Sample records for ecological models parameter

  1. Using a neural network approach and time series data from an international monitoring station in the Yellow Sea for modeling marine ecosystems.

    PubMed

    Zhang, Yingying; Wang, Juncheng; Vorontsov, A M; Hou, Guangli; Nikanorova, M N; Wang, Hongliang

    2014-01-01

    The international marine ecological safety monitoring demonstration station in the Yellow Sea was developed as a collaborative project between China and Russia. It is a nonprofit technical workstation designed as a facility for marine scientific research for public welfare. By undertaking long-term monitoring of the marine environment and automatic data collection, this station will provide valuable information for marine ecological protection and disaster prevention and reduction. The results of some initial research by scientists at the research station into predictive modeling of marine ecological environments and early warning are described in this paper. Marine ecological processes are influenced by many factors including hydrological and meteorological conditions, biological factors, and human activities. Consequently, it is very difficult to incorporate all these influences and their interactions in a deterministic or analysis model. A prediction model integrating a time series prediction approach with neural network nonlinear modeling is proposed for marine ecological parameters. The model explores the natural fluctuations in marine ecological parameters by learning from the latest observed data automatically, and then predicting future values of the parameter. The model is updated in a "rolling" fashion with new observed data from the monitoring station. Prediction experiments results showed that the neural network prediction model based on time series data is effective for marine ecological prediction and can be used for the development of early warning systems.

  2. State-space models’ dirty little secrets: even simple linear Gaussian models can have estimation problems

    NASA Astrophysics Data System (ADS)

    Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer M.; Derocher, Andrew E.; Lewis, Mark A.; Jonsen, Ian D.; Mills Flemming, Joanna

    2016-05-01

    State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety of statistical distributions. Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-estimation problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter estimates of a SSM describing the movement of polar bears (Ursus maritimus) result in overestimating their energy expenditure. We suggest potential solutions, but show that it often remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading results and we urge ecologists to assess whether the parameters can be estimated accurately before drawing ecological conclusions from their results.

  3. Implicit assimilation for marine ecological models

    NASA Astrophysics Data System (ADS)

    Weir, B.; Miller, R.; Spitz, Y. H.

    2012-12-01

    We use a new data assimilation method to estimate the parameters of a marine ecological model. At a given point in the ocean, the estimated values of the parameters determine the behaviors of the modeled planktonic groups, and thus indicate which species are dominant. To begin, we assimilate in situ observations, e.g., the Bermuda Atlantic Time-series Study, the Hawaii Ocean Time-series, and Ocean Weather Station Papa. From there, we estimate the parameters at surrounding points in space based on satellite observations of ocean color. Given the variation of the estimated parameters, we divide the ocean into regions meant to represent distinct ecosystems. An important feature of the data assimilation approach is that it refines the confidence limits of the optimal Gaussian approximation to the distribution of the parameters. This enables us to determine the ecological divisions with greater accuracy.

  4. [Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example.

    PubMed

    Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying

    2018-01-01

    The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.

  5. Using global sensitivity analysis of demographic models for ecological impact assessment.

    PubMed

    Aiello-Lammens, Matthew E; Akçakaya, H Resit

    2017-02-01

    Population viability analysis (PVA) is widely used to assess population-level impacts of environmental changes on species. When combined with sensitivity analysis, PVA yields insights into the effects of parameter and model structure uncertainty. This helps researchers prioritize efforts for further data collection so that model improvements are efficient and helps managers prioritize conservation and management actions. Usually, sensitivity is analyzed by varying one input parameter at a time and observing the influence that variation has over model outcomes. This approach does not account for interactions among parameters. Global sensitivity analysis (GSA) overcomes this limitation by varying several model inputs simultaneously. Then, regression techniques allow measuring the importance of input-parameter uncertainties. In many conservation applications, the goal of demographic modeling is to assess how different scenarios of impact or management cause changes in a population. This is challenging because the uncertainty of input-parameter values can be confounded with the effect of impacts and management actions. We developed a GSA method that separates model outcome uncertainty resulting from parameter uncertainty from that resulting from projected ecological impacts or simulated management actions, effectively separating the 2 main questions that sensitivity analysis asks. We applied this method to assess the effects of predicted sea-level rise on Snowy Plover (Charadrius nivosus). A relatively small number of replicate models (approximately 100) resulted in consistent measures of variable importance when not trying to separate the effects of ecological impacts from parameter uncertainty. However, many more replicate models (approximately 500) were required to separate these effects. These differences are important to consider when using demographic models to estimate ecological impacts of management actions. © 2016 Society for Conservation Biology.

  6. Parameter redundancy in discrete state-space and integrated models.

    PubMed

    Cole, Diana J; McCrea, Rachel S

    2016-09-01

    Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Developing ecological scenarios for the prospective aquatic risk assessment of pesticides.

    PubMed

    Rico, Andreu; Van den Brink, Paul J; Gylstra, Ronald; Focks, Andreas; Brock, Theo Cm

    2016-07-01

    The prospective aquatic environmental risk assessment (ERA) of pesticides is generally based on the comparison of predicted environmental concentrations in edge-of-field surface waters with regulatory acceptable concentrations derived from laboratory and/or model ecosystem experiments with aquatic organisms. New improvements in mechanistic effect modeling have allowed a better characterization of the ecological risks of pesticides through the incorporation of biological trait information and landscape parameters to assess individual, population and/or community-level effects and recovery. Similarly to exposure models, ecological models require scenarios that describe the environmental context in which they are applied. In this article, we propose a conceptual framework for the development of ecological scenarios that, when merged with exposure scenarios, will constitute environmental scenarios for prospective aquatic ERA. These "unified" environmental scenarios are defined as the combination of the biotic and abiotic parameters that are required to characterize exposure, (direct and indirect) effects, and recovery of aquatic nontarget species under realistic worst-case conditions. Ideally, environmental scenarios aim to avoid a potential mismatch between the parameter values and the spatial-temporal scales currently used in aquatic exposure and effect modeling. This requires a deeper understanding of the ecological entities we intend to protect, which can be preliminarily addressed by the formulation of ecological scenarios. In this article we present a methodological approach for the development of ecological scenarios and illustrate this approach by a case-study for Dutch agricultural ditches and the example focal species Sialis lutaria. Finally, we discuss the applicability of ecological scenarios in ERA and propose research needs and recommendations for their development and integration with exposure scenarios. Integr Environ Assess Manag 2016;12:510-521. © 2015 SETAC. © 2015 SETAC.

  8. Transdisciplinary application of the cross-scale resilience model

    USGS Publications Warehouse

    Sundstrom, Shana M.; Angeler, David G.; Garmestani, Ahjond S.; Garcia, Jorge H.; Allen, Craig R.

    2014-01-01

    The cross-scale resilience model was developed in ecology to explain the emergence of resilience from the distribution of ecological functions within and across scales, and as a tool to assess resilience. We propose that the model and the underlying discontinuity hypothesis are relevant to other complex adaptive systems, and can be used to identify and track changes in system parameters related to resilience. We explain the theory behind the cross-scale resilience model, review the cases where it has been applied to non-ecological systems, and discuss some examples of social-ecological, archaeological/ anthropological, and economic systems where a cross-scale resilience analysis could add a quantitative dimension to our current understanding of system dynamics and resilience. We argue that the scaling and diversity parameters suitable for a resilience analysis of ecological systems are appropriate for a broad suite of systems where non-normative quantitative assessments of resilience are desired. Our planet is currently characterized by fast environmental and social change, and the cross-scale resilience model has the potential to quantify resilience across many types of complex adaptive systems.

  9. Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams.

    PubMed

    Schuwirth, Nele; Reichert, Peter

    2013-02-01

    For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.

  10. Sensitivity analysis as an aid in modelling and control of (poorly-defined) ecological systems. [closed ecological systems

    NASA Technical Reports Server (NTRS)

    Hornberger, G. M.; Rastetter, E. B.

    1982-01-01

    A literature review of the use of sensitivity analyses in modelling nonlinear, ill-defined systems, such as ecological interactions is presented. Discussions of previous work, and a proposed scheme for generalized sensitivity analysis applicable to ill-defined systems are included. This scheme considers classes of mathematical models, problem-defining behavior, analysis procedures (especially the use of Monte-Carlo methods), sensitivity ranking of parameters, and extension to control system design.

  11. Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS

    USGS Publications Warehouse

    Bolker, Benjamin M.; Gardner, Beth; Maunder, Mark; Berg, Casper W.; Brooks, Mollie; Comita, Liza; Crone, Elizabeth; Cubaynes, Sarah; Davies, Trevor; de Valpine, Perry; Ford, Jessica; Gimenez, Olivier; Kéry, Marc; Kim, Eun Jung; Lennert-Cody, Cleridy; Magunsson, Arni; Martell, Steve; Nash, John; Nielson, Anders; Regentz, Jim; Skaug, Hans; Zipkin, Elise

    2013-01-01

    1. Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. 2. R is convenient and (relatively) easy to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. 3. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield) to specific suggestions about how to change the mathematical description of models to make them more amenable to parameter estimation. 4. A companion web site (https://groups.nceas.ucsb.edu/nonlinear-modeling/projects) presents detailed examples of application of the three tools to a variety of typical ecological estimation problems; each example links both to a detailed project report and to full source code and data.

  12. Marginal Utility of Conditional Sensitivity Analyses for Dynamic Models

    EPA Science Inventory

    Background/Question/MethodsDynamic ecological processes may be influenced by many factors. Simulation models thatmimic these processes often have complex implementations with many parameters. Sensitivityanalyses are subsequently used to identify critical parameters whose uncertai...

  13. Scale of association: hierarchical linear models and the measurement of ecological systems

    Treesearch

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  14. Development of a generic auto-calibration package for regional ecological modeling and application in the Central Plains of the United States

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Li, Zhengpeng; Dahal, Devendra; Young, Claudia J.; Schmidt, Gail L.; Liu, Jinxun; Davis, Brian; Sohl, Terry L.; Werner, Jeremy M.; Oeding, Jennifer

    2014-01-01

    Process-oriented ecological models are frequently used for predicting potential impacts of global changes such as climate and land-cover changes, which can be useful for policy making. It is critical but challenging to automatically derive optimal parameter values at different scales, especially at regional scale, and validate the model performance. In this study, we developed an automatic calibration (auto-calibration) function for a well-established biogeochemical model—the General Ensemble Biogeochemical Modeling System (GEMS)-Erosion Deposition Carbon Model (EDCM)—using data assimilation technique: the Shuffled Complex Evolution algorithm and a model-inversion R package—Flexible Modeling Environment (FME). The new functionality can support multi-parameter and multi-objective auto-calibration of EDCM at the both pixel and regional levels. We also developed a post-processing procedure for GEMS to provide options to save the pixel-based or aggregated county-land cover specific parameter values for subsequent simulations. In our case study, we successfully applied the updated model (EDCM-Auto) for a single crop pixel with a corn–wheat rotation and a large ecological region (Level II)—Central USA Plains. The evaluation results indicate that EDCM-Auto is applicable at multiple scales and is capable to handle land cover changes (e.g., crop rotations). The model also performs well in capturing the spatial pattern of grain yield production for crops and net primary production (NPP) for other ecosystems across the region, which is a good example for implementing calibration and validation of ecological models with readily available survey data (grain yield) and remote sensing data (NPP) at regional and national levels. The developed platform for auto-calibration can be readily expanded to incorporate other model inversion algorithms and potential R packages, and also be applied to other ecological models.

  15. Sensitivity of ecological soil-screening levels for metals to exposure model parameterization and toxicity reference values.

    PubMed

    Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill

    2014-10-01

    Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight-normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. © 2014 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc.

  16. Sensitivity of ecological soil-screening levels for metals to exposure model parameterization and toxicity reference values

    PubMed Central

    Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill

    2014-01-01

    Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight–normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. Environ Toxicol Chem 2014;33:2386–2398. PMID:24944000

  17. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming

    NASA Astrophysics Data System (ADS)

    Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi

    2018-03-01

    The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.

  18. Data Assimilation at FLUXNET to Improve Models towards Ecological Forecasting (Invited)

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2009-12-01

    Dramatically increased volumes of data from observational and experimental networks such as FLUXNET call for transformation of ecological research to increase its emphasis on quantitative forecasting. Ecological forecasting will also meet the societal need to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-based models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, today’s ecological models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting is data assimilation, which uses data to inform initial conditions and to help constrain a model during simulation to yield results that approximate reality as closely as possible. In an era with dramatically increased availability of data from observational and experimental networks, data assimilation is a key technique that helps convert the raw data into ecologically meaningful products so as to accelerate our understanding of ecological processes, test ecological theory, forecast changes in ecological services, and better serve the society. This talk will use examples to illustrate how data from FLUXNET have been assimilated with process-based models to improve estimates of model parameters and state variables; to quantify uncertainties in ecological forecasting arising from observations, models and their interactions; and to evaluate information contributions of data and model toward short- and long-term forecasting of ecosystem responses to global change.

  19. Integrating models with data in ecology and palaeoecology: advances towards a model-data fusion approach.

    PubMed

    Peng, Changhui; Guiot, Joel; Wu, Haibin; Jiang, Hong; Luo, Yiqi

    2011-05-01

    It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process-based ecological models and data in cohesive, systematic ways. Model-data fusion (MDF) is an emerging area of research in ecology and palaeoecology. It provides a new quantitative approach that offers a high level of empirical constraint over model predictions based on observations using inverse modelling and data assimilation (DA) techniques. Increasing demands to integrate model and data methods in the past decade has led to MDF utilization in palaeoecology, ecology and earth system sciences. This paper reviews key features and principles of MDF and highlights different approaches with regards to DA. After providing a critical evaluation of the numerous benefits of MDF and its current applications in palaeoecology (i.e., palaeoclimatic reconstruction, palaeovegetation and palaeocarbon storage) and ecology (i.e. parameter and uncertainty estimation, model error identification, remote sensing and ecological forecasting), the paper discusses method limitations, current challenges and future research direction. In the ongoing data-rich era of today's world, MDF could become an important diagnostic and prognostic tool in which to improve our understanding of ecological processes while testing ecological theory and hypotheses and forecasting changes in ecosystem structure, function and services. © 2011 Blackwell Publishing Ltd/CNRS.

  20. [Some comments on ecological field].

    PubMed

    Wang, D

    2000-06-01

    Based on the data of plant ecological field studies, this paper reviewed the conception of ecological field, field eigenfunctions, graphs of ecological field and its application of ecological field theory in explaining plant interactions. It is suggested that the basic character of ecological field is material, and based on the current research level, it is not sure whether ecological field is a kind of specific field different from general physical field. The author gave some comments on the formula and estimation of parameters of basic field function-ecological potential model on ecological field. Both models have their own characteristics and advantages in specific conditions. The author emphasized that ecological field had even more meaning of ecological methodology, and applying ecological field theory in describing the types and processes of plant interactions had three characteristics: quantitative, synthetic and intuitionistic. Field graphing might provide a new way to ecological studies, especially applying the ecological field theory might give an appropriate quantitative explanation for the dynamic process of plant populations (coexistence and interference competition).

  1. [Calculation model of urban water resources ecological footprint and its application: a case study in Shenyang City of Northeast China].

    PubMed

    Wang, Jian; Zhang, Chao-Xing; Yu, Ying-Tan; Li, Fa-Yun; Ma, Fang

    2012-08-01

    Water resources ecological footprint can directly reflect the pressure of human social and economic activities to water resources, and provide important reference for the rational utilization of water resources. Based on the existing ecological footprint models and giving full consideration of the water resources need of urban ecological system, this paper established a new calculation model of urban water resources ecological footprint, including domestic water account, process water account, public service water account, and ecological water requirement account. According to the actual situation of Shenyang City, the key parameters of the model were determined, and the water resources ecological footprint and ecological carrying capacity of the City were calculated and analyzed. From 2000 to 2009, the water resources ecological footprint per capita of the City presented an overall decreasing trend, but still had an annual ecological deficit. As compared to that in 2000, the water resources ecological footprint per capita was decreased to 0.31 hm2 in 2005, increased slightly in 2006 and 2007, and remained stable in 2008 and 2009, which suggested that the sustainable utilization of water resources in Shenyang City had definite improvement, but was still in an unsustainable development situation.

  2. Transdisciplinary Application of Cross-Scale Resilience ...

    EPA Pesticide Factsheets

    The cross-scale resilience model was developed in ecology to explain the emergence of resilience from the distribution of ecological functions within and across scales, and as a tool to assess resilience. We propose that the model and the underlyingdiscontinuity hypothesis are relevant to other complex adaptive systems, and can be used to identify and track changes in system parameters related to resilience. We explain the theory behind the cross-scale resilience model, review the cases where it has been applied to non-ecological systems, and discuss some examples of social-ecological, archaeological/anthropological, and economic systems where a cross-scale resilience analysis could add a quantitative dimension to our current understanding of system dynamics and resilience. We argue that the scaling and diversity parameters suitable for a resilience analysis of ecological systems are appropriate for a broad suite of systems where non-normative quantitative assessments of resilience are desired. Our planet is currently characterized by fast environmental and social change, and the cross-scale resilience model has the potential to quantify resilience across many types of complex adaptive systems. Comparative analyses of complex systems have, in fact, demonstrated commonalities among distinctly different types of systems (Schneider & Kay 1994; Holling 2001; Lansing 2003; Foster 2005; Bullmore et al. 2009). Both biological and non-biological complex systems appear t

  3. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling

    USGS Publications Warehouse

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  4. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    NASA Astrophysics Data System (ADS)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-06-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  5. Toward the quantification of a conceptual framework for movement ecology using circular statistical modeling.

    PubMed

    Shimatani, Ichiro Ken; Yoda, Ken; Katsumata, Nobuhiro; Sato, Katsufumi

    2012-01-01

    To analyze an animal's movement trajectory, a basic model is required that satisfies the following conditions: the model must have an ecological basis and the parameters used in the model must have ecological interpretations, a broad range of movement patterns can be explained by that model, and equations and probability distributions in the model should be mathematically tractable. Random walk models used in previous studies do not necessarily satisfy these requirements, partly because movement trajectories are often more oriented or tortuous than expected from the models. By improving the modeling for turning angles, this study aims to propose a basic movement model. On the basis of the recently developed circular auto-regressive model, we introduced a new movement model and extended its applicability to capture the asymmetric effects of external factors such as wind. The model was applied to GPS trajectories of a seabird (Calonectris leucomelas) to demonstrate its applicability to various movement patterns and to explain how the model parameters are ecologically interpreted under a general conceptual framework for movement ecology. Although it is based on a simple extension of a generalized linear model to circular variables, the proposed model enables us to evaluate the effects of external factors on movement separately from the animal's internal state. For example, maximum likelihood estimates and model selection suggested that in one homing flight section, the seabird intended to fly toward the island, but misjudged its navigation and was driven off-course by strong winds, while in the subsequent flight section, the seabird reset the focal direction, navigated the flight under strong wind conditions, and succeeded in approaching the island.

  6. A GIS model predicting potential distributions of a lineage: a test case on hermit spiders (Nephilidae: Nephilengys).

    PubMed

    Năpăruş, Magdalena; Kuntner, Matjaž

    2012-01-01

    Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change.

  7. A GIS Model Predicting Potential Distributions of a Lineage: A Test Case on Hermit Spiders (Nephilidae: Nephilengys)

    PubMed Central

    Năpăruş, Magdalena; Kuntner, Matjaž

    2012-01-01

    Background Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. Methodology/Principal Findings We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. Conclusions Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change. PMID:22238692

  8. Model calibration criteria for estimating ecological flow characteristics

    USGS Publications Warehouse

    Vis, Marc; Knight, Rodney; Poole, Sandra; Wolfe, William J.; Seibert, Jan; Breuer, Lutz; Kraft, Philipp

    2016-01-01

    Quantification of streamflow characteristics in ungauged catchments remains a challenge. Hydrological modeling is often used to derive flow time series and to calculate streamflow characteristics for subsequent applications that may differ from those envisioned by the modelers. While the estimation of model parameters for ungauged catchments is a challenging research task in itself, it is important to evaluate whether simulated time series preserve critical aspects of the streamflow hydrograph. To address this question, seven calibration objective functions were evaluated for their ability to preserve ecologically relevant streamflow characteristics of the average annual hydrograph using a runoff model, HBV-light, at 27 catchments in the southeastern United States. Calibration trials were repeated 100 times to reduce parameter uncertainty effects on the results, and 12 ecological flow characteristics were computed for comparison. Our results showed that the most suitable calibration strategy varied according to streamflow characteristic. Combined objective functions generally gave the best results, though a clear underprediction bias was observed. The occurrence of low prediction errors for certain combinations of objective function and flow characteristic suggests that (1) incorporating multiple ecological flow characteristics into a single objective function would increase model accuracy, potentially benefitting decision-making processes; and (2) there may be a need to have different objective functions available to address specific applications of the predicted time series.

  9. Methods and Tools for Evaluating Uncertainty in Ecological Models: A Survey

    EPA Science Inventory

    Poster presented at the Ecological Society of America Meeting. Ecologists are familiar with a variety of uncertainty techniques, particularly in the intersection of maximum likelihood parameter estimation and Monte Carlo analysis techniques, as well as a recent increase in Baye...

  10. Estimation and Application of Ecological Memory Functions in Time and Space

    NASA Astrophysics Data System (ADS)

    Itter, M.; Finley, A. O.; Dawson, A.

    2017-12-01

    A common goal in quantitative ecology is the estimation or prediction of ecological processes as a function of explanatory variables (or covariates). Frequently, the ecological process of interest and associated covariates vary in time, space, or both. Theory indicates many ecological processes exhibit memory to local, past conditions. Despite such theoretical understanding, few methods exist to integrate observations from the recent past or within a local neighborhood as drivers of these processes. We build upon recent methodological advances in ecology and spatial statistics to develop a Bayesian hierarchical framework to estimate so-called ecological memory functions; that is, weight-generating functions that specify the relative importance of local, past covariate observations to ecological processes. Memory functions are estimated using a set of basis functions in time and/or space, allowing for flexible ecological memory based on a reduced set of parameters. Ecological memory functions are entirely data driven under the Bayesian hierarchical framework—no a priori assumptions are made regarding functional forms. Memory function uncertainty follows directly from posterior distributions for model parameters allowing for tractable propagation of error to predictions of ecological processes. We apply the model framework to simulated spatio-temporal datasets generated using memory functions of varying complexity. The framework is also applied to estimate the ecological memory of annual boreal forest growth to local, past water availability. Consistent with ecological understanding of boreal forest growth dynamics, memory to past water availability peaks in the year previous to growth and slowly decays to zero in five to eight years. The Bayesian hierarchical framework has applicability to a broad range of ecosystems and processes allowing for increased understanding of ecosystem responses to local and past conditions and improved prediction of ecological processes.

  11. A global carbon assimilation system based on a dual optimization method

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Wang, L. H.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.

    2015-02-01

    Ecological models are effective tools for simulating the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a dual optimization method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° × 1° grid cells for the period from 2001 to 2007. Results show that land and ocean absorb -3.63 ± 0.50 and -1.82 ± 0.16 Pg C yr-1, respectively. North America, Europe and China contribute -0.98 ± 0.15, -0.42 ± 0.08 and -0.20 ± 0.29 Pg C yr-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C yr-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by the Boreal Ecosystems Productivity Simulator (BEPS) are reduced to -0.78 ± 0.23 Pg C yr-1, the third largest carbon sink.

  12. Quantifying chaos for ecological stoichiometry.

    PubMed

    Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2010-09-01

    The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincaré return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing δ1. However, for higher values of δ1 the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter ζ) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.

  13. EcoPAD, an interactive platform for near real-time ecological forecasting by assimilating data into model

    NASA Astrophysics Data System (ADS)

    MA, S.; Huang, Y.; Stacy, M.; Jiang, J.; Sundi, N.; Ricciuto, D. M.; Hanson, P. J.; Luo, Y.; Saruta, V.

    2017-12-01

    Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our study presents a smart system - Ecological Platform for Assimilation of Data (EcoPAD) - which streamlines web request-response, data management, model execution, result storage and visualization. EcoPAD allows users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, (v) conduct ecological forecasting, and (vi) detect ecosystem acclimation to climate change. One of the key innovations of the web-based EcoPAD is the automated near- or real-time forecasting of ecosystem dynamics with uncertainty fully quantified. The user friendly webpage enables non-modelers to explore their data for simulation and data assimilation. As a case study, we applied EcoPAD to the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment project in the northern peatland, assimilated multiple data streams into a process based ecosystem model, enhanced timely feedback between modelers and experimenters, ultimately improved ecosystem forecasting and made better use of current knowledge. Built in a framework with flexible API, EcoPAD is easily portable and will benefit scientific communities, policy makers as well as the general public.

  14. Clusters of poverty and disease emerge from feedbacks on an epidemiological network.

    PubMed

    Pluciński, Mateusz M; Ngonghala, Calistus N; Getz, Wayne M; Bonds, Matthew H

    2013-03-06

    The distribution of health conditions is characterized by extreme inequality. These disparities have been alternately attributed to disease ecology and the economics of poverty. Here, we provide a novel framework that integrates epidemiological and economic growth theory on an individual-based hierarchically structured network. Our model indicates that, under certain parameter regimes, feedbacks between disease ecology and economics create clusters of low income and high disease that can stably persist in populations that become otherwise predominantly rich and free of disease. Surprisingly, unlike traditional poverty trap models, these localized disease-driven poverty traps can arise despite homogeneity of parameters and evenly distributed initial economic conditions.

  15. General ecological models for human subsistence, health and poverty.

    PubMed

    Ngonghala, Calistus N; De Leo, Giulio A; Pascual, Mercedes M; Keenan, Donald C; Dobson, Andrew P; Bonds, Matthew H

    2017-08-01

    The world's rural poor rely heavily on their immediate natural environment for subsistence and suffer high rates of morbidity and mortality from infectious diseases. We present a general framework for modelling subsistence and health of the rural poor by coupling simple dynamic models of population ecology with those for economic growth. The models show that feedbacks between the biological and economic systems can lead to a state of persistent poverty. Analyses of a wide range of specific systems under alternative assumptions show the existence of three possible regimes corresponding to a globally stable development equilibrium, a globally stable poverty equilibrium and bistability. Bistability consistently emerges as a property of generalized disease-economic systems for about a fifth of the feasible parameter space. The overall proportion of parameters leading to poverty is larger than that resulting in healthy/wealthy development. All the systems are found to be most sensitive to human disease parameters. The framework highlights feedbacks, processes and parameters that are important to measure in studies of rural poverty to identify effective pathways towards sustainable development.

  16. Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zeng, Y.

    2017-09-01

    Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.

  17. Multiple regimes of robust patterns between network structure and biodiversity

    NASA Astrophysics Data System (ADS)

    Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.

    2015-12-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities.

  18. Multiple regimes of robust patterns between network structure and biodiversity

    PubMed Central

    Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.

    2015-01-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities. PMID:26632996

  19. A global carbon assimilation system based on a dual optimization method

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.

    2014-10-01

    Ecological models are effective tools to simulate the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a Dual Optimization Method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° ×1° grid cells for the period from 2000 to 2007. Results show that land and ocean absorb -3.69 ± 0.49 Pg C year-1 and -1.91 ± 0.16 Pg C year-1, respectively. North America, Europe and China contribut -0.96 ± 0.15 Pg C year-1, -0.42 ± 0.08 Pg C year-1 and -0.21 ± 0.28 Pg C year-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C year-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by BEPS is reduced to -0.79 ± 0.22 Pg C year-1, being the third largest carbon sink.

  20. Identifiability Results for Several Classes of Linear Compartment Models.

    PubMed

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.

  1. Near Real-time Ecological Forecasting of Peatland Responses to Warming and CO2 Treatment through EcoPAD-SPRUCE

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Jiang, J.; Stacy, M.; Ricciuto, D. M.; Hanson, P. J.; Sundi, N.; Luo, Y.

    2016-12-01

    Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our Ecological Platform for Assimilation of Data (EcoPAD) facilitates the integration of current best knowledge from models, manipulative experimentations, observations and other modern techniques and provides both near real-time and long-term forecasting of ecosystem dynamics. As a case study, the web-based EcoPAD platform synchronizes real- or near real-time field measurements from the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment experiment, assimilates multiple data streams into process based models, enhances timely feedback between modelers and experimenters, and ultimately improves ecosystem forecasting and makes best utilization of current knowledge. In addition to enable users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, and (v) conduct ecological forecasting, EcoPAD-SPRUCE automated the workflow from real-time data acquisition, model simulation to result visualization. EcoPAD-SPRUCE promotes seamless feedback between modelers and experimenters, hand in hand to make better forecasting of future changes. The framework of EcoPAD-SPRUCE (with flexible API, Application Programming Interface) is easily portable and will benefit scientific communities, policy makers as well as the general public.

  2. The role of mesocosm studies in ecological risk analysis

    USGS Publications Warehouse

    Boyle, Terence P.; Fairchild, James F.

    1997-01-01

    Mesocosms have been primarily used as research tools for the evaluation of the fate and effects of xenobiotic chemicals at the population, community, and ecosystem levels of biological organization. This paper provides suggestions for future applications of mesocosm research. Attention should be given to the configuration of mesocosm parameters to explicitly study regional questions of ecological interest. The initial physical, chemical, and biological conditions within mesocosms should be considered as factors shaping the final results of experiments. Certain fundamental questions such as the ecological inertia and resilience of systems with different initial ecological properties should be addressed. Researchers should develop closer working relationships with mathematical modelers in linking computer models to the outcomes of mesocosm studies. Mesocosm tests, linked with models, could enable managers and regulators to forecast the regional consequences of chemicals released into the environment.

  3. The Role of Model Complexity in Determining Patterns of Chlorophyll Variability in the Coastal Northwest North Atlantic

    NASA Astrophysics Data System (ADS)

    Kuhn, A. M.; Fennel, K.; Bianucci, L.

    2016-02-01

    A key feature of the North Atlantic Ocean's biological dynamics is the annual phytoplankton spring bloom. In the region comprising the continental shelf and adjacent deep ocean of the northwest North Atlantic, we identified two patterns of bloom development: 1) locations with cold temperatures and deep winter mixed layers, where the spring bloom peaks around April and the annual chlorophyll cycle has a large amplitude, and 2) locations with warmer temperatures and shallow winter mixed layers, where the spring bloom peaks earlier in the year, sometimes indiscernible from the fall bloom. These patterns result from a combination of limiting environmental factors and interactions among planktonic groups with different optimal requirements. Simple models that represent the ecosystem with a single phytoplankton (P) and a single zooplankton (Z) group are challenged to reproduce these ecological interactions. Here we investigate the effect that added complexity has on determining spatio-temporal chlorophyll. We compare two ecosystem models, one that contains one P and one Z group, and one with two P and three Z groups. We consider three types of changes in complexity: 1) added dependencies among variables (e.g., temperature dependent rates), 2) modified structural pathways, and 3) added pathways. Subsets of the most sensitive parameters are optimized in each model to replicate observations in the region. For computational efficiency, the parameter optimization is performed using 1D surrogates of a 3D model. We evaluate how model complexity affects model skill, and whether the optimized parameter sets found for each model modify the interpretation of ecosystem functioning. Spatial differences in the parameter sets that best represent different areas hint at the existence of different ecological communities or at physical-biological interactions that are not represented in the simplest model. Our methodology emphasizes the combined use of observations, 1D models to help identifying patterns, and 3D models able to simulate the environment modre realistically, as a means to acquire predictive understanding of the ocean's ecology.

  4. Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint constraints

    Treesearch

    Andrew D. Richardson; Mathew Williams; David Y. Hollinger; David J.P. Moore; D. Bryan Dail; Eric A. Davidson; Neal A. Scott; Robert S. Evans; Holly. Hughes

    2010-01-01

    We conducted an inverse modeling analysis, using a variety of data streams (tower-based eddy covariance measurements of net ecosystem exchange, NEE, of CO2, chamber-based measurements of soil respiration, and ancillary ecological measurements of leaf area index, litterfall, and woody biomass increment) to estimate parameters and initial carbon (C...

  5. Identifiability in N-mixture models: a large-scale screening test with bird data.

    PubMed

    Kéry, Marc

    2018-02-01

    Binomial N-mixture models have proven very useful in ecology, conservation, and monitoring: they allow estimation and modeling of abundance separately from detection probability using simple counts. Recently, doubts about parameter identifiability have been voiced. I conducted a large-scale screening test with 137 bird data sets from 2,037 sites. I found virtually no identifiability problems for Poisson and zero-inflated Poisson (ZIP) binomial N-mixture models, but negative-binomial (NB) models had problems in 25% of all data sets. The corresponding multinomial N-mixture models had no problems. Parameter estimates under Poisson and ZIP binomial and multinomial N-mixture models were extremely similar. Identifiability problems became a little more frequent with smaller sample sizes (267 and 50 sites), but were unaffected by whether the models did or did not include covariates. Hence, binomial N-mixture model parameters with Poisson and ZIP mixtures typically appeared identifiable. In contrast, NB mixtures were often unidentifiable, which is worrying since these were often selected by Akaike's information criterion. Identifiability of binomial N-mixture models should always be checked. If problems are found, simpler models, integrated models that combine different observation models or the use of external information via informative priors or penalized likelihoods, may help. © 2017 by the Ecological Society of America.

  6. Estimating the ecology of extinct species with paleoecological data assimilation

    NASA Astrophysics Data System (ADS)

    Raiho, A.; McLachlan, J. S.; Dietze, M.

    2017-12-01

    In order to understand long term, unobservable ecosystem processes, ecologists must use both paleoecoloigcal data and ecosystem models. Models parameterize species competitive interactions using modern data. But, modern ecological or physiological observations are not available for extinct species, making it difficult for models to conceptualize their ecology. For instance, American chestnut (Castanea dentata), who played a large role in forests of northeastern US, was decimated by disease to virtual extinction. Since chestnut's demise, defining its ecology has been controversial. Models typically assume that chestnut's ecology was very similar to oak; They parameterize chestnut like oak species. These assumptions are drawn from paleoecological data, but these data are often reported without uncertainty. Since the paleoecological data are often reported without uncertainty, paleoecological data has never been directly incorporated with ecosystem models. We developed a Bayesian statistical model to estimate fractional composition from paleoecological data with uncertainty. Then, we assimilated this data product into an ecosystem model for long term forest succession using a generalized ensemble adjustment filter to determine which species demographic parameters lead to changes in species composition over the last 2,000 years at Harvard Forest. We found that chestnut was strongly negatively correlated with white pine (Pinus strobus) and red oak (Quercus rubra) in the process covariance matrix, suggesting a strong competitive interaction that is not currently understood by models for forest succession. These findings provide support for utilizing a data assimilation framework to ecologically interpret paleoecological data or data products to learn about the ecology of extinct species.

  7. Improvement of ecological characteristics of the hydrogen diesel engine

    NASA Astrophysics Data System (ADS)

    Natriashvili, T.; Kavtaradze, R.; Glonti, M.

    2018-02-01

    In the article are considered the questions of influence of a swirl intensity of the shot and injector design on the ecological indices of the hydrogen diesel, little-investigated till now. The necessity of solution of these problems arises at conversion of the serial diesel engine into the hydrogen diesel. The mathematical model consists of the three-dimensional non-stationary equations of transfer and also models of turbulence and combustion. The numerical experiments have been carried out with the use of program code FIRE. The optimal values of parameters of the working process, ensuring improvement of the effective and ecological indices of the hydrogen diesel are determined.

  8. [Altitude-belt zonality of wood vegetation within mountainous regions of the Sayan Mountains: a model of ecological second-order phase transitions ].

    PubMed

    Sukhovol'skiĭ, V G; Ovchinnikova, T M; Baboĭ, S D

    2014-01-01

    As a description of altitude-belt zonality of wood vegetation, a model of ecological second-order transitions is proposed. Objects of the study have been chosen to be forest cenoses of the northern slope of Kulumyss Ridge (the Sayan Mauntains), while the results are comprised by the altitude profiles of wood vegetation. An ecological phase transition can be considered as the transition of cenoses at different altitudes from the state of presence of certain tree species within the studied territory to the state of their absence. By analogy with the physical model of second-order, phase transitions the order parameter is introduced (i.e., the area portion occupied by a single tree species at the certain altitude) as well as the control variable (i.e., the altitude of the wood vegetation belt). As the formal relation between them, an analog of the Landau's equation for phase transitions in physical systems is obtained. It is shown that the model is in a good accordance with the empirical data. Thus, the model can be used for estimation of upper and lower boundaries of altitude belts for individual tree species (like birch, aspen, Siberian fir, Siberian pine) as well as the breadth of their ecological niches with regard to altitude. The model includes also the parameters that describe numerically the interactions between different species of wood vegetation. The approach versatility allows to simplify description and modeling of wood vegetation altitude zonality, and enables assessment of vegetation cenoses response to climatic changes.

  9. A computational model for biosonar echoes from foliage

    PubMed Central

    Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao

    2017-01-01

    Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals’ sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats. PMID:28817631

  10. A computational model for biosonar echoes from foliage.

    PubMed

    Ming, Chen; Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao; Müller, Rolf

    2017-01-01

    Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals' sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats.

  11. Study the Seasonal Variability of Plankton and Forage Fish in the Gulf of Khambhat Using Npzfd Model

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Kumar, S.

    2016-02-01

    Numerical modelling of marine ecology exploits several assumptions and it is indeed quite challenging to include marine ecological phenomena into a mathematical framework with too many unknown parameters. The governing ordinary differential equations represent the interaction of the biological and chemical processes in a marine environment. The key concern in the development of a numerical models are parameterizations based on output, viz., mathematical modelling of ecological system mainly depends on parameters and its variations. Almost, all constituents of each trophic level of marine food web are depended on phytoplankton, which are mostly influenced by initial slope of P-I curve and nutrient stock in the study domain. Whereas, the earlier plankton dynamic models rarely include a compartment of small fish and as an agent in zooplankton mortality, which is most important for the modelling of higher trophic level of marine species. A compartment of forage fish in the modelling of plankton dynamics has been given more realistic mortality rates of plankton, viz., they feed upon phytoplankton and zooplankton. The inclusion of an additional compartment increases complexity of earlier plankton dynamics model as it introduces additional unknown parameters, which has been specified for performing the numerical simulations.As a case study we applied our analysis to explain the aquatic ecology of Gulf of Khambhat (19o 48' N - 22o20' N, 65o E - 72o40' E), west coast of India, which has rich bio-diversity and a high productive area in the form of plankton and forage fish. It has elevated turbidity and varying geography location, viz., one of the regions among world's ocean with high biological productivity.The model presented in this study is able to bring out the essential features of the observed data; that includes the bimodal oscillations in the observed data, monthly mean chlorophyll-a in the SeaWiFs/MODIS Aqua data and in-situ data of plankton. The additional compartment of forage fish and detritus in NPZFD model represents a major structural difference from the earlier NPZ model.

  12. Designing Industrial Networks Using Ecological Food Web Metrics.

    PubMed

    Layton, Astrid; Bras, Bert; Weissburg, Marc

    2016-10-18

    Biologically Inspired Design (biomimicry) and Industrial Ecology both look to natural systems to enhance the sustainability and performance of engineered products, systems and industries. Bioinspired design (BID) traditionally has focused on a unit operation and single product level. In contrast, this paper describes how principles of network organization derived from analysis of ecosystem properties can be applied to industrial system networks. Specifically, this paper examines the applicability of particular food web matrix properties as design rules for economically and biologically sustainable industrial networks, using an optimization model developed for a carpet recycling network. Carpet recycling network designs based on traditional cost and emissions based optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis suggests that networks optimized using food web metrics also were superior from a traditional cost and emissions perspective; correlations between optimization using ecological metrics and traditional optimization ranged generally from 0.70 to 0.96, with flow-based metrics being superior to structural parameters. Four structural food parameters provided correlations nearly the same as that obtained using all structural parameters, but individual structural parameters provided much less satisfactory correlations. The analysis indicates that bioinspired design principles from ecosystems can lead to both environmentally and economically sustainable industrial resource networks, and represent guidelines for designing sustainable industry networks.

  13. Dynamically linking economic models to ecological condition for coastal zone management: Application to sustainable tourism planning.

    PubMed

    Dvarskas, Anthony

    2017-03-01

    While the development of the tourism industry can bring economic benefits to an area, it is important to consider the long-run impact of the industry on a given location. Particularly when the tourism industry relies upon a certain ecological state, those weighing different development options need to consider the long-run impacts of increased tourist numbers upon measures of ecological condition. This paper presents one approach for linking a model of recreational visitor behavior with an ecological model that estimates the impact of the increased visitors upon the environment. Two simulations were run for the model using initial parameters available from survey data and water quality data for beach locations in Croatia. Results suggest that the resilience of a given tourist location to the changes brought by increasing tourism numbers is important in determining its long-run sustainability. Further work should investigate additional model components, including the tourism industry, refinement of the relationships assumed by the model, and application of the proposed model in additional areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Geographic analysis of shigellosis in Vietnam.

    PubMed

    Kim, Deok Ryun; Ali, Mohammad; Thiem, Vu Dinh; Park, Jin-Kyung; von Seidlein, Lorenz; Clemens, John

    2008-12-01

    Geographic and ecological analysis may provide investigators useful ecological information for the control of shigellosis. This paper provides distribution of individual Shigella species in space, and ecological covariates for shigellosis in Nha Trang, Vietnam. Data on shigellosis in neighborhoods were used to identify ecological covariates. A Bayesian hierarchical model was used to obtain joint posterior distribution of model parameters and to construct smoothed risk maps for shigellosis. Neighborhoods with a high proportion of worshippers of traditional religion, close proximity to hospital, or close proximity to the river had increased risk for shigellosis. The ecological covariates associated with Shigella flexneri differed from the covariates for Shigella sonnei. In contrast the spatial distribution of the two species was similar. The disease maps can help identify high-risk areas of shigellosis that can be targeted for interventions. This approach may be useful for the selection of populations and the analysis of vaccine trials.

  15. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE PAGES

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra; ...

    2017-11-20

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  16. Analysis of the sensitivity properties of a model of vector-borne bubonic plague.

    PubMed

    Buzby, Megan; Neckels, David; Antolin, Michael F; Estep, Donald

    2008-09-06

    Model sensitivity is a key to evaluation of mathematical models in ecology and evolution, especially in complex models with numerous parameters. In this paper, we use some recently developed methods for sensitivity analysis to study the parameter sensitivity of a model of vector-borne bubonic plague in a rodent population proposed by Keeling & Gilligan. The new sensitivity tools are based on a variational analysis involving the adjoint equation. The new approach provides a relatively inexpensive way to obtain derivative information about model output with respect to parameters. We use this approach to determine the sensitivity of a quantity of interest (the force of infection from rats and their fleas to humans) to various model parameters, determine a region over which linearization at a specific parameter reference point is valid, develop a global picture of the output surface, and search for maxima and minima in a given region in the parameter space.

  17. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  18. Ecological connectivity networks in rapidly expanding cities.

    PubMed

    Nor, Amal Najihah M; Corstanje, Ron; Harris, Jim A; Grafius, Darren R; Siriwardena, Gavin M

    2017-06-01

    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow ( Passer montanus ) and Yellow-vented bulbul ( Pycnonotus goiavier ) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for biodiversity conservation and urban planning.

  19. [Urban ecological risk assessment: a review].

    PubMed

    Wang, Mei-E; Chen, Wei-Ping; Peng, Chi

    2014-03-01

    With the development of urbanization and the degradation of urban living environment, urban ecological risks caused by urbanization have attracted more and more attentions. Based on urban ecology principles and ecological risk assessment frameworks, contents of urban ecological risk assessment were reviewed in terms of driven forces, risk resources, risk receptors, endpoints and integrated approaches for risk assessment. It was suggested that types and degrees of urban economical and social activities were the driven forces for urban ecological risks. Ecological functional components at different levels in urban ecosystems as well as the urban system as a whole were the risk receptors. Assessment endpoints involved in changes of urban ecological structures, processes, functional components and the integrity of characteristic and function. Social-ecological models should be the major approaches for urban ecological risk assessment. Trends for urban ecological risk assessment study should focus on setting a definite protection target and criteria corresponding to assessment endpoints, establishing a multiple-parameter assessment system and integrative assessment approaches.

  20. The evolutionary and behavioral modification of consumer responses to environmental change.

    PubMed

    Abrams, Peter A

    2014-02-21

    How will evolution or other forms of adaptive change alter the response of a consumer species' population density to environmentally driven changes in population growth parameters? This question is addressed by analyzing some simple consumer-resource models to separate the ecological and evolutionary components of the population's response. Ecological responses are always decreased population size, but evolution of traits that have effects on both resource uptake rate and another fitness-related parameter may magnify, offset, or reverse this population decrease. Evolution can change ecologically driven decreases in population size to increases; this is likely when: (1) resources are initially below the density that maximizes resource growth, and (2) the evolutionary response decreases the consumer's resource uptake rate. Evolutionary magnification of the ecological decreases in population size can occur when the environmental change is higher trait-independent mortality. Such evolution-driven decreases are most likely when uptake-rate traits increase and the resource is initially below its maximum growth density. It is common for the difference between the new eco-evolutionary equilibrium and the new ecological equilibrium to be larger than that between the original and new ecological equilibrium densities. The relative magnitudes of ecological and evolutionary effects often depend sensitively on the magnitude of the environmental change and the nature of resource growth. © 2013 Elsevier Ltd. All rights reserved.

  1. Seveso 1986, Chernobyl 1976: a physicist' look at 2 ecological disasters

    NASA Astrophysics Data System (ADS)

    Ratti, S.

    2004-05-01

    Seveso suffered a chemical accident with a severe loss of supertoxic material (TCCD) released in the atmosphere; Chernobyl was a world known nuclear accident. The pollution induced by the two accident are analysed in term of fractal models. The first case involved a limited micro ecological system; the second one spread over a macro ecological system. The pollution is reproduced by means of simple Fractal Sum of Pulses models in the Seveso region; for the Chernobyl accident in northern Italy and in several european Countries. The 2 accidents are also analysed in terms of Universal Multifractals showing that thethe parameters α and C1 are those describing respectively rainfall (Seveso) and cloud formation (Chernobyl).

  2. Sampling in ecology and evolution - bridging the gap between theory and practice

    USGS Publications Warehouse

    Albert, C.H.; Yoccoz, N.G.; Edwards, T.C.; Graham, C.H.; Zimmermann, N.E.; Thuiller, W.

    2010-01-01

    Sampling is a key issue for answering most ecological and evolutionary questions. The importance of developing a rigorous sampling design tailored to specific questions has already been discussed in the ecological and sampling literature and has provided useful tools and recommendations to sample and analyse ecological data. However, sampling issues are often difficult to overcome in ecological studies due to apparent inconsistencies between theory and practice, often leading to the implementation of simplified sampling designs that suffer from unknown biases. Moreover, we believe that classical sampling principles which are based on estimation of means and variances are insufficient to fully address many ecological questions that rely on estimating relationships between a response and a set of predictor variables over time and space. Our objective is thus to highlight the importance of selecting an appropriate sampling space and an appropriate sampling design. We also emphasize the importance of using prior knowledge of the study system to estimate models or complex parameters and thus better understand ecological patterns and processes generating these patterns. Using a semi-virtual simulation study as an illustration we reveal how the selection of the space (e.g. geographic, climatic), in which the sampling is designed, influences the patterns that can be ultimately detected. We also demonstrate the inefficiency of common sampling designs to reveal response curves between ecological variables and climatic gradients. Further, we show that response-surface methodology, which has rarely been used in ecology, is much more efficient than more traditional methods. Finally, we discuss the use of prior knowledge, simulation studies and model-based designs in defining appropriate sampling designs. We conclude by a call for development of methods to unbiasedly estimate nonlinear ecologically relevant parameters, in order to make inferences while fulfilling requirements of both sampling theory and field work logistics. ?? 2010 The Authors.

  3. A laboratory-calibrated model of coho salmon growth with utility for ecological analyses

    USGS Publications Warehouse

    Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Plumb, John M.

    2018-01-01

    We conducted a meta-analysis of laboratory- and hatchery-based growth data to estimate broadly applicable parameters of mass- and temperature-dependent growth of juvenile coho salmon (Oncorhynchus kisutch). Following studies of other salmonid species, we incorporated the Ratkowsky growth model into an allometric model and fit this model to growth observations from eight studies spanning ten different populations. To account for changes in growth patterns with food availability, we reparameterized the Ratkowsky model to scale several of its parameters relative to ration. The resulting model was robust across a wide range of ration allocations and experimental conditions, accounting for 99% of the variation in final body mass. We fit this model to growth data from coho salmon inhabiting tributaries and constructed ponds in the Klamath Basin by estimating habitat-specific indices of food availability. The model produced evidence that constructed ponds provided higher food availability than natural tributaries. Because of their simplicity (only mass and temperature are required as inputs) and robustness, ration-varying Ratkowsky models have utility as an ecological tool for capturing growth in freshwater fish populations.

  4. Resilience and Alternative Stable States of Tropical Forest Landscapes under Shifting Cultivation Regimes

    PubMed Central

    2015-01-01

    Shifting cultivation is a traditional agricultural practice in most tropical regions of the world and has the potential to provide for human livelihoods while hosting substantial biodiversity. Little is known about the resilience of shifting cultivation to increasing agricultural demands on the landscape or to unexpected disturbances. To investigate these issues, we develop a simple social-ecological model and implement it with literature-derived ecological parameters for six shifting cultivation landscapes from three continents. Analyzing the model with the tools of dynamical systems analysis, we show that such landscapes exhibit two stable states, one characterized by high forest cover and agricultural productivity, and another with much lower values of these traits. For some combinations of agricultural pressure and ecological parameters both of these states can potentially exist, and the actual state of the forest depends critically on its historic state. In many cases, the landscapes’ ‘ecological resilience’, or amount of forest that could be destroyed without shifting out of the forested stability domain, declined substantially at lower levels of agricultural pressure than would lead to maximum productivity. A measure of ‘engineering resilience’, the recovery time from standardized disturbances, was independent of ecological resilience. These findings suggest that maximization of short-term agricultural output may have counterproductive impacts on the long-term productivity of shifting cultivation landscapes and the persistence of forested areas. PMID:26406907

  5. Growth of Coccolithophores Controlled by Internal Nutrient Stores in Light- and Nutrient-Limited Batch Reactors: Relevance for the BIOSOPE Deep Ecological Niche of Coccolithophores.

    NASA Astrophysics Data System (ADS)

    Laura, P.; Probert, I.; Langer, G.; Aloisi, G.

    2016-02-01

    Coccolithophores are unicellular, calcifying marine algae that play a fundamental role in the oceanic carbon cycle. Recent research has focused on investigating the effect of ocean acidification on cellular calcification. However, the success of this important phytoplankton group in the future ocean will depend on how cellular growth reacts to changes in a combination of environmental variables. We carried out batch culture experiments in conditions of light- and nutrient- (nitrate and phosphate) limitation that reproduce the in situ conditions of a deep ecological niche of coccolithophores in the South Pacific Gyre (BIOSOPE cruise, 2004). We modelled nutrient acquisition and cellular growth in our batch experiments using a Droop internal-stores model. We show that nutrient acquisition and growth are decoupled in coccolithophores; this ability may be key in making life possible in oligotrophic conditions such as the deep BIOSOPE biological niche. Combining the results of our culture experiments with those of Langer et al. (2013), we used the model to obtain estimates of fundamental physiological parameters such as the Monod constant for nutrient uptake, the maximum growth rate and the minimum cellular nutrient quota. These parameters are characteristic of different phytoplankton groups and are needed to simulate phytoplankton growth in biogeochemical models. Our results suggest that growth of coccolithophores in the BIOSOPE deep ecological niche is light-limited rather than nutrient-limited. Our work also shows that simple batch experiments and straightforward numerical modelling are capable of providing estimates of physiological parameters usually obtained in more costly and complicated chemostat experiments.

  6. The big data-big model (BDBM) challenges in ecological research

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2015-12-01

    The field of ecology has become a big-data science in the past decades due to development of new sensors used in numerous studies in the ecological community. Many sensor networks have been established to collect data. For example, satellites, such as Terra and OCO-2 among others, have collected data relevant on global carbon cycle. Thousands of field manipulative experiments have been conducted to examine feedback of terrestrial carbon cycle to global changes. Networks of observations, such as FLUXNET, have measured land processes. In particular, the implementation of the National Ecological Observatory Network (NEON), which is designed to network different kinds of sensors at many locations over the nation, will generate large volumes of ecological data every day. The raw data from sensors from those networks offer an unprecedented opportunity for accelerating advances in our knowledge of ecological processes, educating teachers and students, supporting decision-making, testing ecological theory, and forecasting changes in ecosystem services. Currently, ecologists do not have the infrastructure in place to synthesize massive yet heterogeneous data into resources for decision support. It is urgent to develop an ecological forecasting system that can make the best use of multiple sources of data to assess long-term biosphere change and anticipate future states of ecosystem services at regional and continental scales. Forecasting relies on big models that describe major processes that underlie complex system dynamics. Ecological system models, despite great simplification of the real systems, are still complex in order to address real-world problems. For example, Community Land Model (CLM) incorporates thousands of processes related to energy balance, hydrology, and biogeochemistry. Integration of massive data from multiple big data sources with complex models has to tackle Big Data-Big Model (BDBM) challenges. Those challenges include interoperability of multiple, heterogeneous data sets; intractability of structural complexity of big models; equifinality of model structure selection and parameter estimation; and computational demand of global optimization with Big Models.

  7. Deriving movement properties and the effect of the environment from the Brownian bridge movement model in monkeys and birds.

    PubMed

    Buchin, Kevin; Sijben, Stef; van Loon, E Emiel; Sapir, Nir; Mercier, Stéphanie; Marie Arseneau, T Jean; Willems, Erik P

    2015-01-01

    The Brownian bridge movement model (BBMM) provides a biologically sound approximation of the movement path of an animal based on discrete location data, and is a powerful method to quantify utilization distributions. Computing the utilization distribution based on the BBMM while calculating movement parameters directly from the location data, may result in inconsistent and misleading results. We show how the BBMM can be extended to also calculate derived movement parameters. Furthermore we demonstrate how to integrate environmental context into a BBMM-based analysis. We develop a computational framework to analyze animal movement based on the BBMM. In particular, we demonstrate how a derived movement parameter (relative speed) and its spatial distribution can be calculated in the BBMM. We show how to integrate our framework with the conceptual framework of the movement ecology paradigm in two related but acutely different ways, focusing on the influence that the environment has on animal movement. First, we demonstrate an a posteriori approach, in which the spatial distribution of average relative movement speed as obtained from a "contextually naïve" model is related to the local vegetation structure within the monthly ranging area of a group of wild vervet monkeys. Without a model like the BBMM it would not be possible to estimate such a spatial distribution of a parameter in a sound way. Second, we introduce an a priori approach in which atmospheric information is used to calculate a crucial parameter of the BBMM to investigate flight properties of migrating bee-eaters. This analysis shows significant differences in the characteristics of flight modes, which would have not been detected without using the BBMM. Our algorithm is the first of its kind to allow BBMM-based computation of movement parameters beyond the utilization distribution, and we present two case studies that demonstrate two fundamentally different ways in which our algorithm can be applied to estimate the spatial distribution of average relative movement speed, while interpreting it in a biologically meaningful manner, across a wide range of environmental scenarios and ecological contexts. Therefore movement parameters derived from the BBMM can provide a powerful method for movement ecology research.

  8. [The history of development of evolutionary methods in St. Petersburg school of computer simulation in biology].

    PubMed

    Menshutkin, V V; Kazanskiĭ, A B; Levchenko, V F

    2010-01-01

    The history of rise and development of evolutionary methods in Saint Petersburg school of biological modelling is traced and analyzed. Some pioneering works in simulation of ecological and evolutionary processes, performed in St.-Petersburg school became an exemplary ones for many followers in Russia and abroad. The individual-based approach became the crucial point in the history of the school as an adequate instrument for construction of models of biological evolution. This approach is natural for simulation of the evolution of life-history parameters and adaptive processes in populations and communities. In some cases simulated evolutionary process was used for solving a reverse problem, i. e., for estimation of uncertain life-history parameters of population. Evolutionary computations is one more aspect of this approach application in great many fields. The problems and vistas of ecological and evolutionary modelling in general are discussed.

  9. Interval Optimization Model Considering Terrestrial Ecological Impacts for Water Rights Transfer from Agriculture to Industry in Ningxia, China.

    PubMed

    Sun, Lian; Li, Chunhui; Cai, Yanpeng; Wang, Xuan

    2017-06-14

    In this study, an interval optimization model is developed to maximize the benefits of a water rights transfer system that comprises industry and agriculture sectors in the Ningxia Hui Autonomous Region in China. The model is subjected to a number of constraints including water saving potential from agriculture and ecological groundwater levels. Ecological groundwater levels serve as performance indicators of terrestrial ecology. The interval method is applied to present the uncertainty of parameters in the model. Two scenarios regarding dual industrial development targets (planned and unplanned ones) are used to investigate the difference in potential benefits of water rights transfer. Runoff of the Yellow River as the source of water rights fluctuates significantly in different years. Thus, compensation fees for agriculture are calculated to reflect the influence of differences in the runoff. Results show that there are more available water rights to transfer for industrial development. The benefits are considerable but unbalanced between buyers and sellers. The government should establish a water market that is freer and promote the interest of agriculture and farmers. Though there has been some success of water rights transfer, the ecological impacts and the relationship between sellers and buyers require additional studies.

  10. A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change.

    PubMed

    Garrard, Georgia E; McCarthy, Michael A; Vesk, Peter A; Radford, James Q; Bennett, Andrew F

    2012-01-01

    1. Informative Bayesian priors can improve the precision of estimates in ecological studies or estimate parameters for which little or no information is available. While Bayesian analyses are becoming more popular in ecology, the use of strongly informative priors remains rare, perhaps because examples of informative priors are not readily available in the published literature. 2. Dispersal distance is an important ecological parameter, but is difficult to measure and estimates are scarce. General models that provide informative prior estimates of dispersal distances will therefore be valuable. 3. Using a world-wide data set on birds, we develop a predictive model of median natal dispersal distance that includes body mass, wingspan, sex and feeding guild. This model predicts median dispersal distance well when using the fitted data and an independent test data set, explaining up to 53% of the variation. 4. Using this model, we predict a priori estimates of median dispersal distance for 57 woodland-dependent bird species in northern Victoria, Australia. These estimates are then used to investigate the relationship between dispersal ability and vulnerability to landscape-scale changes in habitat cover and fragmentation. 5. We find evidence that woodland bird species with poor predicted dispersal ability are more vulnerable to habitat fragmentation than those species with longer predicted dispersal distances, thus improving the understanding of this important phenomenon. 6. The value of constructing informative priors from existing information is also demonstrated. When used as informative priors for four example species, predicted dispersal distances reduced the 95% credible intervals of posterior estimates of dispersal distance by 8-19%. Further, should we have wished to collect information on avian dispersal distances and relate it to species' responses to habitat loss and fragmentation, data from 221 individuals across 57 species would have been required to obtain estimates with the same precision as those provided by the general model. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  11. Evolutionary response when selection and genetic variation covary across environments.

    PubMed

    Wood, Corlett W; Brodie, Edmund D

    2016-10-01

    Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd/CNRS.

  12. Probability bounds analysis for nonlinear population ecology models.

    PubMed

    Enszer, Joshua A; Andrei Măceș, D; Stadtherr, Mark A

    2015-09-01

    Mathematical models in population ecology often involve parameters that are empirically determined and inherently uncertain, with probability distributions for the uncertainties not known precisely. Propagating such imprecise uncertainties rigorously through a model to determine their effect on model outputs can be a challenging problem. We illustrate here a method for the direct propagation of uncertainties represented by probability bounds though nonlinear, continuous-time, dynamic models in population ecology. This makes it possible to determine rigorous bounds on the probability that some specified outcome for a population is achieved, which can be a core problem in ecosystem modeling for risk assessment and management. Results can be obtained at a computational cost that is considerably less than that required by statistical sampling methods such as Monte Carlo analysis. The method is demonstrated using three example systems, with focus on a model of an experimental aquatic food web subject to the effects of contamination by ionic liquids, a new class of potentially important industrial chemicals. Copyright © 2015. Published by Elsevier Inc.

  13. Determination of Indicators of Ecological Change

    DTIC Science & Technology

    2004-09-01

    simultaneously characterized parameters for more than one forest (e.g., Huber and Iroume, 2001; Tobón Marin et al., 2000). As parameters (e.g...necessary to apply the revised model for use in five forest biomes , 2) use the model to predict precipitation interception and compare the measured and...larger interception losses than many other forest biomes . The within plot sampling coefficient of variation, ranging from a study average of 0.11 in

  14. A simple model of bipartite cooperation for ecological and organizational networks.

    PubMed

    Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian

    2009-01-22

    In theoretical ecology, simple stochastic models that satisfy two basic conditions about the distribution of niche values and feeding ranges have proved successful in reproducing the overall structural properties of real food webs, using species richness and connectance as the only input parameters. Recently, more detailed models have incorporated higher levels of constraint in order to reproduce the actual links observed in real food webs. Here, building on previous stochastic models of consumer-resource interactions between species, we propose a highly parsimonious model that can reproduce the overall bipartite structure of cooperative partner-partner interactions, as exemplified by plant-animal mutualistic networks. Our stochastic model of bipartite cooperation uses simple specialization and interaction rules, and only requires three empirical input parameters. We test the bipartite cooperation model on ten large pollination data sets that have been compiled in the literature, and find that it successfully replicates the degree distribution, nestedness and modularity of the empirical networks. These properties are regarded as key to understanding cooperation in mutualistic networks. We also apply our model to an extensive data set of two classes of company engaged in joint production in the garment industry. Using the same metrics, we find that the network of manufacturer-contractor interactions exhibits similar structural patterns to plant-animal pollination networks. This surprising correspondence between ecological and organizational networks suggests that the simple rules of cooperation that generate bipartite networks may be generic, and could prove relevant in many different domains, ranging from biological systems to human society.

  15. Technical Note: Approximate Bayesian parameterization of a complex tropical forest model

    NASA Astrophysics Data System (ADS)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2013-08-01

    Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics), and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC), another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can successfully be applied to process-based models of high complexity. The methodology is particularly suited to heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models in ecology and evolution.

  16. Calculating background levels for ecological risk parameters in toxic harbor sediment

    USGS Publications Warehouse

    Leadon, C.J.; McDonnell, T.R.; Lear, J.; Barclift, D.

    2007-01-01

    Establishing background levels for biological parameters is necessary in assessing the ecological risks from harbor sediment contaminated with toxic chemicals. For chemicals in sediment, the term contaminated is defined as having concentrations above background and significant human health or ecological risk levels. For biological parameters, a site could be considered contaminated if levels of the parameter are either more or less than the background level, depending on the specific parameter. Biological parameters can include tissue chemical concentrations in ecological receptors, bioassay responses, bioaccumulation levels, and benthic community metrics. Chemical parameters can include sediment concentrations of a variety of potentially toxic chemicals. Indirectly, contaminated harbor sediment can impact shellfish, fish, birds, and marine mammals, and human populations. This paper summarizes the methods used to define background levels for chemical and biological parameters from a survey of ecological risk investigations of marine harbor sediment at California Navy bases. Background levels for regional biological indices used to quantify ecological risks for benthic communities are also described. Generally, background stations are positioned in relatively clean areas exhibiting the same physical and general chemical characteristics as nearby areas with contaminated harbor sediment. The number of background stations and the number of sample replicates per background station depend on the statistical design of the sediment ecological risk investigation, developed through the data quality objective (DQO) process. Biological data from the background stations can be compared to data from a contaminated site by using minimum or maximum background levels or comparative statistics. In Navy ecological risk assessments (ERA's), calculated background levels and appropriate ecological risk screening criteria are used to identify sampling stations and sites with contaminated sediments.

  17. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  18. Panaceas and diversification of environmental policy

    PubMed Central

    Brock, William A.; Carpenter, Stephen R.

