

  19. Climate, weather, space weather: model development in an operational context

    NASA Astrophysics Data System (ADS)

    Folini, Doris

    2018-05-01

    Aspects of operational modeling for climate, weather, and space weather forecasts are contrasted, with a particular focus on the somewhat conflicting demands of "operational stability" versus "dynamic development" of the involved models. Some common key elements are identified, indicating potential for fruitful exchange across communities. Operational model development is compelling, driven by factors that broadly fall into four categories: model skill, basic physics, advances in computer architecture, and new aspects to be covered, from costumer needs over physics to observational data. Evaluation of model skill as part of the operational chain goes beyond an automated skill score. Permanent interaction between "pure research" and "operational forecast" people is beneficial to both sides. This includes joint model development projects, although ultimate responsibility for the operational code remains with the forecast provider. The pace of model development reflects operational lead times. The points are illustrated with selected examples, many of which reflect the author's background and personal contacts, notably with the Swiss Weather Service and the Max Planck Institute for Meteorology, Hamburg, Germany. In view of current and future challenges, large collaborations covering a range of expertise are a must - within and across climate, weather, and space weather. To profit from and cope with the rapid progress of computer architectures, supercompute centers must form part of the team.

  20. GIS and Time-Series Integration in the Kennedy Space Center Environmental Information System

    NASA Technical Reports Server (NTRS)

    Hinkle, Ross; Costa, Joao Ribeiro da; Engel, Bernard

    1996-01-01

    NASA started the Ecological Program 14 years ago to collect environmental data which can be used in making environmental management decisions. The EP team created the Mapping Analysis and Planning System (MAPS) to store all the data, including the appropriate tools for data analysis and exploration.

  1. The Natural Revegetation of a Pitheap: An Extended Sixth Form Research Project.

    ERIC Educational Resources Information Center

    Sanderson, Phil

    1987-01-01

    Describes a five year research project in plant ecology by successive teams of students. The aim was to identify environmental factors which were determining the distribution of the vegetation on a pitheap. Includes descriptions of vegetation, soil properties, and computer assisted analysis of results. (Author/CW)

  2. Facilitating Transdisciplinary Sustainable Development Research Teams through Online Collaboration

    ERIC Educational Resources Information Center

    Dale, Ann; Newman, Lenore; Ling, Chris

    2010-01-01

    Purpose: The purpose of this paper is to discuss the potential of online communication technologies to facilitate university-led transdisciplinary sustainable development research and lower the ecological footprints of such research projects. A series of case studies is to be explored. Design/methodology/approach: A one year project is conducted…

  3. SPECTROSCOPIC SPECIATION AND QUANTIFICATION ON ALTERATIONS OF PB IN PHOSPHATE AMENDED SOILS

    EPA Science Inventory

    Lead-bearing soils are a source of lead (Pb) contamination at a number of sites across the nation and pose a risk for our most sensitive population, children. The In-place Inactivation and Natural Ecological Restoration Team (IINERT) has demonstrated the feasibility of reducing ...

  4. Multidisciplinary Special Education Efforts: A Transactional-Ecological Approach.

    ERIC Educational Resources Information Center

    Buktenica, Norman A.

    The rationale and philosophy for multidisciplinary activities by school psychologists and educators are presented with an emphasis on the acquisition of information on the social context of children's behavior and needs. Multidisciplinary training teams (MDTT) established over an eight-year period in elementary schools in Nashville, Kentucky, are…

  5. A systems biology approach to understanding impacts of environmental contaminants on fish reproduction

    EPA Science Inventory

    Over the past decade, our research team at the US EPA Mid-Continent Ecology Division has employed systems biology approaches to examine and understand impacts of environmental contaminants on fish reproduction. Our systems biology approach is one in which iterations of model cons...

  6. Toward an Ecological Perspective of Resident Teaching Clinic

    ERIC Educational Resources Information Center

    Smith, C. Scott; Francovich, Chris; Morris, Magdalena; Hill, William; Langlois-Winkle, Francine; Rupper, Randall; Roth, Craig; Wheeler, Stephanie; Vo, Anthony

    2010-01-01

    Teaching clinic managers struggle to convert performance data into meaningful behavioral change in their trainees, and quality improvement measures in medicine have had modest results. This may be due to several factors including clinical performance being based more on team function than individual action, models of best practice that are…

  7. The Pathway to a Safe and Effective Spaceflight Medication Formulary: Expert Review Panel Recommendations

    NASA Technical Reports Server (NTRS)

    Daniels, V. R.; Bayuse, T. M.; Mulcahy, R. A.; McGuire, R. K. M.; Antonsen, E. L.

    2018-01-01

    Exploration spaceflight poses several challenges to the provision of a comprehensive medication formulary. This formulary must accommodate the size and space limitations of the spacecraft, while addressing individual medication needs and preferences of the crew, consequences of a degrading inventory over time, the inability to resupply used or expired medications, and the need to forecast the best possible medication candidates to treat conditions that may occur. The Exploration Medical Capability (ExMC) Element's Pharmacy Project Team has developed a research plan (RP) that is focused on evidence-based models and theories as well as new diagnostic tools, treatments, or preventive measures aimed to ensure an available, safe, and effective pharmacy sufficient to manage potential medical threats during exploration spaceflight. Here, we will discuss the ways in which the ExMC Pharmacy Project Team pursued expert evaluation and guidance, and incorporated acquired insight into an achievable research pathway, reflected in the revised RP.

  8. Predicting Software Suitability Using a Bayesian Belief Network

    NASA Technical Reports Server (NTRS)

    Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.

    2005-01-01

    The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.

  9. The predictability of a lake phytoplankton community, over time-scales of hours to years.

    PubMed

    Thomas, Mridul K; Fontana, Simone; Reyes, Marta; Kehoe, Michael; Pomati, Francesco

    2018-05-01

    Forecasting changes to ecological communities is one of the central challenges in ecology. However, nonlinear dependencies, biotic interactions and data limitations have limited our ability to assess how predictable communities are. Here, we used a machine learning approach and environmental monitoring data (biological, physical and chemical) to assess the predictability of phytoplankton cell density in one lake across an unprecedented range of time-scales. Communities were highly predictable over hours to months: model R 2 decreased from 0.89 at 4 hours to 0.74 at 1 month, and in a long-term dataset lacking fine spatial resolution, from 0.46 at 1 month to 0.32 at 10 years. When cyanobacterial and eukaryotic algal cell densities were examined separately, model-inferred environmental growth dependencies matched laboratory studies, and suggested novel trade-offs governing their competition. High-frequency monitoring and machine learning can set prediction targets for process-based models and help elucidate the mechanisms underlying ecological dynamics. © 2018 John Wiley & Sons Ltd/CNRS.

  10. Sustainable Deforestation Evaluation Model and System Dynamics Analysis

    PubMed Central

    Feng, Huirong; Lim, C. W.; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225

  11. Sustainable deforestation evaluation model and system dynamics analysis.

    PubMed

    Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.

  12. Terra - 15 Years as the Earth Observing System Flagship Observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2014-12-01

    Terra marks its 15th year on orbit with an array of accomplishments and the potential to do much more. Efforts continue to extend the Terra data record to make its data more valuable by creating a record length to examine interannual variability, observe trends on the decadal scale, and gather statistics relevant to climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The power of Terra is in the high quality of the data calibration, sensor characterization, and the complementary nature of the instruments covering a range of scientific measurements as well as scales. The broad range of products enable the community to provide answers to the overarching question, "How is the Earth changing and what are the consequences for life on Earth?" Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water resources, and weather.

  13. Land use change modeling through scenario-based cellular automata Markov: improving spatial forecasting.

    PubMed

    Jahanishakib, Fatemeh; Mirkarimi, Seyed Hamed; Salmanmahiny, Abdolrassoul; Poodat, Fatemeh

    2018-05-08

    Efficient land use management requires awareness of past changes, present actions, and plans for future developments. Part of these requirements is achieved using scenarios that describe a future situation and the course of changes. This research aims to link scenario results with spatially explicit and quantitative forecasting of land use development. To develop land use scenarios, SMIC PROB-EXPERT and MORPHOL methods were used. It revealed eight scenarios as the most probable. To apply the scenarios, we considered population growth rate and used a cellular automata-Markov chain (CA-MC) model to implement the quantified changes described by each scenario. For each scenario, a set of landscape metrics was used to assess the ecological integrity of land use classes in terms of fragmentation and structural connectivity. The approach enabled us to develop spatial scenarios of land use change and detect their differences for choosing the most integrated landscape pattern in terms of landscape metrics. Finally, the comparison between paired forecasted scenarios based on landscape metrics indicates that scenarios 1-1, 2-2, 3-2, and 4-1 have a more suitable integrity. The proposed methodology for developing spatial scenarios helps executive managers to create scenarios with many repetitions and customize spatial patterns in real world applications and policies.

  14. Puget Sound Operational Forecast System - A Real-time Predictive Tool for Marine Resource Management and Emergency Responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Khangaonkar, Tarang; Chase, Jared M.

    2009-12-01

    To support marine ecological resource management and emergency response and to enhance scientific understanding of physical and biogeochemical processes in Puget Sound, a real-time Puget Sound Operational Forecast System (PS-OFS) was developed by the Coastal Ocean Dynamics & Ecosystem Modeling group (CODEM) of Pacific Northwest National Laboratory (PNNL). PS-OFS employs the state-of-the-art three-dimensional coastal ocean model and closely follows the standards and procedures established by National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). PS-OFS consists of four key components supporting the Puget Sound Circulation and Transport Model (PS-CTM): data acquisition, model execution and product archive, model skill assessment,more » and model results dissemination. This paper provides an overview of PS-OFS and its ability to provide vital real-time oceanographic information to the Puget Sound community. PS-OFS supports pacific northwest region’s growing need for a predictive tool to assist water quality management, fish stock recovery efforts, maritime emergency response, nearshore land-use planning, and the challenge of climate change and sea level rise impacts. The structure of PS-OFS and examples of the system inputs and outputs, forecast results are presented in details.« less

  15. Hurricane plenty

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    If new predictions for above-average hurricane activity in 1997 materialize, the Atlantic Basin will have its most active 3-year hurricane span ever recorded. Colorado State University hurricane forecasters, led by professor William Gray, predict that 11 tropical storms will form in 1997, and that seven will be hurricanes—three of them intense. If the team's prediction unfolds, the period between 1995-1997 will be the most active 3-year period in the last 120 years of hurricane tracking—in contrast with 1991-1994, which was one of the calmest 4-year periods.

  16. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability

    NASA Astrophysics Data System (ADS)

    Steenberg, James W. N.; Millward, Andrew A.; Nowak, David J.; Robinson, Pamela J.; Ellis, Alexis

    2017-03-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.

  17. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability.

    PubMed

    Steenberg, James W N; Millward, Andrew A; Nowak, David J; Robinson, Pamela J; Ellis, Alexis

    2017-03-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.

