Sample records for ecological processes underlying

  1. Baseflow physical characteristics differ at multiple spatial scales in stream networks across diverse biomes

    Treesearch

    Janine Ruegg; Walter K. Dodds; Melinda D. Daniels; Ken R. Sheehan; Christina L. Baker; William B. Bowden; Kaitlin J. Farrell; Michael B. Flinn; Tamara K. Harms; Jeremy B. Jones; Lauren E. Koenig; John S. Kominoski; William H. McDowell; Samuel P. Parker; Amy D. Rosemond; Matt T. Trentman; Matt Whiles; Wilfred M. Wollheim

    2016-01-01

    ContextSpatial scaling of ecological processes is facilitated by quantifying underlying habitat attributes. Physical and ecological patterns are often measured at disparate spatial scales limiting our ability to quantify ecological processes at broader spatial scales using physical attributes.

  2. Ecological Risk Assessment Process under the Endangered Species Act

    EPA Pesticide Factsheets

    This document provides an overview of the Environmental Protection Agency’s (EPA) ecological risk assessment process for the evaluation of potential risk to endangered and threatened (listed) species from exposure to pesticides.

  3. Bayesian change-point analyses in ecology

    Treesearch

    Brian Bekcage; Lawrence Joseph; Patrick Belisle; David B. Wolfson; William J. Platt

    2007-01-01

    Ecological and biological processes can change from one state to another once a threshold has been crossed in space or time. Threshold responses to incremental changes in underlying variables can characterize diverse processes from climate change to the desertification of arid lands from overgrazing.

  4. Process-based models are required to manage ecological systems in a changing world

    Treesearch

    K. Cuddington; M.-J. Fortin; L.R. Gerber; A. Hastings; A. Liebhold; M. OConnor; C. Ray

    2013-01-01

    Several modeling approaches can be used to guide management decisions. However, some approaches are better fitted than others to address the problem of prediction under global change. Process-based models, which are based on a theoretical understanding of relevant ecological processes, provide a useful framework to incorporate specific responses to altered...

  5. Estimation and Application of Ecological Memory Functions in Time and Space

    NASA Astrophysics Data System (ADS)

    Itter, M.; Finley, A. O.; Dawson, A.

    2017-12-01

    A common goal in quantitative ecology is the estimation or prediction of ecological processes as a function of explanatory variables (or covariates). Frequently, the ecological process of interest and associated covariates vary in time, space, or both. Theory indicates many ecological processes exhibit memory to local, past conditions. Despite such theoretical understanding, few methods exist to integrate observations from the recent past or within a local neighborhood as drivers of these processes. We build upon recent methodological advances in ecology and spatial statistics to develop a Bayesian hierarchical framework to estimate so-called ecological memory functions; that is, weight-generating functions that specify the relative importance of local, past covariate observations to ecological processes. Memory functions are estimated using a set of basis functions in time and/or space, allowing for flexible ecological memory based on a reduced set of parameters. Ecological memory functions are entirely data driven under the Bayesian hierarchical framework—no a priori assumptions are made regarding functional forms. Memory function uncertainty follows directly from posterior distributions for model parameters allowing for tractable propagation of error to predictions of ecological processes. We apply the model framework to simulated spatio-temporal datasets generated using memory functions of varying complexity. The framework is also applied to estimate the ecological memory of annual boreal forest growth to local, past water availability. Consistent with ecological understanding of boreal forest growth dynamics, memory to past water availability peaks in the year previous to growth and slowly decays to zero in five to eight years. The Bayesian hierarchical framework has applicability to a broad range of ecosystems and processes allowing for increased understanding of ecosystem responses to local and past conditions and improved prediction of ecological processes.

  6. Simulation of Regionally Ecological Land Based on a Cellular Automation Model: A Case Study of Beijing, China

    PubMed Central

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-01-01

    Ecological land is like the “liver” of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem. PMID:23066410

  7. Simulation of regionally ecological land based on a cellular automation model: a case study of Beijing, China.

    PubMed

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-08-01

    Ecological land is like the "liver" of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem.

  8. Annual Research Review: What is resilience within the social ecology of human development?

    PubMed

    Ungar, Michael; Ghazinour, Mehdi; Richter, Jörg

    2013-04-01

      The development of Bronfenbrenner's bio-social-ecological systems model of human development parallels advances made to the theory of resilience that progressively moved from a more individual (micro) focus on traits to a multisystemic understanding of person-environment reciprocal processes.   This review uses Bronfenbrenner's model and Ungar's social-ecological interpretation of four decades of research on resilience to discuss the results of a purposeful selection of studies of resilience that have been done in different contexts and cultures.   An ecological model of resilience can, and indeed has been shown to help researchers of resilience to conceptualize the child's social and physical ecologies, from caregivers to neighbourhoods, that account for both proximal and distal factors that predict successful development under adversity. Three principles emerged from this review that inform a bio-social-ecological interpretation of resilience: equifinality (there are many proximal processes that can lead to many different, but equally viable, expressions of human development associated with well-being); differential impact (the nature of the risks children face, their perceptions of the resources available to mitigate those risks and the quality of the resources that are accessible make proximal processes more or less influential to children's development); and contextual and cultural moderation (different contexts and cultures provide access to different processes associated with resilience as it is defined locally).   As this review shows, using this multisystemic social-ecological theory of resilience can inform a deeper understanding of the processes that contribute to positive development under stress. It can also offer practitioners and policy makers a broader perspective on principles for the design and implementation of effective interventions. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.

  9. Method for Studying a Human Ecology: An Adaptation of the Grounded Theory Tradition.

    ERIC Educational Resources Information Center

    McCaslin, Mark L.; Scott, Karen Wilson

    Constructivist grounded theory is focused on discovery through understanding data in a human ecology. The procedures outlined in this paper are designed to guide the beginning theorist through the process of creating a theory grounded in data that is a product of the human ecology under study. These new procedures extend grounded theory, providing…

  10. Partly cloudy with a chance of migration: Weather, radars, and aeroecology

    USDA-ARS?s Scientific Manuscript database

    Aeroecology is an emerging scientific discipline that integrates atmospheric science, terrestrial science, geography, ecology, computer science, computational biology, and engineering to further the understanding of ecological patterns and processes. The unifying concept underlying this new transdis...

  11. Invasion of two tick-borne diseases across New England: harnessing human surveillance data to capture underlying ecological invasion processes

    PubMed Central

    Walter, Katharine S.; Pepin, Kim M.; Webb, Colleen T.; Gaff, Holly D.; Krause, Peter J.; Pitzer, Virginia E.; Diuk-Wasser, Maria A.

    2016-01-01

    Modelling the spatial spread of vector-borne zoonotic pathogens maintained in enzootic transmission cycles remains a major challenge. The best available spatio-temporal data on pathogen spread often take the form of human disease surveillance data. By applying a classic ecological approach—occupancy modelling—to an epidemiological question of disease spread, we used surveillance data to examine the latent ecological invasion of tick-borne pathogens. Over the last half-century, previously undescribed tick-borne pathogens including the agents of Lyme disease and human babesiosis have rapidly spread across the northeast United States. Despite their epidemiological importance, the mechanisms of tick-borne pathogen invasion and drivers underlying the distinct invasion trajectories of the co-vectored pathogens remain unresolved. Our approach allowed us to estimate the unobserved ecological processes underlying pathogen spread while accounting for imperfect detection of human cases. Our model predicts that tick-borne diseases spread in a diffusion-like manner with occasional long-distance dispersal and that babesiosis spread exhibits strong dependence on Lyme disease. PMID:27252022

  12. Machine Learning Biogeographic Processes from Biotic Patterns: A New Trait-Dependent Dispersal and Diversification Model with Model Choice By Simulation-Trained Discriminant Analysis.

    PubMed

    Sukumaran, Jeet; Economo, Evan P; Lacey Knowles, L

    2016-05-01

    Current statistical biogeographical analysis methods are limited in the ways ecology can be related to the processes of diversification and geographical range evolution, requiring conflation of geography and ecology, and/or assuming ecologies that are uniform across all lineages and invariant in time. This precludes the possibility of studying a broad class of macroevolutionary biogeographical theories that relate geographical and species histories through lineage-specific ecological and evolutionary dynamics, such as taxon cycle theory. Here we present a new model that generates phylogenies under a complex of superpositioned geographical range evolution, trait evolution, and diversification processes that can communicate with each other. We present a likelihood-free method of inference under our model using discriminant analysis of principal components of summary statistics calculated on phylogenies, with the discriminant functions trained on data generated by simulations under our model. This approach of model selection by classification of empirical data with respect to data generated under training models is shown to be efficient, robust, and performs well over a broad range of parameter space defined by the relative rates of dispersal, trait evolution, and diversification processes. We apply our method to a case study of the taxon cycle, that is testing for habitat and trophic level constraints in the dispersal regimes of the Wallacean avifaunal radiation. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Information Theory Broadens the Spectrum of Molecular Ecology and Evolution.

    PubMed

    Sherwin, W B; Chao, A; Jost, L; Smouse, P E

    2017-12-01

    Information or entropy analysis of diversity is used extensively in community ecology, and has recently been exploited for prediction and analysis in molecular ecology and evolution. Information measures belong to a spectrum (or q profile) of measures whose contrasting properties provide a rich summary of diversity, including allelic richness (q=0), Shannon information (q=1), and heterozygosity (q=2). We present the merits of information measures for describing and forecasting molecular variation within and among groups, comparing forecasts with data, and evaluating underlying processes such as dispersal. Importantly, information measures directly link causal processes and divergence outcomes, have straightforward relationship to allele frequency differences (including monotonicity that q=2 lacks), and show additivity across hierarchical layers such as ecology, behaviour, cellular processes, and nongenetic inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A process-based framework for soil ecosystem services study and management.

    PubMed

    Su, Changhong; Liu, Huifang; Wang, Shuai

    2018-06-15

    Soil provides various indispensable ecosystem services for human society. Soil's complex structure and property makes the soil ecological processes complicated and brings about tough challenges for soil ecosystem services study. Most of the current frameworks on soil services focus exclusively on services per se, neglecting the links and underlying ecological mechanisms. This article put forward a framework on soil services by stressing the underlying soil mechanisms and processes, which includes: 1) analyzing soil natural capital stock based on soil structure and property, 2) disentangling the underlying complex links and soil processes, 3) soil services valuation based on field investigation and spatial explicit models, and 4) enacting soil management strategy based on soil services and their driving factors. By application of this framework, we assessed the soil services of sediment retention, water yield, and grain production in the Upper-reach Fenhe Watershed. Based on the ecosystem services and human driving factors, the whole watershed was clustered into five groups: 1) municipal area, 2) typical coal mining area, 3) traditional farming area, 4) unsustainable urbanizing area, and 5) ecological conservation area. Management strategies on soils were made according to the clustering based soil services and human activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Incorporating a Socio-Ecological-Technological Systems (SETS) perspective into the adaptive management framework

    EPA Science Inventory

    Incorporating a social-ecological-technological systems (SETS) perspective to the adaptive management process requires that stakeholders and managers conceptualize restoration projects as part of coupled human and natural systems and assess underlying social drivers and accrued b...

  16. [Assessment on the ecological suitability in Zhuhai City, Guangdong, China, based on minimum cumulative resistance model].

    PubMed

    Li, Jian-fei; Li, Lin; Guo, Luo; Du, Shi-hong

    2016-01-01

    Urban landscape has the characteristics of spatial heterogeneity. Because the expansion process of urban constructive or ecological land has different resistance values, the land unit stimulates and promotes the expansion of ecological land with different intensity. To compare the effect of promoting and hindering functions in the same land unit, we firstly compared the minimum cumulative resistance value of promoting and hindering functions, and then looked for the balance of two landscape processes under the same standard. According to the ecology principle of minimum limit factor, taking the minimum cumulative resistance analysis method under two expansion processes as the evaluation method of urban land ecological suitability, this research took Zhuhai City as the study area to estimate urban ecological suitability by relative evaluation method with remote sensing image, field survey, and statistics data. With the support of ArcGIS, five types of indicators on landscape types, ecological value, soil erosion sensitivity, sensitivity of geological disasters, and ecological function were selected as input parameters in the minimum cumulative resistance model to compute urban ecological suitability. The results showed that the ecological suitability of the whole Zhuhai City was divided into five levels: constructive expansion prohibited zone (10.1%), constructive expansion restricted zone (32.9%), key construction zone (36.3%), priority development zone (2.3%), and basic cropland (18.4%). Ecological suitability of the central area of Zhuhai City was divided into four levels: constructive expansion prohibited zone (11.6%), constructive expansion restricted zone (25.6%), key construction zone (52.4%), priority development zone (10.4%). Finally, we put forward the sustainable development framework of Zhuhai City according to the research conclusion. On one hand, the government should strictly control the development of the urban center area. On the other hand, the secondary urban center area such as Junchang and Doumen need improve the public infrastructure to relieve the imbalance between eastern and western development in Zhuhai City.

  17. Some problems of human adaptation and ecology under the aspect of general pathology

    NASA Technical Reports Server (NTRS)

    Kaznacheyev, V. P.

    1980-01-01

    The main problems of human adaptation at the level of the body and the population in connection with the features of current morbidity of the population and certain demographic processes are analyzed. The concepts of health and adaptation of the individual and human populations are determined. The importance of the anthropo-ecological approach to the investigation of the adaptation process of human populations is demonstrated. Certain features of the etiopathogenesis of diseases are considered in connection with the population-ecological regularities of human adaptation. The importance of research on general pathology aspects of adaptation and the ecology of man for planning, and organization of public health protection is discussed.

  18. Extraordinarily rapid speciation in a marine fish

    PubMed Central

    Momigliano, Paolo; Jokinen, Henri; Fraimout, Antoine; Florin, Ann-Britt; Norkko, Alf; Merilä, Juha

    2017-01-01

    Divergent selection may initiate ecological speciation extremely rapidly. How often and at what pace ecological speciation proceeds to yield strong reproductive isolation is more uncertain. Here, we document a case of extraordinarily rapid speciation associated with ecological selection in the postglacial Baltic Sea. European flounders (Platichthys flesus) in the Baltic exhibit two contrasting reproductive behaviors: pelagic and demersal spawning. Demersal spawning enables flounders to thrive in the low salinity of the Northern Baltic, where eggs cannot achieve neutral buoyancy. We show that demersal and pelagic flounders are a species pair arising from a recent event of speciation. Despite having a parapatric distribution with extensive overlap, the two species are reciprocally monophyletic and show strongly bimodal genotypic clustering and no evidence of contemporary migration, suggesting strong reproductive isolation. Divergence across the genome is weak but shows strong signatures of selection, a pattern suggestive of a recent ecological speciation event. We propose that spawning behavior in Baltic flounders is the trait under ecologically based selection causing reproductive isolation, directly implicating a process of ecological speciation. We evaluated different possible evolutionary scenarios under the approximate Bayesian computation framework and estimate that the speciation process started in allopatry ∼2,400 generations ago, following the colonization of the Baltic by the demersal lineage. This is faster than most known cases of ecological speciation and represents the most rapid event of speciation ever reported for any marine vertebrate. PMID:28533412

  19. Forest forming process and dynamic vegetation models under global change

    Treesearch

    A. Shvidenko; E. Gustafson

    2009-01-01

    The paper analyzes mathematical models that are used to project the dynamics of forest ecosystems on different spatial and temporal scales. Landscape disturbance and succession models (LDSMs) are of a particular interest for studying the forest forming process in Northern Eurasia. They have a solid empirical background and are able to model ecological processes under...

  20. Focusing ecological research for conservation.

    PubMed

    Cristescu, Bogdan; Boyce, Mark S

    2013-11-01

    Ecologists are increasingly actively involved in conservation. We identify five key topics from a broad sweep of ecology that merit research attention to meet conservation needs. We examine questions from landscape ecology, behavioral ecology, ecosystem dynamics, community ecology, and nutrient cycling related to key topics. Based on literature review and publication trend assessment, consultation with colleagues, and roundtable discussions at the 24th International Congress for Conservation Biology, focused research on the following topics could benefit conservation while advancing ecological understanding: 1. Carbon sequestration, requiring increased linkages to biodiversity conservation; 2. Ecological invasiveness, challenging our ability to find solutions to ecological aliens; 3. Individual variation, having applications in the conservation of rare species; 4. Movement of organisms, integrating ecological processes across landscapes and scales and addressing habitat fragmentation; and 5. Trophic-level interactions, driving ecological dynamics at the ecosystem-level. Addressing these will require cross-disciplinary research under the overarching framework of conservation ecology.

  1. [Process of land use transition and its impact on regional ecological quality in the Middle Reaches of Heihe River, China].

    PubMed

    Wang, Fu Hong; Zhao, Rui Feng; Zhang, Li Hua; Li, Hong Wei

    2017-12-01

    Land use transition is one of the main drivers of regional ecosystem change in arid area, which directly affects human well-being. Based on the satellite images of 1987, 2001 and 2016, the change detection assessment model and ecological response model were used to analyze the process of land use transition and response of ecological quality during 1987-2016 in the ecologically fragile middle reaches of the Heihe River. The results showed that the land use change was significant during 1987-2016 and the total change increased significantly, as well as the continuous increase of the cultivated land and construction land. There was a strong tendency of transform from grassland to cultivated land, while the tendency of transforming unused land to other land classes was not strong under a random process of gain or loss. During 1987-2016, the ecological quality of the study area displayed a decreasing trend as a whole and the ecological land decreased by 2.8%. The land use transition with the greatest impact on the ecological environment degradation was the transition of the grassland to the cultivated land and unused land. Therefore, in order to promote the sustainable use of regional land resources and to improve the regional ecological quality, it is necessary to allocate the proportion of production land and ecological land according to the regional water resources.

  2. Ecologic, Economic, and Social Considerations for Rangeland Sustainability: An Integrated Conceptual Framework

    Treesearch

    Daniel W. McCollum; H. Theodore Jr. Heintz; Aaron J. Harp; John A. Tanaka; Gary R. Evans; David Radloff; Louis E. Swanson; William E. III Fox; Michael G. Sherm Karl; John E. Mitchell

    2006-01-01

    Use and sustainability of rangelands are inherently linked to the health and sustainability of the land. They are also inherently linked to the social and economic infrastructures that complement and support those rangelands and rangeland uses. Ecological systems and processes provide the biological interactions underlying ecosystem health and viability. Social and...

  3. Dynamics of buckbrush populations under simulated forest restoration alternatives

    Treesearch

    David W. Huffman; Margaret M. Moore

    2008-01-01

    Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...

  4. Dynamics of buckbrush populations under simulated forest restoration alternatives (P-53)

    Treesearch

    David W. Huffman; Margaret M. Moore

    2008-01-01

    Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...

  5. Adaptive economic and ecological forest management under risk

    Treesearch

    Joseph Buongiorno; Mo Zhou

    2015-01-01

    Background: Forest managers must deal with inherently stochastic ecological and economic processes. The future growth of trees is uncertain, and so is their value. The randomness of low-impact, high frequency or rare catastrophic shocks in forest growth has significant implications in shaping the mix of tree species and the forest landscape...

  6. The underlying process of early ecological and genetic differentiation in a facultative mutualistic Sinorhizobium meliloti population.

    PubMed

    Toro, Nicolás; Villadas, Pablo J; Molina-Sánchez, María Dolores; Navarro-Gómez, Pilar; Vinardell, José M; Cuesta-Berrio, Lidia; Rodríguez-Carvajal, Miguel A

    2017-04-06

    The question of how genotypic and ecological units arise and spread in natural microbial populations remains controversial in the field of evolutionary biology. Here, we investigated the early stages of ecological and genetic differentiation in a highly clonal sympatric Sinorhizobium meliloti population. Whole-genome sequencing revealed that a large DNA region of the symbiotic plasmid pSymB was replaced in some isolates with a similar synteny block carrying densely clustered SNPs and displaying gene acquisition and loss. Two different versions of this genomic island of differentiation (GID) generated by multiple genetic exchanges over time appear to have arisen recently, through recombination in a particular clade within this population. In addition, these isolates display resistance to phages from the same geographic region, probably due to the modification of surface components by the acquired genes. Our results suggest that an underlying process of early ecological and genetic differentiation in S. meliloti is primarily triggered by acquisition of genes that confer resistance to soil phages within particular large genomic DNA regions prone to recombination.

  7. Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest.

    PubMed

    Steinfartz, Sebastian; Weitere, Markus; Tautz, Diethard

    2007-11-01

    Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals.

  8. [Landscape structure and ecological coupling analysis of ecotone on the west Sonnen Plain].

    PubMed

    Song, Changchun; Deng, Wei; Song, Xinshan

    2003-09-01

    Ecotone is a special zone in the landscape, which is very susceptive to the changes in environmental conditions, and hence, is prone to the disturbance by unfavorable conditions. Human activity has a series of positive and negative effects on it, and greatly changes the geo-chemical process in the ecosystem. In the ecosystem, especially in the ecotone, different systems and regimes are interconnected and inter-determined. For the sustainable development of ecosystem and the protection and rational utilization of resources, it is of great importance to study this internal relationship and to seek rational regulation and control measures. With the ecotone in the west Songnen Plain as an example, and based on the studies of the topography, physiognomy, soil, vegetation, and their geographic distribution in the ecotone., this paper explained the structure of the ecological landscape, and quantitatively analyzed the ecological geo-chemical processes under different landscape conditions. In addition, this paper also tried to make coupling analyses to the ecologic succession and the landscape geo-chemical environment. Under current conditions, the succession of plant communities and the shift of soil landscape geo-chemical conditions in the west Songnen Plain are almost co-instantaneous, and these two factors can inter-determined under certain conditions.

  9. Linking Stoichiometric Homeostasis of Microorganisms with Soil Phosphorus Dynamics in Wetlands Subjected to Microcosm Warming

    PubMed Central

    Wang, Hang; Li, HongYi; Zhang, ZhiJian; Muehlbauer, Jeffrey D.; He, Qiang; Xu, XinHua; Yue, ChunLei; Jiang, DaQian

    2014-01-01

    Soil biogeochemical processes and the ecological stability of wetland ecosystems under global warming scenarios have gained increasing attention worldwide. Changes in the capacity of microorganisms to maintain stoichiometric homeostasis, or relatively stable internal concentrations of elements, may serve as an indicator of alterations to soil biogeochemical processes and their associated ecological feedbacks. In this study, an outdoor computerized microcosm was set up to simulate a warmed (+5°C) climate scenario, using novel, minute-scale temperature manipulation technology. The principle of stoichiometric homeostasis was adopted to illustrate phosphorus (P) biogeochemical cycling coupled with carbon (C) dynamics within the soil-microorganism complex. We hypothesized that enhancing the flux of P from soil to water under warming scenarios is tightly coupled with a decrease in homeostatic regulation ability in wetland ecosystems. Results indicate that experimental warming impaired the ability of stoichiometric homeostasis (H) to regulate biogeochemical processes, enhancing the ecological role of wetland soil as an ecological source for both P and C. The potential P flux from soil to water ranged from 0.11 to 34.51 mg m−2 d−1 in the control and 0.07 to 61.26 mg m−2 d−1 in the warmed treatment. The synergistic function of C-P acquisition is an important mechanism underlying C∶P stoichiometric balance for soil microorganisms under warming. For both treatment groups, strongly significant (p<0.001) relationships fitting a negative allometric power model with a fractional exponent were found between n-HC∶P (the specialized homeostatic regulation ability as a ratio of soil highly labile organic carbon to dissolved reactive phosphorus in porewater) and potential P flux. Although many factors may affect soil P dynamics, the n-HC∶P term fundamentally reflects the stoichiometric balance or interactions between the energy landscape (i.e., C) and flow of resources (e.g., N and P), and can be a useful ecological tool for assessing potential P flux in ecosystems. PMID:24475045

  10. Social-ecological outcomes in recreational fisheries: The interaction of lakeshore development and stocking

    USGS Publications Warehouse

    Ziegler, Jacob P.; Golebie, Elizabeth J.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2017-01-01

    Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social‐ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social‐ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social‐ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social‐ecological processes to create deficits for state‐level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social‐ecological framework for maintaining ecosystem services like recreational fisheries.

  11. SIMULATION OF ECOLOGICALLY CONSCIOUS CHEMICAL PROCESSES: FUGITIVE EMISSIONS VERSUS OPERATING CONDITIONS

    EPA Science Inventory

    Catalytic reforming is an important refinery process for the conversion of low-octane naphtha (mostly paraffins) into high-octane motor fuels (isoparaffins, naphthenes and aromatics), light gases and hydrogen. In this study the catalytic reforming process is analyzed under differ...

  12. A multi-scalar approach to theorizing socio-ecological dynamics of urban residential landscapes

    Treesearch

    Rinku Roy Chowdhury; Kelli Larson; Morgan Grove; Colin Polsky; Elizabeth Cook; Jeffrey Onsted; Laura Ogden

    2011-01-01

    Urban residential expansion increasingly drives land use, land cover and ecological changes worldwide, yet social science theories explaining such change remain under-developed. Existing theories often focus on processes occurring at one scale, while ignoring other scales. Emerging evidence from four linked U.S. research sites suggests it is essential to examine...

  13. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the followingmore » areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.« less

  14. Social-ecological outcomes in recreational fisheries: the interaction of lakeshore development and stocking.

    PubMed

    Ziegler, Jacob P; Golebie, Elizabeth J; Jones, Stuart E; Weidel, Brian C; Solomon, Christopher T

    2017-01-01

    Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social-ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social-ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social-ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social-ecological processes to create deficits for state-level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social-ecological framework for maintaining ecosystem services like recreational fisheries. © 2016 by the Ecological Society of America.

  15. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach.

    PubMed

    Manthey, Joseph D; Moyle, Robert G

    2015-07-01

    Understanding landscape processes driving patterns of population genetic differentiation and diversity has been a long-standing focus of ecology and evolutionary biology. Gene flow may be reduced by historical, ecological or geographic factors, resulting in patterns of isolation by distance (IBD) or isolation by environment (IBE). Although IBE has been found in many natural systems, most studies investigating patterns of IBD and IBE in nature have used anonymous neutral genetic markers, precluding inference of selection mechanisms or identification of genes potentially under selection. Using landscape genomics, the simultaneous study of genomic and ecological landscapes, we investigated the processes driving population genetic patterns of White-breasted Nuthatches (Sitta carolinensis) in sky islands (montane forest habitat islands) of the Madrean Archipelago. Using more than 4000 single nucleotide polymorphisms and multiple tests to investigate the relationship between genetic differentiation and geographic or ecological distance, we identified IBE, and a lack of IBD, among sky island populations of S. carolinensis. Using three tests to identify selection, we found 79 loci putatively under selection; of these, seven matched CDS regions in the Zebra Finch. The loci under selection were highly associated with climate extremes (maximum temperature of warmest month and minimum precipitation of driest month). These results provide evidence for IBE - disentangled from IBD - in sky island vertebrates and identify potential adaptive genetic variation. © 2015 John Wiley & Sons Ltd.

  16. An emerging synthesis between community ecology and evolutionary biology.

    PubMed

    Johnson, Marc T J; Stinchcombe, John R

    2007-05-01

    A synthesis between community ecology and evolutionary biology is emerging that identifies how genetic variation and evolution within one species can shape the ecological properties of entire communities and, in turn, how community context can govern evolutionary processes and patterns. This synthesis incorporates research on the ecology and evolution within communities over short timescales (community genetics and diffuse coevolution), as well as macroevolutionary timescales (community phylogenetics and co-diversification of communities). As we discuss here, preliminary evidence supports the hypothesis that there is a dynamic interplay between ecology and evolution within communities, yet researchers have not yet demonstrated convincingly whether, and under what circumstances, it is important for biologists to bridge community ecology and evolutionary biology. Answering this question will have important implications for both basic and applied problems in biology.

  17. Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia.

    PubMed

    Duran, Robert; Bielen, Ana; Paradžik, Tina; Gassie, Claire; Pustijanac, Emina; Cagnon, Christine; Hamer, Bojan; Vujaklija, Dušica

    2015-10-01

    The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a "core" Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.

  18. Morphological and ecological preadaptations as the basis of bird synanthropization under transformed environment conditions

    NASA Astrophysics Data System (ADS)

    Rakhimov, I. I.; Ibragimova, K. K.

    2018-01-01

    Bird synanthropization is connected with a thorough and serious reconstruction of their biology and is a demonstration of changes currently occurring in the biosphere due to human influence. Nutritional and nesting conditions as well as protection due to urban characteristics are advantage factors that affect their populations. Under these conditions, the adaptive potential of species can be realized. Adaptations to a new and in-distinctive environment appear due to preadaptations. The synanthropization process of species happens without speciation by expression of existing genetic variation of morphological and ecological characteristics.

  19. [Regional ecological construction and mission of landscape ecology].

    PubMed

    Xiao, Duning; Xie, Fuju; Wei, Jianbing

    2004-10-01

    The eco-construction on regional and landscape scale is the one which can be used to specific landscape and intercrossing ecosystem in specific region including performing scientific administration of ecosystem and optimizing environmental function. Recently, the government has taken a series of significant projects into action, such as national forest protection item, partly forest restoration, and adjustment of water, etc. Enforcing regional eco-construction and maintaining the ecology security of the nation have become the strategic requisition. In various regions, different eco-construction should be applied, for example, performing ecological safeguard measure in ecological sensitive zone, accommodating the ecological load in ecological fragile zone, etc., which can control the activities of human being, so that, sustainable development can be reached. Facing opportunity and challenge in the development of landscape ecology, we have some key topics: landscape pattern of ecological security, land use and ecological process, landscape changes under human activity stress, quantitative evaluation of the influence on human being activities, evaluation of zonal ecological security and advance warning of ecological risk, and planning and optimizing of model in landscape eco-construction.

  20. Stable isotope views on ecosystem function: challenging or challenged?

    PubMed

    Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-06-23

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.

  1. Stable isotope views on ecosystem function: challenging or challenged?

    PubMed Central

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  2. Ecological Factors in Social Skill Acquisition: High School Students with Emotional and/or Behavioral Disorders in the United States and Norway

    ERIC Educational Resources Information Center

    Anderson, Sarah K.

    2010-01-01

    The purpose of my study was to develop a grounded theory of the underlying social processes and/or other ecological factors that impact the effectiveness of skill acquisition for students with emotional and/or behavioral disorders (EBD) in "sister" cities located in the United States (Site One) and in Norway (Site Two). Theory…

  3. Coastal urban lighting has ecological consequences for multiple trophic levels under the sea.

    PubMed

    Bolton, D; Mayer-Pinto, M; Clark, G F; Dafforn, K A; Brassil, W A; Becker, A; Johnston, E L

    2017-01-15

    Urban land and seascapes are increasingly exposed to artificial lighting at night (ALAN), which is a significant source of light pollution. A broad range of ecological effects are associated with ALAN, but the changes to ecological processes remain largely unstudied. Predation is a key ecological process that structures assemblages and responds to natural cycles of light and dark. We investigated the effect of ALAN on fish predatory behaviour, and sessile invertebrate prey assemblages. Over 21days fish and sessile assemblages were exposed to 3 light treatments (Day, Night and ALAN). An array of LED spotlights was installed under a wharf to create the ALAN treatments. We used GoPro cameras to film during the day and ALAN treatments, and a Dual frequency IDentification SONar (DIDSON) to film during the night treatments. Fish were most abundant during unlit nights, but were also relatively sedentary. Predatory behaviour was greatest during the day and under ALAN than at night, suggesting that fish are using structures for non-feeding purposes (e.g. shelter) at night, but artificial light dramatically increases their predatory behaviour. Altered predator behaviour corresponded with structural changes to sessile prey assemblages among the experimental lighting treatments. We demonstrate the direct effects of artificial lighting on fish behaviour and the concomitant indirect effects on sessile assemblage structure. Current and future projected use of artificial lights has the potential to significantly affect predator-prey interactions in marine systems by altering habitat use for both predators and prey. However, developments in lighting technology are a promising avenue for mitigation. This is among the first empirical evidence from the marine system on how ALAN can directly alter predation, a fundamental ecosystem process, and have indirect trophic consequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Precision about the automatic emotional brain.

    PubMed

    Vuilleumier, Patrik

    2015-01-01

    The question of automaticity in emotion processing has been debated under different perspectives in recent years. Satisfying answers to this issue will require a better definition of automaticity in terms of relevant behavioral phenomena, ecological conditions of occurrence, and a more precise mechanistic account of the underlying neural circuits.

  5. Elevated ozone affects C, N and P ecological stoichiometry and nutrient resorption of two poplar clones.

    PubMed

    Shang, Bo; Feng, Zhaozhong; Li, Pin; Calatayud, Vicent

    2018-03-01

    The effects of elevated ozone on C (carbon), N (nitrogen) and P (phosphorus) ecological stoichiometry and nutrient resorption in different organs including leaves, stems and roots were investigated in poplar clones 546 (P. deltoides cv. '55/56' × P. deltoides cv. 'Imperial') and 107 (P. euramericana cv. '74/76') with a different sensitivity to ozone. Plants were exposed to two ozone treatments, NF (non-filtered ambient air) and NF60 (NF with targeted ozone addition of 60 ppb), for 96 days in open top chambers (OTCs). Significant ozone effects on most variables of C, N and P ecological stoichiometry were found except for the C concentration and the N/P in different organs. Elevated ozone increased both N and P concentrations of individual organs while for C/N and C/P ratios a reduction was observed. On these variables, ozone had a greater effect for clone 546 than for clone 107. N concentrations of different leaf positions ranked in the order upper > middle > lower, showing that N was transferred from the lower senescent leaves to the upper ones. This was also indicative of N resorption processes, which increased under elevated ozone. N resorption of clone 546 was 4 times larger than that of clone 107 under ambient air (NF). However, elevated ozone (NF60) had no significant effect on P resorption for both poplar clones, suggesting that their growth was only limited by N, while available P in the soil was enough to sustain growth. Understanding ecological stoichiometric responses under ozone stress is crucial to predict future effects on ecological processes and biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context.

    PubMed

    Terhorst, Casey P; Lennon, Jay T; Lau, Jennifer A

    2014-06-22

    Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant-microbe interactions.

  7. Isolation by environment.

    PubMed

    Wang, Ian J; Bradburd, Gideon S

    2014-12-01

    The interactions between organisms and their environments can shape distributions of spatial genetic variation, resulting in patterns of isolation by environment (IBE) in which genetic and environmental distances are positively correlated, independent of geographic distance. IBE represents one of the most important patterns that results from the ways in which landscape heterogeneity influences gene flow and population connectivity, but it has only recently been examined in studies of ecological and landscape genetics. Nevertheless, the study of IBE presents valuable opportunities to investigate how spatial heterogeneity in ecological processes, agents of selection and environmental variables contributes to genetic divergence in nature. New and increasingly sophisticated studies of IBE in natural systems are poised to make significant contributions to our understanding of the role of ecology in genetic divergence and of modes of differentiation both within and between species. Here, we describe the underlying ecological processes that can generate patterns of IBE, examine its implications for a wide variety of disciplines and outline several areas of future research that can answer pressing questions about the ecological basis of genetic diversity. © 2014 John Wiley & Sons Ltd.

  8. The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project

    DOE PAGES

    Weston, David J.; Turetsky, Merritt R.; Johnson, Matthew G.; ...

    2017-10-27

    Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even ‘extend’ to influence community structure and ecosystem level processes. The progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Therefore, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. We introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration,more » biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.« less

  9. The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weston, David J.; Turetsky, Merritt R.; Johnson, Matthew G.

    Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even ‘extend’ to influence community structure and ecosystem level processes. The progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Therefore, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. We introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration,more » biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.« less

  10. The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project.

    PubMed

    Weston, David J; Turetsky, Merritt R; Johnson, Matthew G; Granath, Gustaf; Lindo, Zoë; Belyea, Lisa R; Rice, Steven K; Hanson, David T; Engelhardt, Katharina A M; Schmutz, Jeremy; Dorrepaal, Ellen; Euskirchen, Eugénie S; Stenøien, Hans K; Szövényi, Péter; Jackson, Michelle; Piatkowski, Bryan T; Muchero, Wellington; Norby, Richard J; Kostka, Joel E; Glass, Jennifer B; Rydin, Håkan; Limpens, Juul; Tuittila, Eeva-Stiina; Ullrich, Kristian K; Carrell, Alyssa; Benscoter, Brian W; Chen, Jin-Gui; Oke, Tobi A; Nilsson, Mats B; Ranjan, Priya; Jacobson, Daniel; Lilleskov, Erik A; Clymo, R S; Shaw, A Jonathan

    2018-01-01

    Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses. © 2017 UT-Battelle New Phytologist © 2017 New Phytologist Trust.

  11. Components of Conceptual Ecologies

    ERIC Educational Resources Information Center

    Park, Hyun Ju

    2007-01-01

    The theory of conceptual change is criticized because it focuses only on supposed underlying logical structures and rational process processes, and lacks attention to affective aspects as well as motivational constructs in students' learning science. This is a vast underestimation of the complexity and diversity of one's change of conceptions. The…

  12. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network.

    PubMed

    Couture, Raoul-Marie; Moe, S Jannicke; Lin, Yan; Kaste, Øyvind; Haande, Sigrid; Lyche Solheim, Anne

    2018-04-15

    Excess nutrient inputs and climate change are two of multiple stressors affecting many lakes worldwide. Lake Vansjø in southern Norway is one such eutrophic lake impacted by blooms of toxic blue-green algae (cyanobacteria), and classified as moderate ecological status under the EU Water Framework Directive. Future climate change may exacerbate the situation. Here we use a set of chained models (global climate model, hydrological model, catchment phosphorus (P) model, lake model, Bayesian Network) to assess the possible future ecological status of the lake, given the set of climate scenarios and storylines common to the EU project MARS (Managing Aquatic Ecosystems and Water Resources under Multiple Stress). The model simulations indicate that climate change alone will increase precipitation and runoff, and give higher P fluxes to the lake, but cause little increase in phytoplankton biomass or changes in ecological status. For the storylines of future management and land-use, however, the model results indicate that both the phytoplankton biomass and the lake ecological status can be positively or negatively affected. Our results also show the value in predicting a biological indicator of lake ecological status, in this case, cyanobacteria biomass with a BN model. For all scenarios, cyanobacteria contribute to worsening the status assessed by phytoplankton, compared to using chlorophyll-a alone. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Identifying thresholds in pattern-process relationships: a new cross-scale interactions experiment at the Jornada Basin LTER

    USDA-ARS?s Scientific Manuscript database

    Interactions among ecological patterns and processes at multiple scales play a significant role in threshold behaviors in arid systems. Black grama grasslands and mesquite shrublands are hypothesized to operate under unique sets of feedbacks: grasslands are maintained by fine-scale biotic feedbacks ...