    2007-01-01

    We consider panacea formation in the framework of adaptive learning and decision for social–ecological systems (SESs). Institutions for managing such systems must address multiple timescales of ecological change, as well as features of the social community in which the ecosystem policy problem is embedded. Response of the SES to each candidate institution must be modeled and treated as a stochastic process with unknown parameters to be estimated. A fundamental challenge is to design institutions that are not vulnerable to capture by subsets of the community that self-organize to direct the institution against the overall social interest. In a world of episodic structural change, such as SESs, adaptive learning can lock in to a single institution, model, or parameter estimate. Policy diversification, leading to escape from panacea traps, can come from monitoring indicators of episodic change on slow timescales, minimax regret decision making, active experimentation to accelerate model identification, mechanisms for broadening the set of models or institutions under consideration, and processes for discovery of new institutions and technologies for ecosystem management. It is difficult to take all of these factors into account, but the discipline that comes with the attempt to model the coupled social–ecological dynamics forces policy makers to confront all conceivable responses. This process helps induce the modesty needed to avoid panacea traps while supporting systematic effort to improve resource management in the public interest. PMID:17881581

  19. Novel Methods in Disease Biogeography: A Case Study with Heterosporosis

    PubMed Central

    Escobar, Luis E.; Qiao, Huijie; Lee, Christine; Phelps, Nicholas B. D.

    2017-01-01

    Disease biogeography is currently a promising field to complement epidemiology, and ecological niche modeling theory and methods are a key component. Therefore, applying the concepts and tools from ecological niche modeling to disease biogeography and epidemiology will provide biologically sound and analytically robust descriptive and predictive analyses of disease distributions. As a case study, we explored the ecologically important fish disease Heterosporosis, a relatively poorly understood disease caused by the intracellular microsporidian parasite Heterosporis sutherlandae. We explored two novel ecological niche modeling methods, the minimum-volume ellipsoid (MVE) and the Marble algorithm, which were used to reconstruct the fundamental and the realized ecological niche of H. sutherlandae, respectively. Additionally, we assessed how the management of occurrence reports can impact the output of the models. Ecological niche models were able to reconstruct a proxy of the fundamental and realized niche for this aquatic parasite, identifying specific areas suitable for Heterosporosis. We found that the conceptual and methodological advances in ecological niche modeling provide accessible tools to update the current practices of spatial epidemiology. However, careful data curation and a detailed understanding of the algorithm employed are critical for a clear definition of the assumptions implicit in the modeling process and to ensure biologically sound forecasts. In this paper, we show how sensitive MVE is to the input data, while Marble algorithm may provide detailed forecasts with a minimum of parameters. We showed that exploring algorithms of different natures such as environmental clusters, climatic envelopes, and logistic regressions (e.g., Marble, MVE, and Maxent) provide different scenarios of potential distribution. Thus, no single algorithm should be used for disease mapping. Instead, different algorithms should be employed for a more informed and complete understanding of the pathogen or parasite in question. PMID:28770215

  20. Size-density scaling in protists and the links between consumer-resource interaction parameters.

    PubMed

    DeLong, John P; Vasseur, David A

    2012-11-01

    Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are widely observed but apparently have little influence on population size and fitness, at least at this level of organization. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  1. Assessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models

    NASA Astrophysics Data System (ADS)

    Coll, Marta; Navarro, Joan; Olson, Robert J.; Christensen, Villy

    2013-10-01

    We synthesized available information from ecological models at local and regional scales to obtain a global picture of the trophic position and ecological role of squids in marine ecosystems. First, static food-web models were used to analyze basic ecological parameters and indicators of squids: biomass, production, consumption, trophic level, omnivory index, predation mortality diet, and the ecological role. In addition, we developed various dynamic temporal simulations using two food-web models that included squids in their parameterization, and we investigated potential impacts of fishing pressure and environmental conditions for squid populations and, consequently, for marine food webs. Our results showed that squids occupy a large range of trophic levels in marine food webs and show a large trophic width, reflecting the versatility in their feeding behaviors and dietary habits. Models illustrated that squids are abundant organisms in marine ecosystems, and have high growth and consumption rates, but these parameters are highly variable because squids are adapted to a large variety of environmental conditions. Results also show that squids can have a large trophic impact on other elements of the food web, and top-down control from squids to their prey can be high. In addition, some squid species are important prey of apical predators and may be keystone species in marine food webs. In fact, we found strong interrelationships between neritic squids and the populations of their prey and predators in coastal and shelf areas, while the role of squids in open ocean and upwelling ecosystems appeared more constrained to a bottom-up impact on their predators. Therefore, large removals of squids will likely have large-scale effects on marine ecosystems. In addition, simulations confirm that squids are able to benefit from a general increase in fishing pressure, mainly due to predation release, and quickly respond to changes triggered by the environment. Squids may thus be very sensitive to the effects of fishing and climate change.

  2. Ecological correlates of population genetic structure: a comparative approach using a vertebrate metacommunity.

    PubMed

    Manier, Mollie K; Arnold, Stevan J

    2006-12-07

    Identifying ecological factors associated with population genetic differentiation is important for understanding microevolutionary processes and guiding the management of threatened populations. We identified ecological correlates of several population genetic parameters for three interacting species (two garter snakes and an anuran) that occupy a common landscape. Using multiple regression analysis, we found that species interactions were more important in explaining variation in population genetic parameters than habitat and nearest-neighbour characteristics. Effective population size was best explained by census size, while migration was associated with differences in species abundance. In contrast, genetic distance was poorly explained by the ecological correlates that we tested, but geographical distance was prominent in models for all species. We found substantially different population dynamics for the prey species relative to the two predators, characterized by larger effective sizes, lower gene flow and a state of migration-drift equilibrium. We also identified an escarpment formed by a series of block faults that serves as a barrier to dispersal for the predators. Our results suggest that successful landscape-level management should incorporate genetic and ecological data for all relevant species, because even closely associated species can exhibit very different population genetic dynamics on the same landscape.

  3. Emergence of scale-free characteristics in socio-ecological systems with bounded rationality

    PubMed Central

    Kasthurirathna, Dharshana; Piraveenan, Mahendra

    2015-01-01

    Socio–ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback–-Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio–ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems. PMID:26065713

  4. [Uncertainty analysis of ecological risk assessment caused by heavy-metals deposition from MSWI emission].

    PubMed

    Liao, Zhi-Heng; Sun, Jia-Ren; Wu, Dui; Fan, Shao-Jia; Ren, Ming-Zhong; Lü, Jia-Yang

    2014-06-01

    The CALPUFF model was applied to simulate the ground-level atmospheric concentrations of Pb and Cd from municipal solid waste incineration (MSWI) plants, and the soil concentration model was used to estimate soil concentration increments after atmospheric deposition based on Monte Carlo simulation, then ecological risk assessment was conducted by the potential ecological risk index method. The results showed that the largest atmospheric concentrations of Pb and Cd were 5.59 x 109-3) microg x m(-3) and 5.57 x 10(-4) microg x m(-3), respectively, while the maxima of soil concentration incremental medium of Pb and Cd were 2.26 mg x kg(-1) and 0.21 mg x kg(-1), respectively; High risk areas were located next to the incinerators, Cd contributed the most to the ecological risk, and Pb was basically free of pollution risk; Higher ecological hazard level was predicted at the most polluted point in urban areas with a 55.30% probability, while in rural areas, the most polluted point was assessed to moderate ecological hazard level with a 72.92% probability. In addition, sensitivity analysis of calculation parameters in the soil concentration model was conducted, which showed the simulated results of urban and rural area were most sensitive to soil mix depth and dry deposition rate, respectively.

  5. Emergence of scale-free characteristics in socio-ecological systems with bounded rationality.

    PubMed

    Kasthurirathna, Dharshana; Piraveenan, Mahendra

    2015-06-11

    Socio-ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback--Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio-ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems.

  6. European larch phenology in the Alps: can we grasp the role of ecological factors by combining field observations and inverse modelling?

    NASA Astrophysics Data System (ADS)

    Migliavacca, M.; Cremonese, E.; Colombo, R.; Busetto, L.; Galvagno, M.; Ganis, L.; Meroni, M.; Pari, E.; Rossini, M.; Siniscalco, C.; Morra di Cella, U.

    2008-09-01

    Vegetation phenology is strongly influenced by climatic factors. Climate changes may cause phenological variations, especially in the Alps which are considered to be extremely vulnerable to global warming. The main goal of our study is to analyze European larch ( Larix decidua Mill.) phenology in alpine environments and the role of the ecological factors involved, using an integrated approach based on accurate field observations and modelling techniques. We present 2 years of field-collected larch phenological data, obtained following a specifically designed observation protocol. We observed that both spring and autumn larch phenology is strongly influenced by altitude. We propose an approach for the optimization of a spring warming model (SW) and the growing season index model (GSI) consisting of a model inversion technique, based on simulated look-up tables (LUTs), that provides robust parameter estimates. The optimized models showed excellent agreement between modelled and observed data: the SW model predicts the beginning of the growing season (BGS) with a mean RMSE of 4 days, while GSI gives a prediction of the growing season length (LGS) with a RMSE of 5 days. Moreover, we showed that the original GSI parameters led to consistent errors, while the optimized ones significantly increased model accuracy. Finally, we used GSI to investigate interactions of ecological factors during springtime development and autumn senescence. We found that temperature is the most effective factor during spring recovery while photoperiod plays an important role during autumn senescence: photoperiod shows a contrasting effect with altitude decreasing its influence with increasing altitude.

  7. European larch phenology in the Alps: can we grasp the role of ecological factors by combining field observations and inverse modelling?

    PubMed

    Migliavacca, M; Cremonese, E; Colombo, R; Busetto, L; Galvagno, M; Ganis, L; Meroni, M; Pari, E; Rossini, M; Siniscalco, C; Morra di Cella, U

    2008-09-01

    Vegetation phenology is strongly influenced by climatic factors. Climate changes may cause phenological variations, especially in the Alps which are considered to be extremely vulnerable to global warming. The main goal of our study is to analyze European larch (Larix decidua Mill.) phenology in alpine environments and the role of the ecological factors involved, using an integrated approach based on accurate field observations and modelling techniques. We present 2 years of field-collected larch phenological data, obtained following a specifically designed observation protocol. We observed that both spring and autumn larch phenology is strongly influenced by altitude. We propose an approach for the optimization of a spring warming model (SW) and the growing season index model (GSI) consisting of a model inversion technique, based on simulated look-up tables (LUTs), that provides robust parameter estimates. The optimized models showed excellent agreement between modelled and observed data: the SW model predicts the beginning of the growing season (B(GS)) with a mean RMSE of 4 days, while GSI gives a prediction of the growing season length (L(GS)) with a RMSE of 5 days. Moreover, we showed that the original GSI parameters led to consistent errors, while the optimized ones significantly increased model accuracy. Finally, we used GSI to investigate interactions of ecological factors during springtime development and autumn senescence. We found that temperature is the most effective factor during spring recovery while photoperiod plays an important role during autumn senescence: photoperiod shows a contrasting effect with altitude decreasing its influence with increasing altitude.

  8. UNCERTAINTY AND SENSITIVITY ANALYSES FOR INTEGRATED HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT OF HAZARDOUS WASTE DISPOSAL

    EPA Science Inventory

    While there is a high potential for exposure of humans and ecosystems to chemicals released from hazardous waste sites, the degree to which this potential is realized is often uncertain. Conceptually divided among parameter, model, and modeler uncertainties imparted during simula...

  9. Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM

    NASA Astrophysics Data System (ADS)

    Piercy, C.; Swannack, T. M.

    2012-12-01

    Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.

  10. Predictable ecology and geography of West Nile virus transmission in the central United States.

    PubMed

    Peterson, A Townsend; Robbins, Amber; Restifo, Robert; Howell, James; Nasci, Roger

    2008-12-01

    West Nile virus (WNV) arrived in North America and spread rapidly through the western hemisphere. We present a series of tests to determine whether ecological factors are consistently associated with WNV transmission to humans. We analyzed human WNV cases in the states of Illinois, Indiana, and Ohio in 2002 and 2003, building ecological niche models to associate WNV case occurrences with ecological and environmental parameters. In essentially all tests, both within states, among states, between years, and across the region, we found high predictivity of WNV case distributions, suggesting that one or more elements in the WNV transmission cycle has a strong ecological determination. Areas in the geographic region included in this study predicted as suitable for WNV transmission tended to have lower values of the vegetation indices in the summer months, pointing to consistent ecological differences between suitable and unsuitable areas.

  11. The ecological module of BOATS-1.0: a bioenergetically-constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    Carozza, D. A.; Bianchi, D.; Galbraith, E. D.

    2015-12-01

    Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modeling fish biomass at the global scale. The ecological model is designed to be used on an Earth System model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how the change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modeling efforts, while retaining realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for idealized studies of fisheries.

  12. The ecological module of BOATS-1.0: a bioenergetically constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    Carozza, David Anthony; Bianchi, Daniele; Galbraith, Eric Douglas

    2016-04-01

    Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modelling fish biomass at the global scale. The ecological model is designed to be used on an Earth-system model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how they change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modelling efforts, while retaining reasonably realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for idealized studies of fisheries.

  13. Ecology, distribution, and predictive occurrence modeling of Palmers chipmunk (Tamias palmeri): a high-elevation small mammal endemic to the Spring Mountains in southern Nevada, USA

    USGS Publications Warehouse

    Lowrey, Chris E.; Longshore, Kathleen M.; Riddle, Brett R.; Mantooth, Stacy

    2016-01-01

    Although montane sky islands surrounded by desert scrub and shrub steppe comprise a large part of the biological diversity of the Basin and Range Province of southwestern North America, comprehensive ecological and population demographic studies for high-elevation small mammals within these areas are rare. Here, we examine the ecology and population parameters of the Palmer’s chipmunk (Tamias palmeri) in the Spring Mountains of southern Nevada, and present a predictive GIS-based distribution and probability of occurrence model at both home range and geographic spatial scales. Logistic regression analyses and Akaike Information Criterion model selection found variables of forest type, slope, and distance to water sources as predictive of chipmunk occurrence at the geographic scale. At the home range scale, increasing population density, decreasing overstory canopy cover, and decreasing understory canopy cover contributed to increased survival rates.

  14. Changing skewness: an early warning signal of regime shifts in ecosystems.

    PubMed

    Guttal, Vishwesha; Jayaprakash, Ciriyam

    2008-05-01

    Empirical evidence for large-scale abrupt changes in ecosystems such as lakes and vegetation of semi-arid regions is growing. Such changes, called regime shifts, can lead to degradation of ecological services. We study simple ecological models that show a catastrophic transition as a control parameter is varied and propose a novel early warning signal that exploits two ubiquitous features of ecological systems: nonlinearity and large external fluctuations. Either reduced resilience or increased external fluctuations can tip ecosystems to an alternative stable state. It is shown that changes in asymmetry in the distribution of time series data, quantified by changing skewness, is a model-independent and reliable early warning signal for both routes to regime shifts. Furthermore, using model simulations that mimic field measurements and a simple analysis of real data from abrupt climate change in the Sahara, we study the feasibility of skewness calculations using data available from routine monitoring.

  15. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology.

    PubMed

    Renner, Ian W; Warton, David I

    2013-03-01

    Modeling the spatial distribution of a species is a fundamental problem in ecology. A number of modeling methods have been developed, an extremely popular one being MAXENT, a maximum entropy modeling approach. In this article, we show that MAXENT is equivalent to a Poisson regression model and hence is related to a Poisson point process model, differing only in the intercept term, which is scale-dependent in MAXENT. We illustrate a number of improvements to MAXENT that follow from these relations. In particular, a point process model approach facilitates methods for choosing the appropriate spatial resolution, assessing model adequacy, and choosing the LASSO penalty parameter, all currently unavailable to MAXENT. The equivalence result represents a significant step in the unification of the species distribution modeling literature. Copyright © 2013, The International Biometric Society.

  16. Spatial-structural analysis of leafless woody riparian vegetation for hydraulic considerations

    NASA Astrophysics Data System (ADS)

    Weissteiner, Clemens; Jalonen, Johanna; Järvelä, Juha; Rauch, Hans Peter

    2013-04-01

    Woody riparian vegetation is a vital element of riverine environments. On one hand woody riparian vegetation has to be taken into account from a civil engineering point of view due to boundary shear stress and vegetation drag. On the other hand it has to be considered from a river ecological point of view due to shadowing effects and as a source of organic material for aquatic habitats. In hydrodynamic and hydro-ecological studies the effects of woody riparian vegetation on flow patterns are usually investigated on a very detailed level. On the contrary vegetation elements and their spatial patterns are generally analysed and discussed on the basis of an integral approach measuring for example basal diameters, heights and projected plant areas. For a better understanding of the influence of woody riparian vegetation on turbulent flow and on river ecology, it is essential to record and analyse plant data sets on the same level of quality as for hydrodynamic or hydro-ecologic purposes. As a result of the same scale of the analysis it is possible to incorporate riparian vegetation as a sub-model in the hydraulic analysis. For plant structural components, such as branches on different topological levels it is crucial to record plant geometrical parameters describing the habitus of the plant on branch level. An exact 3D geometrical model of real plants allows for an extraction of various spatial-structural plant parameters. In addition, allometric relationships help to summarize and describe plant traits of riparian vegetation. This paper focuses on the spatial-structural composition of leafless riparia woddy vegetation. Structural and spatial analyses determine detailed geometric properties of the structural components of the plants. Geometrical and topological parameters were recorded with an electro-magnetic scanning device. In total, 23 plants (willows, alders and birches) were analysed in the study. Data were recorded on branch level, which allowed for the development of a 3D geometric plant model. The results are expected to improve knowledge on how the architectural system and allometric relationships of the plants relate to ecological and hydrodynamic properties.

  17. Growth models of Rhizophora mangle L. seedlings in tropical southwestern Atlantic

    NASA Astrophysics Data System (ADS)

    Lima, Karen Otoni de Oliveira; Tognella, Mônica Maria Pereira; Cunha, Simone Rabelo; Andrade, Humber Agrelli de

    2018-07-01

    The present study selected and compared regression models that best describe the growth curves of Rhizophora mangle seedlings based on the height (cm) and time (days) variables. The Linear, Exponential, Power Law, Monomolecular, Logistic, and Gompertz models were adjusted with non-linear formulations and minimization of the sum of the squares of the residues. The Akaike Information Criterion was used to select the best model for each seedling. After this selection, the determination coefficient, which evaluates how well a model describes height variation as a time function, was inspected. Differing from the classic population ecology studies, the Monomolecular, Three-parameter Logistic, and Gompertz models presented the best performance in describing growth, suggesting they are the most adequate options for long-term studies. The different growth curves reflect the complexity of stem growth at the seedling stage for R. mangle. The analysis of the joint distribution of the parameters initial height, growth rate, and, asymptotic size allowed the study of the species ecological attributes and to observe its intraspecific variability in each model. Our results provide a basis for interpretation of the dynamics of seedlings growth during their establishment in a mature forest, as well as its regeneration processes.

  18. Assessing and Adapting LiDAR-Derived Pit-Free Canopy Height Model Algorithm for Sites with Varying Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Scholl, V.; Hulslander, D.; Goulden, T.; Wasser, L. A.

    2015-12-01

    Spatial and temporal monitoring of vegetation structure is important to the ecological community. Airborne Light Detection and Ranging (LiDAR) systems are used to efficiently survey large forested areas. From LiDAR data, three-dimensional models of forests called canopy height models (CHMs) are generated and used to estimate tree height. A common problem associated with CHMs is data pits, where LiDAR pulses penetrate the top of the canopy, leading to an underestimation of vegetation height. The National Ecological Observatory Network (NEON) currently implements an algorithm to reduce data pit frequency, which requires two height threshold parameters, increment size and range ceiling. CHMs are produced at a series of height increments up to a height range ceiling and combined to produce a CHM with reduced pits (referred to as a "pit-free" CHM). The current implementation uses static values for the height increment and ceiling (5 and 15 meters, respectively). To facilitate the generation of accurate pit-free CHMs across diverse NEON sites with varying vegetation structure, the impacts of adjusting the height threshold parameters were investigated through development of an algorithm which dynamically selects the height increment and ceiling. A series of pit-free CHMs were generated using three height range ceilings and four height increment values for three ecologically different sites. Height threshold parameters were found to change CHM-derived tree heights up to 36% compared to original CHMs. The extent of the parameters' influence on modelled tree heights was greater than expected, which will be considered during future CHM data product development at NEON. (A) Aerial image of Harvard National Forest, (B) standard CHM containing pits, appearing as black speckles, (C) a pit-free CHM created with the static algorithm implementation, and (D) a pit-free CHM created through varying the height threshold ceiling up to 82 m and the increment to 1 m.

  19. The ecological niche of Dermacentor marginatus in Germany.

    PubMed

    Walter, Melanie; Brugger, Katharina; Rubel, Franz

    2016-06-01

    The ixodid tick Dermacentor marginatus (Sulzer, 1776) is endemic throughout southern Europe in the range of 33-51 (°) N latitude. In Germany, however, D. marginatus was exclusively reported in the Rhine valley and adjacent areas. Its northern distribution limit near Giessen is located at the coordinates 8.32 (°) E/50.65 (°) N. Particularly with regard to the causative agents of rickettsioses, tularemia, and Q fever, the observed locations as well as the potential distribution of the vector D. marginatus in Germany are of special interest. Applying a dataset of 118 georeferenced tick locations, the ecological niche for D. marginatus was calculated. It is described by six climate parameters based on temperature and relative humidity and another six environmental parameters including land cover classes and altitude. The final ecological niche is determined by the frequency distributions of these 12 parameters at the tick locations. Main parameters are the mean annual temperature (frequency distribution characterized by the minimum, median, and maximum of 6.1, 9.9, and 12.2 (°)C), the mean annual relative humidity (73.7, 76.7, and 80.9 %), as well as the altitude (87, 240, 1108 m). The climate and environmental niche is used to estimate the habitat suitability of D. marginatus in Germany by applying the BIOCLIM model. Finally, the potential spatial distribution of D. marginatus was calculated and mapped by determining an optimal threshold value of the suitability index, i.e., the maximum of sensitivity and specificity (Youden index). The model performance is expressed by AUC = 0.91.

  20. Ecological niche of Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliermans, C.B.

    1983-01-01

    This paper discusses the ecological niches, relationships and controls of Legionella derived from environmental sources. Only as clinical cases and studies relate directly to the ecological understanding of the bacterium will they be discussed. This review seeks to separate the ecological parameters associated with Legionella that are often incorporated into the medical literature as well as to highlight specific ecological studies. A series of ecological studies demonstrates the niches of Legionella, the ecological parameters that allow the bacterium to survive, grow and to be disseminated. Relationships among given habitats are explored along with biological relationships within a given habitat.

  1. Improving the Algae Bloom Prediction through the Assimilation of the Remotely Sensed Chlorophyll-A Data in a Generic Ecological Model in the North Sea

    NASA Astrophysics Data System (ADS)

    El Serafy, Ghada

    2010-05-01

    Harmful algae can cause damage to co-existing organisms, tourism and farmers. Accurate predictions of algal future composition and abundance as well as when and where algal blooms may occur could help early warning and mitigating. The Generic Ecological Model, GEM, [Blauw et al 2008] is an instrument that can be applied to any water system (fresh, transitional or coastal) to calculate the primary production, chlorophyll-a concentration and phytoplankton species composition. It consists of physical, chemical and ecological model components which are coupled together to build one generic and flexible modeling tool. For the North Sea, the model has been analyzed to assess sensitivity of the simulated chlorophyll-a concentration to a subset of ecologically significant set of factors. The research led to the definition of the most significant set of parameters to the algae blooming process in the North Sea [Salacinska et al 2009]. In order to improve the prediction of the model, the set of parameters and the chlorophyll-a concentration can be further estimated through the use of data assimilation. In this research, the Ensemble Kalman Filter (EnKF) data assimilation technique is used to assimilate the chlorophyll-a data of the North Sea, retrieved from MEdium Resolution Imaging Sensor (MERIS) spectrometer data [Peters et al 2005], in the GEM model. The chlorophyll-a data includes concentrations and error information that enable their use in data assimilation. For the same purpose, the uncertainty of the ecological generic model, GEM has been quantified by means of Monte Carlo approach. Through a study covering the year of 2003, the research demonstrates that both data and model are sufficiently robust for a successful assimilation. The results show that through the assimilation of the satellite data, a better description of the algae bloom has been achieved and an improvement of the capability of the model to predict the algae bloom for the North Sea has been confirmed. Blauw A.N., Los F.J., Bokhorst M., Erftemeijer P.L.A., (2009), GEM: a Generic Ecological Model for estuaries and coastal waters. Journal of Hydrobiologia, Volume 618, Number 1, 175-198. Peters, S.W.M., Eleveld, M. Pasterkamp, R., Woerd, H. van der, Devolder, M., Jans, S., Park, Y., Ruddick, K., Block, T., Brockmann, C., Doerffer, R., Krasemann, H., Röttgers, R., Schönfeld, W., Jørgensen, P.V., Tilstone, G., Martinez-Vicente, V., Moore, G., Sørensen, K., Høkedal, J., Johnsen, T.M., Lømsland, E.R., Aas, E. (2005). Atlas of Chlorophyll-a concentration for the North Sea based on MERIS imagery of 2003. IVM report, Vrije Universiteit Amsterdam, 117 pp. ISBN 90-5192-026-1. Salacinska K., El Serafy G.Y., Blauw A., Los F.J., (2009) Sensitivity analysis of the two dimensional application of the Generic Ecological Model (GEM) to algal bloom prediction in the North Sea, Journal of Ecological Modeling, volume 221, 7, pp 178-190, DOI: 10.1016/j.ecolmodel.2009.10.001

  2. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  3. Sensitivity analysis of reactive ecological dynamics.

    PubMed

    Verdy, Ariane; Caswell, Hal

    2008-08-01

    Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.

  4. Taking error into account when fitting models using Approximate Bayesian Computation.

    PubMed

    van der Vaart, Elske; Prangle, Dennis; Sibly, Richard M

    2018-03-01

    Stochastic computer simulations are often the only practical way of answering questions relating to ecological management. However, due to their complexity, such models are difficult to calibrate and evaluate. Approximate Bayesian Computation (ABC) offers an increasingly popular approach to this problem, widely applied across a variety of fields. However, ensuring the accuracy of ABC's estimates has been difficult. Here, we obtain more accurate estimates by incorporating estimation of error into the ABC protocol. We show how this can be done where the data consist of repeated measures of the same quantity and errors may be assumed to be normally distributed and independent. We then derive the correct acceptance probabilities for a probabilistic ABC algorithm, and update the coverage test with which accuracy is assessed. We apply this method, which we call error-calibrated ABC, to a toy example and a realistic 14-parameter simulation model of earthworms that is used in environmental risk assessment. A comparison with exact methods and the diagnostic coverage test show that our approach improves estimation of parameter values and their credible intervals for both models. © 2017 by the Ecological Society of America.

  5. Ecological risk assessment in a large river-reservoir. 5: Aerial insectivorous wildlife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron, L.A.; Sample, B.E.; Suter, G.W. II

    Risks to aerial insectivores (e.g., rough-winged swallows, little brown bats, and endangered gray bats) were assessed for the remedial investigation of the Clinch River/Poplar Creek (CR/PC) system. Adult mayflies and sediment were collected from three locations and analyzed for contaminants. Sediment-to-mayfly contaminant uptake factors were generated from these data and used to estimate contaminant concentrations in mayflies from 13 additional locations. Contaminants of potential ecological concern (COPECs) were identified by comparing exposure estimates generated using point estimates of parameter values to NOAELs. To incorporate the variation in exposure parameters and to provide a better estimate of the potential exposure, themore » exposure model was recalculated using Monte Carlo methods. The potential for adverse effects was estimated based on the comparison of exposure distribution and the LOAEL. The results of this assessment suggested that population-level effects to rough-winged swallows and little brown bats are considered unlikely. However, because gray bats are endangered, effects on individuals may be significant from foraging in limited subreaches of the CR/PC system. This assessment illustrates the advantage of an iterative approach to ecological risk assessments, using fewer conservative assumptions and more realistic modeling of exposure.« less

  6. When does ecological sustainability ensure economic sustainability? An integrated analysis of thresholds in semi-arid western rangelands

    NASA Astrophysics Data System (ADS)

    Cobourn, K. M.; Peckham, S. D.

    2011-12-01

    The vulnerability of agri-environmental systems to ecological threshold events depends on the combined influence of economic factors and natural drivers, such as climate and disturbance. This analysis builds an integrated ecologic-economic model to evaluate the behavioral response of agricultural producers to changing and uncertain natural conditions. The model explicitly reflects the effect of producer behavior on the likelihood of a threshold event that threatens the ecological and/or economic sustainability of the agri-environmental system. The foundation of the analysis is a threshold indicator that incorporates the population dynamics of a species that supports economic production and an episodic disturbance regime-in this case rangeland grass that is grazed by livestock and is subject to wildfire. This ecological indicator is integrated into an economic model in which producers choose grazing intensity given the state of the grass population and a set of economic parameters. We examine two model variants that characterize differing economic circumstances. The first characterizes the optimal grazing regime assuming that the system is managed by a single planner whose objective is to maximize the aggregate long-run returns of producers in the system. The second examines the case in which individual producers choose their own stocking rates in order to maximize their private economic benefit. The results from the first model variant illustrate the difference between an ecologic and an economic threshold. Failure to cross an ecological threshold does not necessarily ensure that the system remains economically viable: Economic sustainability, defined as the ability of the system to support optimal production into the infinite future, requires that the net growth rate of the supporting population exceeds the level required for ecological sustainability by an amount that depends on the market price of livestock and grazing efficiency. The results from the second model variant define the circumstances under which a system that is otherwise ecologically sustainable is driven over a threshold by the actions of economic agents. The difference between the two model solutions identifies bounds between which the viability of livestock production over the long-run is uncertain and depends upon the policy setting in which the agri-environmental system operates.

  7. Plausible combinations: An improved method to evaluate the covariate structure of Cormack-Jolly-Seber mark-recapture models

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.; McDonald, Trent L.; Amstrup, Steven C.

    2013-01-01

    Mark-recapture models are extensively used in quantitative population ecology, providing estimates of population vital rates, such as survival, that are difficult to obtain using other methods. Vital rates are commonly modeled as functions of explanatory covariates, adding considerable flexibility to mark-recapture models, but also increasing the subjectivity and complexity of the modeling process. Consequently, model selection and the evaluation of covariate structure remain critical aspects of mark-recapture modeling. The difficulties involved in model selection are compounded in Cormack-Jolly- Seber models because they are composed of separate sub-models for survival and recapture probabilities, which are conceptualized independently even though their parameters are not statistically independent. The construction of models as combinations of sub-models, together with multiple potential covariates, can lead to a large model set. Although desirable, estimation of the parameters of all models may not be feasible. Strategies to search a model space and base inference on a subset of all models exist and enjoy widespread use. However, even though the methods used to search a model space can be expected to influence parameter estimation, the assessment of covariate importance, and therefore the ecological interpretation of the modeling results, the performance of these strategies has received limited investigation. We present a new strategy for searching the space of a candidate set of Cormack-Jolly-Seber models and explore its performance relative to existing strategies using computer simulation. The new strategy provides an improved assessment of the importance of covariates and covariate combinations used to model survival and recapture probabilities, while requiring only a modest increase in the number of models on which inference is based in comparison to existing techniques.

  8. Characterizing the next-generation matrix and basic reproduction number in ecological epidemiology.

    PubMed

    Roberts, M G; Heesterbeek, J A P

    2013-03-01

    We address the interaction of ecological processes, such as consumer-resource relationships and competition, and the epidemiology of infectious diseases spreading in ecosystems. Modelling such interactions seems essential to understand the dynamics of infectious agents in communities consisting of interacting host and non-host species. We show how the usual epidemiological next-generation matrix approach to characterize invasion into multi-host communities can be extended to calculate R₀, and how this relates to the ecological community matrix. We then present two simple examples to illustrate this approach. The first of these is a model of the rinderpest, wildebeest, grass interaction, where our inferred dynamics qualitatively matches the observed phenomena that occurred after the eradication of rinderpest from the Serengeti ecosystem in the 1980s. The second example is a prey-predator system, where both species are hosts of the same pathogen. It is shown that regions for the parameter values exist where the two host species are only able to coexist when the pathogen is present to mediate the ecological interaction.

  9. Comparative analysis of remotely-sensed data products via ecological niche modeling of avian influenza case occurrences in Middle Eastern poultry.

    PubMed

    Bodbyl-Roels, Sarah; Peterson, A Townsend; Xiao, Xiangming

    2011-03-28

    Ecological niche modeling integrates known sites of occurrence of species or phenomena with data on environmental variation across landscapes to infer environmental spaces potentially inhabited (i.e., the ecological niche) to generate predictive maps of potential distributions in geographic space. Key inputs to this process include raster data layers characterizing spatial variation in environmental parameters, such as vegetation indices from remotely sensed satellite imagery. The extent to which ecological niche models reflect real-world distributions depends on a number of factors, but an obvious concern is the quality and content of the environmental data layers. We assessed ecological niche model predictions of H5N1 avian flu presence quantitatively within and among four geographic regions, based on models incorporating two means of summarizing three vegetation indices derived from the MODIS satellite. We evaluated our models for predictive ability using partial ROC analysis and GLM ANOVA to compare performance among indices and regions. We found correlations between vegetation indices to be high, such that they contain information that overlaps broadly. Neither the type of vegetation index used nor method of summary affected model performance significantly. However, the degree to which model predictions had to be transferred (i.e., projected onto landscapes and conditions not represented on the landscape of training) impacted predictive strength greatly (within-region model predictions far out-performed models projected among regions). Our results provide the first quantitative tests of most appropriate uses of different remotely sensed data sets in ecological niche modeling applications. While our testing did not result in a decisive "best" index product or means of summarizing indices, it emphasizes the need for careful evaluation of products used in modeling (e.g. matching temporal dimensions and spatial resolution) for optimum performance, instead of simple reliance on large numbers of data layers.

  10. Colour spaces in ecology and evolutionary biology.

    PubMed

    Renoult, Julien P; Kelber, Almut; Schaefer, H Martin

    2017-02-01

    The recognition that animals sense the world in a different way than we do has unlocked important lines of research in ecology and evolutionary biology. In practice, the subjective study of natural stimuli has been permitted by perceptual spaces, which are graphical models of how stimuli are perceived by a given animal. Because colour vision is arguably the best-known sensory modality in most animals, a diversity of colour spaces are now available to visual ecologists, ranging from generalist and basic models allowing rough but robust predictions on colour perception, to species-specific, more complex models giving accurate but context-dependent predictions. Selecting among these models is most often influenced by historical contingencies that have associated models to specific questions and organisms; however, these associations are not always optimal. The aim of this review is to provide visual ecologists with a critical perspective on how models of colour space are built, how well they perform and where their main limitations are with regard to their most frequent uses in ecology and evolutionary biology. We propose a classification of models based on their complexity, defined as whether and how they model the mechanisms of chromatic adaptation and receptor opponency, the nonlinear association between the stimulus and its perception, and whether or not models have been fitted to experimental data. Then, we review the effect of modelling these mechanisms on predictions of colour detection and discrimination, colour conspicuousness, colour diversity and diversification, and for comparing the perception of colour traits between distinct perceivers. While a few rules emerge (e.g. opponent log-linear models should be preferred when analysing very distinct colours), in general model parameters still have poorly known effects. Colour spaces have nonetheless permitted significant advances in ecology and evolutionary biology, and more progress is expected if ecologists compare results between models and perform behavioural experiments more routinely. Such an approach would further contribute to a better understanding of colour vision and its links to the behavioural ecology of animals. While visual ecology is essentially a transfer of knowledge from visual sciences to evolutionary ecology, we hope that the discipline will benefit both fields more evenly in the future. © 2015 Cambridge Philosophical Society.

  11. Assessing Coupled Social Ecological Flood Vulnerability from Uttarakhand, India, to the State of New York with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Tellman, B.; Schwarz, B.

    2014-12-01

    This talk describes the development of a web application to predict and communicate vulnerability to floods given publicly available data, disaster science, and geotech cloud capabilities. The proof of concept in Google Earth Engine API with initial testing on case studies in New York and Utterakhand India demonstrates the potential of highly parallelized cloud computing to model socio-ecological disaster vulnerability at high spatial and temporal resolution and in near real time. Cloud computing facilitates statistical modeling with variables derived from large public social and ecological data sets, including census data, nighttime lights (NTL), and World Pop to derive social parameters together with elevation, satellite imagery, rainfall, and observed flood data from Dartmouth Flood Observatory to derive biophysical parameters. While more traditional, physically based hydrological models that rely on flow algorithms and numerical methods are currently unavailable in parallelized computing platforms like Google Earth Engine, there is high potential to explore "data driven" modeling that trades physics for statistics in a parallelized environment. A data driven approach to flood modeling with geographically weighted logistic regression has been initially tested on Hurricane Irene in southeastern New York. Comparison of model results with observed flood data reveals a 97% accuracy of the model to predict flooded pixels. Testing on multiple storms is required to further validate this initial promising approach. A statistical social-ecological flood model that could produce rapid vulnerability assessments to predict who might require immediate evacuation and where could serve as an early warning. This type of early warning system would be especially relevant in data poor places lacking the computing power, high resolution data such as LiDar and stream gauges, or hydrologic expertise to run physically based models in real time. As the data-driven model presented relies on globally available data, the only real time data input required would be typical data from a weather service, e.g. precipitation or coarse resolution flood prediction. However, model uncertainty will vary locally depending upon the resolution and frequency of observed flood and socio-economic damage impact data.

  12. Assessing the quality of life history information in publicly available databases.

    PubMed

    Thorson, James T; Cope, Jason M; Patrick, Wesley S

    2014-01-01

    Single-species life history parameters are central to ecological research and management, including the fields of macro-ecology, fisheries science, and ecosystem modeling. However, there has been little independent evaluation of the precision and accuracy of the life history values in global and publicly available databases. We therefore develop a novel method based on a Bayesian errors-in-variables model that compares database entries with estimates from local experts, and we illustrate this process by assessing the accuracy and precision of entries in FishBase, one of the largest and oldest life history databases. This model distinguishes biases among seven life history parameters, two types of information available in FishBase (i.e., published values and those estimated from other parameters), and two taxa (i.e., bony and cartilaginous fishes) relative to values from regional experts in the United States, while accounting for additional variance caused by sex- and region-specific life history traits. For published values in FishBase, the model identifies a small positive bias in natural mortality and negative bias in maximum age, perhaps caused by unacknowledged mortality caused by fishing. For life history values calculated by FishBase, the model identified large and inconsistent biases. The model also demonstrates greatest precision for body size parameters, decreased precision for values derived from geographically distant populations, and greatest between-sex differences in age at maturity. We recommend that our bias and precision estimates be used in future errors-in-variables models as a prior on measurement errors. This approach is broadly applicable to global databases of life history traits and, if used, will encourage further development and improvements in these databases.

  13. A test of ecological optimality for semiarid vegetation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Salvucci, Guido D.; Eagleson, Peter S.; Turner, Edmund K.

    1992-01-01

    Three ecological optimality hypotheses which have utility in parameter reduction and estimation in a climate-soil-vegetation water balance model are reviewed and tested. The first hypothesis involves short term optimization of vegetative canopy density through equilibrium soil moisture maximization. The second hypothesis involves vegetation type selection again through soil moisture maximization, and the third involves soil genesis through plant induced modification of soil hydraulic properties to values which result in a maximum rate of biomass productivity.

  14. Calibration of Daycent biogeochemical model for rice paddies in three agro-ecological zones in Peninsular India to optimize cropping practices and predict GHG emissions

    NASA Astrophysics Data System (ADS)

    Rajan, S.; Kritee, K.; Keough, C.; Parton, W. J.; Ogle, S. M.

    2014-12-01

    Rice is a staple for nearly half of the world population with irrigated and rainfed lowland rice accounting for about 80% of the worldwide harvested rice area. Increased atmospheric CO2 and rising temperatures are expected to adversely affect rice yields by the end of the 21st century. In addition, different crop management practices affect methane and nitrous oxide emissions from rice paddies antagonistically warranting a review of crop management practices such that farmers can adapt to the changing climate and also help mitigate climate change. The Daily DayCent is a biogeochemical model that operates on a daily time step, driven by four ecological drivers, i.e. climate, soil, vegetation, and management practices. The model is widely used to simulate daily fluxes of various gases, plant productivity, nutrient availability, and other ecosystem parameters in response to changes in land management and climate. We employed the DayCent model as a tool to optimize rice cropping practices in Peninsular India so as to develop a set of farming recommendations to ensure a triple win (i.e. higher yield, higher profit and lower GHG emissions). We applied the model to simulate both N2O and CH4 emissions, and crop yields from four rice paddies in three different agro-ecological zones under different management practices, and compared them with measured GHG and yield data from these plots. We found that, like all process based models, the biggest constraint in using the model was input data acquisition. Lack of accurate documentation of historic land use and management practices, missing historical daily weather data, and difficulty in obtaining digital records of soil and crop/vegetation parameters related to our experimental plots came in the way of our execution of this model. We will discuss utilization of estimates based on available literature, or knowledge-based values in lieu of missing measured parameters in our simulations with DayCent which could prove to be a solution to overcome data limitations in modeling with DayCent and other process based models for developing regions of the world.

  15. Mathematical Model of Three Species Food Chain Interaction with Mixed Functional Response

    NASA Astrophysics Data System (ADS)

    Ws, Mada Sanjaya; Mohd, Ismail Bin; Mamat, Mustafa; Salleh, Zabidin

    In this paper, we study mathematical model of ecology with a tritrophic food chain composed of a classical Lotka-Volterra functional response for prey and predator, and a Holling type-III functional response for predator and super predator. There are two equilibrium points of the system. In the parameter space, there are passages from instability to stability, which are called Hopf bifurcation points. For the first equilibrium point, it is possible to find bifurcation points analytically and to prove that the system has periodic solutions around these points. Furthermore the dynamical behaviors of this model are investigated. Models for biologically reasonable parameter values, exhibits stable, unstable periodic and limit cycles. The dynamical behavior is found to be very sensitive to parameter values as well as the parameters of the practical life. Computer simulations are carried out to explain the analytical findings.

  16. SPOTting Model Parameters Using a Ready-Made Python Package

    NASA Astrophysics Data System (ADS)

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2017-04-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  17. SPOTting Model Parameters Using a Ready-Made Python Package.

    PubMed

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  18. SPOTting Model Parameters Using a Ready-Made Python Package

    PubMed Central

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function. PMID:26680783

  19. ECOPASS - a multivariate model used as an index of growth performance of poplar clones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceulemans, R.; Impens, I.

    The model (ECOlogical PASSport) reported was constructed by principal component analysis from a combination of biochemical, anatomical/morphological and ecophysiological gas exchange parameters measured on 5 fast growing poplar clones. Productivity data were 10 selected trees in 3 plantations in Belgium and given as m.a.i.(b.a.). The model is shown to be able to reflect not only genetic origin and the relative effects of the different parameters of the clones, but also their production potential. Multiple regression analysis of the 4 principal components showed a high cumulative correlation (96%) between the 3 components related to ecophysiological, biochemical and morphological parameters, and productivity;more » the ecophysiological component alone correlated 85% with productivity.« less

  20. Sensitivity Analysis in Agent-Based Models of Socio-Ecological Systems: An Example in Agricultural Land Conservation for Lake Water Quality Improvement

    NASA Astrophysics Data System (ADS)

    Ligmann-Zielinska, A.; Kramer, D. B.; Spence Cheruvelil, K.; Soranno, P.

    2012-12-01

    Socio-ecological systems are dynamic and nonlinear. To account for this complexity, we employ agent-based models (ABMs) to study macro-scale phenomena resulting from micro-scale interactions among system components. Because ABMs typically have many parameters, it is challenging to identify which parameters contribute to the emerging macro-scale patterns. In this paper, we address the following question: What is the extent of participation in agricultural land conservation programs given heterogeneous landscape, economic, social, and individual decision making criteria in complex lakesheds? To answer this question, we: [1] built an ABM for our model system; [2] simulated land use change resulting from agent decision making, [3] estimated the uncertainty of the model output, decomposed it and apportioned it to each of the parameters in the model. Our model system is a freshwater socio-ecological system - that of farmland and lake water quality within a region containing a large number of lakes and high proportions of agricultural lands. Our study focuses on examining how agricultural land conversion from active to fallow reduces freshwater nutrient loading and improves water quality. Consequently, our ABM is composed of farmer agents who make decisions related to participation in a government-sponsored Conservation Reserve Program (CRP) managed by the Farm Service Agency (FSA). We also include an FSA agent, who selects enrollment offers made by farmers and announces the signup results leading to land use change. The model is executed in a Monte Carlo simulation framework to generate a distribution of maps of fallow lands that are used for calculating nutrient loading to lakes. What follows is a variance-based sensitivity analysis of the results. We compute sensitivity indices for individual parameters and their combinations, allowing for identification of the most influential as well as the insignificant inputs. In the case study, we observe that farmland conservation is first and foremost driven by the FSA signup choices. Environmental criteria used in FSA offer selection play a secondary role in farmland-to-fallow-land conversion. Farmer decision making is mainly influenced by the willingness to reduce the potential annual rental payments. As the case study demonstrates, our approach leads to ABM simplification without the loss of outcome variability. It also shows how to represent the magnitude of ABM complexity and isolate the effects of the interconnected explanatory variables on the simulated emergent phenomena. More importantly, the results of our research indicate that some of the parameters exert influence on model outcomes only if analyzed in combination with other parameters. Without evaluating the interaction effects among inputs, we risk losing important functional relationships among ABM components and, consequently, we potentially reduce its explanatory power.

  1. Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.

    2018-01-01

    In this paper, we model an ecological system consisting of a predator and two preys with the newly derived two-step fractional Adams-Bashforth method via the Atangana-Baleanu derivative in the Caputo sense. We analyze the dynamical system for correct choice of parameter values that are biologically meaningful. The local analysis of the main model is based on the application of qualitative theory for ordinary differential equations. By using the fixed point theorem idea, we establish the existence and uniqueness of the solutions. Convergence results of the new scheme are verified in both space and time. Dynamical wave phenomena of solutions are verified via some numerical results obtained for different values of the fractional index, which have some interesting ecological implications.

  2. Pattern-oriented modelling: a ‘multi-scope’ for predictive systems ecology

    PubMed Central

    Grimm, Volker; Railsback, Steven F.

    2012-01-01

    Modern ecology recognizes that modelling systems across scales and at multiple levels—especially to link population and ecosystem dynamics to individual adaptive behaviour—is essential for making the science predictive. ‘Pattern-oriented modelling’ (POM) is a strategy for doing just this. POM is the multi-criteria design, selection and calibration of models of complex systems. POM starts with identifying a set of patterns observed at multiple scales and levels that characterize a system with respect to the particular problem being modelled; a model from which the patterns emerge should contain the right mechanisms to address the problem. These patterns are then used to (i) determine what scales, entities, variables and processes the model needs, (ii) test and select submodels to represent key low-level processes such as adaptive behaviour, and (iii) find useful parameter values during calibration. Patterns are already often used in these ways, but a mini-review of applications of POM confirms that making the selection and use of patterns more explicit and rigorous can facilitate the development of models with the right level of complexity to understand ecological systems and predict their response to novel conditions. PMID:22144392

  3. A mathematical model of a shallow and eutrophic lake (the Keszthely Basin, Lake Balaton) and simulation of restorative manipulations.

    PubMed

    Sagehashi, M; Sakoda, A; Suzuki, M

    2001-05-01

    Concern about the overall management of lakes has been growing, and a lake ecological model provides the guidelines necessary for such management. In this study, an ecological model describing the ecosystem of the Keszthely Basin, Lake Balaton, Hungary, one of the typical shallow and eutrophic lakes, was proposed. This model includes three types of zooplankton and two types of fish as well as two types of algae and nutrients. Parameters concerning the algae and fish were estimated based on observations in the basin between 1991 and 1995. The other parameters and the structure of the model were determined by our previous study. The parameters of the model were calibrated with the Monte Carlo technique, and its predictability was confirmed. The effects on the basin's ecosystem of three restorative manipulations, namely a biomanipulation, reduction of loading phosphorus, and dredging the sediment, were assessed by simulation studies using the proposed model. The simulation results indicated that a biomanipulation that removed 90% of the bream should suppress the growth of algae temporarily through bottom-up regulation; however, this effect seemed to not be perpetuated in this basin. The reduction of loading phosphorus seemed to be the most effective means to suppress algal growth, while dredging of sediment seemed to be the most desirable restoration method from the standpoint of the overall management of the lake, because it was expected to accelerate the growth of fish population as well as to suppress algal growth. Furthermore, the algal growth suppression mechanism of the dredging was discussed on the basis of the model calculations.

  4. Additive hazards regression and partial likelihood estimation for ecological monitoring data across space.

    PubMed

    Lin, Feng-Chang; Zhu, Jun

    2012-01-01

    We develop continuous-time models for the analysis of environmental or ecological monitoring data such that subjects are observed at multiple monitoring time points across space. Of particular interest are additive hazards regression models where the baseline hazard function can take on flexible forms. We consider time-varying covariates and take into account spatial dependence via autoregression in space and time. We develop statistical inference for the regression coefficients via partial likelihood. Asymptotic properties, including consistency and asymptotic normality, are established for parameter estimates under suitable regularity conditions. Feasible algorithms utilizing existing statistical software packages are developed for computation. We also consider a simpler additive hazards model with homogeneous baseline hazard and develop hypothesis testing for homogeneity. A simulation study demonstrates that the statistical inference using partial likelihood has sound finite-sample properties and offers a viable alternative to maximum likelihood estimation. For illustration, we analyze data from an ecological study that monitors bark beetle colonization of red pines in a plantation of Wisconsin.

  5. Global dynamics in a stoichiometric food chain model with two limiting nutrients.

    PubMed

    Chen, Ming; Fan, Meng; Kuang, Yang

    2017-07-01

    Ecological stoichiometry studies the balance of energy and multiple chemical elements in ecological interactions to establish how the nutrient content affect food-web dynamics and nutrient cycling in ecosystems. In this study, we formulate a food chain with two limiting nutrients in the form of a stoichiometric population model. A comprehensive global analysis of the rich dynamics of the targeted model is explored both analytically and numerically. Chaotic dynamic is observed in this simple stoichiometric food chain model and is compared with traditional model without stoichiometry. The detailed comparison reveals that stoichiometry can reduce the parameter space for chaotic dynamics. Our findings also show that decreasing producer production efficiency may have only a small effect on the consumer growth but a more profound impact on the top predator growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Model averaging and muddled multimodel inferences.

    PubMed

    Cade, Brian S

    2015-09-01

    Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the t statistics on unstandardized estimates also can be used to provide more informative measures of relative importance than sums of AIC weights. Finally, I illustrate how seriously compromised statistical interpretations and predictions can be for all three of these flawed practices by critiquing their use in a recent species distribution modeling technique developed for predicting Greater Sage-Grouse (Centrocercus urophasianus) distribution in Colorado, USA. These model averaging issues are common in other ecological literature and ought to be discontinued if we are to make effective scientific contributions to ecological knowledge and conservation of natural resources.

  7. Model averaging and muddled multimodel inferences

    USGS Publications Warehouse

    Cade, Brian S.

    2015-01-01

    Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the tstatistics on unstandardized estimates also can be used to provide more informative measures of relative importance than sums of AIC weights. Finally, I illustrate how seriously compromised statistical interpretations and predictions can be for all three of these flawed practices by critiquing their use in a recent species distribution modeling technique developed for predicting Greater Sage-Grouse (Centrocercus urophasianus) distribution in Colorado, USA. These model averaging issues are common in other ecological literature and ought to be discontinued if we are to make effective scientific contributions to ecological knowledge and conservation of natural resources.

  8. Forensic Entomology: Evaluating Uncertainty Associated With Postmortem Interval (PMI) Estimates With Ecological Models.

    PubMed

    Faris, A M; Wang, H-H; Tarone, A M; Grant, W E

    2016-05-31

    Estimates of insect age can be informative in death investigations and, when certain assumptions are met, can be useful for estimating the postmortem interval (PMI). Currently, the accuracy and precision of PMI estimates is unknown, as error can arise from sources of variation such as measurement error, environmental variation, or genetic variation. Ecological models are an abstract, mathematical representation of an ecological system that can make predictions about the dynamics of the real system. To quantify the variation associated with the pre-appearance interval (PAI), we developed an ecological model that simulates the colonization of vertebrate remains by Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae), a primary colonizer in the southern United States. The model is based on a development data set derived from a local population and represents the uncertainty in local temperature variability to address PMI estimates at local sites. After a PMI estimate is calculated for each individual, the model calculates the maximum, minimum, and mean PMI, as well as the range and standard deviation for stadia collected. The model framework presented here is one manner by which errors in PMI estimates can be addressed in court when no empirical data are available for the parameter of interest. We show that PAI is a potential important source of error and that an ecological model is one way to evaluate its impact. Such models can be re-parameterized with any development data set, PAI function, temperature regime, assumption of interest, etc., to estimate PMI and quantify uncertainty that arises from specific prediction systems. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Do open-cycle hatcheries relying on tourism conserve sea turtles? Sri Lankan developments and economic-ecological considerations.

    PubMed

    Tisdell, Clem; Wilson, Clevo

    2005-04-01

    By combining economic analysis of markets with ecological parameters, this article considers the role that tourism-based sea turtle hatcheries (of an open-cycle type) can play in conserving populations of sea turtles. Background is provided on the nature and development of such hatcheries in Sri Lanka. The modeling facilitates the assessment of the impacts of turtle hatcheries on the conservation of sea turtles and enables the economic and ecological consequences of tourism, based on such hatcheries, to be better appreciated. The results demonstrate that sea turtle hatcheries serving tourists can make a positive contribution to sea turtle conservation, but that their conservation effectiveness depends on the way they are managed. Possible negative effects are also identified. Economic market models are combined with turtle population survival relationships to predict the conservation impact of turtle hatcheries and their consequence for the total economic value obtained from sea turtle populations.

  10. Ecological optimality in water-limited natural soil-vegetation systems. I - Theory and hypothesis

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1982-01-01

    The solution space of an approximate statistical-dynamic model of the average annual water balance is explored with respect to the hydrologic parameters of both soil and vegetation. Within the accuracy of this model it is shown that water-limited natural vegetation systems are in stable equilibrium with their climatic and pedologic environments when the canopy density and species act to minimize average water demand stress. Theory shows a climatic limit to this equilibrium above which it is hypothesized that ecological pressure is toward maximization of biomass productivity. It is further hypothesized that natural soil-vegetation systems will develop gradually and synergistically, through vegetation-induced changes in soil structure, toward a set of hydraulic soil properties for which the minimum stress canopy density of a given species is maximum in a given climate. Using these hypotheses, only the soil effective porosity need be known to determine the optimum soil and vegetation parameters in a given climate.

  11. Human judgment vs. quantitative models for the management of ecological resources.

    PubMed

    Holden, Matthew H; Ellner, Stephen P

    2016-07-01

    Despite major advances in quantitative approaches to natural resource management, there has been resistance to using these tools in the actual practice of managing ecological populations. Given a managed system and a set of assumptions, translated into a model, optimization methods can be used to solve for the most cost-effective management actions. However, when the underlying assumptions are not met, such methods can potentially lead to decisions that harm the environment and economy. Managers who develop decisions based on past experience and judgment, without the aid of mathematical models, can potentially learn about the system and develop flexible management strategies. However, these strategies are often based on subjective criteria and equally invalid and often unstated assumptions. Given the drawbacks of both methods, it is unclear whether simple quantitative models improve environmental decision making over expert opinion. In this study, we explore how well students, using their experience and judgment, manage simulated fishery populations in an online computer game and compare their management outcomes to the performance of model-based decisions. We consider harvest decisions generated using four different quantitative models: (1) the model used to produce the simulated population dynamics observed in the game, with the values of all parameters known (as a control), (2) the same model, but with unknown parameter values that must be estimated during the game from observed data, (3) models that are structurally different from those used to simulate the population dynamics, and (4) a model that ignores age structure. Humans on average performed much worse than the models in cases 1-3, but in a small minority of scenarios, models produced worse outcomes than those resulting from students making decisions based on experience and judgment. When the models ignored age structure, they generated poorly performing management decisions, but still outperformed students using experience and judgment 66% of the time. © 2016 by the Ecological Society of America.

  12. Final Report, 2011-2014. Forecasting Carbon Storage as Eastern Forests Age. Joining Experimental and Modeling Approaches at the UMBS AmeriFlux Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Peter; Bohrer, Gil; Gough, Christopher

    2015-03-12

    At the University of Michigan Biological Station (UMBS) AmeriFlux sites (US-UMB and US-UMd), long-term C cycling measurements and a novel ecosystem-scale experiment are revealing physical, biological, and ecological mechanisms driving long-term trajectories of C cycling, providing new data for improving modeling forecasts of C storage in eastern forests. Our findings provide support for previously untested hypotheses that stand-level structural and biological properties constrain long-term trajectories of C storage, and that remotely sensed canopy structural parameters can substantially improve model forecasts of forest C storage. Through the Forest Accelerated Succession ExperimenT (FASET), we are directly testing the hypothesis that forest Cmore » storage will increase due to increasing structural and biological complexity of the emerging tree communities. Support from this project, 2011-2014, enabled us to incorporate novel physical and ecological mechanisms into ecological, meteorological, and hydrological models to improve forecasts of future forest C storage in response to disturbance, succession, and current and long-term climate variation« less

  13. A comment on priors for Bayesian occupancy models.

    PubMed

    Northrup, Joseph M; Gerber, Brian D

    2018-01-01

    Understanding patterns of species occurrence and the processes underlying these patterns is fundamental to the study of ecology. One of the more commonly used approaches to investigate species occurrence patterns is occupancy modeling, which can account for imperfect detection of a species during surveys. In recent years, there has been a proliferation of Bayesian modeling in ecology, which includes fitting Bayesian occupancy models. The Bayesian framework is appealing to ecologists for many reasons, including the ability to incorporate prior information through the specification of prior distributions on parameters. While ecologists almost exclusively intend to choose priors so that they are "uninformative" or "vague", such priors can easily be unintentionally highly informative. Here we report on how the specification of a "vague" normally distributed (i.e., Gaussian) prior on coefficients in Bayesian occupancy models can unintentionally influence parameter estimation. Using both simulated data and empirical examples, we illustrate how this issue likely compromises inference about species-habitat relationships. While the extent to which these informative priors influence inference depends on the data set, researchers fitting Bayesian occupancy models should conduct sensitivity analyses to ensure intended inference, or employ less commonly used priors that are less informative (e.g., logistic or t prior distributions). We provide suggestions for addressing this issue in occupancy studies, and an online tool for exploring this issue under different contexts.

  14. Estimating the Effect of Competition on Trait Evolution Using Maximum Likelihood Inference.

    PubMed

    Drury, Jonathan; Clavel, Julien; Manceau, Marc; Morlon, Hélène

    2016-07-01

    Many classical ecological and evolutionary theoretical frameworks posit that competition between species is an important selective force. For example, in adaptive radiations, resource competition between evolving lineages plays a role in driving phenotypic diversification and exploration of novel ecological space. Nevertheless, current models of trait evolution fit to phylogenies and comparative data sets are not designed to incorporate the effect of competition. The most advanced models in this direction are diversity-dependent models where evolutionary rates depend on lineage diversity. However, these models still treat changes in traits in one branch as independent of the value of traits on other branches, thus ignoring the effect of species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics of traits involved in interspecific interactions are influenced by species similarity in trait values and where we can specify which lineages are in sympatry. We develop a maximum likelihood based approach to fit this model to combined phylogenetic and phenotypic data. Using simulations, we demonstrate that the approach accurately estimates the simulated parameter values across a broad range of parameter space. Additionally, we develop tools for specifying the biogeographic context in which trait evolution occurs. In order to compare models, we also apply these biogeographic methods to specify which lineages interact sympatrically for two diversity-dependent models. Finally, we fit these various models to morphological data from a classical adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for competition and geography perform better than other models. The matching competition model is an important new tool for studying the influence of interspecific interactions, in particular competition, on phenotypic evolution. More generally, it constitutes a step toward a better integration of interspecific interactions in many ecological and evolutionary processes. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Simulation and experimental studies of operators` decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshkati, N.; Buller, B.J.; Azadeh, M.A.

    1995-04-01

    The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and amore » mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.« less

  16. MODELING COUPLING OF EEL GRASS ZOSTRA MARINA AND WATER FLOW

    EPA Science Inventory

    Ecological effects caused by submerged aquatic vegetation not only depend on the plants and their morphology but also on the flow and transport patterns of dissolved and suspended constituents near the canopy. The height of the canopy is a major parameter in any quantitative an...

  17. Mapping the Climate of Puerto Rico, Vieques and Culebra.

    Treesearch

    CHRISTOPHER DALY; E. H. HELMER; MAYA QUINONES

    2003-01-01

    Spatially explicit climate data contribute to watershed resource management, mapping vegetation type with satellite imagery, mapping present and hypothetical future ecological zones, and predicting species distributions. The regression based Parameter-elevation Regressions on Independent Slopes Model (PRISM) uses spatial data sets, a knowledge base and expert...

  18. Modelling ecological and human exposure to POPs in Venice lagoon - Part II: Quantitative uncertainty and sensitivity analysis in coupled exposure models.

    PubMed

    Radomyski, Artur; Giubilato, Elisa; Ciffroy, Philippe; Critto, Andrea; Brochot, Céline; Marcomini, Antonio

    2016-11-01

    The study is focused on applying uncertainty and sensitivity analysis to support the application and evaluation of large exposure models where a significant number of parameters and complex exposure scenarios might be involved. The recently developed MERLIN-Expo exposure modelling tool was applied to probabilistically assess the ecological and human exposure to PCB 126 and 2,3,7,8-TCDD in the Venice lagoon (Italy). The 'Phytoplankton', 'Aquatic Invertebrate', 'Fish', 'Human intake' and PBPK models available in MERLIN-Expo library were integrated to create a specific food web to dynamically simulate bioaccumulation in various aquatic species and in the human body over individual lifetimes from 1932 until 1998. MERLIN-Expo is a high tier exposure modelling tool allowing propagation of uncertainty on the model predictions through Monte Carlo simulation. Uncertainty in model output can be further apportioned between parameters by applying built-in sensitivity analysis tools. In this study, uncertainty has been extensively addressed in the distribution functions to describe the data input and the effect on model results by applying sensitivity analysis techniques (screening Morris method, regression analysis, and variance-based method EFAST). In the exposure scenario developed for the Lagoon of Venice, the concentrations of 2,3,7,8-TCDD and PCB 126 in human blood turned out to be mainly influenced by a combination of parameters (half-lives of the chemicals, body weight variability, lipid fraction, food assimilation efficiency), physiological processes (uptake/elimination rates), environmental exposure concentrations (sediment, water, food) and eating behaviours (amount of food eaten). In conclusion, this case study demonstrated feasibility of MERLIN-Expo to be successfully employed in integrated, high tier exposure assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Calibration and analysis of genome-based models for microbial ecology.

    PubMed

    Louca, Stilianos; Doebeli, Michael

    2015-10-16

    Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.

  20. A factorial assessment of the sensitivity of the BATS land-surface parameterization scheme. [BATS (Biosphere-Atmosphere Transfer Scheme)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson-Sellers, A.

    Land-surface schemes developed for incorporation into global climate models include parameterizations that are not yet fully validated and depend upon the specification of a large (20-50) number of ecological and soil parameters, the values of which are not yet well known. There are two methods of investigating the sensitivity of a land-surface scheme to prescribed values: simple one-at-a-time changes or factorial experiments. Factorial experiments offer information about interactions between parameters and are thus a more powerful tool. Here the results of a suite of factorial experiments are reported. These are designed (i) to illustrate the usefulness of this methodology andmore » (ii) to identify factors important to the performance of complex land-surface schemes. The Biosphere-Atmosphere Transfer Scheme (BATS) is used and its sensitivity is considered (a) to prescribed ecological and soil parameters and (b) to atmospheric forcing used in the off-line tests undertaken. Results indicate that the most important atmospheric forcings are mean monthly temperature and the interaction between mean monthly temperature and total monthly precipitation, although fractional cloudiness and other parameters are also important. The most important ecological parameters are vegetation roughness length, soil porosity, and a factor describing the sensitivity of the stomatal resistance of vegetation to the amount of photosynthetically active solar radiation and, to a lesser extent, soil and vegetation albedos. Two-factor interactions including vegetation roughness length are more important than many of the 23 specified single factors. The results of factorial sensitivity experiments such as these could form the basis for intercomparison of land-surface parameterization schemes and for field experiments and satellite-based observation programs aimed at improving evaluation of important parameters.« less

  1. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    NASA Astrophysics Data System (ADS)

    Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.