  18. State of the Art in Large-Scale Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  19. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  20. "Ask Argonne" - Edwin Campos, Research Meteorologist, Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin Campos

    2013-05-08

    Dr. Edwin Campos is a Research Meteorologist at Argonne National Laboratory. For the last two decades, he has studied weather, and in particular, clouds. Clouds are one of the most uncertain variables in climate predictions and are often related to transportation hazards. Clouds can also impact world-class sporting events like the Olympics. You may have questions about the role of clouds, or weather, on our daily lives. How is severe weather monitored for airports? What is the impact of clouds and wind on the generation of electricity? One of the projects Edwin is working on is short-term forecasting as itmore » relates to solar electricity. For this, Edwin's team is partnering with industry and academia to study new ways of forecasting clouds, delivering technologies that will allow the incorporation of more solar power into the electric grid. Post a question for Edwin as a comment below, and it might get answered in the follow-up video we'll post in the next few weeks.« less

  1. "Ask Argonne" - Edwin Campos, Research Meteorologist, Part 1

    ScienceCinema

    Edwin Campos

    2017-12-09

    Dr. Edwin Campos is a Research Meteorologist at Argonne National Laboratory. For the last two decades, he has studied weather, and in particular, clouds. Clouds are one of the most uncertain variables in climate predictions and are often related to transportation hazards. Clouds can also impact world-class sporting events like the Olympics. You may have questions about the role of clouds, or weather, on our daily lives. How is severe weather monitored for airports? What is the impact of clouds and wind on the generation of electricity? One of the projects Edwin is working on is short-term forecasting as it relates to solar electricity. For this, Edwin's team is partnering with industry and academia to study new ways of forecasting clouds, delivering technologies that will allow the incorporation of more solar power into the electric grid. Post a question for Edwin as a comment below, and it might get answered in the follow-up video we'll post in the next few weeks.

  2. The GOES-R Geostationary Lightning Mapper (GLM)

    NASA Astrophysics Data System (ADS)

    Goodman, S. J.; Blakeslee, R. J.; Koshak, W. J.; Mach, D. M.; Bailey, J. C.; Buechler, D. E.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; McCaul, E., Jr.; Stano, G. T.

    2012-12-01

    The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning activity (in-cloud and cloud-to-ground lightning flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low earth orbit, and from ground-based lightning networks and intensive pre-launch field campaigns. GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extends their combined climatology over the western hemisphere into the coming decades. Science and application development along with pre-operational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings. Results from recent field campaigns and forecaster evaluations on the utility of the total lightning products will be presented.

  3. Relation between Ocean SST Dipoles and Downwind Continental Croplands Assessed for Early Management Using Satellite-based Photosynthesis Models

    NASA Astrophysics Data System (ADS)

    Kaneko, Daijiro

    2015-04-01

    Crop-monitoring systems with the unit of carbon-dioxide sequestration for environmental issues related to climate adaptation to global warming have been improved using satellite-based photosynthesis and meteorological conditions. Early management of crop status is desirable for grain production, stockbreeding, and bio-energy providing that the seasonal climate forecasting is sufficiently accurate. Incorrect seasonal forecasting of crop production can damage global social activities if the recognized conditions are unsatisfied. One cause of poor forecasting related to the atmospheric dynamics at the Earth surface, which reflect the energy budget through land surface, especially the oceans and atmosphere. Recognition of the relation between SST anomalies (e.g. ENSO, Atlantic Niño, Indian dipoles, and Ningaloo Niño) and crop production, as expressed precisely by photosynthesis or the sequestrated-carbon rate, is necessary to elucidate the mechanisms related to poor production. Solar radiation, surface air temperature, and water stress all directly affect grain vegetation photosynthesis. All affect stomata opening, which is related to the water balance or definition by the ratio of the Penman potential evaporation and actual transpiration. Regarding stomata, present data and reanalysis data give overestimated values of stomata opening because they are extended from wet models in forests rather than semi-arid regions commonly associated with wheat, maize, and soybean. This study applies a complementary model based on energy conservation for semi-arid zones instead of the conventional Penman-Monteith method. Partitioning of the integrated Net PSN enables precise estimation of crop yields by modifying the semi-closed stomata opening. Partitioning predicts production more accurately using the cropland distribution already classified using satellite data. Seasonal crop forecasting should include near-real-time monitoring using satellite-based process crop models to avoid social difficulties that can derive from uncertain seasonal predictions produced from long-term forecasting. Acknowledgement The author appreciates scientific discussions held with the application team of seasonal prediction at the Japan Agency for Marine-Earth Science and Technology. Key words: crop production, monitoring, forecasting, SST anomaly, remote sensing

  4. The GOES-R Geostationary Lightning Mapper (GLM)

    NASA Astrophysics Data System (ADS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas; Bailey, Jeffrey; Buechler, Dennis; Carey, Larry; Schultz, Chris; Bateman, Monte; McCaul, Eugene; Stano, Geoffrey

    2013-05-01

    The Geostationary Operational Environmental Satellite R-series (GOES-R) is the next block of four satellites to follow the existing GOES constellation currently operating over the Western Hemisphere. Advanced spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved cloud and moisture imagery with the 16-channel Advanced Baseline Imager (ABI). The GLM will map total lightning activity continuously day and night with near-uniform storm-scale spatial resolution of 8 km with a product refresh rate of less than 20 s over the Americas and adjacent oceanic regions in the western hemisphere. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low Earth orbit, and from ground-based lightning networks and intensive prelaunch field campaigns. The GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extend their combined climatology over the western hemisphere into the coming decades. Science and application development along with preoperational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and checkout of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.

  5. Forecasted Flood Depth Grids Providing Early Situational Awareness to FEMA during the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Jones, M.; Longenecker, H. E., III

    2017-12-01

    The 2017 hurricane season brought the unprecedented landfall of three Category 4 hurricanes (Harvey, Irma and Maria). FEMA is responsible for coordinating the federal response and recovery efforts for large disasters such as these. FEMA depends on timely and accurate depth grids to estimate hazard exposure, model damage assessments, plan flight paths for imagery acquisition, and prioritize response efforts. In order to produce riverine or coastal depth grids based on observed flooding, the methodology requires peak crest water levels at stream gauges, tide gauges, high water marks, and best-available elevation data. Because peak crest data isn't available until the apex of a flooding event and high water marks may take up to several weeks for field teams to collect for a large-scale flooding event, final observed depth grids are not available to FEMA until several days after a flood has begun to subside. Within the last decade NOAA's National Weather Service (NWS) has implemented the Advanced Hydrologic Prediction Service (AHPS), a web-based suite of accurate forecast products that provide hydrograph forecasts at over 3,500 stream gauge locations across the United States. These forecasts have been newly implemented into an automated depth grid script tool, using predicted instead of observed water levels, allowing FEMA access to flood hazard information up to 3 days prior to a flooding event. Water depths are calculated from the AHPS predicted flood stages and are interpolated at 100m spacing along NHD hydrolines within the basin of interest. A water surface elevation raster is generated from these water depths using an Inverse Distance Weighted interpolation. Then, elevation (USGS NED 30m) is subtracted from the water surface elevation raster so that the remaining values represent the depth of predicted flooding above the ground surface. This automated process requires minimal user input and produced forecasted depth grids that were comparable to post-event observed depth grids and remote sensing-derived flood extents for the 2017 hurricane season. These newly available forecasted models were used for pre-event response planning and early estimated hazard exposure counts, allowing FEMA to plan for and stand up operations several days sooner than previously possible.

  6. Professional conduct of scientists during volcanic crises

    USGS Publications Warehouse

    ,; Newhall, Chris; Aramaki, Shigeo; Barberi, Franco; Blong, Russell; Calvache, Marta; Cheminee, Jean-Louis; Punongbayan, Raymundo; Siebe, Claus; Simkin, Tom; Sparks, Stephen; Tjetjep, Wimpy

    1999-01-01

    Stress during volcanic crises is high, and any friction between scientists can distract seriously from both humanitarian and scientific effort. Friction can arise, for example, if team members do not share all of their data, if differences in scientific interpretation erupt into public controversy, or if one scientist begins work on a prime research topic while a colleague with longer-standing investment is still busy with public safety work. Some problems arise within existing scientific teams; others are brought on by visiting scientists. Friction can also arise between volcanologists and public officials. Two general measures may avert or reduce friction: (a) National volcanologic surveys and other scientific groups that advise civil authorities in times of volcanic crisis should prepare, in advance of crises, a written plan that details crisis team policies, procedures, leadership and other roles of team members, and other matters pertinent to crisis conduct. A copy of this plan should be given to all current and prospective team members. (b) Each participant in a crisis team should examine his or her own actions and contribution to the crisis effort. A personal checklist is provided to aid this examination. Questions fall generally in two categories: Are my presence and actions for the public good? Are my words and actions collegial, i.e., courteous, respectful, and fair? Numerous specific solutions to common crisis problems are also offered. Among these suggestions are: (a) choose scientific team leaders primarily for their leadership skills; (b) speak publicly with a single scientific voice, especially when forecasts, warnings, or scientific disagreements are involved; (c) if you are a would-be visitor, inquire from the primary scientific team whether your help would be welcomed, and, in general, proceed only if the reply is genuinely positive; (d) in publications, personnel evaluations, and funding, reward rather than discourage teamwork. Models are available from the fields of particle physics and human genetics, among others.

  7. Professional conduct of scientists during volcanic crises

    NASA Astrophysics Data System (ADS)

    IAVCEI SubcommitteeCrisis Protocols; Newhall, Chris; Aramaki, Shigeo; Barberi, Franco; Blong, Russell; Calvache, Marta; Cheminee, Jean-Louis; Punongbayan, Raymundo; Siebe, Claus; Simkin, Tom; Sparks, Stephen; Tjetjep, Barry; Newhall, Chris

    Stress during volcanic crises is high, and any friction between scientists can distract seriously from both humanitarian and scientific effort. Friction can arise, for example, if team members do not share all of their data, if differences in scientific interpretation erupt into public controversy, or if one scientist begins work on a prime research topic while a colleague with longer-standing investment is still busy with public safety work. Some problems arise within existing scientific teams; others are brought on by visiting scientists. Friction can also arise between volcanologists and public officials. Two general measures may avert or reduce friction: (a) National volcanologic surveys and other scientific groups that advise civil authorities in times of volcanic crisis should prepare, in advance of crises, a written plan that details crisis team policies, procedures, leadership and other roles of team members, and other matters pertinent to crisis conduct. A copy of this plan should be given to all current and prospective team members. (b) Each participant in a crisis team should examine his or her own actions and contribution to the crisis effort. A personal checklist is provided to aid this examination. Questions fall generally in two categories: Are my presence and actions for the public good? Are my words and actions collegial, i.e., courteous, respectful, and fair? Numerous specific solutions to common crisis problems are also offered. Among these suggestions are: (a) choose scientific team leaders primarily for their leadership skills; (b) speak publicly with a single scientific voice, especially when forecasts, warnings, or scientific disagreements are involved; (c) if you are a would-be visitor, inquire from the primary scientific team whether your help would be welcomed, and, in general, proceed only if the reply is genuinely positive; (d) in publications, personnel evaluations, and funding, reward rather than discourage teamwork. Models are available from the fields of particle physics and human genetics, among others.