  14. Conservation success as a function of good alignment of social and ecological structures and processes.

    PubMed

    Bodin, Orjan; Crona, Beatrice; Thyresson, Matilda; Golz, Anna-Lea; Tengö, Maria

    2014-10-01

    How to create and adjust governing institutions so that they align (fit) with complex ecosystem processes and structures across scales is an issue of increasing concern in conservation. It is argued that lack of such social-ecological fit makes governance and conservation difficult, yet progress in explicitly defining and rigorously testing what constitutes a good fit has been limited. We used a novel modeling approach and data from case studies of fishery and forest conservation to empirically test presumed relationships between conservation outcomes and certain patterns of alignment of social-ecological interdependences. Our approach made it possible to analyze conservation outcome on a systems level while also providing information on how individual actors are positioned in the complex web of social-ecological interdependencies. We found that when actors who shared resources were also socially linked, conservation at the level of the whole social-ecological system was positively affected. When the scales at which individual actors used resources and the scale at which ecological resources were interconnected to other ecological resources were aligned through tightened feedback loops, conservation outcome was better than when they were not aligned. The analysis of individual actors' positions in the web of social-ecological interdependencies was helpful in understanding why a system has a certain level of social-ecological fit. Results of analysis of positions showed that different actors contributed in very different ways to achieve a certain fit and revealed some underlying difference between the actors, for example in terms of actors' varying rights to access and use different ecological resources. © 2014 Society for Conservation Biology.

  15. Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration.

    PubMed

    Parkyn, Stephanie M; Smith, Brian J

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  16. Deepening, and repairing, the metabolic rift.

    PubMed

    Schneider, Mindi; McMichael, Philip

    2010-01-01

    This paper critically assesses the metabolic rift as a social, ecological, and historical concept describing the disruption of natural cycles and processes and ruptures in material human-nature relations under capitalism. As a social concept, the metabolic rift presumes that metabolism is understood in relation to the labour process. This conception, however, privileges the organisation of labour to the exclusion of the practice of labour, which we argue challenges its utility for analysing contemporary socio-environmental crises. As an ecological concept, the metabolic rift is based on outmoded understandings of (agro) ecosystems and inadequately describes relations and interactions between labour and ecological processes. Historically, the metabolic rift is integral to debates about the definitions and relations of capitalism, industrialism, and modernity as historical concepts. At the same time, it gives rise to an epistemic rift, insofar as the separation of the natural and social worlds comes to be expressed in social thought and critical theory, which have one-sidedly focused on the social. We argue that a reunification of the social and the ecological, in historical practice and in historical thought, is the key to repairing the metabolic rift, both conceptually and practically. The food sovereignty movement in this respect is exemplary.

  17. Dispersal Constraints for Stream Invertebrates: Setting Realistic Timescales for Biodiversity Restoration

    NASA Astrophysics Data System (ADS)

    Parkyn, Stephanie M.; Smith, Brian J.

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  18. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

    PubMed

    Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-03-17

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.

  19. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession

    PubMed Central

    Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-01-01

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages—which provide a larger spatiotemporal scale relative to within stage analyses—revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended—and experimentally testable—conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems. PMID:25733885

  20. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes.

    PubMed

    Martínez, Inés; Stegen, James C; Maldonado-Gómez, Maria X; Eren, A Murat; Siba, Peter M; Greenhill, Andrew R; Walter, Jens

    2015-04-28

    Although recent research revealed an impact of westernization on diversity and composition of the human gut microbiota, the exact consequences on metacommunity characteristics are insufficiently understood, and the underlying ecological mechanisms have not been elucidated. Here, we have compared the fecal microbiota of adults from two non-industrialized regions in Papua New Guinea (PNG) with that of United States (US) residents. Papua New Guineans harbor communities with greater bacterial diversity, lower inter-individual variation, vastly different abundance profiles, and bacterial lineages undetectable in US residents. A quantification of the ecological processes that govern community assembly identified bacterial dispersal as the dominant process that shapes the microbiome in PNG but not in the US. These findings suggest that the microbiome alterations detected in industrialized societies might arise from modern lifestyle factors limiting bacterial dispersal, which has implications for human health and the development of strategies aimed to redress the impact of westernization. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The Underlying Ecological Processes of Gut Microbiota Among Cohabitating Retarded, Overgrown and Normal Shrimp.

    PubMed

    Xiong, Jinbo; Dai, Wenfang; Zhu, Jinyong; Liu, Keshao; Dong, Chunming; Qiu, Qiongfen

    2017-05-01

    Increasing evidence of tight links among the gut microbiota, obesity, and host health has emerged, but knowledge of the ecological processes that shape the variation in microbial assemblages across growth rates remains elusive. Moreover, inadequately control for differences in factors that profoundly affect the gut microbial community, hampers evaluation of the gut microbiota roles in regulating growth rates. To address this gap, we evaluated the composition and ecological processes of the gut bacterial community in cohabitating retarded, overgrown, and normal shrimps from identically managed ponds. Gut bacterial community structures were distinct (P = 0.0006) among the shrimp categories. Using a structural equation modeling (SEM), we found that changes in the gut bacterial community were positively related to digestive activities, which subsequently affected shrimp growth rate. This association was further supported by intensified interspecies interaction and enriched lineages with high nutrient intake efficiencies in overgrown shrimps. However, the less phylogenetic clustering of gut microbiota in overgrown and retarded subjects may offer empty niches for pathogens invasion, as evidenced by higher abundances of predicted functional pathways involved in disease infection. Given no differences in biotic and abiotic factors among the cohabitating shrimps, we speculated that the distinct gut community assembly could be attributed to random colonization in larval shrimp (e.g., priority effects) and that an altered microbiota could be a causative factor in overgrowth or retardation in shrimp. To our knowledge, this is the first study to provide an integrated overview of the direct roles of gut microbiota in shaping shrimp growth rate and the underlying ecological mechanisms.

  2. Scenarios of Earth system change in western Canada: Conceptual understanding and process insights from the Changing Cold Regions Network

    NASA Astrophysics Data System (ADS)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Turetsky, M. R.; Baltzer, J. L.; Pietroniro, A.; Marsh, P.; Carey, S.; Howard, A.; Barr, A.; Elshamy, M.

    2017-12-01

    The interior of western Canada has been experiencing rapid, widespread, and severe hydroclimatic change in recent decades, and this is projected to continue in the future. To better assess future hydrological, cryospheric and ecological states and fluxes under future climates, a regional hydroclimate project was formed under the auspices of the Global Energy and Water Exchanges (GEWEX) project of the World Climate Research Programme; the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) aims to understand, diagnose, and predict interactions among the changing Earth system components at multiple spatial scales over the Mackenzie and Saskatchewan River basins of western Canada. A particular challenge is in applying land surface and hydrological models under future climates, as system changes and cold regions process interactions are not often straightforward, and model structures and parameterizations based on historical observations and understanding of contemporary system functioning may not adequately capture these complexities. To address this and provide guidance and direction to the modelling community, CCRN has drawn insights from a multi-disciplinary perspective on the process controls and system trajectories to develop a set of feasible scenarios of change for the 21st century across the region. This presentation will describe CCRN's efforts towards formalizing these insights and applying them in a large-scale modelling context. This will address what are seen as the most critical processes and key drivers affecting hydrological, cryospheric and ecological change, how these will most likely evolve in the coming decades, and how these are parameterized and incorporated as future scenarios for terrestrial ecology, hydrological functioning, permafrost state, glaciers, agriculture, and water management.

  3. Sparking interest in restaurant dishes? Cognitive and affective processes underlying dish design and ecological origin. An fMRI study.

    PubMed

    Muñoz-Leiva, Francisco; Gómez-Carmona, Diego

    2018-06-14

    The objective of the current paper is to verify to what extent the presentation of a restaurant dish and the origin of its food provoke reactions in the consumer's brain during the visualization and the decision-making process, from an exploratory approach. The two independent variables singled out for study were whether the presentation was well or poorly presented and if the ingredients were ecological or non-ecological. The results applying the functional magnetic resonance image (fMRI) methodology reveal that well-presented dishes activate areas in the brain linked to the network of emotions indicating that the visualization in restaurant menus is not a purely cognitive and self-reflexive process but retains a strong affective component. Furthermore, the presence of this component is kept at the moment of choosing a dish, as observed by the activation of the gyrus cingulate, region linked to the regulatory processes of emotions. Hence, research ratifies the existence of an emotional factor during the entire process of decision-making carried out in a restaurant. Yet it is true that exposure to an ecological menu provokes activation of the medial frontal cortex, a region connected to higher reasoning and attention, suggesting that stimuli from well-presented dishes of ecological origin trigger neuronal responses related to high-level cognitive processes. The practical implications derived, along with its limitations and the future research opportunities, are interesting for both developing theory and also practice. Therefore, scholars are encouraged to further test some research proposals (e.g. moderating role of salubrity or simultaneously eye tracking method). Copyright © 2017. Published by Elsevier Inc.

  4. Chapter 3. Responses of Freshwater Fish to Temperature ...

    EPA Pesticide Factsheets

    Scientists at the NHEERL, and its predecessor—the Office of Environmental Processes and Effects Research—initiated research in 1988 anticipating the Global Change Research Act. The purpose of this document is to summarize ecological research conducted by NHEERL scientists under the EPA’s contribution to the USGCRP from the onset of research through approximately 2002. The intent is to provide that information as reference material for scientists investigating the potential impacts of climate change on ecosystems Scientists at the NHEERL, and its predecessor—the Office of Environmental Processes and Effects Research—initiated research in 1988 anticipating the Global Change Research Act. The purpose of this document is to summarize ecological research conducted by NHEERL scientists under the EPA’s contribution to the USGCRP from the onset of research through approximately 2002. The intent is to provide that information as reference material for scientists investigating the potential impacts of climate change on ecosystems

  5. Can Evolution Supply What Ecology Demands?

    PubMed

    Kokko, Hanna; Chaturvedi, Anurag; Croll, Daniel; Fischer, Martin C; Guillaume, Frédéric; Karrenberg, Sophie; Kerr, Ben; Rolshausen, Gregor; Stapley, Jessica

    2017-03-01

    A simplistic view of the adaptive process pictures a hillside along which a population can climb: when ecological 'demands' change, evolution 'supplies' the variation needed for the population to climb to a new peak. Evolutionary ecologists point out that this simplistic view can be incomplete because the fitness landscape changes dynamically as the population evolves. Geneticists meanwhile have identified complexities relating to the nature of genetic variation and its architecture, and the importance of epigenetic variation is under debate. In this review, we highlight how complexity in both ecological 'demands' and the evolutionary 'supply' influences organisms' ability to climb fitness landscapes that themselves change dynamically as evolution proceeds, and encourage new synthetic effort across research disciplines towards ecologically realistic studies of adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. [A review on disturbance ecology of forest].

    PubMed

    Zhu, Jiaojun; Liu, Zugen

    2004-10-01

    More than 80% of terrestrial ecosystems have been influenced by natural disasters, human activities and the combination of both natural and human disturbances. Forest ecosystem, as one of the most important terrestrial ecosystems, has also been disturbed without exception. Under the disturbance from natural disasters and human activities, particularly from the unreasonable activities of human beings, forest decline or forest degradation has become more and more severe. For this reason, sustaining or recovering forest service functions is one of the current purposes for managing forest ecosystems. In recent decades, the studies on disturbed ecosystems have been carried out frequently, especially on their ecological processes and their responses to the disturbances. These studies play a very important role in the projects of natural forest conservation and the construction of ecological environment in China. Based on a wide range of literatures collection on forest disturbance research, this paper discussed the fundamental concepts of disturbance ecology, the relationships between forest management and disturbance, and the study contents of forest disturbance ecology. The major research topics of forest disturbance ecology may include: 1) the basic characteristics of disturbed forests; 2) the processes of natural and human disturbances; 3) the responses of forests ecosystem to the disturbances; 4) the main ecological processes or the consequential results of disturbed forests, including the change of biodiversity, soil nutrient and water cycle, eco-physiology and carbon cycle, regeneration mechanism of disturbed forests and so on; 5) the relationships between disturbances and forest management; and 6) the principles and techniques for the management of disturbed forests. This review may be helpful to the management of disturbed forest ecosystem, and to the projects of natural forest conservation in China.

  7. Xenon gamma-ray detector for ecological applications

    NASA Astrophysics Data System (ADS)

    Novikov, Alexander S.; Ulin, Sergey E.; Chernysheva, Irina V.; Dmitrenko, Valery V.; Grachev, Victor M.; Petrenko, Denis V.; Shustov, Alexander E.; Uteshev, Ziyaetdin M.; Vlasik, Konstantin F.

    2015-01-01

    A description of the xenon detector (XD) for ecological applications is presented. The detector provides high energy resolution and is able to operate under extreme environmental conditions (wide temperature range and unfavorable acoustic action). Resistance to acoustic noise as well as improvement in energy resolution has been achieved by means of real-time digital pulse processing. Another important XD feature is the ionization chamber's thin wall with composite housing, which significantly decreases the mass of the device and expands its energy range, especially at low energies.

  8. Improving the ecological relevance of toxicity tests on scleractinian corals: Influence of season, life stage, and seawater temperature

    USGS Publications Warehouse

    Hedouin, Laetitia; Wolf, Ruth E.; Phillips, Jeff; Gates, Ruth D.

    2016-01-01

    Our data support the paradigm that upward excursions in temperature influence physiological processes in corals that play key roles in regulating metal toxicity. These influences are more pronounced in larva versus adult corals. These findings are important when contextualized climate change-driven warming in the oceans and highlight that predictions of ecological outcomes to metal pollutants will be improved by considering environmental context and the life stages of organism under study.

  9. Integrating cultivation history into EBIPM

    USDA-ARS?s Scientific Manuscript database

    Ecologically based invasive plant management (EBIPM) is a systematic thinking and planning process to assist with applying the appropriate combination of tools and strategies to addrress the underlying cause of invasion rather than simply controlling invasive annual grass abundance. Cultivation his...

  10. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, Sergio; Kirwan, Matthew L.; Mudd, Simon M.; Guntenspergen, Glenn R.; Temmerman, Stijn; D'Alpaos, Andrea; van de Koppel, Johan; Rybczyk, John; Reyes, Enrique; Craft, Chris; Clough, Jonathan

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

  11. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D'Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; Clough, J.

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise. Copyright 2012 by the American Geophysical Union.

  12. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates

    Treesearch

    Rachel A. Loehman; Robert E. Keane; Lisa M. Holsinger; Zhiwei Wu

    2017-01-01

    Context: Interactions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs. Objectives We used the mechanistic...

  13. Phylogenetic Paleoecology: Tree-Thinking and Ecology in Deep Time.

    PubMed

    Lamsdell, James C; Congreve, Curtis R; Hopkins, Melanie J; Krug, Andrew Z; Patzkowsky, Mark E

    2017-06-01

    The new and emerging field of phylogenetic paleoecology leverages the evolutionary relationships among species to explain temporal and spatial changes in species diversity, abundance, and distribution in deep time. This field is poised for rapid progress as knowledge of the evolutionary relationships among fossil species continues to expand. In particular, this approach will lend new insights to many of the longstanding questions in evolutionary biology, such as: the relationships among character change, ecology, and evolutionary rates; the processes that determine the evolutionary relationships among species within communities and along environmental gradients; and the phylogenetic signal underlying ecological selectivity in background and mass extinctions and in major evolutionary radiations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mercury bioaccumulation in estuarine fishes: Novel insights from sulfur stable isotopes

    USGS Publications Warehouse

    Willacker, James J.; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2017-01-01

    Estuaries are transitional habitats characterized by complex biogeochemical and ecological gradients that result in substantial variation in fish total mercury concentrations (THg). We leveraged these gradients and used carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) stable isotopes to examine the ecological and biogeochemical processes underlying THg bioaccumulation in fishes from the San Francisco Bay Estuary. We employed a tiered approach that first examined processes influencing variation in fish THg among wetlands, and subsequently examined the roles of habitat and within-wetland processes in generating larger-scale patterns in fish THg. We found that δ34S, an indicator of sulfate reduction and habitat specific-foraging, was correlated with fish THg at all three spatial scales. Over the observed ranges of δ34S, THg concentrations in fish increased by up to 860% within wetlands, 560% among wetlands, and 291% within specific impounded wetland habitats. In contrast, δ13C and δ15N were not correlated with THg among wetlands and were only important in low salinity impounded wetlands, possibly reflecting more diverse food webs in this habitat. Together, our results highlight the key roles of sulfur biogeochemistry and ecology in influencing estuarine fish THg, as well as the importance of fish ecology and habitat in modulating the relationships between biogeochemical processes and Hg bioaccumulation.

  15. Mercury Bioaccumulation in Estuarine Fishes: Novel Insights from Sulfur Stable Isotopes.

    PubMed

    Willacker, James J; Eagles-Smith, Collin A; Ackerman, Joshua T

    2017-02-21

    Estuaries are transitional habitats characterized by complex biogeochemical and ecological gradients that result in substantial variation in fish total mercury concentrations (THg). We leveraged these gradients and used carbon (δ 13 C), nitrogen (δ 15 N), and sulfur (δ 34 S) stable isotopes to examine the ecological and biogeochemical processes underlying THg bioaccumulation in fishes from the San Francisco Bay Estuary. We employed a tiered approach that first examined processes influencing variation in fish THg among wetlands, and subsequently examined the roles of habitat and within-wetland processes in generating larger-scale patterns in fish THg. We found that δ 34 S, an indicator of sulfate reduction and habitat specific-foraging, was correlated with fish THg at all three spatial scales. Over the observed ranges of δ 34 S, THg concentrations in fish increased by up to 860% within wetlands, 560% among wetlands, and 291% within specific impounded wetland habitats. In contrast, δ 13 C and δ 15 N were not correlated with THg among wetlands and were only important in low salinity impounded wetlands, possibly reflecting more diverse food webs in this habitat. Together, our results highlight the key roles of sulfur biogeochemistry and ecology in influencing estuarine fish THg, as well as the importance of fish ecology and habitat in modulating the relationships between biogeochemical processes and Hg bioaccumulation.

  16. Quantitative approaches in climate change ecology

    PubMed Central

    Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.

  17. 78 FR 57180 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ..., Permit Application: 2014-018, Cheeseman's Ecology Safaris, Santa Cruz, CA Activity for Which Permit Is... population structure, migration and demographic processes. Only carcasses that are a sufficient distance away...

  18. Functional diversity and redundancy across fish gut, sediment and water bacterial communities.

    PubMed

    Escalas, Arthur; Troussellier, Marc; Yuan, Tong; Bouvier, Thierry; Bouvier, Corinne; Mouchet, Maud A; Flores Hernandez, Domingo; Ramos Miranda, Julia; Zhou, Jizhong; Mouillot, David

    2017-08-01

    This article explores the functional diversity and redundancy in a bacterial metacommunity constituted of three habitats (sediment, water column and fish gut) in a coastal lagoon under anthropogenic pressure. Comprehensive functional gene arrays covering a wide range of ecological processes and stress resistance genes to estimate the functional potential of bacterial communities were used. Then, diversity partitioning was used to characterize functional diversity and redundancy within (α), between (β) and across (γ) habitats. It was showed that all local communities exhibit a highly diversified potential for the realization of key ecological processes and resistance to various environmental conditions, supporting the growing evidence that macro-organisms microbiomes harbour a high functional potential and are integral components of functional gene dynamics in aquatic bacterial metacommunities. Several levels of functional redundancy at different scales of the bacterial metacommunity were observed (within local communities, within habitats and at the metacommunity level). The results suggested a high potential for the realization of spatial ecological insurance within this ecosystem, that is, the functional compensation among microorganisms for the realization and maintenance of key ecological processes, within and across habitats. Finally, the role of macro-organisms as dispersal vectors of microbes and their potential influence on marine metacommunity dynamics were discussed. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks.

    PubMed

    Billiard, Sylvain; Ferrière, Régis; Méléard, Sylvie; Tran, Viet Chi

    2015-11-01

    How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals. Trait values influence ecological processes (demographic events, competition), and competition generates selection on trait variation, thus closing the eco-evolutionary feedback loop. The demographic effects of the trait are also expected to influence the generation and maintenance of neutral variation. We consider a large population limit with rare mutation, under the assumption that the neutral marker mutates faster than the trait under selection. We prove the convergence of the stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process (SFVP). When restricted to the trait space this process is the Trait Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a favorable mutation, a genetical bottleneck occurs and the marker associated with this favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how the neutral diversity is restored afterwards, we obtain the condition for a time-scale separation; under this condition, we show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions. We discuss the implications of the SFVP for our understanding of the dynamics of neutral variation under eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our results highlight the joint importance of mutations, ecological parameters, and trait values in the restoration of neutral diversity after a selective sweep.

  20. [Effects of land use structure change on regional ecological health--taking Shapingba County as an example].

    PubMed

    Wang, Cheng; Wei, Chaofu; Gao, Ming; Luo, Guanglian; Jiang, Wei

    2005-12-01

    Land resource is the carrier for the exchange of matter, energy and information flows, while the change velocity and the intensity of land use has strong effects on the ecological processes such as matter circulation, energy flow, and biologic diversity. Land use structure change will alter the type, area, and spatial distribution of ecosystem, and in the meantime, result in the changes of regional ecological health. Employing the principles and methods of landscape ecology, and through endowing relative ecological value to land use type, this paper analyzed the charaeteristics of recent 10 years land use change in Shapingba County of Chongqing, and discussed the effects of land use change on regional ecological health, aimed to provide scientific references for land use planning and sustainable land resource utilization. The results indicated that transformation often occurred among different land use types, and the land use structure in each transformation phase differed quite obviously. Under different land use structure, there was a great disparity in relative ecological value of sub-ecosystems, which played various roles in regional ecological health. In general, the regional relative ecological value embodied both increase and decrease. In the future, the relative ecological value of sub-ecosystem would represent three tendencies, i.e., increase first and decrease then, continuous decrease, and continuous increase. The situation of regional ecological health would gradually become better.

  1. Contrasting Microbial Community Assembly Hypotheses: A Reconciling Tale from the Río Tinto

    PubMed Central

    Palacios, Carmen; Zettler, Erik; Amils, Ricardo; Amaral-Zettler, Linda

    2008-01-01

    Background The Río Tinto (RT) is distinguished from other acid mine drainage systems by its natural and ancient origins. Microbial life from all three domains flourishes in this ecosystem, but bacteria dominate metabolic processes that perpetuate environmental extremes. While the patchy geochemistry of the RT likely influences the dynamics of bacterial populations, demonstrating which environmental variables shape microbial diversity and unveiling the mechanisms underlying observed patterns, remain major challenges in microbial ecology whose answers rely upon detailed assessments of community structures coupled with fine-scale measurements of physico-chemical parameters. Methodology/Principal Findings By using high-throughput environmental tag sequencing we achieved saturation of richness estimators for the first time in the RT. We found that environmental factors dictate the distribution of the most abundant taxa in this system, but stochastic niche differentiation processes, such as mutation and dispersal, also contribute to observed diversity patterns. Conclusions/Significance We predict that studies providing clues to the evolutionary and ecological processes underlying microbial distributions will reconcile the ongoing debate between the Baas Becking vs. Hubbell community assembly hypotheses. PMID:19052647

  2. Contrasting microbial community assembly hypotheses: a reconciling tale from the Río Tinto.

    PubMed

    Palacios, Carmen; Zettler, Erik; Amils, Ricardo; Amaral-Zettler, Linda

    2008-01-01

    The Río Tinto (RT) is distinguished from other acid mine drainage systems by its natural and ancient origins. Microbial life from all three domains flourishes in this ecosystem, but bacteria dominate metabolic processes that perpetuate environmental extremes. While the patchy geochemistry of the RT likely influences the dynamics of bacterial populations, demonstrating which environmental variables shape microbial diversity and unveiling the mechanisms underlying observed patterns, remain major challenges in microbial ecology whose answers rely upon detailed assessments of community structures coupled with fine-scale measurements of physico-chemical parameters. By using high-throughput environmental tag sequencing we achieved saturation of richness estimators for the first time in the RT. We found that environmental factors dictate the distribution of the most abundant taxa in this system, but stochastic niche differentiation processes, such as mutation and dispersal, also contribute to observed diversity patterns. We predict that studies providing clues to the evolutionary and ecological processes underlying microbial distributions will reconcile the ongoing debate between the Baas Becking vs. Hubbell community assembly hypotheses.

  3. Biological and physical influences on the carbon isotope content of CO2 in a subalpine forest snowpack, Niwot Ridge, Colorado

    Treesearch

    D. R. Bowling; W. J. Massman; S. M. Schaeffer; S. P. Burns; R. K. Monson; M. W. Williams

    2009-01-01

    Considerable research has recently been devoted to understanding biogeochemical processes under winter snow cover, leading to enhanced appreciation of the importance of many winter ecological processes. In this study, a comprehensive investigation of the stable carbon isotope composition (δ 13C) of CO2 within a high-elevation subalpine...

  4. Chapter 3. Responses of Freshwater Fish to Temperature Increases

    EPA Science Inventory

    Scientists at the NHEERL, and its predecessor—the Office of Environmental Processes and Effects Research—initiated research in 1988 anticipating the Global Change Research Act. The purpose of this document is to summarize ecological research conducted by NHEERL scientists under t...

  5. Ecological and genetic systems underlying sustainable horticulture

    USDA-ARS?s Scientific Manuscript database

    Agriculture in the 21st century will face unprecedented challenges due to rising energy costs, global climate change, and increasingly scarce production resources. It will become imperative for producers to adopt sustainable systems that rely on natural system processes and use inputs as efficientl...

  6. The multiscale classification system and grid encoding mode of ecological land in China

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Aixia; Lin, Yifan

    2017-10-01

    Ecological land provides goods and services that have direct or indirect benefic to eco-environment and human welfare. In recent years, researches on ecological land have become important in the field of land changes and ecosystem management. In the study, a multi-scale classification scheme of ecological land was developed for land management based on combination of the land-use classification and the ecological function zoning in China, including eco-zone, eco-region, eco-district, land ecosystem, and ecological land-use type. The geographical spatial unit leads toward greater homogeneity from macro to micro scale. The term "ecological land-use type" is the smallest one, being important to maintain the key ecological processes in land ecosystem. Ecological land-use type was categorized into main-functional and multi-functional ecological land-use type according to its ecological function attributes and production function attributes. Main-functional type was defined as one kind of land-use type mainly providing ecological goods and function attributes, such as river, lake, swampland, shoaly land, glacier and snow, while multi-functional type not only providing ecological goods and function attributes but also productive goods and function attributes, such as arable land, forestry land, and grassland. Furthermore, a six-level grid encoding mode was proposed for modern management of ecological land and data update under cadastral encoding. The six-level irregular grid encoding from macro to micro scale included eco-zone, eco-region, eco-district, cadastral area, land ecosystem, land ownership type, ecological land-use type, and parcel. Besides, the methodologies on ecosystem management were discussed for integrated management of natural resources in China.

  7. Applications of genetic data to improve management and conservation of river fishes and their habitats

    USGS Publications Warehouse

    Scribner, Kim T.; Lowe, Winsor H.; Landguth, Erin L.; Luikart, Gordon; Infante, Dana M.; Whelan, Gary; Muhlfeld, Clint C.

    2015-01-01

    Environmental variation and landscape features affect ecological processes in fluvial systems; however, assessing effects at management-relevant temporal and spatial scales is challenging. Genetic data can be used with landscape models and traditional ecological assessment data to identify biodiversity hotspots, predict ecosystem responses to anthropogenic effects, and detect impairments to underlying processes. We show that by combining taxonomic, demographic, and genetic data of species in complex riverscapes, managers can better understand the spatial and temporal scales over which environmental processes and disturbance influence biodiversity. We describe how population genetic models using empirical or simulated genetic data quantify effects of environmental processes affecting species diversity and distribution. Our summary shows that aquatic assessment initiatives that use standardized data sets to direct management actions can benefit from integration of genetic data to improve the predictability of disturbance–response relationships of river fishes and their habitats over a broad range of spatial and temporal scales.

  8. Dispersal-Based Microbial Community Assembly Decreases Biogeochemical Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Stegen, James C.

    Ecological mechanisms influence relationships among microbial communities, which in turn impact biogeochemistry. In particular, microbial communities are assembled by deterministic (e.g., selection) and stochastic (e.g., dispersal) processes, and the relative balance of these two process types is hypothesized to alter the influence of microbial communities over biogeochemical function. We used an ecological simulation model to evaluate this hypothesis, defining biogeochemical function generically to represent any biogeochemical reaction of interest. We assembled receiving communities under different levels of dispersal from a source community that was assembled purely by selection. The dispersal scenarios ranged from no dispersal (i.e., selection-only) to dispersal ratesmore » high enough to overwhelm selection (i.e., homogenizing dispersal). We used an aggregate measure of community fitness to infer a given community’s biogeochemical function relative to other communities. We also used ecological null models to further link the relative influence of deterministic assembly to function. We found that increasing rates of dispersal decrease biogeochemical function by increasing the proportion of maladapted taxa in a local community. Niche breadth was also a key determinant of biogeochemical function, suggesting a tradeoff between the function of generalist and specialist species. Finally, we show that microbial assembly processes exert greater influence over biogeochemical function when there is variation in the relative contributions of dispersal and selection among communities. Taken together, our results highlight the influence of spatial processes on biogeochemical function and indicate the need to account for such effects in models that aim to predict biogeochemical function under future environmental scenarios.« less

  9. Dispersal-Based Microbial Community Assembly Decreases Biogeochemical Function

    DOE PAGES

    Graham, Emily B.; Stegen, James C.

    2017-11-01

    Ecological mechanisms influence relationships among microbial communities, which in turn impact biogeochemistry. In particular, microbial communities are assembled by deterministic (e.g., selection) and stochastic (e.g., dispersal) processes, and the relative balance of these two process types is hypothesized to alter the influence of microbial communities over biogeochemical function. We used an ecological simulation model to evaluate this hypothesis, defining biogeochemical function generically to represent any biogeochemical reaction of interest. We assembled receiving communities under different levels of dispersal from a source community that was assembled purely by selection. The dispersal scenarios ranged from no dispersal (i.e., selection-only) to dispersal ratesmore » high enough to overwhelm selection (i.e., homogenizing dispersal). We used an aggregate measure of community fitness to infer a given community’s biogeochemical function relative to other communities. We also used ecological null models to further link the relative influence of deterministic assembly to function. We found that increasing rates of dispersal decrease biogeochemical function by increasing the proportion of maladapted taxa in a local community. Niche breadth was also a key determinant of biogeochemical function, suggesting a tradeoff between the function of generalist and specialist species. Finally, we show that microbial assembly processes exert greater influence over biogeochemical function when there is variation in the relative contributions of dispersal and selection among communities. Taken together, our results highlight the influence of spatial processes on biogeochemical function and indicate the need to account for such effects in models that aim to predict biogeochemical function under future environmental scenarios.« less

  10. Stationary moments, diffusion limits, and extinction times for logistic growth with random catastrophes.

    PubMed

    Schlomann, Brandon H

    2018-06-06

    A central problem in population ecology is understanding the consequences of stochastic fluctuations. Analytically tractable models with Gaussian driving noise have led to important, general insights, but they fail to capture rare, catastrophic events, which are increasingly observed at scales ranging from global fisheries to intestinal microbiota. Due to mathematical challenges, growth processes with random catastrophes are less well characterized and it remains unclear how their consequences differ from those of Gaussian processes. In the face of a changing climate and predicted increases in ecological catastrophes, as well as increased interest in harnessing microbes for therapeutics, these processes have never been more relevant. To better understand them, I revisit here a differential equation model of logistic growth coupled to density-independent catastrophes that arrive as a Poisson process, and derive new analytic results that reveal its statistical structure. First, I derive exact expressions for the model's stationary moments, revealing a single effective catastrophe parameter that largely controls low order statistics. Then, I use weak convergence theorems to construct its Gaussian analog in a limit of frequent, small catastrophes, keeping the stationary population mean constant for normalization. Numerically computing statistics along this limit shows how they transform as the dynamics shifts from catastrophes to diffusions, enabling quantitative comparisons. For example, the mean time to extinction increases monotonically by orders of magnitude, demonstrating significantly higher extinction risk under catastrophes than under diffusions. Together, these results provide insight into a wide range of stochastic dynamical systems important for ecology and conservation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Disentangling sampling and ecological explanations underlying species-area relationships

    USGS Publications Warehouse

    Cam, E.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Alpizar-Jara, R.; Flather, C.H.

    2002-01-01

    We used a probabilistic approach to address the influence of sampling artifacts on the form of species-area relationships (SARs). We developed a model in which the increase in observed species richness is a function of sampling effort exclusively. We assumed that effort depends on area sampled, and we generated species-area curves under that model. These curves can be realistic looking. We then generated SARs from avian data, comparing SARs based on counts with those based on richness estimates. We used an approach to estimation of species richness that accounts for species detection probability and, hence, for variation in sampling effort. The slopes of SARs based on counts are steeper than those of curves based on estimates of richness, indicating that the former partly reflect failure to account for species detection probability. SARs based on estimates reflect ecological processes exclusively, not sampling processes. This approach permits investigation of ecologically relevant hypotheses. The slope of SARs is not influenced by the slope of the relationship between habitat diversity and area. In situations in which not all of the species are detected during sampling sessions, approaches to estimation of species richness integrating species detection probability should be used to investigate the rate of increase in species richness with area.

  12. System dynamic modelling to assess economic viability and risk trade-offs for ecological restoration in South Africa.

    PubMed

    Crookes, D J; Blignaut, J N; de Wit, M P; Esler, K J; Le Maitre, D C; Milton, S J; Mitchell, S A; Cloete, J; de Abreu, P; Fourie nee Vlok, H; Gull, K; Marx, D; Mugido, W; Ndhlovu, T; Nowell, M; Pauw, M; Rebelo, A

    2013-05-15

    Can markets assist by providing support for ecological restoration, and if so, under what conditions? The first step in addressing this question is to develop a consistent methodology for economic evaluation of ecological restoration projects. A risk analysis process was followed in which a system dynamics model was constructed for eight diverse case study sites where ecological restoration is currently being pursued. Restoration costs vary across each of these sites, as do the benefits associated with restored ecosystem functioning. The system dynamics model simulates the ecological, hydrological and economic benefits of ecological restoration and informs a portfolio mapping exercise where payoffs are matched against the likelihood of success of a project, as well as a number of other factors (such as project costs and risk measures). This is the first known application that couples ecological restoration with system dynamics and portfolio mapping. The results suggest an approach that is able to move beyond traditional indicators of project success, since the effect of discounting is virtually eliminated. We conclude that systems dynamic modelling with portfolio mapping can guide decisions on when markets for restoration activities may be feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation.

    PubMed

    Pyron, R Alexander; Costa, Gabriel C; Patten, Michael A; Burbrink, Frank T

    2015-11-01

    Phylogenetic niche conservatism (PNC) typically refers to the tendency of closely related species to be more similar to each other in terms of niche than they are to more distant relatives. This has been implicated as a potential driving force in speciation and other species-richness patterns, such as latitudinal gradients. However, PNC has not been very well defined in most previous studies. Is it a pattern or a process? What are the underlying endogenous (e.g. genetic) and exogenous (e.g. ecological) factors that cause niches to be conserved? What degree of similarity is necessary to qualify as PNC? Is it possible for the evolutionary processes causing niches to be conserved to also result in niche divergence in different habitats? Here, we revisit these questions, codifying a theoretical and operational definition of PNC as a mechanistic evolutionary process resulting from several factors. We frame this both from a macroevolutionary and population-genetic perspective. We discuss how different axes of physical (e.g. geographic) and environmental (e.g. climatic) heterogeneity interact with the fundamental process of PNC to produce different outcomes of ecological speciation. We also review tests for PNC, and suggest ways that these could be improved or better utilized in future studies. Ultimately, PNC as a process has a well-defined mechanistic basis in organisms, and future studies investigating ecological speciation would be well served to consider this, and frame hypothesis testing in terms of the processes and expected patterns described herein. The process of PNC may lead to patterns where niches are conserved (more similar than expected), constrained (divergent within a limited subset of available niches), or divergent (less similar than expected), based on degree of phylogenetic relatedness between species. © 2014 Cambridge Philosophical Society.

  14. Why infectious disease research needs community ecology

    PubMed Central

    Johnson, Pieter T. J.; de Roode, Jacobus C.; Fenton, Andy

    2016-01-01

    Infectious diseases often emerge from interactions among multiple species and across nested levels of biological organization. Threats as diverse as Ebola virus, human malaria, and bat white-nose syndrome illustrate the need for a mechanistic understanding of the ecological interactions underlying emerging infections. We describe how recent advances in community ecology can be adopted to address contemporary challenges in disease research. These analytical tools can identify the factors governing complex assemblages of multiple hosts, parasites, and vectors, and reveal how processes link across scales from individual hosts to regions. They can also determine the drivers of heterogeneities among individuals, species, and regions to aid targeting of control strategies. We provide examples where these principles have enhanced disease management and illustrate how they can be further extended. PMID:26339035

  15. Community-level consequences of cannibalism.

    PubMed

    Ohlberger, Jan; Langangen, Oystein; Stenseth, Nils C; Vøllestad, L Asbjørn

    2012-12-01

    Ecological interactions determine the structure and dynamics of communities and their responses to the environment. Understanding the community-level effects of ecological interactions, such as intra- and interspecifc competition, predation, and cannibalism, is therefore central to ecological theory and ecosystem management. Here, we investigate the community-level consequences of cannibalism in populations with density-dependent maturation and reproduction. We model a stage-structured consumer population with an ontogenetic diet shift to analyze how cannibalism alters the conditions for the invasion and persistence of stage-specific predators and competitors. Our results demonstrate that cannibalistic interactions can facilitate coexistence with other species at both trophic levels. This effect of cannibalism critically depends on the food dependence of the demographic processes. The underlying mechanism is a cannibalism-induced shift in the biomass distribution between the consumer life stages. These findings suggest that cannibalism may alter the structure of ecological communities through its effects on species coexistence.

  16. Clonal spread of invasive Ludwigia hexapetala and L. grandiflora in freshwater wetlands of California

    USDA-ARS?s Scientific Manuscript database

    Determining the reproductive mode contributing to dispersal within and between populations of invasive species is essential to understand the ecological and evolutionary processes underlying invasions and to guide management strategies. Ludwigia hexapetala and L. grandiflora are emergent aquatic sp...