    2018-01-01

    The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.

  2. Quantitative retrieving forest ecological parameters based on remote sensing in Liping County of China

    NASA Astrophysics Data System (ADS)

    Tian, Qingjiu; Chen, Jing M.; Zheng, Guang; Xia, Xueqi; Chen, Junying

    2006-09-01

    Forest ecosystem is an important component of terrestrial ecosystem and plays an important role in global changes. Aboveground biomass (AGB) of forest ecosystem is an important factor in global carbon cycle studies. The purpose of this study was to retrieve the yearly Net Primary Productivity (NPP) of forest from the 8-days-interval MODIS-LAI images of a year and produce a yearly NPP distribution map. The LAI, DBH (diameter at breast height), tree height, and tree age field were measured in different 80 plots for Chinese fir, Masson pine, bamboo, broadleaf, mix forest in Liping County. Based on the DEM image and Landsat TM images acquired on May 14th, 2000, the geometric correction and terrain correction were taken. In addition, the "6S"model was used to gain the surface reflectance image. Then the correlation between Leaf Area Index (LAI) and Reduced Simple Ratio (RSR) was built. Combined with the Landcover map, forest stand map, the LAI, aboveground biomass, tree age map were produced respectively. After that, the 8-days- interval LAI images of a year, meteorology data, soil data, forest stand image and Landcover image were inputted into the BEPS model to get the NPP spatial distribution. At last, the yearly NPP spatial distribution map with 30m spatial resolution was produced. The values in those forest ecological parameters distribution maps were quite consistent with those of field measurements. So it's possible, feasible and time-saving to estimate forest ecological parameters at a large scale by using remote sensing.

  3. [Ecological risk assessment of sediment pollution based on triangular fuzzy number].

    PubMed

    Zhou, Xiao-Wei; Wang, Li-Ping; Zheng, Bing-Hui

    2008-11-01

    Based on the characteristics of random and fuzziness, and the shortage and imprecision of datum information of water environmental system, environment background value of sediments and concentration of pollution is calculated by means of triangle fuzzy number and fuzzy risk assessment model of the potential ecological risk index is established. Using this method heavy metal pollution and ecological risk in the Yangtze Estuary and its adjacent waters were analyzed. The result shows that the environment of the foundation of the study area is subject to varying degrees of pollution. The pollution extents are correspondingly Cu, Hg, Zn, Pb, As, Cd. RI by that method and the Hakanson ecological risk method is in similar trend. RI of the estuary, turbidity maximum zone and Hangzhou bay is greater than that at outside of the estuary and sea area nearby Zhousan, and the potential ecological risk rate increases one. The assessment result is good in the validation based on the corresponding period macrobenthic community parameters.

  4. An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides

    PubMed Central

    Johnston, A.S.A.; Hodson, M.E.; Thorbek, P.; Alvarez, T.; Sibly, R.M.

    2014-01-01

    Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing good model fits to field population data. The ability of the presented model to fit the available field and laboratory data for E. fetida demonstrates the promise of the agent-based approach in ecology, by showing how biological knowledge can be used to make ecological inferences. Further work is required to extend the approach to populations of more ecologically relevant species studied at the field scale. Such a model could help extrapolate from laboratory to field conditions and from one set of field conditions to another or from species to species. PMID:25844009

  5. Incorporating rainfall uncertainty in a SWAT model: the river Zenne basin (Belgium) case study

    NASA Astrophysics Data System (ADS)

    Tolessa Leta, Olkeba; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2013-04-01

    The European Union Water Framework Directive (EU-WFD) called its member countries to achieve a good ecological status for all inland and coastal water bodies by 2015. According to recent studies, the river Zenne (Belgium) is far from this objective. Therefore, an interuniversity and multidisciplinary project "Towards a Good Ecological Status in the river Zenne (GESZ)" was launched to evaluate the effects of wastewater management plans on the river. In this project, different models have been developed and integrated using the Open Modelling Interface (OpenMI). The hydrologic, semi-distributed Soil and Water Assessment Tool (SWAT) is hereby used as one of the model components in the integrated modelling chain in order to model the upland catchment processes. The assessment of the uncertainty of SWAT is an essential aspect of the decision making process, in order to design robust management strategies that take the predicted uncertainties into account. Model uncertainty stems from the uncertainties on the model parameters, the input data (e.g, rainfall), the calibration data (e.g., stream flows) and on the model structure itself. The objective of this paper is to assess the first three sources of uncertainty in a SWAT model of the river Zenne basin. For the assessment of rainfall measurement uncertainty, first, we identified independent rainfall periods, based on the daily precipitation and stream flow observations and using the Water Engineering Time Series PROcessing tool (WETSPRO). Secondly, we assigned a rainfall multiplier parameter for each of the independent rainfall periods, which serves as a multiplicative input error corruption. Finally, we treated these multipliers as latent parameters in the model optimization and uncertainty analysis (UA). For parameter uncertainty assessment, due to the high number of parameters of the SWAT model, first, we screened out its most sensitive parameters using the Latin Hypercube One-factor-At-a-Time (LH-OAT) technique. Subsequently, we only considered the most sensitive parameters for parameter optimization and UA. To explicitly account for the stream flow uncertainty, we assumed that the stream flow measurement error increases linearly with the stream flow value. To assess the uncertainty and infer posterior distributions of the parameters, we used a Markov Chain Monte Carlo (MCMC) sampler - differential evolution adaptive metropolis (DREAM) that uses sampling from an archive of past states to generate candidate points in each individual chain. It is shown that the marginal posterior distributions of the rainfall multipliers vary widely between individual events, as a consequence of rainfall measurement errors and the spatial variability of the rain. Only few of the rainfall events are well defined. The marginal posterior distributions of the SWAT model parameter values are well defined and identified by DREAM, within their prior ranges. The posterior distributions of output uncertainty parameter values also show that the stream flow data is highly uncertain. The approach of using rainfall multipliers to treat rainfall uncertainty for a complex model has an impact on the model parameter marginal posterior distributions and on the model results Corresponding author: Tel.: +32 (0)2629 3027; fax: +32(0)2629 3022. E-mail: otolessa@vub.ac.be

  6. An ecological framework for informing permitting decisions on scientific activities in protected areas

    PubMed Central

    Saarman, Emily T.; Owens, Brian; Murray, Steven N.; Weisberg, Stephen B.; Field, John C.; Nielsen, Karina J.

    2018-01-01

    There are numerous reasons to conduct scientific research within protected areas, but research activities may also negatively impact organisms and habitats, and thus conflict with a protected area’s conservation goals. We developed a quantitative ecological decision-support framework that estimates these potential impacts so managers can weigh costs and benefits of proposed research projects and make informed permitting decisions. The framework generates quantitative estimates of the ecological impacts of the project and the cumulative impacts of the proposed project and all other projects in the protected area, and then compares the estimated cumulative impacts of all projects with policy-based acceptable impact thresholds. We use a series of simplified equations (models) to assess the impacts of proposed research to: a) the population of any targeted species, b) the major ecological assemblages that make up the community, and c) the physical habitat that supports protected area biota. These models consider both targeted and incidental impacts to the ecosystem and include consideration of the vulnerability of targeted species, assemblages, and habitats, based on their recovery time and ecological role. We parameterized the models for a wide variety of potential research activities that regularly occur in the study area using a combination of literature review and expert judgment with a precautionary approach to uncertainty. We also conducted sensitivity analyses to examine the relationships between model input parameters and estimated impacts to understand the dominant drivers of the ecological impact estimates. Although the decision-support framework was designed for and adopted by the California Department of Fish and Wildlife for permitting scientific studies in the state-wide network of marine protected areas (MPAs), the framework can readily be adapted for terrestrial and freshwater protected areas. PMID:29920527

  7. Functional ecology of aquatic phagotrophic protists - Concepts, limitations, and perspectives.

    PubMed

    Weisse, Thomas; Anderson, Ruth; Arndt, Hartmut; Calbet, Albert; Hansen, Per Juel; Montagnes, David J S

    2016-08-01

    Functional ecology is a subdiscipline that aims to enable a mechanistic understanding of patterns and processes from the organismic to the ecosystem level. This paper addresses some main aspects of the process-oriented current knowledge on phagotrophic, i.e. heterotrophic and mixotrophic, protists in aquatic food webs. This is not an exhaustive review; rather, we focus on conceptual issues, in particular on the numerical and functional response of these organisms. We discuss the evolution of concepts and define parameters to evaluate predator-prey dynamics ranging from Lotka-Volterra to the Independent Response Model. Since protists have extremely versatile feeding modes, we explore if there are systematic differences related to their taxonomic affiliation and life strategies. We differentiate between intrinsic factors (nutritional history, acclimatisation) and extrinsic factors (temperature, food, turbulence) affecting feeding, growth, and survival of protist populations. We briefly consider intraspecific variability of some key parameters and constraints inherent in laboratory microcosm experiments. We then upscale the significance of phagotrophic protists in food webs to the ocean level. Finally, we discuss limitations of the mechanistic understanding of protist functional ecology resulting from principal unpredictability of nonlinear dynamics. We conclude by defining open questions and identifying perspectives for future research on functional ecology of aquatic phagotrophic protists. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Predicting what helminth parasites a fish species should have using Parasite Co-occurrence Modeler (PaCo)

    USGS Publications Warehouse

    Strona, Giovanni; Lafferty, Kevin D.

    2013-01-01

    Fish pathologists are often interested in which parasites would likely be present in a particular host. Parasite Co-occurrence Modeler (PaCo) is a tool for identifying a list of parasites known from fish species that are similar ecologically, phylogenetically, and geographically to the host of interest. PaCo uses data from FishBase (maximum length, growth rate, life span, age at maturity, trophic level, phylogeny, and biogeography) to estimate compatibility between a target host and parasite species–genera from the major helminth groups (Acanthocephala, Cestoda, Monogenea, Nematoda, and Trematoda). Users can include any combination of host attributes in a model. These unique features make PaCo an innovative tool for addressing both theoretical and applied questions in parasitology. In addition to predicting the occurrence of parasites, PaCo can be used to investigate how host characteristics shape parasite communities. To test the performance of the PaCo algorithm, we created 12,400 parasite lists by applying any possible combination of model parameters (248) to 50 fish hosts. We then measured the relative importance of each parameter by assessing their frequency in the best models for each host. Host phylogeny and host geography were identified as the most important factors, with both present in 88% of the best models. Habitat (64%) was identified in more than half of the best models. Among ecological parameters, trophic level (41%) was the most relevant while life span (34%), growth rate (32%), maximum length (28%), and age at maturity (20%) were less commonly linked to best models. PaCo is free to use at www.purl.oclc.org/fishpest.

  9. Predicting what helminth parasites a fish species should have using Parasite Co-occurrence Modeler (PaCo).

    PubMed

    Strona, Giovanni; Lafferty, Kevin D

    2013-02-01

    Fish pathologists are often interested in which parasites would likely be present in a particular host. Parasite Co-occurrence Modeler (PaCo) is a tool for identifying a list of parasites known from fish species that are similar ecologically, phylogenetically, and geographically to the host of interest. PaCo uses data from FishBase (maximum length, growth rate, life span, age at maturity, trophic level, phylogeny, and biogeography) to estimate compatibility between a target host and parasite species-genera from the major helminth groups (Acanthocephala, Cestoda, Monogenea, Nematoda, and Trematoda). Users can include any combination of host attributes in a model. These unique features make PaCo an innovative tool for addressing both theoretical and applied questions in parasitology. In addition to predicting the occurrence of parasites, PaCo can be used to investigate how host characteristics shape parasite communities. To test the performance of the PaCo algorithm, we created 12,400 parasite lists by applying any possible combination of model parameters (248) to 50 fish hosts. We then measured the relative importance of each parameter by assessing their frequency in the best models for each host. Host phylogeny and host geography were identified as the most important factors, with both present in 88% of the best models. Habitat (64%) was identified in more than half of the best models. Among ecological parameters, trophic level (41%) was the most relevant while life span (34%), growth rate (32%), maximum length (28%), and age at maturity (20%) were less commonly linked to best models. PaCo is free to use at www.purl.oclc.org/fishpest.

  10. A set of scientific issues being considered by the Environmental Protection Agency regarding: pesticide exposure modeling and climate change. SAP Minutes No. 2011-01. USEPA FIFRA Scientific Advisory Panel

    USDA-ARS?s Scientific Manuscript database

    The USEPA Office of Pesticide Programs (OPP) reviewed most of its human and ecological exposure assessment models for conventional pesticides to evaluate which inputs and parameters may be affected by changing climate conditions. To illustrate the approach used for considering potential effects of c...

  11. Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder

    USGS Publications Warehouse

    Menke, S.B.; Holway, D.A.; Fisher, R.N.; Jetz, W.

    2009-01-01

    Aim: Species distribution models (SDMs) or, more specifically, ecological niche models (ENMs) are a useful and rapidly proliferating tool in ecology and global change biology. ENMs attempt to capture associations between a species and its environment and are often used to draw biological inferences, to predict potential occurrences in unoccupied regions and to forecast future distributions under environmental change. The accuracy of ENMs, however, hinges critically on the quality of occurrence data. ENMs often use haphazardly collected data rather than data collected across the full spectrum of existing environmental conditions. Moreover, it remains unclear how processes affecting ENM predictions operate at different spatial scales. The scale (i.e. grain size) of analysis may be dictated more by the sampling regime than by biologically meaningful processes. The aim of our study is to jointly quantify how issues relating to region and scale affect ENM predictions using an economically important and ecologically damaging invasive species, the Argentine ant (Linepithema humile). Location: California, USA. Methods: We analysed the relationship between sampling sufficiency, regional differences in environmental parameter space and cell size of analysis and resampling environmental layers using two independently collected sets of presence/absence data. Differences in variable importance were determined using model averaging and logistic regression. Model accuracy was measured with area under the curve (AUC) and Cohen's kappa. Results: We first demonstrate that insufficient sampling of environmental parameter space can cause large errors in predicted distributions and biological interpretation. Models performed best when they were parametrized with data that sufficiently sampled environmental parameter space. Second, we show that altering the spatial grain of analysis changes the relative importance of different environmental variables. These changes apparently result from how environmental constraints and the sampling distributions of environmental variables change with spatial grain. Conclusions: These findings have clear relevance for biological inference. Taken together, our results illustrate potentially general limitations for ENMs, especially when such models are used to predict species occurrences in novel environments. We offer basic methodological and conceptual guidelines for appropriate sampling and scale matching. ?? 2009 The Authors Journal compilation ?? 2009 Blackwell Publishing.

  12. Calibration strategies for a groundwater model in a highly dynamic alpine floodplain

    USGS Publications Warehouse

    Foglia, L.; Burlando, P.; Hill, Mary C.; Mehl, S.

    2004-01-01

    Most surface flows to the 20-km-long Maggia Valley in Southern Switzerland are impounded and the valley is being investigated to determine environmental flow requirements. The aim of the investigation is the devel-opment of a modelling framework that simulates the dynamics of the ground-water, hydrologic, and ecologic systems. Because of the multi-scale nature of the modelling framework, large-scale models are first developed to provide the boundary conditions for more detailed models of reaches that are of eco-logical importance. We describe here the initial (large-scale) groundwa-ter/surface water model and its calibration in relation to initial and boundary conditions. A MODFLOW-2000 model was constructed to simulate the inter-action of groundwater and surface water and was developed parsimoniously to avoid modelling artefacts and parameter inconsistencies. Model calibration includes two steady-state conditions, with and without recharge to the aquifer from the adjoining hillslopes. Parameters are defined to represent areal re-charge, hydraulic conductivity of the aquifer (up to 5 classes), and streambed hydraulic conductivity. Model performance was investigated following two system representation. The first representation assumed unknown flow input at the northern end of the groundwater domain and unknown lateral inflow. The second representation used simulations of the lateral flow obtained by means of a raster-based, physically oriented and continuous in time rainfall-runoff (R-R) model. Results based on these two representations are compared and discussed.

  13. Carbon Sequestration Estimation of Street Trees Based on Point Cloud from Vehicle-Borne Laser Scanning System

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Hu, Q.

    2017-09-01

    Continuous development of urban road traffic system requests higher standards of road ecological environment. Ecological benefits of street trees are getting more attention. Carbon sequestration of street trees refers to the carbon stocks of street trees, which can be a measurement for ecological benefits of street trees. Estimating carbon sequestration in a traditional way is costly and inefficient. In order to solve above problems, a carbon sequestration estimation approach for street trees based on 3D point cloud from vehicle-borne laser scanning system is proposed in this paper. The method can measure the geometric parameters of a street tree, including tree height, crown width, diameter at breast height (DBH), by processing and analyzing point cloud data of an individual tree. Four Chinese scholartree trees and four camphor trees are selected for experiment. The root mean square error (RMSE) of tree height is 0.11m for Chinese scholartree and 0.02m for camphor. Crown widths in X direction and Y direction, as well as the average crown width are calculated. And the RMSE of average crown width is 0.22m for Chinese scholartree and 0.10m for camphor. The last calculated parameter is DBH, the RMSE of DBH is 0.5cm for both Chinese scholartree and camphor. Combining the measured geometric parameters and an appropriate carbon sequestration calculation model, the individual tree's carbon sequestration will be estimated. The proposed method can help enlarge application range of vehicle-borne laser point cloud data, improve the efficiency of estimating carbon sequestration, construct urban ecological environment and manage landscape.

  14. Studies of the Solar Radiations' Influence About Geomembranes Used in Ecological Landfill

    NASA Astrophysics Data System (ADS)

    Vasiluta, Petre; Cofaru, Ileana Ioana; Cofaru, Nicolae Florin; Popa, Dragos Laurentiu

    2017-12-01

    The study shown in this paper presents the behavior of geomembranes used at the ecological landfills. The influences of the solar radiations has a great importance regarding the correct mounting of the geomembranes. The mathematical model developed for the determination anytime and anywhere in the world for the next values and parameters: apparent solar time, solar declination, solar altitude, solar azimuth and incidence angle, zone angle, angle of sun elevation, solar declination, solar constant, solar flux density, diffuse solar radiation, global radiation, soil albedo, total radiant flux density and relational links of these values. The results of this model was used for creations an AutoCAD subroutines useful for choosing the correct time for correct mounting anywhere of the geomembranes

  15. Evolutionary disarmament in interspecific competition.

    PubMed

    Kisdi, E; Geritz, S A

    2001-12-22

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.

  16. Evolutionary disarmament in interspecific competition.

    PubMed Central

    Kisdi, E.; Geritz, S. A.

    2001-01-01

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races. PMID:11749715

  17. Avian malaria: a new lease of life for an old experimental model to study the evolutionary ecology of Plasmodium.

    PubMed

    Pigeault, Romain; Vézilier, Julien; Cornet, Stéphane; Zélé, Flore; Nicot, Antoine; Perret, Philippe; Gandon, Sylvain; Rivero, Ana

    2015-08-19

    Avian malaria has historically played an important role as a model in the study of human malaria, being a stimulus for the development of medical parasitology. Avian malaria has recently come back to the research scene as a unique animal model to understand the ecology and evolution of the disease, both in the field and in the laboratory. Avian malaria is highly prevalent in birds and mosquitoes around the world and is amenable to laboratory experimentation at each stage of the parasite's life cycle. Here, we take stock of 5 years of experimental laboratory research carried out using Plasmodium relictum SGS1, the most prevalent avian malaria lineage in Europe, and its natural vector, the mosquito Culex pipiens. For this purpose, we compile and analyse data obtained in our laboratory in 14 different experiments. We provide statistical relationships between different infection-related parameters, including parasitaemia, gametocytaemia, host morbidity (anaemia) and transmission rates to mosquitoes. This analysis provides a wide-ranging picture of the within-host and between-host parameters that may bear on malaria transmission and epidemiology. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Parameter optimization, sensitivity, and uncertainty analysis of an ecosystem model at a forest flux tower site in the United States

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Huang, Zhihong; Yan, Wende

    2014-01-01

    Ecosystem models are useful tools for understanding ecological processes and for sustainable management of resources. In biogeochemical field, numerical models have been widely used for investigating carbon dynamics under global changes from site to regional and global scales. However, it is still challenging to optimize parameters and estimate parameterization uncertainty for complex process-based models such as the Erosion Deposition Carbon Model (EDCM), a modified version of CENTURY, that consider carbon, water, and nutrient cycles of ecosystems. This study was designed to conduct the parameter identifiability, optimization, sensitivity, and uncertainty analysis of EDCM using our developed EDCM-Auto, which incorporated a comprehensive R package—Flexible Modeling Framework (FME) and the Shuffled Complex Evolution (SCE) algorithm. Using a forest flux tower site as a case study, we implemented a comprehensive modeling analysis involving nine parameters and four target variables (carbon and water fluxes) with their corresponding measurements based on the eddy covariance technique. The local sensitivity analysis shows that the plant production-related parameters (e.g., PPDF1 and PRDX) are most sensitive to the model cost function. Both SCE and FME are comparable and performed well in deriving the optimal parameter set with satisfactory simulations of target variables. Global sensitivity and uncertainty analysis indicate that the parameter uncertainty and the resulting output uncertainty can be quantified, and that the magnitude of parameter-uncertainty effects depends on variables and seasons. This study also demonstrates that using the cutting-edge R functions such as FME can be feasible and attractive for conducting comprehensive parameter analysis for ecosystem modeling.

  19. Increased persistence via asynchrony in oscillating ecological populations with long-range interaction

    NASA Astrophysics Data System (ADS)

    Gupta, Anubhav; Banerjee, Tanmoy; Dutta, Partha Sharathi

    2017-10-01

    Understanding the influence of the structure of a dispersal network on the species persistence and modeling a realistic species dispersal in nature are two central issues in spatial ecology. A realistic dispersal structure which favors the persistence of interacting ecological systems was studied [M. D. Holland and A. Hastings, Nature (London) 456, 792 (2008), 10.1038/nature07395], where it was shown that a randomization of the structure of a dispersal network in a metapopulation model of prey and predator increases the species persistence via clustering, prolonged transient dynamics, and amplitudes of population fluctuations. In this paper, by contrast, we show that a deterministic network topology in a metapopulation can also favor asynchrony and prolonged transient dynamics if species dispersal obeys a long-range interaction governed by a distance-dependent power law. To explore the effects of power-law coupling, we take a realistic ecological model, namely, the Rosenzweig-MacArthur model in each patch (node) of the network of oscillators, and show that the coupled system is driven from synchrony to asynchrony with an increase in the power-law exponent. Moreover, to understand the relationship between species persistence and variations in power-law exponent, we compute a correlation coefficient to characterize cluster formation, a synchrony order parameter, and median predator amplitude. We further show that smaller metapopulations with fewer patches are more vulnerable to extinction as compared to larger metapopulations with a higher number of patches. We believe that the present work improves our understanding of the interconnection between the random network and the deterministic network in theoretical ecology.

  20. Machine Learning Biogeographic Processes from Biotic Patterns: A New Trait-Dependent Dispersal and Diversification Model with Model Choice By Simulation-Trained Discriminant Analysis.

    PubMed

    Sukumaran, Jeet; Economo, Evan P; Lacey Knowles, L

    2016-05-01

    Current statistical biogeographical analysis methods are limited in the ways ecology can be related to the processes of diversification and geographical range evolution, requiring conflation of geography and ecology, and/or assuming ecologies that are uniform across all lineages and invariant in time. This precludes the possibility of studying a broad class of macroevolutionary biogeographical theories that relate geographical and species histories through lineage-specific ecological and evolutionary dynamics, such as taxon cycle theory. Here we present a new model that generates phylogenies under a complex of superpositioned geographical range evolution, trait evolution, and diversification processes that can communicate with each other. We present a likelihood-free method of inference under our model using discriminant analysis of principal components of summary statistics calculated on phylogenies, with the discriminant functions trained on data generated by simulations under our model. This approach of model selection by classification of empirical data with respect to data generated under training models is shown to be efficient, robust, and performs well over a broad range of parameter space defined by the relative rates of dispersal, trait evolution, and diversification processes. We apply our method to a case study of the taxon cycle, that is testing for habitat and trophic level constraints in the dispersal regimes of the Wallacean avifaunal radiation. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Exploring a microbial ecosystem approach to modeling deep ocean biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Zakem, E.; Follows, M. J.

    2014-12-01

    Though microbial respiration of organic matter in the deep ocean governs ocean and atmosphere biogeochemistry, it is not represented mechanistically in current global biogeochemical models. We seek approaches that are feasible for a global resolution, yet still reflect the enormous biodiversity of the deep microbial community and its associated metabolic pathways. We present a modeling framework grounded in thermodynamics and redox reaction stoichiometry that represents diverse microbial metabolisms explicitly. We describe a bacterial/archaeal functional type with two parameters: a growth efficiency representing the chemistry underlying a bacterial metabolism, and a rate limitation given by the rate of uptake of each of the necessary substrates for that metabolism. We then apply this approach to answer questions about microbial ecology. As a start, we resolve two dominant heterotrophic respiratory pathways- reduction of oxygen and nitrate- and associated microbial functional types. We combine these into an ecological model and a two-dimensional ocean circulation model to explore the organization, biogeochemistry, and ecology of oxygen minimum zones. Intensified upwelling and lateral transport conspire to produce an oxygen minimum at mid-depth, populated by anaerobic denitrifiers. This modeling approach should ultimately allow for the emergence of bacterial biogeography from competition of metabolisms and for the incorporation of microbial feedbacks to the climate system.

  2. Is the scaling of swim speed in sharks driven by metabolism?

    PubMed Central

    Jacoby, David M. P.; Siriwat, Penthai; Freeman, Robin; Carbone, Chris

    2015-01-01

    The movement rates of sharks are intrinsically linked to foraging ecology, predator–prey dynamics and wider ecosystem functioning in marine systems. During ram ventilation, however, shark movement rates are linked not only to ecological parameters, but also to physiology, as minimum speeds are required to provide sufficient water flow across the gills to maintain metabolism. We develop a geometric model predicting a positive scaling relationship between swim speeds in relation to body size and ultimately shark metabolism, taking into account estimates for the scaling of gill dimensions. Empirical data from 64 studies (26 species) were compiled to test our model while controlling for the influence of phylogenetic similarity between related species. Our model predictions were found to closely resemble the observed relationships from tracked sharks, providing a means to infer mobility in particularly intractable species. PMID:26631246

  3. A comment on priors for Bayesian occupancy models

    PubMed Central

    Gerber, Brian D.

    2018-01-01

    Understanding patterns of species occurrence and the processes underlying these patterns is fundamental to the study of ecology. One of the more commonly used approaches to investigate species occurrence patterns is occupancy modeling, which can account for imperfect detection of a species during surveys. In recent years, there has been a proliferation of Bayesian modeling in ecology, which includes fitting Bayesian occupancy models. The Bayesian framework is appealing to ecologists for many reasons, including the ability to incorporate prior information through the specification of prior distributions on parameters. While ecologists almost exclusively intend to choose priors so that they are “uninformative” or “vague”, such priors can easily be unintentionally highly informative. Here we report on how the specification of a “vague” normally distributed (i.e., Gaussian) prior on coefficients in Bayesian occupancy models can unintentionally influence parameter estimation. Using both simulated data and empirical examples, we illustrate how this issue likely compromises inference about species-habitat relationships. While the extent to which these informative priors influence inference depends on the data set, researchers fitting Bayesian occupancy models should conduct sensitivity analyses to ensure intended inference, or employ less commonly used priors that are less informative (e.g., logistic or t prior distributions). We provide suggestions for addressing this issue in occupancy studies, and an online tool for exploring this issue under different contexts. PMID:29481554

  4. A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates

    PubMed Central

    Jacob, Benjamin G; Griffith, Daniel A; Muturi, Ephantus J; Caamano, Erick X; Githure, John I; Novak, Robert J

    2009-01-01

    Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity. PMID:19772590

  5. Parasites and deleterious mutations: interactions influencing the evolutionary maintenance of sex.

    PubMed

    Park, A W; Jokela, J; Michalakis, Y

    2010-05-01

    The restrictive assumptions associated with purely genetic and purely ecological mechanisms suggest that neither of the two forces, in isolation, can offer a general explanation for the evolutionary maintenance of sex. Consequently, attention has turned to pluralistic models (i.e. models that apply both ecological and genetic mechanisms). Existing research has shown that combining mutation accumulation and parasitism allows restrictive assumptions about genetic and parasite parameter values to be relaxed while still predicting the maintenance of sex. However, several empirical studies have shown that deleterious mutations and parasitism can reduce fitness to a greater extent than would be expected if the two acted independently. We show how interactions between these genetic and ecological forces can completely reverse predictions about the evolution of reproductive modes. Moreover, we demonstrate that synergistic interactions between infection and deleterious mutations can render sex evolutionarily stable even when there is antagonistic epistasis among deleterious mutations, thereby widening the conditions for the evolutionary maintenance of sex.

  6. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Ma, Jinzhu; Zhu, Gaofeng; Ma, Ting; Han, Tuo; Feng, Li Li

    2017-01-01

    Global and regional estimates of daily evapotranspiration are essential to our understanding of the hydrologic cycle and climate change. In this study, we selected the radiation-based Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) model and assessed it at a daily time scale by using 44 flux towers. These towers distributed in a wide range of ecological systems: croplands, deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, grasslands, mixed forests, savannas, and shrublands. A regional land surface evapotranspiration model with a relatively simple structure, the PT-JPL model largely uses ecophysiologically-based formulation and parameters to relate potential evapotranspiration to actual evapotranspiration. The results using the original model indicate that the model always overestimates evapotranspiration in arid regions. This likely results from the misrepresentation of water limitation and energy partition in the model. By analyzing physiological processes and determining the sensitive parameters, we identified a series of parameter sets that can increase model performance. The model with optimized parameters showed better performance (R2 = 0.2-0.87; Nash-Sutcliffe efficiency (NSE) = 0.1-0.87) at each site than the original model (R2 = 0.19-0.87; NSE = -12.14-0.85). The results of the optimization indicated that the parameter β (water control of soil evaporation) was much lower in arid regions than in relatively humid regions. Furthermore, the optimized value of parameter m1 (plant control of canopy transpiration) was mostly between 1 to 1.3, slightly lower than the original value. Also, the optimized parameter Topt correlated well to the actual environmental temperature at each site. We suggest that using optimized parameters with the PT-JPL model could provide an efficient way to improve the model performance.

  7. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay.

    PubMed

    Jacobs, J M; Rhodes, M; Brown, C W; Hood, R R; Leight, A; Long, W; Wood, R

    2014-11-01

    To construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters of Chesapeake Bay for implementation in ecological forecasting systems. We evaluated and applied previously published qPCR assays to water samples (n = 1636) collected from Chesapeake Bay from 2007-2010 in conjunction with State water quality monitoring programmes. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Environmental parameters such as temperature, salinity and turbidity are capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  8. Fitness components and ecological risk of transgenic release: a model using Japanese medaka (Oryzias latipes).

    PubMed

    Muir, W M; Howard, R D

    2001-07-01

    Any release of transgenic organisms into nature is a concern because ecological relationships between genetically engineered organisms and other organisms (including their wild-type conspecifics) are unknown. To address this concern, we developed a method to evaluate risk in which we input estimates of fitness parameters from a founder population into a recurrence model to predict changes in transgene frequency after a simulated transgenic release. With this method, we grouped various aspects of an organism's life cycle into six net fitness components: juvenile viability, adult viability, age at sexual maturity, female fecundity, male fertility, and mating advantage. We estimated these components for wild-type and transgenic individuals using the fish, Japanese medaka (Oryzias latipes). We generalized our model's predictions using various combinations of fitness component values in addition to our experimentally derived estimates. Our model predicted that, for a wide range of parameter values, transgenes could spread in populations despite high juvenile viability costs if transgenes also have sufficiently high positive effects on other fitness components. Sensitivity analyses indicated that transgene effects on age at sexual maturity should have the greatest impact on transgene frequency, followed by juvenile viability, mating advantage, female fecundity, and male fertility, with changes in adult viability, resulting in the least impact.

  9. [Assessment on the ecological suitability in Zhuhai City, Guangdong, China, based on minimum cumulative resistance model].

    PubMed

    Li, Jian-fei; Li, Lin; Guo, Luo; Du, Shi-hong

    2016-01-01

    Urban landscape has the characteristics of spatial heterogeneity. Because the expansion process of urban constructive or ecological land has different resistance values, the land unit stimulates and promotes the expansion of ecological land with different intensity. To compare the effect of promoting and hindering functions in the same land unit, we firstly compared the minimum cumulative resistance value of promoting and hindering functions, and then looked for the balance of two landscape processes under the same standard. According to the ecology principle of minimum limit factor, taking the minimum cumulative resistance analysis method under two expansion processes as the evaluation method of urban land ecological suitability, this research took Zhuhai City as the study area to estimate urban ecological suitability by relative evaluation method with remote sensing image, field survey, and statistics data. With the support of ArcGIS, five types of indicators on landscape types, ecological value, soil erosion sensitivity, sensitivity of geological disasters, and ecological function were selected as input parameters in the minimum cumulative resistance model to compute urban ecological suitability. The results showed that the ecological suitability of the whole Zhuhai City was divided into five levels: constructive expansion prohibited zone (10.1%), constructive expansion restricted zone (32.9%), key construction zone (36.3%), priority development zone (2.3%), and basic cropland (18.4%). Ecological suitability of the central area of Zhuhai City was divided into four levels: constructive expansion prohibited zone (11.6%), constructive expansion restricted zone (25.6%), key construction zone (52.4%), priority development zone (10.4%). Finally, we put forward the sustainable development framework of Zhuhai City according to the research conclusion. On one hand, the government should strictly control the development of the urban center area. On the other hand, the secondary urban center area such as Junchang and Doumen need improve the public infrastructure to relieve the imbalance between eastern and western development in Zhuhai City.

  10. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    NASA Astrophysics Data System (ADS)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling process, (3) deriving and using informative priors in sediment fingerprinting context and (4) transparency of the process and replication of model results by other users.

  11. Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance.

    PubMed

    Clare, John; McKinney, Shawn T; DePue, John E; Loftin, Cynthia S

    2017-10-01

    It is common to use multiple field sampling methods when implementing wildlife surveys to compare method efficacy or cost efficiency, integrate distinct pieces of information provided by separate methods, or evaluate method-specific biases and misclassification error. Existing models that combine information from multiple field methods or sampling devices permit rigorous comparison of method-specific detection parameters, enable estimation of additional parameters such as false-positive detection probability, and improve occurrence or abundance estimates, but with the assumption that the separate sampling methods produce detections independently of one another. This assumption is tenuous if methods are paired or deployed in close proximity simultaneously, a common practice that reduces the additional effort required to implement multiple methods and reduces the risk that differences between method-specific detection parameters are confounded by other environmental factors. We develop occupancy and spatial capture-recapture models that permit covariance between the detections produced by different methods, use simulation to compare estimator performance of the new models to models assuming independence, and provide an empirical application based on American marten (Martes americana) surveys using paired remote cameras, hair catches, and snow tracking. Simulation results indicate existing models that assume that methods independently detect organisms produce biased parameter estimates and substantially understate estimate uncertainty when this assumption is violated, while our reformulated models are robust to either methodological independence or covariance. Empirical results suggested that remote cameras and snow tracking had comparable probability of detecting present martens, but that snow tracking also produced false-positive marten detections that could potentially substantially bias distribution estimates if not corrected for. Remote cameras detected marten individuals more readily than passive hair catches. Inability to photographically distinguish individual sex did not appear to induce negative bias in camera density estimates; instead, hair catches appeared to produce detection competition between individuals that may have been a source of negative bias. Our model reformulations broaden the range of circumstances in which analyses incorporating multiple sources of information can be robustly used, and our empirical results demonstrate that using multiple field-methods can enhance inferences regarding ecological parameters of interest and improve understanding of how reliably survey methods sample these parameters. © 2017 by the Ecological Society of America.

  12. Man as the main component of the closed ecological system of the spacecraft or planetary station.

    PubMed

    Parin, V V; Adamovich, B A

    1968-01-01

    Current life-support systems of the spacecraft provide human requirements for food, water and oxygen only. Advanced life-support systems will involve man as their main component and will ensure completely his material and energy requirements. The design of individual components of such systems will assure their entire suitability and mutual control effects. Optimization of the performance of the crew and ecological system, on the basis of the information characterizing their function, demands efficient methods of collection and treatment of the information obtained through wireless recording of physiological parameters and their automatic treatment. Peculiarities of interplanetary missions and planetary stations make it necessary to conform the schedule of physiological recordings with the work-and-rest cycle of the space crew and inertness of components of the ecological system, especially of those responsible for oxygen regeneration. It is rational to model ecological systems and their components, taking into consideration the correction effect of the information on the health conditions and performance of the crewmen. Wide application of physiological data will allow the selection of optimal designs and sharply increase reliability of ecological systems.

  13. Improving the precision of lake ecosystem metabolism estimates by identifying predictors of model uncertainty

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Read, Emily K.; Solomon, Christopher T.; Adrian, Rita; Hanson, Paul C.

    2014-01-01

    Diel changes in dissolved oxygen are often used to estimate gross primary production (GPP) and ecosystem respiration (ER) in aquatic ecosystems. Despite the widespread use of this approach to understand ecosystem metabolism, we are only beginning to understand the degree and underlying causes of uncertainty for metabolism model parameter estimates. Here, we present a novel approach to improve the precision and accuracy of ecosystem metabolism estimates by identifying physical metrics that indicate when metabolism estimates are highly uncertain. Using datasets from seventeen instrumented GLEON (Global Lake Ecological Observatory Network) lakes, we discovered that many physical characteristics correlated with uncertainty, including PAR (photosynthetically active radiation, 400-700 nm), daily variance in Schmidt stability, and wind speed. Low PAR was a consistent predictor of high variance in GPP model parameters, but also corresponded with low ER model parameter variance. We identified a threshold (30% of clear sky PAR) below which GPP parameter variance increased rapidly and was significantly greater in nearly all lakes compared with variance on days with PAR levels above this threshold. The relationship between daily variance in Schmidt stability and GPP model parameter variance depended on trophic status, whereas daily variance in Schmidt stability was consistently positively related to ER model parameter variance. Wind speeds in the range of ~0.8-3 m s–1 were consistent predictors of high variance for both GPP and ER model parameters, with greater uncertainty in eutrophic lakes. Our findings can be used to reduce ecosystem metabolism model parameter uncertainty and identify potential sources of that uncertainty.

  14. Study on the ecosystem construction of using ecopath model in inland waterway

    NASA Astrophysics Data System (ADS)

    Zhao, Junjie; Bai, Jing; Zhang, Lu; Wang, Ning; Shou, Youping

    2018-04-01

    In this paper, Ecopath with Ecosim 5.1 software is used to simulate the constructed water ecosystem of inland waterway. According to the characteristics of feeding relationship, the ecopath model of water ecosystem is divided into seven functional groups: phytoplankton, hydrophyte, zooplankton, herbivorous, omnivorous, polychaetes and detritus. By analyzing the important ecological parameters of the ecosystem, such as biomass, biomass / biomass, consumption / biomass, trophic level and ecological nutrient conversion efficiency, the software integrates the energy flow process of the ecosystem, the ratio of the total net primary production and the sum of all respiratory flows is 1.314, it’s indicating that the ecosystem is equilibrium. The research method of this paper can be widely used to evaluate the stability of the ecosystem of the domestic river.

  15. Representing general theoretical concepts in structural equation models: The role of composite variables

    USGS Publications Warehouse

    Grace, J.B.; Bollen, K.A.

    2008-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.

  16. The Interface Between Theory and Data in Structural Equation Models

    USGS Publications Warehouse

    Grace, James B.; Bollen, Kenneth A.

    2006-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite, for representing general concepts. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling general relationships of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially reduced form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influences of suites of variables are often of interest.

  17. Richards-like two species population dynamics model.

    PubMed

    Ribeiro, Fabiano; Cabella, Brenno Caetano Troca; Martinez, Alexandre Souto

    2014-12-01

    The two-species population dynamics model is the simplest paradigm of inter- and intra-species interaction. Here, we present a generalized Lotka-Volterra model with intraspecific competition, which retrieves as particular cases, some well-known models. The generalization parameter is related to the species habitat dimensionality and their interaction range. Contrary to standard models, the species coupling parameters are general, not restricted to non-negative values. Therefore, they may represent different ecological regimes, which are derived from the asymptotic solution stability analysis and are represented in a phase diagram. In this diagram, we have identified a forbidden region in the mutualism regime, and a survival/extinction transition with dependence on initial conditions for the competition regime. Also, we shed light on two types of predation and competition: weak, if there are species coexistence, or strong, if at least one species is extinguished.

  18. Macroecological analyses support an overkill scenario for late Pleistocene extinctions.

    PubMed

    Diniz-Filho, J A F

    2004-08-01

    The extinction of megafauna at the end of Pleistocene has been traditionally explained by environmental changes or overexploitation by human hunting (overkill). Despite difficulties in choosing between these alternative (and not mutually exclusive) scenarios, the plausibility of the overkill hypothesis can be established by ecological models of predator-prey interactions. In this paper, I have developed a macroecological model for the overkill hypothesis, in which prey population dynamic parameters, including abundance, geographic extent, and food supply for hunters, were derived from empirical allometric relationships with body mass. The last output correctly predicts the final destiny (survival or extinction) for 73% of the species considered, a value only slightly smaller than those obtained by more complex models based on detailed archaeological and ecological data for each species. This illustrates the high selectivity of Pleistocene extinction in relation to body mass and confers more plausibility on the overkill scenario.

  19. Socio-Ecological Risk Factors for Prime-Age Adult Death in Two Coastal Areas of Vietnam

    PubMed Central

    Kim, Deok Ryun; Ali, Mohammad; Thiem, Vu Dinh; Wierzba, Thomas F.

    2014-01-01

    Background Hierarchical spatial models enable the geographic and ecological analysis of health data thereby providing useful information for designing effective health interventions. In this study, we used a Bayesian hierarchical spatial model to evaluate mortality data in Vietnam. The model enabled identification of socio-ecological risk factors and generation of risk maps to better understand the causes and geographic implications of prime-age (15 to less than 45 years) adult death. Methods and Findings The study was conducted in two sites: Nha Trang and Hue in Vietnam. The study areas were split into 500×500 meter cells to define neighborhoods. We first extracted socio-demographic data from population databases of the two sites, and then aggregated the data by neighborhood. We used spatial hierarchical model that borrows strength from neighbors for evaluating risk factors and for creating spatially smoothed risk map after adjusting for neighborhood level covariates. The Markov chain Monte Carlo procedure was used to estimate the parameters. Male mortality was more than twice the female mortality. The rates also varied by age and sex. The most frequent cause of mortality was traffic accidents and drowning for men and traffic accidents and suicide for women. Lower education of household heads in the neighborhood was an important risk factor for increased mortality. The mortality was highly variable in space and the socio-ecological risk factors are sensitive to study site and sex. Conclusion Our study suggests that lower education of the household head is an important predictor for prime age adult mortality. Variability in socio-ecological risk factors and in risk areas by sex make it challenging to design appropriate intervention strategies aimed at decreasing prime-age adult deaths in Vietnam. PMID:24587031

  20. Socio-ecological risk factors for prime-age adult death in two coastal areas of Vietnam.

    PubMed

    Kim, Deok Ryun; Ali, Mohammad; Thiem, Vu Dinh; Wierzba, Thomas F

    2014-01-01

    Hierarchical spatial models enable the geographic and ecological analysis of health data thereby providing useful information for designing effective health interventions. In this study, we used a Bayesian hierarchical spatial model to evaluate mortality data in Vietnam. The model enabled identification of socio-ecological risk factors and generation of risk maps to better understand the causes and geographic implications of prime-age (15 to less than 45 years) adult death. The study was conducted in two sites: Nha Trang and Hue in Vietnam. The study areas were split into 500×500 meter cells to define neighborhoods. We first extracted socio-demographic data from population databases of the two sites, and then aggregated the data by neighborhood. We used spatial hierarchical model that borrows strength from neighbors for evaluating risk factors and for creating spatially smoothed risk map after adjusting for neighborhood level covariates. The Markov chain Monte Carlo procedure was used to estimate the parameters. Male mortality was more than twice the female mortality. The rates also varied by age and sex. The most frequent cause of mortality was traffic accidents and drowning for men and traffic accidents and suicide for women. Lower education of household heads in the neighborhood was an important risk factor for increased mortality. The mortality was highly variable in space and the socio-ecological risk factors are sensitive to study site and sex. Our study suggests that lower education of the household head is an important predictor for prime age adult mortality. Variability in socio-ecological risk factors and in risk areas by sex make it challenging to design appropriate intervention strategies aimed at decreasing prime-age adult deaths in Vietnam.

  1. Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency

    PubMed Central

    Pedrini, Paolo; Bragalanti, Natalia; Groff, Claudio

    2017-01-01

    Recently-developed methods that integrate multiple data sources arising from the same ecological processes have typically utilized structured data from well-defined sampling protocols (e.g., capture-recapture and telemetry). Despite this new methodological focus, the value of opportunistic data for improving inference about spatial ecological processes is unclear and, perhaps more importantly, no procedures are available to formally test whether parameter estimates are consistent across data sources and whether they are suitable for integration. Using data collected on the reintroduced brown bear population in the Italian Alps, a population of conservation importance, we combined data from three sources: traditional spatial capture-recapture data, telemetry data, and opportunistic data. We developed a fully integrated spatial capture-recapture (SCR) model that included a model-based test for data consistency to first compare model estimates using different combinations of data, and then, by acknowledging data-type differences, evaluate parameter consistency. We demonstrate that opportunistic data lend itself naturally to integration within the SCR framework and highlight the value of opportunistic data for improving inference about space use and population size. This is particularly relevant in studies of rare or elusive species, where the number of spatial encounters is usually small and where additional observations are of high value. In addition, our results highlight the importance of testing and accounting for inconsistencies in spatial information from structured and unstructured data so as to avoid the risk of spurious or averaged estimates of space use and consequently, of population size. Our work supports the use of a single modeling framework to combine spatially-referenced data while also accounting for parameter consistency. PMID:28973034

  2. General methods for sensitivity analysis of equilibrium dynamics in patch occupancy models

    USGS Publications Warehouse

    Miller, David A.W.

    2012-01-01

    Sensitivity analysis is a useful tool for the study of ecological models that has many potential applications for patch occupancy modeling. Drawing from the rich foundation of existing methods for Markov chain models, I demonstrate new methods for sensitivity analysis of the equilibrium state dynamics of occupancy models. Estimates from three previous studies are used to illustrate the utility of the sensitivity calculations: a joint occupancy model for a prey species, its predators, and habitat used by both; occurrence dynamics from a well-known metapopulation study of three butterfly species; and Golden Eagle occupancy and reproductive dynamics. I show how to deal efficiently with multistate models and how to calculate sensitivities involving derived state variables and lower-level parameters. In addition, I extend methods to incorporate environmental variation by allowing for spatial and temporal variability in transition probabilities. The approach used here is concise and general and can fully account for environmental variability in transition parameters. The methods can be used to improve inferences in occupancy studies by quantifying the effects of underlying parameters, aiding prediction of future system states, and identifying priorities for sampling effort.

  3. A Bayesian Approach to Integrated Ecological and Human Health Risk Assessment for the South River, Virginia Mercury-Contaminated Site.

    PubMed

    Harris, Meagan J; Stinson, Jonah; Landis, Wayne G

    2017-07-01

    We conducted a regional-scale integrated ecological and human health risk assessment by applying the relative risk model with Bayesian networks (BN-RRM) to a case study of the South River, Virginia mercury-contaminated site. Risk to four ecological services of the South River (human health, water quality, recreation, and the recreational fishery) was evaluated using a multiple stressor-multiple endpoint approach. These four ecological services were selected as endpoints based on stakeholder feedback and prioritized management goals for the river. The BN-RRM approach allowed for the calculation of relative risk to 14 biotic, human health, recreation, and water quality endpoints from chemical and ecological stressors in five risk regions of the South River. Results indicated that water quality and the recreational fishery were the ecological services at highest risk in the South River. Human health risk for users of the South River was low relative to the risk to other endpoints. Risk to recreation in the South River was moderate with little spatial variability among the five risk regions. Sensitivity and uncertainty analysis identified stressors and other parameters that influence risk for each endpoint in each risk region. This research demonstrates a probabilistic approach to integrated ecological and human health risk assessment that considers the effects of chemical and ecological stressors across the landscape. © 2017 Society for Risk Analysis.

  4. Fish and fire: Post-wildfire sediment dynamics and implications for the viability of trout populations

    NASA Astrophysics Data System (ADS)

    Murphy, B. P.; Czuba, J. A.; Belmont, P.; Budy, P.; Finch, C.

    2017-12-01

    Episodic events in steep landscapes, such as wildfire and mass wasting, contribute large pulses of sediment to rivers and can significantly alter the quality and connectivity of fish habitat. Understanding where these sediment inputs occur, how they are transported and processed through the watershed, and their geomorphic effect on the river network is critical to predicting the impact on ecological aquatic communities. The Tushar Mountains of southern Utah experienced a severe wildfire in 2010, resulting in numerous debris flows and the extirpation of trout populations. Following many years of habitat and ecological monitoring in the field, we have developed a modeling framework that links post-wildfire debris flows, fluvial sediment routing, and population ecology in order to evaluate the impact and response of trout to wildfire. First, using the Tushar topographic and wildfire parameters, as well as stochastic precipitation generation, we predict the post-wildfire debris flow probabilities and volumes of mainstem tributaries using the Cannon et al. [2010] model. This produces episodic hillslope sediment inputs, which are delivered to a fluvial sediment, river-network routing model (modified from Czuba et al. [2017]). In this updated model, sediment transport dynamics are driven by time-varying discharge associated with the stochastic precipitation generation, include multiple grain sizes (including gravel), use mixed-size transport equations (Wilcock & Crowe [2003]), and incorporate channel slope adjustments with aggradation and degradation. Finally, with the spatially explicit adjustments in channel bed elevation and grain size, we utilize a new population viability analysis (PVA) model to predict the impact and recovery of fish populations in response to these changes in habitat. Our model provides a generalizable framework for linking physical and ecological models and for evaluating the extirpation risk of isolated fish populations throughout the Intermountain West to the increasing threat of wildfire.

  5. Ecology and geography of human monkeypox case occurrences across Africa.

    PubMed

    Ellis, Christine K; Carroll, Darin S; Lash, Ryan R; Peterson, A Townsend; Damon, Inger K; Malekani, Jean; Formenty, Pierre

    2012-04-01

    As ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping.

  6. The coupling between hydrodynamic and purification efficiencies of ecological porous spur-dike in field drainage ditch

    NASA Astrophysics Data System (ADS)

    Rao, Lei; Wang, Pei-fang; Dai, Qing-song; Wang, Chao

    2018-05-01

    In this study, a series of ecological porous spur-dikes are arranged in an experiment channel to simulate a real field drainage ditch. The inside and outside flow fields of spur-dikes are determined by numerical simulations and experimental methods. An Ammonia-Nitrogen (NH3-N) degradation evaluation model is built to calculate the pollution removal rate by coupling with the inner flow field of the porous spur-dikes. The variations of the total pollutant removal rate in the channel are discussed in terms of different porosities and gap distances between spur-dikes and inlet flow velocities. It is indicated that a reasonable parameter matching of the porosity and the gap distance with the flow velocity of the ditch can bring about a satisfactory purification efficiency with a small delivery quantity of ecological porous materials.

  7. Cost-effective conservation of amphibian ecology and evolution

    PubMed Central

    Campos, Felipe S.; Lourenço-de-Moraes, Ricardo; Llorente, Gustavo A.; Solé, Mirco

    2017-01-01

    Habitat loss is the most important threat to species survival, and the efficient selection of priority areas is fundamental for good systematic conservation planning. Using amphibians as a conservation target, we designed an innovative assessment strategy, showing that prioritization models focused on functional, phylogenetic, and taxonomic diversity can include cost-effectiveness–based assessments of land values. We report new key conservation sites within the Brazilian Atlantic Forest hot spot, revealing a congruence of ecological and evolutionary patterns. We suggest payment for ecosystem services through environmental set-asides on private land, establishing potential trade-offs for ecological and evolutionary processes. Our findings introduce additional effective area-based conservation parameters that set new priorities for biodiversity assessment in the Atlantic Forest, validating the usefulness of a novel approach to cost-effectiveness–based assessments of conservation value for other species-rich regions. PMID:28691084

  8. Invasive potential of cattle fever ticks in the southern United States

    PubMed Central

    2014-01-01

    Abstract' Background For >100 years cattle production in the southern United States has been threatened by cattle fever. It is caused by an invasive parasite-vector complex that includes the protozoan hemoparasites Babesia bovis and B. bigemina, which are transmitted among domestic cattle via Rhipicephalus tick vectors of the subgenus Boophilus. In 1906 an eradication effort was started and by 1943 Boophilus ticks had been confined to a narrow tick eradication quarantine area (TEQA) along the Texas-Mexico border. However, a dramatic increase in tick infestations in areas outside the TEQA over the last decade suggests these tick vectors may be poised to re-invade the southern United States. We investigated historical and potential future distributions of climatic habitats of cattle fever ticks to assess the potential for a range expansion. Methods We built robust spatial predictions of habitat suitability for the vector species Rhipicephalus (Boophilus) microplus and R. (B.) annulatus across the southern United States for three time periods: 1906, present day (2012), and 2050. We used analysis of molecular variance (AMOVA) to identify persistent tick occurrences and analysis of bias in the climate proximate to these occurrences to identify key environmental parameters associated with the ecology of both species. We then used ecological niche modeling algorithms GARP and Maxent to construct models that related known occurrences of ticks in the TEQA during 2001–2011 with geospatial data layers that summarized important climate parameters at all three time periods. Results We identified persistent tick infestations and specific climate parameters that appear to be drivers of ecological niches of the two tick species. Spatial models projected onto climate data representative of climate in 1906 reproduced historical pre-eradication tick distributions. Present-day predictions, although constrained to areas near the TEQA, extrapolated well onto climate projections for 2050. Conclusions Our models indicate the potential for range expansion of climate suitable for survival of R. microplus and R. annulatus in the southern United States by mid-century, which increases the risk of reintroduction of these ticks and cattle tick fever into major cattle producing areas. PMID:24742062

  9. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Tradeoff on Phenotype Robustness in Biological Networks Part II: Ecological Networks

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    In ecological networks, network robustness should be large enough to confer intrinsic robustness for tolerating intrinsic parameter fluctuations, as well as environmental robustness for resisting environmental disturbances, so that the phenotype stability of ecological networks can be maintained, thus guaranteeing phenotype robustness. However, it is difficult to analyze the network robustness of ecological systems because they are complex nonlinear partial differential stochastic systems. This paper develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance sensitivity in ecological networks. We found that the phenotype robustness criterion for ecological networks is that if intrinsic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations and environmental disturbances. These results in robust ecological networks are similar to that in robust gene regulatory networks and evolutionary networks even they have different spatial-time scales. PMID:23515112

  10. Modelling biological invasions: species traits, species interactions, and habitat heterogeneity.

    PubMed

    Cannas, Sergio A; Marco, Diana E; Páez, Sergio A

    2003-05-01

    In this paper we explore the integration of different factors to understand, predict and control ecological invasions, through a general cellular automaton model especially developed. The model includes life history traits of several species in a modular structure interacting multiple cellular automata. We performed simulations using field values corresponding to the exotic Gleditsia triacanthos and native co-dominant trees in a montane area. Presence of G. triacanthos juvenile bank was a determinant condition for invasion success. Main parameters influencing invasion velocity were mean seed dispersal distance and minimum reproductive age. Seed production had a small influence on the invasion velocity. Velocities predicted by the model agreed well with estimations from field data. Values of population density predicted matched field values closely. The modular structure of the model, the explicit interaction between the invader and the native species, and the simplicity of parameters and transition rules are novel features of the model.

  11. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach.

    PubMed

    Heinonen, Johannes P M; Palmer, Stephen C F; Redpath, Steve M; Travis, Justin M J

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.

  12. Modelling Hen Harrier Dynamics to Inform Human-Wildlife Conflict Resolution: A Spatially-Realistic, Individual-Based Approach

    PubMed Central

    Heinonen, Johannes P. M.; Palmer, Stephen C. F.; Redpath, Steve M.; Travis, Justin M. J.

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions. PMID:25405860

  13. A Practical Probabilistic Graphical Modeling Tool for Weighing ...

    EPA Pesticide Factsheets

    Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for ecological risk determinations. Probabilistic approaches can provide both a quantitative weighing of lines of evidence and methods for evaluating risk and uncertainty. The current modeling structure wasdeveloped for propagating uncertainties in measured endpoints and their influence on the plausibility of adverse effects. To illustrate the approach, we apply the model framework to the sediment quality triad using example lines of evidence for sediment chemistry measurements, bioassay results, and in situ infauna diversity of benthic communities using a simplified hypothetical case study. We then combine the three lines evidence and evaluate sensitivity to the input parameters, and show how uncertainties are propagated and how additional information can be incorporated to rapidly update the probability of impacts. The developed network model can be expanded to accommodate additional lines of evidence, variables and states of importance, and different types of uncertainties in the lines of evidence including spatial and temporal as well as measurement errors. We provide a flexible Bayesian network structure for weighing and integrating lines of evidence for ecological risk determinations

  14. Estimating species - area relationships by modeling abundance and frequency subject to incomplete sampling.

    PubMed

    Yamaura, Yuichi; Connor, Edward F; Royle, J Andrew; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-07-01

    Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a variety of study designs and allows the inclusion of additional environmental covariates.

  15. Estimating species – area relationships by modeling abundance and frequency subject to incomplete sampling

    USGS Publications Warehouse

    Yamaura, Yuichi; Connor, Edward F.; Royle, Andy; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-01-01

    Models and data used to describe species–area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species–area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species–area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density–area relationships and occurrence probability–area relationships can alter the form of species–area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a variety of study designs and allows the inclusion of additional environmental covariates.

  16. Autocalibration of a one-dimensional hydrodynamic-ecological model (DYRESM 4.0-CAEDYM 3.1) using a Monte Carlo approach: simulations of hypoxic events in a polymictic lake

    NASA Astrophysics Data System (ADS)

    Luo, Liancong; Hamilton, David; Lan, Jia; McBride, Chris; Trolle, Dennis

    2018-03-01

    Automated calibration of complex deterministic water quality models with a large number of biogeochemical parameters can reduce time-consuming iterative simulations involving empirical judgements of model fit. We undertook autocalibration of the one-dimensional hydrodynamic-ecological lake model DYRESM-CAEDYM, using a Monte Carlo sampling (MCS) method, in order to test the applicability of this procedure for shallow, polymictic Lake Rotorua (New Zealand). The calibration procedure involved independently minimizing the root-mean-square error (RMSE), maximizing the Pearson correlation coefficient (r) and Nash-Sutcliffe efficient coefficient (Nr) for comparisons of model state variables against measured data. An assigned number of parameter permutations was used for 10 000 simulation iterations. The "optimal" temperature calibration produced a RMSE of 0.54 °C, Nr value of 0.99, and r value of 0.98 through the whole water column based on comparisons with 540 observed water temperatures collected between 13 July 2007 and 13 January 2009. The modeled bottom dissolved oxygen concentration (20.5 m below surface) was compared with 467 available observations. The calculated RMSE of the simulations compared with the measurements was 1.78 mg L-1, the Nr value was 0.75, and the r value was 0.87. The autocalibrated model was further tested for an independent data set by simulating bottom-water hypoxia events from 15 January 2009 to 8 June 2011 (875 days). This verification produced an accurate simulation of five hypoxic events corresponding to DO < 2 mg L-1 during summer of 2009-2011. The RMSE was 2.07 mg L-1, Nr value 0.62, and r value of 0.81, based on the available data set of 738 days. The autocalibration software of DYRESM-CAEDYM developed here is substantially less time-consuming and more efficient in parameter optimization than traditional manual calibration which has been the standard tool practiced for similar complex water quality models.

  17. Auto-calibration of a one-dimensional hydrodynamic-ecological model using a Monte Carlo approach: simulation of hypoxic events in a polymictic lake

    NASA Astrophysics Data System (ADS)

    Luo, L.

    2011-12-01

    Automated calibration of complex deterministic water quality models with a large number of biogeochemical parameters can reduce time-consuming iterative simulations involving empirical judgements of model fit. We undertook auto-calibration of the one-dimensional hydrodynamic-ecological lake model DYRESM-CAEDYM, using a Monte Carlo sampling (MCS) method, in order to test the applicability of this procedure for shallow, polymictic Lake Rotorua (New Zealand). The calibration procedure involved independently minimising the root-mean-square-error (RMSE), maximizing the Pearson correlation coefficient (r) and Nash-Sutcliffe efficient coefficient (Nr) for comparisons of model state variables against measured data. An assigned number of parameter permutations was used for 10,000 simulation iterations. The 'optimal' temperature calibration produced a RMSE of 0.54 °C, Nr-value of 0.99 and r-value of 0.98 through the whole water column based on comparisons with 540 observed water temperatures collected between 13 July 2007 - 13 January 2009. The modeled bottom dissolved oxygen concentration (20.5 m below surface) was compared with 467 available observations. The calculated RMSE of the simulations compared with the measurements was 1.78 mg L-1, the Nr-value was 0.75 and the r-value was 0.87. The autocalibrated model was further tested for an independent data set by simulating bottom-water hypoxia events for the period 15 January 2009 to 8 June 2011 (875 days). This verification produced an accurate simulation of five hypoxic events corresponding to DO < 2 mg L-1 during summer of 2009-2011. The RMSE was 2.07 mg L-1, Nr-value 0.62 and r-value of 0.81, based on the available data set of 738 days. The auto-calibration software of DYRESM-CAEDYM developed here is substantially less time-consuming and more efficient in parameter optimisation than traditional manual calibration which has been the standard tool practiced for similar complex water quality models.

  18. Robust estimation for ordinary differential equation models.

    PubMed

    Cao, J; Wang, L; Xu, J

    2011-12-01

    Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data. © 2011, The International Biometric Society.

  19. End to End Digitisation and Analysis of Three-Dimensional Coral Models, from Communities to Corallites.

    PubMed

    Gutierrez-Heredia, Luis; Benzoni, Francesca; Murphy, Emma; Reynaud, Emmanuel G

    2016-01-01

    Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters), but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon) and freeware (123D Catch, Meshmixer and Netfabb), allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies) were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis.

  20. End to End Digitisation and Analysis of Three-Dimensional Coral Models, from Communities to Corallites

    PubMed Central

    Gutierrez-Heredia, Luis; Benzoni, Francesca; Murphy, Emma; Reynaud, Emmanuel G.

    2016-01-01

    Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters), but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon) and freeware (123D Catch, Meshmixer and Netfabb), allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies) were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis. PMID:26901845

  1. Estimating demographic parameters using a combination of known-fate and open N-mixture models

    USGS Publications Warehouse

    Schmidt, Joshua H.; Johnson, Devin S.; Lindberg, Mark S.; Adams, Layne G.

    2015-01-01

    Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark–resight data sets. We provide implementations in both the BUGS language and an R package.

  2. Estimating demographic parameters using a combination of known-fate and open N-mixture models.

    PubMed

    Schmidt, Joshua H; Johnson, Devin S; Lindberg, Mark S; Adams, Layne G

    2015-10-01

    Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark-resight data sets. We provide implementations in both the BUGS language and an R package.