  8. Assessing the Dynamic Effects of Climate on Individual Tree Growth Across Time and Space

    NASA Astrophysics Data System (ADS)

    Itter, M.; Finley, A. O.; D'Amato, A. W.; Foster, J. R.; Bradford, J. B.

    2015-12-01

    The relationship between climate variability and an ecosystem process, such as forest growth, is frequently not fixed over time, but changes due to complex interactions between unobserved ecological factors and the process of interest. Climate data and forecasts are frequently spatially and temporally misaligned with ecological observations making inference regarding the effects of climate on ecosystem processes particularly challenging. Here we develop a Bayesian dynamic hierarchical model for annual tree growth increment that allows the effects of climate to evolve over time, applies climate data at a spatial-temporal scale consistent with observations, and controls for individual-level variability commonly encountered in ecological datasets. The model is applied to individual tree data from northern Minnesota using a modified Thornthwaite-type water balance model to transform PRISM temperature and precipitation estimates to physiologically relevant values of actual and potential evapotranspiration (AET, PET), and climatic water deficit. Model results indicate that mean tree growth is most sensitive to AET during the growing season and PET and minimum temperature in the spring prior to growth. The effects of these variables on tree growth, however, are not stationary with significant effects observed in only a subset of years during the 111-year study period. Importantly, significant effects of climate do not result from anomalous climate observations, but follow from large growth deviations unexplained by tree age and size, and time since forest disturbance. Results differ markedly from alternative models that assume the effects of climate are stationary over time or apply climate estimates at the individual scale. Forecasts of future tree growth as a function of climate follow directly from the dynamic hierarchical model allowing for assessment of forest change. Current work is focused on extending the model framework to include regional climate and ecosystem effects for application to a larger tree growth dataset spanning a latitudinal gradient within the US from Maine to Florida.

  9. A National Disturbance Modeling System to Support Ecological Carbon Sequestration Assessments

    NASA Astrophysics Data System (ADS)

    Hawbaker, T. J.; Rollins, M. G.; Volegmann, J. E.; Shi, H.; Sohl, T. L.

    2009-12-01

    The U.S. Geological Survey (USGS) is prototyping a methodology to fulfill requirements of Section 712 of the Energy Independence and Security Act (EISA) of 2007. At the core of the EISA requirements is the development of a methodology to complete a two-year assessment of current carbon stocks and other greenhouse gas (GHG) fluxes, and potential increases for ecological carbon sequestration under a range of future climate changes, land-use / land-cover configurations, and policy, economic and management scenarios. Disturbances, especially fire, affect vegetation dynamics and ecosystem processes, and can also introduce substantial uncertainty and risk to the efficacy of long-term carbon sequestration strategies. Thus, the potential impacts of disturbances need to be considered under different scenarios. As part of USGS efforts to meet EISA requirements, we developed the National Disturbance Modeling System (NDMS) using a series of statistical and process-based simulation models. NDMS produces spatially-explicit forecasts of future disturbance locations and severity, and the resulting effects on vegetation dynamics. NDMS is embedded within the Forecasting Scenarios of Future Land Cover (FORE-SCE) model and informs the General Ensemble Biogeochemical Modeling System (GEMS) for quantifying carbon stocks and GHG fluxes. For fires, NDMS relies on existing disturbance histories, such as the Landsat derived Monitoring Trends in Burn Severity (MTBS) and Vegetation Change Tracker (VCT) data being used to update LANDFIRE fuels data. The MTBS and VCT data are used to parameterize models predicting the number and size of fires in relation to climate, land-use/land-cover change, and socioeconomic variables. The locations of individual fire ignitions are determined by an ignition probability surface and then FARSITE is used to simulate fire spread in response to weather, fuels, and topography. Following the fire spread simulations, a burn severity model is used to determine annual changes in biomass pools. Vegetation succession among LANDFIRE vegetation types is initiated using burn perimeter and severity data at the end of each annual simulation. Results from NDMS are used to update land-use/land-cover layers used by FORE-SCE and also transferred to GEMS for quantifying and updating carbon stocks and greenhouse gas fluxes. In this presentation, we present: 1) an overview of NDMS and its role in USGS's national ecological carbon sequestration assessment; 2) validation of NDMS using historic data; and 3) initial forecasts of disturbances for the southeastern United States and their impacts on greenhouse gas emissions, and post-fire carbon stocks and fluxes.

  10. Behavioral Ecology of Captive Species: Using Bibliographic Information to Assess Pet Suitability of Mammal Species

    PubMed Central

    Koene, Paul; de Mol, Rudi M.; Ipema, Bert

    2016-01-01

    Which mammal species are suitable to be kept as pet? For answering this question many factors have to be considered. Animals have many adaptations to their natural environment in which they have evolved that may cause adaptation problems and/or risks in captivity. Problems may be visible in behavior, welfare, health, and/or human–animal interaction, resulting, for example, in stereotypies, disease, and fear. A framework is developed in which bibliographic information of mammal species from the wild and captive environment is collected and assessed by three teams of animal scientists. Oneliners from literature about behavioral ecology, health, and welfare and human–animal relationship of 90 mammal species are collected by team 1 in a database and strength of behavioral needs and risks is assessed by team 2. Based on summaries of those strengths the suitability of the mammal species is assessed by team 3. Involvement of stakeholders for supplying bibliographic information and assessments was propagated. Combining the individual and subjective assessments of the scientists using statistical methods makes the final assessment of a rank order of suitability as pet of those species less biased and more objective. The framework is dynamic and produces an initial rank ordered list of the pet suitability of 90 mammal species, methods to add new mammal species to the list or remove animals from the list and a method to incorporate stakeholder assessments. A model is developed that allows for provisional classification of pet suitability. Periodical update of the pet suitability framework is expected to produce an updated list with increased reliability and accuracy. Furthermore, the framework could be further developed to assess the pet suitability of additional species of other animal groups, e.g., birds, reptiles, and amphibians. PMID:27243023

  11. New smoke predictions for Alaska in NOAA’s National Air Quality Forecast Capability

    NASA Astrophysics Data System (ADS)

    Davidson, P. M.; Ruminski, M.; Draxler, R.; Kondragunta, S.; Zeng, J.; Rolph, G.; Stajner, I.; Manikin, G.

    2009-12-01

    Smoke from wildfire is an important component of fine particle pollution, which is responsible for tens of thousands of premature deaths each year in the US. In Alaska, wildfire smoke is the leading cause of poor air quality in summer. Smoke forecast guidance helps air quality forecasters and the public take steps to limit exposure to airborne particulate matter. A new smoke forecast guidance tool, built by a cross-NOAA team, leverages efforts of NOAA’s partners at the USFS on wildfire emissions information, and with EPA, in coordinating with state/local air quality forecasters. Required operational deployment criteria, in categories of objective verification, subjective feedback, and production readiness, have been demonstrated in experimental testing during 2008-2009, for addition to the operational products in NOAA's National Air Quality Forecast Capability. The Alaska smoke forecast tool is an adaptation of NOAA’s smoke predictions implemented operationally for the lower 48 states (CONUS) in 2007. The tool integrates satellite information on location of wildfires with weather (North American mesoscale model) and smoke dispersion (HYSPLIT) models to produce daily predictions of smoke transport for Alaska, in binary and graphical formats. Hour-by hour predictions at 12km grid resolution of smoke at the surface and in the column are provided each day by 13 UTC, extending through midnight next day. Forecast accuracy and reliability are monitored against benchmark criteria for accuracy and reliability. While wildfire activity in the CONUS is year-round, the intense wildfire activity in AK is limited to the summer. Initial experimental testing during summer 2008 was hindered by unusually limited wildfire activity and very cloudy conditions. In contrast, heavier than average wildfire activity during summer 2009 provided a representative basis (more than 60 days of wildfire smoke) for demonstrating required prediction accuracy. A new satellite observation product was developed for routine near-real time verification of these predictions. The footprint of the predicted smoke from identified fires is verified with satellite observations of the spatial extent of smoke aerosols (5km resolution). Based on geostationary aerosol optical depth measurements that provide good time resolution of the horizontal spatial extent of the plumes, these observations do not yield quantitative concentrations of smoke particles at the surface. Predicted surface smoke concentrations are consistent with the limited number of in situ observations of total fine particle mass from all sources; however they are much higher than predicted for most CONUS fires. To assess uncertainty associated with fire emissions estimates, sensitivity analyses are in progress.

  12. Improving Forecasts of Cumulus: An Intersection of the Renewable Energy and Climate Science Communities

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Gustafson, W. I., Jr.; Kassianov, E.; Long, C. N.

    2015-12-01

    Accurate forecasts of broken cloud fields and their associated impact on the downwelling solar irradiance has remained a challenge to the renewable energy industry. Likewise, shallow cumulus play an important role in the Earth's radiation budget and hydrologic cycle and are of interest to the weather forecasting and climate science communities. The main challenge associated with predicting these clouds are their relatively small size (on the order of a kilometer or less) relative to the model grid spacing. Recently, however, there have been significant efforts put into improving forecasts of shallow clouds and the associated temporal and spatial variability of the solar irradiance that they induce. As an example of these efforts, we will describe recent modifications to the standard Kain-Fritsch parameterization as applied within the Weather Research and Forecasting (WRF) model that are designed to improve predictions of the macroscale and microscale structure of shallow cumulus. These modifications are shown to lead to a realistic increase in the simulated cloud fraction and associated decrease in the solar irradiance. We will evaluate our results using data collected at the Department of Energy's Atmospheric Radiation Measurement (ARM) Southern Great Plains site, which is located in north-central Oklahoma. Our team has analyzed over 5 years of data collected at this site to document the macroscale structure of the clouds (including cloud fraction, cloud-base and cloud-top height) as well as their impact on the downwelling shortwave and longwave irradiance. One particularly interesting impact of shallow cumuli is the enhancement of the diffuse radiation, such that during periods in which the sun is not blocked, the observed irradiance can be significantly larger than the corresponding clear sky case. To date, this feature is not accurately represented by models that apply the plane-parallel assumption applied in the standard radiation parameterizations.

  13. The Making of National Seasonal Wildfire Outlooks

    NASA Astrophysics Data System (ADS)

    Garfin, G. M.; Brown, T. J.