  17. Innovation: an emerging focus from cells to societies.

    PubMed

    Hochberg, Michael E; Marquet, Pablo A; Boyd, Robert; Wagner, Andreas

    2017-12-05

    Innovations are generally unexpected, often spectacular changes in phenotypes and ecological functions. The contributions to this theme issue are the latest conceptual, theoretical and experimental developments, addressing how ecology, environment, ontogeny and evolution are central to understanding the complexity of the processes underlying innovations. Here, we set the stage by introducing and defining key terms relating to innovation and discuss their relevance to biological, cultural and technological change. Discovering how the generation and transmission of novel biological information, environmental interactions and selective evolutionary processes contribute to innovation as an ecosystem will shed light on how the dominant features across life come to be, generalize to social, cultural and technological evolution, and have applications in the health sciences and sustainability.This article is part of the theme issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  18. Innovation: an emerging focus from cells to societies

    PubMed Central

    Boyd, Robert

    2017-01-01

    Innovations are generally unexpected, often spectacular changes in phenotypes and ecological functions. The contributions to this theme issue are the latest conceptual, theoretical and experimental developments, addressing how ecology, environment, ontogeny and evolution are central to understanding the complexity of the processes underlying innovations. Here, we set the stage by introducing and defining key terms relating to innovation and discuss their relevance to biological, cultural and technological change. Discovering how the generation and transmission of novel biological information, environmental interactions and selective evolutionary processes contribute to innovation as an ecosystem will shed light on how the dominant features across life come to be, generalize to social, cultural and technological evolution, and have applications in the health sciences and sustainability. This article is part of the theme issue ‘Process and pattern in innovations from cells to societies’. PMID:29061887

  19. Social-ecological resilience and geomorphic systems

    NASA Astrophysics Data System (ADS)

    Chaffin, Brian C.; Scown, Murray

    2018-03-01

    Governance of coupled social-ecological systems (SESs) and the underlying geomorphic processes that structure and alter Earth's surface is a key challenge for global sustainability amid the increasing uncertainty and change that defines the Anthropocene. Social-ecological resilience as a concept of scientific inquiry has contributed to new understandings of the dynamics of change in SESs, increasing our ability to contextualize and implement governance in these systems. Often, however, the importance of geomorphic change and geomorphological knowledge is somewhat missing from processes employed to inform SES governance. In this contribution, we argue that geomorphology and social-ecological resilience research should be integrated to improve governance toward sustainability. We first provide definitions of engineering, ecological, community, and social-ecological resilience and then explore the use of these concepts within and alongside geomorphology in the literature. While ecological studies often consider geomorphology as an important factor influencing the resilience of ecosystems and geomorphological studies often consider the engineering resilience of geomorphic systems of interest, very few studies define and employ a social-ecological resilience framing and explicitly link the concept to geomorphic systems. We present five key concepts-scale, feedbacks, state or regime, thresholds and regime shifts, and humans as part of the system-which we believe can help explicitly link important aspects of social-ecological resilience inquiry and geomorphological inquiry in order to strengthen the impact of both lines of research. Finally, we discuss how these five concepts might be used to integrate social-ecological resilience and geomorphology to better understand change in, and inform governance of, SESs. To compound these dynamics of resilience, complex systems are nested and cross-scale interactions from smaller and larger scales relative to the system of interest can play formative roles during periods of collapse and reorganization. Large- and small-scale disturbances as well as large-scale system memory/capacity and small-scale innovation can have significant impacts on the trajectory of a reorganizing system (Gunderson and Holling, 2002; Chaffin and Gunderson, 2016). Attempts to measure the property of ecological resilience across complex systems amounts to attempts to measure the persistence of system-controlling variables, including processes, parameters, and important feedbacks, when the system is exposed to varying degrees of disturbance (Folke, 2016).

  20. Deciphering the Interdependence between Ecological and Evolutionary Networks.

    PubMed

    Melián, Carlos J; Matthews, Blake; de Andreazzi, Cecilia S; Rodríguez, Jorge P; Harmon, Luke J; Fortuna, Miguel A

    2018-05-24

    Biological systems consist of elements that interact within and across hierarchical levels. For example, interactions among genes determine traits of individuals, competitive and cooperative interactions among individuals influence population dynamics, and interactions among species affect the dynamics of communities and ecosystem processes. Such systems can be represented as hierarchical networks, but can have complex dynamics when interdependencies among levels of the hierarchy occur. We propose integrating ecological and evolutionary processes in hierarchical networks to explore interdependencies in biological systems. We connect gene networks underlying predator-prey trait distributions to food webs. Our approach addresses longstanding questions about how complex traits and intraspecific trait variation affect the interdependencies among biological levels and the stability of meta-ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Ecological and geographical regularities of changes in the biological activity of automorphic soils on the foothills and adjacent plains of the Central Caucasus region (Kabardino-Balkarian Republic)

    NASA Astrophysics Data System (ADS)

    Gorobtsova, O. N.; Khezheva, F. V.; Uligova, T. S.; Tembotov, R. Kh.

    2015-03-01

    The biochemical properties inherent to the main types of automorphic soils developed in different bioclimatic conditions of Elbrus and Terek variants of the vertical zonality within Kabardino-Balkaria were compared. The natural-climatic conditions of these variants noticeably affect the soil cover pattern. The ratio of the oxidase and hydrolase activities is sensitive to the moisture conditions in which these soils are formed. The redox processes are more active in drier conditions, whereas hydrolytic processes are more active under higher moisture. The level of the biological activity of the automorphic soils is estimated using the integral index of the ecological-biological soil status.

  2. Reproductive isolation between populations of Iris atropurpurea is associated with ecological differentiation

    PubMed Central

    Yardeni, Gil; Tessler, Naama; Imbert, Eric; Sapir, Yuval

    2016-01-01

    Background and Aims Speciation is often described as a continuous dynamic process, expressed by different magnitudes of reproductive isolation (RI) among groups in different levels of divergence. Studying intraspecific partial RI can shed light on mechanisms underlying processes of population divergence. Intraspecific divergence can be driven by spatially stochastic accumulation of genetic differences following reduced gene flow, resulting in increased RI with increased geographical distance, or by local adaptation, resulting in increased RI with environmental difference. Methods We tested for RI as a function of both geographical distance and ecological differentiation in Iris atropurpurea, an endemic Israeli coastal plant. We crossed plants in the Netanya Iris Reserve population with plants from 14 populations across the species’ full distribution, and calculated RI and reproductive success based on fruit set, seed set and fraction of seed viability. Key Results We found that total RI was not significantly associated with geographical distance, but significantly increased with ecological distance. Similarly, reproductive success of the crosses, estimated while controlling for the dependency of each component on the previous stage, significantly reduced with increased ecological distance. Conclusions Our results indicate that the rise of post-pollination reproductive barriers in I. atropurpurea is more affected by ecological differentiation between populations than by geographical distance, supporting the hypothesis that ecological differentiation is predominant over isolation by distance and by reduced gene flow in this species. These findings also affect conservation management, such as genetic rescue, in the highly fragmented and endangered I. atropurpurea. PMID:27436798

  3. Iterative near-term ecological forecasting: Needs, opportunities, and challenges

    USGS Publications Warehouse

    Dietze, Michael C.; Fox, Andrew; Beck-Johnson, Lindsay; Betancourt, Julio L.; Hooten, Mevin B.; Jarnevich, Catherine S.; Keitt, Timothy H.; Kenney, Melissa A.; Laney, Christine M.; Larsen, Laurel G.; Loescher, Henry W.; Lunch, Claire K.; Pijanowski, Bryan; Randerson, James T.; Read, Emily; Tredennick, Andrew T.; Vargas, Rodrigo; Weathers, Kathleen C.; White, Ethan P.

    2018-01-01

    Two foundational questions about sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect these trajectories?” Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.

  4. Iterative near-term ecological forecasting: Needs, opportunities, and challenges.

    PubMed

    Dietze, Michael C; Fox, Andrew; Beck-Johnson, Lindsay M; Betancourt, Julio L; Hooten, Mevin B; Jarnevich, Catherine S; Keitt, Timothy H; Kenney, Melissa A; Laney, Christine M; Larsen, Laurel G; Loescher, Henry W; Lunch, Claire K; Pijanowski, Bryan C; Randerson, James T; Read, Emily K; Tredennick, Andrew T; Vargas, Rodrigo; Weathers, Kathleen C; White, Ethan P

    2018-02-13

    Two foundational questions about sustainability are "How are ecosystems and the services they provide going to change in the future?" and "How do human decisions affect these trajectories?" Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.

  5. 300 Area process trench sediment analysis report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, M.G.; Kossik, C.D.

    1987-12-01

    This report describes the results of a sampling program for the sediments underlying the Process Trenches serving the 300 Area on the Hanford reservation. These Process Trenches were the subject of a Closure Plan submitted to the Washington State Department of Ecology and to the US Environmental Protection Agency in lieu of a Part B permit application on November 8, 1985. The closure plan described a proposed sampling plan for the underlying sediments and potential remedial actions to be determined by the sample analyses results. The results and proposed remedial action plan are presented and discussed in this report. 50more » refs., 6 figs., 8 tabs.« less

  6. Emergence, institutionalization and renewal: Rhythms of adaptive governance in complex social-ecological systems.

    PubMed

    Chaffin, Brian C; Gunderson, Lance H

    2016-01-01

    Adaptive governance provides the capacity for environmental managers and decision makers to confront variable degrees of uncertainty inherent to complex social-ecological systems. Current theoretical conceptualizations of adaptive governance represent a series of structures and processes best suited for either adapting or transforming existing environmental governance regimes towards forms flexible enough to confront rapid ecological change. As the number of empirical examples of adaptive governance described in the literature grows, the conceptual basis of adaptive governance remains largely under theorized. We argue that reconnecting adaptive governance with foundational concepts of ecological resilience-specifically Panarchy and the adaptive cycle of complex systems-highlights the importance of episodic disturbances and cross-scale interactions in triggering reorganizations in governance. By envisioning the processes of adaptive governance through the lens of Panarchy, scholars and practitioners alike will be better able to identify the emergence of adaptive governance, as well as take advantage of opportunities to institutionalize this type of governance in pursuit of sustainability outcomes. The synergistic analysis of adaptive governance and Panarchy can provide critical insight for analyzing the role of social dynamics during oscillating periods of stability and instability in social-ecological systems. A deeper understanding of the potential for cross-scale interactions to shape adaptive governance regimes may be useful as society faces the challenge of mitigating the impacts of global environmental change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Neuronal Effects of Auditory Distraction on Visual Attention

    ERIC Educational Resources Information Center

    Smucny, Jason; Rojas, Donald C.; Eichman, Lindsay C.; Tregellas, Jason R.

    2013-01-01

    Selective attention in the presence of distraction is a key aspect of healthy cognition. The underlying neurobiological processes, have not, however, been functionally well characterized. In the present study, we used functional magnetic resonance imaging to determine how ecologically relevant distracting noise affects cortical activity in 27…

  8. Learning to Live: A Manual of Environmental Education Activities.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Natural Resources, St. Paul. Bureau of Information and Education.

    Contributions from a variety of sources are compiled in this manual to provide both students and teachers with environmental study activities. Several activities are suggested under each of the following topics: Ecology and Esthetics (emphasizing awareness); The Decision-Making Process (resource management problems); A Plea for an Alternative…

  9. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory.

    PubMed

    Welti, Nina; Striebel, Maren; Ulseth, Amber J; Cross, Wyatt F; DeVilbiss, Stephen; Glibert, Patricia M; Guo, Laodong; Hirst, Andrew G; Hood, Jim; Kominoski, John S; MacNeill, Keeley L; Mehring, Andrew S; Welter, Jill R; Hillebrand, Helmut

    2017-01-01

    Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment.

  10. Modeling individual animal histories with multistate capture–recapture models

    USGS Publications Warehouse

    Lebreton, Jean-Dominique; Nichols, James D.; Barker, Richard J.; Pradel, Roger; Spendelow, Jeffrey A.

    2009-01-01

    Many fields of science begin with a phase of exploration and description, followed by investigations of the processes that account for observed patterns. The science of ecology is no exception, and recent decades have seen a focus on understanding key processes underlying the dynamics of ecological systems. In population ecology, emphasis has shifted from the state variable of population size to the demographic processes responsible for changes in this state variable: birth, death, immigration, and emigration. In evolutionary ecology, some of these same demographic processes, rates of birth and death, are also the determinants of fitness. In animal population ecology, the estimation of state variables and their associated vital rates is especially problematic because of the difficulties in sampling such populations and detecting individual animals. Indeed, early capture–recapture models were developed for the purpose of estimating population size, given the reality that all animals are not caught or detected at any sampling occasion. More recently, capture–recapture models for open populations were developed to draw inferences about survival in the face of these same sampling problems. The focus of this paper is on multi‐state mark–recapture models (MSMR), which first appeared in the 1970s but have undergone substantial development in the last 15 years. These models were developed to deal explicitly with biological variation, in that animals in different “states” (classes defined by location, physiology, behavior, reproductive status, etc.) may have different probabilities of survival and detection. Animal transitions between states are also stochastic and themselves of interest. These general models have proven to be extremely useful and provide a way of thinking about a remarkably wide range of important ecological processes. These methods are now at a stage of refinement and sophistication where they can readily be used by biologists to tackle a wide range of important issues in ecology. In this paper, we draw together information on the state of the art in multistate mark–recapture methods, explaining the models and illustrating their use. We provide a modeling philosophy and a series of general principles on how to conduct analyses. We cover key issues and features, and we anticipate the ways in which we expect the models to develop in the years ahead.

  11. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes

    PubMed Central

    Creissen, Henry E.; Jorgensen, Tove H.; Brown, James K.M.

    2016-01-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming. PMID:27375312

  12. Ocean life breaking rules by building shells in acidic extremes.

    PubMed

    Doubleday, Zoë A; Nagelkerken, Ivan; Connell, Sean D

    2017-10-23

    Rising levels of carbon dioxide (CO 2 )from fossil fuel combustion is acidifying our oceans [1,2]. This acidification is expected to have negative effects on calcifying animals because it affects their ability to build shells [3,4]. However, the effects of ocean acidification in natural environments, subject to ecological and evolutionary processes (such as predation, competition, and adaptation), is uncertain [5,6]. These processes may buffer, or even reverse, the direct, short-term effects principally measured in laboratory experiments (for example, [6]). Here we describe the discovery of marine snails living at a shallow-water CO 2 vent in the southwest Pacific, an environment 30 times more acidic than normal seawater (Figure 1). By measuring the chemical fingerprints locked within the shell material, we show that these snails have a restricted range of movement, which suggests that they live under these conditions for their entire lives. The existence of these snails demonstrates that calcifying animals can build their shells under the acidic and corrosive conditions caused by extreme CO 2 enrichment. This unforeseen capacity, whether driven by ecological or adaptive processes, is key to understanding whether calcifying life may survive a high-CO 2 future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A confidence interval analysis of sampling effort, sequencing depth, and taxonomic resolution of fungal community ecology in the era of high-throughput sequencing.

    PubMed

    Oono, Ryoko

    2017-01-01

    High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions 'how and why are communities different?' This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences.

  14. A confidence interval analysis of sampling effort, sequencing depth, and taxonomic resolution of fungal community ecology in the era of high-throughput sequencing

    PubMed Central

    2017-01-01

    High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions ‘how and why are communities different?’ This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences. PMID:29253889

  15. Resilience | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Resilience is an important framework for understanding and managing complex systems of people and nature that are subject to abrupt and nonlinear change. The idea of ecological resilience was slow to gain acceptance in the scientific community, taking thirty years to become widely accepted (Gunderson 2000, cited under Original Definition). Currently, the concept is commonplace in academics, management, and policy. Although the idea has quantitative roots in the ecological sciences and was proposed as a measurable quality of ecosystems, the broad use of resilience led to an expansion of definitions and applications. Holling’s original definition, presented in 1973 (Holling 1973, cited under Original Definition), was simply the amount of disturbance that a system can withstand before it shifts into an alternative stability domain. Ecological resilience, therefore, emphasizes that the dynamics of complex systems are nonlinear, meaning that these systems can transition, often abruptly, between dynamic states with substantially different structures, functions, and processes. The transition of ecological systems from one state to another frequently has important repercussions for humans. Recent definitions are more normative and qualitative, especially in the social sciences, and a competing definition, that of engineering resilience, is still often used. Resilience is an emergent phenomenon of complex systems, which means it cannot be deduced from the behavior of t

  16. Widespread correlations between climatic niche evolution and species diversification in birds.

    PubMed

    Cooney, Christopher R; Seddon, Nathalie; Tobias, Joseph A

    2016-07-01

    The adaptability of species' climatic niches can influence the dynamics of colonization and gene flow across climatic gradients, potentially increasing the likelihood of speciation or reducing extinction in the face of environmental change. However, previous comparative studies have tested these ideas using geographically, taxonomically and ecologically restricted samples, yielding mixed results, and thus the processes linking climatic niche evolution with diversification remain poorly understood. Focusing on birds, the largest and most widespread class of terrestrial vertebrates, we test whether variation in species diversification among clades is correlated with rates of climatic niche evolution and the extent to which these patterns are modified by underlying gradients in biogeography and species' ecology. We quantified climatic niches, latitudinal distribution and ecological traits for 7657 (˜75%) bird species based on geographical range polygons and then used Bayesian phylogenetic analyses to test whether niche evolution was related to species richness and rates of diversification across genus- and family-level clades. We found that the rate of climatic niche evolution has a positive linear relationship with both species richness and diversification rate at two different taxonomic levels (genus and family). Furthermore, this positive association between labile climatic niches and diversification was detected regardless of variation in clade latitude or key ecological traits. Our findings suggest either that rapid adaptation to unoccupied areas of climatic niche space promotes avian diversification, or that diversification promotes adaptation. Either way, we propose that climatic niche evolution is a fundamental process regulating the link between climate and biodiversity at global scales, irrespective of the geographical and ecological context of speciation and extinction. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  17. Snow Ecology

    NASA Astrophysics Data System (ADS)

    Jones, H. G.; Pomeroy, J. W.; Walker, D. A.; Hoham, R. W.

    2001-01-01

    In this volume, a multidisciplinary group of acknowledged experts fully intergrate the physical, chemical, and biological sciences to provide a complete understanding of the interrelationships between snow structure and life. This volume opens a new perspecitve on snow cover as a habitat for organisms under extreme environmental conditions and as a key factor in the ecology of much of the Earth's surface. The contributors describe the fundamental physical and small-scale chemical processes that characterize the evolution of snow and their influence on the life cycles of true snow organisms and the biota of cold regions with extended snow cover. The book further expands on the role of snow in the biosphere by the study of the relationship between snow and climate and the paleo-ecological evidence for the influence of past snow regimes on plant communities. Snow Ecology will form a main textbook on advanced courses in biology, ecology, geography, environmental science, and earth science where an important component is devoted to the study of the cryosphere. It will also be useful as a reference text for graduate students, researchers, and professionals at academic institutions and in government and nongovernmental agencies with environmental concerns.

  18. Heterogeneity and loss of soil nutrient elements under aeolian processes in the Otindag Desert, China

    NASA Astrophysics Data System (ADS)

    Li, Danfeng; Wang, Xunming; Lou, Junpeng; Liu, Wenbin; Li, Hui; Ma, Wenyong; Jiao, Linlin

    2018-02-01

    The heterogeneity of the composition of surface soils that are affected by aeolian processes plays important roles in ecological evolution and the occurrence of aeolian desertification in fragile ecological zones, but the associated mechanisms are poorly understood. Using field investigation, wind tunnel experiments, and particle size and element analyses, we discuss the variation in the nutrient elements of surface soils that forms in the presence of aeolian processes of four vegetation species (Caragana microphylla Lam, Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel. and Stipa grandis P. Smirn) growing in the Otindag Desert, China. These four vegetation communities correspond to increasing degrees of degradation. A total of 40 macro elements, trace elements, and oxides were measured in the surface soil and in wind-transported samples. The results showed that under the different degradation stages, the compositions and concentrations of nutrients in surface soils differed for the four vegetation species. Aeolian processes may cause higher heterogeneity and higher loss of soil nutrient elements for the communities of Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel, and Stipa grandis P. Smirn than for the Caragana microphylla Lam community. There was remarkable variation in the loss of nutrients under different aeolian transportation processes. Over the past several decades, the highest loss of soil elements occurred in the 1970s, whereas the loss from 2011 to the present was generally 4.0% of that in the 1970s. These results indicate that the evident decrease in nutrient loss has played an important role in the rehabilitation that has occurred in the region recently.

  19. Ecologically rational choice and the structure of the environment.

    PubMed

    Pleskac, Timothy J; Hertwig, Ralph

    2014-10-01

    In life, risk is reward and vice versa. Unfortunately, the big rewards people desire are relatively unlikely to occur. This relationship between risk and reward or probabilities and payoffs seems obvious to the financial community and to laypeople alike. Yet theories of decision making have largely ignored it. We conducted an ecological analysis of life's gambles, ranging from the domains of roulette and life insurance to scientific publications and artificial insemination. Across all domains, payoffs and probabilities proved intimately tied, with payoff magnitudes signaling their probabilities. In some cases, the constraints of the market result in these two core elements of choice being related via a power function; in other cases, other factors such as social norms appear to produce the inverse relationship between risks and rewards. We offer evidence that decision makers exploit this relationship in the form of a heuristic--the risk-reward heuristic--to infer the probability of a payoff during decisions under uncertainty. We demonstrate how the heuristic can help explain observed ambiguity aversion. We further show how this ecological relationship can inform other aspects of decision making, particularly the approach of using monetary lotteries to study choice under risk and uncertainty. Taken together, these findings suggest that theories of decision making need to model not only the decision process but also the environment to which the process is adapted.

  20. Process strengths determine the forms of the relationship between plant species richness and primary productivity

    PubMed Central

    Wang, Zhenhong

    2017-01-01

    The current rates of biodiversity loss have exceeded the rates observed during the earth’s major extinction events, which spurs the studies of the ecological relationships between biodiversity and ecosystem functions, stability, and services to determine the consequences of biodiversity loss. Plant species richness-productivity relationship (SRPR) is crucial to the understanding of these relationships in plants. Most ecologists have reached a widespread consensus that the loss of plant diversity undoubtedly impairs ecosystem functions, and have proposed many processes to explain the SRPR. However, none of the available studies has satisfactorily described the forms and mechanisms clarifying the SRPR. Observed results of the SRPR forms are inconsistent, and studies have long debated the ecological processes explaining the SRPR. Here, I have developed a simple model that combines the positive and/or negative effects of sixteen ecological processes on the SRPR and models that describe the dynamics of complementary-selection effect, density effect, and the interspecific competitive stress influenced by other ecological processes. I can regulate the strengths of the effects of these ecological processes to derive the asymptotic, positive, humped, negative, and irregular forms of the SRPR, and verify these forms using the observed data. The results demonstrated that the different strengths of the ecological processes determine the forms of the SRPR. The forms of the SRPR can change with variations in the strengths of the ecological processes. The dynamic characteristics of the complementary-selection effect, density effect, and the interspecific competitive stress on the SRPR are diverse, and are dependent on the strengths and variation of the ecological processes. This report explains the diverse forms of the SRPR, clarifies the integrative effects of the different ecological processes on the SRPR, and deepens our understanding of the interactions that occur among these ecological processes. PMID:29140995

  1. The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry

    PubMed Central

    Pallas, Sarah L.

    2017-01-01

    Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways. PMID:28701910

  2. The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry.

    PubMed

    Pallas, Sarah L

    2017-01-01

    Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways.

  3. Pleistocene rewilding: an optimistic agenda for twenty-first century conservation.

    PubMed

    Josh Donlan, C; Berger, Joel; Bock, Carl E; Bock, Jane H; Burney, David A; Estes, James A; Foreman, Dave; Martin, Paul S; Roemer, Gary W; Smith, Felisa A; Soulé, Michael E; Greene, Harry W

    2006-11-01

    Large vertebrates are strong interactors in food webs, yet they were lost from most ecosystems after the dispersal of modern humans from Africa and Eurasia. We call for restoration of missing ecological functions and evolutionary potential of lost North American megafauna using extant conspecifics and related taxa. We refer to this restoration as Pleistocene rewilding; it is conceived as carefully managed ecosystem manipulations whereby costs and benefits are objectively addressed on a case-by-case and locality-by-locality basis. Pleistocene rewilding would deliberately promote large, long-lived species over pest and weed assemblages, facilitate the persistence and ecological effectiveness of megafauna on a global scale, and broaden the underlying premise of conservation from managing extinction to encompass restoring ecological and evolutionary processes. Pleistocene rewilding can begin immediately with species such as Bolson tortoises and feral horses and continue through the coming decades with elephants and Holarctic lions. Our exemplar taxa would contribute biological, economic, and cultural benefits to North America. Owners of large tracts of private land in the central and western United States could be the first to implement this restoration. Risks of Pleistocene rewilding include the possibility of altered disease ecology and associated human health implications, as well as unexpected ecological and sociopolitical consequences of reintroductions. Establishment of programs to monitor suites of species interactions and their consequences for biodiversity and ecosystem health will be a significant challenge. Secure fencing would be a major economic cost, and social challenges will include acceptance of predation as an overriding natural process and the incorporation of pre-Columbian ecological frameworks into conservation strategies.

  4. Bringing the ecosystem services concept into marine management decisions, supporting ecosystems-based management.

    NASA Astrophysics Data System (ADS)

    Tweddle, J. F.; Byg, A.; Davies, I.; Gubbins, M.; Irvine, K.; Kafas, A.; Kenter, J.; MacDonald, A.; Murray, R. B. O.; Potts, T.; Slater, A. M.; Wright, K.; Scott, B. E.

    2016-02-01

    The marine environment is under increasing use, putting pressure on marine ecosystems and increasing competition for space. New activities (e.g. renewable energy developments), evolving marine policies (e.g. implementation of marine protected areas), and climate change may drive changes in biodiversity and resulting ecosystem services (ES) that society and business utilise from coastal and marine systems. A process is needed that integrates ecological assessment of changes with stakeholder perceptions and valuation of ES, whilst balancing ease of application with the ability to deal with complex social-economic-ecological issues. The project "Cooperative participatory assessment of the impact of renewable technology on ecosystem services: CORPORATES" involved natural and social scientists, law and policy experts, and marine managers, with the aim of promoting more integrated decision making using ES concepts in marine management. CORPORATES developed a process to bring ES concepts into stakeholders' awareness. The interactive process, involving 2 workshops, employs interludes of knowledge exchange by experts on ecological processes underpinning ES and on law and policy. These enable mapping of benefits linked to activities, participatory system modelling, and deliberation of policy impacts on different sectors. The workshops were attended by industry representatives, regulatory/advisory partners, and other stakeholders (NGOs, SMEs, recreationalists, local government). Mixed sector groups produced new insights into links between activities and ES, and highlighted cross-sector concerns. Here we present the aspects of the process that successfully built shared understanding between industry and stakeholders of inter-linkages and interactions between ES, benefits, activities, and economic and cultural values. These methods provide an ES-based decision-support model for exchanging societal-ecological knowledge and providing stakeholder interaction in marine planning, supporting ecosystem-based management.

  5. Bringing the ecosystem services concept into marine management decisions, supporting ecosystems-based management.

    NASA Astrophysics Data System (ADS)

    Tweddle, J. F.; Byg, A.; Davies, I.; Gubbins, M.; Irvine, K.; Kafas, A.; Kenter, J.; MacDonald, A.; Murray, R. B. O.; Potts, T.; Slater, A. M.; Wright, K.; Scott, B. E.

    2016-12-01

    The marine environment is under increasing use, putting pressure on marine ecosystems and increasing competition for space. New activities (e.g. renewable energy developments), evolving marine policies (e.g. implementation of marine protected areas), and climate change may drive changes in biodiversity and resulting ecosystem services (ES) that society and business utilise from coastal and marine systems. A process is needed that integrates ecological assessment of changes with stakeholder perceptions and valuation of ES, whilst balancing ease of application with the ability to deal with complex social-economic-ecological issues. The project "Cooperative participatory assessment of the impact of renewable technology on ecosystem services: CORPORATES" involved natural and social scientists, law and policy experts, and marine managers, with the aim of promoting more integrated decision making using ES concepts in marine management. CORPORATES developed a process to bring ES concepts into stakeholders' awareness. The interactive process, involving 2 workshops, employs interludes of knowledge exchange by experts on ecological processes underpinning ES and on law and policy. These enable mapping of benefits linked to activities, participatory system modelling, and deliberation of policy impacts on different sectors. The workshops were attended by industry representatives, regulatory/advisory partners, and other stakeholders (NGOs, SMEs, recreationalists, local government). Mixed sector groups produced new insights into links between activities and ES, and highlighted cross-sector concerns. Here we present the aspects of the process that successfully built shared understanding between industry and stakeholders of inter-linkages and interactions between ES, benefits, activities, and economic and cultural values. These methods provide an ES-based decision-support model for exchanging societal-ecological knowledge and providing stakeholder interaction in marine planning, supporting ecosystem-based management.

  6. Rivers are social–ecological systems: Time to integrate human dimensions into riverscape ecology and management

    USGS Publications Warehouse

    Dunham, Jason B.; Angermeier, Paul L.; Crausbay, Shelley D.; Cravens, Amanda; Gosnell, Hannah; McEvoy, Jamie; Moritz, Max A.; Raheem, Nejem; Sanford, Todd

    2018-01-01

    Incorporation of concepts from landscape ecology into understanding and managing riverine ecosystems has become widely known as riverscape ecology. Riverscape ecology emphasizes interactions among processes at different scales and their consequences for valued ecosystem components, such as riverine fishes. Past studies have focused strongly on understanding the ecological processes in riverscapes and how human actions modify those processes. It is increasingly clear, however, that an understanding of the drivers behind actions that lead to human modification also merit consideration, especially regarding how those drivers influence management efficacy. These indirect drivers of riverscape outcomes can be understood in the context of a diverse array of social processes, which we collectively refer to as human dimensions. Like ecological phenomena, social processes also exhibit complex interactions across spatiotemporal scales. Greater emphasis on feedbacks between social and ecological processes will lead scientists and managers to more completely understand riverscapes as complex, dynamic, interacting social–ecological systems. Emerging applications in riverscapes, as well as studies of other ecosystems, provide examples that can lead to stronger integration of social and ecological science. We argue that conservation successes within riverscapes may not come from better ecological science, improved ecosystem service analyses, or even economic incentives if the fundamental drivers of human behaviors are not understood and addressed in conservation planning and implementation.

  7. The micro and macro of nutrients across biological scales.

    PubMed

    Warne, Robin W

    2014-11-01

    During the past decade, we have gained new insights into the profound effects that essential micronutrients and macronutrients have on biological processes ranging from cellular function, to whole-organism performance, to dynamics in ecological communities, as well as to the structure and function of ecosystems. For example, disparities between intake and organismal requirements for specific nutrients are known to strongly affect animal physiological performance and impose trade-offs in the allocations of resources. However, recent findings have demonstrated that life-history allocation trade-offs and even microevolutionary dynamics may often be a result of molecular-level constraints on nutrient and metabolic processing, in which limiting reactants are routed among competing biochemical pathways. In addition, recent work has shown that complex ecological interactions between organismal physiological states such as exposure to environmental stressors and infectious pathogens can alter organismal requirements for, and, processing of, nutrients, and even alter subsequent nutrient cycling in ecosystems. Furthermore, new research is showing that such interactions, coupled with evolutionary and biogeographical constraints on the biosynthesis and availability of essential nutrients and micronutrients play an important, but still under-studied role in the structuring and functioning of ecosystems. The purpose of this introduction to the symposium "The Micro and Macro of Nutrient Effects in Animal Physiology and Ecology" is to briefly review and highlight recent research that has dramatically advanced our understanding of how nutrients in their varied forms profoundly affect and shape ecological and evolutionary processes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth-plant networks.

    PubMed

    Sazatornil, Federico D; Moré, Marcela; Benitez-Vieyra, Santiago; Cocucci, Andrea A; Kitching, Ian J; Schlumpberger, Boris O; Oliveira, Paulo E; Sazima, Marlies; Amorim, Felipe W

    2016-11-01

    A major challenge in evolutionary ecology is to understand how co-evolutionary processes shape patterns of interactions between species at community level. Pollination of flowers with long corolla tubes by long-tongued hawkmoths has been invoked as a showcase model of co-evolution. Recently, optimal foraging models have predicted that there might be a close association between mouthparts' length and the corolla depth of the visited flowers, thus favouring trait convergence and specialization at community level. Here, we assessed whether hawkmoths more frequently pollinate plants with floral tube lengths similar to their proboscis lengths (morphological match hypothesis) against abundance-based processes (neutral hypothesis) and ecological trait mismatches constraints (forbidden links hypothesis), and how these processes structure hawkmoth-plant mutualistic networks from five communities in four biogeographical regions of South America. We found convergence in morphological traits across the five communities and that the distribution of morphological differences between hawkmoths and plants is consistent with expectations under the morphological match hypothesis in three of the five communities. In the two remaining communities, which are ecotones between two distinct biogeographical areas, interactions are better predicted by the neutral hypothesis. Our findings are consistent with the idea that diffuse co-evolution drives the evolution of extremely long proboscises and flower tubes, and highlight the importance of morphological traits, beyond the forbidden links hypothesis, in structuring interactions between mutualistic partners, revealing that the role of niche-based processes can be much more complex than previously known. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  9. Historical foundations and future directions in macrosystems ecology.

    PubMed

    Rose, Kevin C; Graves, Rose A; Hansen, Winslow D; Harvey, Brian J; Qiu, Jiangxiao; Wood, Stephen A; Ziter, Carly; Turner, Monica G

    2017-02-01

    Macrosystems ecology is an effort to understand ecological processes and interactions at the broadest spatial scales and has potential to help solve globally important social and ecological challenges. It is important to understand the intellectual legacies underpinning macrosystems ecology: How the subdiscipline fits within, builds upon, differs from and extends previous theories. We trace the rise of macrosystems ecology with respect to preceding theories and present a new hypothesis that integrates the multiple components of macrosystems theory. The spatio-temporal anthropogenic rescaling (STAR) hypothesis suggests that human activities are altering the scales of ecological processes, resulting in interactions at novel space-time scale combinations that are diverse and predictable. We articulate four predictions about how human actions are "expanding", "shrinking", "speeding up" and "slowing down" ecological processes and interactions, and thereby generating new scaling relationships for ecological patterns and processes. We provide examples of these rescaling processes and describe ecological consequences across terrestrial, freshwater and marine ecosystems. Rescaling depends in part on characteristics including connectivity, stability and heterogeneity. Our STAR hypothesis challenges traditional assumptions about how the spatial and temporal scales of processes and interactions operate in different types of ecosystems and provides a lens through which to understand macrosystem-scale environmental change. © 2016 John Wiley & Sons Ltd/CNRS.

  10. [A process of aquatic ecological function regionalization: The dual tree framework and conceptual model].

    PubMed

    Guo, Shu Hai; Wu, Bo

    2017-12-01

    Aquatic ecological regionalization and aquatic ecological function regionalization are the basis of water environmental management of a river basin and rational utilization of an aquatic ecosystem, and have been studied in China for more than ten years. Regarding the common problems in this field, the relationship between aquatic ecological regionalization and aquatic ecological function regionalization was discussed in this study by systematic analysis of the aquatic ecological zoning and the types of aquatic ecological function. Based on the dual tree structure, we put forward the RFCH process and the diamond conceptual model. Taking Liaohe River basin as an example and referring to the results of existing regionalization studies, we classified the aquatic ecological function regions based on three-class aquatic ecological regionalization. This study provided a process framework for aquatic ecological function regionalization of a river basin.

  11. Understanding psychiatric disorder by capturing ecologically relevant features of learning and decision-making.

    PubMed

    Scholl, Jacqueline; Klein-Flügge, Miriam

    2017-09-28

    Recent research in cognitive neuroscience has begun to uncover the processes underlying increasingly complex voluntary behaviours, including learning and decision-making. Partly this success has been possible by progressing from simple experimental tasks to paradigms that incorporate more ecological features. More specifically, the premise is that to understand cognitions and brain functions relevant for real life, we need to introduce some of the ecological challenges that we have evolved to solve. This often entails an increase in task complexity, which can be managed by using computational models to help parse complex behaviours into specific component mechanisms. Here we propose that using computational models with tasks that capture ecologically relevant learning and decision-making processes may provide a critical advantage for capturing the mechanisms underlying symptoms of disorders in psychiatry. As a result, it may help develop mechanistic approaches towards diagnosis and treatment. We begin this review by mapping out the basic concepts and models of learning and decision-making. We then move on to consider specific challenges that emerge in realistic environments and describe how they can be captured by tasks. These include changes of context, uncertainty, reflexive/emotional biases, cost-benefit decision-making, and balancing exploration and exploitation. Where appropriate we highlight future or current links to psychiatry. We particularly draw examples from research on clinical depression, a disorder that greatly compromises motivated behaviours in real-life, but where simpler paradigms have yielded mixed results. Finally, we highlight several paradigms that could be used to help provide new insights into the mechanisms of psychiatric disorders. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Departmentmore » of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. This document presents the State Waste Discharge Permit (SWDP) application for the 200-E Chemical Drain Field. Waste water from the 272-E Building enters the process sewer line directly through a floor drain, while waste water from the 2703-E Building is collected in two floor drains, (north and south) that act as sumps and are discharged periodically. The 272-E and 2703-E Buildings constitute the only discharges to the process sewer line and the 200-E Chemical Drain Field.« less

  13. Exploring the evolutionary ecology of fungal endophyte in agricultural systems: using functional traits to reveal mechanisms in community processes

    USDA-ARS?s Scientific Manuscript database

    All plants, including crop species, harbor a community of fungal endophyte species, however, we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the...

  14. Impact of nonnative feral pig removal on soil structure and nutrient availability in Hawaiian tropical montane wet forests

    Treesearch

    Michael S. Long; Creighton M. Litton; Christian P. Giardina; Jonathan Deenik; Rebecca J. Cole; Jed P. Sparks

    2017-01-01

    Conservation and restoration of ecosystems impacted by nonnative ungulates increasingly involves their removal and exclusion. While the influence of nonnative ungulate removal on plant communities is commonly monitored, impacts on underlying ecological processes are seldom quantified. Here we examined how nonnative feral pig (

  15. 78 FR 65962 - Revision of the Land Management Plan for the Flathead National Forest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... over time. Under the 2012 Planning Rule, the assessment of ecological, social, and economic trends and... environmental impact statement and revised Forest Plan for public review and comment, and the preparation of the final environmental impact statement and revised Forest Plan. The third stage of the process is...

  16. Conundrums, paradoxes, and surprises: a brave new world of biodiversity conservation

    Treesearch

    A.E. Lugo

    2012-01-01

    Anthropogenic activity is altering the global disturbance regime through such processes as urbanization, deforestation, and climate change. These disturbance events alter the environmental conditions under which organisms live and adapt and trigger succession, thus setting the biota in otiion in both ecological and evolutionary space. The result is the mixing of...

  17. Disturbance regimes and the historical range and variation in terrestrial ecosystems

    Treesearch

    Robert Keane

    2017-01-01

    Disturbances are major drivers of ecological dynamics and it is the cumulative effects of disturbances across space and time that define a disturbance regime and dictate biodiversity by influencing the ranges of vegetation structures, compositions, and processes on landscapes. This range and variation of landscape characteristics under historical disturbance regimes...