  3. Complex Dynamics of Wetland Ecosystem with Nonlinear Harvesting: Application to Chilika Lake in Odisha, India

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ranjit Kumar; Tiwari, S. K.; Roy, Parimita

    2015-06-01

    In this paper, an attempt has been made to study the spatial and temporal dynamical interactions among the species of wetland ecosystem through a mathematical model. The model represents the population dynamics of phytoplankton, zooplankton and fish species found in Chilika lake, Odisha, India. Nonlinear stability analysis of both the temporal and spatial models has been carried out. Maximum sustainable yield and optimal harvesting policy have been studied for a nonspatial model system. Numerical simulation has been performed to figure out the parameters responsible for the complex dynamics of the wetland system. Significant outcomes of our numerical findings and their interpretations from an ecological point of view are provided in this paper. Numerical simulation of spatial model exhibits some interesting and beautiful patterns. We have also pointed out the parameters that are responsible for the good health of wetland ecosystem.

  4. Exploring sensitivity of a multistate occupancy model to inform management decisions

    USGS Publications Warehouse

    Green, A.W.; Bailey, L.L.; Nichols, J.D.

    2011-01-01

    Dynamic occupancy models are often used to investigate questions regarding the processes that influence patch occupancy and are prominent in the fields of population and community ecology and conservation biology. Recently, multistate occupancy models have been developed to investigate dynamic systems involving more than one occupied state, including reproductive states, relative abundance states and joint habitat-occupancy states. Here we investigate the sensitivities of the equilibrium-state distribution of multistate occupancy models to changes in transition rates. We develop equilibrium occupancy expressions and their associated sensitivity metrics for dynamic multistate occupancy models. To illustrate our approach, we use two examples that represent common multistate occupancy systems. The first example involves a three-state dynamic model involving occupied states with and without successful reproduction (California spotted owl Strix occidentalis occidentalis), and the second involves a novel way of using a multistate occupancy approach to accommodate second-order Markov processes (wood frog Lithobates sylvatica breeding and metamorphosis). In many ways, multistate sensitivity metrics behave in similar ways as standard occupancy sensitivities. When equilibrium occupancy rates are low, sensitivity to parameters related to colonisation is high, while sensitivity to persistence parameters is greater when equilibrium occupancy rates are high. Sensitivities can also provide guidance for managers when estimates of transition probabilities are not available. Synthesis and applications. Multistate models provide practitioners a flexible framework to define multiple, distinct occupied states and the ability to choose which state, or combination of states, is most relevant to questions and decisions about their own systems. In addition to standard multistate occupancy models, we provide an example of how a second-order Markov process can be modified to fit a multistate framework. Assuming the system is near equilibrium, our sensitivity analyses illustrate how to investigate the sensitivity of the system-specific equilibrium state(s) to changes in transition rates. Because management will typically act on these transition rates, sensitivity analyses can provide valuable information about the potential influence of different actions and when it may be prudent to shift the focus of management among the various transition rates. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.

  5. a Bayesian Synthesis of Predictions from Different Models for Setting Water Quality Criteria

    NASA Astrophysics Data System (ADS)

    Arhonditsis, G. B.; Ecological Modelling Laboratory

    2011-12-01

    Skeptical views of the scientific value of modelling argue that there is no true model of an ecological system, but rather several adequate descriptions of different conceptual basis and structure. In this regard, rather than picking the single "best-fit" model to predict future system responses, we can use Bayesian model averaging to synthesize the forecasts from different models. Hence, by acknowledging that models from different areas of the complexity spectrum have different strengths and weaknesses, the Bayesian model averaging is an appealing approach to improve the predictive capacity and to overcome the ambiguity surrounding the model selection or the risk of basing ecological forecasts on a single model. Our study addresses this question using a complex ecological model, developed by Ramin et al. (2011; Environ Modell Softw 26, 337-353) to guide the water quality criteria setting process in the Hamilton Harbour (Ontario, Canada), along with a simpler plankton model that considers the interplay among phosphate, detritus, and generic phytoplankton and zooplankton state variables. This simple approach is more easily subjected to detailed sensitivity analysis and also has the advantage of fewer unconstrained parameters. Using Markov Chain Monte Carlo simulations, we calculate the relative mean standard error to assess the posterior support of the two models from the existing data. Predictions from the two models are then combined using the respective standard error estimates as weights in a weighted model average. The model averaging approach is used to examine the robustness of predictive statements made from our earlier work regarding the response of Hamilton Harbour to the different nutrient loading reduction strategies. The two eutrophication models are then used in conjunction with the SPAtially Referenced Regressions On Watershed attributes (SPARROW) watershed model. The Bayesian nature of our work is used: (i) to alleviate problems of spatiotemporal resolution mismatch between watershed and receiving waterbody models; and (ii) to overcome the conceptual or scale misalignment between processes of interest and supporting information. The proposed Bayesian approach provides an effective means of empirically estimating the relation between in-stream measurements of nutrient fluxes and the sources/sinks of nutrients within the watershed, while explicitly accounting for the uncertainty associated with the existing knowledge from the system along with the different types of spatial correlation typically underlying the parameter estimation of watershed models. Our modelling exercise offers the first estimates of the export coefficients and the delivery rates from the different subcatchments and thus generates testable hypotheses regarding the nutrient export "hot spots" in the studied watershed. Finally, we conduct modeling experiments that evaluate the potential improvement of the model parameter estimates and the decrease of the predictive uncertainty, if the uncertainty associated with the contemporary nutrient loading estimates is reduced. The lessons learned from this study will contribute towards the development of integrated modelling frameworks.

  6. Partitioning Detectability Components in Populations Subject to Within-Season Temporary Emigration Using Binomial Mixture Models

    PubMed Central

    O’Donnell, Katherine M.; Thompson, Frank R.; Semlitsch, Raymond D.

    2015-01-01

    Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model’s potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3–5 surveys each spring and fall 2010–2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability. PMID:25775182

  7. Dive Distribution and Group Size Parameters for Marine Species Occurring in the U.S. Navy’s Atlantic and Hawaii-Southern California Training and Testing Study Areas

    DTIC Science & Technology

    2017-06-09

    in water temperature have an effect on the behavioral ecology of hawksbill turtles, with an increase in nocturnal dive duration with decreasing water...important element of the Navy’s comprehensive environmental planning is the acoustic effects analysis executed with the Navy Acoustic Effects Model...comprehensive environmental planning is the acoustic effects analysis executed with the Navy Acoustic Effects Model (NAEMO) software. NAEMO was

  8. Species diversity and predation strategies in a multiple species predator-prey model

    NASA Astrophysics Data System (ADS)

    Mullan, Rory; Glass, David H.; McCartney, Mark

    2015-08-01

    A single predator, single prey ecological model, in which the behaviour of the populations relies upon two control parameters has been expanded to allow for multiple predators and prey to occupy the ecosystem. The diversity of the ecosystem that develops as the model runs is analysed by assessing how many predator or prey species survive. Predation strategies that dictate how the predators distribute their efforts across the prey are introduced in this multiple species model. The paper analyses various predation strategies and highlights their effect on the survival of the predators and prey species.

  9. Population models for passerine birds: structure, parameterization, and analysis

    USGS Publications Warehouse

    Noon, B.R.; Sauer, J.R.; McCullough, D.R.; Barrett, R.H.

    1992-01-01

    Population models have great potential as management tools, as they use infonnation about the life history of a species to summarize estimates of fecundity and survival into a description of population change. Models provide a framework for projecting future populations, determining the effects of management decisions on future population dynamics, evaluating extinction probabilities, and addressing a variety of questions of ecological and evolutionary interest. Even when insufficient information exists to allow complete identification of the model, the modelling procedure is useful because it forces the investigator to consider the life history of the species when determining what parameters should be estimated from field studies and provides a context for evaluating the relative importance of demographic parameters. Models have been little used in the study of the population dynamics of passerine birds because of: (1) widespread misunderstandings of the model structures and parameterizations, (2) a lack of knowledge of life histories of many species, (3) difficulties in obtaining statistically reliable estimates of demographic parameters for most passerine species, and (4) confusion about functional relationships among demographic parameters. As a result, studies of passerine demography are often designed inappropriately and fail to provide essential data. We review appropriate models for passerine bird populations and illustrate their possible uses in evaluating the effects of management or other environmental influences on population dynamics. We identify environmental influences on population dynamics. We identify parameters that must be estimated from field data, briefly review existing statistical methods for obtaining valid estimates, and evaluate the present status of knowledge of these parameters.

  10. Software for marine ecological environment comprehensive monitoring system based on MCGS

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Ma, R.; Cao, X.; Cao, L.; Chu, D. Z.; Zhang, L.; Zhang, T. P.

    2017-08-01

    The automatic integrated monitoring software for marine ecological environment based on MCGS configuration software is designed and developed to realize real-time automatic monitoring of many marine ecological parameters. The DTU data transmission terminal performs network communication and transmits the data to the user data center in a timely manner. The software adopts the modular design and has the advantages of stable and flexible data structure, strong portability and scalability, clear interface, simple user operation and convenient maintenance. Continuous site comparison test of 6 months showed that, the relative error of the parameters monitored by the system such as temperature, salinity, turbidity, pH, dissolved oxygen was controlled within 5% with the standard method and the relative error of the nutrient parameters was within 15%. Meanwhile, the system had few maintenance times, low failure rate, stable and efficient continuous monitoring capabilities. The field application shows that the software is stable and the data communication is reliable, and it has a good application prospect in the field of marine ecological environment comprehensive monitoring.

  11. Integrating individual movement behaviour into dispersal functions.

    PubMed

    Heinz, Simone K; Wissel, Christian; Conradt, Larissa; Frank, Karin

    2007-04-21

    Dispersal functions are an important tool for integrating dispersal into complex models of population and metapopulation dynamics. Most approaches in the literature are very simple, with the dispersal functions containing only one or two parameters which summarise all the effects of movement behaviour as for example different movement patterns or different perceptual abilities. The summarising nature of these parameters makes assessing the effect of one particular behavioural aspect difficult. We present a way of integrating movement behavioural parameters into a particular dispersal function in a simple way. Using a spatial individual-based simulation model for simulating different movement behaviours, we derive fitting functions for the functional relationship between the parameters of the dispersal function and several details of movement behaviour. This is done for three different movement patterns (loops, Archimedean spirals, random walk). Additionally, we provide measures which characterise the shape of the dispersal function and are interpretable in terms of landscape connectivity. This allows an ecological interpretation of the relationships found.

  12. Compensatory effects of recruitment and survival when amphibian populations are perturbed by disease

    USGS Publications Warehouse

    Muths, E.; Scherer, R. D.; Pilliod, D.S.

    2011-01-01

    The need to increase our understanding of factors that regulate animal population dynamics has been catalysed by recent, observed declines in wildlife populations worldwide. Reliable estimates of demographic parameters are critical for addressing basic and applied ecological questions and understanding the response of parameters to perturbations (e.g. disease, habitat loss, climate change). However, to fully assess the impact of perturbation on population dynamics, all parameters contributing to the response of the target population must be estimated. We applied the reverse-time model of Pradel in Program mark to 6years of capture-recapture data from two populations of Anaxyrus boreas (boreal toad) populations, one with disease and one without. We then assessed a priori hypotheses about differences in survival and recruitment relative to local environmental conditions and the presence of disease. We further explored the relative contribution of survival probability and recruitment rate to population growth and investigated how shifts in these parameters can alter population dynamics when a population is perturbed. High recruitment rates (0??41) are probably compensating for low survival probability (range 0??51-0??54) in the population challenged by an emerging pathogen, resulting in a relatively slow rate of decline. In contrast, the population with no evidence of disease had high survival probability (range 0??75-0??78) but lower recruitment rates (0??25). Synthesis and applications.We suggest that the relationship between survival and recruitment may be compensatory, providing evidence that populations challenged with disease are not necessarily doomed to extinction. A better understanding of these interactions may help to explain, and be used to predict, population regulation and persistence for wildlife threatened with disease. Further, reliable estimates of population parameters such as recruitment and survival can guide the formulation and implementation of conservation actions such as repatriations or habitat management aimed to improve recruitment. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.

  13. Development of a bioenergetics model for the threespine stickleback Gasterosteus aculeatus

    USGS Publications Warehouse

    Hovel, Rachel A.; Beauchamp, David A.; Hansen, Adam G.; Sorel, Mark H.

    2016-01-01

    The Threespine Stickleback Gasterosteus aculeatus is widely distributed across northern hemisphere ecosystems, has ecological influence as an abundant planktivore, and is commonly used as a model organism, but the species lacks a comprehensive model to describe bioenergetic performance in response to varying environmental or ecological conditions. This study parameterized a bioenergetics model for the Threespine Stickleback using laboratory measurements to determine mass- and temperature-dependent functions for maximum consumption and routine respiration costs. Maximum consumption experiments were conducted across a range of temperatures from 7.5°C to 23.0°C and a range of fish weights from 0.5 to 4.5 g. Respiration experiments were conducted across a range of temperatures from 8°C to 28°C. Model sensitivity was consistent with other comparable models in that the mass-dependent parameters for maximum consumption were the most sensitive. Growth estimates based on the Threespine Stickleback bioenergetics model suggested that 22°C is the optimal temperature for growth when food is not limiting. The bioenergetics model performed well when used to predict independent, paired measures of consumption and growth observed from a separate wild population of Threespine Sticklebacks. Predicted values for consumption and growth (expressed as percent body weight per day) only deviated from observed values by 2.0%. Our model should provide insight into the physiological performance of this species across a range of environmental conditions and be useful for quantifying the trophic impact of this species in food webs containing other ecologically or economically important species.

  14. Water-quality trends in the nation’s rivers and streams, 1972–2012—Data preparation, statistical methods, and trend results

    USGS Publications Warehouse

    Oelsner, Gretchen P.; Sprague, Lori A.; Murphy, Jennifer C.; Zuellig, Robert E.; Johnson, Henry M.; Ryberg, Karen R.; Falcone, James A.; Stets, Edward G.; Vecchia, Aldo V.; Riskin, Melissa L.; De Cicco, Laura A.; Mills, Taylor J.; Farmer, William H.

    2017-04-04

    Since passage of the Clean Water Act in 1972, Federal, State, and local governments have invested billions of dollars to reduce pollution entering rivers and streams. To understand the return on these investments and to effectively manage and protect the Nation’s water resources in the future, we need to know how and why water quality has been changing over time. As part of the National Water-Quality Assessment Project, of the U.S. Geological Survey’s National Water-Quality Program, data from the U.S. Geological Survey, along with multiple other Federal, State, Tribal, regional, and local agencies, have been used to support the most comprehensive assessment conducted to date of surface-water-quality trends in the United States. This report documents the methods used to determine trends in water quality and ecology because these methods are vital to ensuring the quality of the results. Specific objectives are to document (1) the data compilation and processing steps used to identify river and stream sites throughout the Nation suitable for water-quality, pesticide, and ecology trend analysis, (2) the statistical methods used to determine trends in target parameters, (3) considerations for water-quality, pesticide, and ecology data and streamflow data when modeling trends, (4) sensitivity analyses for selecting data and interpreting trend results with the Weighted Regressions on Time, Discharge, and Season method, and (5) the final trend results at each site. The scope of this study includes trends in water-quality concentrations and loads (nutrient, sediment, major ion, salinity, and carbon), pesticide concentrations and loads, and metrics for aquatic ecology (fish, invertebrates, and algae) for four time periods: (1) 1972–2012, (2) 1982–2012, (3) 1992–2012, and (4) 2002–12. In total, nearly 12,000 trends in concentration, load, and ecology metrics were evaluated in this study; there were 11,893 combinations of sites, parameters, and trend periods. The final trend results are presented with examples of how to interpret the results from each trend model. Interpretation of the trend results, such as causal analysis, is not included.

  15. Mechanistic movement models to understand epidemic spread.

    PubMed

    Fofana, Abdou Moutalab; Hurford, Amy

    2017-05-05

    An overlooked aspect of disease ecology is considering how and why animals come into contact with one and other resulting in disease transmission. Mathematical models of disease spread frequently assume mass-action transmission, justified by stating that susceptible and infectious hosts mix readily, and foregoing any detailed description of host movement. Numerous recent studies have recorded, analysed and modelled animal movement. These movement models describe how animals move with respect to resources, conspecifics and previous movement directions and have been used to understand the conditions for the occurrence and the spread of infectious diseases when hosts perform a type of movement. Here, we summarize the effect of the different types of movement on the threshold conditions for disease spread. We identify gaps in the literature and suggest several promising directions for future research. The mechanistic inclusion of movement in epidemic models may be beneficial for the following two reasons. Firstly, the estimation of the transmission coefficient in an epidemic model is possible because animal movement data can be used to estimate the rate of contacts between conspecifics. Secondly, unsuccessful transmission events, where a susceptible host contacts an infectious host but does not become infected can be quantified. Following an outbreak, this enables disease ecologists to identify 'near misses' and to explore possible alternative epidemic outcomes given shifts in ecological or immunological parameters.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).

  16. The Effects of Population Density on Juvenile Growth Rate in White-Tailed Deer

    NASA Astrophysics Data System (ADS)

    Barr, Brannon; Wolverton, Steve

    2014-10-01

    Animal body size is driven by habitat quality, food availability, and nutrition. Adult size can relate to birth weight, to length of the ontogenetic growth period, and/or to the rate of growth. Data requirements are high for studying these growth mechanisms, but large datasets exist for some game species. In North America, large harvest datasets exist for white-tailed deer ( Odocoileus virginianus), but such data are collected under a variety of conditions and are generally dismissed for ecological research beyond local population and habitat management. We contend that such data are useful for studying the ecology of white-tailed deer growth and body size when analyzed at ordinal scale. In this paper, we test the response of growth rate to food availability by fitting a logarithmic equation that estimates growth rate only to harvest data from Fort Hood, Texas, and track changes in growth rate over time. Results of this ordinal scale model are compared to previously published models that include additional parameters, such as birth weight and adult weight. It is shown that body size responds to food availability by variation in growth rate. Models that estimate multiple parameters may not work with harvest data because they are prone to error, which renders estimates from complex models too variable to detect interannual changes in growth rate that this ordinal scale model captures. This model can be applied to harvest data, from which inferences about factors that influence animal growth and body size (e.g., habitat quality and nutritional availability) can be drawn.

  17. The effects of population density on juvenile growth rate in white-tailed deer.

    PubMed

    Barr, Brannon; Wolverton, Steve

    2014-10-01

    Animal body size is driven by habitat quality, food availability, and nutrition. Adult size can relate to birth weight, to length of the ontogenetic growth period, and/or to the rate of growth. Data requirements are high for studying these growth mechanisms, but large datasets exist for some game species. In North America, large harvest datasets exist for white-tailed deer (Odocoileus virginianus), but such data are collected under a variety of conditions and are generally dismissed for ecological research beyond local population and habitat management. We contend that such data are useful for studying the ecology of white-tailed deer growth and body size when analyzed at ordinal scale. In this paper, we test the response of growth rate to food availability by fitting a logarithmic equation that estimates growth rate only to harvest data from Fort Hood, Texas, and track changes in growth rate over time. Results of this ordinal scale model are compared to previously published models that include additional parameters, such as birth weight and adult weight. It is shown that body size responds to food availability by variation in growth rate. Models that estimate multiple parameters may not work with harvest data because they are prone to error, which renders estimates from complex models too variable to detect interannual changes in growth rate that this ordinal scale model captures. This model can be applied to harvest data, from which inferences about factors that influence animal growth and body size (e.g., habitat quality and nutritional availability) can be drawn.

  18. On the dynamics of a generalized predator-prey system with Z-type control.

    PubMed

    Lacitignola, Deborah; Diele, Fasma; Marangi, Carmela; Provenzale, Antonello

    2016-10-01

    We apply the Z-control approach to a generalized predator-prey system and consider the specific case of indirect control of the prey population. We derive the associated Z-controlled model and investigate its properties from the point of view of the dynamical systems theory. The key role of the design parameter λ for the successful application of the method is stressed and related to specific dynamical properties of the Z-controlled model. Critical values of the design parameter are also found, delimiting the λ-range for the effectiveness of the Z-method. Analytical results are then numerically validated by the means of two ecological models: the classical Lotka-Volterra model and a model related to a case study of the wolf-wild boar dynamics in the Alta Murgia National Park. Investigations on these models also highlight how the Z-control method acts in respect to different dynamical regimes of the uncontrolled model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Linking hydrologic, physical and chemical habitat environments for the potential assessment of fish community rehabilitation in a developing city

    NASA Astrophysics Data System (ADS)

    Zhao, C. S.; Yang, S. T.; Liu, C. M.; Dou, T. W.; Yang, Z. L.; Yang, Z. Y.; Liu, X. L.; Xiang, H.; Nie, S. Y.; Zhang, J. L.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-04-01

    Aquatic ecological rehabilitation is increasingly attracting considerable public and research attention. An effective method that requires less data and expertise would help in the assessment of rehabilitation potential and in the monitoring of rehabilitation activities as complicated theories and excessive data requirements on assemblage information make many current assessment models expensive and limit their wide use. This paper presents an assessment model for restoration potential which successfully links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. In this model three newly developed sub-models, integrated habitat index (IHSI), integrated ecological niche breadth (INB) and integrated ecological niche overlap (INO), are established to study spatial heterogeneity of the restoration potential of fish assemblages based on gradient methods of habitat suitability index and ecological niche models. To reduce uncertainties in the model, as many fish species as possible, including important native fish, were selected as dominant species with monitoring occurring over several seasons to comprehensively select key habitat factors. Furthermore, a detrended correspondence analysis (DCA) was employed prior to a canonical correspondence analysis (CCA) of the data to avoid the "arc effect" in the selection of key habitat factors. Application of the model to data collected at Jinan City, China proved effective reveals that three lower potential regions that should be targeted in future aquatic ecosystem rehabilitation programs. They were well validated by the distribution of two habitat parameters: river width and transparency. River width positively influenced and transparency negatively influenced fish assemblages. The model can be applied for monitoring the effects of fish assemblage restoration. This has large ramifications for the restoration of aquatic ecosystems and spatial heterogeneity of fish assemblages all over the world.

  20. Using multiple data types and integrated population models to improve our knowledge of apex predator population dynamics.

    PubMed

    Bled, Florent; Belant, Jerrold L; Van Daele, Lawrence J; Svoboda, Nathan; Gustine, David; Hilderbrand, Grant; Barnes, Victor G

    2017-11-01

    Current management of large carnivores is informed using a variety of parameters, methods, and metrics; however, these data are typically considered independently. Sharing information among data types based on the underlying ecological, and recognizing observation biases, can improve estimation of individual and global parameters. We present a general integrated population model (IPM), specifically designed for brown bears ( Ursus arctos ), using three common data types for bear ( U . spp.) populations: repeated counts, capture-mark-recapture, and litter size. We considered factors affecting ecological and observation processes for these data. We assessed the practicality of this approach on a simulated population and compared estimates from our model to values used for simulation and results from count data only. We then present a practical application of this general approach adapted to the constraints of a case study using historical data available for brown bears on Kodiak Island, Alaska, USA. The IPM provided more accurate and precise estimates than models accounting for repeated count data only, with credible intervals including the true population 94% and 5% of the time, respectively. For the Kodiak population, we estimated annual average litter size (within one year after birth) to vary between 0.45 [95% credible interval: 0.43; 0.55] and 1.59 [1.55; 1.82]. We detected a positive relationship between salmon availability and adult survival, with survival probabilities greater for females than males. Survival probabilities increased from cubs to yearlings to dependent young ≥2 years old and decreased with litter size. Linking multiple information sources based on ecological and observation mechanisms can provide more accurate and precise estimates, to better inform management. IPMs can also reduce data collection efforts by sharing information among agencies and management units. Our approach responds to an increasing need in bear populations' management and can be readily adapted to other large carnivores.

  1. Using multiple data types and integrated population models to improve our knowledge of apex predator population dynamics

    USGS Publications Warehouse

    Bled, Florent; Belant, Jerrold L.; Van Daele, Lawrence J.; Svoboda, Nathan; Gustine, David D.; Hilderbrand, Grant V.; Barnes, Victor G.

    2017-01-01

    Current management of large carnivores is informed using a variety of parameters, methods, and metrics; however, these data are typically considered independently. Sharing information among data types based on the underlying ecological, and recognizing observation biases, can improve estimation of individual and global parameters. We present a general integrated population model (IPM), specifically designed for brown bears (Ursus arctos), using three common data types for bear (U. spp.) populations: repeated counts, capture–mark–recapture, and litter size. We considered factors affecting ecological and observation processes for these data. We assessed the practicality of this approach on a simulated population and compared estimates from our model to values used for simulation and results from count data only. We then present a practical application of this general approach adapted to the constraints of a case study using historical data available for brown bears on Kodiak Island, Alaska, USA. The IPM provided more accurate and precise estimates than models accounting for repeated count data only, with credible intervals including the true population 94% and 5% of the time, respectively. For the Kodiak population, we estimated annual average litter size (within one year after birth) to vary between 0.45 [95% credible interval: 0.43; 0.55] and 1.59 [1.55; 1.82]. We detected a positive relationship between salmon availability and adult survival, with survival probabilities greater for females than males. Survival probabilities increased from cubs to yearlings to dependent young ≥2 years old and decreased with litter size. Linking multiple information sources based on ecological and observation mechanisms can provide more accurate and precise estimates, to better inform management. IPMs can also reduce data collection efforts by sharing information among agencies and management units. Our approach responds to an increasing need in bear populations’ management and can be readily adapted to other large carnivores.

  2. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs

    PubMed Central

    Delparte, D; Gates, RD; Takabayashi, M

    2015-01-01

    The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190

  3. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites

    NASA Astrophysics Data System (ADS)

    Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2017-03-01

    The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET sites at 600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.

  4. On signals of phase transitions in salmon population dynamics

    PubMed Central

    Krkošek, Martin; Drake, John M.

    2014-01-01

    Critical slowing down (CSD) reflects the decline in resilience of equilibria near a bifurcation and may reveal early warning signals (EWS) of ecological phase transitions. We studied CSD in the recruitment dynamics of 120 stocks of three Pacific salmon (Oncorhynchus spp.) species in relation to critical transitions in fishery models. Pink salmon (Oncorhynchus gorbuscha) exhibited increased variability and autocorrelation in populations that had a growth parameter, r, close to zero, consistent with EWS of extinction. However, models and data for sockeye salmon (Oncorhynchus nerka) indicate that portfolio effects from heterogeneity in age-at-maturity may obscure EWS. Chum salmon (Oncorhynchus keta) show intermediate results. The data do not reveal EWS of Ricker-type bifurcations that cause oscillations and chaos at high r. These results not only provide empirical support for CSD in some ecological systems, but also indicate that portfolio effects of age structure may conceal EWS of some critical transitions. PMID:24759855

  5. More than a meal: integrating non-feeding interactions into food webs

    USGS Publications Warehouse

    Kéfi, Sonia; Berlow, Eric L.; Wieters, Evie A.; Navarrete, Sergio A.; Petchey, Owen L.; Wood, Spencer A.; Boit, Alice; Joppa, Lucas N.; Lafferty, Kevin D.; Williams, Richard J.; Martinez, Neo D.; Menge, Bruce A.; Blanchette, Carol A.; Iles, Alison C.; Brose, Ulrich

    2012-01-01

    Organisms eating each other are only one of many types of well documented and important interactions among species. Other such types include habitat modification, predator interference and facilitation. However, ecological network research has been typically limited to either pure food webs or to networks of only a few (<3) interaction types. The great diversity of non-trophic interactions observed in nature has been poorly addressed by ecologists and largely excluded from network theory. Herein, we propose a conceptual framework that organises this diversity into three main functional classes defined by how they modify specific parameters in a dynamic food web model. This approach provides a path forward for incorporating non-trophic interactions in traditional food web models and offers a new perspective on tackling ecological complexity that should stimulate both theoretical and empirical approaches to understanding the patterns and dynamics of diverse species interactions in nature.

  6. Modeling and measuring the visual detection of ecologically relevant motion by an Anolis lizard.

    PubMed

    Pallus, Adam C; Fleishman, Leo J; Castonguay, Philip M

    2010-01-01

    Motion in the visual periphery of lizards, and other animals, often causes a shift of visual attention toward the moving object. This behavioral response must be more responsive to relevant motion (predators, prey, conspecifics) than to irrelevant motion (windblown vegetation). Early stages of visual motion detection rely on simple local circuits known as elementary motion detectors (EMDs). We presented a computer model consisting of a grid of correlation-type EMDs, with videos of natural motion patterns, including prey, predators and windblown vegetation. We systematically varied the model parameters and quantified the relative response to the different classes of motion. We carried out behavioral experiments with the lizard Anolis sagrei and determined that their visual response could be modeled with a grid of correlation-type EMDs with a spacing parameter of 0.3 degrees visual angle, and a time constant of 0.1 s. The model with these parameters gave substantially stronger responses to relevant motion patterns than to windblown vegetation under equivalent conditions. However, the model is sensitive to local contrast and viewer-object distance. Therefore, additional neural processing is probably required for the visual system to reliably distinguish relevant from irrelevant motion under a full range of natural conditions.

  7. Artificial intelligence based decision support for trumpeter swan management

    USGS Publications Warehouse

    Sojda, Richard S.

    2002-01-01

    The number of trumpeter swans (Cygnus buccinator) breeding in the Tri-State area where Montana, Idaho, and Wyoming come together has declined to just a few hundred pairs. However, these birds are part of the Rocky Mountain Population which additionally has over 3,500 birds breeding in Alberta, British Columbia, Northwest Territories, and Yukon Territory. To a large degree, these birds seem to have abandoned traditional migratory pathways in the flyway. Waterfowl managers have been interested in decision support tools that would help them explore simulated management scenarios in their quest towards reaching population recovery and the reestablishment of traditional migratory pathways. I have developed a decision support system to assist biologists with such management, especially related to wetland ecology. Decision support systems use a combination of models, analytical techniques, and information retrieval to help develop and evaluate appropriate alternatives. Swan management is a domain that is ecologically complex, and this complexity is compounded by spatial and temporal issues. As such, swan management is an inherently distributed problem. Therefore, the ecological context for modeling swan movements in response to management actions was built as a multiagent system of interacting intelligent agents that implements a queuing model representing swan migration. These agents accessed ecological knowledge about swans, their habitats, and flyway management principles from three independent expert systems. The agents were autonomous, had some sensory capability, and could respond to changing conditions. A key problem when developing ecological decision support systems is empirically determining that the recommendations provided are valid. Because Rocky Mountain trumpeter swans have been surveyed for a long period of time, I was able to compare simulated distributions provided by the system with actual field observations across 20 areas for the period 1988-2000. Applying the Matched Pairs Multivariate Permutation Test as a statistical tool was a new approach for comparing flyway distributions of waterfowl over time that seemed to work well. Based on this approach, the empirical evidence that I gathered led me to conclude that the base queuing model does accurately simulate swan distributions in the flyway. The system was insensitive to almost all model parameters tested. That remains perplexing, but might result from the base queuing model, itself, being particularly effective at representing the actual ecological diversity in the world of Rocky Mountain trumpeter swans, both spatial and temporally.

  8. CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: estimates from flux tower measurements

    USGS Publications Warehouse

    Gilmanov, Tagir; Wylie, Bruce; Tieszen, Larry; Meyers, Tilden P.; Baron, Vern S.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Fischer, Marc L.; Glenn, Aaron J.; Hanan, Niall P.; Hatfield, Jerry L.; Heuer, Mark W.; Hollinger, Steven E.; Howard, Daniel M.; Matamala, Roser; Prueger, John H.; Tenuta, Mario; Young, David G.

    2013-01-01

    We analyzed net CO2 exchange data from 13 flux tower sites with 27 site-years of measurements over maize and wheat fields across midcontinent North America. A numerically robust “light-soil temperature-VPD”-based method was used to partition the data into photosynthetic assimilation and ecosystem respiration components. Year-round ecosystem-scale ecophysiological parameters of apparent quantum yield, photosynthetic capacity, convexity of the light response, respiration rate parameters, ecological light-use efficiency, and the curvature of the VPD-response of photosynthesis for maize and wheat crops were numerically identified and interpolated/extrapolated. This allowed us to gap-fill CO2 exchange components and calculate annual totals and budgets. VPD-limitation of photosynthesis was systematically observed in grain crops of the region (occurring from 20 to 120 days during the growing season, depending on site and year), determined by the VPD regime and the numerical value of the curvature parameter of the photosynthesis-VPD-response, σVPD. In 78% of the 27 site-years of observations, annual gross photosynthesis in these crops significantly exceeded ecosystem respiration, resulting in a net ecosystem production of up to 2100 g CO2 m−2 year−1. The measurement-based photosynthesis, respiration, and net ecosystem production data, as well as the estimates of the ecophysiological parameters, provide an empirical basis for parameterization and validation of mechanistic models of grain crop production in this economically and ecologically important region of North America.

  9. Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.

    PubMed

    Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C

    2017-07-01

    Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may have played a role in driving local dynamics. More generally, we demonstrated how state-space models can be used to test evidence for population spatial structure based on survey time-series data. Our study shows the importance of considering spatially structured dynamics, as the inferences from such an approach can lead to a different ecological understanding of the drivers of population declines, and fundamentally different management actions to restore populations. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  10. Empirical evidence that metabolic theory describes the temperature dependency of within-host parasite dynamics.

    PubMed

    Kirk, Devin; Jones, Natalie; Peacock, Stephanie; Phillips, Jessica; Molnár, Péter K; Krkošek, Martin; Luijckx, Pepijn

    2018-02-01

    The complexity of host-parasite interactions makes it difficult to predict how host-parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host-parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level.

  11. Empirical evidence that metabolic theory describes the temperature dependency of within-host parasite dynamics

    PubMed Central

    Jones, Natalie; Peacock, Stephanie; Phillips, Jessica; Molnár, Péter K.; Krkošek, Martin; Luijckx, Pepijn

    2018-01-01

    The complexity of host–parasite interactions makes it difficult to predict how host–parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host–parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level. PMID:29415043

  12. A theoretical quantitative genetic study of negative ecological interactions and extinction times in changing environments.

    PubMed

    Jones, Adam G

    2008-04-25

    Rapid human-induced changes in the environment at local, regional and global scales appear to be contributing to population declines and extinctions, resulting in an unprecedented biodiversity crisis. Although in the short term populations can respond ecologically to environmental alterations, in the face of persistent change populations must evolve or become extinct. Existing models of evolution and extinction in changing environments focus only on single species, even though the dynamics of extinction almost certainly depend upon the nature of species interactions. Here, I use a model of quantitative trait evolution in a two-species community to show that negative ecological interactions, such as predation and competition, can produce unexpected results regarding time to extinction. Under some circumstances, negative interactions can be expected to hasten the extinction of species declining in numbers. However, under other circumstances, negative interactions can actually increase times to extinction. This effect occurs across a wide range of parameter values and can be substantial, in some cases allowing a population to persist for 40 percent longer than it would in the absence of the species interaction. This theoretical study indicates that negative species interactions can have unexpected positive effects on times to extinction. Consequently, detailed studies of selection and demographics will be necessary to predict the consequences of species interactions in changing environments for any particular ecological community.

  13. Response mechanisms of conifers to air pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyssek, R.; Reich, P.; Oren, R.

    1995-07-01

    Conifers are known to respond to SO{sub 2}, O{sub 3}, NO{sub x} and acid deposition. Of these pollutants, O{sub 3} is likely the most widespread and phytotoxic compound, and therefore of great interest to individuals concerned with forest resources Direct biological responses have a toxicological effects on metabolism which can then scale to effects on tree growth and forest ecology, including processes of competition and succession. Air pollution can cause reductions in photosynthesis and stomatal conductance, which are the physiological parameters most rigorously studied for conifers. Some effects air pollutants can have on plants are influenced by the presence ofmore » co-occurring environmental stresses. For example, drought usually reduces vulnerability of plants to air pollution. In addition, air pollution sensitivity may differ among species and with plant/leaf age. Plants may make short-term physiological adjustments to compensate for air pollution or may evolve resistance to air pollution through the processes of selection. Models are necessary to understand how physiological processes, growth processes, and ecological processes are affected by air pollutants. The process of defining the ecological risk that air pollutants pose for coniferous forests requires approaches that exploit existing databases, environmental monitoring of air pollutants and forest resources, experiments with well-defined air pollution treatments and environmental control/monitoring, modeling, predicting air pollution-caused changes in productivity and ecological processes over time and space, and integration of social values.« less

  14. Biodiversity, extinctions, and evolution of ecosystems with shared resources

    NASA Astrophysics Data System (ADS)

    Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno

    2017-03-01

    We investigate the formation of stable ecological networks where many species share the same resource. We show that such a stable ecosystem naturally occurs as a result of extinctions. We obtain an analytical relation for the number of coexisting species, and we find a relation describing how many species that may become extinct as a result of a sharp environmental change. We introduce a special parameter that is a combination of species traits and resource characteristics used in the model formulation. This parameter describes the pressure on the system to converge, by extinctions. When that stress parameter is large, we obtain that the species traits are concentrated at certain values. This stress parameter is thereby a parameter that determines the level of final biodiversity of the system. Moreover, we show that the dynamics of this limit system can be described by simple differential equations.

  15. Investigation of ecological parameters of four-stroke SI engine, with pneumatic fuel injection system

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    The publication presents the results of tests to determine the impact of using waste fuels, alcohol, to power the engine, on the ecological parameters of the combustion engine. Alternatively fuelled with a mixture of iso- and n-butanol, indicated with "X" and "END, and gasoline and a mixture of fuel and alcohol. The object of the study was a four-stroke engine with spark ignition designed to work with a generator. Motor power was held by the modified system of pneumatic injection using hot exhaust gases developed by Prof. Stanislaw Jarnuszkiewicz, controlled by modern mechatronic systems. Tests were conducted at a constant speed for the intended use of the engine. The subject of the research was to determine the control parameters such as ignition timing, mixture composition and the degree of exhaust gas recirculation on the ecological parameters of the engine. Tests were carried out using partially quality power control. In summary we present the findings of this phase of the study.

  16. Comfort and Accessibility Evaluation of Light Rail Vehicles

    NASA Astrophysics Data System (ADS)

    Hirasawa, Takayuki; Matsuoka, Shigeki; Suda, Yoshihiro

    A quantitative evaluation method for passenger rooms of light rail vehicles from viewpoint of comfort and accessibility is proposed as the result of physical modeling of in-vehicle behavior of passengers upon Gibson's ecological psychology approach. The model parameters are identified from experiments at real vehicles at the depot of Kumamoto municipal transport and at the full-scale mockup of the University of Tokyo. The developed model has realized quantitative evaluation of floor lowering effects by abolishing internal steps at passenger doorways and door usage restriction scenarios from viewpoint of both passengers and operators in comparison to commuter railway vehicles.

  17. Modelling parasite aggregation: disentangling statistical and ecological approaches.

    PubMed

    Yakob, Laith; Soares Magalhães, Ricardo J; Gray, Darren J; Milinovich, Gabriel; Wardrop, Nicola; Dunning, Rebecca; Barendregt, Jan; Bieri, Franziska; Williams, Gail M; Clements, Archie C A

    2014-05-01

    The overdispersion in macroparasite infection intensity among host populations is commonly simulated using a constant negative binomial aggregation parameter. We describe an alternative to utilising the negative binomial approach and demonstrate important disparities in intervention efficacy projections that can come about from opting for pattern-fitting models that are not process-explicit. We present model output in the context of the epidemiology and control of soil-transmitted helminths due to the significant public health burden imposed by these parasites, but our methods are applicable to other infections with demonstrable aggregation in parasite numbers among hosts. Copyright © 2014. Published by Elsevier Ltd.

  18. An integrated multi-criteria scenario evaluation web tool for participatory land-use planning in urbanized areas: The Ecosystem Portfolio Model

    USGS Publications Warehouse

    Labiosa, Bill; Forney, William M.; Hearn,, Paul P.; Hogan, Dianna M.; Strong, David R.; Swain, Eric D.; Esnard, Ann-Margaret; Mitsova-Boneva, D.; Bernknopf, R.; Pearlstine, Leonard; Gladwin, Hugh

    2013-01-01

    Land-use land-cover change is one of the most important and direct drivers of changes in ecosystem functions and services. Given the complexity of the decision-making, there is a need for Internet-based decision support systems with scenario evaluation capabilities to help planners, resource managers and communities visualize, compare and consider trade-offs among the many values at stake in land use planning. This article presents details on an Ecosystem Portfolio Model (EPM) prototype that integrates ecological, socio-economic information and associated values of relevance to decision-makers and stakeholders. The EPM uses a multi-criteria scenario evaluation framework, Geographic Information Systems (GIS) analysis and spatially-explicit land-use/land-cover change-sensitive models to characterize changes in important land-cover related ecosystem values related to ecosystem services and functions, land parcel prices, and community quality-of-life (QoL) metrics. Parameters in the underlying models can be modified through the interface, allowing users in a facilitated group setting to explore simultaneously issues of scientific uncertainty and divergence in the preferences of stakeholders. One application of the South Florida EPM prototype reported in this article shows the modeled changes (which are significant) in aggregate ecological value, landscape patterns and fragmentation, biodiversity potential and ecological restoration potential for current land uses compared to the 2050 land-use scenario. Ongoing refinements to EPM, and future work especially in regard to modifiable sea level rise scenarios are also discussed.

  19. Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting.

    PubMed

    LaDeau, Shannon L; Glass, Gregory E; Hobbs, N Thompson; Latimer, Andrew; Ostfeld, Richard S

    2011-07-01

    Ecologists worldwide are challenged to contribute solutions to urgent and pressing environmental problems by forecasting how populations, communities, and ecosystems will respond to global change. Rising to this challenge requires organizing ecological information derived from diverse sources and formally assimilating data with models of ecological processes. The study of infectious disease has depended on strategies for integrating patterns of observed disease incidence with mechanistic process models since John Snow first mapped cholera cases around a London water pump in 1854. Still, zoonotic and vector-borne diseases increasingly affect human populations, and methods used to successfully characterize directly transmitted diseases are often insufficient. We use four case studies to demonstrate that advances in disease forecasting require better understanding of zoonotic host and vector populations, as well of the dynamics that facilitate pathogen amplification and disease spillover into humans. In each case study, this goal is complicated by limited data, spatiotemporal variability in pathogen transmission and impact, and often, insufficient biological understanding. We present a conceptual framework for data-model fusion in infectious disease research that addresses these fundamental challenges using a hierarchical state-space structure to (1) integrate multiple data sources and spatial scales to inform latent parameters, (2) partition uncertainty in process and observation models, and (3) explicitly build upon existing ecological and epidemiological understanding. Given the constraints inherent in the study of infectious disease and the urgent need for progress, fusion of data and expertise via this type of conceptual framework should prove an indispensable tool.

  20. A Bayesian Alternative for Multi-objective Ecohydrological Model Specification

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.

    2015-12-01

    Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.

  1. Deriving percentage study weights in multi-parameter meta-analysis models: with application to meta-regression, network meta-analysis and one-stage individual participant data models.

    PubMed

    Riley, Richard D; Ensor, Joie; Jackson, Dan; Burke, Danielle L

    2017-01-01

    Many meta-analysis models contain multiple parameters, for example due to multiple outcomes, multiple treatments or multiple regression coefficients. In particular, meta-regression models may contain multiple study-level covariates, and one-stage individual participant data meta-analysis models may contain multiple patient-level covariates and interactions. Here, we propose how to derive percentage study weights for such situations, in order to reveal the (otherwise hidden) contribution of each study toward the parameter estimates of interest. We assume that studies are independent, and utilise a decomposition of Fisher's information matrix to decompose the total variance matrix of parameter estimates into study-specific contributions, from which percentage weights are derived. This approach generalises how percentage weights are calculated in a traditional, single parameter meta-analysis model. Application is made to one- and two-stage individual participant data meta-analyses, meta-regression and network (multivariate) meta-analysis of multiple treatments. These reveal percentage study weights toward clinically important estimates, such as summary treatment effects and treatment-covariate interactions, and are especially useful when some studies are potential outliers or at high risk of bias. We also derive percentage study weights toward methodologically interesting measures, such as the magnitude of ecological bias (difference between within-study and across-study associations) and the amount of inconsistency (difference between direct and indirect evidence in a network meta-analysis).

  2. Back-to-the-future: a fresh policy initiative for fisheries and a restoration ecology for ocean ecosystems

    PubMed Central

    Pitcher, Tony J.

    2005-01-01

    ‘Back-to-the-future’ (BTF) is an integrative approach to a restoration ecology of the oceans that attempts to solve the fisheries crisis. To this end, it harnesses the latest understanding of ecosystem processes, developments in whole ecosystem simulation modelling, and insight into the human dimension of fisheries management. BTF includes new methods for describing past ecosystems, designing fisheries that meet criteria for sustainability and responsibility, and evaluating the costs and benefits of fisheries in restored ecosystems. Evaluation of alternative policy choices, involving trade-offs between conservation and economic values, employs a range of economic, social and ecological measures. Automated searches maximize values of objective functions, and the methodology includes analyses of model parameter uncertainty. Participatory workshops attempt to maximize compliance by fostering a sense of ownership among all stakeholders. Some challenges that have still to be met include improving methods for quantitatively describing the past, reducing uncertainty in ecosystem simulation techniques and in making policy choices robust against climate change. Critical issues include whether past ecosystems make viable policy goals, and whether desirable goals may be reached from today’s ecosystem. Examples from case studies in British Columbia, Newfoundland and elsewhere are presented. PMID:15713591

  3. Detection of Rift Valley fever viral activity in Kenya by satellite remote sensing imagery

    NASA Technical Reports Server (NTRS)

    Linthicum, Kenneth J.; Bailey, Charles L.; Davies, F. Glyn; Tucker, Compton J.

    1987-01-01

    Data from the advanced very high resolution radiometer on board the National Oceanic and Atmospheric Administration's polar-orbiting meteorological satellites have been used to infer ecological parameters associated with Rift Valley fever (RVF) viral activity in Kenya. An indicator of potential viral activity was produced from satellite data for two different ecological regions in Kenya, where RVF is enzootic. The correlation between the satellite-derived green vegetation index and the ecological parameters associated with RVF virus suggested that satellite data may become a forecasting tool for RVF in Kenya and, perhaps, in other areas of sub-Saharan Africa.

  4. Modeling the Effect of Nonlinear and Rate-Limited Sorption on the Natural Attenuation of Chlorinated Ethenes

    DTIC Science & Technology

    2000-03-01

    toxicity. Determine what parameters lead to minimized risk to human health. 64 6.0 Bibliography Atlas , R.M. and R. Bartha . Microbial Ecology ...single-celled organisms ( Atlas and Bartha , 1993). Biodegradation - Process where bacteria mineralize or transform contaminants using organic...NRC, 1994) Methanogenesis - The process of creating methane from H2 and CO2 during the respiration of methanogens ( Atlas and Bartha , 1993

  5. An assessment of hematological and biochemical responses in the tropical fish Epinephelus stoliczkae of Chabahar Bay and Gulf of Oman under chromium exposure: ecological and experimental tests.

    PubMed

    Sadeghi, Parvin; Savari, Ahmad; Movahedinia, Abdolali; Safahieh, Alireza; Azhdari, Danial

    2014-05-01

    The aim of this investigation was to evaluate the effect of chromium on hematological and biochemical parameters in Epaulet Grouper, Epinephelus stoliczkae of Chabahar Bay and Gulf of Oman by ecological and experimental tests. Spatial evaluation of ecological test results showed these parameters had significant difference among some sampling sites. Examination of hematological and biochemical profiles on Epaulet Grouper was performed after 0.5, 1, 7, 14, and 21 days of chromium exposure (3.6, 7.31 and 14.6 mg/L). Experimental test results of chromium induce indicated the significant decrease in MCV, MCH, neutrophils, basophils, plasma protein and significant increase in MCHC, lymphocytes, monocytes, eosinophils and a biphasic trend in Hb, Ht, RBC, WBC, and glucose (p < 0.05). Cellular and nuclear axis, cytoplasmic volume, cell and nuclear volume, and surface area were significantly different for ecological and experimental results (p < 0.05). It was concluded that these parameters are sensitive in monitoring the toxicity of chromium concentrations.

  6. Stochastic dynamics and logistic population growth

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner

    2015-06-01

    The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.

  7. Effects of season on ecological processes in extensive earthen tilapia ponds in Southeastern Brazil.

    PubMed

    Favaro, E G P; Sipaúba-Tavares, L H; Milstein, A

    2015-11-01

    In Southeastern Brazil tilapia culture is conducted in extensive and semi-intensive flow-through earthen ponds, being water availability and flow management different in the rainy and dry seasons. In this region lettuce wastes are a potential cheap input for tilapia culture. This study examined the ecological processes developing during the rainy and dry seasons in three extensive flow-through earthen tilapia ponds fertilized with lettuce wastes. Water quality, plankton and sediment parameters were sampled monthly during a year. Factor analysis was used to identify the ecological processes occurring within the ponds and to construct a conceptual graphic model of the pond ecosystem functioning during the rainy and dry seasons. Processes related to nitrogen cycling presented differences between both seasons while processes related to phosphorus cycling did not. Ecological differences among ponds were due to effects of wind protection by surrounding vegetation, organic loading entering, tilapia density and its grazing pressure on zooplankton. Differences in tilapia growth among ponds were related to stocking density and ecological process affecting tilapia food availability and intraspecific competition. Lettuce wastes addition into the ponds did not produce negative effects, thus this practice may be considered a disposal option and a low-cost input source for tilapia, at least at the amounts applied in this study.

  8. From metabolism to ecology: cross-feeding interactions shape the balance between polymicrobial conflict and mutualism

    PubMed Central

    Estrela, Sylvie; Trisos, Christopher H.; Brown, Sam P.

    2012-01-01

    Polymicrobial interactions are widespread in nature, and play a major role in maintaining human health and ecosystems. Whenever one organism uses metabolites produced by another organism as energy or nutrient sources, this is called cross-feeding. The ecological outcomes of cross-feeding interactions are poorly understood and potentially diverse: mutualism, competition, exploitation or commensalism. A major reason for this uncertainty is the lack of theoretical approaches linking microbial metabolism to microbial ecology. To address this issue, we explore the dynamics of a one-way interspecific cross-feeding interaction, in which food can be traded for a service (detoxification). Our results show that diverse ecological interactions (competition, mutualism, exploitation) can emerge from this simple cross-feeding interaction, and can be predicted by the metabolic, demographic and environmental parameters that govern the balance of the costs and benefits of association. In particular, our model predicts stronger mutualism for intermediate by-product toxicity because the resource-service exchange is constrained to the service being neither too vital (high toxicity impairs resource provision) nor dispensable (low toxicity reduces need for service). These results support the idea that bridging microbial ecology and metabolism is a critical step towards a better understanding of the factors governing the emergence and dynamics of polymicrobial interactions. PMID:23070318

  9. Metal mixture modeling evaluation project: 2. Comparison of four modeling approaches.

    PubMed

    Farley, Kevin J; Meyer, Joseph S; Balistrieri, Laurie S; De Schamphelaere, Karel A C; Iwasaki, Yuichi; Janssen, Colin R; Kamo, Masashi; Lofts, Stephen; Mebane, Christopher A; Naito, Wataru; Ryan, Adam C; Santore, Robert C; Tipping, Edward

    2015-04-01

    As part of the Metal Mixture Modeling Evaluation (MMME) project, models were developed by the National Institute of Advanced Industrial Science and Technology (Japan), the US Geological Survey (USA), HDR|HydroQual (USA), and the Centre for Ecology and Hydrology (United Kingdom) to address the effects of metal mixtures on biological responses of aquatic organisms. A comparison of the 4 models, as they were presented at the MMME workshop in Brussels, Belgium (May 2012), is provided in the present study. Overall, the models were found to be similar in structure (free ion activities computed by the Windermere humic aqueous model [WHAM]; specific or nonspecific binding of metals/cations in or on the organism; specification of metal potency factors or toxicity response functions to relate metal accumulation to biological response). Major differences in modeling approaches are attributed to various modeling assumptions (e.g., single vs multiple types of binding sites on the organism) and specific calibration strategies that affected the selection of model parameters. The models provided a reasonable description of additive (or nearly additive) toxicity for a number of individual toxicity test results. Less-than-additive toxicity was more difficult to describe with the available models. Because of limitations in the available datasets and the strong interrelationships among the model parameters (binding constants, potency factors, toxicity response parameters), further evaluation of specific model assumptions and calibration strategies is needed. © 2014 SETAC.

  10. A hybrid model for river water temperature as a function of air temperature and discharge

    NASA Astrophysics Data System (ADS)

    Toffolon, Marco; Piccolroaz, Sebastiano

    2015-11-01

    Water temperature controls many biochemical and ecological processes in rivers, and theoretically depends on multiple factors. Here we formulate a model to predict daily averaged river water temperature as a function of air temperature and discharge, with the latter variable being more relevant in some specific cases (e.g., snowmelt-fed rivers, rivers impacted by hydropower production). The model uses a hybrid formulation characterized by a physically based structure associated with a stochastic calibration of the parameters. The interpretation of the parameter values allows for better understanding of river thermal dynamics and the identification of the most relevant factors affecting it. The satisfactory agreement of different versions of the model with measurements in three different rivers (root mean square error smaller than 1oC, at a daily timescale) suggests that the proposed model can represent a useful tool to synthetically describe medium- and long-term behavior, and capture the changes induced by varying external conditions.

  11. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, John M.; Rhodes, M.; Brown, C. W.

    The aim is to construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Conclusions: Environmental parameters such as temperature, salinity and turbidity aremore » capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions.« less

  12. Metal Mixture Modeling Evaluation project: 2. Comparison of four modeling approaches

    USGS Publications Warehouse

    Farley, Kevin J.; Meyer, Joe; Balistrieri, Laurie S.; DeSchamphelaere, Karl; Iwasaki, Yuichi; Janssen, Colin; Kamo, Masashi; Lofts, Steve; Mebane, Christopher A.; Naito, Wataru; Ryan, Adam C.; Santore, Robert C.; Tipping, Edward

    2015-01-01

    As part of the Metal Mixture Modeling Evaluation (MMME) project, models were developed by the National Institute of Advanced Industrial Science and Technology (Japan), the U.S. Geological Survey (USA), HDR⎪HydroQual, Inc. (USA), and the Centre for Ecology and Hydrology (UK) to address the effects of metal mixtures on biological responses of aquatic organisms. A comparison of the 4 models, as they were presented at the MMME Workshop in Brussels, Belgium (May 2012), is provided herein. Overall, the models were found to be similar in structure (free ion activities computed by WHAM; specific or non-specific binding of metals/cations in or on the organism; specification of metal potency factors and/or toxicity response functions to relate metal accumulation to biological response). Major differences in modeling approaches are attributed to various modeling assumptions (e.g., single versus multiple types of binding site on the organism) and specific calibration strategies that affected the selection of model parameters. The models provided a reasonable description of additive (or nearly additive) toxicity for a number of individual toxicity test results. Less-than-additive toxicity was more difficult to describe with the available models. Because of limitations in the available datasets and the strong inter-relationships among the model parameters (log KM values, potency factors, toxicity response parameters), further evaluation of specific model assumptions and calibration strategies is needed.

  13. Beyond positivist ecology: toward an integrated ecological ethics.

    PubMed

    Norton, Bryan G

    2008-12-01

    A post-positivist understanding of ecological science and the call for an "ecological ethic" indicate the need for a radically new approach to evaluating environmental change. The positivist view of science cannot capture the essence of environmental sciences because the recent work of "reflexive" ecological modelers shows that this requires a reconceptualization of the way in which values and ecological models interact in scientific process. Reflexive modelers are ecological modelers who believe it is appropriate for ecologists to examine the motives for their choices in developing models; this self-reflexive approach opens the door to a new way of integrating values into public discourse and to a more comprehensive approach to evaluating ecological change. This reflexive building of ecological models is introduced through the transformative simile of Aldo Leopold, which shows that learning to "think like a mountain" involves a shift in both ecological modeling and in values and responsibility. An adequate, interdisciplinary approach to ecological valuation, requires a re-framing of the evaluation questions in entirely new ways, i.e., a review of the current status of interdisciplinary value theory with respect to ecological values reveals that neither of the widely accepted theories of environmental value-neither economic utilitarianism nor intrinsic value theory (environmental ethics)-provides a foundation for an ecologically sensitive evaluation process. Thus, a new, ecologically sensitive, and more comprehensive approach to evaluating ecological change would include an examination of the metaphors that motivate the models used to describe environmental change.

  14. Demography of birds in a neotropical forest: Effects of allometry, taxonomy, and ecology

    USGS Publications Warehouse

    Brawn, J.D.; Karr, J.R.; Nichols, J.D.

    1995-01-01

    Comparative demographic studies of terrestrial vertebrates have included few samples of species from tropical forests. We analyzed 9 yr of mark-recapture data and estimated demographic parameters for 25 species of birds inhabiting lowland forests in central Panama. These species were all songbirds (Order Passeriformes) ranging in mass from 7 to 57 g. Using Jolly-Seber stochastic models for open populations, we estimated annual survival rate, population size, and recruitment between sampling periods for each species. We then explored relationships between these parameters and attributes such as body size, phylogenetic affiliation, foraging guild, and social behavior. Larger birds had comparatively long life-spans and low recruitment, but body size was not associated with population size. After adjusting for effects of body size, we found no association between phylogenetic affiliation and any demographic trait. Ecological attributes, especially foraging guild, were more clearly associated with interspecific variation in all demographic traits. Ant-followers had comparatively long life-spans, but species that participate in flocks did not live longer than solitary species. The allometric associations we observed were consistent with those demonstrated in other studies of vertebrates; thus. these relationships appear to be robust. Our finding that ecological factors were more influential than phylogenetic affiliation contrasts with comparative studies of temperate-zone birds and suggests that the relative importance of environmental vs. historical factors varies geographically.

  15. Estimating effects of limiting factors with regression quantiles

    USGS Publications Warehouse

    Cade, B.S.; Terrell, J.W.; Schroeder, R.L.

    1999-01-01

    In a recent Concepts paper in Ecology, Thomson et al. emphasized that assumptions of conventional correlation and regression analyses fundamentally conflict with the ecological concept of limiting factors, and they called for new statistical procedures to address this problem. The analytical issue is that unmeasured factors may be the active limiting constraint and may induce a pattern of unequal variation in the biological response variable through an interaction with the measured factors. Consequently, changes near the maxima, rather than at the center of response distributions, are better estimates of the effects expected when the observed factor is the active limiting constraint. Regression quantiles provide estimates for linear models fit to any part of a response distribution, including near the upper bounds, and require minimal assumptions about the form of the error distribution. Regression quantiles extend the concept of one-sample quantiles to the linear model by solving an optimization problem of minimizing an asymmetric function of absolute errors. Rank-score tests for regression quantiles provide tests of hypotheses and confidence intervals for parameters in linear models with heteroscedastic errors, conditions likely to occur in models of limiting ecological relations. We used selected regression quantiles (e.g., 5th, 10th, ..., 95th) and confidence intervals to test hypotheses that parameters equal zero for estimated changes in average annual acorn biomass due to forest canopy cover of oak (Quercus spp.) and oak species diversity. Regression quantiles also were used to estimate changes in glacier lily (Erythronium grandiflorum) seedling numbers as a function of lily flower numbers, rockiness, and pocket gopher (Thomomys talpoides fossor) activity, data that motivated the query by Thomson et al. for new statistical procedures. Both example applications showed that effects of limiting factors estimated by changes in some upper regression quantile (e.g., 90-95th) were greater than if effects were estimated by changes in the means from standard linear model procedures. Estimating a range of regression quantiles (e.g., 5-95th) provides a comprehensive description of biological response patterns for exploratory and inferential analyses in observational studies of limiting factors, especially when sampling large spatial and temporal scales.

  16. Detection and identification of benthic communities and shoreline features in Biscayne Bay

    NASA Technical Reports Server (NTRS)

    Kolipinski, M. C.; Higer, A. L.

    1970-01-01

    Progress made in the development of a technique for identifying and delinating benthic and shoreline communities using multispectral imagery is described. Images were collected with a multispectral scanner system mounted in a C-47 aircraft. Concurrent with the overflight, ecological ground- and sea-truth information was collected at 19 sites in the bay and on the shore. Preliminary processing of the scanner imagery with a CDC 1604 digital computer provided the optimum channels for discernment among different underwater and coastal objects. Automatic mapping of the benthic plants by multiband imagery and the mapping of isotherms and hydrodynamic parameters by digital model can become an effective predictive ecological tool when coupled together. Using the two systems, it appears possible to predict conditions that could adversely affect the benthic communities. With the advent of the ERTS satellites and space platforms, imagery data could be obtained which, when used in conjunction with water-level and meteorological data, would provide for continuous ecological monitoring.

  17. The importance of diverse data types to calibrate a watershed model of the Trout Lake Basin, Northern Wisconsin, USA

    USGS Publications Warehouse

    Hunt, R.J.; Feinstein, D.T.; Pint, C.D.; Anderson, M.P.

    2006-01-01

    As part of the USGS Water, Energy, and Biogeochemical Budgets project and the NSF Long-Term Ecological Research work, a parameter estimation code was used to calibrate a deterministic groundwater flow model of the Trout Lake Basin in northern Wisconsin. Observations included traditional calibration targets (head, lake stage, and baseflow observations) as well as unconventional targets such as groundwater flows to and from lakes, depth of a lake water plume, and time of travel. The unconventional data types were important for parameter estimation convergence and allowed the development of a more detailed parameterization capable of resolving model objectives with well-constrained parameter values. Independent estimates of groundwater inflow to lakes were most important for constraining lakebed leakance and the depth of the lake water plume was important for determining hydraulic conductivity and conceptual aquifer layering. The most important target overall, however, was a conventional regional baseflow target that led to correct distribution of flow between sub-basins and the regional system during model calibration. The use of an automated parameter estimation code: (1) facilitated the calibration process by providing a quantitative assessment of the model's ability to match disparate observed data types; and (2) allowed assessment of the influence of observed targets on the calibration process. The model calibration required the use of a 'universal' parameter estimation code in order to include all types of observations in the objective function. The methods described in this paper help address issues of watershed complexity and non-uniqueness common to deterministic watershed models. ?? 2005 Elsevier B.V. All rights reserved.

  18. Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model

    ERIC Educational Resources Information Center

    Li, Weidong; Rukavina, Paul

    2012-01-01

    In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…

  19. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics. ?? 2010 by the Ecological Society of America.

  20. Spatial design and strength of spatial signal: Effects on covariance estimation

    USGS Publications Warehouse

    Irvine, Kathryn M.; Gitelman, Alix I.; Hoeting, Jennifer A.

    2007-01-01

    In a spatial regression context, scientists are often interested in a physical interpretation of components of the parametric covariance function. For example, spatial covariance parameter estimates in ecological settings have been interpreted to describe spatial heterogeneity or “patchiness” in a landscape that cannot be explained by measured covariates. In this article, we investigate the influence of the strength of spatial dependence on maximum likelihood (ML) and restricted maximum likelihood (REML) estimates of covariance parameters in an exponential-with-nugget model, and we also examine these influences under different sampling designs—specifically, lattice designs and more realistic random and cluster designs—at differing intensities of sampling (n=144 and 361). We find that neither ML nor REML estimates perform well when the range parameter and/or the nugget-to-sill ratio is large—ML tends to underestimate the autocorrelation function and REML produces highly variable estimates of the autocorrelation function. The best estimates of both the covariance parameters and the autocorrelation function come under the cluster sampling design and large sample sizes. As a motivating example, we consider a spatial model for stream sulfate concentration.