    2015-12-01

    Bridging the gap between research-based experiments and fully operational products has been likened to crossing the valley of death. In this talk, we document the development of pre-season fire potential outlooks, informed by seasonal climate predictions, through a long-term collaboration between NOAA RISA teams, the Program for Climate, Ecosystem and Fire Applications (Desert Research Institute), the National Interagency Fire Center's Predictive Services program and multiple collaborators. To transition experimental outlooks into a sustained, monthly operational product, we co-developed a temporary institution, the National Seasonal Assessment Workshops, as a platform for cross-disciplinary knowledge exchange, training, and experimentation in consensus forecast processes and product development. In our retrospective evaluation of the process, we identified several factors that supported the transition from research to operations. These include: the development of new institutions; focus on a geographic scale commensurate with the needs of federal and state land management agencies; participatory and deliberative engagements; cooperation by many partners with perspectives on the connections between climate and wildland fire management; and iterative engagement sustained by funding and human resource commitments from the key partners. Through co-production of the outlooks and the institution, we created a cross-disciplinary community of practice, thus, increasing the capacity of fire management practitioners to use climate information in decision making. This experiment in developing a collaborative climate service was not an unqualified success. For example, while practitioners almost always *consult* official probabilistic climate forecasts, based on the output from dynamical and statistical models, they sometimes *act* on information from self-constructed forecasts, based on analysis of analogue years. We recommend research to further examine the distribution and use of the outlooks, further dialogue with practitioners, and research to develop forecast evaluation metrics and practices to improve the use of official forecasts. (The figure shows partnerships, information and communication flows for the development of seasonal fire potential outlooks).

  14. Setting and measuring team goals and objectives for improved management of forestry research

    Treesearch

    Scott J. Josiah

    1999-01-01

    As our world becomes more complex and diverse, many forestry research organizations are responding by adopting more interdisciplinary and collaborative research programs. Our rapidly increasing knowledge of the ecological, social, and economic factors affecting forestry and natural resource management makes it simply untenable to expect that complex problems can be...

  15. Development of a new risk assessment procedure for pinewood nematode in Europe

    Treesearch

    Hugh F. Evans; Sam Evans; Makihiko Ikegami

    2007-01-01

    Research, partly funded under the EU PHRAME (Plant Health Risk And Monitoring Evaluation) program has provided new information on the biology and ecology of pinewood nematode (PWN), Bursaphelenchus xylophilus, in Portugal. Studies have been carried out by eight partner research teams in six countries (UK -coordinator, Austria, France, Germany,...

  16. Management and Maintenance of a Very Large Small Mammal Database in a 25 Year Live-Trapping Study in the Chilean Semiarid Zone

    EPA Science Inventory

    Long-term ecological research programs represent tremendous investments in human labor and capital. The amount of data generated is staggering and potentially beyond the capacity of most research teams to fully explore. Since the funding of these programs comes predominately fr...

  17. Ecological research at the Blacks Mountain Experimental Forest in northeastern California

    Treesearch

    William W. Oliver

    2000-01-01

    At Blacks Mountain Experimental Forest in northeastern California, an interdisciplinary team of scientists developed and implemented a research project to study how forest structural complexity affects the health and vigor of interior ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystems, the ecosystem's resilience to natural and human-caused disturbances,...

  18. Workshop to transfer VELMA watershed model results to Washington state tribes and state agencies engaged in watershed restoration and salmon recovery planning

    EPA Science Inventory

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on strea...

  19. COASTAL ZONES, A REPORT OF THE MID-ATLANTIC REGIONAL ASSESSMENT TEAM FOR THE GLOBAL CHANGE RESEARCH PROGRAM

    EPA Science Inventory

    Impacts of climate change on coastal areas can be expected to have a regional signature that depends on the local climate change and the local geomorphological, biogeochemical, ecological and social factors that affect the sensitivity to climate. Here we present an assessment of...

  20. Science synthesis to support socioecological resilience in the Sierra Nevada and southern Cascade Range

    Treesearch

    Jonathan W. Long; Lenya Quinn-Davidson; Carl N. Skinner

    2014-01-01

    A team of scientists integrated recent research to inform forest managers, stakeholders, and interested parties concerned with promoting socioecological resilience in the Sierra Nevada, southern Cascade Range, and Modoc Plateau. Among the focal topics were forest and fire ecology; soils; aquatic ecosystems; forest carnivores including Pacific fisher, marten, and...

  1. Surviving Paradise: A Hawaiian Tale.

    ERIC Educational Resources Information Center

    Gibson, Andrea

    2002-01-01

    An Ohio University program that introduces botany students to field work sent a team to study Hawaiian species of violets and algae, endangered by invasive, imported plants. The situation of the native species relates to larger scientific and ecological issues because algae is the basis of the aquatic food chain, and violets adapt in unique ways…

  2. Parkour as a Donor Sport for Athletic Development in Youth Team Sports: Insights Through an Ecological Dynamics Lens.

    PubMed

    Strafford, Ben William; van der Steen, Pawel; Davids, Keith; Stone, Joseph Antony

    2018-05-24

    Analyses of talent development in sport have identified that skill can be enhanced through early and continued involvement in donor sports which share affordances (opportunities for action) with a performer's main target sport. Aligning key ideas of the Athletic Skills Model and ecological dynamics theory, we propose how the sport of parkour could provide a representative and adaptive platform for developing athletic skill (e.g. coordination, timing, balance, agility, spatial awareness and muscular strength). We discuss how youth sport development programmes could be (re) designed to include parkour-style activities, in order to develop general athletic skills in affordance-rich environments. It is proposed that team sports development programmes could particularly benefit from parkour-style training since it is exploratory and adaptive nature shapes utilisation of affordances for innovative and autonomous performance by athletes. Early introduction to varied, relevant activities for development of athleticism and skill, in a diversified training programme, would provide impetus for a fundamental shift away from the early specialisation approach favoured by traditional theories of skill acquisition and expertise in sport.

  3. Near Real{time Data Assimilation for the HYSPLIT Aerosol Dispersion Model

    NASA Astrophysics Data System (ADS)

    Kalpakis, K.; Yang, S.; Yesha, Y.

    2010-12-01

    Konstantinos Kalpakis, Shiming Yang, and Yaacov Yesha Department of Computer Science and Electrical Engineering University of Maryland Baltimore County 1000 Hilltop Circle, Baltimore, MD, U.S.A. {kalpakis, shiming1, yayeshag}@csee.umbc.edu ABSTRACT We are working on an IBM-funded project seeking to develop a prototype system for real-time plume dispersion and fire and smoke detection and monitoring. Our prototype system utilizes HYSPLIT and observation data from various sources. HYSPLIT is a model developed by NOAA's Air Resources Laboratory for forecasting aerosol trajectories, dispersion, and concentration from emission sources. It is used extensively by NOAA to routinely provide a number of data products. We develop a data assimilation system for assimilating observational data into the forecasting model in order to improve its forecasting accuracy. Our system is based on the Local Ensemble Transform Kalman Filter (LETKF) algorithm and it is computationally efficient. We evaluate our data assimilation system with real in-situ observational data, and find that our system improves upon HYSPLIT's forecast by reducing the normalized mean squared error and the bias. We are also experimenting with assimilating MODIS data with HYSPLIT model forecasts. To this end, we extrapolate ground concentrations from MODIS Aerosol Optical Depth (AOD) data. Our extrapolation approach relies on spatially localized linear regressions of aerosol concentrations from ground stations in the Air Quality System (AQS) network and MODIS AOD data. We expect that assimilating the extrapolated concentrations leads into further improvements of HYSPLIT forecasts. Furthermore, we are investigating using additional sources of in-situ and remotely sensed observations, such as GOES AOD 30-minute data, and UAV data from the Ikhana AMS fire missions. These sources provide higher spatial resolution and more frequent temporal coverage. Moreover, GOES and UAVs provide near-real time data which should be useful in improving HYSPLIT forecasts of smoke from wildfires. Currently, the Ikhana AMS fire missions team provides L1B data which are very useful in themselves, but no level 2 to the best of our knowledge. For our application, it would very useful to have an AOD data product for these datasets. A possible path for deriving AOD data the AMS sensor onboard UAVs would be to utilize the DRL code for deriving the MODIS AOD from MODIS L1B data, due to the sensor similarities. Developing such code would be very useful for wildfire smoke prediction applications. Our near real-time data assimilation system helps in bridging the gap between predictions and real-time observations, for more accurate and timely aerosol dispersion forecasts. Keywords: data assimilation, HYSPLIT, forecast model performance, real-time, ensemble Kalman filter, aerosol dispersion and concentration.

  4. Evaluation of fire weather forecasts using PM2.5 sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Balachandran, Sivaraman; Baumann, Karsten; Pachon, Jorge E.; Mulholland, James A.; Russell, Armistead G.

    2017-01-01

    Fire weather forecasts are used by land and wildlife managers to determine when meteorological and fuel conditions are suitable to conduct prescribed burning. In this work, we investigate the sensitivity of ambient PM2.5 to various fire and meteorological variables in a spatial setting that is typical for the southeastern US, where prescribed fires are the single largest source of fine particulate matter. We use the method of principle components regression to estimate sensitivity of PM2.5, measured at a monitoring site in Jacksonville, NC (JVL), to fire data and observed and forecast meteorological variables. Fire data were gathered from prescribed fire activity used for ecological management at Marine Corps Base Camp Lejeune, extending 10-50 km south from the PM2.5 monitor. Principal components analysis (PCA) was run on 10 data sets that included acres of prescribed burning activity (PB) along with meteorological forecast data alone or in combination with observations. For each data set, observed PM2.5 (unitless) was regressed against PCA scores from the first seven principal components (explaining at least 80% of total variance). PM2.5 showed significant sensitivity to PB: 3.6 ± 2.2 μg m-3 per 1000 acres burned at the investigated distance scale of ∼10-50 km. Applying this sensitivity to the available activity data revealed a prescribed burning source contribution to measured PM2.5 of up to 25% on a given day. PM2.5 showed a positive sensitivity to relative humidity and temperature, and was also sensitive to wind direction, indicating the capture of more regional aerosol processing and transport effects. As expected, PM2.5 had a negative sensitivity to dispersive variables but only showed a statistically significant negative sensitivity to ventilation rate, highlighting the importance of this parameter to fire managers. A positive sensitivity to forecast precipitation was found, consistent with the practice of conducting prescribed burning on days when rain can naturally extinguish fires. Perhaps most importantly for land managers, our analysis suggests that instead of relying on the forecasts from a day before, prescribed burning decisions should be based on the forecasts released the morning of the burn when possible, since these data were more stable and yielded more statistically robust results.

  5. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    NASA Astrophysics Data System (ADS)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  6. Space-for-Time Substitution Works in Everglades Ecological Forecasting Models

    PubMed Central

    Banet, Amanda I.; Trexler, Joel C.

    2013-01-01

    Space-for-time substitution is often used in predictive models because long-term time-series data are not available. Critics of this method suggest factors other than the target driver may affect ecosystem response and could vary spatially, producing misleading results. Monitoring data from the Florida Everglades were used to test whether spatial data can be substituted for temporal data in forecasting models. Spatial models that predicted bluefin killifish (Lucania goodei) population response to a drying event performed comparably and sometimes better than temporal models. Models worked best when results were not extrapolated beyond the range of variation encompassed by the original dataset. These results were compared to other studies to determine whether ecosystem features influence whether space-for-time substitution is feasible. Taken in the context of other studies, these results suggest space-for-time substitution may work best in ecosystems with low beta-diversity, high connectivity between sites, and small lag in organismal response to the driver variable. PMID:24278368

  7. Analyses of historical and projected climates to support climate adaptation in the northern Rocky Mountains: Chapter 4

    USGS Publications Warehouse

    Gross, John E.; Tercek, Michael; Guay, Kevin; Chang, Tony; Talbert, Marian; Rodman, Ann; Thoma, David; Jantz, Patrick; Morisette, Jeffrey T.