  18. Impact of Geography and Climate on the Genetic Differentiation of the Subtropical Pine Pinus yunnanensis

    PubMed Central

    Zhao, Wei; Wang, Xiao-Ru

    2013-01-01

    Southwest China is a biodiversity hotspot characterized by complex topography, heterogeneous regional climates and rich flora. The processes and driving factors underlying this hotspot remain to be explicitly tested across taxa to gain a general understanding of the evolution of biodiversity and speciation in the region. In this study, we examined the role played by historically neutral processes, geography and environment in producing the current genetic diversity of the subtropical pine Pinus yunnanensis. We used genetic and ecological methods to investigate the patterns of genetic differentiation and ecological niche divergence across the distribution range of this species. We found both continuous genetic differentiation over the majority of its range, and discrete isolated local clusters. The discrete differentiation between two genetic groups in the west and east peripheries is consistent with niche divergence and geographical isolation of these groups. In the central area of the species’ range, population structure was shaped mainly by neutral processes and geography rather than by ecological selection. These results show that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, and illustrate the importance of ecological factors in forming or maintaining genetic divergence across a complex landscape. Our findings differ from other phylogenetic studies that identified the historical drainage system in the region as the primary factor shaping population structure, and highlight the heterogeneous contributions that geography and environment have made to genetic diversity among taxa in southwest China. PMID:23840668

  19. Impact of Geography and Climate on the Genetic Differentiation of the Subtropical Pine Pinus yunnanensis.

    PubMed

    Wang, Baosheng; Mao, Jian-Feng; Zhao, Wei; Wang, Xiao-Ru

    2013-01-01

    Southwest China is a biodiversity hotspot characterized by complex topography, heterogeneous regional climates and rich flora. The processes and driving factors underlying this hotspot remain to be explicitly tested across taxa to gain a general understanding of the evolution of biodiversity and speciation in the region. In this study, we examined the role played by historically neutral processes, geography and environment in producing the current genetic diversity of the subtropical pine Pinus yunnanensis. We used genetic and ecological methods to investigate the patterns of genetic differentiation and ecological niche divergence across the distribution range of this species. We found both continuous genetic differentiation over the majority of its range, and discrete isolated local clusters. The discrete differentiation between two genetic groups in the west and east peripheries is consistent with niche divergence and geographical isolation of these groups. In the central area of the species' range, population structure was shaped mainly by neutral processes and geography rather than by ecological selection. These results show that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, and illustrate the importance of ecological factors in forming or maintaining genetic divergence across a complex landscape. Our findings differ from other phylogenetic studies that identified the historical drainage system in the region as the primary factor shaping population structure, and highlight the heterogeneous contributions that geography and environment have made to genetic diversity among taxa in southwest China.

  20. Supporting Multiple Cognitive Processing Styles Using Tailored Support Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuan Q. Tran; Karen M. Feigh; Amy R. Pritchett

    According to theories of cognitive processing style or cognitive control mode, human performance is more effective when an individual’s cognitive state (e.g., intuition/scramble vs. deliberate/strategic) matches his/her ecological constraints or context (e.g., utilize intuition to strive for a "good-enough" response instead of deliberating for the "best" response under high time pressure). Ill-mapping between cognitive state and ecological constraints are believed to lead to degraded task performance. Consequently, incorporating support systems which are designed to specifically address multiple cognitive and functional states e.g., high workload, stress, boredom, and initiate appropriate mitigation strategies (e.g., reduce information load) is essential to reduce plantmore » risk. Utilizing the concept of Cognitive Control Models, this paper will discuss the importance of tailoring support systems to match an operator's cognitive state, and will further discuss the importance of these ecological constraints in selecting and implementing mitigation strategies for safe and effective system performance. An example from the nuclear power plant industry illustrating how a support system might be tailored to support different cognitive states is included.« less

  1. The Gradient Paradigm: A conceptual and analytical framework for landscape ecology [Chapter 5

    Treesearch

    Samuel A. Cushman; Kevin Gutzweiler; Jeffrey S. Evans; Kevin McGarigal

    2010-01-01

    Landscape ecology deals fundamentally with how, when, and why patterns of environmental factors influence the distribution of organisms and ecological processes, and reciprocally, how the actions of organisms and ecological processes influence ecological patterns (Urban et al. 1991; Turner 1989). The landscape ecologist's goal is to determine where and when...

  2. Evidence and opportunities for integrating landscape ecology into natural resource planning across multiple-use landscapes

    USGS Publications Warehouse

    Trammel, E. Jamie; Carter, Sarah; Haby, Travis S.; Taylor, Jason J.

    2018-01-01

    Enhancing natural resource management has been a focus of landscape ecology since its inception, but numerous authors argue that landscape ecology has not yet been effective in achieving the underlying goal of planning and designing sustainable landscapes. We developed nine questions reflecting the application of fundamental research topics in landscape ecology to the landscape planning process and reviewed two recent landscape-scale plans in western North America for evidence of these concepts in plan decisions. Both plans considered multiple resources, uses, and values, including energy development, recreation, conservation, and protection of cultural and historic resources. We found that land use change and multiscale perspectives of resource uses and values were very often apparent in planning decisions. Pattern-process relationships, connectivity and fragmentation, ecosystem services, landscape history, and climate change were reflected less frequently. Landscape sustainability was considered only once in the 295 decisions reviewed, and outputs of landscape models were not referenced. We suggest six actionable opportunities for further integrating landscape ecology concepts into landscape planning efforts: 1) use landscape sustainability as an overarching goal, 2) adopt a broad ecosystem services framework, 3) explore the role of landscape history more comprehensively, 4) regularly consider and accommodate potential effects of climate change, 5) use landscape models to support plan decisions, and 6) promote a greater presence of landscape ecologists within agencies that manage large land bases and encourage active involvement in agency planning efforts. Together these actions may improve the defensibility, durability, and sustainability of landscape plan decisions.

  3. Management of local economic and ecological system of coal processing company

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. V.; Mikhailov, V. G.; Karasev, V. A.

    2016-10-01

    The management issues of local ecological and economic system of coal processing company - coal processing plant - are considered in the article. The objectives of the research are the identification and the analysis of local ecological and economic system (coal processing company) performance and the proposals for improving the mechanism to support the management decision aimed at improving its environmental safety. The data on the structure of run-of-mine coal processing products are shown. The analysis of main ecological and economic indicators of coal processing enterprises, characterizing the state of its environmental safety, is done. The main result of the study is the development of proposals to improve the efficiency of local enterprise ecological and economic system management, including technical, technological and business measures. The results of the study can be recommended to industrial enterprises to improve their ecological and economic efficiency.

  4. Evaluation of DGVMs in tropical areas: linking patterns of vegetation cover, climate and fire to ecological processes

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara

    2017-04-01

    Many current Dynamic Global Vegetation Models (DGVMs), including those incorporated into Earth System Models (ESMs), are able to realistically reproduce the distribution of the most worldwide biomes. However, they display high uncertainty in predicting the forest, savanna and grassland distributions and the transitions between them in tropical areas. These biomes are the most productive terrestrial ecosystems, and owing to their different biogeophysical and biogeochemical characteristics, future changes in their distributions could have also impacts on climate states. In particular, expected increasing temperature and CO2, modified precipitation regimes, as well as increasing land-use intensity could have large impacts on global biogeochemical cycles and precipitation, affecting the land-climate interactions. The difficulty of the DGVMs in simulating tropical vegetation, especially savanna structure and occurrence, has been associated with the way they represent the ecological processes and feedbacks between biotic and abiotic conditions. The inclusion of appropriate ecological mechanisms under present climatic conditions is essential for obtaining reliable future projections of vegetation and climate states. In this work we analyse observed relationships of tree and grass cover with climate and fire, and the current ecological understanding of the mechanisms driving the forest-savanna-grassland transition in Africa to evaluate the outcomes of a current state-of-the-art DGVM and to assess which ecological processes need to be included or improved within the model. Specifically, we analyse patterns of woody and herbaceous cover and fire return times from MODIS satellite observations, rainfall annual average and seasonality from TRMM satellite measurements and tree phenology information from the ESA global land cover map, comparing them with the outcomes of the LPJ-GUESS DGVM, also used by the EC-Earth global climate model. The comparison analysis with the LPJ-GUESS simulations suggests possible improvements in the model representations of tree-grass competition for water and in the vegetation-fire interaction. The proposed method could be useful for evaluating DGVMs in tropical areas, especially in the phase of model setting-up, before the coupling with Earth System Models. This could help in improving the simulations of ecological processes and consequently of land-climate interactions.

  5. [Progress and prospects on evaluation of ecological restoration: a review of the 5th World Conference on Ecological Restoration].

    PubMed

    Ding, Jing-Yi; Zhao, Wen-Wu

    2014-09-01

    The 5th World Conference on Ecological Restoration was held in Madison, Wisconsin, USA on October 6-11, 2013. About 1200 delegates from more than 50 countries attended the conference, and discussed the latest developments in different thematic areas of ecological restoration. Discussions on evaluation of ecological restoration were mainly from three aspects: The construction for evaluation indicator system of ecological restoration; the evaluation methods of ecological restoration; monitoring and dynamic evaluation of ecological restoration. The meeting stressed the importance of evaluation in the process of ecological restoration and concerned the challenges in evaluation of ecological restoration. The conference had the following enlightenments for China' s research on evaluation of ecological restoration: 1) Strengthening the construction of comprehensive evaluation indicators system and focusing on the multi-participation in the evaluation process. 2) Paying more attentions on scale effect and scale transformation in the evaluation process of ecological restoration. 3) Expanding the application of 3S technology in assessing the success of ecological restoration and promoting the dynamic monitoring of ecological restoration. 4) Carrying out international exchanges and cooperation actively, and promoting China's international influence in ecological restoration research.

  6. Effects of fire on major forest ecosystem processes: an overview.

    PubMed

    Chen, Zhong

    2006-09-01

    Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem-specific studies are needed in future, especially those focusing on temporal and spatial variations of fire effects through long-term experimental monitoring and modeling.

  7. Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures?

    NASA Astrophysics Data System (ADS)

    Perkins, Matthew J.; Ng, Terence P. T.; Dudgeon, David; Bonebrake, Timothy C.; Leung, Kenneth M. Y.

    2015-12-01

    Globally, coastlines are under pressure as coastal human population growth and urbanization continues, while climatic change leads to stormier seas and rising tides. These trends create a strong and sustained demand for land reclamation and infrastructure protection in coastal areas, requiring engineered coastal defence structures such as sea walls. Here, we review the nature of ecological impacts of coastal structures on intertidal ecosystems, seek to understand the extent to which ecological engineering can mitigate these impacts, and evaluate the effectiveness of mitigation as a tool to contribute to conservation of intertidal habitats. By so doing, we identify critical knowledge gaps to inform future research. Coastal structures alter important physical, chemical and biological processes of intertidal habitats, and strongly impact community structure, inter-habitat linkages and ecosystem services while also driving habitat loss. Such impacts occur diffusely across localised sites but scale to significant regional and global levels. Recent advances in ecological engineering have focused on developing habitat complexity on coastal structures to increase biodiversity. 'Soft' engineering options maximise habitat complexity through inclusion of natural materials, species and processes, while simultaneously delivering engineering objectives such as coastal protection. Soft options additionally sustain multiple services, providing greater economic benefits for society, and resilience to climatic change. Currently however, a lack of inclusion and economic undervaluation of intertidal ecosystem services may undermine best practice in coastline management. Importantly, reviewed evidence shows mitigation and even restoration do not support intertidal communities or processes equivalent to pre-disturbance conditions. Crucially, an absence of comprehensive empirical baseline biodiversity data, or data comprising additional ecological parameters such as ecosystem functions and services, prohibits quantification of absolute and relative magnitudes of ecological impacts due to coastal structures or effectiveness of mitigation interventions. This knowledge deficit restricts evaluation of the potential of ecological engineering to contribute to conservation policies for intertidal habitats. To improve mitigation design and effectiveness, a greater focus on in-situ research is needed, requiring stronger and timely collaboration between government agencies, construction partners and research scientists.

  8. INCORPORATING INDUSTRIAL ECOLOGY INTO HIERARCHICAL CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    Incorporating Industrial Ecology into Hierarchical Chemical Process Design: Determining Targets for the Exchange of Waste

    The exchange of waste to be used as a recycled feed has long been encouraged by practitioners of industrial ecology. Industrial ecology is a field t...

  9. Sexual imprinting on ecologically divergent traits leads to sexual isolation in sticklebacks

    PubMed Central

    Kozak, Genevieve M.; Head, Megan L.; Boughman, Janette W.

    2011-01-01

    During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such ‘magic traits’ easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity. PMID:21270044

  10. Sexual imprinting on ecologically divergent traits leads to sexual isolation in sticklebacks.

    PubMed

    Kozak, Genevieve M; Head, Megan L; Boughman, Janette W

    2011-09-07

    During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such 'magic traits' easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity.

  11. An ecosystem services approach to the ecological effects of salvage logging: valuation of seed dispersal.

    PubMed

    Leverkus, Alexandro B; Castro, Jorge

    2017-06-01

    Forest disturbances diminish ecosystem services and boost disservices. Because post-disturbance management intends to recover the greatest possible value, selling timber often prevails over other considerations. Ecological research has shown diverse effects of salvage logging, yet such research has focused on the biophysical component of post-disturbance ecosystems and lacks the link with human well-being. Here we bridge that gap under the ecosystem services framework by assessing the impact of post-fire management on a non-timber value. By employing the replacement cost method, we calculated the value of the post-fire natural regeneration of Holm oaks in southern Spain under three post-fire management options by considering the cost of planting instead. The value of this ecosystem service in non-intervention areas doubled that of salvage-logged stands due to the preference for standing dead trees by the main seed disperser. Still, most of the value resulted from the resprouting capacity of oaks. The value of this and other ecosystem services should be added to traditional cost/benefit analyses of post-disturbance management. We thus call for a more holistic approach to salvage logging research, one that explicitly links ecological processes with human well-being through ecosystem services, to better inform decision-makers on the outcomes of post-disturbance management. © 2017 by the Ecological Society of America.

  12. [Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example.

    PubMed

    Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying

    2018-01-01

    The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.

  13. Termites promote resistance of decomposition to spatiotemporal variability in rainfall.

    PubMed

    Veldhuis, Michiel P; Laso, Francisco J; Olff, Han; Berg, Matty P

    2017-02-01

    The ecological impact of rapid environmental change will depend on the resistance of key ecosystems processes, which may be promoted by species that exert strong control over local environmental conditions. Recent theoretical work suggests that macrodetritivores increase the resistance of African savanna ecosystems to changing climatic conditions, but experimental evidence is lacking. We examined the effect of large fungus-growing termites and other non-fungus-growing macrodetritivores on decomposition rates empirically with strong spatiotemporal variability in rainfall and temperature. Non-fungus-growing larger macrodetritivores (earthworms, woodlice, millipedes) promoted decomposition rates relative to microbes and small soil fauna (+34%) but both groups reduced their activities with decreasing rainfall. However, fungus-growing termites increased decomposition rates strongest (+123%) under the most water-limited conditions, making overall decomposition rates mostly independent from rainfall. We conclude that fungus-growing termites are of special importance in decoupling decomposition rates from spatiotemporal variability in rainfall due to the buffered environment they create within their extended phenotype (mounds), that allows decomposition to continue when abiotic conditions outside are less favorable. This points at a wider class of possibly important ecological processes, where soil-plant-animal interactions decouple ecosystem processes from large-scale climatic gradients. This may strongly alter predictions from current climate change models. © 2016 by the Ecological Society of America.

  14. A Biophysical Model for Hawaiian Coral Reefs: Coupling Local Ecology, Larval Transport and Climate Change

    NASA Astrophysics Data System (ADS)

    Kapur, M. R.

    2016-02-01

    Simulative models of reef ecosystems have been used to evaluate ecological responses to a myriad of disturbance events, including fishing pressure, coral bleaching, invasion by alien species, and nutrient loading. The Coral Reef Scenario Evaluation Tool (CORSET), has been developed and instantiated for both the Meso-American Reef (MAR) and South China Sea (SCS) regions. This model is novel in that it accounts for the many scales at which reef ecosystem processes take place; is comprised of a "bottom-up" structure wherein complex behaviors are not pre-programmed, but emergent and highly portable to new systems. Local-scale dynamics are coupled across regions through larval connectivity matrices, derived sophisticated particle transport simulations that include key elements of larval behavior. By this approach, we are able to directly evaluate some of the potential consequences of larval connectivity patterns across a range of spatial scales and under multiple climate scenarios. This work develops and applies the CORSET (Coral Reef Scenario Evaluation Tool) to the Main Hawaiian Islands under a suite of climate and ecological scenarios. We introduce an adaptation constant into reef-building coral dynamics to simulate observed resiliencies to bleaching events. This presentation will share results from the model's instantiation under two Resource Concentration Pathway climate scenarios, with emphasis upon larval connectivity dynamics, emergent coral tolerance to increasing thermal anomalies, and patterns of spatial fishing closures. Results suggest that under a business-as-usual scenario, thermal tolerance and herbivore removal will have synergistic effects on reef resilience.

  15. PATCH-BURN GRAZING AS A TOOL FOR THE ECOLOGICAL MANAGEMENT OF INVASIVE SPECIES AND RESTORATION OF CARBON SEQUESTRATION AND ECOSYSTEM PROCESSES IN WORKING LANDSCAPES

    EPA Science Inventory

    Short term - The results of the project will increase information on carbon dynamics under working grassland, and provide a low-input dual conservation/production practice that increases perennial cover and net income while reducing herbicide used to control invasive ...

  16. The Texas Projection Measure: Ignoring Complex Ecologies in a Changing World

    ERIC Educational Resources Information Center

    Roane, Warren

    2010-01-01

    The Texas Projection Measure (TPM) has grown out of the state's need to meet the requirements of No Child Left Behind (NCLB). An examination of the state's method of predicting 8th grade mathematics scores reveals that several factors have been ignored in the process of developing the model, including assumptions in its underlying statistical…

  17. Overview of geology, hydrology, geomorphology, and sediment budget of the Deschutes River Basin, Oregon.

    Treesearch

    Jim E. O' Connor; Gordon E. Grant; Tana L. Haluska

    2003-01-01

    Within the Deschutes River basin of central Oregon, the geology, hydrology, and physiography influence geomorphic and ecologic processes at a variety of temporal and spatial scales. Hydrologic and physiographic characteristics of the basin are related to underlying geologic materials. In the southwestern part of the basin, Quaternary volcanism and tectonism has created...

  18. Analysis paralysis

    Treesearch

    Bill Block

    2012-01-01

    I have been Editor-in-Chief for about 10 months now. Over that period of time, I have processed hundreds of manuscripts and considered hundreds of reviews. In doing so, I have noticed an emphasis on analysis at the expense of a better understanding of the ecological system under study. I mention this not to belittle statistical advances made within various disciplines...

  19. Personality-dependent dispersal cancelled under predation risk

    PubMed Central

    Cote, Julien; Fogarty, Sean; Tymen, Blaise; Sih, Andrew; Brodin, Tomas

    2013-01-01

    Dispersal is a fundamental life-history trait for many ecological processes. Recent studies suggest that dispersers, in comparison to residents, display various phenotypic specializations increasing their dispersal inclination or success. Among them, dispersers are believed to be consistently more bold, exploratory, asocial or aggressive than residents. These links between behavioural types and dispersal should vary with the cause of dispersal. However, with the exception of one study, personality-dependent dispersal has not been studied in contrasting environments. Here, we used mosquitofish (Gambusia affinis) to test whether personality-dependent dispersal varies with predation risk, a factor that should induce boldness or sociability-dependent dispersal. Corroborating previous studies, we found that dispersing mosquitofish are less social than non-dispersing fish when there was no predation risk. However, personality-dependent dispersal is negated under predation risk, dispersers having similar personality types to residents. Our results suggest that adaptive dispersal decisions could commonly depend on interactions between phenotypes and ecological contexts. PMID:24197414

  20. Selection of trilateral continuums of life history strategies under food web interactions.

    PubMed

    Fujiwara, Masami

    2018-03-14

    The study of life history strategies has a long history in ecology and evolution, but determining the underlying mechanisms driving the evolution of life history variation and its consequences for population regulation remains a major challenge. In this study, a food web model with constant environmental conditions was used to demonstrate how multi-species consumer-resource interactions (food-web interactions) can create variation in the duration of the adult stage, age of maturation, and fecundity among species. The model included three key ecological processes: size-dependent species interactions, energetics, and transition among developmental stages. Resultant patterns of life history variation were consistent with previous empirical observations of the life history strategies of aquatic organisms referred to as periodic, equilibrium, and opportunistic strategies (trilateral continuums of life history strategies). Results from the simulation model suggest that these three life history strategies can emerge from food web interactions even when abiotic environmental conditions are held constant.

  1. What defines an adaptive radiation? Macroevolutionary diversification dynamics of an exceptionally species-rich continental lizard radiation.

    PubMed

    Pincheira-Donoso, Daniel; Harvey, Lilly P; Ruta, Marcello

    2015-08-07

    Adaptive radiation theory posits that ecological opportunity promotes rapid proliferation of phylogenetic and ecological diversity. Given that adaptive radiation proceeds via occupation of available niche space in newly accessed ecological zones, theory predicts that: (i) evolutionary diversification follows an 'early-burst' process, i.e., it accelerates early in the history of a clade (when available niche space facilitates speciation), and subsequently slows down as niche space becomes saturated by new species; and (ii) phylogenetic branching is accompanied by diversification of ecologically relevant phenotypic traits among newly evolving species. Here, we employ macroevolutionary phylogenetic model-selection analyses to address these two predictions about evolutionary diversification using one of the most exceptionally species-rich and ecologically diverse lineages of living vertebrates, the South American lizard genus Liolaemus. Our phylogenetic analyses lend support to a density-dependent lineage diversification model. However, the lineage through-time diversification curve does not provide strong support for an early burst. In contrast, the evolution of phenotypic (body size) relative disparity is high, significantly different from a Brownian model during approximately the last 5 million years of Liolaemus evolution. Model-fitting analyses also reject the 'early-burst' model of phenotypic evolution, and instead favour stabilizing selection (Ornstein-Uhlenbeck, with three peaks identified) as the best model for body size diversification. Finally, diversification rates tend to increase with smaller body size. Liolaemus have diversified under a density-dependent process with slightly pronounced apparent episodic pulses of lineage accumulation, which are compatible with the expected episodic ecological opportunity created by gradual uplifts of the Andes over the last ~25My. We argue that ecological opportunity can be strong and a crucial driver of adaptive radiations in continents, but may emerge less frequently (compared to islands) when major events (e.g., climatic, geographic) significantly modify environments. In contrast, body size diversification conforms to an Ornstein-Uhlenbeck model with multiple trait optima. Despite this asymmetric diversification between both lineages and phenotype, links are expected to exist between the two processes, as shown by our trait-dependent analyses of diversification. We finally suggest that the definition of adaptive radiation should not be conditioned by the existence of early-bursts of diversification, and should instead be generalized to lineages in which species and ecological diversity have evolved from a single ancestor.

  2. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory

    PubMed Central

    Welti, Nina; Striebel, Maren; Ulseth, Amber J.; Cross, Wyatt F.; DeVilbiss, Stephen; Glibert, Patricia M.; Guo, Laodong; Hirst, Andrew G.; Hood, Jim; Kominoski, John S.; MacNeill, Keeley L.; Mehring, Andrew S.; Welter, Jill R.; Hillebrand, Helmut

    2017-01-01

    Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment. PMID:28747904

  3. [Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: a review].

    PubMed

    Yang, Kun; Deng, Xi; Li, Xue-Ling; Wen, Ping

    2011-05-01

    Hydroelectric cascade exploitation, one of the major ways for exploiting water resources and developing hydropower, not only satisfies the needs of various national economic sectors, but also promotes the socio-economic sustainable development of river basin. unavoidable anthropogenic impacts on the entire basin ecosystem. Based on the process of hydroelectric cascade exploitation and the ecological characteristics of river basins, this paper reviewed the major impacts of hydroelectric cascade exploitation on dam-area ecosystems, river reservoirs micro-climate, riparian ecosystems, river aquatic ecosystems, wetlands, and river landscapes. Some prospects for future research were offered, e.g., strengthening the research of chain reactions and cumulative effects of ecological factors affected by hydroelectric cascade exploitation, intensifying the study of positive and negative ecological effects under the dam networks and their joint operations, and improving the research of successional development and stability of basin ecosystems at different temporal and spatial scales.

  4. Reconciling multiple data sources to improve accuracy of large-scale prediction of forest disease incidence

    USGS Publications Warehouse

    Hanks, E.M.; Hooten, M.B.; Baker, F.A.

    2011-01-01

    Ecological spatial data often come from multiple sources, varying in extent and accuracy. We describe a general approach to reconciling such data sets through the use of the Bayesian hierarchical framework. This approach provides a way for the data sets to borrow strength from one another while allowing for inference on the underlying ecological process. We apply this approach to study the incidence of eastern spruce dwarf mistletoe (Arceuthobium pusillum) in Minnesota black spruce (Picea mariana). A Minnesota Department of Natural Resources operational inventory of black spruce stands in northern Minnesota found mistletoe in 11% of surveyed stands, while a small, specific-pest survey found mistletoe in 56% of the surveyed stands. We reconcile these two surveys within a Bayesian hierarchical framework and predict that 35-59% of black spruce stands in northern Minnesota are infested with dwarf mistletoe. ?? 2011 by the Ecological Society of America.

  5. Exploration and exploitation in the macrohistory of the pre-Hispanic Pueblo Southwest

    PubMed Central

    Bocinsky, R. Kyle; Rush, Johnathan; Kintigh, Keith W.; Kohler, Timothy A.

    2016-01-01

    Cycles of demographic and organizational change are well documented in Neolithic societies, but the social and ecological processes underlying them are debated. Such periodicities are implicit in the “Pecos classification,” a chronology for the pre-Hispanic U.S. Southwest introduced in Science in 1927 which is still widely used. To understand these periodicities, we analyzed 29,311 archaeological tree-ring dates from A.D. 500 to 1400 in the context of a novel high spatial resolution, annual reconstruction of the maize dry-farming niche for this same period. We argue that each of the Pecos periods initially incorporates an “exploration” phase, followed by a phase of “exploitation” of niches that are simultaneously ecological, cultural, and organizational. Exploitation phases characterized by demographic expansion and aggregation ended with climatically driven downturns in agricultural favorability, undermining important bases for social consensus. Exploration phases were times of socio-ecological niche discovery and development. PMID:27051879

  6. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change

    PubMed Central

    Davis, Jenny; Pavlova, Alexandra; Thompson, Ross; Sunnucks, Paul

    2013-01-01

    Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refuges based on our review of the attributes of aquatic habitats and freshwater taxa (fishes and aquatic invertebrates) in arid Australia. We also identify methods of recognizing likely future refugia and approaches to assessing the vulnerability of arid-adapted freshwater biota to a warming and drying climate. Evolutionary refugia in arid areas are characterized as permanent, groundwater-dependent habitats (subterranean aquifers and springs) supporting vicariant relicts and short-range endemics. Ecological refuges can vary across space and time, depending on the dispersal abilities of aquatic taxa and the geographical proximity and hydrological connectivity of aquatic habitats. The most important are the perennial waterbodies (both groundwater and surface water fed) that support obligate aquatic organisms. These species will persist where suitable habitats are available and dispersal pathways are maintained. For very mobile species (invertebrates with an aerial dispersal phase) evolutionary refugia may also act as ecological refuges. Evolutionary refugia are likely future refugia because their water source (groundwater) is decoupled from local precipitation. However, their biota is extremely vulnerable to changes in local conditions because population extinction risks cannot be abated by the dispersal of individuals from other sites. Conservation planning must incorporate a high level of protection for aquifers that support refugial sites. Ecological refuges are vulnerable to changes in regional climate because they have little thermal or hydrological buffering. Accordingly, conservation planning must focus on maintaining meta-population processes, especially through dynamic connectivity between aquatic habitats at a landscape scale. PMID:23526791

  7. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change.

    PubMed

    Davis, Jenny; Pavlova, Alexandra; Thompson, Ross; Sunnucks, Paul

    2013-07-01

    Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refugees based on our review of the attributes of aquatic habitats and freshwater taxa (fishes and aquatic invertebrates) in arid Australia. We also identify methods of recognizing likely future refugia and approaches to assessing the vulnerability of arid-adapted freshwater biota to a warming and drying climate. Evolutionary refugia in arid areas are characterized as permanent, groundwater-dependent habitats (subterranean aquifers and springs) supporting vicariant relicts and short-range endemics. Ecological refugees can vary across space and time, depending on the dispersal abilities of aquatic taxa and the geographical proximity and hydrological connectivity of aquatic habitats. The most important are the perennial waterbodies (both groundwater and surface water fed) that support obligate aquatic organisms. These species will persist where suitable habitats are available and dispersal pathways are maintained. For very mobile species (invertebrates with an aerial dispersal phase) evolutionary refugia may also act as ecological refugees. Evolutionary refugia are likely future refugia because their water source (groundwater) is decoupled from local precipitation. However, their biota is extremely vulnerable to changes in local conditions because population extinction risks cannot be abated by the dispersal of individuals from other sites. Conservation planning must incorporate a high level of protection for aquifers that support refugial sites. Ecological refuges are vulnerable to changes in regional climate because they have little thermal or hydrological buffering. Accordingly, conservation planning must focus on maintaining meta-population processes, especially through dynamic connectivity between aquatic habitats at a landscape scale. © 2013 Blackwell Publishing Ltd.

  8. Self-generated morphology in lagoon reefs

    PubMed Central

    Hamblin, Michael G.

    2015-01-01

    The three-dimensional form of a coral reef develops through interactions and feedbacks between its constituent organisms and their environment. Reef morphology therefore contains a potential wealth of ecological information, accessible if the relationships between morphology and ecology can be decoded. Traditionally, reef morphology has been attributed to external controls such as substrate topography or hydrodynamic influences. Little is known about inherent reef morphology in the absence of external control. Here we use reef growth simulations, based on observations in the cellular reefs of Western Australia’s Houtman Abrolhos Islands, to show that reef morphology is fundamentally determined by the mechanical behaviour of the reef-building organisms themselves—specifically their tendency to either remain in place or to collapse. Reef-building organisms that tend to remain in place, such as massive and encrusting corals or coralline algae, produce nodular reefs, whereas those that tend to collapse, such as branching Acropora, produce cellular reefs. The purest reef growth forms arise in sheltered lagoons dominated by a single type of reef builder, as in the branching Acropora-dominated lagoons of the Abrolhos. In these situations reef morphology can be considered a phenotype of the predominant reef building organism. The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images. More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef. PMID:26175962

  9. Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts

    NASA Astrophysics Data System (ADS)

    Kim, Minsu; Or, Dani

    2017-12-01

    Biological soil crusts (biocrusts) are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment) under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.

  10. Evaluation of children with ADHD on the Ball-Search Field Task

    PubMed Central

    Rosetti, Marcos F.; Ulloa, Rosa E.; Vargas-Vargas, Ilse L.; Reyes-Zamorano, Ernesto; Palacios-Cruz, Lino; de la Peña, Francisco; Larralde, Hernán; Hudson, Robyn

    2016-01-01

    Searching, defined for the purpose of the present study as the displacement of an individual to locate resources, is a fundamental behavior of all mobile organisms. In humans this behavior underlies many aspects of everyday life, involving cognitive processes such as sustained attention, memory and inhibition. We explored the performance of 36 treatment-free children diagnosed with attention-deficit hyperactivity disorder (ADHD) and 132 children from a control school sample on the ecologically based ball-search field task (BSFT), which required them to locate and collect golf balls in a large outdoor area. Children of both groups enjoyed the task and were motivated to participate in it. However, performance showed that ADHD-diagnosed subjects were significantly less efficient in their searching. We suggest that the BSFT provides a promising basis for developing more complex ecologically-derived tests that might help to better identify particular cognitive processes and impairments associated with ADHD. PMID:26805450

  11. Assessment of ecologic regression in the study of lung cancer and indoor radon.

    PubMed

    Stidley, C A; Samet, J M

    1994-02-01

    Ecologic regression studies conducted to assess the cancer risk of indoor radon to the general population are subject to methodological limitations, and they have given seemingly contradictory results. The authors use simulations to examine the effects of two major methodological problems that affect these studies: measurement error and misspecification of the risk model. In a simulation study of the effect of measurement error caused by the sampling process used to estimate radon exposure for a geographic unit, both the effect of radon and the standard error of the effect estimate were underestimated, with greater bias for smaller sample sizes. In another simulation study, which addressed the consequences of uncontrolled confounding by cigarette smoking, even small negative correlations between county geometric mean annual radon exposure and the proportion of smokers resulted in negative average estimates of the radon effect. A third study considered consequences of using simple linear ecologic models when the true underlying model relation between lung cancer and radon exposure is nonlinear. These examples quantify potential biases and demonstrate the limitations of estimating risks from ecologic studies of lung cancer and indoor radon.

  12. The complexity underlying invasiveness precludes the identification of invasive traits: A comparative study of invasive and non-invasive heterocarpic Atriplex congeners

    PubMed Central

    Doudová, Jana; Douda, Jan; Mandák, Bohumil

    2017-01-01

    Heterocarpy enables species to effectively spread under unfavourable conditions by producing two or more types of fruit differing in ecological characteristics. Although it is frequent in annuals occupying disturbed habitats that are vulnerable to invasion, there is still a lack of congeneric studies addressing the importance of heterocarpy for species invasion success. We compared two pairs of heterocarpic Atriplex species, each of them comprising one invasive and one non-invasive non-native congener. In two common garden experiments, we (i) simulated the influence of different levels of nutrients and population density on plants grown from different types of fruits and examined several traits that are generally positively associated with invasion success, and (ii) grew plants in a replacement series experiment to evaluate resource partitioning between them and to compare their competitive ability. We found that specific functional traits or competitiveness of species cannot explain the invasiveness of Atriplex species, indicating that species invasiveness involves more complex interactions of traits that are important only in certain ecological contexts, i.e. in specific environmental conditions and only some habitats. Interestingly, species trait differences related to invasion success were found between plants growing from the ecologically most contrasting fruit types. We suggest that fruit types differing in ecological behaviour may be essential in the process of invasion or in the general spreading of heterocarpic species, as they either the maximize population growth (type C fruit) or enhance the chance of survival of new populations (type A fruit). Congeners offer the best available methodical framework for comparing traits among phylogenetically closely related invasive and non-invasive species. However, as indicated by our results, this approach is unlikely to reveal invasive traits because of the complexity underlying invasiveness. PMID:28445514

  13. [Ecology of vector systems: a tangle of complexity].

    PubMed

    Rodhain, F

    2008-06-01

    The long co-evolutionary process between arthropods and microorganisms has resulted in a wide variety of relationships. One such relationship involves a wide range of infectious agents (virus, bacteria, protozoa, helminthes) that use blood-feeding arthropods (insects and mites) as vectors for transmission from one vertebrate to another. Transmission involves three components, i.e., microorganism, vector(s), and vertebrate host(s). Study under natural conditions has shown that the underlying mechanisms are extremely complex with circulation of the infectious agents depending on numerous conditions linked not only to bioecology but also to genetic factors in all three component populations. The role of arthropods sometimes goes beyond that of a transmitter of disease. In some cases they also serve as reservoirs or disseminators. In addition changes in the environment whether due to natural causes or human activities (e.g. pollution, agropastoralism, urbanization, transportation network development, and climate change) can have profound and rapid effects on the mechanisms underlying these vector systems. In short the ecology of vector systems closely reflects the extreme complexity of epidemiological studies on diseases caused by infectious agents depending on this type of transmission. As a result prediction of infectious risks and planning of preventive action are difficult. It appears obvious that a good understanding of vector systems in their natural context will require a truly ecological approach to the diseases that must be the focus of extremely close epidemiologic surveillance. Achieving this goal will necessitate more than the skills of physicians and veterinarians. It will require the contribution of specialists from a variety of fields such as microbiology, entomology, systematics, climatology, ecology, urbanism, social sciences, economic development, and many others.

  14. Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming.

    PubMed

    Gomiero, A; Bellerby, R G J; Manca Zeichen, M; Babbini, L; Viarengo, A

    2018-05-01

    Recently, there has been a growing concern that climate change may rapidly and extensively alter global ecosystems with unknown consequences for terrestrial and aquatic life. While considerable emphasis has been placed on terrestrial ecology consequences, aquatic environments have received relatively little attention. Limited knowledge is available on the biological effects of increments of seawater temperature and pH decrements on key ecological species, i.e., primary producers and/or organisms representative of the basis of the trophic web. In the present study, we addressed the biological effects of global warming and ocean acidification on two model organisms, the microbenthic marine ciliate Euplotes crassus and the green alga Dunaliella tertiocleta using a suite of high level ecological endpoint tests and sub-lethal stress measures. Organisms were exposed to combinations of pH and temperature (TR1: 7.9 [pH], 25.5 °C and TR2: 7.8 [pH], 27,0 °C) simulating two possible environmental scenarios predicted to occur in the habitats of the selected species before the end of this century. The outcomes of the present study showed that the tested scenarios did not induce a significant increment of mortality on protozoa. Under the most severe exposure conditions, sub-lethal stress indices show that pH homeostatic mechanisms have energetic costs that divert energy from essential cellular processes and functions. The marine protozoan exhibited significant impairment of the lysosomal compartment and early signs of oxidative stress under these conditions. Similarly, significant impairment of photosynthetic efficiency and an increment in lipid peroxidation were observed in the autotroph model organism held under the most extreme exposure condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A conservation planning tool for Greater Sage-grouse using indices of species distribution, resilience, and resistance.