  1. Refining the conditions for sympatric ecological speciation.

    PubMed

    Débarre, F

    2012-12-01

    Can speciation occur in a single population when different types of resources are available, in the absence of any geographical isolation, or any spatial or temporal variation in selection? The controversial topics of sympatric speciation and ecological speciation have already stimulated many theoretical studies, most of them agreeing on the fact that mechanisms generating disruptive selection, some level of assortment, and enough heterogeneity in the available resources, are critical for sympatric speciation to occur. Few studies, however, have combined the three factors and investigated their interactions. In this article, I analytically derive conditions for sympatric speciation in a general model where the distribution of resources can be uni- or bimodal, and where a parameter controls the range of resources that an individual can exploit. This approach bridges the gap between models of a unimodal continuum of resources and Levene-type models with discrete resources. I then test these conditions against simulation results from a recently published article (Thibert-Plante & Hendry, 2011, J. Evol. Biol. 24: 2186-2196) and confirm that sympatric ecological speciation is favoured when (i) selection is disruptive (i.e. individuals with an intermediate trait are at a local fitness minimum), (ii) resources are differentiated enough and (iii) mating is assortative. I also discuss the role of mating preference functions and the need (or lack thereof) for bimodality in resource distributions for diversification. © 2012 The Author. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  2. An Integrated Watershed and Receiving Water Model for Fecal Coliform Fate and Transport in Sinclair and Dyes Inlets, Puget Sound, WA

    DTIC Science & Technology

    2009-12-01

    xix USLE Universal Soil Loss Equation UV Ultraviolet UZSN Upper Zone Nominal Storage WA-DOE Washington State Department of Ecology WA-DOH...Effective Impervious Area IMPLND Impervious Land Cover INFILT Interflow Inflow Parameter (related to infiltration capacity of the soil ) INSUR...within Watershed (#/Km) SCCWRP Southern California Coastal Water Research Project SCS Soil Conservation Service SGA Shellfish Growing Area SPAWAR

  3. Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters

    PubMed Central

    Shang, Yu; Sikorski, Johannes; Bonkowski, Michael; Fiore-Donno, Anna-Maria; Kandeler, Ellen; Marhan, Sven; Boeddinghaus, Runa S.; Solly, Emily F.; Schrumpf, Marion; Schöning, Ingo; Wubet, Tesfaye; Buscot, Francois; Overmann, Jörg

    2017-01-01

    Interactions occur between two or more organisms affecting each other. Interactions are decisive for the ecology of the organisms. Without direct experimental evidence the analysis of interactions is difficult. Correlation analyses that are based on co-occurrences are often used to approximate interaction. Here, we present a new mathematical model to estimate the interaction strengths between taxa, based on changes in their relative abundances across environmental gradients. PMID:28288199

  4. Assessing Disparities of Dengue Virus Transmission Risk across the US-Mexican Border Using a Climate Driven Vector-Epidemiological Model

    NASA Technical Reports Server (NTRS)

    Morin, Cory; Monaghan, Andrew; Quattrochi, Dale; Crosson, William; Hayden, Mary; Ernst, Kacey

    2015-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Although transmission regularly occurs along the border region in Mexico, dengue virus transmission in bordering Arizona has not occurred. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input and Daymet for temperature and supplemental precipitation input, we modeled dengue transmission along a US-Mexico transect using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Model runs were performed for 5 cities in Sonora, Mexico and southern Arizona. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. For cities with reported dengue case data, the top model simulations that best reproduced dengue case numbers were retained and their parameter values were extracted for comparison. These parameter values were used to run simulations in areas where dengue virus transmission does not occur or where dengue fever case data was unavailable. Additional model runs were performed to reveal how changes in climate or parameter values could alter transmission risk along the transect. The relative influence of climate variability and model parameters on dengue virus transmission is assessed to help public health workers prepare location specific infection prevention strategies.

  5. A Theoretical Approach to Analyze the Parametric Influence on Spatial Patterns of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) Populations.

    PubMed

    Garcia, A G; Godoy, W A C

    2017-06-01

    Studies of the influence of biological parameters on the spatial distribution of lepidopteran insects can provide useful information for managing agricultural pests, since the larvae of many species cause serious impacts on crops. Computational models to simulate the spatial dynamics of insect populations are increasingly used, because of their efficiency in representing insect movement. In this study, we used a cellular automata model to explore different patterns of population distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), when the values of two biological parameters that are able to influence the spatial pattern (larval viability and adult longevity) are varied. We mapped the spatial patterns observed as the parameters varied. Additionally, by using population data for S. frugiperda obtained in different hosts under laboratory conditions, we were able to describe the expected spatial patterns occurring in corn, cotton, millet, and soybean crops based on the parameters varied. The results are discussed from the perspective of insect ecology and pest management. We concluded that computational approaches can be important tools to study the relationship between the biological parameters and spatial distributions of lepidopteran insect pests.

  6. Analysis of the NAEG model of transuranic radionuclide transport and dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kercher, J.R.; Anspaugh, L.R.

    We analyze the model for estimating the dose from /sup 239/Pu developed for the Nevada Applied Ecology Group (NAEG) by using sensitivity analysis and uncertainty analysis. Sensitivity analysis results suggest that the air pathway is the critical pathway for the organs receiving the highest dose. Soil concentration and the factors controlling air concentration are the most important parameters. The only organ whose dose is sensitive to parameters in the ingestion pathway is the GI tract. The air pathway accounts for 100% of the dose to lung, upper respiratory tract, and thoracic lymph nodes; and 95% of its dose via ingestion.more » Leafy vegetable ingestion accounts for 70% of the dose from the ingestion pathway regardless of organ, peeled vegetables 20%; accidental soil ingestion 5%; ingestion of beef liver 4%; beef muscle 1%. Only a handful of model parameters control the dose for any one organ. The number of important parameters is usually less than 10. Uncertainty analysis indicates that choosing a uniform distribution for the input parameters produces a lognormal distribution of the dose. The ratio of the square root of the variance to the mean is three times greater for the doses than it is for the individual parameters. As found by the sensitivity analysis, the uncertainty analysis suggests that only a few parameters control the dose for each organ. All organs have similar distributions and variance to mean ratios except for the lymph modes. 16 references, 9 figures, 13 tables.« less

  7. Essential Annotation Schema for Ecology (EASE)-A framework supporting the efficient data annotation and faceted navigation in ecology.

    PubMed

    Pfaff, Claas-Thido; Eichenberg, David; Liebergesell, Mario; König-Ries, Birgitta; Wirth, Christian

    2017-01-01

    Ecology has become a data intensive science over the last decades which often relies on the reuse of data in cross-experimental analyses. However, finding data which qualifies for the reuse in a specific context can be challenging. It requires good quality metadata and annotations as well as efficient search strategies. To date, full text search (often on the metadata only) is the most widely used search strategy although it is known to be inaccurate. Faceted navigation is providing a filter mechanism which is based on fine granular metadata, categorizing search objects along numeric and categorical parameters relevant for their discovery. Selecting from these parameters during a full text search creates a system of filters which allows to refine and improve the results towards more relevance. We developed a framework for the efficient annotation and faceted navigation in ecology. It consists of an XML schema for storing the annotation of search objects and is accompanied by a vocabulary focused on ecology to support the annotation process. The framework consolidates ideas which originate from widely accepted metadata standards, textbooks, scientific literature, and vocabularies as well as from expert knowledge contributed by researchers from ecology and adjacent disciplines.

  8. Environmental Factors' Consideration at Industrial Transportation Organization in the «Seaport - Dry port» System

    NASA Astrophysics Data System (ADS)

    Muravev, Dmitri; Rakhmangulov, Aleksandr

    2016-11-01

    Currently, container shipping development is directly associated with an increase of warehouse areas for containers' storage. One of the most successful types of container terminal is an intermodal terminal called a dry port. Main pollution sources during the organization of intermodal transport are considered. A system of dry port parameters, which are recommended for the evaluation of different scenarios for a seaport infrastructure development at the stage of its strategic planning, is proposed in this paper. The authors have developed a method for determining the optimal values of the main dry port parameters by simulation modeling in the programming software Any- Logic. Dependencies thatwere obtained as a result of modeling experiments prove the adequacy of main selected dry port parameters for the effective scenarios' evaluation of throughput and handling capacity at existing seaports at the stage of strategic planning and a rational dry port location, allowed ensuring the improvement of the ecological situation in a port city.

  9. Recurrent seascape units identify key ecological processes along the western Antarctic Peninsula.

    PubMed

    Bowman, Jeff S; Kavanaugh, Maria T; Doney, Scott C; Ducklow, Hugh W

    2018-04-10

    The western Antarctic Peninsula (WAP) is a bellwether of global climate change and natural laboratory for identifying interactions between climate and ecosystems. The Palmer Long-Term Ecological Research (LTER) project has collected data on key ecological and environmental processes along the WAP since 1993. To better understand how key ecological parameters are changing across space and time, we developed a novel seascape classification approach based on in situ temperature, salinity, chlorophyll a, nitrate + nitrite, phosphate, and silicate. We anticipate that this approach will be broadly applicable to other geographical areas. Through the application of self-organizing maps (SOMs), we identified eight recurrent seascape units (SUs) in these data. These SUs have strong fidelity to known regional water masses but with an additional layer of biogeochemical detail, allowing us to identify multiple distinct nutrient profiles in several water masses. To identify the temporal and spatial distribution of these SUs, we mapped them across the Palmer LTER sampling grid via objective mapping of the original parameters. Analysis of the abundance and distribution of SUs since 1993 suggests two year types characterized by the partitioning of chlorophyll a into SUs with different spatial characteristics. By developing generalized linear models for correlated, time-lagged external drivers, we conclude that early spring sea ice conditions exert a strong influence on the distribution of chlorophyll a and nutrients along the WAP, but not necessarily the total chlorophyll a inventory. Because the distribution and density of phytoplankton biomass can have an impact on biomass transfer to the upper trophic levels, these results highlight anticipated links between the WAP marine ecosystem and climate. © 2018 John Wiley & Sons Ltd.

  10. Assessing anthropogenic impact on boreal lakes with historical fish species distribution data and hydrogeochemical modeling.

    PubMed

    Valinia, Salar; Englund, Göran; Moldan, Filip; Futter, Martyn N; Köhler, Stephan J; Bishop, Kevin; Fölster, Jens

    2014-09-01

    Quantifying the effects of human activity on the natural environment is dependent on credible estimates of reference conditions to define the state of the environment before the onset of adverse human impacts. In Europe, emission controls that aimed at restoring ecological status were based on hindcasts from process-based models or paleolimnological reconstructions. For instance, 1860 is used in Europe as the target for restoration from acidification concerning biological and chemical parameters. A more practical problem is that the historical states of ecosystems and their function cannot be observed directly. Therefore, we (i) compare estimates of acidification based on long-term observations of roach (Rutilus rutilus) populations with hindcast pH from the hydrogeochemical model MAGIC; (ii) discuss policy implications and possible scope for use of long-term archival data for assessing human impacts on the natural environment and (iii) present a novel conceptual model for interpreting the importance of physico-chemical and ecological deviations from reference conditions. Of the 85 lakes studied, 78 were coherently classified by both methods. In 1980, 28 lakes were classified as acidified with the MAGIC model, however, roach was present in 14 of these. In 2010, MAGIC predicted chemical recovery in 50% of the lakes, however roach only recolonized in five lakes after 1990, showing a lag between chemical and biological recovery. Our study is the first study of its kind to use long-term archival biological data in concert with hydrogeochemical modeling for regional assessments of anthropogenic acidification. Based on our results, we show how the conceptual model can be used to understand and prioritize management of physico-chemical and ecological effects of anthropogenic stressors on surface water quality. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  11. Assessing anthropogenic impact on boreal lakes with historical fish species distribution data and hydrogeochemical modeling

    PubMed Central

    Valinia, Salar; Englund, Göran; Moldan, Filip; Futter, Martyn N; Köhler, Stephan J; Bishop, Kevin; Fölster, Jens

    2014-01-01

    Quantifying the effects of human activity on the natural environment is dependent on credible estimates of reference conditions to define the state of the environment before the onset of adverse human impacts. In Europe, emission controls that aimed at restoring ecological status were based on hindcasts from process-based models or paleolimnological reconstructions. For instance, 1860 is used in Europe as the target for restoration from acidification concerning biological and chemical parameters. A more practical problem is that the historical states of ecosystems and their function cannot be observed directly. Therefore, we (i) compare estimates of acidification based on long-term observations of roach (Rutilus rutilus) populations with hindcast pH from the hydrogeochemical model MAGIC; (ii) discuss policy implications and possible scope for use of long-term archival data for assessing human impacts on the natural environment and (iii) present a novel conceptual model for interpreting the importance of physico-chemical and ecological deviations from reference conditions. Of the 85 lakes studied, 78 were coherently classified by both methods. In 1980, 28 lakes were classified as acidified with the MAGIC model, however, roach was present in 14 of these. In 2010, MAGIC predicted chemical recovery in 50% of the lakes, however roach only recolonized in five lakes after 1990, showing a lag between chemical and biological recovery. Our study is the first study of its kind to use long-term archival biological data in concert with hydrogeochemical modeling for regional assessments of anthropogenic acidification. Based on our results, we show how the conceptual model can be used to understand and prioritize management of physico-chemical and ecological effects of anthropogenic stressors on surface water quality. PMID:24535943

  12. Effects of model complexity and priors on estimation using sequential importance sampling/resampling for species conservation

    USGS Publications Warehouse

    Dunham, Kylee; Grand, James B.

    2016-01-01

    We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.

  13. A Conceptual Framework for Evaluating the Domains of Applicability of Ecological Models and its Implementation in the Ecological Production Function Library - International Society for Ecological Modelling Conference

    EPA Science Inventory

    The use of computational ecological models to inform environmental management and policy has proliferated in the past 25 years. These models have become essential tools as linkages and feedbacks between human actions and ecological responses can be complex, and as funds for sampl...

  14. The Genetic Basis of Phenotypic Adaptation II: The Distribution of Adaptive Substitutions in the Moving Optimum Model

    PubMed Central

    Kopp, Michael; Hermisson, Joachim

    2009-01-01

    We consider a population that adapts to a gradually changing environment. Our aim is to describe how ecological and genetic factors combine to determine the genetic basis of adaptation. Specifically, we consider the evolution of a polygenic trait that is under stabilizing selection with a moving optimum. The ecological dynamics are defined by the strength of selection, \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{\\tilde {{\\sigma}}}}\\end{equation*}\\end{document}, and the speed of the optimum, \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\tilde {{\\upsilon}}\\end{equation*}\\end{document}; the key genetic parameters are the mutation rate Θ and the variance of the effects of new mutations, ω. We develop analytical approximations within an “adaptive-walk” framework and describe how selection acts as a sieve that transforms a given distribution of new mutations into the distribution of adaptive substitutions. Our analytical results are complemented by individual-based simulations. We find that (i) the ecological dynamics have a strong effect on the distribution of adaptive substitutions and their impact depends largely on a single composite measure \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{{\\gamma}}}=\\tilde {{\\upsilon}}/({\\mathrm{\\tilde {{\\sigma}}}}{\\Theta}{\\mathrm{{\\omega}}}^{3})\\end{equation*}\\end{document}, which combines the ecological and genetic parameters; (ii) depending on γ, we can distinguish two distinct adaptive regimes: for large γ the adaptive process is mutation limited and dominated by genetic constraints, whereas for small γ it is environmentally limited and dominated by the external ecological dynamics; (iii) deviations from the adaptive-walk approximation occur for large mutation rates, when different mutant alleles interact via linkage or epistasis; and (iv) in contrast to predictions from previous models assuming constant selection, the distribution of adaptive substitutions is generally not exponential. PMID:19805820

  15. GPP/RE Partitioning of Long-term Network Flux Data as a Tool for Estimating Ecosystem-scale Ecophysiological Parameters of Grasslands and Croplands

    NASA Astrophysics Data System (ADS)

    Gilmanov, T. G.; Wylie, B. K.; Gu, Y.; Howard, D. M.; Zhang, L.

    2013-12-01

    The physiologically based model of canopy CO2 exchange by Thornly and Johnson (2000) modified to incorporate vapor pressure deficit (VPD) limitation of photosynthesis is a robust tool for partitioning tower network net CO2 exchange data into gross photosynthesis (GPP) and ecosystem respiration (RE) (Gilmanov et al. 2013a, b). In addition to 30-min and daily photosynthesis and respiration values, the procedure generates daily estimates and uncertainties of essential ecosystem-scale parameters such as apparent quantum yield ALPHA, photosynthetic capacity AMAX, convexity of light response THETA, gross ecological light-use efficiency LUE, daytime ecosystem respiration rate RDAY, and nighttime ecosystem respiration rate RNIGHT. These ecosystem-scale parameters are highly demanded by the modeling community and open opportunities for comparison with the rich data of leaf-level estimates of corresponding parameters available from physiological studies of previous decades. Based on the data for 70+ site-years of flux tower measurements at the non-forest sites of the Ameriflux network and the non-affiliated sites, we present results of the comparative analysis and multi-site synthesis of the magnitudes, uncertainties, patterns of seasonal and yearly dynamics, and spatiotemporal distribution of these parameters for grasslands and croplands of the conterminous United States (CONUS). Combining this site-level parameter data set with the rich spatiotemporal data sets of a remotely sensed vegetation index, weather and climate conditions, and site biophysical and geophysical features (phenology, photosynthetically active radiation, and soil water holding capacity) using methods of multivariate analysis (e.g., Cubist regression tree) offers new opportunities for predictive modeling and scaling-up of ecosystem-scale parameters of carbon cycling in grassland and agricultural ecosystems of CONUS (Zhang et al. 2011; Gu et al. 2012). REFERENCES Gilmanov TG, Baker JM, Bernacchi CJ, Billesbach DP, Burba GG, et al. (2013a). Productivity and CO2 exchange of the leguminous crops: Estimates from flux tower measurements. Agronomy J (submitted). Gilmanov TG, Wylie BK, Tieszen LL, Meyers TP, Baron VS, et al. (2013b). CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: Estimates from flux tower measurements. Agric Ecosyst Environm 164: 162-175 Gu Y, Howard DM, Wylie BK, and Zhang L (2012). Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains: Landscape Ecology, 27: 319-326. Thornley JHM., Johnson IR (2000). Plant and crop modelling. A mathematical approach to plant and crop physiology. The Blackburn Press, Caldwell, New Jersey. Zhang L, Wylie BK, Ji L, Gilmanov TG, Tieszen LL, Howard DM (2011). Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources. J Geophys Res G: Biogeosciences 116: G00J3

  16. Geographical and Temporal Body Size Variation in a Reptile: Roles of Sex, Ecology, Phylogeny and Ecology Structured in Phylogeny

    PubMed Central

    Aragón, Pedro; Fitze, Patrick S.

    2014-01-01

    Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity. PMID:25090025

  17. Ecological model of glittering texture

    NASA Astrophysics Data System (ADS)

    Vallet, Matthieu; Paille, Damien; Monot, Annie; Kemeny, Andras

    2003-06-01

    The perceptual effects of changes of texture luminance either between the eyes or over time have been studied in several experiments and have led to a better comprehension of phenomenons such as sieve effect, binocular and monocular lustre and rivaldepth. In this paper, we propose an ecological model of glittering texture and analyze glitter perception in terms of variations of texture luminance and animation frequency, in dynamic illumination conditions. Our approach is based on randomly oriented mirrors that are computed according to the specular term of Phong's image rendering formula. The sparkling effect is thus correlated to the relative movements of the resulting textured object, the light array and the observer's point of view. The perceptual effect obtained with this model depends on several parameters: mirrors' density, the Phong specular exponent and the statistical properties of the mirrors' normal vectors. The ability to independently set these properties offers a way to explore a characterization space of glitter. A rating procedure provided a first approximation of the numerical values that lead to the best feeling of typical sparkling surfaces such as metallic paint, granite or sea shore.

  18. An Intelligent Crop Planning Tool for Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Laura O.; Leon, Jorge

    1996-01-01

    This paper describes a crop planning tool developed for the Controlled Ecological Life Support Systems (CELSS) project which is in the research phases at various NASA facilities. The Crop Planning Tool was developed to assist in the understanding of the long term applications of a CELSS environment. The tool consists of a crop schedule generator as well as a crop schedule simulator. The importance of crop planning tools such as the one developed is discussed. The simulator is outlined in detail while the schedule generator is touched upon briefly. The simulator consists of data inputs, plant and human models, and various other CELSS activity models such as food consumption and waste regeneration. The program inputs such as crew data and crop states are discussed. References are included for all nominal parameters used. Activities including harvesting, planting, plant respiration, and human respiration are discussed using mathematical models. Plans provided to the simulator by the plan generator are evaluated for their 'fitness' to the CELSS environment with an objective function based upon daily reservoir levels. Sample runs of the Crop Planning Tool and future needs for the tool are detailed.

  19. Modeling the growth dynamics of four candidate crops for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1987-01-01

    The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data.

  20. Empirical Bayes estimation of proportions with application to cowbird parasitism rates

    USGS Publications Warehouse

    Link, W.A.; Hahn, D.C.

    1996-01-01

    Bayesian models provide a structure for studying collections of parameters such as are considered in the investigation of communities, ecosystems, and landscapes. This structure allows for improved estimation of individual parameters, by considering them in the context of a group of related parameters. Individual estimates are differentially adjusted toward an overall mean, with the magnitude of their adjustment based on their precision. Consequently, Bayesian estimation allows for a more credible identification of extreme values in a collection of estimates. Bayesian models regard individual parameters as values sampled from a specified probability distribution, called a prior. The requirement that the prior be known is often regarded as an unattractive feature of Bayesian analysis and may be the reason why Bayesian analyses are not frequently applied in ecological studies. Empirical Bayes methods provide an alternative approach that incorporates the structural advantages of Bayesian models while requiring a less stringent specification of prior knowledge. Rather than requiring that the prior distribution be known, empirical Bayes methods require only that it be in a certain family of distributions, indexed by hyperparameters that can be estimated from the available data. This structure is of interest per se, in addition to its value in allowing for improved estimation of individual parameters; for example, hypotheses regarding the existence of distinct subgroups in a collection of parameters can be considered under the empirical Bayes framework by allowing the hyperparameters to vary among subgroups. Though empirical Bayes methods have been applied in a variety of contexts, they have received little attention in the ecological literature. We describe the empirical Bayes approach in application to estimation of proportions, using data obtained in a community-wide study of cowbird parasitism rates for illustration. Since observed proportions based on small sample sizes are heavily adjusted toward the mean, extreme values among empirical Bayes estimates identify those species for which there is the greatest evidence of extreme parasitism rates. Applying a subgroup analysis to our data on cowbird parasitism rates, we conclude that parasitism rates for Neotropical Migrants as a group are no greater than those of Resident/Short-distance Migrant species in this forest community. Our data and analyses demonstrate that the parasitism rates for certain Neotropical Migrant species are remarkably low (Wood Thrush and Rose-breasted Grosbeak) while those for others are remarkably high (Ovenbird and Red-eyed Vireo).

  1. A spatial mark–resight model augmented with telemetry data

    USGS Publications Warehouse

    Sollmann, Rachel; Gardner, Beth; Parsons, Arielle W.; Stocking, Jessica J.; McClintock, Brett T.; Simons, Theodore R.; Pollock, Kenneth H.; O’Connell, Allan F.

    2013-01-01

    Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark-resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation using mark-resight is difficult because the area sampled must be explicitly defined, historically using ad-hoc approaches. We develop a spatial mark-resight model for estimating population density that combines spatial resighting data and telemetry data. Incorporating telemetry data allows us to inform model parameters related to movement and individual location. Our model also allows 2. The model presented here will have widespread utility in future applications, especially for species that are not naturally marked.

  2. Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression

    PubMed Central

    Fisher, Charles K.; Mehta, Pankaj

    2014-01-01

    Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is now possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the ecological interactions between species directly from sequence data. Any algorithm for inferring ecological interactions must overcome three major obstacles: 1) a correlation between the abundances of two species does not imply that those species are interacting, 2) the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3) errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions due to a statistical problem called “errors-in-variables”. Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS), that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct “keystone species”, Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in the human gut microbiome. PMID:25054627

  3. Model-based analysis of environmental controls over ecosystem primary production in an alpine tundra dry meadow

    DOE PAGES

    Fan, Zhaosheng; Neff, Jason C.; Wieder, William R.

    2016-02-10

    We investigated several key limiting factors that control alpine tundra productivity by developing an ecosystem biogeochemistry model. The model simulates the coupled cycling of carbon (C), nitrogen (N), and phosphorus (P) and their interactions with gross primary production (GPP). It was parameterized with field observations from an alpine dry meadow ecosystem using a global optimization strategy to estimate the unknown parameters. The model, along with the estimated parameters, was first validated against independent data and then used to examine the environmental controls over plant productivity. Our results show that air temperature is the strongest limiting factor to GPP in themore » early growing season, N availability becomes important during the middle portion of the growing season, and soil moisture is the strongest limiting factors by late in the growing season. Overall, the controls over GPP during the growing season, from strongest to weakest, are soil moisture content, air temperature, N availability, and P availability. This simulation provides testable predictions of the shifting nature of physical and nutrient limitations on plant growth. The model also indicates that changing environmental conditions in the alpine will likely lead to changes in productivity. For example, warming eliminates the control of P availability on GPP and makes N availability surpass air temperature to become the second strongest limiting factor. In contrast, an increase in atmospheric nutrient deposition eliminates the control of N availability and enhances the importance of P availability. Furthermore, these analyses provide a quantitative and conceptual framework that can be used to test predictions and refine ecological analyses at this long-term ecological research site.« less

  4. Model-based analysis of environmental controls over ecosystem primary production in an alpine tundra dry meadow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Zhaosheng; Neff, Jason C.; Wieder, William R.

    We investigated several key limiting factors that control alpine tundra productivity by developing an ecosystem biogeochemistry model. The model simulates the coupled cycling of carbon (C), nitrogen (N), and phosphorus (P) and their interactions with gross primary production (GPP). It was parameterized with field observations from an alpine dry meadow ecosystem using a global optimization strategy to estimate the unknown parameters. The model, along with the estimated parameters, was first validated against independent data and then used to examine the environmental controls over plant productivity. Our results show that air temperature is the strongest limiting factor to GPP in themore » early growing season, N availability becomes important during the middle portion of the growing season, and soil moisture is the strongest limiting factors by late in the growing season. Overall, the controls over GPP during the growing season, from strongest to weakest, are soil moisture content, air temperature, N availability, and P availability. This simulation provides testable predictions of the shifting nature of physical and nutrient limitations on plant growth. The model also indicates that changing environmental conditions in the alpine will likely lead to changes in productivity. For example, warming eliminates the control of P availability on GPP and makes N availability surpass air temperature to become the second strongest limiting factor. In contrast, an increase in atmospheric nutrient deposition eliminates the control of N availability and enhances the importance of P availability. Furthermore, these analyses provide a quantitative and conceptual framework that can be used to test predictions and refine ecological analyses at this long-term ecological research site.« less

  5. The Relative Importance of the Vadose Zone in Multimedia Risk Assessment Modeling Applied at a National Scale: An Analysis of Benzene Using 3MRA

    NASA Astrophysics Data System (ADS)

    Babendreier, J. E.

    2002-05-01

    Evaluating uncertainty and parameter sensitivity in environmental models can be a difficult task, even for low-order, single-media constructs driven by a unique set of site-specific data. The challenge of examining ever more complex, integrated, higher-order models is a formidable one, particularly in regulatory settings applied on a national scale. Quantitative assessment of uncertainty and sensitivity within integrated, multimedia models that simulate hundreds of sites, spanning multiple geographical and ecological regions, will ultimately require a systematic, comparative approach coupled with sufficient computational power. The Multimedia, Multipathway, and Multireceptor Risk Assessment Model (3MRA) is an important code being developed by the United States Environmental Protection Agency for use in site-scale risk assessment (e.g. hazardous waste management facilities). The model currently entails over 700 variables, 185 of which are explicitly stochastic. The 3MRA can start with a chemical concentration in a waste management unit (WMU). It estimates the release and transport of the chemical throughout the environment, and predicts associated exposure and risk. The 3MRA simulates multimedia (air, water, soil, sediments), pollutant fate and transport, multipathway exposure routes (food ingestion, water ingestion, soil ingestion, air inhalation, etc.), multireceptor exposures (resident, gardener, farmer, fisher, ecological habitats and populations), and resulting risk (human cancer and non-cancer effects, ecological population and community effects). The 3MRA collates the output for an overall national risk assessment, offering a probabilistic strategy as a basis for regulatory decisions. To facilitate model execution of 3MRA for purposes of conducting uncertainty and sensitivity analysis, a PC-based supercomputer cluster was constructed. Design of SuperMUSE, a 125 GHz Windows-based Supercomputer for Model Uncertainty and Sensitivity Evaluation is described, along with the conceptual layout of an accompanying java-based paralleling software toolset. Preliminary work is also reported for a scenario involving Benzene disposal that describes the relative importance of the vadose zone in driving risk levels for ecological receptors and human health. Incorporating landfills, waste piles, aerated tanks, surface impoundments, and land application units, the site-based data used in the analysis included 201 national facilities representing 419 site-WMU combinations.

  6. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  7. How much detail and accuracy is required in plant growth sub-models to address questions about optimal management strategies in agricultural systems?

    PubMed Central

    Renton, Michael

    2011-01-01

    Background and aims Simulations that integrate sub-models of important biological processes can be used to ask questions about optimal management strategies in agricultural and ecological systems. Building sub-models with more detail and aiming for greater accuracy and realism may seem attractive, but is likely to be more expensive and time-consuming and result in more complicated models that lack transparency. This paper illustrates a general integrated approach for constructing models of agricultural and ecological systems that is based on the principle of starting simple and then directly testing for the need to add additional detail and complexity. Methodology The approach is demonstrated using LUSO (Land Use Sequence Optimizer), an agricultural system analysis framework based on simulation and optimization. A simple sensitivity analysis and functional perturbation analysis is used to test to what extent LUSO's crop–weed competition sub-model affects the answers to a number of questions at the scale of the whole farming system regarding optimal land-use sequencing strategies and resulting profitability. Principal results The need for accuracy in the crop–weed competition sub-model within LUSO depended to a small extent on the parameter being varied, but more importantly and interestingly on the type of question being addressed with the model. Only a small part of the crop–weed competition model actually affects the answers to these questions. Conclusions This study illustrates an example application of the proposed integrated approach for constructing models of agricultural and ecological systems based on testing whether complexity needs to be added to address particular questions of interest. We conclude that this example clearly demonstrates the potential value of the general approach. Advantages of this approach include minimizing costs and resources required for model construction, keeping models transparent and easy to analyse, and ensuring the model is well suited to address the question of interest. PMID:22476477

  8. Forbidden fruit: human settlement and abundant fruit create an ecological trap for an apex omnivore.

    PubMed

    Lamb, Clayton T; Mowat, Garth; McLellan, Bruce N; Nielsen, Scott E; Boutin, Stan

    2017-01-01

    Habitat choice is an evolutionary product of animals experiencing increased fitness when preferentially occupying high-quality habitat. However, an ecological trap (ET) can occur when an animal is presented with novel conditions and the animal's assessment of habitat quality is poorly matched to its resulting fitness. We tested for an ET for grizzly (brown) bears using demographic and movement data collected in an area with rich food resources and concentrated human settlement. We derived measures of habitat attractiveness from occurrence models of bear food resources and estimated demographic parameters using DNA mark-recapture information collected over 8 years (2006-2013). We then paired this information with grizzly bear mortality records to investigate kill and movement rates. Our results demonstrate that a valley high in both berry resources and human density was more attractive than surrounding areas, and bears occupying this region faced 17% lower apparent survival. Despite lower fitness, we detected a net flow of bears into the ET, which contributed to a study-wide population decline. This work highlights the presence and pervasiveness of an ET for an apex omnivore that lacks the evolutionary cues, under human-induced rapid ecological change, to assess trade-offs between food resources and human-caused mortality, which results in maladaptive habitat selection. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  9. ECOLOGICAL THEORY. A general consumer-resource population model.

    PubMed

    Lafferty, Kevin D; DeLeo, Giulio; Briggs, Cheryl J; Dobson, Andrew P; Gross, Thilo; Kuris, Armand M

    2015-08-21

    Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model. Copyright © 2015, American Association for the Advancement of Science.

  10. Sustainable use of renewable resources in a stylized social-ecological network model under heterogeneous resource distribution

    NASA Astrophysics Data System (ADS)

    Barfuss, Wolfram; Donges, Jonathan F.; Wiedermann, Marc; Lucht, Wolfgang

    2017-04-01

    Human societies depend on the resources ecosystems provide. Particularly since the last century, human activities have transformed the relationship between nature and society at a global scale. We study this coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adaptive network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly rational imitation of resource use strategies and homophily in the formation of social network ties. The private and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) effort. We show that these social processes can have a profound influence on the environmental state, such as determining whether the private renewable resources collapse from overuse or not. Additionally, we demonstrate that heterogeneously distributed regional resource capacities shift the critical social parameters where this resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary models of the planetary social-ecological system, such socio-cultural phenomena as well as regional resource heterogeneities should receive attention in addition to the processes represented in established Earth system and integrated assessment models.

  11. Spatial capture-recapture

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Sollmann, Rahel; Gardner, Beth

    2013-01-01

    Spatial Capture-Recapture provides a revolutionary extension of traditional capture-recapture methods for studying animal populations using data from live trapping, camera trapping, DNA sampling, acoustic sampling, and related field methods. This book is a conceptual and methodological synthesis of spatial capture-recapture modeling. As a comprehensive how-to manual, this reference contains detailed examples of a wide range of relevant spatial capture-recapture models for inference about population size and spatial and temporal variation in demographic parameters. Practicing field biologists studying animal populations will find this book to be a useful resource, as will graduate students and professionals in ecology, conservation biology, and fisheries and wildlife management.

  12. Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments

    NASA Astrophysics Data System (ADS)

    Hermsen, Rutger; Hwa, Terence

    2010-12-01

    We study evolution driven by spatial heterogeneity in a stochastic model of source-sink ecologies. A sink is a habitat where mortality exceeds reproduction so that a local population persists only due to immigration from a source. Immigrants can, however, adapt to conditions in the sink by mutation. To characterize the adaptation rate, we derive expressions for the first arrival time of adapted mutants. The joint effects of migration, mutation, birth, and death result in two distinct parameter regimes. These results may pertain to the rapid evolution of drug-resistant pathogens and insects.

  13. A mathematical model on the optimal timing of offspring desertion.

    PubMed

    Seno, Hiromi; Endo, Hiromi

    2007-06-07

    We consider the offspring desertion as the optimal strategy for the deserter parent, analyzing a mathematical model for its expected reproductive success. It is shown that the optimality of the offspring desertion significantly depends on the offsprings' birth timing in the mating season, and on the other ecological parameters characterizing the innate nature of considered animals. Especially, the desertion is less likely to occur for the offsprings born in the later period of mating season. It is also implied that the offspring desertion after a partially biparental care would be observable only with a specific condition.

  14. Hydrodynamic Performance of the Flippers of Large-bodied Cetaceans in Relation to Locomotor Ecology

    DTIC Science & Technology

    2014-04-01

    flow velocity (m/s) m Kinematic viscosity (m2/s) Table 2. Morphometrics of cetaceans and flippers. Fin whale Balaenoptera physalus Killer whale Orcinus...chord (m), and m is the kinematic viscosity (m2/s). Fluid kinematic similarity was obtained by ensuring both geometric and dynamic similarity between...the model and the flipper. Equation (2) was used to determine appropriate water tunnel testing speeds given the geometric parameters and water

  15. Malaria Modeling using Remote Sensing and GIS Technologies

    NASA Technical Reports Server (NTRS)

    Kiang, Richard

    2004-01-01

    Malaria has been with the human race since the ancient time. In spite of the advances of biomedical research and the completion of genomic mapping of Plasmodium falciparum, the exact mechanisms of how the various strains of parasites evade the human immune system and how they have adapted and become resistant to multiple drugs remain elusive. Perhaps because of these reasons, effective vaccines against malaria are still not available. Worldwide, approximately one to three millions deaths are attributed to malaria annually. With the increased availability of remotely sensed data, researchers in medical entomology, epidemiology and ecology have started to associate environmental and ecological variables with malaria transmission. In several studies, it has been shown that transmission correlates well with certain environmental and ecological parameters, and that remote sensing can be used to measure these determinants. In a NASA project, we have taken a holistic approach to examine how remote sensing and GIs can contribute to vector and malaria controls. To gain a better understanding of the interactions among the possible promoting factors, we have been developing a habitat model, a transmission model, and a risk prediction model, all using remote sensing data as input. Our objectives are: 1) To identify the potential breeding sites of major vector species and the locations for larvicide and insecticide applications in order to reduce costs, lessen the chance of developing pesticide resistance, and minimize the damage to the environment; 2) To develop a malaria transmission model characterizing the interactions among hosts, vectors, parasites, landcover and environment in order to identify the key factors that sustain or intensify malaria transmission, and 3) To develop a risk model to predict the occurrence of malaria and its transmission intensity using epidemiological data and satellite-derived or ground-measured environmental and meteorological data.

  16. Parameter and Structure Inference for Nonlinear Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark

    2006-01-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.

  17. Clarifying the Use of Aggregated Exposures in Multilevel Models: Self-Included vs. Self-Excluded Measures

    PubMed Central

    Suzuki, Etsuji; Yamamoto, Eiji; Takao, Soshi; Kawachi, Ichiro; Subramanian, S. V.

    2012-01-01

    Background Multilevel analyses are ideally suited to assess the effects of ecological (higher level) and individual (lower level) exposure variables simultaneously. In applying such analyses to measures of ecologies in epidemiological studies, individual variables are usually aggregated into the higher level unit. Typically, the aggregated measure includes responses of every individual belonging to that group (i.e. it constitutes a self-included measure). More recently, researchers have developed an aggregate measure which excludes the response of the individual to whom the aggregate measure is linked (i.e. a self-excluded measure). In this study, we clarify the substantive and technical properties of these two measures when they are used as exposures in multilevel models. Methods Although the differences between the two aggregated measures are mathematically subtle, distinguishing between them is important in terms of the specific scientific questions to be addressed. We then show how these measures can be used in two distinct types of multilevel models—self-included model and self-excluded model—and interpret the parameters in each model by imposing hypothetical interventions. The concept is tested on empirical data of workplace social capital and employees' systolic blood pressure. Results Researchers assume group-level interventions when using a self-included model, and individual-level interventions when using a self-excluded model. Analytical re-parameterizations of these two models highlight their differences in parameter interpretation. Cluster-mean centered self-included models enable researchers to decompose the collective effect into its within- and between-group components. The benefit of cluster-mean centering procedure is further discussed in terms of hypothetical interventions. Conclusions When investigating the potential roles of aggregated variables, researchers should carefully explore which type of model—self-included or self-excluded—is suitable for a given situation, particularly when group sizes are relatively small. PMID:23251609

  18. Use of posterior predictive checks as an inferential tool for investigating individual heterogeneity in animal population vital rates

    PubMed Central

    Chambert, Thierry; Rotella, Jay J; Higgs, Megan D

    2014-01-01

    The investigation of individual heterogeneity in vital rates has recently received growing attention among population ecologists. Individual heterogeneity in wild animal populations has been accounted for and quantified by including individually varying effects in models for mark–recapture data, but the real need for underlying individual effects to account for observed levels of individual variation has recently been questioned by the work of Tuljapurkar et al. (Ecology Letters, 12, 93, 2009) on dynamic heterogeneity. Model-selection approaches based on information criteria or Bayes factors have been used to address this question. Here, we suggest that, in addition to model-selection, model-checking methods can provide additional important insights to tackle this issue, as they allow one to evaluate a model's misfit in terms of ecologically meaningful measures. Specifically, we propose the use of posterior predictive checks to explicitly assess discrepancies between a model and the data, and we explain how to incorporate model checking into the inferential process used to assess the practical implications of ignoring individual heterogeneity. Posterior predictive checking is a straightforward and flexible approach for performing model checks in a Bayesian framework that is based on comparisons of observed data to model-generated replications of the data, where parameter uncertainty is incorporated through use of the posterior distribution. If discrepancy measures are chosen carefully and are relevant to the scientific context, posterior predictive checks can provide important information allowing for more efficient model refinement. We illustrate this approach using analyses of vital rates with long-term mark–recapture data for Weddell seals and emphasize its utility for identifying shortfalls or successes of a model at representing a biological process or pattern of interest. We show how posterior predictive checks can be used to strengthen inferences in ecological studies. We demonstrate the application of this method on analyses dealing with the question of individual reproductive heterogeneity in a population of Antarctic pinnipeds. PMID:24834335

  19. Spatial capture-recapture models for jointly estimating population density and landscape connectivity

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.

    2013-01-01

    Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.

  20. Spatial capture--recapture models for jointly estimating population density and landscape connectivity.

    PubMed

    Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A

    2013-02-01

    Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.

  1. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    NASA Astrophysics Data System (ADS)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  2. Advancing Ecological Models to Compare Scale in Multi-Level Educational Change

    ERIC Educational Resources Information Center

    Woo, David James

    2016-01-01

    Education systems as units of analysis have been metaphorically likened to ecologies to model change. However, ecological models to date have been ineffective in modelling educational change that is multi-scale and occurs across multiple levels of an education system. Thus, this paper advances two innovative, ecological frameworks that improve on…

  3. WATER QUALITY EARLY WARNING SYSTEMS FOR SOURCE WATER PROTECTION

    EPA Science Inventory

    Source waters of the U.S. are vulnerable to natural and anthropogenic factors affecting quality for use as both a drinking water and ecological media. Important factors include physical parameters such as increased turbidity, ecological cycles such as algal blooms, and episodic ...

  4. Essential Annotation Schema for Ecology (EASE)—A framework supporting the efficient data annotation and faceted navigation in ecology

    PubMed Central

    Eichenberg, David; Liebergesell, Mario; König-Ries, Birgitta; Wirth, Christian

    2017-01-01

    Ecology has become a data intensive science over the last decades which often relies on the reuse of data in cross-experimental analyses. However, finding data which qualifies for the reuse in a specific context can be challenging. It requires good quality metadata and annotations as well as efficient search strategies. To date, full text search (often on the metadata only) is the most widely used search strategy although it is known to be inaccurate. Faceted navigation is providing a filter mechanism which is based on fine granular metadata, categorizing search objects along numeric and categorical parameters relevant for their discovery. Selecting from these parameters during a full text search creates a system of filters which allows to refine and improve the results towards more relevance. We developed a framework for the efficient annotation and faceted navigation in ecology. It consists of an XML schema for storing the annotation of search objects and is accompanied by a vocabulary focused on ecology to support the annotation process. The framework consolidates ideas which originate from widely accepted metadata standards, textbooks, scientific literature, and vocabularies as well as from expert knowledge contributed by researchers from ecology and adjacent disciplines. PMID:29023519

  5. ecological geological maps: GIS-based evaluation of the Geo-Ecological Quality Index (GEQUI) in Sicily (Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco

    2010-05-01

    The condition of landscapes and the ecological communities within them is strongly related to levels of human activity. As a consequence, determining status and trends in the pattern of human-dominated landscapes can be useful for understanding the overall conditions of geo-ecological resources. Ecological geological maps are recent tools providing useful informations about a-biotic and biotic features worldwide. These maps represents a new generation of geological maps and depict the lithospheric components conditions on surface, where ecological dynamics (functions and properties) and human activities develop. Thus, these maps are too a fundamental political tool to plan the human activities management in relationship to the territorial/environmental patterns of a date region. Different types of ecological geological maps can be develop regarding the: conditions (situations), zoning, prognosis and recommendations. The ecological geological conditions maps reflects the complex of parameters or individual characteristics of lithosphere, which characterized the opportunity of the influence of lithosphere components on the biota (man, fauna, flora, and ecosystem). The ecological geological zoning maps are foundamental basis for prognosis estimation and nature defenses measures. Estimation from the position of comfort and safety of human life and function of ecosystem is given on these maps. The ecological geological prognosis maps reflect the spatial-temporary prognoses of ecological geological conditions changing during the natural dynamic of natural surrounding and the main-during the economic mastering of territory and natural technical systems. Finally, the ecological geological recommendation maps are based on the ecological geological and social-economical informations, aiming the regulation of territory by the regulation of economic activities and the defense of bio- and socio-sphere extents. Each of these maps may also be computed or in analytic or in synthetic way. The first, characterized or estimated, prognosticated one or several indexes of geological ecological conditions. In the second type of maps, the whole complex is reflected, which defined the modern or prognosticable ecological geological situation. Regarding the ecological geological zoning maps, the contemporary state of ecological geological conditions may be evaluated by a range of parameters into classes of conditions and, on the basis of these informations, the estimation from the position of comfort and safety of human life and function of ecosystem is given. Otherwise, the concept of geoecological land evaluation has become established in the study of landscape/environmental plannings in recent years. It requires different thematic data-sets, deriving from the natural-, social- and amenity-environmental resources analysis, that may be translate in environmental (vulnerability/quality) indexes. There have been some attempts to develop integrated indices related to various aspects of the environment within the framework of sustainable development (e.g.: United Nations Commission on Sustainable Development, World Economic Forum, Advisory Board on Indicators of Sustainable Development of the International Institute for Sustainable Development, Living Planet Index established by the World Wide Fund for Nature, etc.). So, the ecological geological maps represent the basic tool for the geoecological land evaluation policies and may be computed in terms of index-maps. On these basis, a GIS application for assessing the ecological geological zoning is presented for Sicily (Central Mediterranean). The Geo-Ecological Quality Index (GEQUI) map was computed by considering a lot of variables. Ten variables (lithology, climate, landslide distribution, erosion rate, soil type, land cover, habitat, groundwater pollution, roads density and buildings density) generated from available data, were used in the model, in which weighting values to each informative layer were assigned. An overlay analysis was carried out, allowing to classify the region into five classes: bad, poor, moderate, good and high.

  6. Statistical ecology comes of age.

    PubMed

    Gimenez, Olivier; Buckland, Stephen T; Morgan, Byron J T; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-12-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.

  7. Statistical ecology comes of age

    PubMed Central

    Gimenez, Olivier; Buckland, Stephen T.; Morgan, Byron J. T.; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M.; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M.; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-01-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1–4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data. PMID:25540151

  8. Assessing sandy beach macrofaunal patterns along large-scale environmental gradients: A Fuzzy Naïve Bayes approach

    NASA Astrophysics Data System (ADS)

    Bozzeda, Fabio; Zangrilli, Maria Paola; Defeo, Omar

    2016-06-01

    A Fuzzy Naïve Bayes (FNB) classifier was developed to assess large-scale variations in abundance, species richness and diversity of the macrofauna inhabiting fifteen Uruguayan sandy beaches affected by the effects of beach morphodynamics and the estuarine gradient generated by Rio de la Plata. Information from six beaches was used to estimate FNB parameters, while abiotic data of the remaining nine beaches were used to forecast abundance, species richness and diversity. FNB simulations reproduced the general increasing trend of target variables from inner estuarine reflective beaches to marine dissipative ones. The FNB model also identified a threshold value of salinity range beyond which diversity markedly increased towards marine beaches. Salinity range is suggested as an ecological master factor governing distributional patterns in sandy beach macrofauna. However, the model: 1) underestimated abundance and species richness at the innermost estuarine beach, with the lowest salinity, and 2) overestimated species richness in marine beaches with a reflective morphodynamic state, which is strongly linked to low abundance, species richness and diversity. Therefore, future modeling efforts should be refined by giving a dissimilar weigh to the gradients defined by estuarine (estuarine beaches) and morphodynamic (marine beaches) variables, which could improve predictions of target variables. Our modeling approach could be applied to a wide spectrum of issues, ranging from basic ecology to social-ecological systems. This approach seems relevant, given the current challenge to develop predictive methodologies to assess the simultaneous and nonlinear effects of anthropogenic and natural impacts in coastal ecosystems.

  9. Bi-dimensional null model analysis of presence-absence binary matrices.

    PubMed

    Strona, Giovanni; Ulrich, Werner; Gotelli, Nicholas J

    2018-01-01

    Comparing the structure of presence/absence (i.e., binary) matrices with those of randomized counterparts is a common practice in ecology. However, differences in the randomization procedures (null models) can affect the results of the comparisons, leading matrix structural patterns to appear either "random" or not. Subjectivity in the choice of one particular null model over another makes it often advisable to compare the results obtained using several different approaches. Yet, available algorithms to randomize binary matrices differ substantially in respect to the constraints they impose on the discrepancy between observed and randomized row and column marginal totals, which complicates the interpretation of contrasting patterns. This calls for new strategies both to explore intermediate scenarios of restrictiveness in-between extreme constraint assumptions, and to properly synthesize the resulting information. Here we introduce a new modeling framework based on a flexible matrix randomization algorithm (named the "Tuning Peg" algorithm) that addresses both issues. The algorithm consists of a modified swap procedure in which the discrepancy between the row and column marginal totals of the target matrix and those of its randomized counterpart can be "tuned" in a continuous way by two parameters (controlling, respectively, row and column discrepancy). We show how combining the Tuning Peg with a wise random walk procedure makes it possible to explore the complete null space embraced by existing algorithms. This exploration allows researchers to visualize matrix structural patterns in an innovative bi-dimensional landscape of significance/effect size. We demonstrate the rational and potential of our approach with a set of simulated and real matrices, showing how the simultaneous investigation of a comprehensive and continuous portion of the null space can be extremely informative, and possibly key to resolving longstanding debates in the analysis of ecological matrices. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  10. Spatial capture-recapture models allowing Markovian transience or dispersal

    USGS Publications Warehouse

    Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris

    2016-01-01

    Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.

  11. Use of genetic data to infer population-specific ecological and phenotypic traits from mixed aggregations

    USGS Publications Warehouse

    Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele

    2014-01-01

    Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions.

  12. Use of Genetic Data to Infer Population-Specific Ecological and Phenotypic Traits from Mixed Aggregations

    PubMed Central

    Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele

    2014-01-01

    Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions. PMID:24905464

  13. Statistical inference for noisy nonlinear ecological dynamic systems.

    PubMed

    Wood, Simon N

    2010-08-26

    Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.

  14. A protocol for better design, application, and communication of population viability analyses.

    PubMed

    Pe'er, Guy; Matsinos, Yiannis G; Johst, Karin; Franz, Kamila W; Turlure, Camille; Radchuk, Viktoriia; Malinowska, Agnieszka H; Curtis, Janelle M R; Naujokaitis-Lewis, Ilona; Wintle, Brendan A; Henle, Klaus

    2013-08-01

    Population viability analyses (PVAs) contribute to conservation theory, policy, and management. Most PVAs focus on single species within a given landscape and address a specific problem. This specificity often is reflected in the organization of published PVA descriptions. Many lack structure, making them difficult to understand, assess, repeat, or use for drawing generalizations across PVA studies. In an assessment comparing published PVAs and existing guidelines, we found that model selection was rarely justified; important parameters remained neglected or their implementation was described vaguely; limited details were given on parameter ranges, sensitivity analysis, and scenarios; and results were often reported too inconsistently to enable repeatability and comparability. Although many guidelines exist on how to design and implement reliable PVAs and standards exist for documenting and communicating ecological models in general, there is a lack of organized guidelines for designing, applying, and communicating PVAs that account for their diversity of structures and contents. To fill this gap, we integrated published guidelines and recommendations for PVA design and application, protocols for documenting ecological models in general and individual-based models in particular, and our collective experience in developing, applying, and reviewing PVAs. We devised a comprehensive protocol for the design, application, and communication of PVAs (DAC-PVA), which has 3 primary elements. The first defines what a useful PVA is; the second element provides a workflow for the design and application of a useful PVA and highlights important aspects that need to be considered during these processes; and the third element focuses on communication of PVAs to ensure clarity, comprehensiveness, repeatability, and comparability. Thereby, DAC-PVA should strengthen the credibility and relevance of PVAs for policy and management, and improve the capacity to generalize PVA findings across studies. © 2013 Society for Conservation Biology.

  15. Ecological regulation of black leaf streak disease driven by plant richness in banana agroecosystems.

    PubMed

    Poeydebat, Charlotte; Carval, Dominique; Tixier, Philippe; Daribo, Marie-Odette; De Lapeyre De Bellaire, Luc

    2018-05-04

    Black leaf streak disease (BLSD), caused by the fungus Mycosphaerella fijiensis, is an important threat to banana production. Although its control relies on costly and unsustainable use of fungicides, ecological regulation of BLSD linked to field-scale plant diversity has received little attention. We monitored banana phytometers in plots in banana-based fields where no fungicides were applied. Within each plot, we measured plant richness in three strata, canopy openness, necrotic leaf removal, Musa abundance and richness. We quantified ecological regulation of five BLSD parameters (inoculum sources, spore abundance, lesion density, incubation time, and the area under the disease progression curve) and identified, using structural equation modeling, the characteristics of the plant community and the mechanisms likely responsible for the regulation. Regulation occurred, but most effectively before lesion formation, and was mainly related to plant richness between 1.5 and 5m high. A barrier effect, rather than a dilution effect, more likely limited spore abundance. Our results support the hypothesis that the potential effects of plant richness on leaf-scale microclimate variability and on the diversity of epiphyllic microorganisms are involved in the regulation of incubation time and lesion density. Field-scale management of plant diversity may be a promising lever to foster ecological regulation of BLSD.

  16. Evaluating trade-offs in bull trout reintroduction strategies using structured decision making

    USGS Publications Warehouse

    Brignon, William R.; Peterson, James T.; Dunham, Jason B.; Schaller, Howard A.; Schreck, Carl B.

    2018-01-01

    Structured decision making allows reintroduction decisions to be made despite uncertainty by linking reintroduction goals with alternative management actions through predictive models of ecological processes. We developed a decision model to evaluate the trade-offs between six bull trout (Salvelinus confluentus) reintroduction decisions with the goal of maximizing the number of adults in the recipient population without reducing the donor population to an unacceptable level. Sensitivity analyses suggested that the decision identity and outcome were most influenced by survival parameters that result in increased adult abundance in the recipient population, increased juvenile survival in the donor and recipient populations, adult fecundity rates, and sex ratio. The decision was least sensitive to survival parameters associated with the captive-reared population, the effect of naivety on released individuals, and juvenile carrying capacity of the reintroduced population. The model and sensitivity analyses can serve as the foundation for formal adaptive management and improved effectiveness, efficiency, and transparency of bull trout reintroduction decisions.

  17. Assessing the impact of fishing in shallow rocky reefs: a multivariate approach to ecosystem management.

    PubMed

    Sangil, Carlos; Martín-García, Laura; Clemente, Sabrina

    2013-11-15

    In this paper we develop a tool to assess the impact of fishing on ecosystem functioning in shallow rocky reefs. The relationships between biological parameters (fishes, sea urchins, seaweeds), and fishing activities (fish traps, boats, land-based fishing, spearfishing) were tested in La Palma island (Canary Islands). Data from fishing activities and biological parameters were analyzed using principal component analyses. We produced two models using the first component of these analyses. This component was interpreted as a new variable that described the fishing pressure and the conservation status at each studied site. Subsequently the scores on the first axis were mapped using universal kriging methods and the models obtained were extrapolated across the whole island to display the expected fishing pressure and conservation status more widely. The fishing pressure and conservation status models were spatially related; zones where fishing pressure was high coincided with zones in the unhealthiest ecological state. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Multinomial mixture model with heterogeneous classification probabilities

    USGS Publications Warehouse

    Holland, M.D.; Gray, B.R.

    2011-01-01

    Royle and Link (Ecology 86(9):2505-2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data. ?? 2010 Springer Science+Business Media, LLC.

  19. Modeling ecological traps for the control of feral pigs

    PubMed Central

    Dexter, Nick; McLeod, Steven R

    2015-01-01

    Ecological traps are habitat sinks that are preferred by dispersing animals but have higher mortality or reduced fecundity compared to source habitats. Theory suggests that if mortality rates are sufficiently high, then ecological traps can result in extinction. An ecological trap may be created when pest animals are controlled in one area, but not in another area of equal habitat quality, and when there is density-dependent immigration from the high-density uncontrolled area to the low-density controlled area. We used a logistic population model to explore how varying the proportion of habitat controlled, control mortality rate, and strength of density-dependent immigration for feral pigs could affect the long-term population abundance and time to extinction. Increasing control mortality, the proportion of habitat controlled and the strength of density-dependent immigration decreased abundance both within and outside the area controlled. At higher levels of these parameters, extinction was achieved for feral pigs. We extended the analysis with a more complex stochastic, interactive model of feral pig dynamics in the Australian rangelands to examine how the same variables as the logistic model affected long-term abundance in the controlled and uncontrolled area and time to extinction. Compared to the logistic model of feral pig dynamics, the stochastic interactive model predicted lower abundances and extinction at lower control mortalities and proportions of habitat controlled. To improve the realism of the stochastic interactive model, we substituted fixed mortality rates with a density-dependent control mortality function, empirically derived from helicopter shooting exercises in Australia. Compared to the stochastic interactive model with fixed mortality rates, the model with the density-dependent control mortality function did not predict as substantial decline in abundance in controlled or uncontrolled areas or extinction for any combination of variables. These models demonstrate that pest eradication is theoretically possible without the pest being controlled throughout its range because of density-dependent immigration into the area controlled. The stronger the density-dependent immigration, the better the overall control in controlled and uncontrolled habitat combined. However, the stronger the density-dependent immigration, the poorer the control in the area controlled. For feral pigs, incorporating environmental stochasticity improves the prospects for eradication, but adding a realistic density-dependent control function eliminates these prospects. PMID:26045954

  20. Scaling for Dynamical Systems in Biology.

    PubMed

    Ledder, Glenn

    2017-11-01

    Asymptotic methods can greatly simplify the analysis of all but the simplest mathematical models and should therefore be commonplace in such biological areas as ecology and epidemiology. One essential difficulty that limits their use is that they can only be applied to a suitably scaled dimensionless version of the original dimensional model. Many books discuss nondimensionalization, but with little attention given to the problem of choosing the right scales and dimensionless parameters. In this paper, we illustrate the value of using asymptotics on a properly scaled dimensionless model, develop a set of guidelines that can be used to make good scaling choices, and offer advice for teaching these topics in differential equations or mathematical biology courses.

  1. Growth of the coccolithophore Emiliania huxleyi in light- and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores

    NASA Astrophysics Data System (ADS)

    Perrin, Laura; Probert, Ian; Langer, Gerald; Aloisi, Giovanni

    2016-11-01

    Coccolithophores are unicellular calcifying marine algae that play an important role in the oceanic carbon cycle via their cellular processes of photosynthesis (a CO2 sink) and calcification (a CO2 source). In contrast to the well-studied, surface-water coccolithophore blooms visible from satellites, the lower photic zone is a poorly known but potentially important ecological niche for coccolithophores in terms of primary production and carbon export to the deep ocean. In this study, the physiological responses of an Emiliania huxleyi strain to conditions simulating the deep niche in the oligotrophic gyres along the BIOSOPE transect in the South Pacific Gyre were investigated. We carried out batch culture experiments with an E. huxleyi strain isolated from the BIOSOPE transect, reproducing the in situ conditions of light and nutrient (nitrate and phosphate) limitation. By simulating coccolithophore growth using an internal stores (Droop) model, we were able to constrain fundamental physiological parameters for this E. huxleyi strain. We show that simple batch experiments, in conjunction with physiological modelling, can provide reliable estimates of fundamental physiological parameters for E. huxleyi that are usually obtained experimentally in more time-consuming and costly chemostat experiments. The combination of culture experiments, physiological modelling and in situ data from the BIOSOPE cruise show that E. huxleyi growth in the deep BIOSOPE niche is limited by availability of light and nitrate. This study contributes more widely to the understanding of E. huxleyi physiology and behaviour in a low-light and oligotrophic environment of the ocean.

  2. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically complex fuelbeds from inventory observations and converting thosemore » into a set of custom fuel models that can be mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an 80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We performed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the cluster centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against both rate of spread and flame length. The clusters based on FCCS fire behavior parameters represent reasonably identifiable stand conditions, being: (1) pine dominated stands with more litter and down woody debriscomponents than other stands, (2) hardwood and pine stands with no shrubs, (3) hardwood dominated stands with low shrub and high non-woody biomass and high down woody debris, (4) stands with high grass and forb (i.e., non-woody) biomass as well as substantial shrub biomass, (5) stands with both high shrub and litter biomass, (6) pine-mixed hardwood stands with moderate litter biomass and low shrub biomass, and (7) baldcypress-tupelo stands. Models representing these stand clusters generated flame lengths from 0.6 to 2.3 musing a 30 km h{sub 1} wind speed and fireline intensities of 100-1500 kW m{sub 1} that are typical within the range of experience on this landscape. The fuel models ranked 1 < 2 < 7 < 5 < 4 < 3 < 6 in terms of both flame length and fireline intensity. The method allows for ecologically complex data to be utilized in order to create a landscape representative of measured fuel conditions and to create models that interface with geospatial fire models.« less

  3. Modelling algae growth and dissolved oxygen in the Seine River downstream the Paris urban area: contribution of high frequency measurements

    NASA Astrophysics Data System (ADS)

    Vilmin, Lauriane; Escoffier, Nicolas; Groleau, Alexis; Poulin, Michel; Flipo, Nicolas

    2014-05-01

    Dissolved oxygen is a key variable in the hydro-ecological functioning of river systems. The accurate representation of the different biogeochemical processes affecting algal blooms and dissolved oxygen in the water column in hydro-ecological models is crucial for the use of these models as reliable management tools. This study focuses on the water quality of the Seine River along a 225 km stretch, from Paris to the Seine estuary. The study area is highly urbanized and located downstream France's largest agricultural area, and therefore receives large amounts of nutrients. During the last decades, nutrient inputs have been significantly reduced, especially with the implementation of new sewage water treatment technologies. Even though the frequency and the intensity of observed algal blooms have decreased, blooms were observed in 2011 and 2012. These blooms are generally followed by a period of high organic matter accumulation, leading to high mineralization fluxes and potential oxygen depletion. The hydrodynamics and the water quality of the Seine River are simulated for the 2011-2012 period with the distributed process-based hydro-ecological model ProSe (Even et al., 1998). The simulated chlorophyll a and dissolved oxygen concentrations are compared to high frequency measurements at the Bougival monitoring station (50 km downstream from Paris), which is part of the CarboSeine monitoring network. The high frequency continuous dataset allows calibrating of primary producers' physiological parameters. New growth parameters are defined for the diatom community. The blooms occur at the end of the winter period (march 2011 and march 2012) and the optimal temperature for diatom growth is calibrated at 10°C, based on an analysis of the physiological response of the diatom community. One of the main outcomes of the modelling exercise is that the precise identification of the constituting communities of algal blooms must be achieved prior to the modelling itself. With the new growth parameters and by considering additional communities, as dinoflagellates, in the model, chlorophyll a peak values (over 60 µg/L in 2011 and over 30 in 2012) are accurately simulated. Moreover, the production rate of the communities constituting an algal bloom can be estimated by interpreting the high frequency diel dissolved oxygen curves (Escoffier et al., 2013). The modelled production rate during the 2011 bloom is of the same order of magnitude as the one estimated with this method (0.5 to 2 g/m3/day of oxygen), which validates the representation of photosynthesis in the model. Therefore the simulated oxygen response is also improved. References: Even S., Poulin M., Garnier J., Billen G., Servais P., Chesterikoff A., Coste M., 1998. River ecosystem modelling: Application of the ProSe model to the Seine river (France). Hydrobiologia 373, 27-37. Escoffier N., Bensoussan N., Métivier F., Rocher V., Bernard C., Arnaud D., Vilmin L., Poulin M., Flipo N., Groleau A., 2013. Intergrating large river trophic functioning from real time sensors network measurements. American Society of Limnology and Oceanography Congress. New Orleans, February 2013.