    2016-01-01

    Most of the western United States is experiencing the effects of rapid and directional climate change (Garfin et al. 2013). These effects, along with forecasts of profound changes in the future, provide strong motivation for resource managers to learn about and prepare for future changes. Climate adaptation plans are based on an understanding of historic climate variation and their effects on ecosystems and on forecasts of future climate trends. Frameworks for climate adaptation thus universally identify the importance of a summary of historical, current, and projected climates (Glick, Stein, and Edelson 2011; Cross et al. 2013; Stein et al. 2014). Trends in physical climate variables are usually the basis for evaluating the exposure component in vulnerability assessments. Thus, this chapter focuses on step 2 of the Climate-Smart Conservation framework (chap. 2): vulnerability assessment. We present analyses of historical and current observations of temperature, precipitation, and other key climate measurements to provide context and a baseline for interpreting the ecological impacts of projected climate changes.

  8. Understanding the cryptic nature of Lassa fever in West Africa.

    PubMed

    Gibb, Rory; Moses, Lina M; Redding, David W; Jones, Kate E

    2017-09-01

    Lassa fever (LF) is increasingly recognized by global health institutions as an important rodent-borne disease with severe impacts on some of West Africa's poorest communities. However, our knowledge of LF ecology, epidemiology and distribution is limited, which presents barriers to both short-term disease forecasting and prediction of long-term impacts of environmental change on Lassa virus (LASV) zoonotic transmission dynamics. Here, we synthesize current knowledge to show that extrapolations from past research have produced an incomplete picture of the incidence and distribution of LF, with negative consequences for policy planning, medical treatment and management interventions. Although the recent increase in LF case reports is likely due to improved surveillance, recent studies suggest that future socio-ecological changes in West Africa may drive increases in LF burden. Future research should focus on the geographical distribution and disease burden of LF, in order to improve its integration into public policy and disease control strategies.

  9. Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases.

    PubMed

    Peterson, A Townsend; Martínez-Campos, Carmen; Nakazawa, Yoshinori; Martínez-Meyer, Enrique

    2005-09-01

    Numerous human diseases-malaria, dengue, yellow fever and leishmaniasis, to name a few-are transmitted by insect vectors with brief life cycles and biting activity that varies in both space and time. Although the general geographic distributions of these epidemiologically important species are known, the spatiotemporal variation in their emergence and activity remains poorly understood. We used ecological niche modeling via a genetic algorithm to produce time-specific predictive models of monthly distributions of Aedes aegypti in Mexico in 1995. Significant predictions of monthly mosquito activity and distributions indicate that predicting spatiotemporal dynamics of disease vector species is feasible; significant coincidence with human cases of dengue indicate that these dynamics probably translate directly into transmission of dengue virus to humans. This approach provides new potential for optimizing use of resources for disease prevention and remediation via automated forecasting of disease transmission risk.

  10. [Evaluation of ecosystem service and emergy of Wanshan Waters in Zhuhai, Guangdong Province, China].

    PubMed

    Qin, Chuan-xin; Chen, Pi-mao; Zhang, An-kai; Yuan, Hua; Li, Guo-ying; Shu, Li-ming; Zhou, Yan-bo; Li, Xiao-guo

    2015-06-01

    The method for monetary value and emergy value analysis of ecosystem service was used in this paper to analyze the change in value of marine ecosystem service of Wanshan District, Zhuhai from 2007 to 2012. The result showed that the monetary value and emergy value of marine ecosystem service of Wanshan District, Zhuhai rose to 11512840000 yuan and 1.97 x 10(22) sej from 7721630000 yuan and 1.04 x 10(22) sej, respectively. Both monetary value and emergy value could forecast the change in the value of marine ecosystem service, but they reflected different value structures and ecological energy, which could be used to more objectively evaluate the ecosystem service. Ecological civilization development, as an inherent driving force to impel the development of marine ecosystem service structure, was important for rational exploitation of marine resources and optimization of marine ecosystem service.

  11. Mesocosms Reveal Ecological Surprises from Climate Change.

    PubMed

    Fordham, Damien A

    2015-12-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  12. Monitoring the performance of the next Climate Forecast System version 3, throughout its development stage at EMC/NCEP

    NASA Astrophysics Data System (ADS)

    Peña, M.; Saha, S.; Wu, X.; Wang, J.; Tripp, P.; Moorthi, S.; Bhattacharjee, P.

    2016-12-01

    The next version of the operational Climate Forecast System (version 3, CFSv3) will be a fully coupled six-components system with diverse applications to earth system modeling, including weather and climate predictions. This system will couple the earth's atmosphere, land, ocean, sea-ice, waves and aerosols for both data assimilation and modeling. It will also use the NOAA Environmental Modeling System (NEMS) software super structure to couple these components. The CFSv3 is part of the next Unified Global Coupled System (UGCS), which will unify the global prediction systems that are now operational at NCEP. The UGCS is being developed through the efforts of dedicated research and engineering teams and through coordination across many CPO/MAPP and NGGPS groups. During this development phase, the UGCS is being tested for seasonal purposes and undergoes frequent revisions. Each new revision is evaluated to quickly discover, isolate and solve problems that negatively impact its performance. In the UGCS-seasonal model, components (e.g., ocean, sea-ice, atmosphere, etc.) are coupled through a NEMS-based "mediator". In this numerical infrastructure, model diagnostics and forecast validation are carried out, both component by component, and as a whole. The next stage, model optimization, will require enhanced performance diagnostics tools to help prioritize areas of numerical improvements. After the technical development of the UGCS-seasonal is completed, it will become the first realization of the CFSv3. All future development of this system will be carried out by the climate team at NCEP, in scientific collaboration with the groups that developed the individual components, as well as the climate community. A unique challenge to evaluate this unified weather-climate system is the large number of variables, which evolve over a wide range of temporal and spatial scales. A small set of performance measures and scorecard displays are been created, and collaboration and software contributions from research and operational centers are being incorporated. A status of the CFSv3/UGCS-seasonal development and examples of its performance and measuring tools will be presented.

  13. External Peer Review Team Report Underground Testing Area Subproject for Frenchman Flat, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sam Marutzky

    2010-09-01

    An external peer review was conducted to review the groundwater models used in the corrective action investigation stage of the Underground Test Area (UGTA) subproject to forecast zones of potential contamination in 1,000 years for the Frenchman Flat area. The goal of the external peer review was to provide technical evaluation of the studies and to assist in assessing the readiness of the UGTA subproject to progress to monitoring activities for further model evaluation. The external peer review team consisted of six independent technical experts with expertise in geology, hydrogeology,'''groundwater modeling, and radiochemistry. The peer review team was tasked withmore » addressing the following questions: 1. Are the modeling approaches, assumptions, and model results for Frenchman Flat consistent with the use of modeling studies as a decision tool for resolution of environmental and regulatory requirements? 2. Do the modeling results adequately account for uncertainty in models of flow and transport in the Frenchman Flat hydrological setting? a. Are the models of sufficient scale/resolution to adequately predict contaminant transport in the Frenchman Flat setting? b. Have all key processes been included in the model? c. Are the methods used to forecast contaminant boundaries from the transport modeling studies reasonable and appropriate? d. Are the assessments of uncertainty technically sound and consistent with state-of-the-art approaches currently used in the hydrological sciences? 3. Are the datasets and modeling results adequate for a transition to Corrective Action Unit monitoring studies—the next stage in the UGTA strategy for Frenchman Flat? The peer review team is of the opinion that, with some limitations, the modeling approaches, assumptions, and model results are consistent with the use of modeling studies for resolution of environmental and regulatory requirements. The peer review team further finds that the modeling studies have accounted for uncertainty in models of flow and transport in the Frenchman Flat except for a few deficiencies described in the report. Finally, the peer review team concludes that the UGTA subproject has explored a wide range of variations in assumptions, methods, and data, and should proceed to the next stage with an emphasis on monitoring studies. The corrective action strategy, as described in the Federal Facility Agreement and Consent Order, states that the groundwater flow and transport models for each corrective action unit will consider, at a minimum, the following: • Alternative hydrostratigraphic framework models of the modeling domain. • Uncertainty in the radiological and hydrological source terms. • Alternative models of recharge. • Alternative boundary conditions and groundwater flows. • Multiple permissive sets of calibrated flow models. • Probabilistic simulations of transport using plausible sets of alternative framework and recharge models, and boundary and groundwater flows from calibrated flow models. • Ensembles of forecasts of contaminant boundaries. • Sensitivity and uncertainty analyses of model outputs. The peer review team finds that these minimum requirements have been met. While the groundwater modeling and uncertainty analyses have been quite detailed, the peer review team has identified several modeling-related issues that should be addressed in the next phase of the corrective action activities: • Evaluating and using water-level gradients from the pilot wells at the Area 5 Radioactive Waste Management Site in model calibration. • Re-evaluating the use of geochemical age-dating data to constrain model calibrations. • Developing water budgets for the alluvial and upper volcanic aquifer systems in Frenchman Flat. • Considering modeling approaches in which calculated groundwater flow directions near the water table are not predetermined by model boundary conditions and areas of recharge, all of which are very uncertain. • Evaluating local-scale variations in hydraulic conductivity on the calculated contaminant boundaries. • Evaluating the effects of non-steady-state flow conditions on calculated contaminant boundaries, including the effects of long-term declines in water levels, climatic change, and disruption of groundwater system by potential earthquake faulting along either of the two major controlling fault zones in the flow system (the Cane Spring and Rock Valley faults). • Considering the use of less-complex modeling approaches. • Evaluating the large change in water levels in the vicinity of the Frenchman Flat playa and developing a conceptual model to explain these water-level changes. • Developing a long-term groundwater level monitoring program for Frenchman Flat with regular monitoring of water levels at key monitoring wells. Despite these reservations, the peer review team strongly believes that the UGTA subproject should proceed to the next stage.« less

  14. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Estuary Management in Acadia National Park

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2007-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the Acadia National Park NLERDSS. Simulated GPM data should provide measurements that would enable analysis of how precipitation affects runoff and nutrient load in the park?s wetlands. This solution benefits society by aiding park and resource managers in making predictions based on hypothetical changes and in identifying effective mitigation scenarios. This solution supports the Coastal Management, Water Management, and Ecological Forecasting National Applications.

  15. Predicting and Mitigating Outbreaks of Vector-Borne Disease Utilizing Satellite Remote Sensing Technology and Models

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.

    2009-01-01

    The Public Health application area focuses on Earth science applications to public health and safety, particularly regarding infectious disease, emergency preparedness and response, and environmental health issues. The application explores issues of toxic and pathogenic exposure, as well as natural and man-made hazards and their effects, for risk characterization/mitigation and improvements to health and safety. The program elements of the NASA Applied Sciences Program are: Agricultural Efficiency, Air Quality, Climate, Disaster Management, Ecological Forecasting, Water Resources, Weather, and Public Health.

  16. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  17. Competitiveness and the Process of Co-adaptation in Team Sport Performance.