    PubMed

    Ricca, Mark A; Coates, Peter S; Gustafson, K Benjamin; Brussee, Brianne E; Chambers, Jeanne C; Espinosa, Shawn P; Gardner, Scott C; Lisius, Sherri; Ziegler, Pilar; Delehanty, David J; Casazza, Michael L

    2018-06-01

    Managers require quantitative yet tractable tools that identify areas for restoration yielding effective benefits for targeted wildlife species and the ecosystems they inhabit. As a contemporary example of high national significance for conservation, the persistence of Greater Sage-grouse (Centrocercus urophasianus) in the Great Basin is compromised by strongly interacting stressors of conifer expansion, annual grass invasion, and more frequent wildfires occurring in sagebrush ecosystems. Associated restoration treatments to a sagebrush-dominated state are often costly and may yield relatively little ecological benefit to sage-grouse if implemented without estimating how Sage-grouse may respond to treatments, or do not consider underlying processes influencing sagebrush ecosystem resilience to disturbance and resistance to invasive species. Here, we describe example applications of a spatially explicit conservation planning tool (CPT) to inform prioritization of: (1) removal of conifers (i.e., pinyon-juniper); and (2) wildfire restoration aimed at improving habitat conditions for the Bi-State Distinct Population Segment of Sage-grouse along the California-Nevada state line. The CPT measures ecological benefits to sage-grouse for a given management action through a composite index comprised of resource selection functions and estimates of abundance and space use. For pinyon-juniper removal, we simulated changes in land-cover composition following the removal of sparse trees with intact understories, and ranked treatments on the basis of changes in ecological benefits per dollar-unit of cost. For wildfire restoration, we formulated a conditional model to simulate scenarios for land cover changes (e.g., sagebrush to annual grass) given estimated fire severity and underlying ecosystem processes influencing resilience to disturbance and resistance to invasion by annual grasses. For both applications, we compared CPT rankings to land cover changes along with sagebrush resistance and resilience metrics. Model results demonstrated how the CPT can be an important step in identifying management projects that yield the highest quantifiable benefit to Sage-grouse while avoiding costly misallocation of resources, and highlight the importance of considering changes in sage-grouse ecological response and factors influencing sagebrush ecosystem resilience to disturbance and resistance to invasion. This unique framework can be adopted to help inform other management questions aimed at improving habitat for other species across sagebrush and other ecosystems. © 2018 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  16. Data Assimilation at FLUXNET to Improve Models towards Ecological Forecasting (Invited)

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2009-12-01

    Dramatically increased volumes of data from observational and experimental networks such as FLUXNET call for transformation of ecological research to increase its emphasis on quantitative forecasting. Ecological forecasting will also meet the societal need to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-based models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, today’s ecological models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting is data assimilation, which uses data to inform initial conditions and to help constrain a model during simulation to yield results that approximate reality as closely as possible. In an era with dramatically increased availability of data from observational and experimental networks, data assimilation is a key technique that helps convert the raw data into ecologically meaningful products so as to accelerate our understanding of ecological processes, test ecological theory, forecast changes in ecological services, and better serve the society. This talk will use examples to illustrate how data from FLUXNET have been assimilated with process-based models to improve estimates of model parameters and state variables; to quantify uncertainties in ecological forecasting arising from observations, models and their interactions; and to evaluate information contributions of data and model toward short- and long-term forecasting of ecosystem responses to global change.

  17. What does productivity really mean? Towards an integrative paradigm in the search for biodiversity-productivity relationships

    Treesearch

    Liangjun Hu; Qinfeng Guo

    2013-01-01

    How species diversity relates to productivity remains a major debate. To date, however, the underlying mechanisms that regulate the ecological processes involved are still poorly understood. Three major issues persist in early efforts at resolution. First, in the context that productivity drives species diversity, how the pathways operate is poorly-explained. Second,...

  18. Limiting similarity and functional diversity along environmental gradients

    USGS Publications Warehouse

    Schwilk, D.W.; Ackerly, D.D.

    2005-01-01

    Recent developments in community models emphasize the importance of incorporating stochastic processes (e.g. ecological drift) in models of niche-structured community assembly. We constructed a finite, spatially explicit, lottery model to simulate the distribution of species in a one-dimensional landscape with an underlying gradient in environmental conditions. Our framework combines the potential for ecological drift with environmentally-mediated competition for space in a heterogeneous environment. We examined the influence of niche breadth, dispersal distances, community size (total number of individuals) and the breadth of the environmental gradient on levels of species and functional trait diversity (i.e. differences in niche optima). Three novel results emerge from this model: (1) niche differences between adjacent species (e.g. limiting similarity) increase in smaller communities, because of the interaction of competitive effects and finite population sizes; (2) immigration from a regional species pool, stochasticity and niche-assembly generate a bimodal distribution of species residence times ('transient' and 'resident') under a heterogeneous environment; and (3) the magnitude of environmental heterogeneity has a U-shaped effect on diversity, because of shifts in species richness of resident vs. transient species. These predictions illustrate the potential importance of stochastic (although not necessarily neutral) processes in community assembly. ??2005 Blackwell Publishing Ltd/CNRS.

  19. Effective discharge analysis of ecological processes in streams

    USGS Publications Warehouse

    Doyle, Martin W.; Stanley, Emily H.; Strayer, David L.; Jacobson, Robert B.; Schmidt, John C.

    2005-01-01

    Discharge is a master variable that controls many processes in stream ecosystems. However, there is uncertainty of which discharges are most important for driving particular ecological processes and thus how flow regime may influence entire stream ecosystems. Here the analytical method of effective discharge from fluvial geomorphology is used to analyze the interaction between frequency and magnitude of discharge events that drive organic matter transport, algal growth, nutrient retention, macroinvertebrate disturbance, and habitat availability. We quantify the ecological effective discharge using a synthesis of previously published studies and modeling from a range of study sites. An analytical expression is then developed for a particular case of ecological effective discharge and is used to explore how effective discharge varies within variable hydrologic regimes. Our results suggest that a range of discharges is important for different ecological processes in an individual stream. Discharges are not equally important; instead, effective discharge values exist that correspond to near modal flows and moderate floods for the variable sets examined. We suggest four types of ecological response to discharge variability: discharge as a transport mechanism, regulator of habitat, process modulator, and disturbance. Effective discharge analysis will perform well when there is a unique, essentially instantaneous relationship between discharge and an ecological process and poorly when effects of discharge are delayed or confounded by legacy effects. Despite some limitations the conceptual and analytical utility of the effective discharge analysis allows exploring general questions about how hydrologic variability influences various ecological processes in streams.

  20. Spatial assessment of landscape ecological connectivity in different urban gradient.

    PubMed

    Park, Sohyun

    2015-07-01

    Urbanization has resulted in remnant natural patches within cities that often have no connectivity among themselves and to natural reserves outside the urban area. Protecting ecological connectivity in fragmented urban areas is becoming crucial in maintaining urban biodiversity and securing critical habitat levels and configurations under continual development pressures. Nevertheless, few studies have been undertaken for urban landscapes. This study aims to assess ecological connectivity for a group of species that represent the urban desert landscape in the Phoenix metropolitan area and to compare the connectivity values along the different urban gradient. A GIS-based landscape connectivity model which relies upon ecological connectivity index (ECI) was developed and applied to this region. A GIS-based concentric buffering technique was employed to delineate conceptual boundaries for urban, suburban, and rural zones. The research findings demonstrated that urban habitats and potential habitat patches would be significantly influenced by future urban development. Particularly, the largest loss of higher connectivity would likely to be anticipated in the "in-between areas" where urban, suburban, and rural zones overlap one another. The connectivity maps would be useful to provide spatial identification regarding connectivity patterns and vulnerability for urban and suburban activities in this area. This study provides planners and landscape architects with a spatial guidance to minimize ecological fragmentation, which ultimately leads to urban landscape sustainability. This study suggests that conventional planning practices which disregard the ecological processes in urban landscapes need to integrate landscape ecology into planning and design strategies.

  1. Ecological risk assessment of landfill air emissions from a hazardous waste management facility in Ontario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durda, J.L.; Suit-Kowalski, L.; Preziosi, D.

    1997-12-31

    An ecological risk assessment was conducted to evaluate the potential for adverse environmental impacts associated with chemicals released to air as a result of a proposed expansion of a hazardous waste landfill in Ontario. The purpose of the risk assessment was to characterize ecological risks associated with the proposed expansion relative to those associated with the existing landfill and those that would exist if the current landfill was completely closed and background conditions prevailed. The ecological risk assessment was one part of a comprehensive environmental impact assessment of the proposed landfill continuation that was being performed under the requirements ofmore » Ontario`s Environmental Assessment Act. Air monitoring data from the facility were used to identify a list of 141 chemicals potentially released during landfill continuation, as well as to characterize current emissions and background chemical levels. An ecological risk-based chemical screening process that considered background concentration, source strength, environmental partitioning, bioaccumulation potential, and toxicity was used to select a group of 23 chemicals for detailed evaluation in the ecological risk assessment. Dispersion, deposition, partitioning and bioaccumulation modeling were used to predict potential exposures in ecological receptors. Receptors were selected for evaluation based on regional habitat characteristics, exposure potential, toxicant sensitivity, ecological significance, population status, and societal value. Livestock and agricultural crop and pasture species were key receptors for the assessment, given the highly agricultural nature of the study area. In addition, native wildlife species, including the endangered Henslow`s sparrow and the regionally vulnerable pugnose minnow, also were considered.« less

  2. [Some comments on ecological field].

    PubMed

    Wang, D

    2000-06-01

    Based on the data of plant ecological field studies, this paper reviewed the conception of ecological field, field eigenfunctions, graphs of ecological field and its application of ecological field theory in explaining plant interactions. It is suggested that the basic character of ecological field is material, and based on the current research level, it is not sure whether ecological field is a kind of specific field different from general physical field. The author gave some comments on the formula and estimation of parameters of basic field function-ecological potential model on ecological field. Both models have their own characteristics and advantages in specific conditions. The author emphasized that ecological field had even more meaning of ecological methodology, and applying ecological field theory in describing the types and processes of plant interactions had three characteristics: quantitative, synthetic and intuitionistic. Field graphing might provide a new way to ecological studies, especially applying the ecological field theory might give an appropriate quantitative explanation for the dynamic process of plant populations (coexistence and interference competition).

  3. Integration of research infrastructures and ecosystem models toward development of predictive ecology

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.

    2017-12-01

    The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure facilities to model simulation, data assimilation, and ecological forecasting.

  4. Universal Distribution of Litter Decay Rates

    NASA Astrophysics Data System (ADS)

    Forney, D. C.; Rothman, D. H.

    2008-12-01

    Degradation of litter is the result of many physical, chemical and biological processes. The high variability of these processes likely accounts for the progressive slowdown of decay with litter age. This age dependence is commonly thought to result from the superposition of processes with different decay rates k. Here we assume an underlying continuous yet unknown distribution p(k) of decay rates [1]. To seek its form, we analyze the mass-time history of 70 LIDET [2] litter data sets obtained under widely varying conditions. We construct a regularized inversion procedure to find the best fitting distribution p(k) with the least degrees of freedom. We find that the resulting p(k) is universally consistent with a lognormal distribution, i.e.~a Gaussian distribution of log k, characterized by a dataset-dependent mean and variance of log k. This result is supported by a recurring observation that microbial populations on leaves are log-normally distributed [3]. Simple biological processes cause the frequent appearance of the log-normal distribution in ecology [4]. Environmental factors, such as soil nitrate, soil aggregate size, soil hydraulic conductivity, total soil nitrogen, soil denitrification, soil respiration have been all observed to be log-normally distributed [5]. Litter degradation rates depend on many coupled, multiplicative factors, which provides a fundamental basis for the lognormal distribution. Using this insight, we systematically estimated the mean and variance of log k for 512 data sets from the LIDET study. We find the mean strongly correlates with temperature and precipitation, while the variance appears to be uncorrelated with main environmental factors and is thus likely more correlated with chemical composition and/or ecology. Results indicate the possibility that the distribution in rates reflects, at least in part, the distribution of microbial niches. [1] B. P. Boudreau, B.~R. Ruddick, American Journal of Science,291, 507, (1991). [2] M. Harmon, Forest Science Data Bank: TD023 [Database]. LTER Intersite Fine Litter Decomposition Experiment (LIDET): Long-Term Ecological Research, (2007). [3] G.~A. Beattie, S.~E. Lindow, Phytopathology 89, 353 (1999). [4] R.~A. May, Ecology and Evolution of Communities/, A pattern of Species Abundance and Diversity, 81 (1975). [5] T.~B. Parkin, J.~A. Robinson, Advances in Soil Science 20, Analysis of Lognormal Data, 194 (1992).

  5. Ecosystem services as assessment endpoints for ecological risk assessment.

    PubMed

    Munns, Wayne R; Rea, Anne W; Suter, Glenn W; Martin, Lawrence; Blake-Hedges, Lynne; Crk, Tanja; Davis, Christine; Ferreira, Gina; Jordan, Steve; Mahoney, Michele; Barron, Mace G

    2016-07-01

    Ecosystem services are defined as the outputs of ecological processes that contribute to human welfare or have the potential to do so in the future. Those outputs include food and drinking water, clean air and water, and pollinated crops. The need to protect the services provided by natural systems has been recognized previously, but ecosystem services have not been formally incorporated into ecological risk assessment practice in a general way in the United States. Endpoints used conventionally in ecological risk assessment, derived directly from the state of the ecosystem (e.g., biophysical structure and processes), and endpoints based on ecosystem services serve different purposes. Conventional endpoints are ecologically important and susceptible entities and attributes that are protected under US laws and regulations. Ecosystem service endpoints are a conceptual and analytical step beyond conventional endpoints and are intended to complement conventional endpoints by linking and extending endpoints to goods and services with more obvious benefit to humans. Conventional endpoints can be related to ecosystem services even when the latter are not considered explicitly during problem formulation. To advance the use of ecosystem service endpoints in ecological risk assessment, the US Environmental Protection Agency's Risk Assessment Forum has added generic endpoints based on ecosystem services (ES-GEAE) to the original 2003 set of generic ecological assessment endpoints (GEAEs). Like conventional GEAEs, ES-GEAEs are defined by an entity and an attribute. Also like conventional GEAEs, ES-GEAEs are broadly described and will need to be made specific when applied to individual assessments. Adoption of ecosystem services as a type of assessment endpoint is intended to improve the value of risk assessment to environmental decision making, linking ecological risk to human well-being, and providing an improved means of communicating those risks. Integr Environ Assess Manag 2016;12:522-528. Published 2015 SETAC. This article is a US Government work and, as such, is in the public domain in the USA. Published 2015 SETAC. This article is a US Government work and, as such, is in the public domain in the USA.

  6. Adaptive landscape and functional diversity of Neotropical cichlids: implications for the ecology and evolution of Cichlinae (Cichlidae; Cichliformes).

    PubMed

    Arbour, J H; López-Fernández, H

    2014-11-01

    Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise-AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  7. The use of mechanistic descriptions of algal growth and zooplankton grazing in an estuarine eutrophication model

    NASA Astrophysics Data System (ADS)

    Baird, M. E.; Walker, S. J.; Wallace, B. B.; Webster, I. T.; Parslow, J. S.

    2003-03-01

    A simple model of estuarine eutrophication is built on biomechanical (or mechanistic) descriptions of a number of the key ecological processes in estuaries. Mechanistically described processes include the nutrient uptake and light capture of planktonic and benthic autotrophs, and the encounter rates of planktonic predators and prey. Other more complex processes, such as sediment biogeochemistry, detrital processes and phosphate dynamics, are modelled using empirical descriptions from the Port Phillip Bay Environmental Study (PPBES) ecological model. A comparison is made between the mechanistically determined rates of ecological processes and the analogous empirically determined rates in the PPBES ecological model. The rates generally agree, with a few significant exceptions. Model simulations were run at a range of estuarine depths and nutrient loads, with outputs presented as the annually averaged biomass of autotrophs. The simulations followed a simple conceptual model of eutrophication, suggesting a simple biomechanical understanding of estuarine processes can provide a predictive tool for ecological processes in a wide range of estuarine ecosystems.

  8. Panaceas and diversification of environmental policy

    PubMed Central

    Brock, William A.; Carpenter, Stephen R.

    2007-01-01

    We consider panacea formation in the framework of adaptive learning and decision for social–ecological systems (SESs). Institutions for managing such systems must address multiple timescales of ecological change, as well as features of the social community in which the ecosystem policy problem is embedded. Response of the SES to each candidate institution must be modeled and treated as a stochastic process with unknown parameters to be estimated. A fundamental challenge is to design institutions that are not vulnerable to capture by subsets of the community that self-organize to direct the institution against the overall social interest. In a world of episodic structural change, such as SESs, adaptive learning can lock in to a single institution, model, or parameter estimate. Policy diversification, leading to escape from panacea traps, can come from monitoring indicators of episodic change on slow timescales, minimax regret decision making, active experimentation to accelerate model identification, mechanisms for broadening the set of models or institutions under consideration, and processes for discovery of new institutions and technologies for ecosystem management. It is difficult to take all of these factors into account, but the discipline that comes with the attempt to model the coupled social–ecological dynamics forces policy makers to confront all conceivable responses. This process helps induce the modesty needed to avoid panacea traps while supporting systematic effort to improve resource management in the public interest. PMID:17881581

  9. CO2 leakage alters biogeochemical and ecological functions of submarine sands

    PubMed Central

    Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje

    2018-01-01

    Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m−2 hour−1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (−80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (−90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2. PMID:29441359

  10. CO2 leakage alters biogeochemical and ecological functions of submarine sands.

    PubMed

    Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje

    2018-02-01

    Subseabed CO 2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO 2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO 2 impact studies. For this, we compared ecological functions of naturally CO 2 -vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO 2 fluxes (up to 4 to 7 mol CO 2 m -2 hour -1 ) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (-80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (-90%). The observed ecological effects of CO 2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO 2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO 2 .

  11. Empowerment and the ecological determinants of health: three critical capacities for practitioners.

    PubMed

    Williams, Lewis

    2017-08-01

    Human agency or the expression of intentionality towards some form of betterment has long occupied human imagination and creativity. The ways in which we express such aspirations are fundamentally informed by our beliefs about the nature of reality, meanings of human well-being and progress, and the ways in which our social locations shape our interests. Within Western health-promoting discourse and practice, such processes have largely been expressed through the construct of empowerment. To date, like health, much empowerment practice has been implicitly rooted in Cartesianism, has tended towards anthropocentrism and in cases where it has engaged with environmental issues, has mirrored environmentalism's focus on externalities and objectivity. These tendencies coupled with the increasing complexity of global, ecological, human well-being issues call empowerment practitioners to integrate new kinds of capacities more suited to addressing the ecological determinants of health. Drawing in part on the author's empowerment research over more than a decade, this article distinguishes between a range of epistemological perspectives underlying contemporary empowerment practices while fore-grounding the concepts of place-based agency and social-ecological resilience. These constructs in turn form the basis for three capacities considered critical for practitioners addressing human-ecological well-being. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Ecological and evolutionary consequences of niche construction for its agent.

    PubMed

    Kylafis, Grigoris; Loreau, Michel

    2008-10-01

    Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.

  13. [Ecological security of wastewater treatment processes: a review].

    PubMed

    Yang, Sai; Hua, Tao

    2013-05-01

    Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.

  14. Microbial ecology to manage processes in environmental biotechnology.

    PubMed

    Rittmann, Bruce E

    2006-06-01

    Microbial ecology and environmental biotechnology are inherently tied to each other. The concepts and tools of microbial ecology are the basis for managing processes in environmental biotechnology; and these processes provide interesting ecosystems to advance the concepts and tools of microbial ecology. Revolutionary advancements in molecular tools to understand the structure and function of microbial communities are bolstering the power of microbial ecology. A push from advances in modern materials along with a pull from a societal need to become more sustainable is enabling environmental biotechnology to create novel processes. How do these two fields work together? Five principles illuminate the way: (i) aim for big benefits; (ii) develop and apply more powerful tools to understand microbial communities; (iii) follow the electrons; (iv) retain slow-growing biomass; and (v) integrate, integrate, integrate.

  15. Landscape ecology in North America: past, present, and future

    Treesearch

    Monica G. Turner

    2005-01-01

    Landscape ecology offers a spatially explicit perspective on the relationships between ecological patterns and processes that can be applied across a range of scales. Concepts derived from landscape ecology now permeate ecological research across most levels of ecological organization and many scales. Landscape ecology developed rapidly after ideas that originated in...

  16. Cultivation of bacteria with ecological capsules in space

    NASA Astrophysics Data System (ADS)

    Sugiura, K.; Hashimoto, H.; Ishikawa, Y.; Kawasaki, Y.; Kobayashi, K.; Seki, K.; Koike, J.; Saito, T.

    1999-01-01

    A hermetically materially-closed aquatic microcosm containing bacteria, algae, and invertebrates was developed as a tool for determining the changes of ecological systems in space. The species composition was maintained for more than 365 days. The microcosm could be readily replicated. The results obtained from the simulation models indicated that there is a self-regulation homeostasis in coupling of production and consumption, which make the microcosm remarkably stable, and that the transfer of metabolites by diffusion is one of the important factors determining the behavior of the system. The microcosms were continuously irradiated using a 60 Co source. After 80 days, no elimination of organisms was found at any of the three irradiation levels (0.015, 0.55 and 3.0 mGy/day). The number of radio-resistance bacteria mutants was not increased in the microcosm at three irradiation levels. We proposed to research whether this microcosm is self-sustainable in space. When an aquatic ecosystem comes under stress due to the micro-gravity and enhanced radiation environment in space, whether the ecosystem is self-sustainable is not known. An aquatic ecosystem shows what happens as a result of the self-organizational processes of selection and adaptation. A microcosm is a useful tool for understanding such processes. We have proposed researching whether a microcosm is self-sustainable in space. The benefits of this project will be: (1) To acquire data for design of a Controlled Ecological Life Support System, (2) Possibility of microbial mutation in a space station. We report that a hermetically materially-closed microcosm, which could be a useful tool for determining changes of ecological processes in space, was developed, and that the effects of microgravity and enhanced radiation on the hermetically materially-closed microcosm were estimated through measurements on the Earth and simulation models.

  17. Ixcatec ethnoecology: plant management and biocultural heritage in Oaxaca, Mexico.

    PubMed

    Rangel-Landa, Selene; Casas, Alejandro; Rivera-Lozoya, Erandi; Torres-García, Ignacio; Vallejo-Ramos, Mariana

    2016-07-20

    Studying motives of plant management allows understanding processes that originated agriculture and current forms of traditional technology innovation. Our work analyses the role of native plants in the Ixcatec subsistence, management practices, native plants biocultural importance, and motivations influencing management decisions. Cultural and ecological importance and management complexity may differ among species according with their use value and availability. We hypothesized that decreasing risk in availability of resources underlies the main motives of management, but curiosity, aesthetic, and ethical values may also be determinant. Role of plants in subsistence strategies, forms of use and management was documented through 130 semi-structured interviews and participant observation. Free listing interviews to 38 people were used to estimate the cognitive importance of species used as food, medicine, fuel, fodder, ornament and ceremonial. Species ecological importance was evaluated through sampling vegetation in 22 points. Principal Components Analysis were performed to explore the relation between management, cultural and ecological importance and estimating the biocultural importance of native species. We recorded 627 useful plant species, 589 of them native. Livelihood strategies of households rely on agriculture, livestock and multiple use of forest resources. At least 400 species are managed, some of them involving artificial selection. Management complexity is the main factor reflecting the biocultural importance of plant species, and the weight of ecological importance and cultural value varied among use types. Management strategies aim to ensure resources availability, to have them closer, to embellish human spaces or satisfying ethical principles. Decisions about plants management are influenced by perception of risk to satisfy material needs, but immaterial principles are also important. Studying such relation is crucial for understanding past and present technological innovation processes and understand the complex process of developing biocultural legacy.

  18. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies.

    PubMed

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as "scale" effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments.

  19. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies

    PubMed Central

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836

  20. Foraging traits modulate stingless bee community disassembly under forest loss.

    PubMed

    Lichtenberg, Elinor M; Mendenhall, Chase D; Brosi, Berry

    2017-10-01

    Anthropogenic land use change is an important driver of impacts to biological communities and the ecosystem services they provide. Pollination is one ecosystem service that may be threatened by community disassembly. Relatively little is known about changes in bee community composition in the tropics, where pollination limitation is most severe and land use change is rapid. Understanding how anthropogenic changes alter community composition and functioning has been hampered by high variability in responses of individual species. Trait-based approaches, however, are emerging as a potential method for understanding responses of ecologically similar species to global change. We studied how communities of tropical, eusocial stingless bees (Apidae: Meliponini) disassemble when forest is lost. These bees are vital tropical pollinators that exhibit high trait diversity, but are under considerable threat from human activities. We compared functional traits of stingless bee species found in pastures surrounded by differing amounts of forest in an extensively deforested landscape in southern Costa Rica. Our results suggest that foraging traits modulate competitive interactions that underlie community disassembly patterns. In contrast to both theoretical predictions and temperate bee communities, we found that stingless bee species with the widest diet breadths were less likely to persist in sites with less forest. These wide-diet-breadth species also tend to be solitary foragers, and are competitively subordinate to group-foraging stingless bee species. Thus, displacement by dominant, group-foraging species may make subordinate species more dependent on the larger or more diversified resource pool that natural habitats offer. We also found that traits that may reduce reliance on trees-nesting in the ground or inside nests of other species-correlated with persistence in highly deforested landscapes. The functional trait perspective we employed enabled capturing community processes in analyses and suggests that land use change may disassemble bee communities via different mechanisms in temperate and tropical areas. Our results further suggest that community processes, such as competition, can be important regulators of community disassembly under land use change. A better understanding of community disassembly processes is critical for conserving and restoring pollinator communities and the ecosystem services and functions they provide. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  1. Neural effects of environmental advertising: An fMRI analysis of voice age and temporal framing.

    PubMed

    Casado-Aranda, Luis-Alberto; Martínez-Fiestas, Myriam; Sánchez-Fernández, Juan

    2018-01-15

    Ecological information offered to society through advertising enhances awareness of environmental issues, encourages development of sustainable attitudes and intentions, and can even alter behavior. This paper, by means of functional Magnetic Resonance Imaging (fMRI) and self-reports, explores the underlying mechanisms of processing ecological messages. The study specifically examines brain and behavioral responses to persuasive ecological messages that differ in temporal framing and in the age of the voice pronouncing them. The findings reveal that attitudes are more positive toward future-framed messages presented by young voices. The whole-brain analysis reveals that future-framed (FF) ecological messages trigger activation in brain areas related to imagery, prospective memories and episodic events, thus reflecting the involvement of past behaviors in future ecological actions. Past-framed messages (PF), in turn, elicit brain activations within the episodic system. Young voices (YV), in addition to triggering stronger activation in areas involved with the processing of high-timbre, high-pitched and high-intensity voices, are perceived as more emotional and motivational than old voices (OV) as activations in anterior cingulate cortex and amygdala. Messages expressed by older voices, in turn, exhibit stronger activation in areas formerly linked to low-pitched voices and voice gender perception. Interestingly, a link is identified between neural and self-report responses indicating that certain brain activations in response to future-framed messages and young voices predicted higher attitudes toward future-framed and young voice advertisements, respectively. The results of this study provide invaluable insight into the unconscious origin of attitudes toward environmental messages and indicate which voice and temporal frame of a message generate the greatest subconscious value. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives

    PubMed Central

    Matthews, Thomas J; Whittaker, Robert J

    2014-01-01

    Published in 2001, The Unified Neutral Theory of Biodiversity and Biogeography (UNTB) emphasizes the importance of stochastic processes in ecological community structure, and has challenged the traditional niche-based view of ecology. While neutral models have since been applied to a broad range of ecological and macroecological phenomena, the majority of research relating to neutral theory has focused exclusively on the species abundance distribution (SAD). Here, we synthesize the large body of work on neutral theory in the context of the species abundance distribution, with a particular focus on integrating ideas from neutral theory with traditional niche theory. First, we summarize the basic tenets of neutral theory; both in general and in the context of SADs. Second, we explore the issues associated with neutral theory and the SAD, such as complications with fitting and model comparison, the underlying assumptions of neutral models, and the difficultly of linking pattern to process. Third, we highlight the advances in understanding of SADs that have resulted from neutral theory and models. Finally, we focus consideration on recent developments aimed at unifying neutral- and niche-based approaches to ecology, with a particular emphasis on what this means for SAD theory, embracing, for instance, ideas of emergent neutrality and stochastic niche theory. We put forward the argument that the prospect of the unification of niche and neutral perspectives represents one of the most promising future avenues of neutral theory research. PMID:25360266

  3. Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives.

    PubMed

    Matthews, Thomas J; Whittaker, Robert J

    2014-06-01

    Published in 2001, The Unified Neutral Theory of Biodiversity and Biogeography (UNTB) emphasizes the importance of stochastic processes in ecological community structure, and has challenged the traditional niche-based view of ecology. While neutral models have since been applied to a broad range of ecological and macroecological phenomena, the majority of research relating to neutral theory has focused exclusively on the species abundance distribution (SAD). Here, we synthesize the large body of work on neutral theory in the context of the species abundance distribution, with a particular focus on integrating ideas from neutral theory with traditional niche theory. First, we summarize the basic tenets of neutral theory; both in general and in the context of SADs. Second, we explore the issues associated with neutral theory and the SAD, such as complications with fitting and model comparison, the underlying assumptions of neutral models, and the difficultly of linking pattern to process. Third, we highlight the advances in understanding of SADs that have resulted from neutral theory and models. Finally, we focus consideration on recent developments aimed at unifying neutral- and niche-based approaches to ecology, with a particular emphasis on what this means for SAD theory, embracing, for instance, ideas of emergent neutrality and stochastic niche theory. We put forward the argument that the prospect of the unification of niche and neutral perspectives represents one of the most promising future avenues of neutral theory research.

  4. Contributions of Ecological School Mental Health Services to Students' Academic Success

    ERIC Educational Resources Information Center

    Doll, Beth; Spies, Rob; Champion, Allison

    2012-01-01

    This article describes an ecological framework for school mental health services that differs in important ways from existing service delivery models. The model is based on research describing ecological frameworks underlying students' school success. Ecological characteristics of schools and classrooms that promote academic success are described…

  5. 31 CFR 576.508 - Judicial process in legal proceedings involving ecological accidents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... involving ecological accidents. 576.508 Section 576.508 Money and Finance: Treasury Regulations Relating to... § 576.508 Judicial process in legal proceedings involving ecological accidents. The Office of Foreign... accident (including an oil spill) that occurred after May 22, 2003. ...

  6. Estimating and mapping ecological processes influencing microbial community assembly

    PubMed Central

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Konopka, Allan E.

    2015-01-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth. PMID:25983725

  7. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings

    NASA Astrophysics Data System (ADS)

    Corenblit, Dov; Baas, Andreas C. W.; Bornette, Gudrun; Darrozes, José; Delmotte, Sébastien; Francis, Robert A.; Gurnell, Angela M.; Julien, Frédéric; Naiman, Robert J.; Steiger, Johannes

    2011-06-01

    This review article presents recent advances in the field of biogeomorphology related to the reciprocal coupling between Earth surface processes and landforms, and ecological and evolutionary processes. The aim is to present to the Earth Science community ecological and evolutionary concepts and associated recent conceptual developments for linking geomorphology and biota. The novelty of the proposed perspective is that (1) in the presence of geomorphologic-engineer species, which modify sediment and landform dynamics, natural selection operating at the scale of organisms may have consequences for the physical components of ecosystems, and particularly Earth surface processes and landforms; and (2) in return, these modifications of geomorphologic processes and landforms often feed back to the ecological characteristics of the ecosystem (structure and function) and thus to biological characteristics of engineer species and/or other species (adaptation and speciation). The main foundation concepts from ecology and evolutionary biology which have led only recently to an improved conception of landform dynamics in geomorphology are reviewed and discussed. The biogeomorphologic macroevolutionary insights proposed explicitly integrate geomorphologic niche-dimensions and processes within an ecosystem framework and reflect current theories of eco-evolutionary and ecological processes. Collectively, these lead to the definition of an integrated model describing the overall functioning of biogeomorphologic systems over ecological and evolutionary timescales.

  8. 77 FR 22316 - Notification of a Public Teleconference of the Science Advisory Board Ecological Processes and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ...) document, ``Integrating Ecological Assessment and Decision-Making at EPA, 2011 RAF Ecological Assessment... document, ``Integrating Ecological Assessment and Decision- Making at EPA, 2011 RAF Ecological Assessment... review comments on the EPA RAF draft document ``Integrating Ecological Assessment and Decision-Making at...

  9. Deciphering microbial interactions and detecting keystone species with co-occurrence networks.

    PubMed

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  10. Is dispersal neutral?

    PubMed

    Lowe, Winsor H; McPeek, Mark A

    2014-08-01

    Dispersal is difficult to quantify and often treated as purely stochastic and extrinsically controlled. Consequently, there remains uncertainty about how individual traits mediate dispersal and its ecological effects. Addressing this uncertainty is crucial for distinguishing neutral versus non-neutral drivers of community assembly. Neutral theory assumes that dispersal is stochastic and equivalent among species. This assumption can be rejected on principle, but common research approaches tacitly support the 'neutral dispersal' assumption. Theory and empirical evidence that dispersal traits are under selection should be broadly integrated in community-level research, stimulating greater scrutiny of this assumption. A tighter empirical connection between the ecological and evolutionary forces that shape dispersal will enable richer understanding of this fundamental process and its role in community assembly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Cognitive Ecological Model of Women’s Response to Male Sexual Coercion in Dating

    PubMed Central

    Nurius, Paula S.; Norris, Jeanette

    2015-01-01

    SUMMARY We offer a theoretical model that consolidates background, environmental, and intrapersonal variables related to women’s experience of sexual coercion in dating into a coherent ecological framework and present for the first time a cognitive analysis of the processes women use to formulate responses to sexual coercion. An underlying premise for this model is that a woman’s coping response to sexual coercion by an acquaintance is mediated through cognitive processing of background and situational influences. Because women encounter this form of sexual coercion in the context of relationships and situations that they presume will follow normative expectations (e.g., about making friends, socializing and dating), it is essential to consider normative processes of learning, cognitive mediation, and coping guiding their efforts to interpret and respond to this form of personal threat. Although acts of coercion unquestionably remain the responsibility of the perpetrator, a more complete understanding of the multilevel factors shaping women’s perception of and response to threats can strengthen future inquiry and prevention efforts. PMID:25729157

  12. Water: the bloodstream of the biosphere.

    PubMed

    Ripl, Wilhelm

    2003-12-29

    Water, the bloodstream of the biosphere, determines the sustainability of living systems. The essential role of water is expanded in a conceptual model of energy dissipation, based on the water balance of whole landscapes. In this model, the underlying role of water phase changes--and their energy-dissipative properties--in the function and the self-organized development of natural systems is explicitly recognized. The energy-dissipating processes regulate the ecological dynamics within the Earth's biosphere, in such a way that the development of natural systems is never allowed to proceed in an undirected or random way. A fundamental characteristic of self-organized development in natural systems is the increasing role of cyclic processes while loss processes are correspondingly reduced. This gives a coincidental increase in system efficiency, which is the basis of growing stability and sustainability. Growing sustainability can be seen as an increase of ecological efficiency, which is applicable at all levels up to whole landscapes. Criteria for necessary changes in society and for the design of the measures that are necessary to restore sustainable landscapes and waters are derived.

  13. Water: the bloodstream of the biosphere.

    PubMed Central

    Ripl, Wilhelm

    2003-01-01

    Water, the bloodstream of the biosphere, determines the sustainability of living systems. The essential role of water is expanded in a conceptual model of energy dissipation, based on the water balance of whole landscapes. In this model, the underlying role of water phase changes--and their energy-dissipative properties--in the function and the self-organized development of natural systems is explicitly recognized. The energy-dissipating processes regulate the ecological dynamics within the Earth's biosphere, in such a way that the development of natural systems is never allowed to proceed in an undirected or random way. A fundamental characteristic of self-organized development in natural systems is the increasing role of cyclic processes while loss processes are correspondingly reduced. This gives a coincidental increase in system efficiency, which is the basis of growing stability and sustainability. Growing sustainability can be seen as an increase of ecological efficiency, which is applicable at all levels up to whole landscapes. Criteria for necessary changes in society and for the design of the measures that are necessary to restore sustainable landscapes and waters are derived. PMID:14728789

  14. Analysis of urban metabolic processes based on input-output method: model development and a case study for Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Liu, Hong; Chen, Bin; Zheng, Hongmei; Li, Yating

    2014-06-01

    Discovering ways in which to increase the sustainability of the metabolic processes involved in urbanization has become an urgent task for urban design and management in China. As cities are analogous to living organisms, the disorders of their metabolic processes can be regarded as the cause of "urban disease". Therefore, identification of these causes through metabolic process analysis and ecological element distribution through the urban ecosystem's compartments will be helpful. By using Beijing as an example, we have compiled monetary input-output tables from 1997, 2000, 2002, 2005, and 2007 and calculated the intensities of the embodied ecological elements to compile the corresponding implied physical input-output tables. We then divided Beijing's economy into 32 compartments and analyzed the direct and indirect ecological intensities embodied in the flows of ecological elements through urban metabolic processes. Based on the combination of input-output tables and ecological network analysis, the description of multiple ecological elements transferred among Beijing's industrial compartments and their distribution has been refined. This hybrid approach can provide a more scientific basis for management of urban resource flows. In addition, the data obtained from distribution characteristics of ecological elements may provide a basic data platform for exploring the metabolic mechanism of Beijing.

  15. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration

    PubMed Central

    Timpane-Padgham, Britta L.

    2017-01-01

    Ecological restoration is widely practiced as a means of rehabilitating ecosystems and habitats that have been degraded or impaired through human use or other causes. Restoration practices now are confronted by climate change, which has the potential to influence long-term restoration outcomes. Concepts and attributes from the resilience literature can help improve restoration and monitoring efforts under changing climate conditions. We systematically examined the published literature on ecological resilience to identify biological, chemical, and physical attributes that confer resilience to climate change. We identified 45 attributes explicitly related to climate change and classified them as individual- (9), population- (6), community- (7), ecosystem- (7), or process-level attributes (16). Individual studies defined resilience as resistance to change or recovery from disturbance, and only a few studies explicitly included both concepts in their definition of resilience. We found that individual and population attributes generally are suited to species- or habitat-specific restoration actions and applicable at the population scale. Community attributes are better suited to habitat-specific restoration at the site scale, or system-wide restoration at the ecosystem scale. Ecosystem and process attributes vary considerably in their type and applicability. We summarize these relationships in a decision support table and provide three example applications to illustrate how these classifications can be used to prioritize climate change resilience attributes for specific restoration actions. We suggest that (1) including resilience as an explicit planning objective could increase the success of restoration projects, (2) considering the ecological context and focal scale of a restoration action is essential in choosing appropriate resilience attributes, and (3) certain ecological attributes, such as diversity and connectivity, are more commonly considered to confer resilience because they apply to a wide variety of species and ecosystems. We propose that identifying sources of ecological resilience is a critical step in restoring ecosystems in a changing climate. PMID:28301560

  16. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration.