  4. Development and validation of a habitat suitability model for ...

    EPA Pesticide Factsheets

    We developed a spatially-explicit, flexible 3-parameter habitat suitability model that can be used to identify and predict areas at higher risk for non-native dwarf eelgrass (Zostera japonica) invasion. The model uses simple environmental parameters (depth, nearshore slope, and salinity) to quantitatively describe habitat suitable for Z. japonica invasion based on ecology and physiology from the primary literature. Habitat suitability is defined with values ranging from zero to one, where one denotes areas most conducive to Z. japonica and zero denotes areas not likely to support Z. japonica growth. The model was applied to Yaquina Bay, Oregon, USA, an area that has well documented Z. japonica expansion over the last two decades. The highest suitability values for Z. japonica occurred in the mid to upper portions of the intertidal zone, with larger expanses occurring in the lower estuary. While the upper estuary did contain suitable habitat, most areas were not as large as in the lower estuary, due to inappropriate depth, a steeply sloping intertidal zone, and lower salinity. The lowest suitability values occurred below the lower intertidal zone, within the Yaquina River channel. The model was validated by comparison to a multi-year time series of Z. japonica maps, revealing a strong predictive capacity. Sensitivity analysis performed to evaluate the contribution of each parameter to the model prediction revealed that depth was the most important factor. Sh

  5. A Tale of Four Stories: Soil Ecology, Theory, Evolution and the Publication System

    PubMed Central

    Barot, Sébastien; Blouin, Manuel; Fontaine, Sébastien; Jouquet, Pascal; Lata, Jean-Christophe; Mathieu, Jérôme

    2007-01-01

    Background Soil ecology has produced a huge corpus of results on relations between soil organisms, ecosystem processes controlled by these organisms and links between belowground and aboveground processes. However, some soil scientists think that soil ecology is short of modelling and evolutionary approaches and has developed too independently from general ecology. We have tested quantitatively these hypotheses through a bibliographic study (about 23000 articles) comparing soil ecology journals, generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Findings We have shown that soil ecology is not well represented in generalist ecology journals and that soil ecologists poorly use modelling and evolutionary approaches. Moreover, the articles published by a typical soil ecology journal (Soil Biology and Biochemistry) are cited by and cite low percentages of articles published in generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Conclusion This confirms our hypotheses and suggests that soil ecology would benefit from an effort towards modelling and evolutionary approaches. This effort should promote the building of a general conceptual framework for soil ecology and bridges between soil ecology and general ecology. We give some historical reasons for the parsimonious use of modelling and evolutionary approaches by soil ecologists. We finally suggest that a publication system that classifies journals according to their Impact Factors and their level of generality is probably inadequate to integrate “particularity” (empirical observations) and “generality” (general theories), which is the goal of all natural sciences. Such a system might also be particularly detrimental to the development of a science such as ecology that is intrinsically multidisciplinary. PMID:18043755

  6. A conceptual socio-hydrological model of the co-evolution of humans and water: case study of the Tarim River basin, western China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.

    2015-02-01

    The complex interactions and feedbacks between humans and water are critically important issues but remain poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable for improving our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simplified conceptual socio-hydrological model based on logistic growth curves is developed for the Tarim River basin in western China and is used to illustrate the explanatory power of such a co-evolutionary model. The study area is the main stream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four sub-systems, i.e., the hydrological, ecological, economic, and social sub-systems. In each modeling unit, the hydrological equation focusing on water balance is coupled to the other three evolutionary equations to represent the dynamics of the social sub-system (denoted by population), the economic sub-system (denoted by irrigated crop area ratio), and the ecological sub-system (denoted by natural vegetation cover), each of which is expressed in terms of a logistic growth curve. Four feedback loops are identified to represent the complex interactions among different sub-systems and different spatial units, of which two are inner loops occurring within each separate unit and the other two are outer loops linking the two modeling units. The feedback mechanisms are incorporated into the constitutive relations for model parameters, i.e., the colonization and mortality rates in the logistic growth curves that are jointly determined by the state variables of all sub-systems. The co-evolution of the Tarim socio-hydrological system is then analyzed with this conceptual model to gain insights into the overall system dynamics and its sensitivity to the external drivers and internal system variables. The results show a costly pendulum swing between a balanced distribution of socio-economic and natural ecologic resources among the upper and lower reaches and a highly skewed distribution towards the upper reach. This evolution is principally driven by the attitudinal changes occurring within water resources management policies that reflect the evolving community awareness of society to concerns regarding the ecology and environment.

  7. [Collaborative application of BEPS at different time steps.

    PubMed

    Lu, Wei; Fan, Wen Yi; Tian, Tian

    2016-09-01

    BEPSHourly is committed to simulate the ecological and physiological process of vegetation at hourly time steps, and is often applied to analyze the diurnal change of gross primary productivity (GPP), net primary productivity (NPP) at site scale because of its more complex model structure and time-consuming solving process. However, daily photosynthetic rate calculation in BEPSDaily model is simpler and less time-consuming, not involving many iterative processes. It is suitable for simulating the regional primary productivity and analyzing the spatial distribution of regional carbon sources and sinks. According to the characteristics and applicability of BEPSDaily and BEPSHourly models, this paper proposed a method of collaborative application of BEPS at daily and hourly time steps. Firstly, BEPSHourly was used to optimize the main photosynthetic parameters: the maximum rate of carboxylation (V c max ) and the maximum rate of photosynthetic electron transport (J max ) at site scale, and then the two optimized parameters were introduced into BEPSDaily model to estimate regional NPP at regional scale. The results showed that optimization of the main photosynthesis parameters based on the flux data could improve the simulate ability of the model. The primary productivity of different forest types in descending order was deciduous broad-leaved forest, mixed forest, coniferous forest in 2011. The collaborative application of carbon cycle models at different steps proposed in this study could effectively optimize the main photosynthesis parameters V c max and J max , simulate the monthly averaged diurnal GPP, NPP, calculate the regional NPP, and analyze the spatial distribution of regional carbon sources and sinks.

  8. Taxonomic and ecological relevance of the chlorophyll a fluorescence signature of tree species in mixed European forests.

    PubMed

    Pollastrini, Martina; Holland, Vera; Brüggemann, Wolfgang; Bruelheide, Helge; Dănilă, Iulian; Jaroszewicz, Bogdan; Valladares, Fernando; Bussotti, Filippo

    2016-10-01

    The variability of chlorophyll a fluorescence (ChlF) parameters of forest tree species was investigated in 209 stands belonging to six European forests, from Mediterranean to boreal regions. The modifying role of environmental factors, forest structure and tree diversity (species richness and composition) on ChlF signature was analysed. At the European level, conifers showed higher potential performance than broadleaf species. Forests in central Europe performed better than those in Mediterranean and boreal regions. At the site level, homogeneous clusters of tree species were identified by means of a principal component analysis (PCA) of ChlF parameters. The discrimination of the clusters of species was influenced by their taxonomic position and ecological characteristics. The species richness influenced the tree ChlF properties in different ways depending on tree species and site. Tree species and site also affected the relationships between ChlF parameters and other plant functional traits (specific leaf area, leaf nitrogen content, light-saturated photosynthesis, wood density, leaf carbon isotope composition). The assessment of the photosynthetic properties of tree species, by means of ChlF parameters, in relation to their functional traits, is a relevant issue for studies in forest ecology. The connections of data from field surveys with remotely assessed parameters must be carefully explored. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. The ecological forecast horizon, and examples of its uses and determinants

    PubMed Central

    Petchey, Owen L; Pontarp, Mikael; Massie, Thomas M; Kéfi, Sonia; Ozgul, Arpat; Weilenmann, Maja; Palamara, Gian Marco; Altermatt, Florian; Matthews, Blake; Levine, Jonathan M; Childs, Dylan Z; McGill, Brian J; Schaepman, Michael E; Schmid, Bernhard; Spaak, Piet; Beckerman, Andrew P; Pennekamp, Frank; Pearse, Ian S; Vasseur, David

    2015-01-01

    Forecasts of ecological dynamics in changing environments are increasingly important, and are available for a plethora of variables, such as species abundance and distribution, community structure and ecosystem processes. There is, however, a general absence of knowledge about how far into the future, or other dimensions (space, temperature, phylogenetic distance), useful ecological forecasts can be made, and about how features of ecological systems relate to these distances. The ecological forecast horizon is the dimensional distance for which useful forecasts can be made. Five case studies illustrate the influence of various sources of uncertainty (e.g. parameter uncertainty, environmental variation, demographic stochasticity and evolution), level of ecological organisation (e.g. population or community), and organismal properties (e.g. body size or number of trophic links) on temporal, spatial and phylogenetic forecast horizons. Insights from these case studies demonstrate that the ecological forecast horizon is a flexible and powerful tool for researching and communicating ecological predictability. It also has potential for motivating and guiding agenda setting for ecological forecasting research and development. PMID:25960188

  10. Analytically tractable model for community ecology with many species

    NASA Astrophysics Data System (ADS)

    Dickens, Benjamin; Fisher, Charles K.; Mehta, Pankaj

    2016-08-01

    A fundamental problem in community ecology is understanding how ecological processes such as selection, drift, and immigration give rise to observed patterns in species composition and diversity. Here, we analyze a recently introduced, analytically tractable, presence-absence (PA) model for community assembly, and we use it to ask how ecological traits such as the strength of competition, the amount of diversity, and demographic and environmental stochasticity affect species composition in a community. In the PA model, species are treated as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Building upon previous work, we show that, despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent studies of large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special ("critical") point corresponding to Hubbell's neutral theory of biodiversity. These results suggest that the concepts of ecological "phases" and phase diagrams can provide a powerful framework for thinking about community ecology, and that the PA model captures the essential ecological dynamics of community assembly.

  11. Surprises and insights from long-term aquatic datasets and experiments

    Treesearch

    Walter K. Dodds; Christopher T. Robinson; Evelyn E. Gaiser; Gretchen J.A. Hansen; Heather Powell; Joseph M. Smith; Nathaniel B. Morse; Sherri L. Johnson; Stanley V. Gregory; Tisza Bell; Timothy K. Kratz; William H. McDowell

    2012-01-01

    Long-term research on freshwater ecosystems provides insights that can be difficult to obtain from other approaches. Widespread monitoring of ecologically relevant water-quality parameters spanning decades can facilitate important tests of ecological principles. Unique long-term data sets and analytical tools are increasingly available, allowing for powerful and...

  12. Ecological Dynamics of the Inner City: Implications for Community Psychology.

    ERIC Educational Resources Information Center

    Myers, Ernest R.

    If community psychology is a discipline of principles, methods, and techniques designed to adapt tomorrow's psychologists to a community orientation and commitment, then ecological parameters necessarily become fundamental concerns. It is no revelation that urban America, particularly the central city, is characteristically the home site of "Black…

  13. A Generic Individual-Based Spatially Explicit Model as a Novel Tool for Investigating Insect-Plant Interactions: A Case Study of the Behavioural Ecology of Frugivorous Tephritidae

    PubMed Central

    Wang, Ming; Cribb, Bronwen; Clarke, Anthony R.; Hanan, Jim

    2016-01-01

    Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies’ behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies’ movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of parameters based on targeted experiments. PMID:26999285

  14. Analysis and Management of Animal Populations: Modeling, Estimation and Decision Making

    USGS Publications Warehouse

    Williams, B.K.; Nichols, J.D.; Conroy, M.J.

    2002-01-01

    This book deals with the processes involved in making informed decisions about the management of animal populations. It covers the modeling of population responses to management actions, the estimation of quantities needed in the modeling effort, and the application of these estimates and models to the development of sound management decisions. The book synthesizes and integrates in a single volume the methods associated with these themes, as they apply to ecological assessment and conservation of animal populations. KEY FEATURES * Integrates population modeling, parameter estimation and * decision-theoretic approaches to management in a single, cohesive framework * Provides authoritative, state-of-the-art descriptions of quantitative * approaches to modeling, estimation and decision-making * Emphasizes the role of mathematical modeling in the conduct of science * and management * Utilizes a unifying biological context, consistent mathematical notation, * and numerous biological examples

  15. Should I use that model? Assessing the transferability of ecological models to new settings

    EPA Science Inventory

    Analysts and scientists frequently apply existing models that estimate ecological endpoints or simulate ecological processes to settings where the models have not been used previously, and where data to parameterize and validate the model may be sparse. Prior to transferring an ...

  16. A new quantitative model of ecological compensation based on ecosystem capital in Zhejiang Province, China*

    PubMed Central

    Jin, Yan; Huang, Jing-feng; Peng, Dai-liang

    2009-01-01

    Ecological compensation is becoming one of key and multidiscipline issues in the field of resources and environmental management. Considering the change relation between gross domestic product (GDP) and ecological capital (EC) based on remote sensing estimation, we construct a new quantitative estimate model for ecological compensation, using county as study unit, and determine standard value so as to evaluate ecological compensation from 2001 to 2004 in Zhejiang Province, China. Spatial differences of the ecological compensation were significant among all the counties or districts. This model fills up the gap in the field of quantitative evaluation of regional ecological compensation and provides a feasible way to reconcile the conflicts among benefits in the economic, social, and ecological sectors. PMID:19353749

  17. A new quantitative model of ecological compensation based on ecosystem capital in Zhejiang Province, China.

    PubMed

    Jin, Yan; Huang, Jing-feng; Peng, Dai-liang

    2009-04-01

    Ecological compensation is becoming one of key and multidiscipline issues in the field of resources and environmental management. Considering the change relation between gross domestic product (GDP) and ecological capital (EC) based on remote sensing estimation, we construct a new quantitative estimate model for ecological compensation, using county as study unit, and determine standard value so as to evaluate ecological compensation from 2001 to 2004 in Zhejiang Province, China. Spatial differences of the ecological compensation were significant among all the counties or districts. This model fills up the gap in the field of quantitative evaluation of regional ecological compensation and provides a feasible way to reconcile the conflicts among benefits in the economic, social, and ecological sectors.

  18. Ecological prognosis near intensive acoustic sources

    NASA Astrophysics Data System (ADS)

    Kostarev, Stanislav A.; Makhortykh, Sergey A.; Rybak, Samuil A.

    2002-11-01

    The problem of a wave-field excitation in a ground from a quasiperiodic source, placed on the ground surface or on some depth in soil is investigated. The ecological situation in this case in many respects is determined by quality of the raised vibrations and noise forecast. In the present work the distributed source is modeled by the set of statistically linked compact sources on the surface or in the ground. Changes of parameters of the media along an axis and horizontal heterogeneity of environment are taken into account. Both analytical and numerical approaches are developed. The latter are included in the software package VibraCalc, allowing to calculate distribution of the elastic waves field in a ground from quasilinear sources. Accurate evaluation of vibration levels in buildings from high-intensity underground sources is fulfilled by modeling of the wave propagation in dissipative inhomogeneous elastic media. The model takes into account both bulk (longitudinal and shear) and surface Rayleigh waves. For the verification of the used approach a series of measurements was carried out near the experimental part of monorail road designed in Moscow. Both calculation and measurement results are presented in the paper.

  19. Ecological prognosis near intensive acoustic sources

    NASA Astrophysics Data System (ADS)

    Kostarev, Stanislav A.; Makhortykh, Sergey A.; Rybak, Samuil A.

    2003-04-01

    The problem of a wave field excitation in a ground from a quasi-periodic source, placed on the ground surface or at some depth in soil is investigated. The ecological situation in this case in many respects is determined by quality of the raised vibrations and noise forecast. In the present work the distributed source is modeled by the set of statistically linked compact sources on the surface or in the ground. Changes of parameters of the media along an axis and horizontal heterogeneity of environment are taken into account. Both analytical and numerical approaches are developed. The last are included in software package VibraCalc, allowing to calculate distribution of the elastic waves field in a ground from quasilinear sources. Accurate evaluation of vibration levels in buildings from high intensity under ground sources is fulfilled by modeling of the wave propagation in dissipative inhomogeneous elastic media. The model takes into account both bulk (longitudinal and shear) and surface Rayleigh waves. For the verification of used approach a series of measurements was carried out near the experimental part of monorail road designed in Moscow. Both calculation and measurements results are presented in the paper.

  20. A comparative study of integrated pest management strategies based on impulsive control.

    PubMed

    Páez Chávez, Joseph; Jungmann, Dirk; Siegmund, Stefan

    2018-12-01

    The paper presents a comprehensive numerical study of mathematical models used to describe complex biological systems in the framework of integrated pest management. Our study considers two specific ecosystems that describe the application of control mechanisms based on pesticides and natural enemies, implemented in an impulsive and periodic manner, due to which the considered models belong to the class of impulsive differential equations. The present work proposes a numerical approach to study such type of models in detail, via the application of path-following (continuation) techniques for nonsmooth dynamical systems, via the novel continuation platform COCO (Dankowicz and Schilder). In this way, a detailed study focusing on the influence of selected system parameters on the effectiveness of the pest control scheme is carried out for both ecological scenarios. Furthermore, a comparative study is presented, with special emphasis on the mechanisms upon which a pest outbreak can occur in the considered ecosystems. Our study reveals that such outbreaks are determined by the presence of a branching point found during the continuation analysis. The numerical investigation concludes with an in-depth study of the state-dependent pesticide mortality considered in one of the ecological scenarios.

  1. Estimating thermal performance curves from repeated field observations

    USGS Publications Warehouse

    Childress, Evan; Letcher, Benjamin H.

    2017-01-01

    Estimating thermal performance of organisms is critical for understanding population distributions and dynamics and predicting responses to climate change. Typically, performance curves are estimated using laboratory studies to isolate temperature effects, but other abiotic and biotic factors influence temperature-performance relationships in nature reducing these models' predictive ability. We present a model for estimating thermal performance curves from repeated field observations that includes environmental and individual variation. We fit the model in a Bayesian framework using MCMC sampling, which allowed for estimation of unobserved latent growth while propagating uncertainty. Fitting the model to simulated data varying in sampling design and parameter values demonstrated that the parameter estimates were accurate, precise, and unbiased. Fitting the model to individual growth data from wild trout revealed high out-of-sample predictive ability relative to laboratory-derived models, which produced more biased predictions for field performance. The field-based estimates of thermal maxima were lower than those based on laboratory studies. Under warming temperature scenarios, field-derived performance models predicted stronger declines in body size than laboratory-derived models, suggesting that laboratory-based models may underestimate climate change effects. The presented model estimates true, realized field performance, avoiding assumptions required for applying laboratory-based models to field performance, which should improve estimates of performance under climate change and advance thermal ecology.

  2. Bayesian calibration of mechanistic aquatic biogeochemical models and benefits for environmental management

    NASA Astrophysics Data System (ADS)

    Arhonditsis, George B.; Papantou, Dimitra; Zhang, Weitao; Perhar, Gurbir; Massos, Evangelia; Shi, Molu

    2008-09-01

    Aquatic biogeochemical models have been an indispensable tool for addressing pressing environmental issues, e.g., understanding oceanic response to climate change, elucidation of the interplay between plankton dynamics and atmospheric CO 2 levels, and examination of alternative management schemes for eutrophication control. Their ability to form the scientific basis for environmental management decisions can be undermined by the underlying structural and parametric uncertainty. In this study, we outline how we can attain realistic predictive links between management actions and ecosystem response through a probabilistic framework that accommodates rigorous uncertainty analysis of a variety of error sources, i.e., measurement error, parameter uncertainty, discrepancy between model and natural system. Because model uncertainty analysis essentially aims to quantify the joint probability distribution of model parameters and to make inference about this distribution, we believe that the iterative nature of Bayes' Theorem is a logical means to incorporate existing knowledge and update the joint distribution as new information becomes available. The statistical methodology begins with the characterization of parameter uncertainty in the form of probability distributions, then water quality data are used to update the distributions, and yield posterior parameter estimates along with predictive uncertainty bounds. Our illustration is based on a six state variable (nitrate, ammonium, dissolved organic nitrogen, phytoplankton, zooplankton, and bacteria) ecological model developed for gaining insight into the mechanisms that drive plankton dynamics in a coastal embayment; the Gulf of Gera, Island of Lesvos, Greece. The lack of analytical expressions for the posterior parameter distributions was overcome using Markov chain Monte Carlo simulations; a convenient way to obtain representative samples of parameter values. The Bayesian calibration resulted in realistic reproduction of the key temporal patterns of the system, offered insights into the degree of information the data contain about model inputs, and also allowed the quantification of the dependence structure among the parameter estimates. Finally, our study uses two synthetic datasets to examine the ability of the updated model to provide estimates of predictive uncertainty for water quality variables of environmental management interest.

  3. The effect of improving task representativeness on capturing nurses’ risk assessment judgements: a comparison of written case simulations and physical simulations

    PubMed Central

    2013-01-01

    Background The validity of studies describing clinicians’ judgements based on their responses to paper cases is questionable, because - commonly used - paper case simulations only partly reflect real clinical environments. In this study we test whether paper case simulations evoke similar risk assessment judgements to the more realistic simulated patients used in high fidelity physical simulations. Methods 97 nurses (34 experienced nurses and 63 student nurses) made dichotomous assessments of risk of acute deterioration on the same 25 simulated scenarios in both paper case and physical simulation settings. Scenarios were generated from real patient cases. Measures of judgement ‘ecology’ were derived from the same case records. The relationship between nurses’ judgements, actual patient outcomes (i.e. ecological criteria), and patient characteristics were described using the methodology of judgement analysis. Logistic regression models were constructed to calculate Lens Model Equation parameters. Parameters were then compared between the modeled paper-case and physical-simulation judgements. Results Participants had significantly less achievement (ra) judging physical simulations than when judging paper cases. They used less modelable knowledge (G) with physical simulations than with paper cases, while retaining similar cognitive control and consistency on repeated patients. Respiration rate, the most important cue for predicting patient risk in the ecological model, was weighted most heavily by participants. Conclusions To the extent that accuracy in judgement analysis studies is a function of task representativeness, improving task representativeness via high fidelity physical simulations resulted in lower judgement performance in risk assessments amongst nurses when compared to paper case simulations. Lens Model statistics could prove useful when comparing different options for the design of simulations used in clinical judgement analysis. The approach outlined may be of value to those designing and evaluating clinical simulations as part of education and training strategies aimed at improving clinical judgement and reasoning. PMID:23718556

  4. Testing the robustness of management decisions to uncertainty: Everglades restoration scenarios.

    PubMed

    Fuller, Michael M; Gross, Louis J; Duke-Sylvester, Scott M; Palmer, Mark

    2008-04-01

    To effectively manage large natural reserves, resource managers must prepare for future contingencies while balancing the often conflicting priorities of different stakeholders. To deal with these issues, managers routinely employ models to project the response of ecosystems to different scenarios that represent alternative management plans or environmental forecasts. Scenario analysis is often used to rank such alternatives to aid the decision making process. However, model projections are subject to uncertainty in assumptions about model structure, parameter values, environmental inputs, and subcomponent interactions. We introduce an approach for testing the robustness of model-based management decisions to the uncertainty inherent in complex ecological models and their inputs. We use relative assessment to quantify the relative impacts of uncertainty on scenario ranking. To illustrate our approach we consider uncertainty in parameter values and uncertainty in input data, with specific examples drawn from the Florida Everglades restoration project. Our examples focus on two alternative 30-year hydrologic management plans that were ranked according to their overall impacts on wildlife habitat potential. We tested the assumption that varying the parameter settings and inputs of habitat index models does not change the rank order of the hydrologic plans. We compared the average projected index of habitat potential for four endemic species and two wading-bird guilds to rank the plans, accounting for variations in parameter settings and water level inputs associated with hypothetical future climates. Indices of habitat potential were based on projections from spatially explicit models that are closely tied to hydrology. For the American alligator, the rank order of the hydrologic plans was unaffected by substantial variation in model parameters. By contrast, simulated major shifts in water levels led to reversals in the ranks of the hydrologic plans in 24.1-30.6% of the projections for the wading bird guilds and several individual species. By exposing the differential effects of uncertainty, relative assessment can help resource managers assess the robustness of scenario choice in model-based policy decisions.

  5. Making ecological models adequate

    USGS Publications Warehouse

    Getz, Wayne M.; Marshall, Charles R.; Carlson, Colin J.; Giuggioli, Luca; Ryan, Sadie J.; Romañach, Stephanie; Boettiger, Carl; Chamberlain, Samuel D.; Larsen, Laurel; D'Odorico, Paolo; O'Sullivan, David

    2018-01-01

    Critical evaluation of the adequacy of ecological models is urgently needed to enhance their utility in developing theory and enabling environmental managers and policymakers to make informed decisions. Poorly supported management can have detrimental, costly or irreversible impacts on the environment and society. Here, we examine common issues in ecological modelling and suggest criteria for improving modelling frameworks. An appropriate level of process description is crucial to constructing the best possible model, given the available data and understanding of ecological structures. Model details unsupported by data typically lead to over parameterisation and poor model performance. Conversely, a lack of mechanistic details may limit a model's ability to predict ecological systems’ responses to management. Ecological studies that employ models should follow a set of model adequacy assessment protocols that include: asking a series of critical questions regarding state and control variable selection, the determinacy of data, and the sensitivity and validity of analyses. We also need to improve model elaboration, refinement and coarse graining procedures to better understand the relevancy and adequacy of our models and the role they play in advancing theory, improving hind and forecasting, and enabling problem solving and management.

  6. A tool for assessing ecological status of forest ecosystem

    NASA Astrophysics Data System (ADS)

    Rahman Kassim, Abd; Afizzul Misman, Muhammad; Azahari Faidi, Mohd; Omar, Hamdan

    2016-06-01

    Managers and policy makers are beginning to appreciate the value of ecological monitoring of artificially regenerated forest especially in urban areas. With the advent of more advance technology in precision forestry, high resolution remotely sensed data e.g. hyperspectral and LiDAR are becoming available for rapid and precise assessment of the forest condition. An assessment of ecological status of forest ecosystem was developed and tested using FRIM campus forest stand. The forest consisted of three major blocks; the old growth artificially regenerated native species forests, naturally regenerated forest and recent planted forest for commercial timber and other forest products. Our aim is to assess the ecological status and its proximity to the mature old growth artificially regenerated stand. We used airborne LiDAR, orthophoto and thirty field sampling quadrats of 20x20m for ground verification. The parameter assessments were grouped into four broad categories: a. forest community level-composition, structures, function; landscape structures-road network and forest edges. A metric of parameters and rating criteria was introduced as indicators of the forest ecological status. We applied multi-criteria assessment to categorize the ecological status of the forest stand. The paper demonstrates the application of the assessment approach using FRIM campus forest as its first case study. Its potential application to both artificially and naturally regenerated forest in the variety of Malaysian landscape is discussed

  7. Predictors of early survival in Soay sheep: cohort-, maternal- and individual-level variation

    PubMed Central

    Jones, Owen R; Crawley, Michael J; Pilkington, Jill G; Pemberton, Josephine M

    2005-01-01

    A demographic understanding of population dynamics requires an appreciation of the processes influencing survival—a demographic rate influenced by parameters varying at the individual, maternal and cohort level. There have been few attempts to partition the variance in demography contributed by each of these parameter types. Here, we use data from a feral population of Soay sheep (Ovis aries), from the island of St Kilda, to explore the relative importance of these parameter types on early survival. We demonstrate that the importance of variation occurring at the level of the individual, and maternally, far outweighs that occurring at the cohort level. The most important variables within the individual and maternal levels were birth weight and maternal age class, respectively. This work underlines the importance of using individual based models in ecological demography and we, therefore, caution against studies that focus solely on population processes. PMID:16321784

  8. [Ecological security early-warning in Zhoushan Islands based on variable weight model].

    PubMed

    Zhou, Bin; Zhong, Lin-sheng; Chen, Tian; Zhou, Rui

    2015-06-01

    Ecological security early warning, as an important content of ecological security research, is of indicating significance in maintaining regional ecological security. Based on driving force, pressure, state, impact and response (D-P-S-I-R) framework model, this paper took Zhoushan Islands in Zhejiang Province as an example to construct the ecological security early warning index system, test degrees of ecological security early warning of Zhoushan Islands from 2000 to 2012 by using the method of variable weight model, and forecast ecological security state of 2013-2018 by Markov prediction method. The results showed that the variable weight model could meet the study needs of ecological security early warning of Zhoushan Islands. There was a fluctuant rising ecological security early warning index from 0.286 to 0.484 in Zhoushan Islands between year 2000 and 2012, in which the security grade turned from "serious alert" into " medium alert" and the indicator light turned from "orange" to "yellow". The degree of ecological security warning was "medium alert" with the light of "yellow" for Zhoushan Islands from 2013 to 2018. These findings could provide a reference for ecological security maintenance of Zhoushan Islands.

  9. Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern Austria.

    PubMed

    Zittra, Carina; Flechl, Eva; Kothmayer, Michael; Vitecek, Simon; Rossiter, Heidemarie; Zechmeister, Thomas; Fuehrer, Hans-Peter

    2016-04-11

    Culex pipiens complex taxa differ in behaviour, ecophysiology and epidemiologic importance. Despite their epidemiologic significance, information on genetic diversity, occurrence and seasonal and spatial distribution patterns of the Cx. pipiens complex is still insufficient. Assessment of seasonal and spatial distribution patterns of Culex pipiens forms and their congener Cx. torrentium is crucial for the understanding of their vector-pathogen dynamics. Female mosquitoes were trapped from April-October 2014 twice a month for a 24-h time period with BG-sentinel traps at 24 sampling sites in eastern Austria, using carbon dioxide as attractant. Ecological forms of Cx. pipiens s.l. and their hybrids were differentiated using the CQ11 locus, and Cx. pipiens forms and their congener Cx. torrentium using the ACE-2 gene. Differential exploitation of ecological niches by Cx. pipiens forms and Cx. torrentium was analysed using likelihood ratio tests. Possible effects of environmental parameters on these taxa were tested using PERMANOVA based on distance matrices and, if significant, were modelled in nMDS ordination space to estimate non-linear relationships. For this study, 1476 Culex spp. were sampled. Culex pipiens f. pipiens representing 87.33 % of the total catch was most abundant, followed by hybrids of both forms (5.62 %), Cx. torrentium (3.79 %) and Cx. pipiens f. molestus (3.25 %). Differences in proportional abundances were found between land cover classes. Ecological parameters affecting seasonal and spatial distribution of these taxa in eastern Austria are precipitation duration, air temperature, sunlight and the interaction term of precipitation amount and the Danube water level, which can be interpreted as a proxy for breeding habitat availability. The Cx. pipiens complex of eastern Austria comprises both ecologically different forms, the mainly ornithophilic form pipiens and the mainly mammalophilic and anthropophilic form molestus. Heterogeneous agricultural areas as areas of coexistence may serve as hybridization zones, resulting in potential bridge vectors between birds and humans. Occurrence, seasonal and spatial distribution patterns of the Cx. pipiens complex and Cx. torrentium and the presence of hybrids between both forms were quantified for the first time in Austria. These findings will improve the knowledge of their vector-pathogen dynamics in this country.

  10. A Conceptual Framework for Evaluating the Domains of Applicability of Ecological Models and its Implementation in the Ecological Production Function Library

    EPA Science Inventory

    The use of computational ecological models to inform environmental management and policy has proliferated in the past 25 years. These models have become essential tools as linkages and feedbacks between human actions and ecological responses can be complex, and as funds for sampl...

  11. Applying an orographic precipitation model to improve mass balance modeling of the Juneau Icefield, AK

    NASA Astrophysics Data System (ADS)

    Roth, A. C.; Hock, R.; Schuler, T.; Bieniek, P.; Aschwanden, A.

    2017-12-01

    Mass loss from glaciers in Southeast Alaska is expected to alter downstream ecological systems as runoff patterns change. To investigate these potential changes under future climate scenarios, distributed glacier mass balance modeling is required. However, the spatial resolution gap between global or regional climate models and the requirements for glacier mass balance modeling studies must be addressed first. We have used a linear theory of orographic precipitation model to downscale precipitation from both the Weather Research and Forecasting (WRF) model and ERA-Interim to the Juneau Icefield region over the period 1979-2013. This implementation of the LT model is a unique parameterization that relies on the specification of snow fall speed and rain fall speed as tuning parameters to calculate the cloud time delay, τ. We assessed the LT model results by considering winter precipitation so the effect of melt was minimized. The downscaled precipitation pattern produced by the LT model captures the orographic precipitation pattern absent from the coarse resolution WRF and ERA-Interim precipitation fields. Observational data constraints limited our ability to determine a unique parameter combination and calibrate the LT model to glaciological observations. We established a reference run of parameter values based on literature and performed a sensitivity analysis of the LT model parameters, horizontal resolution, and climate input data on the average winter precipitation. The results of the reference run showed reasonable agreement with the available glaciological measurements. The precipitation pattern produced by the LT model was consistent regardless of parameter combination, horizontal resolution, and climate input data, but the precipitation amount varied strongly with these factors. Due to the consistency of the winter precipitation pattern and the uncertainty in precipitation amount, we suggest a precipitation index map approach to be used in combination with a distributed mass balance model for future mass balance modeling studies of the Juneau Icefield. The LT model has potential to be used in other regions in Alaska and elsewhere with strong orographic effects for improved glacier mass balance modeling and/or hydrological modeling.

  12. Assessing the Impact of Model Parameter Uncertainty in Simulating Grass Biomass Using a Hybrid Carbon Allocation Strategy

    NASA Astrophysics Data System (ADS)

    Reyes, J. J.; Adam, J. C.; Tague, C.

    2016-12-01

    Grasslands play an important role in agricultural production as forage for livestock; they also provide a diverse set of ecosystem services including soil carbon (C) storage. The partitioning of C between above and belowground plant compartments (i.e. allocation) is influenced by both plant characteristics and environmental conditions. The objectives of this study are to 1) develop and evaluate a hybrid C allocation strategy suitable for grasslands, and 2) apply this strategy to examine the importance of various parameters related to biogeochemical cycling, photosynthesis, allocation, and soil water drainage on above and belowground biomass. We include allocation as an important process in quantifying the model parameter uncertainty, which identifies the most influential parameters and what processes may require further refinement. For this, we use the Regional Hydro-ecologic Simulation System, a mechanistic model that simulates coupled water and biogeochemical processes. A Latin hypercube sampling scheme was used to develop parameter sets for calibration and evaluation of allocation strategies, as well as parameter uncertainty analysis. We developed the hybrid allocation strategy to integrate both growth-based and resource-limited allocation mechanisms. When evaluating the new strategy simultaneously for above and belowground biomass, it produced a larger number of less biased parameter sets: 16% more compared to resource-limited and 9% more compared to growth-based. This also demonstrates its flexible application across diverse plant types and environmental conditions. We found that higher parameter importance corresponded to sub- or supra-optimal resource availability (i.e. water, nutrients) and temperature ranges (i.e. too hot or cold). For example, photosynthesis-related parameters were more important at sites warmer than the theoretical optimal growth temperature. Therefore, larger values of parameter importance indicate greater relative sensitivity in adequately representing the relevant process to capture limiting resources or manage atypical environmental conditions. These results may inform future experimental work by focusing efforts on quantifying specific parameters under various environmental conditions or across diverse plant functional types.

  13. Improving plant bioaccumulation science through consistent reporting of experimental data.

    PubMed

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Study of a tri-trophic prey-dependent food chain model of interacting populations.

    PubMed

    Haque, Mainul; Ali, Nijamuddin; Chakravarty, Santabrata

    2013-11-01

    The current paper accounts for the influence of intra-specific competition among predators in a prey dependent tri-trophic food chain model of interacting populations. We offer a detailed mathematical analysis of the proposed food chain model to illustrate some of the significant results that has arisen from the interplay of deterministic ecological phenomena and processes. Biologically feasible equilibria of the system are observed and the behaviours of the system around each of them are described. In particular, persistence, stability (local and global) and bifurcation (saddle-node, transcritical, Hopf-Andronov) analysis of this model are obtained. Relevant results from previous well known food chain models are compared with the current findings. Global stability analysis is also carried out by constructing appropriate Lyapunov functions. Numerical simulations show that the present system is capable enough to produce chaotic dynamics when the rate of self-interaction is very low. On the other hand such chaotic behaviour disappears for a certain value of the rate of self interaction. In addition, numerical simulations with experimented parameters values confirm the analytical results and shows that intra-specific competitions bears a potential role in controlling the chaotic dynamics of the system; and thus the role of self interactions in food chain model is illustrated first time. Finally, a discussion of the ecological applications of the analytical and numerical findings concludes the paper. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The ecological foundations of transmission potential and vector-borne disease in urban landscapes.

    PubMed

    LaDeau, Shannon L; Allan, Brian F; Leisnham, Paul T; Levy, Michael Z

    2015-07-01

    Urban transmission of arthropod-vectored disease has increased in recent decades. Understanding and managing transmission potential in urban landscapes requires integration of sociological and ecological processes that regulate vector population dynamics, feeding behavior, and vector-pathogen interactions in these unique ecosystems. Vectorial capacity is a key metric for generating predictive understanding about transmission potential in systems with obligate vector transmission. This review evaluates how urban conditions, specifically habitat suitability and local temperature regimes, and the heterogeneity of urban landscapes can influence the biologically-relevant parameters that define vectorial capacity: vector density, survivorship, biting rate, extrinsic incubation period, and vector competence.Urban landscapes represent unique mosaics of habitat. Incidence of vector-borne disease in urban host populations is rarely, if ever, evenly distributed across an urban area. The persistence and quality of vector habitat can vary significantly across socio-economic boundaries to influence vector species composition and abundance, often generating socio-economically distinct gradients of transmission potential across neighborhoods.Urban regions often experience unique temperature regimes, broadly termed urban heat islands (UHI). Arthropod vectors are ectothermic organisms and their growth, survival, and behavior are highly sensitive to environmental temperatures. Vector response to UHI conditions is dependent on regional temperature profiles relative to the vector's thermal performance range. In temperate climates UHI can facilitate increased vector development rates while having countervailing influence on survival and feeding behavior. Understanding how urban heat island (UHI) conditions alter thermal and moisture constraints across the vector life cycle to influence transmission processes is an important direction for both empirical and modeling research.There remain persistent gaps in understanding of vital rates and drivers in mosquito-vectored disease systems, and vast holes in understanding for other arthropod vectored diseases. Empirical studies are needed to better understand the physiological constraints and socio-ecological processes that generate heterogeneity in critical transmission parameters, including vector survival and fitness. Likewise, laboratory experiments and transmission models must evaluate vector response to realistic field conditions, including variability in sociological and environmental conditions.

  16. Analyzing latent state-trait and multiple-indicator latent growth curve models as multilevel structural equation models

    PubMed Central

    Geiser, Christian; Bishop, Jacob; Lockhart, Ginger; Shiffman, Saul; Grenard, Jerry L.

    2013-01-01

    Latent state-trait (LST) and latent growth curve (LGC) models are frequently used in the analysis of longitudinal data. Although it is well-known that standard single-indicator LGC models can be analyzed within either the structural equation modeling (SEM) or multilevel (ML; hierarchical linear modeling) frameworks, few researchers realize that LST and multivariate LGC models, which use multiple indicators at each time point, can also be specified as ML models. In the present paper, we demonstrate that using the ML-SEM rather than the SL-SEM framework to estimate the parameters of these models can be practical when the study involves (1) a large number of time points, (2) individually-varying times of observation, (3) unequally spaced time intervals, and/or (4) incomplete data. Despite the practical advantages of the ML-SEM approach under these circumstances, there are also some limitations that researchers should consider. We present an application to an ecological momentary assessment study (N = 158 youths with an average of 23.49 observations of positive mood per person) using the software Mplus (Muthén and Muthén, 1998–2012) and discuss advantages and disadvantages of using the ML-SEM approach to estimate the parameters of LST and multiple-indicator LGC models. PMID:24416023

  17. Individual-based modelling of population growth and diffusion in discrete time.

    PubMed

    Tkachenko, Natalie; Weissmann, John D; Petersen, Wesley P; Lake, George; Zollikofer, Christoph P E; Callegari, Simone

    2017-01-01

    Individual-based models (IBMs) of human populations capture spatio-temporal dynamics using rules that govern the birth, behavior, and death of individuals. We explore a stochastic IBM of logistic growth-diffusion with constant time steps and independent, simultaneous actions of birth, death, and movement that approaches the Fisher-Kolmogorov model in the continuum limit. This model is well-suited to parallelization on high-performance computers. We explore its emergent properties with analytical approximations and numerical simulations in parameter ranges relevant to human population dynamics and ecology, and reproduce continuous-time results in the limit of small transition probabilities. Our model prediction indicates that the population density and dispersal speed are affected by fluctuations in the number of individuals. The discrete-time model displays novel properties owing to the binomial character of the fluctuations: in certain regimes of the growth model, a decrease in time step size drives the system away from the continuum limit. These effects are especially important at local population sizes of <50 individuals, which largely correspond to group sizes of hunter-gatherers. As an application scenario, we model the late Pleistocene dispersal of Homo sapiens into the Americas, and discuss the agreement of model-based estimates of first-arrival dates with archaeological dates in dependence of IBM model parameter settings.

  18. Chasing Perfection: Should We Reduce Model Uncertainty in Carbon Cycle-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.; Lombardozzi, D.; Wieder, W. R.; Lindsay, K. T.; Thomas, R. Q.

    2015-12-01

    Earth system model simulations of the terrestrial carbon (C) cycle show large multi-model spread in the carbon-concentration and carbon-climate feedback parameters. Large differences among models are also seen in their simulation of global vegetation and soil C stocks and other aspects of the C cycle, prompting concern about model uncertainty and our ability to faithfully represent fundamental aspects of the terrestrial C cycle in Earth system models. Benchmarking analyses that compare model simulations with common datasets have been proposed as a means to assess model fidelity with observations, and various model-data fusion techniques have been used to reduce model biases. While such efforts will reduce multi-model spread, they may not help reduce uncertainty (and increase confidence) in projections of the C cycle over the twenty-first century. Many ecological and biogeochemical processes represented in Earth system models are poorly understood at both the site scale and across large regions, where biotic and edaphic heterogeneity are important. Our experience with the Community Land Model (CLM) suggests that large uncertainty in the terrestrial C cycle and its feedback with climate change is an inherent property of biological systems. The challenge of representing life in Earth system models, with the rich diversity of lifeforms and complexity of biological systems, may necessitate a multitude of modeling approaches to capture the range of possible outcomes. Such models should encompass a range of plausible model structures. We distinguish between model parameter uncertainty and model structural uncertainty. Focusing on improved parameter estimates may, in fact, limit progress in assessing model structural uncertainty associated with realistically representing biological processes. Moreover, higher confidence may be achieved through better process representation, but this does not necessarily reduce uncertainty.

  19. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations.

    PubMed

    Halty, Virginia; Valdés, Matías; Tejera, Mauricio; Picasso, Valentín; Fort, Hugo

    2017-12-01

    The contribution of plant species richness to productivity and ecosystem functioning is a longstanding issue in ecology, with relevant implications for both conservation and agriculture. Both experiments and quantitative modeling are fundamental to the design of sustainable agroecosystems and the optimization of crop production. We modeled communities of perennial crop mixtures by using a generalized Lotka-Volterra model, i.e., a model such that the interspecific interactions are more general than purely competitive. We estimated model parameters -carrying capacities and interaction coefficients- from, respectively, the observed biomass of monocultures and bicultures measured in a large diversity experiment of seven perennial forage species in Iowa, United States. The sign and absolute value of the interaction coefficients showed that the biological interactions between species pairs included amensalism, competition, and parasitism (asymmetric positive-negative interaction), with various degrees of intensity. We tested the model fit by simulating the combinations of more than two species and comparing them with the polycultures experimental data. Overall, theoretical predictions are in good agreement with the experiments. Using this model, we also simulated species combinations that were not sown. From all possible mixtures (sown and not sown) we identified which are the most productive species combinations. Our results demonstrate that a combination of experiments and modeling can contribute to the design of sustainable agricultural systems in general and to the optimization of crop production in particular. © 2017 by the Ecological Society of America.

  20. Assessment of spatial discordance of primary and effective seed dispersal of European beech (Fagus sylvatica L.) by ecological and genetic methods.

    PubMed

    Millerón, M; López de Heredia, U; Lorenzo, Z; Alonso, J; Dounavi, A; Gil, L; Nanos, N

    2013-03-01

    Spatial discordance between primary and effective dispersal in plant populations indicates that postdispersal processes erase the seed rain signal in recruitment patterns. Five different models were used to test the spatial concordance of the primary and effective dispersal patterns in a European beech (Fagus sylvatica) population from central Spain. An ecological method was based on classical inverse modelling (SSS), using the number of seed/seedlings as input data. Genetic models were based on direct kernel fitting of mother-to-offspring distances estimated by a parentage analysis or were spatially explicit models based on the genotype frequencies of offspring (competing sources model and Moran-Clark's Model). A fully integrated mixed model was based on inverse modelling, but used the number of genotypes as input data (gene shadow model). The potential sources of error and limitations of each seed dispersal estimation method are discussed. The mean dispersal distances for seeds and saplings estimated with these five methods were higher than those obtained by previous estimations for European beech forests. All the methods show strong discordance between primary and effective dispersal kernel parameters, and for dispersal directionality. While seed rain was released mostly under the canopy, saplings were established far from mother trees. This discordant pattern may be the result of the action of secondary dispersal by animals or density-dependent effects; that is, the Janzen-Connell effect. © 2013 Blackwell Publishing Ltd.

  1. A likelihood-based biostatistical model for analyzing consumer movement in simultaneous choice experiments.

    PubMed

    Zeilinger, Adam R; Olson, Dawn M; Andow, David A

    2014-08-01

    Consumer feeding preference among resource choices has critical implications for basic ecological and evolutionary processes, and can be highly relevant to applied problems such as ecological risk assessment and invasion biology. Within consumer choice experiments, also known as feeding preference or cafeteria experiments, measures of relative consumption and measures of consumer movement can provide distinct and complementary insights into the strength, causes, and consequences of preference. Despite the distinct value of inferring preference from measures of consumer movement, rigorous and biologically relevant analytical methods are lacking. We describe a simple, likelihood-based, biostatistical model for analyzing the transient dynamics of consumer movement in a paired-choice experiment. With experimental data consisting of repeated discrete measures of consumer location, the model can be used to estimate constant consumer attraction and leaving rates for two food choices, and differences in choice-specific attraction and leaving rates can be tested using model selection. The model enables calculation of transient and equilibrial probabilities of consumer-resource association, which could be incorporated into larger scale movement models. We explore the effect of experimental design on parameter estimation through stochastic simulation and describe methods to check that data meet model assumptions. Using a dataset of modest sample size, we illustrate the use of the model to draw inferences on consumer preference as well as underlying behavioral mechanisms. Finally, we include a user's guide and computer code scripts in R to facilitate use of the model by other researchers.

  2. Designing ecological climate change impact assessments to reflect key climatic drivers

    USGS Publications Warehouse

    Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.

    2017-01-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

  3. Designing ecological climate change impact assessments to reflect key climatic drivers.

    PubMed

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  4. Density-dependence as a size-independent regulatory mechanism.

    PubMed

    de Vladar, Harold P

    2006-01-21

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of regulatory functions is the theta-logistic, which generalizes the logistic equation. Using this model as a motivation, this paper introduces a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter rho and a competition coefficient theta. Distinct sign combinations of these parameters reproduce not only the family of theta-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.

  5. Is sustainability achievable? Exploring the limits of sustainability with model systems.

    PubMed

    Shastri, Yogendra; Diwekar, Urmila; Cabezas, Heriberto; Williamson, James

    2008-09-01

    Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and nonintuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic understanding further includes a sense of the time scale of possible future events and the limits of what is and is not likely to be possible. With this understanding, systematic approaches can then be used to develop policy guidelines for the system. This article presents an illustration of these ideas by analyzing an integrated ecological-economic-social model, which comprises various ecological (natural) and domesticated compartments representing species along with a macroeconomic price setting model. The stable and qualitatively realistic model is used to analyze different relevant scenarios. Apart from highlighting complex relationships within the system, it identifies potentially unsustainable future developments such as increased human per capita consumption rates. Dynamic optimization is then used to develop time-dependent policy guidelines for the unsustainable scenarios using objective functions that aim to minimize fluctuations in the system's Fisher information. The results can help to identify effective policy parameters and highlight the tradeoff between natural and domesticated compartments while managing such integrated systems. The results should also qualitatively guide further investigations in the area of system level studies and policy development.

  6. General two-species interacting Lotka-Volterra system: Population dynamics and wave propagation

    NASA Astrophysics Data System (ADS)

    Zhu, Haoqi; Wang, Mao-Xiang; Lai, Pik-Yin

    2018-05-01

    The population dynamics of two interacting species modeled by the Lotka-Volterra (LV) model with general parameters that can promote or suppress the other species is studied. It is found that the properties of the two species' isoclines determine the interaction of species, leading to six regimes in the phase diagram of interspecies interaction; i.e., there are six different interspecific relationships described by the LV model. Four regimes allow for nontrivial species coexistence, among which it is found that three of them are stable, namely, weak competition, mutualism, and predator-prey scenarios can lead to win-win coexistence situations. The Lyapunov function for general nontrivial two-species coexistence is also constructed. Furthermore, in the presence of spatial diffusion of the species, the dynamics can lead to steady wavefront propagation and can alter the population map. Propagating wavefront solutions in one dimension are investigated analytically and by numerical solutions. The steady wavefront speeds are obtained analytically via nonlinear dynamics analysis and verified by numerical solutions. In addition to the inter- and intraspecific interaction parameters, the intrinsic speed parameters of each species play a decisive role in species populations and wave properties. In some regimes, both species can copropagate with the same wave speeds in a finite range of parameters. Our results are further discussed in the light of possible biological relevance and ecological implications.

  7. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths.

    PubMed

    Panzacchi, Manuela; Van Moorter, Bram; Strand, Olav; Saerens, Marco; Kivimäki, Ilkka; St Clair, Colleen C; Herfindal, Ivar; Boitani, Luigi

    2016-01-01

    The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  8. The influence of common method bias on the relationship of the socio-ecological model in predicting physical activity behavior.

    PubMed

    Wingate, Savanna; Sng, Eveleen; Loprinzi, Paul D

    2018-01-01

    Background: The purpose of this study was to evaluate the extent, if any, that the association between socio-ecological parameters and physical activity may be influenced by common method bias (CMB). Methods: This study took place between February and May of 2017 at a Southeastern University in the United States. A randomized controlled experiment was employed among 119 young adults.Participants were randomized into either group 1 (the group we attempted to minimize CMB)or group 2 (control group). In group 1, CMB was minimized via various procedural remedies,such as separating the measurement of predictor and criterion variables by introducing a time lag (temporal; 2 visits several days apart), creating a cover story (psychological), and approximating measures to have data collected in different media (computer-based vs. paper and pencil) and different locations to control method variance when collecting self-report measures from the same source. Socio-ecological parameters (self-efficacy; friend support; family support)and physical activity were self-reported. Results: Exercise self-efficacy was significantly associated with physical activity. This association (β = 0.74, 95% CI: 0.33-1.1; P = 0.001) was only observed in group 2 (control), but not in group 1 (experimental group) (β = 0.03; 95% CI: -0.57-0.63; P = 0.91). The difference in these coefficients (i.e., β = 0.74 vs. β = 0.03) was statistically significant (P = 0.04). Conclusion: Future research in this field, when feasible, may wish to consider employing procedural and statistical remedies to minimize CMB.

  9. The influence of common method bias on the relationship of the socio-ecological model in predicting physical activity behavior

    PubMed Central

    Wingate, Savanna; Sng, Eveleen; Loprinzi, Paul D.

    2018-01-01

    Background: The purpose of this study was to evaluate the extent, if any, that the association between socio-ecological parameters and physical activity may be influenced by common method bias (CMB). Methods: This study took place between February and May of 2017 at a Southeastern University in the United States. A randomized controlled experiment was employed among 119 young adults.Participants were randomized into either group 1 (the group we attempted to minimize CMB)or group 2 (control group). In group 1, CMB was minimized via various procedural remedies,such as separating the measurement of predictor and criterion variables by introducing a time lag (temporal; 2 visits several days apart), creating a cover story (psychological), and approximating measures to have data collected in different media (computer-based vs. paper and pencil) and different locations to control method variance when collecting self-report measures from the same source. Socio-ecological parameters (self-efficacy; friend support; family support)and physical activity were self-reported. Results: Exercise self-efficacy was significantly associated with physical activity. This association (β = 0.74, 95% CI: 0.33-1.1; P = 0.001) was only observed in group 2 (control), but not in group 1 (experimental group) (β = 0.03; 95% CI: -0.57-0.63; P = 0.91). The difference in these coefficients (i.e., β = 0.74 vs. β = 0.03) was statistically significant (P = 0.04). Conclusion: Future research in this field, when feasible, may wish to consider employing procedural and statistical remedies to minimize CMB. PMID:29423361

  10. Ecologically based targets for bioavailable (reactive) nitrogen discharge from the drainage basins of the Wet Tropics region, Great Barrier Reef.

    PubMed

    Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R

    2015-08-15

    A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The Use of Footstep Sounds as Rhythmic Auditory Stimulation for Gait Rehabilitation in Parkinson's Disease: A Randomized Controlled Trial.

    PubMed

    Murgia, Mauro; Pili, Roberta; Corona, Federica; Sors, Fabrizio; Agostini, Tiziano A; Bernardis, Paolo; Casula, Carlo; Cossu, Giovanni; Guicciardi, Marco; Pau, Massimiliano

    2018-01-01

    The use of rhythmic auditory stimulation (RAS) has been proven useful in the management of gait disturbances associated with Parkinson's disease (PD). Typically, the RAS consists of metronome or music-based sounds (artificial RAS), while ecological footstep sounds (ecological RAS) have never been used for rehabilitation programs. The aim of this study was to compare the effects of a rehabilitation program integrated either with ecological or with artificial RAS. An observer-blind, randomized controlled trial was conducted to investigate the effects of 5 weeks of supervised rehabilitation integrated with RAS. Thirty-eight individuals affected by PD were randomly assigned to one of the two conditions (ecological vs. artificial RAS); thirty-two of them (age 68.2 ± 10.5, Hoehn and Yahr 1.5-3) concluded all phases of the study. Spatio-temporal parameters of gait and clinical variables were assessed before the rehabilitation period, at its end, and after a 3-month follow-up. Thirty-two participants were analyzed. The results revealed that both groups improved in the majority of biomechanical and clinical measures, independently of the type of sound. Moreover, exploratory analyses for separate groups were conducted, revealing improvements on spatio-temporal parameters only in the ecological RAS group. Overall, our results suggest that ecological RAS is equally effective compared to artificial RAS. Future studies should further investigate the role of ecological RAS, on the basis of information revealed by our exploratory analyses. Theoretical, methodological, and practical issues concerning the implementation of ecological sounds in the rehabilitation of PD patients are discussed. www.ClinicalTrials.gov, identifier NCT03228888.

  12. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  13. Techniques for optimal crop selection in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann; Finn, Cory; Dunsky, Betsy

    1993-01-01

    A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.

  14. Techniques for optimal crop selection in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann; Finn, Cory; Dunsky, Betsy

    1992-01-01

    A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.

  15. A Method for Improving Hotspot Directional Signatures in BRDF Models Used for MODIS

    NASA Technical Reports Server (NTRS)

    Jiao, Ziti; Schaaf, Crystal B.; Dong, Yadong; Roman, Miguel; Hill, Michael J.; Chen, Jing M.; Wang, Zhuosen; Zhang, Hu; Saenz, Edward; Poudyal, Rajesh; hide

    2016-01-01

    The semi-empirical, kernel-driven, linear RossThick-LiSparseReciprocal (RTLSR) Bidirectional Reflectance Distribution Function (BRDF) model is used to generate the routine MODIS BRDFAlbedo product due to its global applicability and the underlying physics. A challenge of this model in regard to surface reflectance anisotropy effects comes from its underestimation of the directional reflectance signatures near the Sun illumination direction; also known as the hotspot effect. In this study, a method has been developed for improving the ability of the RTLSR model to simulate the magnitude and width of the hotspot effect. The method corrects the volumetric scattering component of the RTLSR model using an exponential approximation of a physical hotspot kernel, which recreates the hotspot magnitude and width using two free parameters (C(sub 1) and C(sub 2), respectively). The approach allows one to reconstruct, with reasonable accuracy, the hotspot effect by adjusting or using the prior values of these two hotspot variables. Our results demonstrate that: (1) significant improvements in capturing hotspot effect can be made to this method by using the inverted hotspot parameters; (2) the reciprocal nature allow this method to be more adaptive for simulating the hotspot height and width with high accuracy, especially in cases where hotspot signatures are available; and (3) while the new approach is consistent with the heritage RTLSR model inversion used to estimate intrinsic narrowband and broadband albedos, it presents some differences for vegetation clumping index (CI) retrievals. With the hotspot-related model parameters determined a priori, this method offers improved performance for various ecological remote sensing applications; including the estimation of canopy structure parameters.

  16. An empirical model of the Baltic Sea reveals the importance of social dynamics for ecological regime shifts.

    PubMed

    Lade, Steven J; Niiranen, Susa; Hentati-Sundberg, Jonas; Blenckner, Thorsten; Boonstra, Wiebren J; Orach, Kirill; Quaas, Martin F; Österblom, Henrik; Schlüter, Maja

    2015-09-01

    Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social-ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social-ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social-ecological models.

  17. An empirical model of the Baltic Sea reveals the importance of social dynamics for ecological regime shifts

    PubMed Central

    Lade, Steven J.; Niiranen, Susa; Hentati-Sundberg, Jonas; Blenckner, Thorsten; Boonstra, Wiebren J.; Orach, Kirill; Quaas, Martin F.; Österblom, Henrik; Schlüter, Maja

    2015-01-01

    Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social–ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social–ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social–ecological models. PMID:26283344

  18. Extreme weather and climate events with ecological relevance: a review

    PubMed Central

    Meehl, Gerald A.

    2017-01-01

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’. PMID:28483866

  19. Extreme weather and climate events with ecological relevance: a review.

    PubMed

    Ummenhofer, Caroline C; Meehl, Gerald A

    2017-06-19

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  20. The basis function approach for modeling autocorrelation in ecological data.

    PubMed

    Hefley, Trevor J; Broms, Kristin M; Brost, Brian M; Buderman, Frances E; Kay, Shannon L; Scharf, Henry R; Tipton, John R; Williams, Perry J; Hooten, Mevin B

    2017-03-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data. © 2016 by the Ecological Society of America.

  1. Demographic histories of adaptively diverged riparian and non-riparian species of Ainsliaea (Asteraceae) inferred from coalescent analyses using multiple nuclear loci.

    PubMed

    Mitsui, Yuki; Setoguchi, Hiroaki

    2012-12-28

    Understanding demographic histories, such as divergence time, patterns of gene flow, and population size changes, in ecologically diverging lineages provide implications for the process and maintenance of population differentiation by ecological adaptation. This study addressed the demographic histories in two independently derived lineages of flood-resistant riparian plants and their non-riparian relatives [Ainsliaea linearis (riparian) and A. apiculata (non-riparian); A. oblonga (riparian) and A. macroclinidioides (non-riparian); Asteraceae] using an isolation-with-migration (IM) model based on variation at 10 nuclear DNA loci. The highest posterior probabilities of the divergence time parameters were estimated to be ca. 25,000 years ago for A. linearis and A. apiculata and ca. 9000 years ago for A. oblonga and A. macroclinidioides, although the confidence intervals of the parameters had broad ranges. The likelihood ratio tests detected evidence of historical gene flow between both riparian/non-riparian species pairs. The riparian populations showed lower levels of genetic diversity and a significant reduction in effective population sizes compared to the non-riparian populations and their ancestral populations. This study showed the recent origins of flood-resistant riparian plants, which are remarkable examples of plant ecological adaptation. The recent divergence and genetic signatures of historical gene flow among riparian/non-riparian species implied that they underwent morphological and ecological differentiation within short evolutionary timescales and have maintained their species boundaries in the face of gene flow. Comparative analyses of adaptive divergence in two sets of riparian/non-riparian lineages suggested that strong natural selection by flooding had frequently reduced the genetic diversity and size of riparian populations through genetic drift, possibly leading to fixation of adaptive traits in riparian populations. The two sets of riparian/non-riparian lineages showed contrasting patterns of gene flow and genetic differentiation, implying that each lineage showed different degrees of reproductive isolation and that they had experienced unique evolutionary and demographic histories in the process of adaptive divergence.

  2. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach

    USGS Publications Warehouse

    Martin, Julien; Royle, J. Andrew; MacKenzie, Darryl I.; Edwards, Holly H.; Kery, Marc; Gardner, Beth

    2011-01-01

    Summary 1. Binomial mixture models use repeated count data to estimate abundance. They are becoming increasingly popular because they provide a simple and cost-effective way to account for imperfect detection. However, these models assume that individuals are detected independently of each other. This assumption may often be violated in the field. For instance, manatees (Trichechus manatus latirostris) may surface in turbid water (i.e. become available for detection during aerial surveys) in a correlated manner (i.e. in groups). However, correlated behaviour, affecting the non-independence of individual detections, may also be relevant in other systems (e.g. correlated patterns of singing in birds and amphibians). 2. We extend binomial mixture models to account for correlated behaviour and therefore to account for non-independent detection of individuals. We simulated correlated behaviour using beta-binomial random variables. Our approach can be used to simultaneously estimate abundance, detection probability and a correlation parameter. 3. Fitting binomial mixture models to data that followed a beta-binomial distribution resulted in an overestimation of abundance even for moderate levels of correlation. In contrast, the beta-binomial mixture model performed considerably better in our simulation scenarios. We also present a goodness-of-fit procedure to evaluate the fit of beta-binomial mixture models. 4. We illustrate our approach by fitting both binomial and beta-binomial mixture models to aerial survey data of manatees in Florida. We found that the binomial mixture model did not fit the data, whereas there was no evidence of lack of fit for the beta-binomial mixture model. This example helps illustrate the importance of using simulations and assessing goodness-of-fit when analysing ecological data with N-mixture models. Indeed, both the simulations and the goodness-of-fit procedure highlighted the limitations of the standard binomial mixture model for aerial manatee surveys. 5. Overestimation of abundance by binomial mixture models owing to non-independent detections is problematic for ecological studies, but also for conservation. For example, in the case of endangered species, it could lead to inappropriate management decisions, such as downlisting. These issues will be increasingly relevant as more ecologists apply flexible N-mixture models to ecological data.

  3. Monitoring the resilience of rivers as social-ecological systems: a paradigm shift for river assessment in the 21st Century

    EPA Science Inventory

    First, we briefly describe the development of the major, biophysically-focused river assessment and monitoring approaches over the last 50 years. We then assess the utility of biophysical parameters for assessing rivers as social-ecological systems. We then develop a framework de...

  4. Comparison of varying operating parameters on heavy metals ecological risk during anaerobic co-digestion of chicken manure and corn stover.

    PubMed

    Yan, Yilong; Zhang, Liqiu; Feng, Li; Sun, Dezhi; Dang, Yan

    2018-01-01

    In this study, the potential ecological risk of heavy metals (Mn, Zn, Cu, Ni, As, Cd, Pb, Cr) accumulation from anaerobic co-digestion of chicken manure (CM) and corn stover (CS) was evaluated by comparing different initial substrate concentrations, digestion temperatures, and mixture ratios. Results showed that the highest volumetric methane yield of 20.3±1.4L/L reactor was achieved with a CS:CM ratio of 3:1 (on volatile solid basis) in mesophilic solid state anaerobic digestion (SS-AD). Although co-digestion increased the concentrations of all tested heavy metals and the direct toxicity of some heavy metals, the potential ecological risk index indicated that the digestates were all classified as low ecological risk. The biogasification and risk variation of heavy metals were affected by the operating parameters. These results are significant and should be taken into consideration when optimizing co-digestion of animal manure and crop residues during full-scale projects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A comparison of blood gases, biochemistry, and hematology to ecomorphology in a health assessment of pinfish (Lagodon rhomboides)

    PubMed Central

    Collins, Sara; Dornburg, Alex; Flores, Joseph M.; Dombrowski, Daniel S.

    2016-01-01

    Despite the promise of hematological parameters and blood chemistry in monitoring the health of marine fishes, baseline data is often lacking for small fishes that comprise central roles in marine food webs. This study establishes blood chemistry and hematological baseline parameters for the pinfish Lagodon rhomboides, a small marine teleost that is among the most dominant members of near-shore estuarine communities of the Atlantic Ocean and Gulf of Mexico. Given their prominence, pinfishes are an ideal candidate species to use as a model for monitoring changes across a wide range of near-shore marine communities. However, pinfishes exhibit substantial morphological differences associated with a preference for feeding in primarily sea-grass or sand dominated habitats, suggesting that differences in the foraging ecology of individuals could confound health assessments. Here we collect baseline data on the blood physiology of pinfish while assessing the relationship between blood parameters and measured aspects of feeding morphology using data collected from 37 individual fish. Our findings provide new baseline health data for this important near shore fish species and find no evidence for a strong linkage between blood physiology and either sex or measured aspects of feeding morphology. Comparing our hematological and biochemical data to published results from other marine teleost species suggests that analyses of trends in blood value variation correlated with major evolutionary transitions in ecology will shed new light on the physiological changes that underlie the successful diversification of fishes. PMID:27602261

  6. A comparison of blood gases, biochemistry, and hematology to ecomorphology in a health assessment of pinfish (Lagodon rhomboides).