    PubMed

    Passos, Pedro; Araújo, Duarte; Davids, Keith

    2016-01-01

    An evolutionary psycho-biological perspective on competitiveness dynamics is presented, focusing on continuous behavioral co-adaptations to constraints that arise in performance environments. We suggest that an athlete's behavioral dynamics are constrained by circumstances of competing for the availability of resources, which once obtained offer possibilities for performance success. This defines the influence of the athlete-environment relationship on competitiveness. Constraining factors in performance include proximity to target areas in team sports and the number of other competitors in a location. By pushing the athlete beyond existing limits, competitiveness enhances opportunities for co-adaptation, innovation and creativity, which can lead individuals toward different performance solutions to achieve the same performance goal. Underpinned by an ecological dynamics framework we examine whether competitiveness is a crucial feature to succeed in team sports. Our focus is on intra-team competitiveness, concerning the capacity of individuals within a team to become perceptually attuned to affordances in a given performance context which can increase their likelihood of success. This conceptualization implies a re-consideration of the concept of competitiveness, not as an inherited trait or entity to be acquired, but rather theorizing it as a functional performer-environment relationship that needs to be explored, developed, enhanced and maintained in team games training programs.

  18. Competitiveness and the Process of Co-adaptation in Team Sport Performance

    PubMed Central

    Passos, Pedro; Araújo, Duarte; Davids, Keith

    2016-01-01

    An evolutionary psycho-biological perspective on competitiveness dynamics is presented, focusing on continuous behavioral co-adaptations to constraints that arise in performance environments. We suggest that an athlete’s behavioral dynamics are constrained by circumstances of competing for the availability of resources, which once obtained offer possibilities for performance success. This defines the influence of the athlete-environment relationship on competitiveness. Constraining factors in performance include proximity to target areas in team sports and the number of other competitors in a location. By pushing the athlete beyond existing limits, competitiveness enhances opportunities for co-adaptation, innovation and creativity, which can lead individuals toward different performance solutions to achieve the same performance goal. Underpinned by an ecological dynamics framework we examine whether competitiveness is a crucial feature to succeed in team sports. Our focus is on intra-team competitiveness, concerning the capacity of individuals within a team to become perceptually attuned to affordances in a given performance context which can increase their likelihood of success. This conceptualization implies a re-consideration of the concept of competitiveness, not as an inherited trait or entity to be acquired, but rather theorizing it as a functional performer-environment relationship that needs to be explored, developed, enhanced and maintained in team games training programs. PMID:27777565

  19. The European Drought Observatory (EDO): Current State and Future Directions

    NASA Astrophysics Data System (ADS)

    Vogt, J.; Singleton, A.; Sepulcre, G.; Micale, F.; Barbosa, P.

    2012-12-01

    Europe has repeatedly been affected by droughts, resulting in considerable ecological and economic damage and climate change studies indicate a trend towards increasing climate variability most likely resulting in more frequent drought occurrences also in Europe. Against this background, the European Commission's Joint Research Centre (JRC) is developing methods and tools for assessing, monitoring and forecasting droughts in Europe and develops a European Drought Observatory (EDO) to complement and integrate national activities with a European view. At the core of the European Drought Observatory (EDO) is a portal, including a map server, a metadata catalogue, a media-monitor and analysis tools. The map server presents Europe-wide up-to-date information on the occurrence and severity of droughts, which is complemented by more detailed information provided by regional, national and local observatories through OGC compliant web mapping and web coverage services. In addition, time series of historical maps as well as graphs of the temporal evolution of drought indices for individual grid cells and administrative regions in Europe can be retrieved and analysed. Current work is focusing on validating the available products, improving the functionalities, extending the linkage to additional national and regional drought information systems and improving medium to long-range probabilistic drought forecasting products. Probabilistic forecasts are attractive in that they provide an estimate of the range of uncertainty in a particular forecast. Longer-term goals include the development of long-range drought forecasting products, the analysis of drought hazard and risk, the monitoring of drought impact and the integration of EDO in a global drought information system. The talk will provide an overview on the development and state of EDO, the different products, and the ways to include a wide range of stakeholders (i.e. European, national river basin, and local authorities) in the development of the system as well as an outlook on the future developments.

  20. Numerical Relations and Skill Level Constrain Co-Adaptive Behaviors of Agents in Sports Teams

    PubMed Central

    Silva, Pedro; Travassos, Bruno; Vilar, Luís; Aguiar, Paulo; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2014-01-01

    Similar to other complex systems in nature (e.g., a hunting pack, flocks of birds), sports teams have been modeled as social neurobiological systems in which interpersonal coordination tendencies of agents underpin team swarming behaviors. Swarming is seen as the result of agent co-adaptation to ecological constraints of performance environments by collectively perceiving specific possibilities for action (affordances for self and shared affordances). A major principle of invasion team sports assumed to promote effective performance is to outnumber the opposition (creation of numerical overloads) during different performance phases (attack and defense) in spatial regions adjacent to the ball. Such performance principles are assimilated by system agents through manipulation of numerical relations between teams during training in order to create artificially asymmetrical performance contexts to simulate overloaded and underloaded situations. Here we evaluated effects of different numerical relations differentiated by agent skill level, examining emergent inter-individual, intra- and inter-team coordination. Groups of association football players (national – NLP and regional-level – RLP) participated in small-sided and conditioned games in which numerical relations between system agents were manipulated (5v5, 5v4 and 5v3). Typical grouping tendencies in sports teams (major ranges, stretch indices, distances of team centers to goals and distances between the teams' opposing line-forces in specific team sectors) were recorded by plotting positional coordinates of individual agents through continuous GPS tracking. Results showed that creation of numerical asymmetries during training constrained agents' individual dominant regions, the underloaded teams' compactness and each team's relative position on-field, as well as distances between specific team sectors. We also observed how skill level impacted individual and team coordination tendencies. Data revealed emergence of co-adaptive behaviors between interacting neurobiological social system agents in the context of sport performance. Such observations have broader implications for training design involving manipulations of numerical relations between interacting members of social collectives. PMID:25191870

  1. Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams.

    PubMed

    Silva, Pedro; Travassos, Bruno; Vilar, Luís; Aguiar, Paulo; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2014-01-01

    Similar to other complex systems in nature (e.g., a hunting pack, flocks of birds), sports teams have been modeled as social neurobiological systems in which interpersonal coordination tendencies of agents underpin team swarming behaviors. Swarming is seen as the result of agent co-adaptation to ecological constraints of performance environments by collectively perceiving specific possibilities for action (affordances for self and shared affordances). A major principle of invasion team sports assumed to promote effective performance is to outnumber the opposition (creation of numerical overloads) during different performance phases (attack and defense) in spatial regions adjacent to the ball. Such performance principles are assimilated by system agents through manipulation of numerical relations between teams during training in order to create artificially asymmetrical performance contexts to simulate overloaded and underloaded situations. Here we evaluated effects of different numerical relations differentiated by agent skill level, examining emergent inter-individual, intra- and inter-team coordination. Groups of association football players (national--NLP and regional-level--RLP) participated in small-sided and conditioned games in which numerical relations between system agents were manipulated (5v5, 5v4 and 5v3). Typical grouping tendencies in sports teams (major ranges, stretch indices, distances of team centers to goals and distances between the teams' opposing line-forces in specific team sectors) were recorded by plotting positional coordinates of individual agents through continuous GPS tracking. Results showed that creation of numerical asymmetries during training constrained agents' individual dominant regions, the underloaded teams' compactness and each team's relative position on-field, as well as distances between specific team sectors. We also observed how skill level impacted individual and team coordination tendencies. Data revealed emergence of co-adaptive behaviors between interacting neurobiological social system agents in the context of sport performance. Such observations have broader implications for training design involving manipulations of numerical relations between interacting members of social collectives.

  2. New insights on short-term solar irradiance forecast for space weather applications

    NASA Astrophysics Data System (ADS)

    Vieira, L. A.; Dudok de Wit, T.; Balmaceda, L. A.; Dal Lago, A.; Da Silva, L. A.; Gonzalez, W. D.

    2013-12-01

    The conditions of the thermosphere, the ionosphere, the neutral atmosphere, and the oceans on time scales from days to millennia are highly dependent on the solar electromagnetic output, the solar irradiance. The development of physics-based solar irradiance models during the last decade improved significantly our understanding of the solar forcing on Earth's climate. These models are based on the assumption that most of the solar irradiance variability is related to the magnetic field structure of the Sun. Recently, these models were extended to allow short-term forecast (1 to 15 days) of the total and spectral solar irradiance. The extension of the irradiance models is based on solar surface magnetic flux models and/or artificial neural network models. Here, we discuss in details the irradiance forecast models based on observations of the solar surface magnetic field realized by the HMI instrument on board of SDO spacecraft. We constrained and validated the models by comparing the output of the models and observations of the solar irradiance made by instruments onboard The SORCE spacecraft. This study received funding from the European Community's Seventh Framework Programme (FP7/2007-2013, FP7-SPACE-2010-1) under the grant agreement nrs. 218816 (SOTERIA project, www.soteria-space.eu) and 261948 (ATMOP,www.atmop.eu), and by the CNPq/Brazil under the grant number 312488/2012-2. We also gratefully thank the instrument teams for making their data available.

  3. An Overview of NWS Weather Support for the XXVI Olympiad.

    NASA Astrophysics Data System (ADS)

    Rothfusz, Lans P.; McLaughlin, Melvin R.; Rinard, Stephen K.

    1998-05-01

    The 1996 Centennial Olympic Games in Atlanta, Georgia, received weather support from the National Weather Service (NWS). The mandate to provide this support gave the NWS an unprecedented opportunity to employ in an operational setting several tools and practices similar to those planned for the "modernized" era of the NWS. The project also provided a glimpse of technology and practices not planned for the NWS modernization, but that might be valuable in the future. The underlying purpose of the project was to protect the life and property of the two million spectators, athletes, volunteers, and officials visiting and/or participating in the games. While there is no way to accurately account for lives and property that were protected by the NWS support, the absence of weather-related deaths, significant injuries, and damaged property during the games despite an almost daily occurrence of thunderstorms, high temperatures, and/or rain indicates that the project was a success. In fact, popular perception held that weather had no effect on the games. The 2000+ weather bulletins issued during the 6-week support period suggest otherwise. The authors describe the many facets of this demanding and successful project, with special attention given to aspects related to operational forecasting. A postproject survey completed by the Olympics forecasters, feedback provided by weather support customers, and experiences of the management team provide the bases for project observations and recommendations for future operational forecasting activities.

  4. Petascale Diagnostic Assessment of the Global Portfolio Rainfall Space Missions' Ability to Support Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Reed, P. M.; Chaney, N.; Herman, J. D.; Wood, E. F.; Ferringer, M. P.