    PubMed

    Timpane-Padgham, Britta L; Beechie, Tim; Klinger, Terrie

    2017-01-01

    Ecological restoration is widely practiced as a means of rehabilitating ecosystems and habitats that have been degraded or impaired through human use or other causes. Restoration practices now are confronted by climate change, which has the potential to influence long-term restoration outcomes. Concepts and attributes from the resilience literature can help improve restoration and monitoring efforts under changing climate conditions. We systematically examined the published literature on ecological resilience to identify biological, chemical, and physical attributes that confer resilience to climate change. We identified 45 attributes explicitly related to climate change and classified them as individual- (9), population- (6), community- (7), ecosystem- (7), or process-level attributes (16). Individual studies defined resilience as resistance to change or recovery from disturbance, and only a few studies explicitly included both concepts in their definition of resilience. We found that individual and population attributes generally are suited to species- or habitat-specific restoration actions and applicable at the population scale. Community attributes are better suited to habitat-specific restoration at the site scale, or system-wide restoration at the ecosystem scale. Ecosystem and process attributes vary considerably in their type and applicability. We summarize these relationships in a decision support table and provide three example applications to illustrate how these classifications can be used to prioritize climate change resilience attributes for specific restoration actions. We suggest that (1) including resilience as an explicit planning objective could increase the success of restoration projects, (2) considering the ecological context and focal scale of a restoration action is essential in choosing appropriate resilience attributes, and (3) certain ecological attributes, such as diversity and connectivity, are more commonly considered to confer resilience because they apply to a wide variety of species and ecosystems. We propose that identifying sources of ecological resilience is a critical step in restoring ecosystems in a changing climate.

  17. Geographic variation in advertisement calls of a Microhylid frog - testing the role of drift and ecology.

    PubMed

    Lee, Ko-Huan; Shaner, Pei-Jen L; Lin, Yen-Po; Lin, Si-Min

    2016-05-01

    Acoustic signals for mating are important traits that could drive population differentiation and speciation. Ecology may play a role in acoustic divergence through direct selection (e.g., local adaptation to abiotic environment), constraint of correlated traits (e.g., acoustic traits linked to another trait under selection), and/or interspecific competition (e.g., character displacement). However, genetic drift alone can also drive acoustic divergence. It is not always easy to differentiate the role of ecology versus drift in acoustic divergence. In this study, we tested the role of ecology and drift in shaping geographic variation in the advertisement calls of Microhyla fissipes. We examined three predictions based on ecological processes: (1) the correlation between temperature and call properties across M. fissipes populations; (2) the correlation between call properties and body size across M. fissipes populations; and (3) reproductive character displacement (RCD) in call properties between M. fissipes populations that are sympatric with and allopatric to a congener M. heymonsi. To test genetic drift, we examined correlations among call divergence, geographic distance, and genetic distance across M. fissipes populations. We recorded the advertisement calls from 11 populations of M. fissipes in Taiwan, five of which are sympatrically distributed with M. heymonsi. We found geographic variation in both temporal and spectral properties of the advertisement calls of M. fissipes. However, the call properties were not correlated with local temperature or the callers' body size. Furthermore, we did not detect RCD. By contrast, call divergence, geographic distance, and genetic distance between M. fissipes populations were all positively correlated. The comparisons between phenotypic Q st (P st) and F st values did not show significant differences, suggesting a role of drift. We concluded that genetic drift, rather than ecological processes, is the more likely driver for the geographic variation in the advertisement calls of M. fissipes.

  18. Evolution in population parameters: density-dependent selection or density-dependent fitness?

    PubMed

    Travis, Joseph; Leips, Jeff; Rodd, F Helen

    2013-05-01

    Density-dependent selection is one of earliest topics of joint interest to both ecologists and evolutionary biologists and thus occupies an important position in the histories of these disciplines. This joint interest is driven by the fact that density-dependent selection is the simplest form of feedback between an ecological effect of an organism's own making (crowding due to sustained population growth) and the selective response to the resulting conditions. This makes density-dependent selection perhaps the simplest process through which we see the full reciprocity between ecology and evolution. In this article, we begin by tracing the history of studying the reciprocity between ecology and evolution, which we see as combining the questions of evolutionary ecology with the assumptions and approaches of ecological genetics. In particular, density-dependent fitness and density-dependent selection were critical concepts underlying ideas about adaptation to biotic selection pressures and the coadaptation of interacting species. However, theory points to a critical distinction between density-dependent fitness and density-dependent selection in their influences on complex evolutionary and ecological interactions among coexisting species. Although density-dependent fitness is manifestly evident in empirical studies, evidence of density-dependent selection is much less common. This leads to the larger question of how prevalent and important density-dependent selection might really be. Life-history variation in the least killifish Heterandria formosa appears to reflect the action of density-dependent selection, and yet compelling evidence is elusive, even in this well-studied system, which suggests some important challenges for understanding density-driven feedbacks between ecology and evolution.

  19. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles andmore » book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).« less

  20. Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems

    PubMed Central

    Russell, Bayden D.; Harley, Christopher D. G.; Wernberg, Thomas; Mieszkowska, Nova; Widdicombe, Stephen; Hall-Spencer, Jason M.; Connell, Sean D.

    2012-01-01

    Most studies that forecast the ecological consequences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple experiments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates. PMID:21900317

  1. Disentangling Mechanisms That Mediate the Balance Between Stochastic and Deterministic Processes in Microbial Succession

    DOE PAGES

    Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan D.; ...

    2015-03-17

    Despite growing recognition that deterministic and stochastic factors simultaneously influence bacterial communities, little is known about mechanisms shifting their relative importance. To better understand underlying mechanisms, we developed a conceptual model linking ecosystem development during primary succession to shifts in the stochastic/deterministic balance. To evaluate the conceptual model we coupled spatiotemporal data on soil bacterial communities with environmental conditions spanning 105 years of salt marsh development. At the local scale there was a progression from stochasticity to determinism due to Na accumulation with increasing ecosystem age, supporting a main element of the conceptual model. At the regional-scale, soil organic mattermore » (SOM) governed the relative influence of stochasticity and the type of deterministic ecological selection, suggesting scale-dependency in how deterministic ecological selection is imposed. Analysis of a new ecological simulation model supported these conceptual inferences. Looking forward, we propose an extended conceptual model that integrates primary and secondary succession in microbial systems.« less

  2. Ecological and evolutionary drivers of the elevational gradient of diversity.

    PubMed

    Laiolo, Paola; Pato, Joaquina; Obeso, José Ramón

    2018-05-02

    Ecological, evolutionary, spatial and neutral theories make distinct predictions and provide distinct explanations for the mechanisms that control the relationship between diversity and the environment. Here, we test predictions of the elevational diversity gradient focusing on Iberian bumblebees, grasshoppers and birds. Processes mediated by local abundance and regional diversity concur in explaining local diversity patterns along elevation. Effects expressed through variation in abundance were similar among taxa and point to the overriding role of a physical factor, temperature. This determines how energy is distributed among individuals and ultimately how the resulting pattern of abundance affects species incidence. Effects expressed through variation in regional species pools depended instead on taxon-specific evolutionary history, and lead to diverging responses under similar environmental pressures. Local filters and regional variation also explain functional diversity gradients, in line with results from species richness that indicate an (local) ecological and (regional) historical unfolding of diversity-elevation relationships. © 2018 John Wiley & Sons Ltd/CNRS.

  3. Common ecology quantifies human insurgency.

    PubMed

    Bohorquez, Juan Camilo; Gourley, Sean; Dixon, Alexander R; Spagat, Michael; Johnson, Neil F

    2009-12-17

    Many collective human activities, including violence, have been shown to exhibit universal patterns. The size distributions of casualties both in whole wars from 1816 to 1980 and terrorist attacks have separately been shown to follow approximate power-law distributions. However, the possibility of universal patterns ranging across wars in the size distribution or timing of within-conflict events has barely been explored. Here we show that the sizes and timing of violent events within different insurgent conflicts exhibit remarkable similarities. We propose a unified model of human insurgency that reproduces these commonalities, and explains conflict-specific variations quantitatively in terms of underlying rules of engagement. Our model treats each insurgent population as an ecology of dynamically evolving, self-organized groups following common decision-making processes. Our model is consistent with several recent hypotheses about modern insurgency, is robust to many generalizations, and establishes a quantitative connection between human insurgency, global terrorism and ecology. Its similarity to financial market models provides a surprising link between violent and non-violent forms of human behaviour.

  4. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient.

    PubMed

    Måren, Inger Elisabeth; Kapfer, Jutta; Aarrestad, Per Arild; Grytnes, John-Arvid; Vandvik, Vigdis

    2018-01-01

    Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more niche-driven dynamics in later successional stages. Grazing reduces predictability in both successional trends and species-level dynamics, especially in plant functional groups that are not well adapted to disturbance. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  5. Global simulation of interactions between groundwater and terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Braakhekke, M. C.; Rebel, K.; Dekker, S. C.; Smith, B.; Van Beek, L. P.; Sutanudjaja, E.; van Kampenhout, L.; Wassen, M. J.

    2016-12-01

    In many places in the world ecosystems are influenced by the presence of a shallow groundwater table. In these regions upward water flux due to capillary rise increases soil moisture availability in the root zone, which has strong positive effect on evapotranspiration. Additionally it has important consequences for vegetation dynamics and fluxes of carbon and nitrogen. Under water limited conditions shallow groundwater stimulates vegetation productivity, and soil organic matter decomposition while under saturated conditions groundwater may have a negative effect on these processes due to lack of oxygen. Furthermore, since plant species differ with respect to their root distribution, preference for moisture conditions, and resistance to oxygen stress, shallow groundwater also influences vegetation type. Finally, processes such as denitrification and methane production occur under strictly anaerobic conditions and are thus strongly influenced by moisture availability. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure and are therefore less suitable to represent effects of groundwater on biogeochemical fluxes. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure and biogeochemical processes. These models are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB. Using this coupled model we aim to study the influence of shallow groundwater on terrestrial ecosystem processes. We will present results of global simulations to demonstrate the effects on C, N, and water fluxes.

  6. Stochastic Community Assembly: Does It Matter in Microbial Ecology?

    PubMed

    Zhou, Jizhong; Ning, Daliang

    2017-12-01

    Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research. Copyright © 2017 American Society for Microbiology.

  7. Community ecology in a changing environment: Perspectives from the Quaternary

    NASA Astrophysics Data System (ADS)

    Jackson, Stephen T.; Blois, Jessica L.

    2015-04-01

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a "missing middle": Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit.

  8. Community ecology in a changing environment: Perspectives from the Quaternary

    PubMed Central

    Jackson, Stephen T.; Blois, Jessica L.

    2015-01-01

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a “missing middle”: Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit. PMID:25901314

  9. Community ecology in a changing environment: Perspectives from the Quaternary

    USGS Publications Warehouse

    Jackson, Stephen T.; Blois, Jessica L.

    2015-01-01

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a “missing middle”: Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit.

  10. Community ecology in a changing environment: Perspectives from the Quaternary.

    PubMed

    Jackson, Stephen T; Blois, Jessica L

    2015-04-21

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a "missing middle": Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit.

  11. Evolutionary fields can explain patterns of high-dimensional complexity in ecology

    NASA Astrophysics Data System (ADS)

    Wilsenach, James; Landi, Pietro; Hui, Cang

    2017-04-01

    One of the properties that make ecological systems so unique is the range of complex behavioral patterns that can be exhibited by even the simplest communities with only a few species. Much of this complexity is commonly attributed to stochastic factors that have very high-degrees of freedom. Orthodox study of the evolution of these simple networks has generally been limited in its ability to explain complexity, since it restricts evolutionary adaptation to an inertia-free process with few degrees of freedom in which only gradual, moderately complex behaviors are possible. We propose a model inspired by particle-mediated field phenomena in classical physics in combination with fundamental concepts in adaptation, which suggests that small but high-dimensional chaotic dynamics near to the adaptive trait optimum could help explain complex properties shared by most ecological datasets, such as aperiodicity and pink, fractal noise spectra. By examining a simple predator-prey model and appealing to real ecological data, we show that this type of complexity could be easily confused for or confounded by stochasticity, especially when spurred on or amplified by stochastic factors that share variational and spectral properties with the underlying dynamics.

  12. Diversification of C(4) grasses (Poaceae) does not coincide with their ecological dominance.

    PubMed

    Bouchenak-Khelladi, Yanis; Slingsby, Jasper A; Verboom, G Anthony; Bond, William J

    2014-02-01

    The radiation of a lineage and its rise to ecological dominance are distinct phenomena and driven by different processes. For example, paleoecological data has been used to show that the Cretaceous angiosperm radiation did not coincide with their rise to dominance. Using a phylogenetic approach, we here explored the evolution of C4 grasses and evaluated whether the diversification of this group and its rise to ecological dominance in the late Miocene were decoupled. We assembled a matrix including 675 grass species of the PACMAD clade and 2784 characters (ITS and ndhF) to run a molecular dating analysis using three fossils as reference calibrations. We coded species as C3 vs. C4 and reconstructed ancestral states under maximum likelihood. We used the program BiSSE to test whether rates of diversification are correlated with photosynthetic pathway and whether the radiation of C4 lineages preceded or coincided with their rise to ecological dominance from ∼10 Ma. C4 grass lineages first originated around 35 Ma at the time of the Eocene-Oligocene transition. Accelerated diversification of C4 lineages did not coincide with their rise to ecological dominance. C4-dominated grasslands have expanded only since the Late Miocene and Pliocene. The initial diversification of their biotic elements can be tracked back as far as the Eocene-Oligocene transition. We suggest that shifts in taxonomic diversification and ecological dominance were stimulated by different factors, as in the case of the early angiosperms in the Cretaceous.

  13. Urban Evolutionary Ecology and the Potential Benefits of Implementing Genomics.

    PubMed

    Schell, Christopher J

    2018-02-14

    Urban habitats are quickly becoming exceptional models to address adaptation under rapid environmental change, given the expansive temporal and spatial scales with which anthropogenic landscape conversion occurs. Urban ecologists in the last 10-15 years have done an extraordinary job of highlighting phenotypic patterns that correspond with urban living, as well as delineating urban population structure using traditional genetic markers. The underpinning genetic mechanisms that govern those phenotypic patterns, however, are less well established. Moreover, the power of traditional molecular studies is constrained by the number of markers being evaluated, which limits the potential to assess fine-scale population structure potentially common in urban areas. With the recent proliferation of low-cost, high-throughput sequencing methods, we can begin to address an emerging question in urban ecology: are species adapted to local optima within cities or are they expressing latent phenotypic plasticity? Here, I provide a comprehensive review of previous urban ecological studies, with special focus on the molecular ecology and phenotypic adjustments documented in urban terrestrial and amphibious fauna. I subsequently pinpoint areas in the literature that could benefit from a genomic investigation and briefly discuss the suitability of specific techniques in addressing eco-evolutionary questions within urban ecology. Though many challenges exist with implementing genomics into urban ecology, such studies provide an exceptional opportunity to advance our understanding of eco-evolutionary processes in metropolitan areas. © The American Genetic Association 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Linking hydro-morphology with invertebrate ecology in diverse morphological units of a large river-floodplain system

    NASA Astrophysics Data System (ADS)

    Blettler, Martín. C. M.; Amsler, Mario L.; Eberle, Eliana G.; Szupiany, Ricardo; Latosinski, Francisco G.; Abrial, Elie; Oberholster, Paul J.; Espinola, Luis A.; Paira, Aldo; Poza, Ailen; Rodrigues Capítulo, Alberto

    2016-12-01

    Interdisciplinary research in the fields of ecohydrology and ecogeomorphology is becoming increasingly important as a way to understand how biological and physical processes interact with each other in river systems. The objectives of the current study were 1) to determine changes in invertebrate community due to hydrological stages, 2) to link local physical features [flow configuration, sediment composition and morphological feature) with the ecological structure between and within dissimilar morphological units (meander and confluence), and 3) to determine the existence and the origin of bed hydro-geomorphic patches, determining their ecological structure. Results were discussed in the frame of prevailing ecological models and concepts. The study site extends over a floodplain area of the large Paraná River (Argentina), including minor and major secondary channels as well as the main channel. Overall results suggested that hydrodynamics was the driving force determining distribution patterns of benthic assemblages in the floodplain. However, while the invertebrates living in minor secondary channels seem to benefit from flooding, this hydrological phase had the opposite effect on organisms from the main and major secondary channels. We also found a clear linkage between physical features and invertebrate ecology, which caused a dissimilar fauna structure between and within the meander and the confluence. Furthermore, several sandy-patches were recorded in the confluence. These patches were colonized by the particular benthic assemblage recorded in the main channel, supported the view of rivers as patchy discontinua, under uncertain ecological equilibrium.

  15. 75 FR 24542 - Approval and Promulgation of State Implementation Plans: Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... by the State of Washington, Department of Ecology (Ecology). These revisions pertain to the... maintenance plan. On January 17, 2007, EPA received a request from Ecology to approve under section 110 of the... about the SIP revisions Ecology has submitted for approval. The TSD is available for review as part of...

  16. Moving beyond a descriptive aquatic toxicology: the value of biological process and trait information.

    PubMed

    Segner, Helmut

    2011-10-01

    In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor. 2011 Elsevier B.V. All rights reserved.

  17. Disturbance and productivity interactions mediate stability of forest composition and structure.

    PubMed

    O'Connor, Christopher D; Falk, Donald A; Lynch, Ann M; Swetnam, Thomas W; Wilcox, Craig P

    2017-04-01

    Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with similar historical fire regimes. This variability in plant community response to fire exclusion is not well understood; however, ecological mechanisms such as individual species' adaptations to disturbance or competition and underlying site characteristics that facilitate or impede establishment and growth have been proposed as potential drivers of assemblage response. We used spatially explicit dendrochronological reconstruction of tree population dynamics and fire regimes to examine the influence of historical disturbance frequency (a proxy for adaptation to disturbance or competition), and potential site productivity (a proxy for underlying site characteristics) on the stability of forest composition and structure along a continuous ecological gradient of pine, dry mixed-conifer, mesic mixed-conifer, and spruce-fir forests following fire exclusion. While average structural density increased in all forests, species composition was relatively stable in the lowest productivity pine-dominated and highest productivity spruce-fir-dominated sites immediately following fire exclusion and for the next 100 years, suggesting site productivity as a primary control on species composition and structure in forests with very different historical fire regimes. Species composition was least stable on intermediate productivity sites dominated by mixed-conifer forests, shifting from primarily fire-adapted species to competition-adapted, fire-sensitive species within 20 years of fire exclusion. Rapid changes to species composition and stand densities have been interpreted by some as evidence of high-severity fire. We demonstrate that the very different ecological process of fire exclusion can produce similar changes by shifting selective pressures from disturbance-mediated to productivity-mediated controls. Restoring disturbance-adapted species composition and structure to intermediate productivity forests may help to buffer them against projected increasing temperatures, lengthening fire seasons, and more frequent and prolonged moisture stress. Fewer management options are available to promote adaptation in forest assemblages historically constrained by underlying site productivity. © 2016 by the Ecological Society of America.

  18. Simulating ecological changes caused by marine energy devices

    NASA Astrophysics Data System (ADS)

    Schuchert, Pia; Elsaesser, Bjoern; Pritchard, Daniel; Kregting, Louise

    2015-04-01

    Marine renewable energy from wave and tidal technology has the potential to contribute significantly globally to energy security for future generations. However common to both tidal and wave energy extraction systems is concern regarding the potential environmental consequences of the deployment of the technology as environmental and ecological effects are so far poorly understood. Ecological surveys and studies to investigate the environmental impacts are time consuming and costly and are generally reactive; a more efficient approach is to develop 2 and 3D linked hydrodynamic-ecological modelling which has the potential to be proactive and to allow forecasting of the effects of array installation. The objective of the study was to explore tools which can help model and evaluate possible far- and near field changes in the environment and ecosystem caused by the introduction of arrays of marine energy devices. Using the commercial software, MIKE by DHI, we can predict and model possible changes in the ecosystem. MIKE21 and ECOLab modelling software provide the opportunity to couple high level hydrodynamic models with process based ecological models and/or agent based models (ABM). The flow solutions of the model were determined in an idealised tidal basin with the dimensions similar to that of Strangford Lough, Northern Ireland, a body of water renowned for the location of the first grid-connected tidal turbine, SeaGen. In the first instance a simple process oriented ecological NPZD model was developed which are used to model marine and freshwater systems describing four state variables, Nutrient, Phytoplankton, Zooplankton and Detritus. The ecological model was run and evaluated under two hydrodynamic scenarios of the idealised basin. This included no tidal turbines (control) and an array of 55 turbines, an extreme scenario. Whilst an array of turbines has an effect on the hydrodynamics of the Lough, it is unlikely to see an extreme effect on the NPZD model. Further assessment on primary productivity and filter feeders is currently being implemented to assess impacts on these biological systems. Using MIKE software opens up many further possibilities to allow insights into the impacts of marine energy devices on the ecosystem.

  19. Genetic Allee effects and their interaction with ecological Allee effects.

    PubMed

    Wittmann, Meike J; Stuis, Hanna; Metzler, Dirk

    2018-01-01

    It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects can easily be underestimated as populations with genetic problems often grow initially, but then crash later. Also interactions between ecological and genetic Allee effects can be strong and should not be neglected when assessing the viability of endangered or introduced populations. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  20. Social-ecological resilience and social conflict: institutions and strategic adaptation in Swedish water management.

    PubMed

    Galaz, Victor

    2005-11-01

    Dealing with uncertainty and complexity in social-ecological systems is profoundly dependent on the ability of natural resource users to learn and adapt from ecological surprises and crises. This paper analyzes why and how learning processes are affected by strategic behavior among natural resource users and how social conflict is affected by social and ecological uncertainty. The claim is that social conflict among natural resource users seriously inhibits the possibilities of learning and adaptation in social-ecological systems. This is done combining insights from political science, experimental economics, and social-psychology and an analytical case study elaborating social conflict and institutional change in Swedish water management institutions. This paper also discusses the crucial role the institutional context plays in defining the outcome of learning processes in Swedish water management institutions and hence highlights previously poorly elaborated political aspects of learning processes and institutional change in social-ecological systems.

  1. Nematode orphan genes are adopted by conserved regulatory networks and find a home in ecology.

    PubMed

    Mayer, Melanie G; Sommer, Ralf J

    2015-01-01

    Nematode dauer formation represents an essential survival and dispersal strategy and is one of a few ecologically relevant traits that can be studied in laboratory approaches. Under harsh environmental conditions, the nematode model organisms Caenorhabditis elegans and Pristionchus pacificus arrest their development and induce the formation of stress-resistant dauer larvae in response to dauer pheromones, representing a key example of phenotypic plasticity. Previous studies have indicated that in P. pacificus, many wild isolates show cross-preference of dauer pheromones and compete for access to a limited food source. When investigating the genetic mechanisms underlying this intraspecific competition, we recently discovered that the orphan gene dauerless (dau-1) controls dauer formation by copy number variation. Our results show that dau-1 acts in parallel to or downstream of steroid hormone signaling but upstream of the nuclear hormone receptor daf-12, suggesting that DAU-1 represents a novel inhibitor of DAF-12. Phylogenetic analysis reveals that the observed copy number variation is part of a complex series of gene duplication events that occurred over short evolutionary time scales. Here, we comment on the incorporation of novel or fast-evolving genes into conserved genetic networks as a common principle for the evolution of phenotypic plasticity and intraspecific competition. We discuss the possibility that orphan genes might often function in the regulation and execution of ecologically relevant traits. Given that only few ecological processes can be studied in model organisms, the function of such genes might often go unnoticed, explaining the large number of uncharacterized genes in model system genomes.

  2. Compilation of 1982 Annual Reports of the Navy ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program.

    DTIC Science & Technology

    1983-05-01

    systems are generally considered difficult to study, several features of ectomycor- rhizae facilitate such investigations. Ectomycorrhizal fungi...communications antenna area and 2) distribution features of the induced field in the forest floor. The overall objective of these studies is to quantify key...Sultanova, K. Kayumov, and 0. Khasahov. 1981. Some features of microbiological processes under alfalfa depending on hoeing depth and fertilizer

  3. Two new advanced forms of spectrometry for space and commercial applications

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.

    1991-01-01

    Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.

  4. Socially Strategic Ecological Restoration: A Game-Theoretic Analysis Shortened: Socially Strategic Restoration

    NASA Astrophysics Data System (ADS)

    Buckley, Mark; Haddad, Brent M.

    2006-07-01

    Major transitions in a multiple-use or mosaic landscape often lead to frictions among new and existing users. In this article, we consider the problem of ecological restoration within a mosaic landscape in which restoration activities elicit feedbacks from individuals and groups that are harmed by restoration outcomes. Using game theory, we identify three potential outcomes ranked by the extent of restoration of ecosystem services and processes: nonstrategic, noncooperative strategic equilibrium, and cooperative bargaining solution. We identify conditions under which additional restoration can decrease the overall flow of ecosystem services and processes. A “strategic restorationist” will cease new restoration activities when the net effect of defensive response moves by farmers offsets gains. Imperfect information regarding expected payoffs to farmers can lead to inefficient overshooting or undershooting the optimal scale, geographical positioning, and form of restoration. Gains to all parties from cooperation might exist. As a case study and to aid model design, we consider restoration activities on California’s upper Sacramento River.

  5. Uncovering the drivers of host-associated microbiota with joint species distribution modelling.

    PubMed

    Björk, Johannes R; Hui, Francis K C; O'Hara, Robert B; Montoya, Jose M

    2018-06-01

    In addition to the processes structuring free-living communities, host-associated microbiota are directly or indirectly shaped by the host. Therefore, microbiota data have a hierarchical structure where samples are nested under one or several variables representing host-specific factors, often spanning multiple levels of biological organization. Current statistical methods do not accommodate this hierarchical data structure and therefore cannot explicitly account for the effect of the host in structuring the microbiota. We introduce a novel extension of joint species distribution models (JSDMs) which can straightforwardly accommodate and discern between effects such as host phylogeny and traits, recorded covariates such as diet and collection site, among other ecological processes. Our proposed methodology includes powerful yet familiar outputs seen in community ecology overall, including (a) model-based ordination to visualize and quantify the main patterns in the data; (b) variance partitioning to assess how influential the included host-specific factors are in structuring the microbiota; and (c) co-occurrence networks to visualize microbe-to-microbe associations. © 2018 John Wiley & Sons Ltd.

  6. Estimating and mapping ecological processes influencing microbial community assembly

    DOE PAGES

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; ...

    2015-05-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recentlymore » developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.« less

  7. Climate change: effects on animal disease systems and implications for surveillance and control.

    PubMed

    de La Rocque, S; Rioux, J A; Slingenbergh, J

    2008-08-01

    Climate driven and other changes in landscape structure and texture, plus more general factors, may create favourable ecological niches for emerging diseases. Abiotic factors impact on vectors, reservoirs and pathogen bionomics and their ability to establish in new ecosystems. Changes in climatic patterns and in seasonal conditions may affect disease behaviour in terms of spread pattern, diffusion range, amplification and persistence in novel habitats. Pathogen invasion may result in the emergence of novel disease complexes, presenting major challenges for the sustainability of future animal agriculture at the global level. In this paper, some of the ecological mechanisms underlying the impact of climatic change on disease transmission and disease spread are further described. Potential effects of different climatic variables on pathogens and host population dynamics and distribution are complex to assess, and different approaches are used to describe the underlying epidemiological processes and the availability of ecological niches for pathogens and vectors. The invasion process can disrupt the long-term co-evolution of species. Pathogens adhering to an r-type strategy (e.g. RNA viruses) may be more inclined to encroach on a novel niche resulting from climate change. However, even when linkage between disease dynamics and climate change are relatively strong, there are other factors changing disease behaviour, and these should be accounted for as well. Overall vulnerability of a given ecosystem is a key variable in this regard. The impact of climate-driven changes varies in different parts of the world and in the different agro-climatic zones. Perhaps priority should go to those geographical areas where the integrity of the ecosystem is most severely affected and the adaptability, in terms of robustness and sustainability of response, relatively low.

  8. Information-Theoretic Approach May Shed a Light to a Better Understanding and Sustaining the Integrity of Ecological-Societal Systems under Changing Climate

    NASA Astrophysics Data System (ADS)

    Kim, J.

    2016-12-01

    Considering high levels of uncertainty, epistemological conflicts over facts and values, and a sense of urgency, normal paradigm-driven science will be insufficient to mobilize people and nation toward sustainability. The conceptual framework to bridge the societal system dynamics with that of natural ecosystems in which humanity operates remains deficient. The key to understanding their coevolution is to understand `self-organization.' Information-theoretic approach may shed a light to provide a potential framework which enables not only to bridge human and nature but also to generate useful knowledge for understanding and sustaining the integrity of ecological-societal systems. How can information theory help understand the interface between ecological systems and social systems? How to delineate self-organizing processes and ensure them to fulfil sustainability? How to evaluate the flow of information from data through models to decision-makers? These are the core questions posed by sustainability science in which visioneering (i.e., the engineering of vision) is an essential framework. Yet, visioneering has neither quantitative measure nor information theoretic framework to work with and teach. This presentation is an attempt to accommodate the framework of self-organizing hierarchical open systems with visioneering into a common information-theoretic framework. A case study is presented with the UN/FAO's communal vision of climate-smart agriculture (CSA) which pursues a trilemma of efficiency, mitigation, and resilience. Challenges of delineating and facilitating self-organizing systems are discussed using transdisciplinary toold such as complex systems thinking, dynamic process network analysis and multi-agent systems modeling. Acknowledgments: This study was supported by the Korea Meteorological Administration Research and Development Program under Grant KMA-2012-0001-A (WISE project).

  9. The evolved psychological mechanisms of fertility motivation: hunting for causation in a sea of correlation

    PubMed Central

    McAllister, Lisa S.; Pepper, Gillian V.; Virgo, Sandra

    2016-01-01

    Cultural, ecological, familial and physiological factors consistently influence fertility behaviours, however, the proximate psychological mechanisms underlying fertility decisions in humans are poorly understood. Understanding the psychological mechanisms underlying human fertility may illuminate the final processes by which some of these known predictors have their influence. To date, research into the psychological mechanisms underlying fertility has been fragmented. Aspects of reproductive psychology have been examined by researchers in a range of fields, but the findings have not been systematically integrated in one review. We provide such a review, examining current theories and research on psychological mechanisms of fertility. We examine the methods and populations used in the research, as well as the disciplines and theoretical perspectives from which the work has come. Much of the work that has been done to date is methodologically limited to examining correlations between ecological, social and economic factors and fertility. We propose, and support with examples, the use of experimental methods to differentiate causal factors from correlates. We also discuss weaknesses in the experimental research, including limited work with non-WEIRD (western, educated, industrialized, rich and democratic) populations. PMID:27022078

  10. [Lake eutrophication modeling in considering climatic factors change: a review].

    PubMed

    Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng

    2012-11-01

    Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.

  11. Experiential Learning as a Constraint-Led Process: An Ecological Dynamics Perspective

    ERIC Educational Resources Information Center

    Brymer, Eric; Davids, Keith

    2014-01-01

    In this paper we present key ideas for an ecological dynamics approach to learning that reveal the importance of learner-environment interactions to frame outdoor experiential learning. We propose that ecological dynamics provides a useful framework for understanding the interacting constraints of the learning process and for designing learning…

  12. Winter in northeastern North America: a critical period for ecological processes

    Treesearch

    John L. Campbell; Myron J. Mitchell; Peter M. Groffman; Lynn M. Christenson; Janet P. Hardy; Janet P. Hardy

    2005-01-01

    Ecological research during winter has historically been a low priority in northeastern North America, an oversight that stems from the commonly accepted notion that there is little biological activity when temperatures drop below freezing. However, recent research has shown that winter can be an especially important period for ecological processes, providing evidence...

  13. A Learning Progression for Energy in Socio-Ecological Systems

    ERIC Educational Resources Information Center

    Jin, Hui; Anderson, Charles W.

    2012-01-01

    This article reports on our work of developing a learning progression focusing on K-12 students' performances of using energy concept in their accounts of carbon-transforming processes in socio-ecological systems. Carbon-transforming processes--the ecological carbon cycle and the combustion of biomass and fossil fuels--provide all of the energy…

  14. Simulation modeling of forest landscape disturbances: An overview

    Treesearch

    Ajith H. Perera; Brian R. Sturtevant; Lisa J. Buse

    2015-01-01

    Quantification of ecological processes and formulation of the mathematical expressions that describe those processes in computer models has been a cornerstone of landscape ecology research and its application. Consequently, the body of publications on simulation models in landscape ecology has grown rapidly in recent decades. This trend is also evident in the subfield...

  15. Living in the branches: population dynamics and ecological processes in dendritic networks

    USGS Publications Warehouse

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  16. Breath-giving cooperation: critical review of origin of mitochondria hypotheses : Major unanswered questions point to the importance of early ecology.

    PubMed

    Zachar, István; Szathmáry, Eörs

    2017-08-14

    The origin of mitochondria is a unique and hard evolutionary problem, embedded within the origin of eukaryotes. The puzzle is challenging due to the egalitarian nature of the transition where lower-level units took over energy metabolism. Contending theories widely disagree on ancestral partners, initial conditions and unfolding of events. There are many open questions but there is no comparative examination of hypotheses. We have specified twelve questions about the observable facts and hidden processes leading to the establishment of the endosymbiont that a valid hypothesis must address. We have objectively compared contending hypotheses under these questions to find the most plausible course of events and to draw insight on missing pieces of the puzzle. Since endosymbiosis borders evolution and ecology, and since a realistic theory has to comply with both domains' constraints, the conclusion is that the most important aspect to clarify is the initial ecological relationship of partners. Metabolic benefits are largely irrelevant at this initial phase, where ecological costs could be more disruptive. There is no single theory capable of answering all questions indicating a severe lack of ecological considerations. A new theory, compliant with recent phylogenomic results, should adhere to these criteria. This article was reviewed by Michael W. Gray, William F. Martin and Purificación López-García.

  17. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following severalmore » years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.« less

  18. Historical foundations and future directions in macrosystems ecology

    Treesearch

    Kevin C. Rose; Rose A. Graves; Winslow D. Hansen; Brian J. Harvey; Jiangxiao Qiu; Stephen A. Wood; Carly Ziter; Monica G. Turner; Wilfried Thuiller

    2017-01-01

    Macrosystems ecology is an effort to understand ecological processes and interactions at the broadest spatial scales and has potential to help solve globally important social and ecological challenges. It is important to understand the intellectual legacies underpinning macrosystems ecology: How the subdiscipline fits within, builds upon, differs from and...

  19. 77 FR 4319 - Notification of Two Public Teleconferences of the Science Advisory Board Ecological Processes and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ..., ``Integrating Ecological Assessment and Decision-Making at EPA, 2011 RAF Ecological Assessment Action Plan... the EPA Risk Assessment Forum (RAF) document, ``Integrating Ecological Assessment and Decision-Making... Ecological Risk Assessment in Environmental Decision-Making'' (EPA-SAB-08-002), the EPA Risk Assessment Forum...

  20. Possibilities of the Integration of the Method of the Ecologically Oriented Independent Scientific Research in the Study Process

    NASA Astrophysics Data System (ADS)

    Grizans, Jurijs; Vanags, Janis

    2010-01-01

    The aim of this paper is to analyse possibilities of the integration of the method of the ecologically oriented independent scientific research in the study process. In order to achieve the set aim, the following scientific research methods were used: analysis of the conceptual guidelines for the development of environmentally oriented entrepreneurship, interpretation of the experts' evaluation of the ecologically oriented management, analysis of the results of the students' ecologically oriented independent scientific research, as well as monographic and logically constructive methods. The results of the study give an opportunity to make conclusions and to develop conceptual recommendations on how to introduce future economics and business professionals with the theoretical and practical aspects of ecologically oriented management during the study process.

  1. Statistical ecology comes of age.

    PubMed

    Gimenez, Olivier; Buckland, Stephen T; Morgan, Byron J T; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-12-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.

  2. Statistical ecology comes of age

    PubMed Central

    Gimenez, Olivier; Buckland, Stephen T.; Morgan, Byron J. T.; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M.; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M.; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-01-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1–4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data. PMID:25540151

  3. Quantifying Ecological Memory of Plant and Ecosystem Processes in Variable Environments

    NASA Astrophysics Data System (ADS)

    Ogle, K.; Barron-Gafford, G. A.; Bentley, L.; Cable, J.; Lucas, R.; Huxman, T. E.; Loik, M. E.; Smith, S. D.; Tissue, D.

    2010-12-01

    Precipitation, soil water, and other factors affect plant and ecosystem processes at multiple time scales. A common assumption is that water availability at a given time directly affects processes at that time. Recent work, especially in pulse-driven, semiarid systems, shows that antecedent water availability, averaged over several days to a couple weeks, can be just as or more important than current water status. Precipitation patterns of previous seasons or past years can also impact plant and ecosystem functioning in many systems. However, we lack an analytical framework for quantifying the importance of and time-scale over which past conditions affect current processes. This study explores the ecological memory of a variety of plant and ecosystem processes. We use memory as a metaphor to describe the time-scale over which antecedent conditions affect the current process. Existing approaches for incorporating antecedent effects arbitrarily select the antecedent integration period (e.g., the past 2 weeks) and the relative importance of past conditions (e.g., assign equal or linearly decreasing weights to past events). In contrast, we utilize a hierarchical Bayesian approach to integrate field data with process-based models, yielding posterior distributions for model parameters, including the duration of the ecological memory (integration period) and the relative importance of past events (weights) to this memory. We apply our approach to data spanning diverse temporal scales and four semiarid sites in the western US: leaf-level stomatal conductance (gs, sub-hourly scale), soil respiration (Rs, hourly to daily scale), and net primary productivity (NPP) and tree-ring widths (annual scale). For gs, antecedent factors (daily rainfall and temperature, hourly vapor pressure deficit) and current soil water explained up to 72% of the variation in gs in the Chihuahuan Desert, with a memory of 10 hours for a grass and 4 days for a shrub. Antecedent factors (past soil water, temperature, photosynthesis rates) explained 73-80% of the variation in sub-daily and daily Rs. Rs beneath shrubs had a moisture and temperature memory of a few weeks, while Rs in open space and beneath grasses had a memory of 6 weeks. For pinyon pine ring widths, the current and previous year accounted for 85% of the precipitation memory; for the current year, precipitation received between February and June was most important. A similar result emerged for NPP in the short grass steppe. In both sites, tree growth and NPP had a memory of 3 years such that precipitation received >3 years ago had little influence. Understanding ecosystem dynamics requires knowledge of the temporal scales over which environmental factors influence ecological processes, and our approach to quantifying ecological memory provides a means to identify underlying mechanisms.

  4. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The coupled models have been applied to simulate the spatial variation trends of ecological condition under ecological water supplement as an example to reflect the application effect in lake restoration and management. The simulation results indicate that the models can provide a useful tool for lake restoration and management. The simulated spatial variation trends can provide a foundation for establishing permissible ranges for a selected set of water quality indices for a series of management measures such as watershed pollution load control and ecological water transfer. Meanwhile, the coupled models can help us to understand processes taking place and the relations of interaction between components in the lake ecosystem and external conditions. Taken together, the proposed models we established show some promising applications as middle-scale or large-scale lake management tools for pollution load control and ecological water transfer. These tools quantify the implications of proposed future water management decisions.

  5. Using ecological production functions to link ecological processes to ecosystem services.

    EPA Science Inventory

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively ...

  6. Wilderness in the 'city' revisited: different urbes shape transmission of Echinococcus multilocularis by altering predator and prey communities.