    PubMed

    Collins, Sara; Dornburg, Alex; Flores, Joseph M; Dombrowski, Daniel S; Lewbart, Gregory A

    2016-01-01

    Despite the promise of hematological parameters and blood chemistry in monitoring the health of marine fishes, baseline data is often lacking for small fishes that comprise central roles in marine food webs. This study establishes blood chemistry and hematological baseline parameters for the pinfish Lagodon rhomboides, a small marine teleost that is among the most dominant members of near-shore estuarine communities of the Atlantic Ocean and Gulf of Mexico. Given their prominence, pinfishes are an ideal candidate species to use as a model for monitoring changes across a wide range of near-shore marine communities. However, pinfishes exhibit substantial morphological differences associated with a preference for feeding in primarily sea-grass or sand dominated habitats, suggesting that differences in the foraging ecology of individuals could confound health assessments. Here we collect baseline data on the blood physiology of pinfish while assessing the relationship between blood parameters and measured aspects of feeding morphology using data collected from 37 individual fish. Our findings provide new baseline health data for this important near shore fish species and find no evidence for a strong linkage between blood physiology and either sex or measured aspects of feeding morphology. Comparing our hematological and biochemical data to published results from other marine teleost species suggests that analyses of trends in blood value variation correlated with major evolutionary transitions in ecology will shed new light on the physiological changes that underlie the successful diversification of fishes.

  7. Incorporating imperfect detection into joint models of communites: A response to Warton et al.

    USGS Publications Warehouse

    Beissinger, Steven R.; Iknayan, Kelly J.; Guillera-Arroita, Gurutzeta; Zipkin, Elise; Dorazio, Robert; Royle, Andy; Kery, Marc

    2016-01-01

    Warton et al. [1] advance community ecology by describing a statistical framework that can jointly model abundances (or distributions) across many taxa to quantify how community properties respond to environmental variables. This framework specifies the effects of both measured and unmeasured (latent) variables on the abundance (or occurrence) of each species. Latent variables are random effects that capture the effects of both missing environmental predictors and correlations in parameter values among different species. As presented in Warton et al., however, the joint modeling framework fails to account for the common problem of detection or measurement errors that always accompany field sampling of abundance or occupancy, and are well known to obscure species- and community-level inferences.

  8. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I.

    2008-12-01

    Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.

  9. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model.

    PubMed

    Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I

    2008-12-01

    Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.

  10. Generative Models of Segregation: Investigating Model-Generated Patterns of Residential Segregation by Ethnicity and Socioeconomic Status

    PubMed Central

    Fossett, Mark

    2011-01-01

    This paper considers the potential for using agent models to explore theories of residential segregation in urban areas. Results of generative experiments conducted using an agent-based simulation of segregation dynamics document that varying a small number of model parameters representing constructs from urban-ecological theories of segregation can generate a wide range of qualitatively distinct and substantively interesting segregation patterns. The results suggest how complex, macro-level patterns of residential segregation can arise from a small set of simple micro-level social dynamics operating within particular urban-demographic contexts. The promise and current limitations of agent simulation studies are noted and optimism is expressed regarding the potential for such studies to engage and contribute to the broader research literature on residential segregation. PMID:21379372

  11. The Modular Modeling System (MMS): A toolbox for water- and environmental-resources management

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.; Hay, L.E.; ,

    2005-01-01

    The increasing complexity of water- and environmental-resource problems require modeling approaches that incorporate knowledge from a broad range of scientific and software disciplines. To address this need, the U.S. Geological Survey (USGS) has developed the Modular Modeling System (MMS). MMS is an integrated system of computer software for model development, integration, and application. Its modular design allows a high level of flexibility and adaptability to enable modelers to incorporate their own software into a rich array of built-in models and modeling tools. These include individual process models, tightly coupled models, loosely coupled models, and fully- integrated decision support systems. A geographic information system (GIS) interface, the USGS GIS Weasel, has been integrated with MMS to enable spatial delineation and characterization of basin and ecosystem features, and to provide objective parameter-estimation methods for models using available digital data. MMS provides optimization and sensitivity-analysis tools to analyze model parameters and evaluate the extent to which uncertainty in model parameters affects uncertainty in simulation results. MMS has been coupled with the Bureau of Reclamation object-oriented reservoir and river-system modeling framework, RiverWare, to develop models to evaluate and apply optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. This decision support system approach has been developed, tested, and implemented in the Gunnison, Yakima, San Joaquin, Rio Grande, and Truckee River basins of the western United States. MMS is currently being coupled with the U.S. Forest Service model SIMulating Patterns and Processes at Landscape Scales (SIMPPLLE) to assess the effects of alternative vegetation-management strategies on a variety of hydrological and ecological responses. Initial development and testing of the MMS-SIMPPLLE integration is being conducted on the Colorado Plateau region of the western United Sates.

  12. Stationary moments, diffusion limits, and extinction times for logistic growth with random catastrophes.

    PubMed

    Schlomann, Brandon H

    2018-06-06

    A central problem in population ecology is understanding the consequences of stochastic fluctuations. Analytically tractable models with Gaussian driving noise have led to important, general insights, but they fail to capture rare, catastrophic events, which are increasingly observed at scales ranging from global fisheries to intestinal microbiota. Due to mathematical challenges, growth processes with random catastrophes are less well characterized and it remains unclear how their consequences differ from those of Gaussian processes. In the face of a changing climate and predicted increases in ecological catastrophes, as well as increased interest in harnessing microbes for therapeutics, these processes have never been more relevant. To better understand them, I revisit here a differential equation model of logistic growth coupled to density-independent catastrophes that arrive as a Poisson process, and derive new analytic results that reveal its statistical structure. First, I derive exact expressions for the model's stationary moments, revealing a single effective catastrophe parameter that largely controls low order statistics. Then, I use weak convergence theorems to construct its Gaussian analog in a limit of frequent, small catastrophes, keeping the stationary population mean constant for normalization. Numerically computing statistics along this limit shows how they transform as the dynamics shifts from catastrophes to diffusions, enabling quantitative comparisons. For example, the mean time to extinction increases monotonically by orders of magnitude, demonstrating significantly higher extinction risk under catastrophes than under diffusions. Together, these results provide insight into a wide range of stochastic dynamical systems important for ecology and conservation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. On the dangers of model complexity without ecological justification in species distribution modeling

    Treesearch

    David M. Bell; Daniel R. Schlaepfer

    2016-01-01

    Although biogeographic patterns are the product of complex ecological processes, the increasing com-plexity of correlative species distribution models (SDMs) is not always motivated by ecological theory,but by model fit. The validity of model projections, such as shifts in a species’ climatic niche, becomesquestionable particularly during extrapolations, such as for...

  14. Response of a multi-stressed Mediterranean river to future climate and socio-economic scenarios.

    PubMed

    Stefanidis, Konstantinos; Panagopoulos, Yiannis; Mimikou, Maria

    2018-06-15

    Streams and rivers are among the most threatened ecosystems in Europe due to the combined effects of multiple pressures related to anthropogenic activities. Particularly in the Mediterranean region, changes in hydromorphology along with increased nutrient loadings are known to affect the ecological functions and ecosystem services of streams and rivers with the anticipated climate change being likely to further impair their functionality and structure. In this study, we investigated the combined effects of agricultural driven stressors on the ecology and delivered services of the Pinios river basin in Greece under three future world scenarios developed within the EU funded MARS project. Scenarios are based on combinations of Representative Concentration Pathways and Shared Socioeconomic Pathways and refer to early century (2030) and mid-century (2060) representing future climate worlds with particular socioeconomic characteristics. To assess the responses of ecological and ecosystem service indicators to the scenarios we first simulated hydrology and water quality in Pinios with a process-based model. Simulated abiotic stressor parameters (predictors) were linked to two biotic indicators, the macroinvertebrate indicators ASPT and EPT, with empirical modelling based on boosted regression trees and general linear models. Our results showed that the techno world scenario driven by fast economic growth and intensive exploitation of energy resources had the largest impact on both the abiotic status (nutrient loads and concentrations in water) and the biotic indicators. In contrast, the predicted changes under the other two future worlds, consensus and fragmented, were more diverse and were mostly dictated by the projected climate. This work showed that the future scenarios, especially the mid-century ones, had significant impact on both abiotic status and biotic responses underpinning the need for implementing catchment management practices able to mitigate the ecological threat on waters in the long-term. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. How Ebola impacts social dynamics in gorillas: a multistate modelling approach.

    PubMed

    Genton, Céline; Pierre, Amandine; Cristescu, Romane; Lévréro, Florence; Gatti, Sylvain; Pierre, Jean-Sébastien; Ménard, Nelly; Le Gouar, Pascaline

    2015-01-01

    Emerging infectious diseases can induce rapid changes in population dynamics and threaten population persistence. In socially structured populations, the transfers of individuals between social units, for example, from breeding groups to non-breeding groups, shape population dynamics. We suggest that diseases may affect these crucial transfers. We aimed to determine how disturbance by an emerging disease affects demographic rates of gorillas, especially transfer rates within populations and immigration rates into populations. We compared social dynamics and key demographic parameters in a gorilla population affected by Ebola using a long-term observation data set including pre-, during and post-outbreak periods. We also studied a population of undetermined epidemiological status in order to assess whether this population was affected by the disease. We developed a multistate model that can handle transition between social units while optimizing the number of states. During the Ebola outbreak, social dynamics displayed increased transfers from a breeding to a non-breeding status for both males and females. Six years after the outbreak, demographic and most of social dynamics parameters had returned to their initial rates, suggesting a certain resilience in the response to disruption. The formation of breeding groups increased just after Ebola, indicating that environmental conditions were still attractive. However, population recovery was likely delayed because compensatory immigration was probably impeded by the potential impact of Ebola in the surrounding areas. The population of undetermined epidemiological status behaved similarly to the other population before Ebola. Our results highlight the need to integrate social dynamics in host-population demographic models to better understand the role of social structure in the sensitivity and the response to disease disturbances. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  16. Ecological change points: The strength of density dependence and the loss of history.

    PubMed

    Ponciano, José M; Taper, Mark L; Dennis, Brian

    2018-05-01

    Change points in the dynamics of animal abundances have extensively been recorded in historical time series records. Little attention has been paid to the theoretical dynamic consequences of such change-points. Here we propose a change-point model of stochastic population dynamics. This investigation embodies a shift of attention from the problem of detecting when a change will occur, to another non-trivial puzzle: using ecological theory to understand and predict the post-breakpoint behavior of the population dynamics. The proposed model and the explicit expressions derived here predict and quantify how density dependence modulates the influence of the pre-breakpoint parameters into the post-breakpoint dynamics. Time series transitioning from one stationary distribution to another contain information about where the process was before the change-point, where is it heading and how long it will take to transition, and here this information is explicitly stated. Importantly, our results provide a direct connection of the strength of density dependence with theoretical properties of dynamic systems, such as the concept of resilience. Finally, we illustrate how to harness such information through maximum likelihood estimation for state-space models, and test the model robustness to widely different forms of compensatory dynamics. The model can be used to estimate important quantities in the theory and practice of population recovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The coupled models have been applied to simulate the spatial variation trends of ecological condition under ecological water supplement as an example to reflect the application effect in lake restoration and management. The simulation results indicate that the models can provide a useful tool for lake restoration and management. The simulated spatial variation trends can provide a foundation for establishing permissible ranges for a selected set of water quality indices for a series of management measures such as watershed pollution load control and ecological water transfer. Meanwhile, the coupled models can help us to understand processes taking place and the relations of interaction between components in the lake ecosystem and external conditions. Taken together, the proposed models we established show some promising applications as middle-scale or large-scale lake management tools for pollution load control and ecological water transfer. These tools quantify the implications of proposed future water management decisions.

  18. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed. [ecological parameters of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.

    1972-01-01

    NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.

  19. A water framework directive (WFD) compliant determination of eologically acceptable flows in alpine rivers - a river type specific approach

    NASA Astrophysics Data System (ADS)

    Jäger, Paul; Zitek, Andreas

    2010-05-01

    Currently the EU-Water Framework Directive (WFD) represents the driving force behind the assessment for rehabilitation and conservation of aquatic resources throughout Europe. Hydropower production, often considered as "green energy", in the past has put significant pressures on river systems like fragmentation by weirs, impoundment, hydropeaking and water abstraction. Due to the limited availability of data for determining ecologically acceptable flow for rivers at water abstraction sites, a special monitoring program was conducted in the federal state of Salzburg in Austria from 2006 to 2009. Water abstraction sites at 19 hydropower plants, mostly within the trout region of the River Salzach catchment, were assessed in detail with regard to the effect of water abstraction on fish and macrozoobenthos. Based on a detailed assessment of the specific local hydro-morphological and biological situations, the validity of natural low flow criteria (Absolute Minimum Flow - AMF, the lowest daily average flow ever measured and Mean Annual Daily Low Flow - MADLF) as starting points for the determination of an ecologically acceptable flow was tested. It was assessed, if a good ecological status in accordance with the EU-WFD can be maintained at natural AMF. Additionally it was tested, if important habitat parameters describing connectivity, river type specific flow variability and river type specific habitats are maintained at this discharge. Habitat modelling was applied in some situations. Hydraulic results showed that at AMF the highest flow velocity classes were lost in most situations. When AMF was significantly undercut, flow velocities between 0,0 - 0,4 m/s became dominant, describing the loss of the river type specific flow character, leading to a loss of river type specific flow variability and habitats and increased sedimentation of fines. Furthermore limits for parameters describing connectivity for fish like maximum depth at the pessimum profile and minimum flow velocity in thalweg were undercut. Additionally a significant loss of wetted width in relation to the wetted width at MADLF was documented, leading to significantly reduced ecologically available habitats. At AMF the existence of a minimum amount of usable habitat prevented a total loss of adult fish, and a good ecological status was documented by the Fish Index Austria (FIA) in all situations, where water abstraction represented the only human pressure, and AMF was left in the river as residual flow. The fish ecological status was significantly worse in river stretches where minimum flow was significantly below the AMF. However, in about one third of these stretches a good ecological status was documented by fish. Fine grained habitat structures, expressed by mean choriotope sizes (> 20 cm) and relative roughness were found to provide enough shelter, especially for brown trout, to maintain a high variance of fish lengths influencing both, the age structure and biomass. Both variables are especially highly relevant when calculating the ecological status of rivers using the FIA, when only brown trout occurs as leading species, accompanied only by the bullhead, Cottus gobio L.. However, mean fish lengths and weights were significantly smaller in most water abstraction sites. The method currently applied for determining the ecological status by macrozoobenthos failed, because the method is still based on some types of water pollution and the flow velocity as dominating factor in rivers is not adequately considered. However, a species specific analysis of the data showed a consistent loss of rheophilic species at water abstraction sites. Based on this, recommendations for a more specified assessment of the ecological status by benthic invertebrates were developed. Natural factors like slope with significant effects on hydraulic stress (bottom shear stress, maximum flow velocities, etc.) strongly overlaid the effects of water abstraction within the whole dataset. Therefore an adequate consideration of natural factors like slope, hydraulic stress and structure parameters like mean choriotope size, and a realistic identification of the significant driving pressures (water abstraction, fragmentation, and channelization) proved to be a crucial pre-requisite for a meaningful analysis and interpretation of data and determination of efficient restoration measures. Summarizing, it can be concluded that the AMF represents a valid base for determining the ecologically acceptable flow. In most cases parameters for connectivity and river type specific habitat availability are met at this discharge. However, as this discharge represents a natural catastrophic event, it is recommended to add a dynamic component to this minimum base flow to maintain at least to some extent the river type specific flow variability, contributing to a maintenance of natural geomorphologic and ecological processes linked to natural flow patterns. Especially higher discharges, able to move substrates and flush fine sediments, should be provided in their river type specific seasonal dynamics. This seasonal clearing of sediments has been proved to be strongly related to the reproductive success of trout in the past and provides interstitial habitats for invertebrates at ecologically meaningful times of the year. Finally, re-establishment of river connectivity at weirs and the morphological restructuring of highly channelized rivers can be seen as other important pre-requisites to achieve the good ecological status in alpine river systems.

  20. Predicting dredging-associated effects to coral reefs in Apra Harbor, Guam - Part 1: Sediment exposure modeling.

    PubMed

    Gailani, Joseph Z; Lackey, Tahirih C; King, David B; Bryant, Duncan; Kim, Sung-Chan; Shafer, Deborah J

    2016-03-01

    Model studies were conducted to investigate the potential coral reef sediment exposure from dredging associated with proposed development of a deepwater wharf in Apra Harbor, Guam. The Particle Tracking Model (PTM) was applied to quantify the exposure of coral reefs to material suspended by the dredging operations at two alternative sites. Key PTM features include the flexible capability of continuous multiple releases of sediment parcels, control of parcel/substrate interaction, and the ability to efficiently track vast numbers of parcels. This flexibility has facilitated simulating the combined effects of sediment released from clamshell dredging and chiseling within Apra Harbor. Because the rate of material released into the water column by some of the processes is not well understood or known a priori, the modeling approach was to bracket parameters within reasonable ranges to produce a suite of potential results from multiple model runs. Sensitivity analysis to model parameters is used to select the appropriate parameter values for bracketing. Data analysis results include mapping the time series and the maximum values of sedimentation, suspended sediment concentration, and deposition rate. Data were used to quantify various exposure processes that affect coral species in Apra Harbor. The goal of this research is to develop a robust methodology for quantifying and bracketing exposure mechanisms to coral (or other receptors) from dredging operations. These exposure values were utilized in an ecological assessment to predict effects (coral reef impacts) from various dredging scenarios. Copyright © 2015. Published by Elsevier Ltd.

  1. Multisensor satellite data for water quality analysis and water pollution risk assessment: decision making under deep uncertainty with fuzzy algorithm in framework of multimodel approach

    NASA Astrophysics Data System (ADS)

    Kostyuchenko, Yuriy V.; Sztoyka, Yulia; Kopachevsky, Ivan; Artemenko, Igor; Yuschenko, Maxim

    2017-10-01

    Multi-model approach for remote sensing data processing and interpretation is described. The problem of satellite data utilization in multi-modeling approach for socio-ecological risks assessment is formally defined. Observation, measurement and modeling data utilization method in the framework of multi-model approach is described. Methodology and models of risk assessment in framework of decision support approach are defined and described. Method of water quality assessment using satellite observation data is described. Method is based on analysis of spectral reflectance of aquifers. Spectral signatures of freshwater bodies and offshores are analyzed. Correlations between spectral reflectance, pollutions and selected water quality parameters are analyzed and quantified. Data of MODIS, MISR, AIRS and Landsat sensors received in 2002-2014 have been utilized verified by in-field spectrometry and lab measurements. Fuzzy logic based approach for decision support in field of water quality degradation risk is discussed. Decision on water quality category is making based on fuzzy algorithm using limited set of uncertain parameters. Data from satellite observations, field measurements and modeling is utilizing in the framework of the approach proposed. It is shown that this algorithm allows estimate water quality degradation rate and pollution risks. Problems of construction of spatial and temporal distribution of calculated parameters, as well as a problem of data regularization are discussed. Using proposed approach, maps of surface water pollution risk from point and diffuse sources are calculated and discussed.

  2. Demographic History and Reproductive Output Correlates with Intraspecific Genetic Variation in Seven Species of Indo-Pacific Mangrove Crabs

    PubMed Central

    Fratini, Sara; Ragionieri, Lapo; Cannicci, Stefano

    2016-01-01

    The spatial distribution and the amount of intraspecific genetic variation of marine organisms are strongly influenced by many biotic and abiotic factors. Comparing biological and genetic data characterizing species living in the same habitat can help to elucidate the processes driving these variation patterns. Here, we present a comparative multispecies population genetic study on seven mangrove crabs co-occurring in the West Indian Ocean characterized by planktotrophic larvae with similar pelagic larval duration. Our main aim was to investigate whether a suite of biological, behavioural and ecological traits could affect genetic diversities of the study species in combination with historical demographic parameters. As possible current explanatory factors, we used the intertidal micro-habitat colonised by adult populations, various parameters of individual and population fecundity, and the timing of larval release. As the genetic marker, we used partial sequences of cytochrome oxidase subunit I gene. Genetic and ecological data were collected by the authors and/or gathered from primary literature. Permutational multiple regression models and ANOVA tests showed that species density and their reproductive output in combination with historical demographic parameters could explain the intraspecific genetic variation indexes across the seven species. In particular, species producing consistently less eggs per spawning event showed higher values of haplotype diversity. Moreover, Tajima’s D parameters well explained the recorded values for haplotype diversity and average γst. We concluded that current intraspecific gene diversities in crabs inhabiting mangrove forests were affected by population fecundity as well as past demographic history. The results were also discussed in terms of management and conservation of fauna in the Western Indian Ocean mangroves. PMID:27379532

  3. Demographic History and Reproductive Output Correlates with Intraspecific Genetic Variation in Seven Species of Indo-Pacific Mangrove Crabs.

    PubMed

    Fratini, Sara; Ragionieri, Lapo; Cannicci, Stefano

    2016-01-01

    The spatial distribution and the amount of intraspecific genetic variation of marine organisms are strongly influenced by many biotic and abiotic factors. Comparing biological and genetic data characterizing species living in the same habitat can help to elucidate the processes driving these variation patterns. Here, we present a comparative multispecies population genetic study on seven mangrove crabs co-occurring in the West Indian Ocean characterized by planktotrophic larvae with similar pelagic larval duration. Our main aim was to investigate whether a suite of biological, behavioural and ecological traits could affect genetic diversities of the study species in combination with historical demographic parameters. As possible current explanatory factors, we used the intertidal micro-habitat colonised by adult populations, various parameters of individual and population fecundity, and the timing of larval release. As the genetic marker, we used partial sequences of cytochrome oxidase subunit I gene. Genetic and ecological data were collected by the authors and/or gathered from primary literature. Permutational multiple regression models and ANOVA tests showed that species density and their reproductive output in combination with historical demographic parameters could explain the intraspecific genetic variation indexes across the seven species. In particular, species producing consistently less eggs per spawning event showed higher values of haplotype diversity. Moreover, Tajima's D parameters well explained the recorded values for haplotype diversity and average γst. We concluded that current intraspecific gene diversities in crabs inhabiting mangrove forests were affected by population fecundity as well as past demographic history. The results were also discussed in terms of management and conservation of fauna in the Western Indian Ocean mangroves.

  4. Development of a bioenergetics model for age-0 American Shad

    USGS Publications Warehouse

    Sauter, Sally T.

    2011-01-01

    Bioenergetics modeling can be used as a tool to investigate the impact of non-native age-0 American shad (Alosa sapidissima) on reservoir and estuary food webs. The model can increase our understanding of how these fish influence lower trophic levels as well as predatory fish populations that feed on juvenile salmonids. Bioenergetics modeling can be used to investigate ecological processes, evaluate alternative research hypotheses, provide decision support, and quantitative prediction. Bioenergetics modeling has proven to be extremely useful in fisheries research (Ney et al. 1993,Chips and Wahl 2008, Petersen et al. 2008). If growth and diet parameters are known, the bioenergetics model can be used to quantify the relative amount of zooplankton or insects consumed by age-0 American shad. When linked with spatial and temporal information on fish abundance, model output can guide inferential hypothesis development to demonstrate where the greatest impacts of age-0 American shad might occur.

  5. Bayesian analysis of Jolly-Seber type models

    USGS Publications Warehouse

    Matechou, Eleni; Nicholls, Geoff K.; Morgan, Byron J. T.; Collazo, Jaime A.; Lyons, James E.

    2016-01-01

    We propose the use of finite mixtures of continuous distributions in modelling the process by which new individuals, that arrive in groups, become part of a wildlife population. We demonstrate this approach using a data set of migrating semipalmated sandpipers (Calidris pussila) for which we extend existing stopover models to allow for individuals to have different behaviour in terms of their stopover duration at the site. We demonstrate the use of reversible jump MCMC methods to derive posterior distributions for the model parameters and the models, simultaneously. The algorithm moves between models with different numbers of arrival groups as well as between models with different numbers of behavioural groups. The approach is shown to provide new ecological insights about the stopover behaviour of semipalmated sandpipers but is generally applicable to any population in which animals arrive in groups and potentially exhibit heterogeneity in terms of one or more other processes.

  6. Contributions of Ecological School Mental Health Services to Students' Academic Success

    ERIC Educational Resources Information Center

    Doll, Beth; Spies, Rob; Champion, Allison

    2012-01-01

    This article describes an ecological framework for school mental health services that differs in important ways from existing service delivery models. The model is based on research describing ecological frameworks underlying students' school success. Ecological characteristics of schools and classrooms that promote academic success are described…

  7. Stochastic spatio-temporal model of coral cover as a function of herbivorous grazers, water quality, and coral demographics

    NASA Astrophysics Data System (ADS)

    Neuhausler, R.; Robinson, M.; Bruna, M.

    2017-12-01

    Over the last 60 years we have seen an increased amount of ecological regime shifts in tropical coastal zones, from coral reefs to macroalgae dominated states, as a result of natural and anthropogenic stresses. However, these shifts are not always immediate- macroalgae are generally present in coral reefs, with their distribution regulated by herbivorous fish. This is especially true in Moorea, French Polynesia, where macroalgae are shown to flourish in spaces that provide refuge from roaming herbivores. While there are currently modeling efforts in projecting ecological regime shifts in Moorea, temporal deterministic models have been utilized, which fail to capture metastability between multiple steady states and can have issues when dealing with very small populations. To address these concerns, we build on these models to account for spatial variations and individual organisms, as well as stochasticity. Our model can project the percent cover of coral, macroalgae, and algae turf as a function of herbivorous grazers, water quality, and coral demographics. Grazers, included as individual fish (particles), evolve according to a kinetic model and interact with neighbouring benthic assemblages, represented as nodes. Water quality and coral demographics are input parameters that can vary over time, allowing our model to be run for temporally changing scenarios and to be adjusted for different reefs. We plan to engage with previous Moorea Reef Resilience Models through a comparative analysis of our models' outcomes and existing Moorea data. Coupling projective models with available data is useful for informing environmental policy and advancing the modeling field.

  8. [An emergy-ecological footprint model based evaluation of ecological security at the old industrial area in Northeast China: A case study of Liaoning Province.

    PubMed

    Yang, Qing; Lu, Cheng Peng; Zhou, Feng; Geng, Yong; Jing, Hong Shuang; Ren, Wan Xia; Xue, Bing

    2016-05-01

    Based on the integrated model of emergy-ecological footprint approaches, the ecological security of Liaoning Province, a typical case for the old industrial area, was quantitatively evaluated from 2003 to 2012, followed by a scenario analysis on the development trend of the ecological secu-rity by employing the gray kinetic model. The results showed that, from 2003 to 2012, the value of emergy ecological-capacity per capita in Liaoning Province decreased from 3.13 hm 2 to 3.07 hm 2 , while the emergy-ecological footprint increased from 13.88 hm 2 to 21.96 hm 2 , which indicated that the ecological deficit existed in Liaoning Province and the situation was getting worse. The ecological pressure index increased from 4.43 to 7.16 during the studied period, and the alert level of ecological security changed from light to middle level. According to the development trend, the emergy ecological capacity per capita during 2013-2022 would correspondingly decrease from 3.04 hm 2 to 2.98 hm 2 , while the emergy ecological footprint would increase from 22.72 hm 2 to 35.87 hm 2 , the ecological pressure index would increase from 7.46 to 12.04, and the ecological deficit would keep increasing and the ecological security level would slide into slightly unsafe condition. The alert level of ecological security would turn to be middle or serious, suggesting the problems in ecological safety needed to be solved urgently.

  9. Documentation of the Ecological Risk Assessment Computer Model ECORSK.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony F. Gallegos; Gilbert J. Gonzales

    1999-06-01

    The FORTRAN77 ecological risk computer model--ECORSK.5--has been used to estimate the potential toxicity of surficial deposits of radioactive and non-radioactive contaminants to several threatened and endangered (T and E) species at the Los Alamos National Laboratory (LANL). These analyses to date include preliminary toxicity estimates for the Mexican spotted owl, the American peregrine falcon, the bald eagle, and the southwestern willow flycatcher. This work has been performed as required for the Record of Decision for the construction of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility at LANL as part of the Environmental Impact Statement. The model is dependent onmore » the use of the geographic information system and associated software--ARC/INFO--and has been used in conjunction with LANL's Facility for Information Management and Display (FIMAD) contaminant database. The integration of FIMAD data and ARC/INFO using ECORSK.5 allows the generation of spatial information from a gridded area of potential exposure called an Ecological Exposure Unit. ECORSK.5 was used to simulate exposures using a modified Environmental Protection Agency Quotient Method. The model can handle a large number of contaminants within the home range of T and E species. This integration results in the production of hazard indices which, when compared to risk evaluation criteria, estimate the potential for impact from consumption of contaminants in food and ingestion of soil. The assessment is considered a Tier-2 type of analysis. This report summarizes and documents the ECORSK.5 code, the mathematical models used in the development of ECORSK.5, and the input and other requirements for its operation. Other auxiliary FORTRAN 77 codes used for processing and graphing output from ECORSK.5 are also discussed. The reader may refer to reports cited in the introduction to obtain greater detail on past applications of ECORSK.5 and assumptions used in deriving model parameters.« less

  10. A Bayesian approach for temporally scaling climate for modeling ecological systems

    USGS Publications Warehouse

    Post van der Burg, Max; Anteau, Michael J.; McCauley, Lisa A.; Wiltermuth, Mark T.

    2016-01-01

    With climate change becoming more of concern, many ecologists are including climate variables in their system and statistical models. The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that has potential advantages in modeling ecological response variables, including a flexible computation of the index over different timescales. However, little development has been made in terms of the choice of timescale for SPEI. We developed a Bayesian modeling approach for estimating the timescale for SPEI and demonstrated its use in modeling wetland hydrologic dynamics in two different eras (i.e., historical [pre-1970] and contemporary [post-2003]). Our goal was to determine whether differences in climate between the two eras could explain changes in the amount of water in wetlands. Our results showed that wetland water surface areas tended to be larger in wetter conditions, but also changed less in response to climate fluctuations in the contemporary era. We also found that the average timescale parameter was greater in the historical period, compared with the contemporary period. We were not able to determine whether this shift in timescale was due to a change in the timing of wet–dry periods or whether it was due to changes in the way wetlands responded to climate. Our results suggest that perhaps some interaction between climate and hydrologic response may be at work, and further analysis is needed to determine which has a stronger influence. Despite this, we suggest that our modeling approach enabled us to estimate the relevant timescale for SPEI and make inferences from those estimates. Likewise, our approach provides a mechanism for using prior information with future data to assess whether these patterns may continue over time. We suggest that ecologists consider using temporally scalable climate indices in conjunction with Bayesian analysis for assessing the role of climate in ecological systems.

  11. Accommodating environmental variation in population models: metaphysiological biomass loss accounting.

    PubMed

    Owen-Smith, Norman

    2011-07-01

    1. There is a pressing need for population models that can reliably predict responses to changing environmental conditions and diagnose the causes of variation in abundance in space as well as through time. In this 'how to' article, it is outlined how standard population models can be modified to accommodate environmental variation in a heuristically conducive way. This approach is based on metaphysiological modelling concepts linking populations within food web contexts and underlying behaviour governing resource selection. Using population biomass as the currency, population changes can be considered at fine temporal scales taking into account seasonal variation. Density feedbacks are generated through the seasonal depression of resources even in the absence of interference competition. 2. Examples described include (i) metaphysiological modifications of Lotka-Volterra equations for coupled consumer-resource dynamics, accommodating seasonal variation in resource quality as well as availability, resource-dependent mortality and additive predation, (ii) spatial variation in habitat suitability evident from the population abundance attained, taking into account resource heterogeneity and consumer choice using empirical data, (iii) accommodating population structure through the variable sensitivity of life-history stages to resource deficiencies, affecting susceptibility to oscillatory dynamics and (iv) expansion of density-dependent equations to accommodate various biomass losses reducing population growth rate below its potential, including reductions in reproductive outputs. Supporting computational code and parameter values are provided. 3. The essential features of metaphysiological population models include (i) the biomass currency enabling within-year dynamics to be represented appropriately, (ii) distinguishing various processes reducing population growth below its potential, (iii) structural consistency in the representation of interacting populations and (iv) capacity to accommodate environmental variation in space as well as through time. Biomass dynamics provide a common currency linking behavioural, population and food web ecology. 4. Metaphysiological biomass loss accounting provides a conceptual framework more conducive for projecting and interpreting the population consequences of climatic shifts and human transformations of habitats than standard modelling approaches. © 2011 The Author. Journal of Animal Ecology © 2011 British Ecological Society.

  12. An analytically tractable model for community ecology with many species

    NASA Astrophysics Data System (ADS)

    Dickens, Benjamin; Fisher, Charles; Mehta, Pankaj; Pankaj Mehta Biophysics Theory Group Team

    A fundamental problem in community ecology is to understand how ecological processes such as selection, drift, and immigration yield observed patterns in species composition and diversity. Here, we present an analytically tractable, presence-absence (PA) model for community assembly and use it to ask how ecological traits such as the strength of competition, diversity in competition, and stochasticity affect species composition in a community. In our PA model, we treat species as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent work on large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special (``critical'') point corresponding to Hubbell's neutral theory of biodiversity. Our results suggest that the concepts of ``phases'' and phase diagrams can provide a powerful framework for thinking about community ecology and that the PA model captures the essential ecological dynamics of community assembly. Pm was supported by a Simons Investigator in the Mathematical Modeling of Living Systems and a Sloan Research Fellowship.

  13. SPOTting model parameters using a ready-made Python package

    NASA Astrophysics Data System (ADS)

    Houska, Tobias; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    The selection and parameterization of reliable process descriptions in ecological modelling is driven by several uncertainties. The procedure is highly dependent on various criteria, like the used algorithm, the likelihood function selected and the definition of the prior parameter distributions. A wide variety of tools have been developed in the past decades to optimize parameters. Some of the tools are closed source. Due to this, the choice for a specific parameter estimation method is sometimes more dependent on its availability than the performance. A toolbox with a large set of methods can support users in deciding about the most suitable method. Further, it enables to test and compare different methods. We developed the SPOT (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of modules, to analyze and optimize parameters of (environmental) models. SPOT comes along with a selected set of algorithms for parameter optimization and uncertainty analyses (Monte Carlo, MC; Latin Hypercube Sampling, LHS; Maximum Likelihood, MLE; Markov Chain Monte Carlo, MCMC; Scuffled Complex Evolution, SCE-UA; Differential Evolution Markov Chain, DE-MCZ), together with several likelihood functions (Bias, (log-) Nash-Sutcliff model efficiency, Correlation Coefficient, Coefficient of Determination, Covariance, (Decomposed-, Relative-, Root-) Mean Squared Error, Mean Absolute Error, Agreement Index) and prior distributions (Binomial, Chi-Square, Dirichlet, Exponential, Laplace, (log-, multivariate-) Normal, Pareto, Poisson, Cauchy, Uniform, Weibull) to sample from. The model-independent structure makes it suitable to analyze a wide range of applications. We apply all algorithms of the SPOT package in three different case studies. Firstly, we investigate the response of the Rosenbrock function, where the MLE algorithm shows its strengths. Secondly, we study the Griewank function, which has a challenging response surface for optimization methods. Here we see simple algorithms like the MCMC struggling to find the global optimum of the function, while algorithms like SCE-UA and DE-MCZ show their strengths. Thirdly, we apply an uncertainty analysis of a one-dimensional physically based hydrological model build with the Catchment Modelling Framework (CMF). The model is driven by meteorological and groundwater data from a Free Air Carbon Enrichment (FACE) experiment in Linden (Hesse, Germany). Simulation results are evaluated with measured soil moisture data. We search for optimal parameter sets of the van Genuchten-Mualem function and find different equally optimal solutions with some of the algorithms. The case studies reveal that the implemented SPOT methods work sufficiently well. They further show the benefit of having one tool at hand that includes a number of parameter search methods, likelihood functions and a priori parameter distributions within one platform independent package.

  14. Theoretical electron scattering amplitudes and spin polarizations. Electron energies 100 to 1500 eV Part II. Be, N, O, Al, Cl, V, Co, Cu, As, Nb, Ag, Sn, Sb, I, and Ta targets

    NASA Astrophysics Data System (ADS)

    Wildhaber, M. L.; Wikle, C. K.; Anderson, C. J.; Franz, K. J.; Moran, E. H.; Dey, R.

    2012-12-01

    Recent decades have brought substantive changes in land use and climate across the earth, prompting a need to think of population and community ecology not as a static entity, but as a dynamic process. Increasingly there is evidence of ecological changes due to climate change. Although much of this evidence comes from ground-truth observations of biogeographic data, there is increasing reliance on models that relate climate variables to biological systems. Such models can then be used to explore potential changes to population and community level ecological systems in response to climate scenarios as obtained from global climate models (GCMs). A key issue associated with modeling ecosystem response to climate is GCM downscaling to regional and local ecological/biological response models that can be used in vulnerability and risk assessments of the potential effects of climate change. The need is for an explicit means for scaling results up or down multiple hierarchical levels and an effective assessment of the level of uncertainty surrounding current knowledge, data, and data collection methods with these goals identified as in need of acceleration in the U.S. Climate Change Science Program FY2009 Implementation Priorities. In the end, such work should provide the information needed to develop adaptation and mitigation methodologies to minimize the effects of directional and nonlinear climate change on the Nation's land, water, ecosystems, and biological populations. We are working to develop an approach that includes multi-scale and hierarchical Bayesian modeling of Missouri River sturgeon population dynamics. Statistical linkages are defined to quantify implications of climate on fish populations of the Missouri River ecosystem. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. The model must include linkages between climate and habitat, and between habitat and population. A key advantage of the hierarchical approach used in this study is that it incorporates various sources of observations and includes established scientific knowledge, and associated uncertainties. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. The predictive modeling system being developed will be a powerful tool for evaluating management options for coping with global change consequences and assessing uncertainty of those evaluations. Specifically for the endangered pallid sturgeon (Scaphirhynchus albus), we are already able to assess potential effects of any climate scenario on growth and population size distribution. Future models will incorporate survival and reproduction. Ultimately, these models provide guidance for successful recovery and conservation of the pallid sturgeon. Here we present a basic outline of the approach we are developing and a simple pallid sturgeon example to demonstrate how multiple scales and parameter uncertainty are incorporated.

  15. Spatial and temporal variability in growth of southern flounder (Paralichthys lethostigma)

    USGS Publications Warehouse

    Midway, Stephen R.; Wagner, Tyler; Arnott, Stephen A.; Biondo, Patrick; Martinez-Andrade, Fernando; Wadsworth, Thomas F.

    2015-01-01

    Delineation of stock structure is important for understanding the ecology and management of many fish populations, particularly those with wide-ranging distributions and high levels of harvest. Southern flounder (Paralichthys lethostigma) is a popular commercial and recreational species along the southeast Atlantic coast and Gulf of Mexico, USA. Recent studies have provided genetic and otolith morphology evidence that the Gulf of Mexico and Atlantic Ocean stocks differ. Using age and growth data from four states (Texas, Alabama, South Carolina, and North Carolina) we expanded upon the traditional von Bertalanffy model in order to compare growth rates of putative geographic stocks of southern flounder. We improved the model fitting process by adding a hierarchical Bayesian framework to allow each parameter to vary spatially or temporally as a random effect, as well as log transforming the three model parameters (L∞, K, andt0). Multiple comparisons of parameters showed that growth rates varied (even within states) for females, but less for males. Growth rates were also consistent through time, when long-term data were available. Since within-basin populations are thought to be genetically well-mixed, our results suggest that consistent small-scale environmental conditions (i.e., within estuaries) likely drive growth rates and should be considered when developing broader scale management plans.

  16. [Study on ecological risk assessment technology of fluoride pollution from arid oasis soil].

    PubMed

    Xue, Su-Yin; Li, Ping; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    According to translocation regulation of fluoride in the typical oasis soil-plant system under field, an ecological risk assessment model of fluoride was established, and this model was used to assess ecological risk to fluoride pollution from suburban oasis soils in Baiyin City, which was specifically expressed with the potential ecological risk of bioavailability (ER(bc)) model to assess ecological risk of fluoride pollution in oasis regions. Results showed that the ecological risk indices of fluoride pollution from this region were 1.37-24.81, the level of risk at most sites was high to very high, the average ecological risk index was 11.28, belonged to very high risk. This indicated that in the suburb soil of Baiyin City needs to be concerned about the remediation of fluoride pollution.

  17. Downscaling to the Climate Near the Ground: Measurements and Modeling Along the Macro-, Meso-, Topo-, and Microclimate Hierarchy

    NASA Astrophysics Data System (ADS)

    van de Ven, C.; Weiss, S. B.

    2009-12-01

    Most climate models are expressed at regional scales, with resolutions on the scales of kilometers. When used for ecological modeling, these climate models help explain only broad-scale trends, such as latitudinal and upslope migration of plants. However, more refined ecological models require down-scaled climate data at ecologically relevant spatial scales, and the goal of this presentation is to demonstrate robust downscaling methods. For example, in the White Mountains, eastern California, tree species, including bristlecone pine (Pinus longaeva) are seen moving not just upslope, but also sideways across aspects, and downslope into areas characterized by cold air drainage. Macroclimate in the White Mountains is semi-arid, residing in the rain shadow of the Sierra Nevada. Macroclimate is modified by mesoscale effects of mountain ranges, where climate becomes wetter and colder with elevation, the temperature decreasing according to the regionally and temporally-specific lapse rate. Local topography further modifies climate, where slope angle, aspect, and topographic position further impact the temperature at a given site. Finally, plants experience extremely localized microclimate, where surrounding vegetation provide differing degrees of shade. We measured and modeled topoclimate across the White Mountains using iButton Thermochron temperature data loggers during late summer in 2006 and 2008, and have documented effects of microclimatic temperature differences between sites in the open and shaded by shrubs. Starting with PRISM 800m data, we derived mesoscale lapse rates. Then, we calculated temperature differentials between each Thermochron and a long-term weather station in the middle of the range at Crooked Creek Valley. We modeled month-specific minimum temperature differentials by regressing the Thermochron-weather station minimum temperature differentials with various topographic parameters. Topographic position, the absolute value of topographic position, and slope combined to provide a very close fit (r2>0.9) to measured inversions of >8°C. Although topoclimatic maximum temperature models have been more elusive, regressions with degree hours greater than zero (DH>0) have been modeled with September insolation and slope (r2=0.7). In paired experiments, Thermochrons also recorded the temperature differences between the environment under sagebrush (Artemisia tridentata) and in the open, with an average minimum temperature difference of 2.1°C, and maximum temperature difference of 4.5°C. When we incorporate hourly weather station data, the strength of the inversion is weakened by wind, higher relative humidity, and cloudiness. This hierarchical modeling provides a template for downscaling climate and weather to ecologically relevant scales.

  18. Space Use and Movement of a Neotropical Top Predator: The Endangered Jaguar

    PubMed Central

    Stabach, Jared A.; Fleming, Chris H.; Calabrese, Justin M.; De Paula, Rogério C.; Ferraz, Kátia M. P. M.; Kantek, Daniel L. Z.; Miyazaki, Selma S.; Pereira, Thadeu D. C.; Araujo, Gediendson R.; Paviolo, Agustin; De Angelo, Carlos; Di Bitetti, Mario S.; Cruz, Paula; Lima, Fernando; Cullen, Laury; Sana, Denis A.; Ramalho, Emiliano E.; Carvalho, Marina M.; Soares, Fábio H. S.; Zimbres, Barbara; Silva, Marina X.; Moraes, Marcela D. F.; Vogliotti, Alexandre; May, Joares A.; Haberfeld, Mario; Rampim, Lilian; Sartorello, Leonardo; Ribeiro, Milton C.; Leimgruber, Peter

    2016-01-01

    Accurately estimating home range and understanding movement behavior can provide important information on ecological processes. Advances in data collection and analysis have improved our ability to estimate home range and movement parameters, both of which have the potential to impact species conservation. Fitting continuous-time movement model to data and incorporating the autocorrelated kernel density estimator (AKDE), we investigated range residency of forty-four jaguars fit with GPS collars across five biomes in Brazil and Argentina. We assessed home range and movement parameters of range resident animals and compared AKDE estimates with kernel density estimates (KDE). We accounted for differential space use and movement among individuals, sex, region, and habitat quality. Thirty-three (80%) of collared jaguars were range resident. Home range estimates using AKDE were 1.02 to 4.80 times larger than KDE estimates that did not consider autocorrelation. Males exhibited larger home ranges, more directional movement paths, and a trend towards larger distances traveled per day. Jaguars with the largest home ranges occupied the Atlantic Forest, a biome with high levels of deforestation and high human population density. Our results fill a gap in the knowledge of the species’ ecology with an aim towards better conservation of this endangered/critically endangered carnivore—the top predator in the Neotropics. PMID:28030568

  19. Space Use and Movement of a Neotropical Top Predator: The Endangered Jaguar.

    PubMed

    Morato, Ronaldo G; Stabach, Jared A; Fleming, Chris H; Calabrese, Justin M; De Paula, Rogério C; Ferraz, Kátia M P M; Kantek, Daniel L Z; Miyazaki, Selma S; Pereira, Thadeu D C; Araujo, Gediendson R; Paviolo, Agustin; De Angelo, Carlos; Di Bitetti, Mario S; Cruz, Paula; Lima, Fernando; Cullen, Laury; Sana, Denis A; Ramalho, Emiliano E; Carvalho, Marina M; Soares, Fábio H S; Zimbres, Barbara; Silva, Marina X; Moraes, Marcela D F; Vogliotti, Alexandre; May, Joares A; Haberfeld, Mario; Rampim, Lilian; Sartorello, Leonardo; Ribeiro, Milton C; Leimgruber, Peter

    2016-01-01

    Accurately estimating home range and understanding movement behavior can provide important information on ecological processes. Advances in data collection and analysis have improved our ability to estimate home range and movement parameters, both of which have the potential to impact species conservation. Fitting continuous-time movement model to data and incorporating the autocorrelated kernel density estimator (AKDE), we investigated range residency of forty-four jaguars fit with GPS collars across five biomes in Brazil and Argentina. We assessed home range and movement parameters of range resident animals and compared AKDE estimates with kernel density estimates (KDE). We accounted for differential space use and movement among individuals, sex, region, and habitat quality. Thirty-three (80%) of collared jaguars were range resident. Home range estimates using AKDE were 1.02 to 4.80 times larger than KDE estimates that did not consider autocorrelation. Males exhibited larger home ranges, more directional movement paths, and a trend towards larger distances traveled per day. Jaguars with the largest home ranges occupied the Atlantic Forest, a biome with high levels of deforestation and high human population density. Our results fill a gap in the knowledge of the species' ecology with an aim towards better conservation of this endangered/critically endangered carnivore-the top predator in the Neotropics.

  20. Resilience scales of a dammed tropical river

    NASA Astrophysics Data System (ADS)

    Calamita, Elisa; Schmid, Martin; Wehrli, Bernhard

    2017-04-01

    Artificial river impoundments disrupt the seasonality and dynamics of thermal, chemical, morphological and ecological regimes in river systems. These alterations affect the aquatic ecosystems in space and time and specifically modify the seasonality and the longitudinal gradients of important biogeochemical processes. Resilience of river systems to anthropogenic stressors enables their recovery along the flow path; however little is known about the longitudinal distance that rivers need to partially restore their physical, chemical and biological integrity. In this study, the concept of a "resilience scale" will be explored for different water quality parameters downstream of Kariba dam, the largest artificial lake in the Zambezi basin (South-East Africa). The goal of this project is to develop a modelling framework to investigate and quantify the impact of large dams on downstream water quality in tropical context. In particular, we aim to assess the degree of reversibility of the main downstream alterations (temperature, oxygen, nutrients) and consequently the quantification of their longitudinal extent. Coupling in-situ measurements with hydraulic and hydrological parameters such as travel times, will allow us to define a physically-based parametrization of the different resilience scales for tropical rivers. The results will be used for improving future dam management at the local scale and assessing the ecological impact of planned dams at the catchment scale.

  1. Non-lethal control of the cariogenic potential of an agent-based model for dental plaque.

    PubMed

    Head, David A; Marsh, Phil D; Devine, Deirdre A

    2014-01-01

    Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments.

  2. Maturation delay for the predators can enhance stable coexistence for a class of prey-predator models.

    PubMed

    Banerjee, Malay; Takeuchi, Yasuhiro

    2017-01-07

    Maturation time delay for the predators is introduced in prey-predator models to implicitly model the stage-structure of predators. Most of the prey-predator models with maturation delay are known to exhibit destabilization of coexistence steady-state. Discrete time delay induced destabilization is a common finding, however, this is due to the introduction of time delay with lack of ecological justification. The main objective of the present work is to show the stabilizing role of maturation delay for a class of delayed prey-predator model. To be specific, we consider prey-predator models with strong and weak Allee effects in prey growth and Michaelis-Menten type functional response. We provide ecological justification for the introduction of maturation delay parameter in predator's growth equation. We obtain the conditions for stable and oscillatory coexistence of prey and their specialist predator in case of strong as well as weak Allee effect for non-delayed and delayed models. Apart from the analytical results for the models under consideration, we perform extensive numerical simulations to construct the relevant bifurcation diagrams. Our analytical and supportive numerical findings reveal that delay is not always a destabilizing factor rather the stable coexistence in the presence of time delay depends upon the formulation of the delayed model. The biological implications of the current investigation are provided in the conclusion section. We also explain the validity of obtained results for other types of prey-predator models with a specialist predator. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Upgrading Marine Ecosystem Restoration Using Ecological-Social Concepts.

    PubMed

    Abelson, Avigdor; Halpern, Benjamin S; Reed, Daniel C; Orth, Robert J; Kendrick, Gary A; Beck, Michael W; Belmaker, Jonathan; Krause, Gesche; Edgar, Graham J; Airoldi, Laura; Brokovich, Eran; France, Robert; Shashar, Nadav; de Blaeij, Arianne; Stambler, Noga; Salameh, Pierre; Shechter, Mordechai; Nelson, Peter A

    2016-02-01

    Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology , the science underlying the concepts and tools needed to restore ecosystems, must be recognized as an integral element for marine conservation and environmental management. Marine restoration ecology is a young scientific discipline, often with gaps between its application and the supporting science. Bridging these gaps is essential to using restoration as an effective management tool and reversing the decline of marine ecosystems and their services. Ecological restoration should address objectives that include improved ecosystem services, and it therefore should encompass social-ecological elements rather than focusing solely on ecological parameters. We recommend using existing management frameworks to identify clear restoration targets, to apply quantitative tools for assessment, and to make the re-establishment of ecosystem services a criterion for success.

  4. Ecological investigations: vegetation studies, preliminary findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olgeirson, E.R.; Martin, R.B.

    1978-09-01

    The objective of the vegetation studies conducted on the research site is to produce a descriptive data base that can be applied to determinations of carrying capacity of the site and surrounding area. Additional information obtained about parameters that influence vegetation growth and maintenance of soil nutrients, and moisture and temperature regimes help define dynamic relationships that must be understood to effect successful revegetation and habitat rehabilitation. The descriptive vegetation baseline also provides a point of departure for design of future monitoring programs, and predictive models and strategies to be used in dealing with impact mitigation; in turn, monitoring programsmore » and predictive modeling form the bases for making distinctions between natural trends and man-induced perturbations.« less

  5. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology

    EPA Science Inventory

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, e...

  6. Effectiveness of birds, butterflies, dragonflies, damselflies and invertebrates as indicators of freshwater ecological integrity

    NASA Astrophysics Data System (ADS)

    Chama, Lackson; Siachoono, Stanford

    2015-04-01

    Human activities such as mining and agriculture are among the major threats to biodiversity globally. Discharges from these activities have been shown to negatively affect ecological processes, leading to ecosystem degradation and species loss across biomes. Freshwater systems have been shown to be particularly vulnerable, as discharges tend to spread rapidly here than in other ecosystems. Hence, there is need to routinely monitor the quality of these systems if impacts of discharges from human activities are to be minimised. Besides the use of conventional laboratory techniques, several studies have recently shown that organisms such as birds, butterflies, dragonflies, damselflies and invertebrates are also good indicators of ecological integrity and should therefore be used as alternatives to monitoring the quality of various ecosystems. However, most of these studies have only studied one or two of these organisms against ecosystem health, and it remains unclear whether all of them respond similarly to changes in different drivers of environmental change. We investigated the response of the diversity of birds, butterflies, dragonflies, damselflies and invertebrates to changing water quality along the Kafue River in Zambia. Sampling was done at 13 different sampling points stretching over a distance of 60Km along the river. At each point, both the diversity of each organism and the water quality were assessed. Water quality was determined by testing its temperature, pH, redox, electrical conductivity, turbidity and copper parameters. We then tested how the diversity of each organism responded to changes in these water parameters. All water parameters varied significantly across sampling points. The diversity of birds and damselflies remained unaffected by any of the water parameters used. However, the diversity of butterflies reduced with increasing pH, turbidity and copper, albeit it remained unaffected by other water parameters. The diversity of dragonflies reduced with increasing redox, electrical conductivity and turbidity, but remained unaffected by other water parameters. The diversity of invertebrates reduced with increasing redox and copper, but remained unaffected by other water parameters. Generally, these results suggest that these organisms, especially butterflies, dragonflies and invertebrates can indeed be used as indicators of changing water quality and ecological integrity in particular. However, their use is limited to specific, rather than, all water parameters. Therefore, the decision as to which organisms to use should largely depend on which water quality parameters are to be tested. Key words: temperature; pH; redox; electrical conductivity; turbidity; copper

  7. Assessing the likely effectiveness of multispecies management for imperiled desert fishes with niche overlap analysis

    USGS Publications Warehouse

    Laub, P; Budy, Phaedra

    2015-01-01

    A critical decision in species conservation is whether to target individual species or a complex of ecologically similar species. Management of multispecies complexes is likely to be most effective when species share similar distributions, threats, and response to threats. We used niche overlap analysis to assess ecological similarity of 3 sensitive desert fish species currently managed as an ecological complex. We measured the amount of shared distribution of multiple habitat and life history parameters between each pair of species. Habitat use and multiple life history parameters, including maximum body length, spawning temperature, and longevity, differed significantly among the 3 species. The differences in habitat use and life history parameters among the species suggest they are likely to respond differently to similar threats and that most management actions will not benefit all 3 species equally. Habitat restoration, frequency of stream dewatering, non-native species control, and management efforts in tributaries versus main stem rivers are all likely to impact each of the species differently. Our results demonstrate that niche overlap analysis provides a powerful tool for assessing the likely effectiveness of multispecies versus single-species conservation plans.

  8. Comparison of Commercial Structure-From Photogrammety Software Used for Underwater Three-Dimensional Modeling of Coral Reef Environments

    NASA Astrophysics Data System (ADS)

    Burns, J. H. R.; Delparte, D.

    2017-02-01

    Structural complexity in ecosystems creates an assortment of microhabitat types and has been shown to support greater diversity and abundance of associated organisms. The 3D structure of an environment also directly affects important ecological parameters such as habitat provisioning and light availability and can therefore strongly influence ecosystem function. Coral reefs are architecturally complex 3D habitats, whose structure is intrinsically linked to the ecosystem biodiversity, productivity, and function. The field of coral ecology has, however, been primarily limited to using 2-dimensional (2D) planar survey techniques for studying the physical structure of reefs. This conventional approach fails to capture or quantify the intricate structural complexity of corals that influences habitat facilitation and biodiversity. A 3-dimensional (3D) approach can obtain accurate measurements of architectural complexity, topography, rugosity, volume, and other structural characteristics that affect biodiversity and abundance of reef organisms. Structurefrom- Motion (SfM) photogrammetry is an emerging computer vision technology that provides a simple and cost-effective method for 3D reconstruction of natural environments. SfM has been used in several studies to investigate the relationship between habitat complexity and ecological processes in coral reef ecosystems. This study compared two commercial SfM software packages, Agisoft Photoscan Pro and Pix4Dmapper Pro 3.1, in order to assess the cpaability and spatial accuracy of these programs for conducting 3D modeling of coral reef habitats at three spatial scales.

  9. Ecological significance of hazardous concentrations in a planktonic food web.

    PubMed

    De Laender, Frederik; Soetaert, Karline; De Schamphelaere, Karel A C; Middelburg, Jack J; Janssen, Colin R

    2010-03-01

    Species sensitivity distributions (SSDs) are statistical distributions that are used to estimate the potentially affected fraction (PAF) of species at a given toxicant concentration, the hazardous concentration for that fraction of species (HC(PAF)). Here, we use an aquatic food web model that includes 14 phytoplankton and 6 zooplankton species to estimate the number of species experiencing a biomass reduction when the food web is exposed to the HC(PAF) and this for 1000 hypothetical toxicants and for PAF=5-30%. When choosing a 20% decrease as a cut-off to categorize a species' biomass as affected, 0-1 and 2-5 out of the 20 species were affected at the HC(5) and HC(30), respectively. From this, it can be concluded that the PAF is a relatively good estimator of the number of affected species. However, when phytoplankton species experiencing >or=20% biomass increase were also classified as affected, the number of affected species predicted by the food web model varied strongly among toxicants for PAF >5, with 2-16 out of 20 species affected at the HC(30). Phytoplankton species with extreme (both high and low) values for uptake rates and light limitation constants experienced smaller effects on their biomass than phytoplankton species with more average parameter values. We conclude that, next to measures of toxicity, ecological characteristics of species may help understanding ecological effects occurring in ecosystems also. (c) 2009 Elsevier Inc. All rights reserved.

  10. [A process of aquatic ecological function regionalization: The dual tree framework and conceptual model].

    PubMed

    Guo, Shu Hai; Wu, Bo

    2017-12-01

    Aquatic ecological regionalization and aquatic ecological function regionalization are the basis of water environmental management of a river basin and rational utilization of an aquatic ecosystem, and have been studied in China for more than ten years. Regarding the common problems in this field, the relationship between aquatic ecological regionalization and aquatic ecological function regionalization was discussed in this study by systematic analysis of the aquatic ecological zoning and the types of aquatic ecological function. Based on the dual tree structure, we put forward the RFCH process and the diamond conceptual model. Taking Liaohe River basin as an example and referring to the results of existing regionalization studies, we classified the aquatic ecological function regions based on three-class aquatic ecological regionalization. This study provided a process framework for aquatic ecological function regionalization of a river basin.

  11. Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance

    USGS Publications Warehouse

    Clare, John; McKinney, Shawn T.; DePue, John E.; Loftin, Cynthia S.

    2017-01-01

    It is common to use multiple field sampling methods when implementing wildlife surveys to compare method efficacy or cost efficiency, integrate distinct pieces of information provided by separate methods, or evaluate method-specific biases and misclassification error. Existing models that combine information from multiple field methods or sampling devices permit rigorous comparison of method-specific detection parameters, enable estimation of additional parameters such as false-positive detection probability, and improve occurrence or abundance estimates, but with the assumption that the separate sampling methods produce detections independently of one another. This assumption is tenuous if methods are paired or deployed in close proximity simultaneously, a common practice that reduces the additional effort required to implement multiple methods and reduces the risk that differences between method-specific detection parameters are confounded by other environmental factors. We develop occupancy and spatial capture–recapture models that permit covariance between the detections produced by different methods, use simulation to compare estimator performance of the new models to models assuming independence, and provide an empirical application based on American marten (Martes americana) surveys using paired remote cameras, hair catches, and snow tracking. Simulation results indicate existing models that assume that methods independently detect organisms produce biased parameter estimates and substantially understate estimate uncertainty when this assumption is violated, while our reformulated models are robust to either methodological independence or covariance. Empirical results suggested that remote cameras and snow tracking had comparable probability of detecting present martens, but that snow tracking also produced false-positive marten detections that could potentially substantially bias distribution estimates if not corrected for. Remote cameras detected marten individuals more readily than passive hair catches. Inability to photographically distinguish individual sex did not appear to induce negative bias in camera density estimates; instead, hair catches appeared to produce detection competition between individuals that may have been a source of negative bias. Our model reformulations broaden the range of circumstances in which analyses incorporating multiple sources of information can be robustly used, and our empirical results demonstrate that using multiple field-methods can enhance inferences regarding ecological parameters of interest and improve understanding of how reliably survey methods sample these parameters.

  12. Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach-A Case Study for the City of Wuhan in China.

    PubMed

    Gao, Yuan; Zhang, Chuanrong; He, Qingsong; Liu, Yaolin

    2017-06-15

    Ecological security is an important research topic, especially urban ecological security. As highly populated eco-systems, cities always have more fragile ecological environments. However, most of the research on urban ecological security in literature has focused on evaluating current or past status of the ecological environment. Very little literature has carried out simulation or prediction of future ecological security. In addition, there is even less literature exploring the urban ecological environment at a fine scale. To fill-in the literature gap, in this study we simulated and predicted urban ecological security at a fine scale (district level) using an improved Cellular Automata (CA) approach. First we used the pressure-state-response (PSR) method based on grid-scale data to evaluate urban ecological security. Then, based on the evaluation results, we imported the geographically weighted regression (GWR) concept into the CA model to simulate and predict urban ecological security. We applied the improved CA approach in a case study-simulating and predicting urban ecological security for the city of Wuhan in Central China. By comparing the simulated ecological security values from 2010 using the improved CA model to the actual ecological security values of 2010, we got a relatively high value of the kappa coefficient, which indicates that this CA model can simulate or predict well future development of ecological security in Wuhan. Based on the prediction results for 2020, we made some policy recommendations for each district in Wuhan.

  13. Assessing uncertainty in ecological systems using global sensitivity analyses: a case example of simulated wolf reintroduction effects on elk

    USGS Publications Warehouse

    Fieberg, J.; Jenkins, Kurt J.

    2005-01-01

    Often landmark conservation decisions are made despite an incomplete knowledge of system behavior and inexact predictions of how complex ecosystems will respond to management actions. For example, predicting the feasibility and likely effects of restoring top-level carnivores such as the gray wolf (Canis lupus) to North American wilderness areas is hampered by incomplete knowledge of the predator-prey system processes and properties. In such cases, global sensitivity measures, such as Sobola?? indices, allow one to quantify the effect of these uncertainties on model predictions. Sobola?? indices are calculated by decomposing the variance in model predictions (due to parameter uncertainty) into main effects of model parameters and their higher order interactions. Model parameters with large sensitivity indices can then be identified for further study in order to improve predictive capabilities. Here, we illustrate the use of Sobola?? sensitivity indices to examine the effect of parameter uncertainty on the predicted decline of elk (Cervus elaphus) population sizes following a hypothetical reintroduction of wolves to Olympic National Park, Washington, USA. The strength of density dependence acting on survival of adult elk and magnitude of predation were the most influential factors controlling elk population size following a simulated wolf reintroduction. In particular, the form of density dependence in natural survival rates and the per-capita predation rate together accounted for over 90% of variation in simulated elk population trends. Additional research on wolf predation rates on elk and natural compensations in prey populations is needed to reliably predict the outcome of predatora??prey system behavior following wolf reintroductions.

  14. Distribution of phytoplankton functional types in high-nitrate, low-chlorophyll waters in a new diagnostic ecological indicator model

    NASA Astrophysics Data System (ADS)

    Palacz, A. P.; St. John, M. A.; Brewin, R. J. W.; Hirata, T.; Gregg, W. W.