    2015-12-01

    This research represents a multi-institutional collaboration between Cornell University, The Aerospace Corporation, and Princeton University that has completed a Petascale diagnostic assessment of the current 10 satellite missions providing rainfall observations. Our diagnostic assessment has required four core tasks: (1) formally linking high-resolution astrodynamics design and coordination of space assets with their global hydrological impacts within a Petascale "many-objective" global optimization framework, (2) developing a baseline diagnostic evaluation of a 1-degree resolution global implementation of the Variable Infiltration Capacity (VIC) model to establish the required satellite observation frequencies and coverage to maintain acceptable global flood forecasts, (3) evaluating the limitations and vulnerabilities of the full suite of current satellite precipitation missions including the recently approved Global Precipitation Measurement (GPM) mission, and (4) conceptualizing the next generation spaced-based platforms for water cycle observation. Our team exploited over 100 Million hours of computing access on the 700,000+ core Blue Waters machine to radically advance our ability to discover and visualize key system tradeoffs and sensitivities. This project represents to our knowledge the first attempt to develop a 10,000 member Monte Carlo global hydrologic simulation at one degree resolution that characterizes the uncertain effects of changing the available frequencies of satellite precipitation on drought and flood forecasts. The simulation—optimization components of the work have set a theoretical baseline for the best possible frequencies and coverages for global precipitation given unlimited investment, broad international coordination in reconfiguring existing assets, and new satellite constellation design objectives informed directly by key global hydrologic forecasting requirements. Our research poses a step towards realizing the integrated global water cycle observatory long sought by the World Climate Research Programme, which has to date eluded the world's space agencies.

  5. New GOES-R Risk Reduction Activities at CIRA

    NASA Astrophysics Data System (ADS)

    Rogers, M. A.; Miller, S. D.; Grasso, L. D.; Haynes, J. M.; NOH, Y. J.; Forsythe, J.; Zupanski, M.; Lindsey, D. T.

    2017-12-01

    A team of atmospheric scientists at the Cooperative Institute for Research in the Atmosphere (CIRA) at the Colorado State University has been selected by the National Oceanic and Atmospheric Administration's (NOAA) GOES-R Risk Reduction (GOES-R3) science program to develop applications to enhance the utilization of the GOES-R sensors, including the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM). The selected project topics follow NOAA's Research and Development Objectives listed in its 5-year Strategic Plan. The projects will be carried out over a three-year period which started on 1 July 2017 and will end on 30 June 2019. CIRA is working on five GOES-R3 application developments: 1) Developing an Environmental Awareness Repertoire of ABI Imagery (`DEAR-ABII') to Advise the Operational Weather Forecaster. DEAR-ABII maximizes the vast potential of the new GOES-R/GOES-16 sensor technology. 2) GOES-R ABI channel differencing used to reveal cloud-free zones of `precursors of convective initiation'. This product identifies where convective initiation may occur in cloud free skies. 3) Improving the ABI Cloud Layers Product for Multiple Layer Cloud Systems and Aviation Forecast Applications. This project aims to improve the GOES-16 cloud layer product by providing information on the boundaries of cloud layers even when one layer overlies another. 4) Using the New Capabilities of GOES-R to Improve Blended, Multisensor Water Vapor Products for Forecasters. GOES-R TPW retrievals will be merged with TPW derived from polar orbiter and surface data to improve the operational NOAA blended TPW product. 5) Data assimilation of GLM observations in HWRF/GSI system. Assimilation of GOES-R GLM observations for the NOAA operational hurricane model with the goal to improve operational hurricane forecasting. Examples for each of these applications will be presented.

  6. Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10): a World Weather Research Programme Project

    NASA Astrophysics Data System (ADS)

    Isaac, G. A.; Joe, P. I.; Mailhot, J.; Bailey, M.; Bélair, S.; Boudala, F. S.; Brugman, M.; Campos, E.; Carpenter, R. L.; Crawford, R. W.; Cober, S. G.; Denis, B.; Doyle, C.; Reeves, H. D.; Gultepe, I.; Haiden, T.; Heckman, I.; Huang, L. X.; Milbrandt, J. A.; Mo, R.; Rasmussen, R. M.; Smith, T.; Stewart, R. E.; Wang, D.; Wilson, L. J.

    2014-01-01

    A World Weather Research Programme (WWRP) project entitled the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) was developed to be associated with the Vancouver 2010 Olympic and Paralympic Winter Games conducted between 12 February and 21 March 2010. The SNOW-V10 international team augmented the instrumentation associated with the Winter Games and several new numerical weather forecasting and nowcasting models were added. Both the additional observational and model data were available to the forecasters in real time. This was an excellent opportunity to demonstrate existing capability in nowcasting and to develop better techniques for short term (0-6 h) nowcasts of winter weather in complex terrain. Better techniques to forecast visibility, low cloud, wind gusts, precipitation rate and type were evaluated. The weather during the games was exceptionally variable with many periods of low visibility, low ceilings and precipitation in the form of both snow and rain. The data collected should improve our understanding of many physical phenomena such as the diabatic effects due to melting snow, wind flow around and over terrain, diurnal flow reversal in valleys associated with daytime heating, and precipitation reductions and increases due to local terrain. Many studies related to these phenomena are described in the Special Issue on SNOW-V10 for which this paper was written. Numerical weather prediction and nowcast models have been evaluated against the unique observational data set now available. It is anticipated that the data set and the knowledge learned as a result of SNOW-V10 will become a resource for other World Meteorological Organization member states who are interested in improving forecasts of winter weather.

  7. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  8. Chesapeake Inundation Prediction System (CIPS): A regional prototype for a national problem

    USGS Publications Warehouse

    Stamey, B.; Smith, W.; Carey, K.; Garbin, D.; Klein, F.; Wang, Hongfang; Shen, J.; Gong, W.; Cho, J.; Forrest, D.; Friedrichs, C.; Boicourt, W.; Li, M.; Koterba, M.; King, D.; Titlow, J.; Smith, E.; Siebers, A.; Billet, J.; Lee, J.; Manning, Douglas R.; Szatkowski, G.; Wilson, D.; Ahnert, P.; Ostrowski, J.

    2007-01-01

    Recent Hurricanes Katrina and Isabel, among others, not only demonstrated their immense destructive power, but also revealed the obvious, crucial need for improved storm surge forecasting and information delivery to save lives and property in future storms. Current operational methods and the storm surge and inundation products do not adequately meet requirements needed by Emergency Managers (EMs) at local, state, and federal levels to protect and inform our citizens. The Chesapeake Bay Inundation Prediction System (CIPS) is being developed to improve the accuracy, reliability, and capability of flooding forecasts for tropical cyclones and non-tropical wind systems such as nor'easters by modeling and visualizing expected on-land storm-surge inundation along the Chesapeake Bay and its tributaries. An initial prototype has been developed by a team of government, academic and industry partners through the Chesapeake Bay Observing System (CBOS) of the Mid-Atlantic Coastal Ocean Observing Regional Association (MACOORA) within the Integrated Ocean Observing System (IOOS). For demonstration purposes, this initial prototype was developed for the tidal Potomac River in the Washington, DC metropolitan area. The preliminary information from this prototype shows great potential as a mechanism by which NOAA National Weather Service (NWS) Forecast Offices (WFOs) can provide more specific and timely forecasts of likely inundation in individual localities from significant storm surge events. This prototype system has shown the potential to indicate flooding at the street level, at time intervals of an hour or less, and with vertical resolution of one foot or less. This information will significantly improve the ability of EMs and first responders to mitigate life and property loss and improve evacuation capabilities in individual communities. This paper provides an update and expansion of the initial prototype that was presented at the Oceans 2006 MTS/IEEE Conference in Boston, MA. ??2007 MTS.

  9. Pollen Dispersion Forecast At Regional Scale

    NASA Astrophysics Data System (ADS)

    Mangin, A.; Asthma Forecast System Team

    The forecast of the pollen concentration is generally based on an identification of sim- ilar coincidence of measured pollen at given points and meteorological data that is searched in an archive and which, with the help of experts, allows building a predicted value. This may be classified under the family of statistical approaches for forecast- ing. While palynologists make these methods more and more accurate with the help of innovative techniques of regression against empirical rules and/or evolving mathe- matical structures (e.g. neural networks), the spatial dispersion of the pollen is not or poorly considered, mainly because it requires a lot of means and technique that are not familiar to this scientific discipline. The research on pollen forecasts are presently mainly focused on the problematic of modeling the behavior of pollen trends and sea- sons at one location regardless of the topography, the locations of emitters, the relative strengths of emitter, in one word the Sspatial backgroundT. This research work was a & cedil;successful attempt to go a step further combining this SlocalT approach with a trans- & cedil;port/dispersion modeling allowing the access to mapping of concentration. The areas of interest that were selected for the demonstration of feasibility were 200x200km zones centered on Cordoba, Barcelona and Bologna and four pollen types were ex- amined, namely: Cupressaceae, Olea europaea, Poaceae and Parietaria. At the end of this three-year European project in December 2001, the system was fully deployed and validated. The multidisciplinary team will present the original methodologies that were derived for modeling the numerous aspects of this problem and also some con- clusions regarding potential extent to other areas and taxa.

  10. The return map: tracking product teams.

    PubMed

    House, C H; Price, R L

    1991-01-01

    With a new product, time is now more valuable than money. The costs of conceiving and designing a product are less important to its ultimate success than timeliness to market. One of the most important ways to speed up product development is through interfunctional teamwork. The "Return Map," developed at Hewlett-Packard, provides a way for people from different functions to triangulate on the product development process as a whole. It graphically represents the contributions of all team members to the moment when a project breaks even. It forces the team to estimate and re-estimate the time it will take to perform critical tasks, so that products can get out fast. It subjects the team to the only discipline that works, namely, self-discipline. The map is, in effect, a graph representing time and money, where the time line is divided into three phases: investigation, development, and manufacturing and sales. Meanwhile, costs are plotted against time--as are revenues when they are realized after manufacturing release. Within these points of reference, four novel metrics emerge: Break-Even-Time, Time-to-Market, Break-Even-After-Release, and the Return Factor. All metrics are estimated at the beginning of a project to determine its feasibility, then they are tracked carefully while the project evolves to determine its success. Missed forecasts are inevitable, but managers who punish employees for missing their marks will only encourage them to estimate conservatively, thus building slack into a system meant to eliminate slack. Estimates are a team responsibility, and deviations provide valuable information that spurs continuous investigation and improvement.

  11. Students as Web Site Authors: Effects on Motivation and Achievement

    ERIC Educational Resources Information Center

    Jones, Brett D.

    2003-01-01

    This study examined the effects of a Web site design project on students' motivation and achievement. Tenth-grade biology students worked together in teams on an ecology project that required them to locate relevant information on the Internet, decide which information should be included on their Web site, organize the information into Web pages,…

  12. Understanding Complex Ecologies: An Investigation of Student Experiences in Adventure Learning Programs

    ERIC Educational Resources Information Center

    Koseoglu, Suzan; Doering, Aaron

    2011-01-01

    The GoNorth! Adventure Learning (AL) Series delivered educational programs about global climate change and sustainability from 2006 to 2010 via a hybrid-learning environment that included a curriculum designed with activities that worked in conjunction with the travels of Team GoNorth! as they dog sledded throughout the circumpolar Arctic. This…

  13. Researching effects of prescribed fire in hardwood forests

    Treesearch

    Stacy L. Clark; Kathleen E. Franzreb; Cathryn H. Greenberg; Tara Keyser; Susan C. Loeb; David L. Loftis; W. Henry McNab; Joy M. O' Keefe; Callie Jo Schweitzer; Martin Spetich

    2012-01-01

    The Upland Hardwood Ecology and Management Research Work Unit (RWU 4157) is a group of research teams located across the South, strategically placed to conduct research in physiographic sub-regions of the upland hardwood ecosystems including the southern Appalachian Mountains, the Cumberland Plateau, the Boston Mountains, and the Missouri Plateau. Our RWU is one of 16...