    PubMed

    Liccioli, Stefano; Giraudoux, Patrick; Deplazes, Peter; Massolo, Alessandro

    2015-07-01

    The urbanization of Echinococcus multilocularis, the agent of alveolar echinococcosis (AE), is a public health concern worldwide. Here we propose to consider 'urban' habitats under a broad ecological perspective and discuss the effects of human settlements (urbes) on host communities and the process of parasite urbanization. We argue that interactions between landscape features (i.e., landscape composition and configuration) and host communities can shape the heterogeneity of transmission gradients observed within and across different types of human settlement. Due to unique ecological characteristics and public health management priorities, we envisage urban landscapes as a model system to further increase our understanding of host-parasite interactions shaping the circulation of E. multilocularis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition

    USGS Publications Warehouse

    Elser, J.J.; Andersen, T.; Baron, Jill S.; Bergstrom, A.-K.; Jansson, M.; Kyle, M.; Nydick, K.R.; Steger, L.; Hessen, D.O.

    2009-01-01

    Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.

  8. Change of niche in guanaco (Lama guanicoe): the effects of climate change on habitat suitability and lineage conservatism in Chile.

    PubMed

    Castillo, Andrea G; Alò, Dominique; González, Benito A; Samaniego, Horacio

    2018-01-01

    The main goal of this contribution was to define the ecological niche of the guanaco ( Lama guanicoe ), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species ( L.g. cacsilensis and L.g. guanicoe ). We used maximum entropy to model lineage's climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is expected, this may come with an important reduction of available quality habitats. From the evolutionary perspective, we describe the limitations of this taxon as it experiences forces imposed by climate change dynamics.

  9. Change of niche in guanaco (Lama guanicoe): the effects of climate change on habitat suitability and lineage conservatism in Chile

    PubMed Central

    Castillo, Andrea G.; González, Benito A.

    2018-01-01

    Background The main goal of this contribution was to define the ecological niche of the guanaco (Lama guanicoe), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species (L.g. cacsilensis and L.g. guanicoe). Methods We used maximum entropy to model lineage’s climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. Results We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Discussion Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is expected, this may come with an important reduction of available quality habitats. From the evolutionary perspective, we describe the limitations of this taxon as it experiences forces imposed by climate change dynamics. PMID:29868293

  10. U.S. EPA Superfund Program's Policy for Risk and Dose Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Stuart

    2008-01-15

    The Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) has primary responsibility for implementing the long-term (non-emergency) portion of a key U.S. law regulating cleanup: the Comprehensive Environmental Response, Compensation and Liability Act, CERCLA, nicknamed 'Superfund'. The purpose of the Superfund program is to protect human health and the environment over the long term from releases or potential releases of hazardous substances from abandoned or uncontrolled hazardous waste sites. The focus of this paper is on risk and dose assessment policies and tools for addressing radioactively contaminated sites by the Superfund program. EPA has almost completedmore » two risk assessment tools that are particularly relevant to decommissioning activities conducted under CERCLA authority. These are the: 1. Building Preliminary Remediation Goals for Radionuclides (BPRG) electronic calculator, and 2. Radionuclide Outdoor Surfaces Preliminary Remediation Goals (SPRG) electronic calculator. EPA developed the BPRG calculator to help standardize the evaluation and cleanup of radiologically contaminated buildings at which risk is being assessed for occupancy. BPRGs are radionuclide concentrations in dust, air and building materials that correspond to a specified level of human cancer risk. The intent of SPRG calculator is to address hard outside surfaces such as building slabs, outside building walls, sidewalks and roads. SPRGs are radionuclide concentrations in dust and hard outside surface materials. EPA is also developing the 'Radionuclide Ecological Benchmark' calculator. This calculator provides biota concentration guides (BCGs), also known as ecological screening benchmarks, for use in ecological risk assessments at CERCLA sites. This calculator is intended to develop ecological benchmarks as part of the EPA guidance 'Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments'. The calculator develops ecological benchmarks for ionizing radiation based on cell death only.« less

  11. The long-term ecological research community metada standardisation project: a progress report

    Treesearch

    Inigo San Gil; Karen Baker; John Campbell; Ellen G. Denny; Kristin Vanderbilt; Brian Riordan; Rebecca Koskela; Jason Downing; Sabine Grabner; Eda Melendez; Jonathan M. Walsh; Masib Kortz; James Conners; Lynn Yarmey; Nicole Kaplan; Emery R. Boose; Linda Powell; Corinna Gries; Robin Schroeder; Todd Ackerman; Ken Ramsey; Barbara Benson; Jonathan Chipman; James Laundre; Hap Garritt; Don Henshaw; Barrie Collins; Christopher Gardner; Sven Bohm; Margaret O' Brien; Jincheng Gao; Wade Sheldon; Stephanie Lyon; Dan Bahauddin; Mark Servilla; Duane Costa; James Brunt

    2009-01-01

    We describe the process by which the Long-Term Ecological Research (LTER) Network standardized their metadata through the adoption of the Ecological Metadata Language (EML). We describe the strategies developed to improve motivation and to complement the information technology resources available at the LTER sites. EML implementation is presented as a mapping process...

  12. Earthworm responses to different reclamation processes in post opencast mining lands during succession.

    PubMed

    Hlava, Jakub; Hlavová, Anna; Hakl, Josef; Fér, Miroslav

    2015-01-01

    This study provides earthworm population data obtained from localities with a substantial anthropogenic impact spoils. The spoil heaps were reclaimed at the end of an opencast brown coal mining period. We studied spoils reclaimed by the two most commonly used reclamation processes: forestry and agricultural. The results show the significance of the locality age and the utilized reclamation process and treatment and their effect on earthworm communities. Our data indicate that apart from soil physical and chemical properties, the reclamation process itself may also induce viability and distribution of earthworm communities. Under standardized soil properties, the changes in earthworm populations during the succession were larger within the agricultural reclamation process as opposed to the forestry reclamation process for earthworm ecological groups and individual species.

  13. Analysing taxonomic structures and local ecological processes in temperate forests in North Eastern China.

    PubMed

    Fan, Chunyu; Tan, Lingzhao; Zhang, Chunyu; Zhao, Xiuhai; von Gadow, Klaus

    2017-10-30

    One of the core issues of forest community ecology is the exploration of how ecological processes affect community structure. The relative importance of different processes is still under debate. This study addresses four questions: (1) how is the taxonomic structure of a forest community affected by spatial scale? (2) does the taxonomic structure reveal effects of local processes such as environmental filtering, dispersal limitation or interspecific competition at a local scale? (3) does the effect of local processes on the taxonomic structure vary with the spatial scale? (4) does the analysis based on taxonomic structures provide similar insights when compared with the use of phylogenetic information? Based on the data collected in two large forest observational field studies, the taxonomic structures of the plant communities were analyzed at different sampling scales using taxonomic ratios (number of genera/number of species, number of families/number of species), and the relationship between the number of higher taxa and the number of species. Two random null models were used and the "standardized effect size" (SES) of taxonomic ratios was calculated, to assess possible differences between the observed and simulated taxonomic structures, which may be caused by specific ecological processes. We further applied a phylogeny-based method to compare results with those of the taxonomic approach. As expected, the taxonomic ratios decline with increasing grain size. The quantitative relationship between genera/families and species, described by a linearized power function, showed a good fit. With the exception of the family-species relationship in the Jiaohe study area, the exponents of the genus/family-species relationships did not show any scale dependent effects. The taxonomic ratios of the observed communities had significantly lower values than those of the simulated random community under the test of two null models at almost all scales. Null Model 2 which considered the spatial dispersion of species generated a taxonomic structure which proved to be more consistent with that in the observed community. As sampling sizes increased from 20 m × 20 m to 50 m × 50 m, the magnitudes of SESs of taxonomic ratios increased. Based on the phylogenetic analysis, we found that the Jiaohe plot was phylogenetically clustered at almost all scales. We detected significant phylogenetically overdispersion at the 20 m × 20 m and 30 m × 30 m scales in the Liangshui plot. The results suggest that the effect of abiotic filtering is greater than the effects of interspecific competition in shaping the local community at almost all scales. Local processes influence the taxonomic structures, but their combined effects vary with the spatial scale. The taxonomic approach provides similar insights as the phylogenetic approach, especially when we applied a more conservative null model. Analysing taxonomic structure may be a useful tool for communities where well-resolved phylogenetic data are not available.

  14. The importance of topographically corrected null models for analyzing ecological point processes.

    PubMed

    McDowall, Philip; Lynch, Heather J

    2017-07-01

    Analyses of point process patterns and related techniques (e.g., MaxEnt) make use of the expected number of occurrences per unit area and second-order statistics based on the distance between occurrences. Ecologists working with point process data often assume that points exist on a two-dimensional x-y plane or within a three-dimensional volume, when in fact many observed point patterns are generated on a two-dimensional surface existing within three-dimensional space. For many surfaces, however, such as the topography of landscapes, the projection from the surface to the x-y plane preserves neither area nor distance. As such, when these point patterns are implicitly projected to and analyzed in the x-y plane, our expectations of the point pattern's statistical properties may not be met. When used in hypothesis testing, we find that the failure to account for the topography of the generating surface may bias statistical tests that incorrectly identify clustering and, furthermore, may bias coefficients in inhomogeneous point process models that incorporate slope as a covariate. We demonstrate the circumstances under which this bias is significant, and present simple methods that allow point processes to be simulated with corrections for topography. These point patterns can then be used to generate "topographically corrected" null models against which observed point processes can be compared. © 2017 by the Ecological Society of America.

  15. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus)

    PubMed Central

    Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina

    2014-01-01

    The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025

  16. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species.

    PubMed

    Kastman, Erik K; Kamelamela, Noelani; Norville, Josh W; Cosetta, Casey M; Dutton, Rachel J; Wolfe, Benjamin E

    2016-10-18

    Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative staphylococcus (CNS) species, we demonstrate that fungi can mediate the ecological distributions of closely related bacterial species. One of the Staphylococcus species studied, S. saprophyticus, is a common cause of urinary tract infections. By identifying processes that control the abundance of undesirable CNS species, cheese producers will have more precise control on the safety and quality of their products. More generally, Staphylococcus species frequently co-occur with fungi in mammalian microbiomes, and similar bacterium-fungus interactions may structure bacterial diversity in these systems. Copyright © 2016 Kastman et al.

  17. Neutral Community Dynamics and the Evolution of Species Interactions.

    PubMed

    Coelho, Marco Túlio P; Rangel, Thiago F

    2018-04-01

    A contemporary goal in ecology is to determine the ecological and evolutionary processes that generate recurring structural patterns in mutualistic networks. One of the great challenges is testing the capacity of neutral processes to replicate observed patterns in ecological networks, since the original formulation of the neutral theory lacks trophic interactions. Here, we develop a stochastic-simulation neutral model adding trophic interactions to the neutral theory of biodiversity. Without invoking ecological differences among individuals of different species, and assuming that ecological interactions emerge randomly, we demonstrate that a spatially explicit multitrophic neutral model is able to capture the recurrent structural patterns of mutualistic networks (i.e., degree distribution, connectance, nestedness, and phylogenetic signal of species interactions). Nonrandom species distribution, caused by probabilistic events of migration and speciation, create nonrandom network patterns. These findings have broad implications for the interpretation of niche-based processes as drivers of ecological networks, as well as for the integration of network structures with demographic stochasticity.

  18. A Tale of Four Stories: Soil Ecology, Theory, Evolution and the Publication System

    PubMed Central

    Barot, Sébastien; Blouin, Manuel; Fontaine, Sébastien; Jouquet, Pascal; Lata, Jean-Christophe; Mathieu, Jérôme

    2007-01-01

    Background Soil ecology has produced a huge corpus of results on relations between soil organisms, ecosystem processes controlled by these organisms and links between belowground and aboveground processes. However, some soil scientists think that soil ecology is short of modelling and evolutionary approaches and has developed too independently from general ecology. We have tested quantitatively these hypotheses through a bibliographic study (about 23000 articles) comparing soil ecology journals, generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Findings We have shown that soil ecology is not well represented in generalist ecology journals and that soil ecologists poorly use modelling and evolutionary approaches. Moreover, the articles published by a typical soil ecology journal (Soil Biology and Biochemistry) are cited by and cite low percentages of articles published in generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Conclusion This confirms our hypotheses and suggests that soil ecology would benefit from an effort towards modelling and evolutionary approaches. This effort should promote the building of a general conceptual framework for soil ecology and bridges between soil ecology and general ecology. We give some historical reasons for the parsimonious use of modelling and evolutionary approaches by soil ecologists. We finally suggest that a publication system that classifies journals according to their Impact Factors and their level of generality is probably inadequate to integrate “particularity” (empirical observations) and “generality” (general theories), which is the goal of all natural sciences. Such a system might also be particularly detrimental to the development of a science such as ecology that is intrinsically multidisciplinary. PMID:18043755

  19. The ecological dimension of psychoanalysis and the concept of inner sustainability.

    PubMed

    Ley, Wolfgang

    2008-12-01

    An "ecological-cum-psychoanalytic" perspective elucidates the innate kinship between modern, critical ecological thinking and the assumptions on the nature of the human animal underlying Freudian psychoanalysis. "Critical ecology" engages with the issues posed by a meaningful, "sustainable" design for the relationship between nature and culture; psychoanalysis investigates and engages therapeutically with human self-relations in the field of tension existing between the culture-imprinted and culture-productive "ego," on the one hand, and the independent, naturally established motivational sides of the psyche subsumed by Freud under the term "id" on the other. Against an ecological-cum-psychoanalytic backdrop, modern developments in object relations theory and self psychology can be understood in a way that places them in a conceptual framework corresponding to Freud's central concern with the balance or integration-successful or unsuccessful-of the motivational (interactional) strivings of "internal nature" and the requirements posed by human "self-production" via culture. Psychoanalysis and critical ecology, it is argued, stand to profit from one another.

  20. Why are some plant-pollinator networks more nested than others?

    PubMed

    Song, Chuliang; Rohr, Rudolf P; Saavedra, Serguei

    2017-10-01

    Empirical studies have found that the mutualistic interactions forming the structure of plant-pollinator networks are typically more nested than expected by chance alone. Additionally, theoretical studies have shown a positive association between the nested structure of mutualistic networks and community persistence. Yet, it has been shown that some plant-pollinator networks may be more nested than others, raising the interesting question of which factors are responsible for such enhanced nested structure. It has been argued that ordered network structures may increase the persistence of ecological communities under less predictable environments. This suggests that nested structures of plant-pollinator networks could be more advantageous under highly seasonal environments. While several studies have investigated the link between nestedness and various environmental variables, unfortunately, there has been no unified answer to validate these predictions. Here, we move from the problem of describing network structures to the problem of comparing network structures. We develop comparative statistics, and apply them to investigate the association between the nested structure of 59 plant-pollinator networks and the temperature seasonality present in their locations. We demonstrate that higher levels of nestedness are associated with a higher temperature seasonality. We show that the previous lack of agreement came from an extended practice of using standardized measures of nestedness that cannot be compared across different networks. Importantly, our observations complement theory showing that more nested network structures can increase the range of environmental conditions compatible with species coexistence in mutualistic systems, also known as structural stability. This increase in nestedness should be more advantageous and occur more often in locations subject to random environmental perturbations, which could be driven by highly changing or seasonal environments. This synthesis of theory and observations could prove relevant for a better understanding of the ecological processes driving the assembly and persistence of ecological communities. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  1. Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, William

    The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uraniummore » processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.« less

  2. High CO2 enhances the competitive strength of seaweeds over corals.

    PubMed

    Diaz-Pulido, Guillermo; Gouezo, Marine; Tilbrook, Bronte; Dove, Sophie; Anthony, Kenneth R N

    2011-02-01

    Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO(2) may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO(2) (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO(2) and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance. © 2010 Blackwell Publishing Ltd/CNRS.

  3. High CO2 enhances the competitive strength of seaweeds over corals

    PubMed Central

    Diaz-Pulido, Guillermo; Gouezo, Marine; Tilbrook, Bronte; Dove, Sophie; Anthony, Kenneth R N

    2011-01-01

    Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO2 may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO2 (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO2 and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance. PMID:21155961

  4. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    PubMed

    Ashraf, M Irfan; Meng, Fan-Rui; Bourque, Charles P-A; MacLean, David A

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2) 5-year(-1) and volume: 0.0008 m(3) 5-year(-1)). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm(2) 5-year(-1) and 0.0393 m(3) 5-year(-1) in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling.

  5. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change

    PubMed Central

    Ashraf, M. Irfan; Meng, Fan-Rui; Bourque, Charles P.-A.; MacLean, David A.

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm2 5-year-1 and volume: 0.0008 m3 5-year-1). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm2 5-year-1 and 0.0393 m3 5-year-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling. PMID:26173081

  6. Rethinking "normal": The role of stochasticity in the phenology of a synchronously breeding seabird.

    PubMed

    Youngflesh, Casey; Jenouvrier, Stephanie; Hinke, Jefferson T; DuBois, Lauren; St Leger, Judy; Trivelpiece, Wayne Z; Trivelpiece, Susan G; Lynch, Heather J

    2018-05-01

    Phenological changes have been observed in a variety of systems over the past century. There is concern that, as a consequence, ecological interactions are becoming increasingly mismatched in time, with negative consequences for ecological function. Significant spatial heterogeneity (inter-site) and temporal variability (inter-annual) can make it difficult to separate intrinsic, extrinsic and stochastic drivers of phenological variability. The goal of this study was to understand the timing and variability in breeding phenology of Adélie penguins under fixed environmental conditions and to use those data to identify a "null model" appropriate for disentangling the sources of variation in wild populations. Data on clutch initiation were collected from both wild and captive populations of Adélie penguins. Clutch initiation in the captive population was modelled as a function of year, individual and age to better understand phenological patterns observed in the wild population. Captive populations displayed as much inter-annual variability in breeding phenology as wild populations, suggesting that variability in breeding phenology is the norm and thus may be an unreliable indicator of environmental forcing. The distribution of clutch initiation dates was found to be moderately asymmetric (right skewed) both in the wild and in captivity, consistent with the pattern expected under social facilitation. The role of stochasticity in phenological processes has heretofore been largely ignored. However, these results suggest that inter-annual variability in breeding phenology can arise independent of any environmental or demographic drivers and that synchronous breeding can enhance inherent stochasticity. This complicates efforts to relate phenological variation to environmental variability in the wild. Accordingly, we must be careful to consider random forcing in phenological processes, lest we fit models to data dominated by random noise. This is particularly true for colonial species where breeding synchrony may outweigh each individual's effort to time breeding with optimal environmental conditions. Our study highlights the importance of identifying appropriate null models for studying phenology. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  7. Citizen Scientists

    ERIC Educational Resources Information Center

    Bennett, Katherine

    2010-01-01

    The Harvard Forest Schoolyard Ecology Program provides teachers and students with the opportunity and materials to participate in regionally focused ecological studies under the guidance of a mentor scientist working on a similar study. The Harvard Forest is part of a national network of ecological research sites known as the Long Term Ecological…

  8. Using ecological production functions to link ecological ...

    EPA Pesticide Factsheets

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively little attention. Ecological production functions may be defined as usable expressions (i.e., models) of the processes by which ecosystems produce ES, often including external influences on those processes. We identify key attributes of EPFs and discuss both actual and idealized examples of their use to inform decision making. Whenever possible, EPFs should estimate final, rather than intermediate, ES. Although various types of EPFs have been developed, we suggest that EPFs are more useful for decision making if they quantify ES outcomes, respond to ecosystem condition, respond to stressor levels or management scenarios, reflect ecological complexity, rely on data with broad coverage, have performed well previously, are practical to use, and are open and transparent. In an example using pesticides, we illustrate how EPFs with these attributes could enable the inclusion of ES in ecological risk assessment. The biggest challenges to ES inclusion are limited data sets that are easily adapted for use in modeling EPFs and generally poor understanding of linkages among ecological components and the processes that ultimately deliver the ES. We conclude by advocating for the incorporation into E

  9. Biophysical processes supporting the diversity of microbial life in soil

    PubMed Central

    Tecon, Robin

    2017-01-01

    Abstract Soil, the living terrestrial skin of the Earth, plays a central role in supporting life and is home to an unimaginable diversity of microorganisms. This review explores key drivers for microbial life in soils under different climates and land-use practices at scales ranging from soil pores to landscapes. We delineate special features of soil as a microbial habitat (focusing on bacteria) and the consequences for microbial communities. This review covers recent modeling advances that link soil physical processes with microbial life (termed biophysical processes). Readers are introduced to concepts governing water organization in soil pores and associated transport properties and microbial dispersion ranges often determined by the spatial organization of a highly dynamic soil aqueous phase. The narrow hydrological windows of wetting and aqueous phase connectedness are crucial for resource distribution and longer range transport of microorganisms. Feedbacks between microbial activity and their immediate environment are responsible for emergence and stabilization of soil structure—the scaffolding for soil ecological functioning. We synthesize insights from historical and contemporary studies to provide an outlook for the challenges and opportunities for developing a quantitative ecological framework to delineate and predict the microbial component of soil functioning. PMID:28961933

  10. Mixed-Poisson Point Process with Partially-Observed Covariates: Ecological Momentary Assessment of Smoking.

    PubMed

    Neustifter, Benjamin; Rathbun, Stephen L; Shiffman, Saul

    2012-01-01

    Ecological Momentary Assessment is an emerging method of data collection in behavioral research that may be used to capture the times of repeated behavioral events on electronic devices, and information on subjects' psychological states through the electronic administration of questionnaires at times selected from a probability-based design as well as the event times. A method for fitting a mixed Poisson point process model is proposed for the impact of partially-observed, time-varying covariates on the timing of repeated behavioral events. A random frailty is included in the point-process intensity to describe variation among subjects in baseline rates of event occurrence. Covariate coefficients are estimated using estimating equations constructed by replacing the integrated intensity in the Poisson score equations with a design-unbiased estimator. An estimator is also proposed for the variance of the random frailties. Our estimators are robust in the sense that no model assumptions are made regarding the distribution of the time-varying covariates or the distribution of the random effects. However, subject effects are estimated under gamma frailties using an approximate hierarchical likelihood. The proposed approach is illustrated using smoking data.

  11. Sustainable use of renewable resources in a stylized social-ecological network model under heterogeneous resource distribution

    NASA Astrophysics Data System (ADS)

    Barfuss, Wolfram; Donges, Jonathan F.; Wiedermann, Marc; Lucht, Wolfgang

    2017-04-01

    Human societies depend on the resources ecosystems provide. Particularly since the last century, human activities have transformed the relationship between nature and society at a global scale. We study this coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adaptive network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly rational imitation of resource use strategies and homophily in the formation of social network ties. The private and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) effort. We show that these social processes can have a profound influence on the environmental state, such as determining whether the private renewable resources collapse from overuse or not. Additionally, we demonstrate that heterogeneously distributed regional resource capacities shift the critical social parameters where this resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary models of the planetary social-ecological system, such socio-cultural phenomena as well as regional resource heterogeneities should receive attention in addition to the processes represented in established Earth system and integrated assessment models.

  12. Ontogeny of plants under various gravity condition

    NASA Astrophysics Data System (ADS)

    Laurinavičius, R.; Švegždienṡ, D.; Raklevičienė, D.; Kenstavičienė, P.

    2001-01-01

    The results of experiments performed under conditions of microgravity (MG) or under its simulation on the horizontal clinostat (HC) with the callus, seedlings of various species and embryogenic structures have revealed a definite role of gravity as an ecological factor in the processes of cytomorphogenesis, growth, and development. The transformation of differentiated somatic cells of arabidopsis seed into undifferentiated callus was not inhibited under MG, though modifications of the whole callus morphology and of mean cell and nucleus size were observed. The morphogenesis of polar structures such as root-hair bearing cells of Lactuca primary root has been shown to be modified in the course of differentiation under mass acceleration diminished below 0.1 g. Seed germination and seedling morphogenesis under MG follow their normal course, but a significant stimulation of shoot growth with no effect on primary root growth has been determined. A successful in vitro regeneration of Nicotiana tabacum plantlets from leaf cells and subsequent formation of shoots and roots on a continuously rotating HC as well as the formation of viable seeds during seed-to-seed growth of Arabidopsis plants under MG have indicated that gravity plays but a limited role in the processes of embryogenesis and organogenesis.

  13. Incorporating ecogeomorphic feedbacks to better understand resiliency in streams: A review and directions forward

    NASA Astrophysics Data System (ADS)

    Atkinson, Carla L.; Allen, Daniel C.; Davis, Lisa; Nickerson, Zachary L.

    2018-03-01

    Decades of interdisciplinary research show river form and function depends on interactions between the living and nonliving world, but a dominant paradigm underlying ecogeomorphic work consists of a top-down, unidirectional approach with abiotic forces driving biotic systems. Stream form and location within the stream network does dictate the habitat and resources available for organisms and overall community structure. Yet this traditional hierarchal framework on its own is inadequate in communicating information regarding the influence of biological systems on fluvial geomorphology that lead to changes in channel morphology, sediment cycling, and system-scale functions (e.g., sediment yield, biogeochemical nutrient cycling). Substantial evidence that organisms influence fluvial geomorphology exists, specifically the ability of aquatic vegetation and lotic animals to modify flow velocities and sediment deposition and transport - thus challenging the traditional hierarchal framework. Researchers recognize the need for ecogeomorphic frameworks that conceptualize feedbacks between organisms, sediment transport, and geomorphic structure. Furthermore, vital ecosystem processes, such as biogeochemical nutrient cycling represent the conversations that are occurring between geomorphological and biological systems. Here we review and synthesize selected case studies highlighting the role organisms play in moderating geomorphic processes and likely interact with these processes to have an impact on an essential ecosystem process, biogeochemical nutrient recycling. We explore whether biophysical interactions can provide information essential to improving predictions of system-scale river functions, specifically sediment transport and biogeochemical cycling, and discuss tools used to study these interactions. We suggest that current conceptual frameworks should acknowledge that hydrologic, geomorphologic, and ecologic processes operate on different temporal scales, generating bidirectional feedback loops over space and time. Hydro- and geomorphologic processes, operating episodically during bankfull conditions, influence ecological processes (e.g., biogeochemical cycling) occurring over longer time periods during base-flow conditions. This ecological activity generates the antecedent conditions that influence the hydro- and geomorphologic processes occurring during the next high flow event, creating a bidirectional feedback. This feedback should enhance the resiliency of fluvial landforms and ecosystem processes, allowing physical and biological processes to pull and push against each other over time.

  14. Bioprotection and disturbance: Seaweed, microclimatic stability and conditions for mechanical weathering in the intertidal zone

    NASA Astrophysics Data System (ADS)

    Coombes, Martin A.; Naylor, Larissa A.; Viles, Heather A.; Thompson, Richard C.

    2013-11-01

    As well as their destructive roles, plants, animals and microorganisms contribute to geomorphology and ecology via direct and indirect bioprotection, which can reduce weathering and erosion. For example, indirect bioprotection can operate via biotic influences on microclimate whereby physical decay processes associated with fluctuations in temperature and moisture (salt crystallization, thermal fatigue and wetting-drying), are limited. In the intertidal zone, the spatial and temporal distribution of macroalgae (seaweeds) is patchy, related to physical and ecological conditions for colonization and growth, and the nature and frequency of natural and anthropogenic disturbance. We examined the influence of seaweed canopies (Fucus spp.) on near-surface microclimate and, by implication, on conditions for mechanical rock decay and under-canopy ecology. Monitoring on hard artificial coastal structures in South West England, UK, built from limestone and concrete showed that both the range and maxima of daily summertime temperatures were significantly lower, by an average of 56% and 25%, respectively, in areas colonized by seaweed compared to experimentally cleared areas. Short-term microclimatic variability (minutes-hours) was also significantly reduced, by an average of 78% for temperature and 71% for humidity, under algal canopies during low-tide events. Using seaweed as an example, we develop a conceptual model of the relationship between biological cover and microclimate in the intertidal zone. Disturbance events that remove or drastically reduce seaweed cover mediate shifts between relatively stable and unstable states with respect to mechanical decay and ecological stress associated with heat and desiccation. In urban coastal environments where disturbance may be frequent, facilitating the establishment and recovery of canopy-forming species on rocks and engineered structures could enhance the durability of construction materials as well as support conservation, planning and policy targets for biodiversity enhancement.

  15. Between Scylla and Charybdis: renegotiating resolution of the ‘obstetric dilemma’ in response to ecological change

    PubMed Central

    Wells, Jonathan C. K.

    2015-01-01

    Hominin evolution saw the emergence of two traits—bipedality and encephalization—that are fundamentally linked because the fetal head must pass through the maternal pelvis at birth, a scenario termed the ‘obstetric dilemma’. While adaptive explanations for bipedality and large brains address adult phenotype, it is brain and pelvic growth that are subject to the obstetric dilemma. Many contemporary populations experience substantial maternal and perinatal morbidity/mortality from obstructed labour, yet there is increasing recognition that the obstetric dilemma is not fixed and is affected by ecological change. Ecological trends may affect growth of the pelvis and offspring brain to different extents, while the two traits also differ by a generation in the timing of their exposure. Two key questions arise: how can the fit between the maternal pelvis and the offspring brain be ‘renegotiated’ as the environment changes, and what nutritional signals regulate this process? I argue that the potential for maternal size to change across generations precludes birthweight being under strong genetic influence. Instead, fetal growth tracks maternal phenotype, which buffers short-term ecological perturbations. Nevertheless, rapid changes in nutritional supply between generations can generate antagonistic influences on maternal and offspring traits, increasing the risk of obstructed labour. PMID:25602071

  16. Tracking niche variation over millennial timescales in sympatric killer whale lineages

    PubMed Central

    Foote, Andrew D.; Newton, Jason; Ávila-Arcos, María C.; Kampmann, Marie-Louise; Samaniego, Jose A.; Post, Klaas; Rosing-Asvid, Aqqalu; Sinding, Mikkel-Holger S.; Gilbert, M. Thomas P.

    2013-01-01

    Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish. PMID:23945688

  17. Tracking niche variation over millennial timescales in sympatric killer whale lineages.

    PubMed

    Foote, Andrew D; Newton, Jason; Ávila-Arcos, María C; Kampmann, Marie-Louise; Samaniego, Jose A; Post, Klaas; Rosing-Asvid, Aqqalu; Sinding, Mikkel-Holger S; Gilbert, M Thomas P

    2013-10-07

    Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish.

  18. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology

    DOE PAGES

    Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer; ...

    2017-02-28

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less

  19. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less

  20. Between Scylla and Charybdis: renegotiating resolution of the 'obstetric dilemma' in response to ecological change.

    PubMed

    Wells, Jonathan C K

    2015-03-05

    Hominin evolution saw the emergence of two traits-bipedality and encephalization-that are fundamentally linked because the fetal head must pass through the maternal pelvis at birth, a scenario termed the 'obstetric dilemma'. While adaptive explanations for bipedality and large brains address adult phenotype, it is brain and pelvic growth that are subject to the obstetric dilemma. Many contemporary populations experience substantial maternal and perinatal morbidity/mortality from obstructed labour, yet there is increasing recognition that the obstetric dilemma is not fixed and is affected by ecological change. Ecological trends may affect growth of the pelvis and offspring brain to different extents, while the two traits also differ by a generation in the timing of their exposure. Two key questions arise: how can the fit between the maternal pelvis and the offspring brain be 'renegotiated' as the environment changes, and what nutritional signals regulate this process? I argue that the potential for maternal size to change across generations precludes birthweight being under strong genetic influence. Instead, fetal growth tracks maternal phenotype, which buffers short-term ecological perturbations. Nevertheless, rapid changes in nutritional supply between generations can generate antagonistic influences on maternal and offspring traits, increasing the risk of obstructed labour. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution.

    PubMed

    Roth, Olivia; Beemelmanns, Anne; Barribeau, Seth M; Sadd, Ben M

    2018-06-18

    Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering their offspring's immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled, but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP across taxa.

  2. Towards a richer evolutionary game theory

    PubMed Central

    McNamara, John M.

    2013-01-01

    Most examples of the application of evolutionary game theory to problems in biology involve highly simplified models. I contend that it is time to move on and include much more richness in models. In particular, more thought needs to be given to the importance of (i) between-individual variation; (ii) the interaction between individuals, and hence the process by which decisions are reached; (iii) the ecological and life-history context of the situation; (iv) the traits that are under selection, and (v) the underlying psychological mechanisms that lead to behaviour. I give examples where including variation between individuals fundamentally changes predicted outcomes of a game. Variation also selects for real-time responses, again resulting in changed outcomes. Variation can select for other traits, such as choosiness and social sensitivity. More generally, many problems involve coevolution of more than one trait. I identify situations where a reductionist approach, in which a game is isolated from is ecological setting, can be misleading. I also highlight the need to consider flexibility of behaviour, mental states and other issues concerned with the evolution of mechanism. PMID:23966616

  3. Deciphering microbial interactions and detecting keystone species with co-occurrence networks

    PubMed Central

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets. PMID:24904535

  4. Beyond positivist ecology: toward an integrated ecological ethics.

    PubMed

    Norton, Bryan G

    2008-12-01

    A post-positivist understanding of ecological science and the call for an "ecological ethic" indicate the need for a radically new approach to evaluating environmental change. The positivist view of science cannot capture the essence of environmental sciences because the recent work of "reflexive" ecological modelers shows that this requires a reconceptualization of the way in which values and ecological models interact in scientific process. Reflexive modelers are ecological modelers who believe it is appropriate for ecologists to examine the motives for their choices in developing models; this self-reflexive approach opens the door to a new way of integrating values into public discourse and to a more comprehensive approach to evaluating ecological change. This reflexive building of ecological models is introduced through the transformative simile of Aldo Leopold, which shows that learning to "think like a mountain" involves a shift in both ecological modeling and in values and responsibility. An adequate, interdisciplinary approach to ecological valuation, requires a re-framing of the evaluation questions in entirely new ways, i.e., a review of the current status of interdisciplinary value theory with respect to ecological values reveals that neither of the widely accepted theories of environmental value-neither economic utilitarianism nor intrinsic value theory (environmental ethics)-provides a foundation for an ecologically sensitive evaluation process. Thus, a new, ecologically sensitive, and more comprehensive approach to evaluating ecological change would include an examination of the metaphors that motivate the models used to describe environmental change.

  5. Exposing ecological and economic costs of the research-implementation gap and compromises in decision making.

    PubMed

    Kareksela, Santtu; Moilanen, Atte; Ristaniemi, Olli; Välivaara, Reima; Kotiaho, Janne S

    2018-02-01

    The frequently discussed gap between conservation science and practice is manifest in the gap between spatial conservation prioritization plans and their implementation. We analyzed the research-implementation gap of one zoning case by comparing results of a spatial prioritization analysis aimed at avoiding ecological impact of peat mining in a regional zoning process with the final zoning plan. We examined the relatively complex planning process to determine the gaps among research, zoning, and decision making. We quantified the ecological costs of the differing trade-offs between ecological and socioeconomic factors included in the different zoning suggestions by comparing the landscape-level loss of ecological features (species occurrences, habitat area, etc.) between the different solutions for spatial allocation of peat mining. We also discussed with the scientists and planners the reasons for differing zoning suggestions. The implemented plan differed from the scientists suggestion in that its focus was individual ecological features rather than all the ecological features for which there were data; planners and decision makers considered effects of peat mining on areas not included in the prioritization analysis; zoning was not truly seen as a resource-allocation process and not emphasized in general minimizing ecological losses while satisfying economic needs (peat-mining potential); and decision makers based their prioritization of sites on site-level information showing high ecological value and on single legislative factors instead of finding a cost-effective landscape-level solution. We believe that if the zoning and decision-making processes are very complex, then the usefulness of science-based prioritization tools is likely to be reduced. Nevertheless, we found that high-end tools were useful in clearly exposing trade-offs between conservation and resource utilization. © 2017 Society for Conservation Biology.

  6. Bringing an ecological view of change to Landsat-based remote sensing

    USGS Publications Warehouse

    Kennedy, Robert E.; Andrefouet, Serge; Cohen, Warren; Gomez, Cristina; Griffiths, Patrick; Hais, Martin; Healey, Sean; Helmer, Eileen H.; Hostert, Patrick; Lyons, Mitchell; Meigs, Garrett; Pflugmacher, Dirk; Phinn, Stuart; Powell, Scott; Scarth, Peter; Susmita, Sen; Schroeder, Todd A.; Schneider, Annemarie; Sonnenschein, Ruth; Vogelmann, James; Wulder, Michael A.; Zhu, Zhe

    2014-01-01

    When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more subtle processes of interest to ecologists. Recent technical advances have led to a fundamental shift toward an ecological view of change. Although this conceptual shift began with coarser-scale global imagery, it has now reached users of Landsat imagery, since these datasets have temporal and spatial characteristics appropriate to many ecological questions. We argue that this ecologically relevant perspective of change allows the novel characterization of important dynamic processes, including disturbances, long-term trends, cyclical functions, and feedbacks, and that these improvements are already facilitating our understanding of critical driving forces, such as climate change, ecological interactions, and economic pressures.

  7. A file study of refugee children referred to specialized mental health care: from an individual diagnostic to an ecological perspective.

    PubMed

    Villanueva O'Driscoll, Julia; Serneels, Geertrui; Imeraj, Lindita

    2017-11-01

    The past years have been characterized by a large refugee crisis across the globe. The exposure to preflight, flight, and resettlement stressors puts refugee children and their families at risk of developing emotional and behavioral disorders. A unique Western-based approach of mental health problems seems to be insufficient to address the complexity of interactions between individual vulnerabilities and more ecological surrounding systems. We looked into (1) the reasons for referral; and (2) the process diagnostic outcomes after ethnopsychiatric and psychological assessment. We conducted a thematic content analysis on 93 files of refugee children. The findings suggest that mental health care professionals need to hold into account the multiplicity and intertwining of ongoing challenges to the well-being of refugee children. The integration of a Western-based psychiatric assessment with a more ecologically based view can lead to a more culturally sensitive approach in refugee children and their families. This way, both under- and overdiagnosis of psychiatric disorders could be avoided to further optimalise mental health care in this population.

  8. Modeling species occurrence dynamics with multiple states and imperfect detection

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture-recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics. ?? 2009 by the Ecological Society of America.

  9. [Ecological effect of different types land consolidation in Hubei Province of China].

    PubMed

    Gu, Xiao-Kun

    2012-08-01

    A model for estimating the ecosystem services value under effects of land consolidation was built to quantitatively evaluate the ecological effects of three different types of land consolidation projects in Jianghan Plain, middle hilly region, and western mountainous area of Hubei Province. With the implementation of the projects, the total value of ecosystem services in Jianghan Plain was decreased by 0.3%, among which, the values of food production service and other three services increased but those of water conservation and other four services decreased. In hilly region, the total value of ecosystem services was decreased by 14.6%, with the value of food production service increased by 55.2% and those of other eight services all decreased. In mountainous area, the total value of ecosystem services was decreased by 19.9%, with the value of food production service increased by 24.9% while the values of other eight services all decreased. In the land consolidation in the middle hilly region and western mountainous area of Hubei Province, there was an obvious conversion process 'from ecology to production' in the ecosystem services value.