    2013-11-01

    Modeling and monitoring plankton functional types (PFTs) is challenged by the insufficient amount of field measurements of ground truths in both plankton models and bio-optical algorithms. In this study, we combine remote sensing data and a dynamic plankton model to simulate an ecologically sound spatial and temporal distribution of phyto-PFTs. We apply an innovative ecological indicator approach to modeling PFTs and focus on resolving the question of diatom-coccolithophore coexistence in the subpolar high-nitrate and low-chlorophyll regions. We choose an artificial neural network as our modeling framework because it has the potential to interpret complex nonlinear interactions governing complex adaptive systems, of which marine ecosystems are a prime example. Using ecological indicators that fulfill the criteria of measurability, sensitivity and specificity, we demonstrate that our diagnostic model correctly interprets some basic ecological rules similar to ones emerging from dynamic models. Our time series highlight a dynamic phyto-PFT community composition in all high-latitude areas and indicate seasonal coexistence of diatoms and coccolithophores. This observation, though consistent with in situ and remote sensing measurements, has so far not been captured by state-of-the-art dynamic models, which struggle to resolve this "paradox of the plankton". We conclude that an ecological indicator approach is useful for ecological modeling of phytoplankton and potentially higher trophic levels. Finally, we speculate that it could serve as a powerful tool in advancing ecosystem-based management of marine resources.

  15. Distribution of phytoplankton functional types in high-nitrate low-chlorophyll waters in a new diagnostic ecological indicator model

    NASA Astrophysics Data System (ADS)

    Palacz, A. P.; St. John, M. A.; Brewin, R. J. W.; Hirata, T.; Gregg, W. W.

    2013-05-01

    Modeling and monitoring plankton functional types (PFTs) is challenged by insufficient amount of field measurements to ground-truth both plankton models and bio-optical algorithms. In this study, we combine remote sensing data and a dynamic plankton model to simulate an ecologically-sound spatial and temporal distribution of phyto-PFTs. We apply an innovative ecological indicator approach to modeling PFTs, and focus on resolving the question of diatom-coccolithophore co-existence in the subpolar high-nitrate and low-chlorophyll regions. We choose an artificial neural network as our modeling framework because it has the potential to interpret complex nonlinear interactions governing complex adaptive systems, of which marine ecosystems are a prime example. Using ecological indicators that fulfill the criteria of measurability, sensitivity and specificity, we demonstrate that our diagnostic model correctly interprets some basic ecological rules similar to ones emerging from dynamic models. Our time series highlight a dynamic phyto-PFT community composition in all high latitude areas, and indicate seasonal co-existence of diatoms and coccolithophores. This observation, though consistent with in situ and remote sensing measurements, was so far not captured by state-of-the-art dynamic models which struggle to resolve this "paradox of the plankton". We conclude that an ecological indicator approach is useful for ecological modeling of phytoplankton and potentially higher trophic levels. Finally, we speculate that it could serve as a powerful tool in advancing ecosystem-based management of marine resources.

  16. Defining the Ecological Coefficient of Performance for an Aircraft Propulsion System

    NASA Astrophysics Data System (ADS)

    Şöhret, Yasin

    2018-05-01

    The aircraft industry, along with other industries, is considered responsible these days regarding environmental issues. Therefore, the performance evaluation of aircraft propulsion systems should be conducted with respect to environmental and ecological considerations. The current paper aims to present the ecological coefficient of performance calculation methodology for aircraft propulsion systems. The ecological coefficient performance is a widely-preferred performance indicator of numerous energy conversion systems. On the basis of thermodynamic laws, the methodology used to determine the ecological coefficient of performance for an aircraft propulsion system is parametrically explained and illustrated in this paper for the first time. For a better understanding, to begin with, the exergy analysis of a turbojet engine is described in detail. Following this, the outputs of the analysis are employed to define the ecological coefficient of performance for a turbojet engine. At the end of the study, the ecological coefficient of performance is evaluated parametrically and discussed depending on selected engine design parameters and performance measures. The author asserts the ecological coefficient of performance to be a beneficial indicator for researchers interested in aircraft propulsion system design and related topics.

  17. Ecology and geography of avian influenza (HPAI H5N1) transmission in the Middle East and northeastern Africa

    PubMed Central

    Williams, Richard AJ; Peterson, A Townsend

    2009-01-01

    Background The emerging highly pathogenic avian influenza strain H5N1 ("HPAI-H5N1") has spread broadly in the past decade, and is now the focus of considerable concern. We tested the hypothesis that spatial distributions of HPAI-H5N1 cases are related consistently and predictably to coarse-scale environmental features in the Middle East and northeastern Africa. We used ecological niche models to relate virus occurrences to 8 km resolution digital data layers summarizing parameters of monthly surface reflectance and landform. Predictive challenges included a variety of spatial stratification schemes in which models were challenged to predict case distributions in broadly unsampled areas. Results In almost all tests, HPAI-H5N1 cases were indeed occurring under predictable sets of environmental conditions, generally predicted absent from areas with low NDVI values and minimal seasonal variation, and present in areas with a broad range of and appreciable seasonal variation in NDVI values. Although we documented significant predictive ability of our models, even between our study region and West Africa, case occurrences in the Arabian Peninsula appear to follow a distinct environmental regime. Conclusion Overall, we documented a variable environmental "fingerprint" for areas suitable for HPAI-H5N1 transmission. PMID:19619336

  18. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements

    USGS Publications Warehouse

    Ji, Lei; Wylie, Bruce K.; Nossov, Dana R.; Peterson, Birgit E.; Waldrop, Mark P.; McFarland, Jack W.; Rover, Jennifer R.; Hollingsworth, Teresa N.

    2012-01-01

    Terrestrial plant biomass is a key biophysical parameter required for understanding ecological systems in Alaska. An accurate estimation of biomass at a regional scale provides an important data input for ecological modeling in this region. In this study, we created an aboveground biomass (AGB) map at 30-m resolution for the Yukon Flats ecoregion of interior Alaska using Landsat data and field measurements. Tree, shrub, and herbaceous AGB data in both live and dead forms were collected in summers and autumns of 2009 and 2010. Using the Landsat-derived spectral variables and the field AGB data, we generated a regression model and applied this model to map AGB for the ecoregion. A 3-fold cross-validation indicated that the AGB estimates had a mean absolute error of 21.8 Mg/ha and a mean bias error of 5.2 Mg/ha. Additionally, we validated the mapping results using an airborne lidar dataset acquired for a portion of the ecoregion. We found a significant relationship between the lidar-derived canopy height and the Landsat-derived AGB (R2 = 0.40). The AGB map showed that 90% of the ecoregion had AGB values ranging from 10 Mg/ha to 134 Mg/ha. Vegetation types and fires were the primary factors controlling the spatial AGB patterns in this ecoregion.

  19. Multiscale landscape genomic models to detect signatures of selection in the alpine plant Biscutella laevigata.

    PubMed

    Leempoel, Kevin; Parisod, Christian; Geiser, Céline; Joost, Stéphane

    2018-02-01

    Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine-scale models to evaluate environmental heterogeneity may help detecting adaptation to micro-habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata . The two gene pools identified, experiencing limited gene flow along a 1-km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine-scale topography. Using a large panel of DEM-derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high-resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.

  20. Kinetics and Mechanisms of Phosphorus Adsorption in Soils from Diverse Ecological Zones in the Source Area of a Drinking-Water Reservoir

    PubMed Central

    Zhang, Liang; Loáiciga, Hugo A.; Xu, Meng; Du, Chao; Du, Yun

    2015-01-01

    On-site soils are increasingly used in the treatment and restoration of ecosystems to harmonize with the local landscape and minimize costs. Eight natural soils from diverse ecological zones in the source area of a drinking-water reservoir in central China are used as adsorbents for the uptake of phosphorus from aqueous solutions. The X-ray fluorescence (XRF) spectrometric and BET (Brunauer-Emmett-Teller) tests and the Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectral analyses are carried out to investigate the soils’ chemical properties and their potential changes with adsorbed phosphorous from aqueous solutions. The intra-particle diffusion, pseudo-first-order, and pseudo-second-order kinetic models describe the adsorption kinetic processes. Our results indicate that the adsorption processes of phosphorus in soils occurred in three stages and that the rate-controlling steps are not solely dependent on intra-particle diffusion. A quantitative comparison of two kinetics models based on their linear and non-linear representations, and using the chi-square (χ2) test and the coefficient of determination (r2), indicates that the adsorptive properties of the soils are best described by the non-linear pseudo-second-order kinetic model. The adsorption characteristics of aqueous phosphorous are determined along with the essential kinetic parameters. PMID:26569278

  1. Forest economics, natural disturbances and the new ecology

    Treesearch

    Thomas P. Holmes; Robert J. Huggett; John M. Pye

    2008-01-01

    The major thesis of this chapter is that the economic analysis of forest disturbances will be enhanced by linking economic and ecologic models. Although we only review a limited number of concepts drawn generally from mathematical and empirical ecology, the overarching theme we present is that ecological models of forest disturbance processes are complex and not...

  2. The Ecosystem Concept and Linking Models of Physical-Chemical Processes to Ecological Responses: Introduction and Annotated Bibliography

    DTIC Science & Technology

    2007-07-01

    Schneider, D. C. 1994. Quantitative ecology. Spatial and temporal scaling. Academic Press. Shugart, H. H. 1990. Ecological models and the ecotone . In: The...ecology and management of aquatic-terrestrial ecotones . Man and the biosphere series, Vol. 4. ed. R. J. Naiman and H. Decamps, 23-36. Paris, France

  3. An Open Source Simulation Model for Soil and Sediment Bioturbation

    PubMed Central

    Schiffers, Katja; Teal, Lorna Rachel; Travis, Justin Mark John; Solan, Martin

    2011-01-01

    Bioturbation is one of the most widespread forms of ecological engineering and has significant implications for the structure and functioning of ecosystems, yet our understanding of the processes involved in biotic mixing remains incomplete. One reason is that, despite their value and utility, most mathematical models currently applied to bioturbation data tend to neglect aspects of the natural complexity of bioturbation in favour of mathematical simplicity. At the same time, the abstract nature of these approaches limits the application of such models to a limited range of users. Here, we contend that a movement towards process-based modelling can improve both the representation of the mechanistic basis of bioturbation and the intuitiveness of modelling approaches. In support of this initiative, we present an open source modelling framework that explicitly simulates particle displacement and a worked example to facilitate application and further development. The framework combines the advantages of rule-based lattice models with the application of parameterisable probability density functions to generate mixing on the lattice. Model parameters can be fitted by experimental data and describe particle displacement at the spatial and temporal scales at which bioturbation data is routinely collected. By using the same model structure across species, but generating species-specific parameters, a generic understanding of species-specific bioturbation behaviour can be achieved. An application to a case study and comparison with a commonly used model attest the predictive power of the approach. PMID:22162997

  4. An open source simulation model for soil and sediment bioturbation.

    PubMed

    Schiffers, Katja; Teal, Lorna Rachel; Travis, Justin Mark John; Solan, Martin

    2011-01-01

    Bioturbation is one of the most widespread forms of ecological engineering and has significant implications for the structure and functioning of ecosystems, yet our understanding of the processes involved in biotic mixing remains incomplete. One reason is that, despite their value and utility, most mathematical models currently applied to bioturbation data tend to neglect aspects of the natural complexity of bioturbation in favour of mathematical simplicity. At the same time, the abstract nature of these approaches limits the application of such models to a limited range of users. Here, we contend that a movement towards process-based modelling can improve both the representation of the mechanistic basis of bioturbation and the intuitiveness of modelling approaches. In support of this initiative, we present an open source modelling framework that explicitly simulates particle displacement and a worked example to facilitate application and further development. The framework combines the advantages of rule-based lattice models with the application of parameterisable probability density functions to generate mixing on the lattice. Model parameters can be fitted by experimental data and describe particle displacement at the spatial and temporal scales at which bioturbation data is routinely collected. By using the same model structure across species, but generating species-specific parameters, a generic understanding of species-specific bioturbation behaviour can be achieved. An application to a case study and comparison with a commonly used model attest the predictive power of the approach.

  5. A 3-level Bayesian mixed effects location scale model with an application to ecological momentary assessment data.

    PubMed

    Lin, Xiaolei; Mermelstein, Robin J; Hedeker, Donald

    2018-06-15

    Ecological momentary assessment studies usually produce intensively measured longitudinal data with large numbers of observations per unit, and research interest is often centered around understanding the changes in variation of people's thoughts, emotions and behaviors. Hedeker et al developed a 2-level mixed effects location scale model that allows observed covariates as well as unobserved variables to influence both the mean and the within-subjects variance, for a 2-level data structure where observations are nested within subjects. In some ecological momentary assessment studies, subjects are measured at multiple waves, and within each wave, subjects are measured over time. Li and Hedeker extended the original 2-level model to a 3-level data structure where observations are nested within days and days are then nested within subjects, by including a random location and scale intercept at the intermediate wave level. However, the 3-level random intercept model assumes constant response change rate for both the mean and variance. To account for changes in variance across waves, as well as clustering attributable to waves, we propose a more comprehensive location scale model that allows subject heterogeneity at baseline as well as across different waves, for a 3-level data structure where observations are nested within waves and waves are then further nested within subjects. The model parameters are estimated using Markov chain Monte Carlo methods. We provide details on the Bayesian estimation approach and demonstrate how the Stan statistical software can be used to sample from the desired distributions and achieve consistent estimates. The proposed model is validated via a series of simulation studies. Data from an adolescent smoking study are analyzed to demonstrate this approach. The analyses clearly favor the proposed model and show significant subject heterogeneity at baseline as well as change over time, for both mood mean and variance. The proposed 3-level location scale model can be widely applied to areas of research where the interest lies in the consistency in addition to the mean level of the responses. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Risk Assessment of Metals in Urban Soils from a Typical Industrial City, Suzhou, Eastern China

    PubMed Central

    Wang, Gang; Liu, Hou-Qi; Gong, Yu; Wei, Yang; Miao, Ai-Jun; Yang, Liu-Yan; Zhong, Huan

    2017-01-01

    Risk of metals in urban soils is less studied, compared to that in other types of soils, hindering accurate assessment of human exposure to metals. In this study, the concentrations of five metals (As, Cd, Cr, Pb, and Hg) were analyzed in 167 surface soil samples collected from Suzhou city and their potential ecological and human health risks were assessed. The mean concentrations of As, Cd, Pb, and Hg except Cr, were higher than the background values in Jiangsu Province. Metal concentrations varied among districts, where sites of high contamination showed a punctate distribution. Principal components and correlation analyses revealed that As, Pb, and Cd could originate from the same sources. The geo-accumulation (Igeo) and potential ecological risk indices (RI) were calculated and the relatively low values of Igeo (<0) and RI (<150) suggested generally low ecological risk. The noncarcinogenic risks of the metals were relatively low for Suzhou residents (i.e., average hazard index or HI: 0.1199 for adults and 0.5935 for children, <1), while the total carcinogenic risks (TCR) of Cr and As were acceptable (TCR in the range of 1.0 × 10−6 to 1.0 × 10−4). Children faced a higher threat than adults. Results of Monte-Carlo simulations were lower than those obtained from models using deterministic parameters. Of all the uncertain parameters, the ingestion rate and body weight were the most sensitive for adults and children, respectively, while As was an important factor for both. The results as well as the factors controlling risks of metals could help better understand the risks of metals in urban soils of industrial cities in China. PMID:28880235

  7. Variations in Modeled Dengue Transmission over Puerto Rico Using a Climate Driven Dynamic Model

    NASA Technical Reports Server (NTRS)

    Morin, Cory; Monaghan, Andrew; Crosson, William; Quattrochi, Dale; Luvall, Jeffrey

    2014-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Because of variations in topography, ocean influences and atmospheric processes, temperature and rainfall patterns vary across Puerto Rico and so do dengue virus transmission rates. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input, ground-based observations for temperature input, and laboratory confirmed dengue cases reported by the Centers for Disease Control and Prevention for parameter calibration, we modeled dengue transmission at the county level across Puerto Rico from 2010-2013 using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations for each county in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. The top 1% of model simulations that best reproduced the reported dengue case data were then analyzed to determine the most important parameters for dengue virus transmission in each county, as well as the relative influence of climate variability on transmission. These results can be used by public health workers to implement dengue control methods that are targeted for specific locations and climate conditions.

  8. Ecologically-focused Calibration of Hydrological Models for Environmental Flow Applications

    NASA Astrophysics Data System (ADS)

    Adams, S. K.; Bledsoe, B. P.

    2015-12-01

    Hydrologic alteration resulting from watershed urbanization is a common cause of aquatic ecosystem degradation. Developing environmental flow criteria for urbanizing watersheds requires quantitative flow-ecology relationships that describe biological responses to streamflow alteration. Ideally, gaged flow data are used to develop flow-ecology relationships; however, biological monitoring sites are frequently ungaged. For these ungaged locations, hydrologic models must be used to predict streamflow characteristics through calibration and testing at gaged sites, followed by extrapolation to ungaged sites. Physically-based modeling of rainfall-runoff response has frequently utilized "best overall fit" calibration criteria, such as the Nash-Sutcliffe Efficiency (NSE), that do not necessarily focus on specific aspects of the flow regime relevant to biota of interest. This study investigates the utility of employing flow characteristics known a priori to influence regional biological endpoints as "ecologically-focused" calibration criteria compared to traditional, "best overall fit" criteria. For this study, 19 continuous HEC-HMS 4.0 models were created in coastal southern California and calibrated to hourly USGS streamflow gages with nearby biological monitoring sites using one "best overall fit" and three "ecologically-focused" criteria: NSE, Richards-Baker Flashiness Index (RBI), percent of time when the flow is < 1 cfs (%<1), and a Combined Calibration (RBI and %<1). Calibrated models were compared using calibration accuracy, environmental flow metric reproducibility, and the strength of flow-ecology relationships. Results indicate that "ecologically-focused" criteria can be calibrated with high accuracy and may provide stronger flow-ecology relationships than "best overall fit" criteria, especially when multiple "ecologically-focused" criteria are used in concert, despite inabilities to accurately reproduce additional types of ecological flow metrics to which the models are not explicitly calibrated.

  9. Geographic variation in survival and migratory tendency among North American Common Mergansers

    USGS Publications Warehouse

    Pearce, J.M.; Reed, J.A.; Flint, Paul L.

    2005-01-01

    Movement ecology and demographic parameters for the Common Merganser (Mergus merganser americanus) in North America are poorly known. We used band-recovery data from five locations across North America spanning the years 1938-1998 to examine migratory patterns and estimate survival rates. We examined competing time-invariant, age-graduated models with program MARK to study sources of variation in survival and reporting probability. We considered age, sex, geographic location, and the use of nasal saddles on hatching year birds at one location as possible sources of variation. Year-of-banding was included as a covariate in a post-hoc analysis. We found that migratory tendency, defined as the average distance between banding and recovery locations, varied geographically. Similarly, all models accounting for the majority of variation in recovery and survival probabilities included location of banding. Models that included age and sex received less support, but we lacked sufficient data to adequately assess these parameters. Model-averaged estimates of annual survival ranged from 0.21 in Michigan to 0.82 in Oklahoma. Heterogeneity in migration tendency and survival suggests that demographic patterns may vary across geographic scales, with implications for the population dynamics of this species.

  10. FISHER'S GEOMETRIC MODEL WITH A MOVING OPTIMUM

    PubMed Central

    Matuszewski, Sebastian; Hermisson, Joachim; Kopp, Michael

    2014-01-01

    Fisher's geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher's model in which a population adapts to a gradually moving optimum. Key parameters are the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correlations. We focus on the distribution of adaptive substitutions, that is, the multivariate distribution of the phenotypic effects of fixed beneficial mutations. Our main results are based on an “adaptive-walk approximation,” which is checked against individual-based simulations. We find that (1) the distribution of adaptive substitutions is strongly affected by the ecological dynamics and largely depends on a single composite parameter γ, which scales the rate of environmental change by the “adaptive potential” of the population; (2) the distribution of adaptive substitution reflects the shape of the fitness landscape if the environment changes slowly, whereas it mirrors the distribution of new mutations if the environment changes fast; (3) in contrast to classical models of adaptation assuming a constant optimum, with a moving optimum, more complex organisms evolve via larger adaptive steps. PMID:24898080

  11. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and duck-rice cultivation interacted ecology are not significant determinants for Bangladesh. These findings will refine current understanding of the HPAI-H5N1 epidemiology in Bangladesh. PMID:22470496

  12. How Complex, Probable, and Predictable is Genetically Driven Red Queen Chaos?

    PubMed

    Duarte, Jorge; Rodrigues, Carla; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2015-12-01

    Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.

  13. Model reduction for slow–fast stochastic systems with metastable behaviour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruna, Maria, E-mail: bruna@maths.ox.ac.uk; Computational Science Laboratory, Microsoft Research, Cambridge CB1 2FB; Chapman, S. Jonathan

    2014-05-07

    The quasi-steady-state approximation (or stochastic averaging principle) is a useful tool in the study of multiscale stochastic systems, giving a practical method by which to reduce the number of degrees of freedom in a model. The method is extended here to slow–fast systems in which the fast variables exhibit metastable behaviour. The key parameter that determines the form of the reduced model is the ratio of the timescale for the switching of the fast variables between metastable states to the timescale for the evolution of the slow variables. The method is illustrated with two examples: one from biochemistry (a fast-species-mediatedmore » chemical switch coupled to a slower varying species), and one from ecology (a predator–prey system). Numerical simulations of each model reduction are compared with those of the full system.« less

  14. Incorporating grazing into an eco-hydrologic model: Simulating coupled human and natural systems in rangelands

    NASA Astrophysics Data System (ADS)

    Reyes, J. J.; Liu, M.; Tague, C.; Choate, J. S.; Evans, R. D.; Johnson, K. A.; Adam, J. C.

    2013-12-01

    Rangelands provide an opportunity to investigate the coupled feedbacks between human activities and natural ecosystems. These areas comprise at least one-third of the Earth's surface and provide ecological support for birds, insects, wildlife and agricultural animals including grazing lands for livestock. Capturing the interactions among water, carbon, and nitrogen cycles within the context of regional scale patterns of climate and management is important to understand interactions, responses, and feedbacks between rangeland systems and humans, as well as provide relevant information to stakeholders and policymakers. The overarching objective of this research is to understand the full consequences, intended and unintended, of human activities and climate over time in rangelands by incorporating dynamics related to rangeland management into an eco-hydrologic model that also incorporates biogeochemical and soil processes. Here we evaluate our model over ungrazed and grazed sites for different rangeland ecosystems. The Regional Hydro-ecologic Simulation System (RHESSys) is a process-based, watershed-scale model that couples water with carbon and nitrogen cycles. Climate, soil, vegetation, and management effects within the watershed are represented in a nested landscape hierarchy to account for heterogeneity and the lateral movement of water and nutrients. We incorporated a daily time-series of plant biomass loss from rangeland to represent grazing. The TRY Plant Trait Database was used to parameterize genera of shrubs and grasses in different rangeland types, such as tallgrass prairie, Intermountain West cold desert, and shortgrass steppe. In addition, other model parameters captured the reallocation of carbon and nutrients after grass defoliation. Initial simulations were conducted at the Curlew Valley site in northern Utah, a former International Geosphere-Biosphere Programme Desert Biome site. We found that grasses were most sensitive to model parameters affecting the daily-to-yearly ratio of net primary productivity allocation of carbon, non-structural carbohydrate pool, rate of root turnover, and leaf on/off days. We also ran RHESSys over AmeriFlux sites representing a spectrum of rangeland ecosystems, such as at Konza Prairie (Kansas), Fort Peck (Montana), and Corral Pocket (Utah), as well as grazed versus ungrazed sites. We evaluated RHESSys using net ecosystem exchange . Competition between rangeland vegetation types with different physiological parameters, such as carbon:nitrogen ratio and specific leaf area within a single site were also tested. Preliminary results indicated both species-specific parameters and allocation controls were important to capturing the ecosystem response to environmental conditions. Furthermore, the addition of a grazing component allowed us to better capture impacts of management at grazed sites. Future research will involve incorporation of other grazing processes, such as impacts of excreta and increased nutrient availability and cycling.

  15. EVALUATING HYDROLOGICAL RESPONSE TO ...

    EPA Pesticide Factsheets

    Studies of future management and policy options based on different assumptions provide a mechanism to examine possible outcomes and especially their likely benefits or consequences. Planning and assessment in land and water resource management are evolving toward complex, spatially explicit regional assessments. These problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and temporal scales. The extensive data requirements and the difficult task of building input parameter files, however, have long been an obstacle to the timely and cost-effective use of such complex models by resource managers. The U.S. EPA Landscape Ecology Branch in collaboration with the USDA-ARS Southwest Watershed Research Center has developed a geographic information system (GIS) tool to facilitate this process. A GIS provides the framework within which spatially distributed data are collected and used to prepare model input files, and model results are evaluated. The Automated Geospatial Watershed Assessment (AGWA) tool uses widely available standardized spatial datasets that can be obtained via the internet at no cost to the user. The data are used to develop input parameter files for KINEROS2 and SWAT, two watershed runoff and erosion simulation models that operate at different spatial and temporal scales. AGWA automates the process of transforming digital data into simulation model results and provides a visualization tool

  16. Characterizing the spatial structure of endangered species habitat using geostatistical analysis of IKONOS imagery

    USGS Publications Warehouse

    Wallace, C.S.A.; Marsh, S.E.

    2005-01-01

    Our study used geostatistics to extract measures that characterize the spatial structure of vegetated landscapes from satellite imagery for mapping endangered Sonoran pronghorn habitat. Fine spatial resolution IKONOS data provided information at the scale of individual trees or shrubs that permitted analysis of vegetation structure and pattern. We derived images of landscape structure by calculating local estimates of the nugget, sill, and range variogram parameters within 25 ?? 25-m image windows. These variogram parameters, which describe the spatial autocorrelation of the 1-m image pixels, are shown in previous studies to discriminate between different species-specific vegetation associations. We constructed two independent models of pronghorn landscape preference by coupling the derived measures with Sonoran pronghorn sighting data: a distribution-based model and a cluster-based model. The distribution-based model used the descriptive statistics for variogram measures at pronghorn sightings, whereas the cluster-based model used the distribution of pronghorn sightings within clusters of an unsupervised classification of derived images. Both models define similar landscapes, and validation results confirm they effectively predict the locations of an independent set of pronghorn sightings. Such information, although not a substitute for field-based knowledge of the landscape and associated ecological processes, can provide valuable reconnaissance information to guide natural resource management efforts. ?? 2005 Taylor & Francis Group Ltd.

  17. [Ecological management model of agriculture-pasture ecotone based on the theory of energy and material flow--a case study in Houshan dryland area of Inner Mongolia].

    PubMed

    Fan, Jinlong; Pan, Zhihua; Zhao, Ju; Zheng, Dawei; Tuo, Debao; Zhao, Peiyi

    2004-04-01

    The degradation of ecological environment in the agriculture-pasture ecotone in northern China has been paid more attentions. Based on our many years' research and under the guide of energy and material flow theory, this paper put forward an ecological management model, with a hill as the basic cell and according to the natural, social and economic characters of Houshan dryland farming area inside the north agriculture-pasture ecotone. The input and output of three models, i.e., the traditional along-slope-tillage model, the artificial grassland model and the ecological management model, were observed and recorded in detail in 1999. Energy and material flow analysis based on field test showed that compared with traditional model, ecological management model could increase solar use efficiency by 8.3%, energy output by 8.7%, energy conversion efficiency by 19.4%, N output by 26.5%, N conversion efficiency by 57.1%, P output by 12.1%, P conversion efficiency by 45.0%, and water use efficiency by 17.7%. Among the models, artificial grassland model had the lowest solar use efficiency, energy output and energy conversion efficiency; while the ecological management model had the most outputs and benefits, was the best model with high economic effect, and increased economic benefits by 16.1%, compared with the traditional model.

  18. Fisher waves and front roughening in a two-species invasion model with preemptive competition.

    PubMed

    O'Malley, L; Kozma, B; Korniss, G; Rácz, Z; Caraco, T

    2006-10-01

    We study front propagation when an invading species competes with a resident; we assume nearest-neighbor preemptive competition for resources in an individual-based, two-dimensional lattice model. The asymptotic front velocity exhibits an effective power-law dependence on the difference between the two species' clonal propagation rates (key ecological parameters). The mean-field approximation behaves similarly, but the power law's exponent slightly differs from the individual-based model's result. We also study roughening of the front, using the framework of nonequilibrium interface growth. Our analysis indicates that initially flat, linear invading fronts exhibit Kardar-Parisi-Zhang (KPZ) roughening in one transverse dimension. Further, this finding implies, and is also confirmed by simulations, that the temporal correction to the asymptotic front velocity is of O(t(-2/3)).

  19. The value of information for woodland management: Updating a state–transition model

    USGS Publications Warehouse

    Morris, William K.; Runge, Michael C.; Vesk, Peter A.

    2017-01-01

    Value of information (VOI) analyses reveal the expected benefit of reducing uncertainty to a decision maker. Most ecological VOI analyses have focused on population models rarely addressing more complex community models. We performed a VOI analysis for a complex state–transition model of Box-Ironbark Forest and Woodland management. With three management alternatives (limited harvest/firewood removal (HF), ecological thinning (ET), and no management), managing the system optimally (for 150 yr) with the original information would, on average, increase the amount of forest in a desirable state from 19% to 35% (a 16-percentage point increase). Resolving all uncertainty would, on average, increase the final percentage to 42% (a 19-percentage point increase). However, only resolving the uncertainty for a single parameter was worth almost two-thirds the value of resolving all uncertainty. We found the VOI to depend on the number of management options, increasing as the management flexibility increased. Our analyses show it is more cost-effective to monitor low-density regrowth forest than other states and more cost-effective to experiment with the no-management alternative than the other management alternatives. Importantly, the most cost-effective strategies did not include either the most desired forest states or the least understood management strategy, ET. This implies that managers cannot just rely on intuition to tell them where the most VOI will lie, as critical uncertainties in a complex system are sometimes cryptic.

  20. Design and test of an object-oriented GIS to map plant species in the Southern Rockies

    NASA Technical Reports Server (NTRS)

    Morain, Stanley A.; Neville, Paul R. H.; Budge, Thomas K.; Morrison, Susan C.; Helfrich, Donald A.; Fruit, Sarah

    1993-01-01

    Elevational and latitudinal shifts occur in the flora of the Rocky Mountains due to long term climate change. In order to specify which species are successfully migrating with these changes, and which are not, an object-oriented, image-based geographic information system (GIS) is being created to animate evolving ecological regimes of temperature and precipitation. Research at the Earth Data Analysis Center (EDAC) is developing a landscape model that includes the spatial, spectral and temporal domains. It is designed to visualize migratory changes in the Rocky Mountain flora, and to specify future community compositions. The object-oriented database will eventually tag each of the nearly 6000 species with a unique hue, intensity, and saturation value, so their movements can be individually traced. An associated GIS includes environmental parameters that control the distribution of each species in the landscape, and satellite imagery is used to help visualize the terrain. Polygons for the GIS are delineated as landform facets that are static in ecological time. The model manages these facets as a triangular irregular net (TIN), and their analysis assesses the gradual progression of species as they migrate through the TIN. Using an appropriate climate change model, the goal will be to stop the modeling process to assess both the rate and direction of species' change and to specify the changing community composition of each landscape facet.

  1. A spatiotemporal model of ecological and sociological ...

    EPA Pesticide Factsheets

    Background/Question/Methods Suffolk County, New York is a locus for West Nile virus (WNV) infection in the American northeast that includes the majority of Long Island to the east of New York City. The county has a robust system of light and gravid traps used for mosquito collection and disease monitoring. Since 2010, there have been 55 confirmed human cases of WNV in Suffolk County, resulting in 3 deaths. In order to identify predictors of WNV incidence in mosquitoes and predict future occurrence of WNV we developed a spatiotemporal Bayesian model, beginning with over 40 ecological, meteorological, and built-environment covariates. A mixed effects model including spatially and temporally correlated errors was fit to WNV surveillance data from 2008-2014 using the R package 'R-INLA' which allows for Bayesian modeling using the stochastic partial differential equation (SPDE) approach. The INLA SPDE allows for simultaneous fitting of temporal parameters and a spatial covariance matrix, while incorporating multiple likelihood functions and running in standard R statistical software on a typical home computer. Results/Conclusions We found that land cover classified as open water or woody wetlands had a negative association with WNV incidence in mosquitoes, and the count of septic systems was associated with an increase in WNV. Mean temperature at two weeks lag was associated with a strong positive impact, while mean precipitation at no lag and

  2. Spatiotemporal modeling of ecological and sociological ...

    EPA Pesticide Factsheets

    Suffolk County, New York, is a locus for West Nile virus (WNV) infection in the American northeast that includes the majority of Long Island to the east of New York City. The county has a system of light and gravid traps used for mosquito collection and disease monitoring. In order to identify predictors of WNV incidence in mosquitoes and predict future occurrence of WNV, we have developed a spatiotemporal Bayesian model, beginning with over 40 ecological, meteorological, and built-environment covariates. A mixed-effects model including spatially and temporally correlated errors was fit to WNV surveillance data from 2008 to 2014 using the R package “R-INLA,” which allows for Bayesian modeling using the stochastic partial differential equation (SPDE) approach. The integrated nested Laplace approximation (INLA) SPDE allows for simultaneous fitting of a temporal parameter and a spatial covariance, while incorporating a variety of likelihood functions and running in R statistical software on a home computer. We found that land cover classified as open water and woody wetlands had a negative association with WNV incidence in mosquitoes, and the count of septic systems was associated with an increase in WNV. Mean temperature at two-week lag was associated with a strong positive impact, while mean precipitation at no lag and one-week lag was associated with positive and negative impacts on WNV, respectively. Incorporation of spatiotemporal factors resulted in a mar

  3. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options.

  4. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes

    PubMed Central

    Curtis, Janelle M.R.

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options. PMID:27547529

  5. The basis function approach for modeling autocorrelation in ecological data

    USGS Publications Warehouse

    Hefley, Trevor J.; Broms, Kristin M.; Brost, Brian M.; Buderman, Frances E.; Kay, Shannon L.; Scharf, Henry; Tipton, John; Williams, Perry J.; Hooten, Mevin B.

    2017-01-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.

  6. Special Issue: Ecological Modelling Global Conference 2016: 20th Biennial ISEM Conference, 8 - 12 May 2016, Towson, Maryland, USA.

    EPA Science Inventory

    This Special Issue contains a collection of papers presented at The Ecological Modelling Global Conference 2016: 20th Biennial International Society of Ecological Modelling (ISEM) Conference which was held at Towson University, Maryland, United States. Over the past 40+ years, E...

  7. Increasing the reliability of ecological models using modern software engineering techniques

    Treesearch

    Robert M. Scheller; Brian R. Sturtevant; Eric J. Gustafson; Brendan C. Ward; David J. Mladenoff

    2009-01-01

    Modern software development techniques are largely unknown to ecologists. Typically, ecological models and other software tools are developed for limited research purposes, and additional capabilities are added later, usually in an ad hoc manner. Modern software engineering techniques can substantially increase scientific rigor and confidence in ecological models and...

  8. Abstracts and program proceedings of the 1994 meeting of the International Society for Ecological Modelling North American Chapter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kercher, J.R.

    1994-06-01

    This document contains information about the 1994 meeting of the International Society for Ecological Modelling North American Chapter. The topics discussed include: extinction risk assessment modelling, ecological risk analysis of uranium mining, impacts of pesticides, demography, habitats, atmospheric deposition, and climate change.

  9. Activity-specific ecological niche models for planning reintroductions of California condors (Gymnogyps californianus)

    Treesearch

    Jesse D’Elia; Susan M. Haig; Matthew Johnson; Richard Young; Bruce G. Marcot

    2015-01-01

    Ecological niche models can be a useful tool to identify candidate reintroduction sites for endangered species but have been infrequently used for this purpose. In this paper, we (1) develop activity-specific ecological niche models (nesting, roosting, and feeding) for the critically endangered California condor (Gymnogyps californianus) to aid in...

  10. Simulation modeling of forest landscape disturbances: An overview

    Treesearch

    Ajith H. Perera; Brian R. Sturtevant; Lisa J. Buse

    2015-01-01

    Quantification of ecological processes and formulation of the mathematical expressions that describe those processes in computer models has been a cornerstone of landscape ecology research and its application. Consequently, the body of publications on simulation models in landscape ecology has grown rapidly in recent decades. This trend is also evident in the subfield...

  11. Predicting Consumer Biomass, Size-Structure, Production, Catch Potential, Responses to Fishing and Associated Uncertainties in the World's Marine Ecosystems.

    PubMed

    Jennings, Simon; Collingridge, Kate

    2015-01-01

    Existing estimates of fish and consumer biomass in the world's oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1 kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts.

  12. Activity-specific ecological niche models for planning reintroductions of California condors (Gymnogyps californianus)

    USGS Publications Warehouse

    D'Elia, Jesse; Haig, Susan M.; Johnson, Matthew J.; Marcot, Bruce G.; Young, Richard

    2015-01-01

    Ecological niche models can be a useful tool to identify candidate reintroduction sites for endangered species but have been infrequently used for this purpose. In this paper, we (1) develop activity-specific ecological niche models (nesting, roosting, and feeding) for the critically endangered California condor (Gymnogyps californianus) to aid in reintroduction planning in California, Oregon, and Washington, USA, (2) test the accuracy of these models using empirical data withheld from model development, and (3) integrate model results with information on condor movement ecology and biology to produce predictive maps of reintroduction site suitability. Our approach, which disentangles niche models into activity-specific components, has applications for other species where it is routinely assumed (often incorrectly) that individuals fulfill all requirements for life within a single environmental space. Ecological niche models conformed to our understanding of California condor ecology, had good predictive performance when tested with data withheld from model development, and aided in the identification of several candidate reintroduction areas outside of the current distribution of the species. Our results suggest there are large unoccupied regions of the California condor’s historical range that have retained ecological features similar to currently occupied habitats, and thus could be considered for future reintroduction efforts. Combining our activity-specific ENMs with ground reconnaissance and information on other threat factors that could not be directly incorporated into empirical ENMs will ultimately improve our ability to select successful reintroduction sites for the California condor.

  13. Exploring the effects of spatial autocorrelation when identifying key drivers of wildlife crop-raiding.

    PubMed

    Songhurst, Anna; Coulson, Tim

    2014-03-01

    Few universal trends in spatial patterns of wildlife crop-raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human-wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop-raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop-raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P-values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio-ecological drivers of wildlife crop-raiding is paramount for designing mitigation and land-use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.

  14. Patterns and controlling factors of species diversity in the Arctic Ocean

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, Gene; van Dijken, Gert; Arrigo, Kevin R.; Cronin, Thomas M.; Wollenburg, Jutta E.

    2012-01-01

    Aim  The Arctic Ocean is one of the last near-pristine regions on Earth, and, although human activities are expected to impact on Arctic ecosystems, we know very little about baseline patterns of Arctic Ocean biodiversity. This paper aims to describe Arctic Ocean-wide patterns of benthic biodiversity and to explore factors related to the large-scale species diversity patterns.Location  Arctic Ocean.Methods  We used large ostracode and foraminiferal datasets to describe the biodiversity patterns and applied comprehensive ecological modelling to test the degree to which these patterns are potentially governed by environmental factors, such as temperature, productivity, seasonality, ice cover and others. To test environmental control of the observed diversity patterns, subsets of samples for which all environmental parameters were available were analysed with multiple regression and model averaging.Results  Well-known negative latitudinal species diversity gradients (LSDGs) were found in metazoan Ostracoda, but the LSDGs were unimodal with an intermediate maximum with respect to latitude in protozoan foraminifera. Depth species diversity gradients were unimodal, with peaks in diversity shallower than those in other oceans. Our modelling results showed that several factors are significant predictors of diversity, but the significant predictors were different among shallow marine ostracodes, deep-sea ostracodes and deep-sea foraminifera.Main conclusions  On the basis of these Arctic Ocean-wide comprehensive datasets, we document large-scale diversity patterns with respect to latitude and depth. Our modelling results suggest that the underlying mechanisms causing these species diversity patterns are unexpectedly complex. The environmental parameters of temperature, surface productivity, seasonality of productivity, salinity and ice cover can all play a role in shaping large-scale diversity patterns, but their relative importance may depend on the ecological preferences of taxa and the oceanographic context of regions. These results suggest that a multiplicity of variables appear to be related to community structure in this system.

  15. Matematical modeling of galophytic plants productivity taking into account the temperature factor and soil salinity level

    NASA Astrophysics Data System (ADS)

    Natalia, Slyusar; Pisman, Tamara; Pechurkin, Nikolai S.

    Among the most challenging tasks faced by contemporary ecology is modeling of biological production process in different plant communities. The difficulty of the task is determined by the complexity of the study material. Models showing the influence of climate and climate change on plant growth, which would also involve soil site parameters, could be of both practical and theoretical interest. In this work a mathematical model has been constructed to describe the growth dynamics of different plant communities of halophytic meadows as dependent upon the temperature factor and soil salinity level, which could be further used to predict yields of these plant communities. The study was performed on plants of halophytic meadows in the coastal area of Lake of the Republic of Khakasia in 2004 - 2006. Every plant community grew on the soil of a different level of salinity - the amount of the solid residue of the saline soil aqueous extract. The mathematical model was analyzed using field data of 2004 and 2006, the years of contrasting air temperatures. Results of model investigations show that there is a correlation between plant growth and the temperature of the air for plant communities growing on soils containing the lowest (0.1Thus, results of our study, in which we used a mathematical model describing the development of plant communities of halophytic meadows and field measurements, suggest that both climate conditions (temperature) and ecological factors of the plants' habitat (soil salinity level) should be taken into account when constructing models for predicting crop yields.

  16. Monitoring and assessment of anthropogenic activities in mountain lakes: a case of the Fifth Triglav Lake in the Julian Alps.

    PubMed

    Ravnikar, Tina; Bohanec, Marko; Muri, Gregor

    2016-04-01

    The Fifth Triglav Lake is a remote mountain lake in the Julian Alps. The area of the Julian Alps where the lake is situated is protected by law and lies within the Triglav National Park. Mountain lakes in Slovenia were considered for a long time as pristine, unpolluted lakes, but analyses in the last decade revealed considerable human impact even in such remote places. Eutrophication or excessive accumulation of nutrients is the main problem of most lakes in the temperate climatic zone, also in Slovenia. Since the introduction of fish in 1991, the lake is going through a series of changes for which we do not know exactly where they lead, so the monitoring and assessment of anthropogenic activities are of great importance. For this purpose, a qualitative multiattribute decision model was developed with DEX method to assess ecological effects on the lake. The extent of the ecological effects on the lake is assessed using four main parameters: the trophic state, lake characteristics, environmental parameters, and anthropogenic stressors. Dependence of environmental impact on various external factors beyond human control, such as temperature, precipitation, retention time, and factors on which we have influence, such as the amount of wastewater and the presence of fish in the lake, were also evaluated. The following data were measured: chlorophyll a, nutrients, TP, oxygen, C/N ratio, nutrients in sediment, temperature, precipitation, retention time, and volume. We made assumptions about fish and wastewater, which we could not measure. The main contributions of this work are the designed model and the obtained findings for the Fifth Triglav Lake that can help not only scientists in understanding the complexity of lake-watershed systems and interactions among system components but also local authorities to manage and monitor the lake aquatic environment in an effective and efficient way. The model is flexible and can be also used for other lakes, assuming that the used parameters are measured and anthropogenic stressors are adjusted to a specific situation. The results of assessment are of particular interest for decision makers in protected areas, providing a new approach to the management of the quality of the water environment.

  17. The application of the Internet of Things to animal ecology.

    PubMed

    Guo, Songtao; Qiang, Min; Luan, Xiaorui; Xu, Pengfei; He, Gang; Yin, Xiaoyan; Xi, Luo; Jin, Xuelin; Shao, Jianbin; Chen, Xiaojiang; Fang, Dingyi; Li, Baoguo

    2015-11-01

    For ecologists, understanding the reaction of animals to environmental changes is critical. Using networked sensor technology to measure wildlife and environmental parameters can provide accurate, real-time and comprehensive data for monitoring, research and conservation of wildlife. This paper reviews: (i) conventional detection technology; (ii) concepts and applications of the Internet of Things (IoT) in animal ecology; and (iii) the advantages and disadvantages of IoT. The current theoretical limits of IoT in animal ecology are also discussed. Although IoT offers a new direction in animal ecological research, it still needs to be further explored and developed as a theoretical system and applied to the appropriate scientific frameworks for understanding animal ecology. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  18. Exploring the Mechanisms of Ecological Land Change Based on the Spatial Autoregressive Model: A Case Study of the Poyang Lake Eco-Economic Zone, China

    PubMed Central

    Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai

    2013-01-01

    Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant positive spatial correlation (p < 0.05). The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model. PMID:24384778

  19. Long-term impacts of selective logging on two Amazonian tree species with contrasting ecological and reproductive characteristics: inferences from Eco-gene model simulations.

    PubMed

    Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T C R; Harris, S A; Boshier, D H

    2015-08-01

    The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests.

  20. Long-term impacts of selective logging on two Amazonian tree species with contrasting ecological and reproductive characteristics: inferences from Eco-gene model simulations

    PubMed Central

    Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T CR; Harris, S A; Boshier, D H

    2015-01-01

    The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests. PMID:24424164

  1. Methods for assessing movement path recursion with application to African buffalo in South Africa

    USGS Publications Warehouse

    Bar-David, S.; Bar-David, I.; Cross, P.C.; Ryan, S.J.; Knechtel, C.U.; Getz, W.M.

    2009-01-01

    Recent developments of automated methods for monitoring animal movement, e.g., global positioning systems (GPS) technology, yield high-resolution spatiotemporal data. To gain insights into the processes creating movement patterns, we present two new techniques for extracting information from these data on repeated visits to a particular site or patch ("recursions"). Identification of such patches and quantification of recursion pathways, when combined with patch-related ecological data, should contribute to our understanding of the habitat requirements of large herbivores, of factors governing their space-use patterns, and their interactions with the ecosystem. We begin by presenting output from a simple spatial model that simulates movements of large-herbivore groups based on minimal parameters: resource availability and rates of resource recovery after a local depletion. We then present the details of our new techniques of analyses (recursion analysis and circle analysis) and apply them to data generated by our model, as well as two sets of empirical data on movements of African buffalo (Syncerus coffer): the first collected in Klaserie Private Nature Reserve and the second in Kruger National Park, South Africa. Our recursion analyses of model outputs provide us with a basis for inferring aspects of the processes governing the production of buffalo recursion patterns, particularly the potential influence of resource recovery rate. Although the focus of our simulations was a comparison of movement patterns produced by different resource recovery rates, we conclude our paper with a comprehensive discussion of how recursion analyses can be used when appropriate ecological data are available to elucidate various factors influencing movement. Inter alia, these include the various limiting and preferred resources, parasites, and topographical and landscape factors. ?? 2009 by the Ecological Society of America.

  2. Integration of environmental simulation models with satellite remote sensing and geographic information systems technologies: case studies

    USGS Publications Warehouse

    Steyaert, Louis T.; Loveland, Thomas R.; Brown, Jesslyn F.; Reed, Bradley C.

    1993-01-01

    Environmental modelers are testing and evaluating a prototype land cover characteristics database for the conterminous United States developed by the EROS Data Center of the U.S. Geological Survey and the University of Nebraska Center for Advanced Land Management Information Technologies. This database was developed from multi temporal, 1-kilometer advanced very high resolution radiometer (AVHRR) data for 1990 and various ancillary data sets such as elevation, ecological regions, and selected climatic normals. Several case studies using this database were analyzed to illustrate the integration of satellite remote sensing and geographic information systems technologies with land-atmosphere interactions models at a variety of spatial and temporal scales. The case studies are representative of contemporary environmental simulation modeling at local to regional levels in global change research, land and water resource management, and environmental simulation modeling at local to regional levels in global change research, land and water resource management and environmental risk assessment. The case studies feature land surface parameterizations for atmospheric mesoscale and global climate models; biogenic-hydrocarbons emissions models; distributed parameter watershed and other hydrological models; and various ecological models such as ecosystem, dynamics, biogeochemical cycles, ecotone variability, and equilibrium vegetation models. The case studies demonstrate the important of multi temporal AVHRR data to develop to develop and maintain a flexible, near-realtime land cover characteristics database. Moreover, such a flexible database is needed to derive various vegetation classification schemes, to aggregate data for nested models, to develop remote sensing algorithms, and to provide data on dynamic landscape characteristics. The case studies illustrate how such a database supports research on spatial heterogeneity, land use, sensitivity analysis, and scaling issues involving regional extrapolations and parameterizations of dynamic land processes within simulation models.

  3. Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance

    USGS Publications Warehouse

    Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.

    2010-01-01

    Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.

  4. Integrating human and natural systems in community psychology: an ecological model of stewardship behavior.

    PubMed

    Moskell, Christine; Allred, Shorna Broussard

    2013-03-01

    Community psychology (CP) research on the natural environment lacks a theoretical framework for analyzing the complex relationship between human systems and the natural world. We introduce other academic fields concerned with the interactions between humans and the natural environment, including environmental sociology and coupled human and natural systems. To demonstrate how the natural environment can be included within CP's ecological framework, we propose an ecological model of urban forest stewardship action. Although ecological models of behavior in CP have previously modeled health behaviors, we argue that these frameworks are also applicable to actions that positively influence the natural environment. We chose the environmental action of urban forest stewardship because cities across the United States are planting millions of trees and increased citizen participation in urban tree planting and stewardship will be needed to sustain the benefits provided by urban trees. We used the framework of an ecological model of behavior to illustrate multiple levels of factors that may promote or hinder involvement in urban forest stewardship actions. The implications of our model for the development of multi-level ecological interventions to foster stewardship actions are discussed, as well as directions for future research to further test and refine the model.

  5. The Evaluation of Land Ecological Safety of Chengchao Iron Mine Based on PSR and MEM

    NASA Astrophysics Data System (ADS)

    Jin, Xiangdong; Chen, Yong

    2018-01-01

    Land ecological security is of vital importance to local security and sustainable development of mining activities. The study has analyzed the potential causal chains between the land ecological security of Iron Mine mining environment, mine resource and the social-economic background. On the base of Pressure-State-Response model, the paper set up a matter element evaluation model of land ecological security, and applies it in Chengchao iron mine. The evaluation result proves to be effective in land ecological evaluation.

  6. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    NASA Technical Reports Server (NTRS)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  7. Panaceas, uncertainty, and the robust control framework in sustainability science

    PubMed Central

    Anderies, John M.; Rodriguez, Armando A.; Janssen, Marco A.; Cifdaloz, Oguzhan

    2007-01-01

    A critical challenge faced by sustainability science is to develop strategies to cope with highly uncertain social and ecological dynamics. This article explores the use of the robust control framework toward this end. After briefly outlining the robust control framework, we apply it to the traditional Gordon–Schaefer fishery model to explore fundamental performance–robustness and robustness–vulnerability trade-offs in natural resource management. We find that the classic optimal control policy can be very sensitive to parametric uncertainty. By exploring a large class of alternative strategies, we show that there are no panaceas: even mild robustness properties are difficult to achieve, and increasing robustness to some parameters (e.g., biological parameters) results in decreased robustness with respect to others (e.g., economic parameters). On the basis of this example, we extract some broader themes for better management of resources under uncertainty and for sustainability science in general. Specifically, we focus attention on the importance of a continual learning process and the use of robust control to inform this process. PMID:17881574

  8. Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach—A Case Study for the City of Wuhan in China

    PubMed Central

    Gao, Yuan; Zhang, Chuanrong; He, Qingsong; Liu, Yaolin

    2017-01-01

    Ecological security is an important research topic, especially urban ecological security. As highly populated eco-systems, cities always have more fragile ecological environments. However, most of the research on urban ecological security in literature has focused on evaluating current or past status of the ecological environment. Very little literature has carried out simulation or prediction of future ecological security. In addition, there is even less literature exploring the urban ecological environment at a fine scale. To fill-in the literature gap, in this study we simulated and predicted urban ecological security at a fine scale (district level) using an improved Cellular Automata (CA) approach. First we used the pressure-state-response (PSR) method based on grid-scale data to evaluate urban ecological security. Then, based on the evaluation results, we imported the geographically weighted regression (GWR) concept into the CA model to simulate and predict urban ecological security. We applied the improved CA approach in a case study—simulating and predicting urban ecological security for the city of Wuhan in Central China. By comparing the simulated ecological security values from 2010 using the improved CA model to the actual ecological security values of 2010, we got a relatively high value of the kappa coefficient, which indicates that this CA model can simulate or predict well future development of ecological security in Wuhan. Based on the prediction results for 2020, we made some policy recommendations for each district in Wuhan. PMID:28617348

  9. A new parameterization for integrated population models to document amphibian reintroductions.

    PubMed

    Duarte, Adam; Pearl, Christopher A; Adams, Michael J; Peterson, James T

    2017-09-01

    Managers are increasingly implementing reintroduction programs as part of a global effort to alleviate amphibian declines. Given uncertainty in factors affecting populations and a need to make recurring decisions to achieve objectives, adaptive management is a useful component of these efforts. A major impediment to the estimation of demographic rates often used to parameterize and refine decision-support models is that life-stage-specific monitoring data are frequently sparse for amphibians. We developed a new parameterization for integrated population models to match the ecology of amphibians and capitalize on relatively inexpensive monitoring data to document amphibian reintroductions. We evaluate the capability of this model by fitting it to Oregon spotted frog (Rana pretiosa) monitoring data collected from 2007 to 2014 following their reintroduction within the Klamath Basin, Oregon, USA. The number of egg masses encountered and the estimated adult and metamorph abundances generally increased following reintroduction. We found that survival probability from egg to metamorph ranged from 0.01 in 2008 to 0.09 in 2009 and was not related to minimum spring temperatures, metamorph survival probability ranged from 0.13 in 2010-2011 to 0.86 in 2012-2013 and was positively related to mean monthly temperatures (logit-scale slope = 2.37), adult survival probability was lower for founders (0.40) than individuals recruited after reintroduction (0.56), and the mean number of egg masses per adult female was 0.74. Our study is the first to test hypotheses concerning Oregon spotted frog egg-to-metamorph and metamorph-to-adult transition probabilities in the wild and document their response at multiple life stages following reintroduction. Furthermore, we provide an example to illustrate how the structure of our integrated population model serves as a useful foundation for amphibian decision-support models within adaptive management programs. The integration of multiple, but related, data sets has an advantage of being able to estimate complex ecological relationships across multiple life stages, offering a modeling framework that accommodates uncertainty, enforces parsimony, and ensures all model parameters can be confronted with monitoring data. © 2017 by the Ecological Society of America.

  10. A Global Lake Ecological Observatory Network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models

    USGS Publications Warehouse

    David, Hamilton P; Carey, Cayelan C.; Arvola, Lauri; Arzberger, Peter; Brewer, Carol A.; Cole, Jon J; Gaiser, Evelyn; Hanson, Paul C.; Ibelings, Bas W; Jennings, Eleanor; Kratz, Tim K; Lin, Fang-Pang; McBride, Christopher G.; de Motta Marques, David; Muraoka, Kohji; Nishri, Ami; Qin, Boqiang; Read, Jordan S.; Rose, Kevin C.; Ryder, Elizabeth; Weathers, Kathleen C.; Zhu, Guangwei; Trolle, Dennis; Brookes, Justin D

    2014-01-01

    A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated response to the need for scientific understanding of lake processes, utilising technological advances available from autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process- based ecological models because model simulation time steps are better aligned with sensor measurements than with lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. The case studies demonstrate some of the difficulties of mapping sensor measurements directly to model state variable outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest.

  11. The use of mechanistic descriptions of algal growth and zooplankton grazing in an estuarine eutrophication model

    NASA Astrophysics Data System (ADS)

    Baird, M. E.; Walker, S. J.; Wallace, B. B.; Webster, I. T.; Parslow, J. S.

    2003-03-01

    A simple model of estuarine eutrophication is built on biomechanical (or mechanistic) descriptions of a number of the key ecological processes in estuaries. Mechanistically described processes include the nutrient uptake and light capture of planktonic and benthic autotrophs, and the encounter rates of planktonic predators and prey. Other more complex processes, such as sediment biogeochemistry, detrital processes and phosphate dynamics, are modelled using empirical descriptions from the Port Phillip Bay Environmental Study (PPBES) ecological model. A comparison is made between the mechanistically determined rates of ecological processes and the analogous empirically determined rates in the PPBES ecological model. The rates generally agree, with a few significant exceptions. Model simulations were run at a range of estuarine depths and nutrient loads, with outputs presented as the annually averaged biomass of autotrophs. The simulations followed a simple conceptual model of eutrophication, suggesting a simple biomechanical understanding of estuarine processes can provide a predictive tool for ecological processes in a wide range of estuarine ecosystems.

  12. Mapping spatial patterns of denitrifiers at large scales (Invited)

    NASA Astrophysics Data System (ADS)

    Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.

    2010-12-01

    Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.

  13. The Bayesian group lasso for confounded spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.

    2017-01-01

    Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.

  14. [Application of land economic ecological niche in landscape pattern analysis at county level: A case study of Jinghe County in Xinjiang, China].

    PubMed

    Yu, Hai-yang; Zhang, Fei; Wang, Juan; Zhou, Mei

    2015-12-01

    The theory of land economic ecological niche was used to analyze the regional landscape pattern in this article, with an aim to provide a new method for the characterization and representation of landscape pattern. The Jinghe County region, which is ecologically fragile, was selected as an example for the study, and the Landsat images of 1990, 1998, 2011 and 2013 were selected as remote sensing data. The land economic ecological niche of land use types calculated by ecostate-ecorole theory, combined with landscape ecology theory, was discussed in application of land economic ecological niche in county landscape pattern analysis. The results showed that, during the study period, the correlations between land economic ecological niche of farmland, construction land, and grassland with the parameters, including landscape patch number (NP), aggregated index (AI), fragmented index (FN) and fractal dimension (FD), were significant. Regional landscape was driven by the changes of land economic ecological niche, and the trend of economic development could be represented by land economic ecological niche change in Jinghe County. Land economic ecological niche was closely related with the land use types which could yield direct economic benefits, which could well explain the landscape pattern characteristics in Jinghe County when combined with the landscape indices.

  15. System dynamic modelling of industrial growth and landscape ecology in China.

    PubMed

    Xu, Jian; Kang, Jian; Shao, Long; Zhao, Tianyu

    2015-09-15

    With the rapid development of large industrial corridors in China, the landscape ecology of the country is currently being affected. Therefore, in this study, a system dynamic model with multi-dimensional nonlinear dynamic prediction function that considers industrial growth and landscape ecology is developed and verified to allow for more sustainable development. Firstly, relationships between industrial development and landscape ecology in China are examined, and five subsystems are then established: industry, population, urban economy, environment and landscape ecology. The main influencing factors are then examined for each subsystem to establish flow charts connecting those factors. Consequently, by connecting the subsystems, an overall industry growth and landscape ecology model is established. Using actual data and landscape index calculated based on GIS of the Ha-Da-Qi industrial corridor, a typical industrial corridor in China, over the period 2005-2009, the model is validated in terms of historical behaviour, logical structure and future prediction, where for 84.8% of the factors, the error rate of the model is less than 5%, the mean error rate of all factors is 2.96% and the error of the simulation test for the landscape ecology subsystem is less than 2%. Moreover, a model application has been made to consider the changes in landscape indices under four industrial development modes, and the optimal industrial growth plan has been examined for landscape ecological protection through the simulation prediction results over 2015-2020. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A Sense of Place: Integrating Environmental Psychology into Marine Socio-Ecological Models

    NASA Astrophysics Data System (ADS)

    van Putten, I. E.; Fleming, A.; Fulton, E.; Plaganyi-Lloyd, E.

    2016-02-01

    Sense of place is a concept that is increasingly applied in different social research contexts where it can act as a bridge between disciplines that might otherwise work in parallel. A sense of place is a well established and flexible concept that has been empirically measured using different survey methods. The psychological principals and theories that underpin sense of place have been inextricably linked to the quality of ecological systems and the impact on development of the system, and vice versa. Ecological models and scenario analyses play an important role in characterising, assessing and predicting the potential impacts of alternative developments and other changes affecting ecological systems. To improve the predictive accuracy of ecological models, human drivers, interactions, and uses have been dynamically incorporated, for instance, through management strategy evaluation applied to marine ecosystem models. However, to date no socio-ecological models (whether terrestrial or marine) have been developed that incorporate a dynamic feedback between ecosystem characteristics and peoples' sense of place. These models thus essentially ignore the influence of environmental psychology on the way people use and interact with ecosystems. We develop a proof of concept and provide a mathematical basis for a Sense of Place Index (SoPI) that allows the quantitative integration of environmental psychology into socio-ecological models. Incorporating dynamic feedback between the SoPI for different resource user groups and the ecological system improves the accuracy and precision of predictions regarding future resource use as well as, ultimately, the potential state of the resource to be developed.

  17. Ecological Characterization Data for the 2004 Composite Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, Janelle L.; Simmons, Mary A.; Stegen, Jennifer A.

    2004-11-01

    A composite analysis is required by U.S. Department of Energy (DOE) Order 435.1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site. The original Hanford Site Composite Analysis of 1998 must be revised and submitted to DOE Headquarters (DOE-HQ) in 2004 because of revisions to waste site information in the 100, 200, and 300 Areas, updated performance assessments and environmental impact statements (EIS), changes in inventory estimates for key sites and constituents, and a change in the definition of offsite receptors. Beginning in fiscal year (FY) 2003, themore » DOE Richland Operations Office (DOE-RL) initiated activities, including the development of data packages, to support the 2004 Composite Analysis. This report describes the data compiled in FY 2003 to support ecological site assessment modeling for the 2004 Composite Analysis. This work was conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project (formerly the Groundwater Protection Program) managed by Fluor Hanford, Inc., Richland, Washington. The purpose of this report is to provide summaries of the characterization information and available spatial data on the biological resources and ecological receptors found in the upland, riparian, aquatic, and island habitats on the Hanford Site. These data constitute the reference information used to establish parameters for the ecological risk assessment module of the System Assessment Capability and other assessment activities requiring information on the presence and distribution of biota on the Hanford Site.« less

  18. Use of In-Situ and Remotely Sensed Snow Observations for the National Water Model in Both an Analysis and Calibration Framework.

    NASA Astrophysics Data System (ADS)

    Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.

    2017-12-01

    Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.

  19. Identifying hydrological regime and eco-flow threshold of small and medium flood of the Xiaoqing River in Jinan city

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Cao, Sheng-Le

    2017-06-01

    It was known that hydrological regime was the main influencing factor of river ecosystem, but the regime of different flow rates of urban rivers was poorly understood. We collected daily inflows at the Huangtai station of the Xiaoqing River from 1960 to 2014 and divided the data into three periods. Then we calculated hydrological parameters by the method of EFCs (Environmental Flow Components) and analyzed the tendency and change rates of each component respectively in the three periods. Combined with the ecological significance of environmental flow components, we identified the small and medium flood had the greatest impact on the river regime and ecosystem. And then we used the hydraulic parameters in the good ecosystem period as control conditions, to calculate the ecological threshold of the flow component under the current situation. This study could provide technical support for restoring and improving hydrological regime and ecological environment of the Xiaoqing River in Jinan city.

  20. Population energetics and ecology of the rock grasshopper, Trimerotropis saxatilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, K.M.; Crossley, D.A. Jr.

    The ecology and bioenergetics of a population of Trimerotropis saxatilis (Acrididae) were examined in field and laboratory studies. This grasshopper species occurs on harsh, desert-like rock outcrops in the southeastern United States and constitutes one of the important consumers in those ecosystems. The rock grasshopper population studied was located on Panola Mountain, approximately 16 km southeast of Atlanta, Georgia, USA. Supplemental population data were collected from a nearby granite outcrop, Mt. Arabia. The energy budget equation used was: Production = Ingestion - Egestion - Respiration. Production, ingestion and respiration were measured, and egestion was determined by difference. The energy budgetmore » and population ecology parameters for T. saxatilis were compared with those reported for other orthopteran species. The parameters for T. saxatilis were smaller than for any other population studied, reflecting their adaptation to the harsh environment in which they live. Efficiencies, including production/ingestion and assimilation/ingestion, calculated for several orthopteran populations, were found to be relatively constant, indicating that herbivorous orthopterans function similarly in different ecosystems.« less

Top