  14. Use of VIIRS DNB Data to Monitor Power Outages and Restoration for Significant Weather Events

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Molthan, Andrew

    2008-01-01

    NASA fs Short-term Prediction Research and Transition (SPoRT) project operates from NASA's Marshall Space Flight Center in Huntsville, Alabama. The team provides unique satellite data to the National Weather Service (NWS) and other agencies and organizations for weather analysis. While much of its work is focused on improving short-term weather forecasting, the SPoRT team supported damage assessment and response to Hurricane Superstorm Sandy by providing imagery that highlighted regions without power. The team used data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite. The VIIRS low-light sensor, known as the day-night-band (DNB), can detect nighttime light from wildfires, urban and rural communities, and other human activity which emits light. It can also detect moonlight reflected from clouds and surface features. Using real time VIIRS data collected by our collaborative partner at the Space Science and Engineering Center of the University of Wisconsin, the SPoRT team created composite imagery to help detect power outages and restoration. This blackout imagery allowed emergency response teams from a variety of agencies to better plan and marshal resources for recovery efforts. The blackout product identified large-scale outages, offering a comprehensive perspective beyond a patchwork GIS mapping of outages that utility companies provide based on customer complaints. To support the relief efforts, the team provided its imagery to the USGS data portal, which the Federal Emergency Management Agency (FEMA) and other agencies used in their relief efforts. The team fs product helped FEMA, the U.S. Army Corps of Engineers, and U.S. Army monitor regions without power as part of their disaster response activities. Disaster responders used the images to identify possible outages and effectively distribute relief resources. An enhanced product is being developed and integrated into a web mapping service (WMS) for dissemination and use by a broader end user community.

  15. Threats, Challenges, and Promise of Marine Microbes: A NOAA Perspective with Emphasis on Ecological Forecasting

    NASA Astrophysics Data System (ADS)

    Sandifer, P. A.

    2012-12-01

    Fully functioning ecosystems, as well as healthy humans, depend on robust and diverse communities of microbes. The diversity of microbes in the marine environment is estimated to be huge, dwarfing diversity of other life forms, and crucial for many ecosystem processes. Despite the ubiquity and extreme importance of microbial life in the sea - from the air-surface interface to the deepest abyss and sediments - we know relatively little about this biotic component that may compose a large proportion of the total biomass on the planet. As the nation's principal steward of marine living resources, NOAA is both responsible for and vitally interested in marine microbes, from a variety of perspectives. These include (1) health threats to humans and other organisms and how these may be affected by climate change and ecosystem alteration; (2) detoxification of organic pollutants such as hydrocarbons (e.g., in the Deep Water Horizon oil catastrophe); (3) production of valuable natural products including potential new pharmaceuticals; (4) roles in biogeochemical cycles (e.g., for carbon, nitrogen, phosphorus, iron, etc.) and how human activities may affect these roles; (5) development and deployment of new methods to detect and quantify certain marine microbes, and incorporation of these into ocean observing systems; (6) development of Earth System models that include much improved understanding of microbial functional diversity and microbially mediated biogeochemical processes; (7) dynamics of bacterial, phyto- and zooplankton blooms, including for harmful algae and bacteria; (8) effects of climate change factors (e.g., temperature, CO2 concentrations, ocean acidification, changes in habitats and species distribution, etc.) on marine microbes; and others. Many of these topics likely will be discussed by others in this session. This presentation will focus primarily on NOAA's activities in addressing health threats emanating from a variety of microbes in the marine environment and the agency's developing efforts to collect routine observational data on selected microbes and establish regular forecasts of such threats and their likely impacts. Such "ecological forecasts" are projected to become a regular part of NOAA's service portfolio and may be expanded beyond disease-causing microbes in the future.

  16. On the need for long-term, on the order of a decade, hydro-climatic forecasts over large domains

    NASA Astrophysics Data System (ADS)

    Burges, S. J.

    2012-12-01

    All problems of hydrology have been influenced to some extent by the need to describe delivery of water to, and its movement through, the critical zone. The nature of the questions and the level of required quantitative description have changed with time, but all involve accurate accounting of all components of the hydrologic cycle. The broadest issues involve the temporal and spatial distributions of excess (floods) or too little (droughts) water. The spatial domains can range from small catchments to major fractions of continents. The temporal domains range from relatively short-term, on the order of hours to days to a few months, to multiple decades. Hydrologic engineers have long recognized the need to offer designs for human occupied catchments that accommodate hydrologic extremes (principally floods and droughts) that affect human and animal safety, for example, through disruptions to infrastructure and supply chains, food supplies, and water supplies. As more has been learned about the criticality of ecosystems to the well-being of the planet, water allocation issues have become those of "water for people" and "water for ecology". These latter requirements have emphasized the need for increased accuracy of estimating water budgets, and how water (and pollutants) moves through the associated critical domain. Given the now large physical demand for societal water use (it exceeds 50% of the mean annual river flow in most conterminous US river basins) hydrologic balances that include the operation of water resource infrastructure (flood damage mitigation dams and levees, storage reservoirs for municipal and industrial water, irrigation and ecological preservation) have become the norm. In most basins the storage reservoirs are relatively small (few store more than the mean annual flow of rivers) and long-term hydrological forecasting has become a major issue. Whether the issue is floods or droughts, there is now a pressing need for societally useful forecasts from seasonal to up to a decade or so ahead. I address issues that need to be considered by the ocean and hydro-climatology communities to find a way forward for this societally important issue.

  17. Simulating topographic controls on the abundance of larch forest in eastern Siberia, and its consequences under changing climate

    NASA Astrophysics Data System (ADS)

    Sato, H.; Kobayashi, H.

    2017-12-01

    In eastern Siberia, larches (Larix spp.) often exist in pure stands, constructing the world's largest coniferous forest, of which changes can significantly affect the earth's albedo and the global carbon balance. Our previous studies tried to reconstruct this vegetation, aiming to forecast its structures and functions under changing climate (1, 2). In previous studies of simulating vegetation at large geographical scales, the examining area is divided into coarse grid cells such as 0.5 × 0.5 degree resolution, and topographical heterogeneities within each grid cell are just ignored. However, in Siberian larch area, which is located on the environmental edge of existence of forest ecosystem, abundance of larch trees largely depends on topographic condition at the scale of tens to hundreds meters. In our preliminary analysis, we found a quantitative pattern that topographic properties controls the abundance of larch forest via both drought and flooding stresses in eastern Siberia. We, therefore, refined the hydrological sub-model of our dynamic vegetation model SEIB-DGVM, and validated whether the modified model can reconstruct the pattern, examined its impact on the estimation of biomass and vegetation productivity under the current and forecasted future climatic conditions. -- References --1. Sato, H., et al. (2010). "Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM." Forest Ecology and Management 259(3): 301-311. 2. Sato, H., et al. (2016). "Endurance of larch forest ecosystems in eastern Siberia under warming trends." Ecology and Evolution

  18. Biospheric Monitoring and Ecological Forecasting using EOS/MODIS data, ecosystem modeling, planning and scheduling technologies

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Votava, P.; Golden, K.; Hashimoto, H.; Jolly, M.; White, M.; Running, S.; Coughlan, J.

    2003-12-01

    The latest generation of NASA Earth Observing System satellites has brought a new dimension to continuous monitoring of the living part of the Earth System, the Biosphere. EOS data can now provide weekly global measures of vegetation productivity and ocean chlorophyll, and many related biophysical factors such as land cover changes or snowmelt rates. However, information with the highest economic value would be forecasting impending conditions of the biosphere that would allow advanced decision-making to mitigate dangers, or exploit positive trends. We have developed a software system called the Terrestrial Observation and Prediction System (TOPS) to facilitate rapid analysis of ecosystem states/functions by integrating EOS data with ecosystem models, surface weather observations and weather/climate forecasts. Land products from MODIS (Moderate Resolution Imaging Spectroradiometer) including land cover, albedo, snow, surface temperature, leaf area index are ingested into TOPS for parameterization of models and for verifying model outputs such as snow cover and vegetation phenology. TOPS is programmed to gather data from observing networks such as USDA soil moisture, AMERIFLUX, SNOWTEL to further enhance model predictions. Key technologies enabling TOPS implementation include the ability to understand and process heterogeneous-distributed data sets, automated planning and execution of ecosystem models, causation analysis for understanding model outputs. Current TOPS implementations at local (vineyard) to global scales (global net primary production) can be found at http://www.ntsg.umt.edu/tops.

  19. Process-based modeling of species' responses to climate change - a proof of concept using western North American trees

    NASA Astrophysics Data System (ADS)

    Evans, M. E.; Merow, C.; Record, S.; Menlove, J.; Gray, A.; Cundiff, J.; McMahon, S.; Enquist, B. J.

    2013-12-01

    Current attempts to forecast how species' distributions will change in response to climate change suffer under a fundamental trade-off: between modeling many species superficially vs. few species in detail (between correlative vs. mechanistic models). The goals of this talk are two-fold: first, we present a Bayesian multilevel modeling framework, dynamic range modeling (DRM), for building process-based forecasts of many species' distributions at a time, designed to address the trade-off between detail and number of distribution forecasts. In contrast to 'species distribution modeling' or 'niche modeling', which uses only species' occurrence data and environmental data, DRMs draw upon demographic data, abundance data, trait data, occurrence data, and GIS layers of climate in a single framework to account for two processes known to influence range dynamics - demography and dispersal. The vision is to use extensive databases on plant demography, distributions, and traits - in the Botanical Information and Ecology Network, the Forest Inventory and Analysis database (FIA), and the International Tree Ring Data Bank - to develop DRMs for North American trees. Second, we present preliminary results from building the core submodel of a DRM - an integral projection model (IPM) - for a sample of dominant tree species in western North America. IPMs are used to infer demographic niches - i.e., the set of environmental conditions under which population growth rate is positive - and project population dynamics through time. Based on >550,000 data points derived from FIA for nine tree species in western North America, we show IPM-based models of their current and future distributions, and discuss how IPMs can be used to forecast future forest productivity, mortality patterns, and inform efforts at assisted migration.

  20. An Integrated Ecological Modeling System for Assessing ...

    EPA Pesticide Factsheets

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 – 2010 for the population of streams in the CRB and serves as a foundation for future model development. Published in the journal, Ecological Modeling. Highlights: • Demonstrate a spatially-explicit IEMS for multiple scales. • Design a flexible IEMS for

Top