  10. The predictability of a lake phytoplankton community, over time-scales of hours to years.

    PubMed

    Thomas, Mridul K; Fontana, Simone; Reyes, Marta; Kehoe, Michael; Pomati, Francesco

    2018-05-01

    Forecasting changes to ecological communities is one of the central challenges in ecology. However, nonlinear dependencies, biotic interactions and data limitations have limited our ability to assess how predictable communities are. Here, we used a machine learning approach and environmental monitoring data (biological, physical and chemical) to assess the predictability of phytoplankton cell density in one lake across an unprecedented range of time-scales. Communities were highly predictable over hours to months: model R 2 decreased from 0.89 at 4 hours to 0.74 at 1 month, and in a long-term dataset lacking fine spatial resolution, from 0.46 at 1 month to 0.32 at 10 years. When cyanobacterial and eukaryotic algal cell densities were examined separately, model-inferred environmental growth dependencies matched laboratory studies, and suggested novel trade-offs governing their competition. High-frequency monitoring and machine learning can set prediction targets for process-based models and help elucidate the mechanisms underlying ecological dynamics. © 2018 John Wiley & Sons Ltd/CNRS.

  11. Validating spatial structure in canopy water content using geostatistics

    NASA Technical Reports Server (NTRS)

    Sanderson, E. W.; Zhang, M. H.; Ustin, S. L.; Rejmankova, E.; Haxo, R. S.

    1995-01-01

    Heterogeneity in ecological phenomena are scale dependent and affect the hierarchical structure of image data. AVIRIS pixels average reflectance produced by complex absorption and scattering interactions between biogeochemical composition, canopy architecture, view and illumination angles, species distributions, and plant cover as well as other factors. These scales affect validation of pixel reflectance, typically performed by relating pixel spectra to ground measurements acquired at scales of 1m(exp 2) or less (e.g., field spectra, foilage and soil samples, etc.). As image analysis becomes more sophisticated, such as those for detection of canopy chemistry, better validation becomes a critical problem. This paper presents a methodology for bridging between point measurements and pixels using geostatistics. Geostatistics have been extensively used in geological or hydrogeolocial studies but have received little application in ecological studies. The key criteria for kriging estimation is that the phenomena varies in space and that an underlying controlling process produces spatial correlation between the measured data points. Ecological variation meets this requirement because communities vary along environmental gradients like soil moisture, nutrient availability, or topography.

  12. Understanding rapid evolution in predator‐prey interactions using the theory of fast‐slow dynamical systems.

    PubMed

    Cortez, Michael H; Ellner, Stephen P

    2010-11-01

    The accumulation of evidence that ecologically important traits often evolve at the same time and rate as ecological dynamics (e.g., changes in species' abundances or spatial distributions) has outpaced theory describing the interplay between ecological and evolutionary processes with comparable timescales. The disparity between experiment and theory is partially due to the high dimensionality of models that include both evolutionary and ecological dynamics. Here we show how the theory of fast-slow dynamical systems can be used to reduce model dimension, and we use that body of theory to study a general predator-prey system exhibiting fast evolution in either the predator or the prey. Our approach yields graphical methods with predictive power about when new and unique dynamics (e.g., completely out-of-phase oscillations and cryptic dynamics) can arise in ecological systems exhibiting fast evolution. In addition, we derive analytical expressions for determining when such behavior arises and how evolution affects qualitative properties of the ecological dynamics. Finally, while the theory requires a separation of timescales between the ecological and evolutionary processes, our approach yields insight into systems where the rates of those processes are comparable and thus is a step toward creating a general ecoevolutionary theory.

  13. An evolutionary ecology of individual differences

    PubMed Central

    Dall, Sasha R. X.; Bell, Alison M.; Bolnick, Daniel I.; Ratnieks, Francis L. W.

    2014-01-01

    Individuals often differ in what they do. This has been recognised since antiquity. Nevertheless, the ecological and evolutionary significance of such variation is attracting widespread interest, which is burgeoning to an extent that is fragmenting the literature. As a first attempt at synthesis, we focus on individual differences in behaviour within populations that exceed the day-to-day variation in individual behaviour (i.e. behavioural specialisation). Indeed, the factors promoting ecologically relevant behavioural specialisation within natural populations are likely to have far-reaching ecological and evolutionary consequences. We discuss such individual differences from three distinct perspectives: individual niche specialisations, the division of labour within insect societies and animal personality variation. In the process, while recognising that each area has its own unique motivations, we identify a number of opportunities for productive ‘crossfertilisation’ among the (largely independent) bodies of work. We conclude that a complete understanding of evolutionarily and ecologically relevant individual differences must specify how ecological interactions impact the basic biological process (e.g. Darwinian selection, development and information processing) that underpin the organismal features determining behavioural specialisations. Moreover, there is likely to be covariation amongst behavioural specialisations. Thus, we sketch the key elements of a general framework for studying the evolutionary ecology of individual differences. PMID:22897772

  14. From single steps to mass migration: the problem of scale in the movement ecology of the Serengeti wildebeest.

    PubMed

    Torney, Colin J; Hopcraft, J Grant C; Morrison, Thomas A; Couzin, Iain D; Levin, Simon A

    2018-05-19

    A central question in ecology is how to link processes that occur over different scales. The daily interactions of individual organisms ultimately determine community dynamics, population fluctuations and the functioning of entire ecosystems. Observations of these multiscale ecological processes are constrained by various technological, biological or logistical issues, and there are often vast discrepancies between the scale at which observation is possible and the scale of the question of interest. Animal movement is characterized by processes that act over multiple spatial and temporal scales. Second-by-second decisions accumulate to produce annual movement patterns. Individuals influence, and are influenced by, collective movement decisions, which then govern the spatial distribution of populations and the connectivity of meta-populations. While the field of movement ecology is experiencing unprecedented growth in the availability of movement data, there remain challenges in integrating observations with questions of ecological interest. In this article, we present the major challenges of addressing these issues within the context of the Serengeti wildebeest migration, a keystone ecological phenomena that crosses multiple scales of space, time and biological complexity.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Author(s).

  15. Sampling scales define occupancy and underlying occupancy-abundance relationships in animals

    Treesearch

    Robin Steenweg; Mark Hebblewhite; Jesse Whittington; Paul Lukacs; Kevin McKelvey

    2018-01-01

    Occupancy-abundance (OA) relationships are a foundational ecological phenomenon and field of study, and occupancy models are increasingly used to track population trends and understand ecological interactions. However, these two fields of ecological inquiry remain largely isolated, despite growing appreciation of the importance of integration. For example, using...

  16. Multilingual Language Policies and the Continua of Biliteracy: An Ecological Approach.

    ERIC Educational Resources Information Center

    Hornberger, Nancy H.

    2002-01-01

    Uses the metaphor of ecology of language to explore ideologies underlying multilingual language policies, and the continua of biliteracy framework as ecological heuristic for situating the challenges faced in implementing them. Considers community and classroom challenges inherent in implementing these new ideologies, as evident in Bolivia and…

  17. 78 FR 57073 - Approval and Promulgation of Implementation Plans; Washington: Puget Sound Clean Air Agency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... Washington State Department of Ecology on February 4, 2005 and August 2, 2006. The submissions contain... Department of Ecology (Ecology) submitted revisions to the Washington SIP to incorporate regulatory changes..., disproportionate human health or environmental effects, using practicable and legally permissible methods, under...

  18. 75 FR 24844 - Approval and Promulgation of State Implementation Plans: Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ..., Washington, and the Washington State Department of Ecology (Ecology). In 1979, SKATS was defined by EPA as a... concurrently in this action. On January 17, 2007, EPA received a request from Ecology to approve under section... authority to address, as appropriate, disproportionate human health or environmental effects, using...

  19. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom.

    PubMed

    Xue, Yuanyuan; Chen, Huihuang; Yang, Jun R; Liu, Min; Huang, Bangqin; Yang, Jun

    2018-06-13

    Plankton communities normally consist of few abundant and many rare species, yet little is known about the ecological role of rare planktonic eukaryotes. Here we used a 18S ribosomal DNA sequencing approach to investigate the dynamics of rare planktonic eukaryotes, and to explore the co-occurrence patterns of abundant and rare eukaryotic plankton in a subtropical reservoir following a cyanobacterial bloom event. Our results showed that the bloom event significantly altered the eukaryotic plankton community composition and rare plankton diversity without affecting the diversity of abundant plankton. The similarities of both abundant and rare eukaryotic plankton subcommunities significantly declined with the increase in time-lag, but stronger temporal turnover was observed in rare taxa. Further, species turnover of both subcommunities explained a higher percentage of the community variation than species richness. Both deterministic and stochastic processes significantly influenced eukaryotic plankton community assembly, and the stochastic pattern (e.g., ecological drift) was particularly pronounced for rare taxa. Co-occurrence network analysis revealed that keystone taxa mainly belonged to rare species, which may play fundamental roles in network persistence. Importantly, covariations between rare and non-rare taxa were predominantly positive, implying multispecies cooperation might contribute to the stability and resilience of the microbial community. Overall, these findings expand current understanding of the ecological mechanisms and microbial interactions underlying plankton dynamics in changing aquatic ecosystems.

  20. Barriers to adaptive reasoning in community ecology.

    PubMed

    McLachlan, Athol J; Ladle, Richard J

    2011-08-01

    Recent high-profile calls for a more trait-focused approach to community ecology have the potential to open up novel research areas, generate new insights and to transform community ecology into a more predictive science. However, a renewed emphasis on function and phenotype also requires a fundamental shift in approach and research philosophy within community ecology to more fully embrace evolutionary reasoning. Such a subject-wise transformation will be difficult due to at least four factors: (1) the historical development of the academic discipline of ecology and its roots as a descriptive science; (2) the dominating role of the ecosystem concept in the driving of contemporary ecological thought; (3) the practical difficulties associated with defining and identifying (phenotypic) adaptations, and; (4) scaling effects in ecology; the difficulty of teasing apart the overlapping and shifting hierarchical processes that generate the observed environment-trait correlations in nature. We argue that the ability to predict future ecological conditions through a sufficient understanding of ecological processes will not be achieved without the placement of the concept of adaptation at the centre of ecology, with influence radiating outwards through all the related (and rapidly specializing) sub-disciplines. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  1. Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass (Echinochloa crus-galli L.).

    PubMed

    Yang, Xia; Zhang, Zichang; Gu, Tao; Dong, Mingchao; Peng, Qiong; Bai, Lianyang; Li, Yongfeng

    2017-01-06

    Barnyardgrass (Echinochloa crus-galli) is one of the top 15 herbicide-resistant weeds around the world that interferes with rice growth, resulting in major losses of rice yield. Thus, multi-herbicide resistance in barnyardgrass presents a major threat, with the underlying mechanisms that contribute to resistance requiring elucidation. In an attempt to characterize this multi-herbicide resistance at the proteomic level, comparative analysis of resistant and susceptible barnyardgrasses was performed using iTRAQ, both with and without quinclorac, bispyribac-sodium and penoxsulam herbicidal treatment. A total of 1342 protein species were identified from 2248 unique peptides by searching the UniProt database and conducting data analysis. Approximately 904 protein species with 4774 Gene Ontology (GO) terms were grouped into the categories of biological process, cellular component and molecular function. Among these, 688 protein species were annotated into 1583 KEGG pathways, with 980 protein species relating to metabolism and 93 relating to environmental information processing. A total of 292 protein species showed more than a 1.2-fold change in abundance in the resistant biotype relative to the susceptible biotype. Furthermore, herbicide treatment resulted in 157 protein species that showed more than a 1.2-fold change in the resistant biotype. Moreover, physiological analyses demonstrated an ecological fitness cost in the resistant biotype. While some studies have shown a fitness cost to be associated with an altered ecological interaction, our understanding of the fitness costs associated with herbicide resistance are limited. Herein, physiological and proteomic analysis demonstrates herbicide resistance associated ecological fitness cost and potential mechanisms of herbicide-resistance in resistant biotypes of E. crus-galli. The results presented herein have revealed differences in ecological adaptation between resistant and susceptible biotypes in E. crus-galli and provide a fundamental basis enabling the development of new strategies for weed control. Lastly, this is the first large-scale proteomics study to examine herbicide stress responses in different barnyardgrass biotypes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings?

    PubMed

    Huang, Longbin; Baumgartl, Thomas; Mulligan, David

    2012-07-01

    Revegetation of mine tailings (fine-grained waste material) starts with the reconstruction of root zones, consisting of a rhizosphere horizon (mostly topsoil and/or amended tailings) and the support horizon beneath (i.e. equivalent to subsoil - mostly tailings), which must be physically and hydro-geochemically stable. This review aims to discuss key processes involved in the development of functional root zones within the context of direct revegetation of tailings and introduces a conceptual process of rehabilitating structure and function in the root zones based on a state transition model. Field studies on the revegetation of tailings (from processing base metal ore and bauxite residues) are reviewed. Particular focus is given to tailings' properties that limit remediation effectiveness. Aspects of root zone reconstruction and vegetation responses are also discussed. When reconstructing a root zone system, it is critical to restore physical structure and hydraulic functions across the whole root zone system. Only effective and holistically restored systems can control hydro-geochemical mobility of acutely and chronically toxic factors from the underlying horizon and maintain hydro-geochemical stability in the rhizosphere. Thereafter, soil biological capacity and ecological linkages (i.e. carbon and nutrient cycling) may be rehabilitated to integrate the root zones with revegetated plant communities into sustainable plant ecosystems. A conceptual framework of system transitions between the critical states of root zone development has been proposed. This will illustrate the rehabilitation process in root zone reconstruction and development for direct revegetation with sustainable plant communities. Sustainable phytostabilization of tailings requires the systematic consideration of hydro-geochemical interactions between the rhizosphere and the underlying supporting horizon. It further requires effective remediation strategies to develop hydro-geochemically stable and biologically functional root zones, which can facilitate the recovery of the microbial community and ecological linkages with revegetated plant communities.

  3. The ecology of micro-organisms in a closed environment

    NASA Technical Reports Server (NTRS)

    Fox, L.

    1971-01-01

    Microorganisms under closed environmental ecological conditions with reference to astronauts infectious diseases, discussing bacteria growth in Biosatellite 2 and earth based closed chamber experiments

  4. A PROCESS FOR SELECTING INDICATORS FOR MONITORING CONDITIONS OF RANGELAND HEALTH (COPY)

    EPA Science Inventory

    This paper reports on a process for selecting a suite of indicators that, in combination, can be useful in assessing the ecological conditions of rangelands. Conceptual models that depict the structural and functional properties of ecological processes were used to show the linka...

  5. Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change.

    PubMed

    Lancaster, Lesley T; Morrison, Gavin; Fitt, Robert N

    2017-01-19

    The consequences of climate change for local biodiversity are little understood in process or mechanism, but these changes are likely to reflect both changing regional species pools and changing competitive interactions. Previous empirical work largely supports the idea that competition will intensify under climate change, promoting competitive exclusions and local extinctions, while theory and conceptual work indicate that relaxed competition may in fact buffer communities from biodiversity losses that are typically witnessed at broader spatial scales. In this review, we apply life history theory to understand the conditions under which these alternative scenarios may play out in the context of a range-shifting biota undergoing rapid evolutionary and environmental change, and at both leading-edge and trailing-edge communities. We conclude that, in general, warming temperatures are likely to reduce life history variation among competitors, intensifying competition in both established and novel communities. However, longer growing seasons, severe environmental stress and increased climatic variability associated with climate change may buffer these communities against intensified competition. The role of life history plasticity and evolution has been previously underappreciated in community ecology, but may hold the key to understanding changing species interactions and local biodiversity under changing climates.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  6. Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change

    PubMed Central

    Morrison, Gavin; Fitt, Robert N.

    2017-01-01

    The consequences of climate change for local biodiversity are little understood in process or mechanism, but these changes are likely to reflect both changing regional species pools and changing competitive interactions. Previous empirical work largely supports the idea that competition will intensify under climate change, promoting competitive exclusions and local extinctions, while theory and conceptual work indicate that relaxed competition may in fact buffer communities from biodiversity losses that are typically witnessed at broader spatial scales. In this review, we apply life history theory to understand the conditions under which these alternative scenarios may play out in the context of a range-shifting biota undergoing rapid evolutionary and environmental change, and at both leading-edge and trailing-edge communities. We conclude that, in general, warming temperatures are likely to reduce life history variation among competitors, intensifying competition in both established and novel communities. However, longer growing seasons, severe environmental stress and increased climatic variability associated with climate change may buffer these communities against intensified competition. The role of life history plasticity and evolution has been previously underappreciated in community ecology, but may hold the key to understanding changing species interactions and local biodiversity under changing climates. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920390

  7. Ecology. Three-Gorges Dam--experiment in habitat fragmentation?

    PubMed

    Wu, Jianguo; Huang, Jianhui; Han, Xingguo; Xie, Zongqiang; Gao, Xianming

    2003-05-23

    Habitat fragmentation is the primary cause of the loss of biodiversity and ecosystem services, but its underlying processes and mechanisms remain poorly understood. Studies of islands and insular terrestrial habitats are essential for improving our understanding of habitat fragmentation. We argue that the Three-Gorges Dam, the largest that humans have ever created, presents a unique grand-scale natural experiment that allows ecologists to address a range of critical questions concerning the theory and practice of biodiversity conservation.

  8. Using Speech Recall in Hearing Aid Fitting and Outcome Evaluation Under Ecological Test Conditions.

    PubMed

    Lunner, Thomas; Rudner, Mary; Rosenbom, Tove; Ågren, Jessica; Ng, Elaine Hoi Ning

    2016-01-01

    In adaptive Speech Reception Threshold (SRT) tests used in the audiological clinic, speech is presented at signal to noise ratios (SNRs) that are lower than those generally encountered in real-life communication situations. At higher, ecologically valid SNRs, however, SRTs are insensitive to changes in hearing aid signal processing that may be of benefit to listeners who are hard of hearing. Previous studies conducted in Swedish using the Sentence-final Word Identification and Recall test (SWIR) have indicated that at such SNRs, the ability to recall spoken words may be a more informative measure. In the present study, a Danish version of SWIR, known as the Sentence-final Word Identification and Recall Test in a New Language (SWIRL) was introduced and evaluated in two experiments. The objective of experiment 1 was to determine if the Swedish results demonstrating benefit from noise reduction signal processing for hearing aid wearers could be replicated in 25 Danish participants with mild to moderate symmetrical sensorineural hearing loss. The objective of experiment 2 was to compare direct-drive and skin-drive transmission in 16 Danish users of bone-anchored hearing aids with conductive hearing loss or mixed sensorineural and conductive hearing loss. In experiment 1, performance on SWIRL improved when hearing aid noise reduction was used, replicating the Swedish results and generalizing them across languages. In experiment 2, performance on SWIRL was better for direct-drive compared with skin-drive transmission conditions. These findings indicate that spoken word recall can be used to identify benefits from hearing aid signal processing at ecologically valid, positive SNRs where SRTs are insensitive.

  9. Resilience concepts in psychiatry demonstrated with bipolar disorder.

    PubMed

    Angeler, David G; Allen, Craig R; Persson, Maj-Liz

    2018-02-09

    The term resilience describes stress-response patterns of subjects across scientific disciplines. In ecology, advances have been made to clearly distinguish resilience definitions based on underlying mechanistic assumptions. Engineering resilience (rebound) is used for describing the ability of subjects to recover from adverse conditions (disturbances), and is the rate of recovery. In contrast, the ecological resilience definition considers a systemic change: when complex systems (including humans) respond to disturbances by reorganizing into a new regime (stable state) where structural and functional aspects have fundamentally changed relative to the prior regime. In this context, resilience is an emergent property of complex systems. We argue that both resilience definitions and uses are appropriate in psychology and psychiatry, but although the differences are subtle, the implications and uses are profoundly different. We borrow from the field of ecology to discuss resilience concepts in the mental health sciences. In psychology and psychiatry, the prevailing view of resilience is adaptation to, coping with, and recovery (engineering resilience) from adverse social and environmental conditions. Ecological resilience may be useful for describing vulnerability, onset, and the irreversibility patterns of mental disorders. We discuss this in the context of bipolar disorder. Rebound, adaptation, and coping are processes that are subsumed within the broader systemic organization of humans, from which ecological resilience emanates. Discerning resilience concepts in psychology and psychiatry has potential for a mechanistically appropriate contextualization of mental disorders at large. This might contribute to a refinement of theory and contextualize clinical practice within the broader systemic functioning of mental illnesses.

  10. Experimental Biodiversity Enrichment in Oil-Palm-Dominated Landscapes in Indonesia.

    PubMed

    Teuscher, Miriam; Gérard, Anne; Brose, Ulrich; Buchori, Damayanti; Clough, Yann; Ehbrecht, Martin; Hölscher, Dirk; Irawan, Bambang; Sundawati, Leti; Wollni, Meike; Kreft, Holger

    2016-01-01

    Tropical biodiversity is threatened by the expansion of oil-palm plantations. Reduced-impact farming systems such as agroforests, have been proposed to increase biodiversity and ecosystem functioning. In regions where oil-palm plantations already dominate the landscape, this increase can only be achieved through systematic ecological restoration. However, our knowledge about the underlying ecological and socio-economic processes, constraints, and trade-offs of ecological restoration in oil-palm landscapes is very limited. To bridge this gap, we established a long-term biodiversity enrichment experiment. We established experimental tree islands in a conventional oil-palm plantation and systematically varied plot size, tree diversity, and tree species composition. Here, we describe the rationale and the design of the experiment, the ecosystem variables (soil, topography, canopy openness) and biotic characteristics (associated vegetation, invertebrates, birds) of the experimental site prior to the establishment of the experiment, and initial experimental effects on the fauna. Already one year after establishment of the experiment, tree plantings had an overall positive effect on the bird and invertebrate communities at the plantation scale. The diversity and abundance of invertebrates was positively affected by the size of the tree islands. Based on these results, we expect a further increase of biodiversity and associated ecological functions in the future. The long-term interdisciplinary monitoring of ecosystem variables, flora, fauna, and socio-economic aspects will allow us to evaluate the suitability of tree islands as a restoration measure. Thereof, guidelines for ecologically improved and socio-economically viable restoration and management concepts could be developed.

  11. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    PubMed

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  12. How Can We Identify and Communicate the Ecological Value of Deep-Sea Ecosystem Services?

    PubMed Central

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders. PMID:25055119

  13. Intuitive and deliberate judgments are based on common principles.

    PubMed

    Kruglanski, Arie W; Gigerenzer, Gerd

    2011-01-01

    A popular distinction in cognitive and social psychology has been between intuitive and deliberate judgments. This juxtaposition has aligned in dual-process theories of reasoning associative, unconscious, effortless, heuristic, and suboptimal processes (assumed to foster intuitive judgments) versus rule-based, conscious, effortful, analytic, and rational processes (assumed to characterize deliberate judgments). In contrast, we provide convergent arguments and evidence for a unified theoretical approach to both intuitive and deliberative judgments. Both are rule-based, and in fact, the very same rules can underlie both intuitive and deliberate judgments. The important open question is that of rule selection, and we propose a 2-step process in which the task itself and the individual's memory constrain the set of applicable rules, whereas the individual's processing potential and the (perceived) ecological rationality of the rule for the task guide the final selection from that set. Deliberate judgments are not generally more accurate than intuitive judgments; in both cases, accuracy depends on the match between rule and environment: the rules' ecological rationality. Heuristics that are less effortful and in which parts of the information are ignored can be more accurate than cognitive strategies that have more information and computation. The proposed framework adumbrates a unified approach that specifies the critical dimensions on which judgmental situations may vary and the environmental conditions under which rules can be expected to be successful.

  14. Spatial transferring of ecosystem services and property rights allocation of ecological compensation

    NASA Astrophysics Data System (ADS)

    Wen, Wujun; Xu, Geng; Wang, Xingjie

    2011-09-01

    Ecological compensation is an important means to maintain the sustainability and stability of ecosystem services. The property rights analysis of ecosystem services is indispensable when we implement ecological compensation. In this paper, ecosystem services are evaluated via spatial transferring and property rights analysis. Take the Millennium Ecosystem Assessment (MA) as an example, we attempt to classify the spatial structure of 31 categories of ecosystem services into four dimensions, i.e., local, regional, national and global ones, and divide the property rights structure into three types, i.e., private property rights, common property rights and state-owned property rights. Through the case study of forestry, farming industry, drainage area, development of mineral resources, nature reserves, functional areas, agricultural land expropriation, and international cooperation on ecological compensation, the feasible ecological compensation mechanism is illustrated under the spatial structure and property rights structure of the concerned ecosystem services. For private property rights, the ecological compensation mode mainly depends on the market mechanism. If the initial common property rights are "hidden," the implementation of ecological compensation mainly relies on the quota market transactions and the state investment under the state-owned property rights, and the fairness of property rights is thereby guaranteed through central administration.

  15. Reinventing the Wheel: Teaching Restoration Ecology without the Ecology

    ERIC Educational Resources Information Center

    Speldewinde, Peter

    2010-01-01

    Restoration ecology is "the process of assisting the recovery of an ecosystem that has been degraded, damaged or destroyed." Restoration can range from returning the system to its "natural" state through to restoring some ecological functionality to a system. The University of Western Australia offers an undergraduate degree in…

  16. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    PubMed

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  17. A Western Diet Ecological Module Identified from the ‘Humanized’ Mouse Microbiota Predicts Diet in Adults and Formula Feeding in Children

    PubMed Central

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J.

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in ‘humanized’ mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and ‘low-fat’ diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits. PMID:24391809

  18. Macro-evolutionary studies of cultural diversity: a review of empirical studies of cultural transmission and cultural adaptation.

    PubMed

    Mace, Ruth; Jordan, Fiona M

    2011-02-12

    A growing body of theoretical and empirical research has examined cultural transmission and adaptive cultural behaviour at the individual, within-group level. However, relatively few studies have tried to examine proximate transmission or test ultimate adaptive hypotheses about behavioural or cultural diversity at a between-societies macro-level. In both the history of anthropology and in present-day work, a common approach to examining adaptive behaviour at the macro-level has been through correlating various cultural traits with features of ecology. We discuss some difficulties with simple ecological associations, and then review cultural phylogenetic studies that have attempted to go beyond correlations to understand the underlying cultural evolutionary processes. We conclude with an example of a phylogenetically controlled approach to understanding proximate transmission pathways in Austronesian cultural diversity.

  19. Tropical grassy biomes: misunderstood, neglected, and under threat.

    PubMed

    Parr, Catherine L; Lehmann, Caroline E R; Bond, William J; Hoffmann, William A; Andersen, Alan N

    2014-04-01

    Tropical grassy biomes (TGBs) are globally extensive, provide critical ecosystem services, and influence the earth-atmosphere system. Yet, globally applied biome definitions ignore vegetation characteristics that are critical to their functioning and evolutionary history. Hence, TGB identification is inconsistent and misinterprets the ecological processes governing vegetation structure, with cascading negative consequences for biodiversity. Here, we discuss threats linked to the definition of TGB, the Clean Development Mechanism (CDM) and Reducing Emissions from Deforestation and Forest Degradation schemes (REDD+), and enhanced atmospheric CO2, which may facilitate future state shifts. TGB degradation is insidious and less visible than in forested biomes. With human reliance on TGBs and their propensity for woody change, ecology and evolutionary history are fundamental to not only the identification of TGBs, but also their management for future persistence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Macro-evolutionary studies of cultural diversity: a review of empirical studies of cultural transmission and cultural adaptation

    PubMed Central

    Mace, Ruth; Jordan, Fiona M.

    2011-01-01

    A growing body of theoretical and empirical research has examined cultural transmission and adaptive cultural behaviour at the individual, within-group level. However, relatively few studies have tried to examine proximate transmission or test ultimate adaptive hypotheses about behavioural or cultural diversity at a between-societies macro-level. In both the history of anthropology and in present-day work, a common approach to examining adaptive behaviour at the macro-level has been through correlating various cultural traits with features of ecology. We discuss some difficulties with simple ecological associations, and then review cultural phylogenetic studies that have attempted to go beyond correlations to understand the underlying cultural evolutionary processes. We conclude with an example of a phylogenetically controlled approach to understanding proximate transmission pathways in Austronesian cultural diversity. PMID:21199844

  1. Physiology, ecology and industrial applications of aroma formation in yeast

    PubMed Central

    Dzialo, Maria C; Park, Rahel; Steensels, Jan; Lievens, Bart; Verstrepen, Kevin J

    2017-01-01

    Abstract Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors. PMID:28830094

  2. The Nexus Between Ecological Risk Assessment and Natural Resources Damage Assessment Under CERCLA: Introduction to a Society of Environmental Toxicology and Chemistry Techincal Workshop

    EPA Science Inventory

    A SETAC Technical Workshop titled “The Nexus Between Ecological Risk Assessment and Natural Resource Damage Assessment Under CERCLA: Understanding and Improving the Common Scientific Underpinnings,” was held 18–22 August 2008 in Gregson, Montana, USA, to examine the linkage, nexu...

  3. Effects of season on ecological processes in extensive earthen tilapia ponds in Southeastern Brazil.

    PubMed

    Favaro, E G P; Sipaúba-Tavares, L H; Milstein, A

    2015-11-01

    In Southeastern Brazil tilapia culture is conducted in extensive and semi-intensive flow-through earthen ponds, being water availability and flow management different in the rainy and dry seasons. In this region lettuce wastes are a potential cheap input for tilapia culture. This study examined the ecological processes developing during the rainy and dry seasons in three extensive flow-through earthen tilapia ponds fertilized with lettuce wastes. Water quality, plankton and sediment parameters were sampled monthly during a year. Factor analysis was used to identify the ecological processes occurring within the ponds and to construct a conceptual graphic model of the pond ecosystem functioning during the rainy and dry seasons. Processes related to nitrogen cycling presented differences between both seasons while processes related to phosphorus cycling did not. Ecological differences among ponds were due to effects of wind protection by surrounding vegetation, organic loading entering, tilapia density and its grazing pressure on zooplankton. Differences in tilapia growth among ponds were related to stocking density and ecological process affecting tilapia food availability and intraspecific competition. Lettuce wastes addition into the ponds did not produce negative effects, thus this practice may be considered a disposal option and a low-cost input source for tilapia, at least at the amounts applied in this study.

  4. Functional ecomorphology: Feedbacks between form and function in fluvial landscape ecosystems

    NASA Astrophysics Data System (ADS)

    Fisher, Stuart G.; Heffernan, James B.; Sponseller, Ryan A.; Welter, Jill R.

    2007-09-01

    The relationship between form and function has been a central organizing principle in biology throughout its history as a formal science. This concept has been relevant from molecules to organisms but loses meaning at population and community levels where study targets are abstract collectives and assemblages. Ecosystems include organisms and abiotic factors but ecosystem ecology too has developed until recently without a strong spatially explicit reference. Landscape ecology provides an opportunity to once again anneal form and function and to consider reciprocal causation between them. This ecomorphologic view can be applied at a variety of ecologically relevant scales and consists of an investigation of how geomorphology provides a structural template that shapes, and is shaped by ecological processes. Running water ecosystems illustrate several principles governing the interaction of landscape form and ecological function subsumed by the concept of "Functional Ecomorphology". Particularly lucrative are ecosystem-level interactions between geologic form and biogeochemical processes integrated by hydrologic flowpaths. While the utility of a flowpath-based approach is most apparent in streams, spatially explicit biogeochemical processing pervades all landscapes and may be of general ecological application.

  5. Ecosystem Restoration: Fact or Fancy?

    Treesearch

    John A. Stanturf; Callie J. Schweitzer; Stephen H. Schoenholtz; James P. Barnett; Charles K. McMahon; Donald J. Tomszak

    1998-01-01

    Ecological restoration is generally accepted as the reestablishment of natural ecological processes that produce certain dynamic ecosystem properties of structure, function, and processes. But restore to what? The most frequently used conceptual model for the restoration process is the shift of conditions from some current (degraded) dynamic state to some past dynamic...

  6. Host Competence: An Organismal Trait to Integrate Immunology and Epidemiology.

    PubMed

    Martin, Lynn B; Burgan, S C; Adelman, James S; Gervasi, Stephanie S

    2016-12-01

    The new fields of ecological immunology and disease ecology have begun to merge, and the classic fields of immunology and epidemiology are beginning to blend with them. This merger is occurring because the integrative study of host-parasite interactions is providing insights into disease in ways that traditional methods have not. With the advent of new tools, mathematical and technological, we could be on the verge of developing a unified theory of infectious disease, one that supersedes the barriers of jargon and tradition. Here we argue that a cornerstone of any such synthesis will be host competence, the propensity of an individual host to generate new infections in other susceptible hosts. In the last few years, the emergence of systems immunology has led to novel insight into how hosts control or eliminate pathogens. Most such efforts have stopped short of considering transmission and the requisite behaviors of infected individuals that mediate it, and few have explicitly incorporated ecological and evolutionary principles. Ultimately though, we expect that the use of a systems immunology perspective will help link suborganismal processes (i.e., health of hosts and selection on genes) to superorganismal outcomes (i.e., community-level disease dynamics and host-parasite coevolution). Recently, physiological regulatory networks (PRNs) were cast as whole-organism regulatory systems that mediate homeostasis and hence link suborganismal processes with the fitness of individuals. Here, we use the PRN construct to develop a roadmap for studying host competence, taking guidance from systems immunology and evolutionary ecology research. We argue that PRN variation underlies heterogeneity in individual host competence and hence host-parasite dynamics. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Fitness and beyond: preparing for the arrival of GM crops with ecologically important novel characters.

    PubMed

    Wilkinson, Mike; Tepfer, Mark

    2009-01-01

    The seemingly inexorable expansion of global human population size, significant increases in the use of biofuel crops and the growing pressures of multifunctional land-use have intensified the need to improve crop productivity. The widespread cultivation of high-yielding genetically modified (GM) crops could help to address these problems, although in doing so, steps must also be taken to ensure that any gene flow from these crops to wild or weedy recipients does not cause significant ecological harm. It is partly for this reason that new GM cultivars are invariably subjected to strict regulatory evaluation in order to assess the risks that each may pose to the environment. Regulatory bodies vary in their approach to decision-making, although all require access to large quantities of detailed information. Such an exhaustive case-by-case approach has been made tractable by the comparative simplicity of the portfolio of GM crops currently on the market, with four crops and two classes of traits accounting for almost all of the area under cultivation of GM crops. This simplified situation will change shortly, and will seriously complicate and potentially slow the evaluation process. Nowhere will the increased diversity of GM crops cause more difficulty to regulators than in those cases where there is a need to assess whether the transgene(s) will enhance fitness in a non-transgenic relative and thereafter cause ecological harm. Current practice to test this risk hypothesis focuses on attempting to detect increased fitness in the recipient. In this paper we explore the merits and shortcomings of this strategy, and investigate the scope for developing new approaches to streamline decision-making processes for transgenes that could cause unwanted ecological change.

  8. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China.

    PubMed

    Zhang, Guangliang; Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Jia, Jia; Cui, Baoshan; Liu, Xinhui

    2017-10-01

    Rapid urbanization and reclamation processes in coastal areas have resulted in serious pollution to the aquatic environment. Less is known on the geochemical fractions and ecological risks in river sediment under various human activities pressures, which is essential for addressing the connections between heavy metal pollution and anthropogenic influences. River sediments were collected from different landscapes (i.e., urban, rural and reclamation areas) to investigate the impacts of urbanization and reclamation on the metallic pollution levels and ecological risks in the Pear River Estuary of China. Results showed that Cd, Zn and Cu with high total contents and geoaccumulation index (I geo ) were the primary metals in the Peal River sediments. Generally, urban river sediments, especially the surface sediment layer (0-10 cm), exhibited higher metallic pollution levels. As for geochemical fractions, reducible and residual fractions were the dominant forms for six determined metals. And the percentage of heavy metals bound to Fe-Mn oxides decreased with increasing soil depth but the reverse tendency was observed for residual fractions. Compared with rural river sediments, heavy metals were highly associated with the exchangeable and carbonate fractions in both urban and reclamation-affected river sediments, suggesting that anthropogenic activities mainly increased the active forms of metals. Approximately 80% of Cd existed in the non-residual fraction and posed medium to high ecological risk according to the risk assessment code (RAC) values. The redundancy analysis (RDA) revealed that both urbanization and reclamation processes would cause similar metallic characteristics, and sediment organic matter (SOC) might be the prominent influencing factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Regional Approach for Managing for Resilience Linking Ecosystem Services and Livelihood Strategies for Agro-Pastoral Communities in the Mongolian Steppe Ecosystem

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Togtohyn, C.; Qi, J.; Galvin, K.

    2011-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau are affecting ecosystem services and agro-pastoral livelihoods in Mongolia and China. Recently, evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which then affect social-ecological systems. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces. The analysis incorporates information of the socio-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia and China to the fertile northeast China plain. Sustainability of agro-pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate landscape management provides a potential framework to link ecosystem services across space and time more effectively to meet the needs of agro-pastoral land use, herd quality, and herder's living standards. Under appropriate adaptation strategies agro-pastoralists will have the opportunity to utilize seasonal resources and enhance their ability to process and manufacture products from the available ecosystem services in these dynamic social-ecological systems.

  10. The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)

    PubMed Central

    Milano, Elizabeth R.; Lowry, David B.; Juenger, Thomas E.

    2016-01-01

    The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes. PMID:27613751

  11. Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China.

    PubMed

    Chen, Yaning; Li, Weihong; Zhou, Honghua; Chen, Yapeng; XinmingHao; Fu, Aihong; Ma, Jianxin

    2017-06-01

    Studying the water use processes of desert riparian vegetation in arid regions and analyzing the response and adaptation strategies of plants to drought stress are of great significance for developing ecological restoration measures. Based on field monitoring and test analyses of physiological ecological indicators of dominant species (Populus euphratica and Tamarix chinensis) in the desert riparian forest in the lower reaches of the Tarim River, the water relations of P. euphratica and T. chinensis under drought stress are discussed and some water use strategies put forward. The results show that (1) concerning plant water uptake, desert riparian forests depend mainly on groundwater to survive under long-term water stress. (2) Concerning plant water distribution, the survival of P. euphratica and nearby shallow root plants is mainly due to the hydraulic lift and water redistribution of P. euphratica under drought stress. (3) Concerning plant water transport, P. euphratica sustains the survival of competitive and advantageous branches by improving their ability to acquire water while restraining the growth of inferior branches. (4) Concerning plant transpiration, the sap flow curves of daily variations of P. euphratica and T. chinensis were wide-peak sin and narrower-peak respectively. T. chinensis has better environmental adaptability.

  12. Reconciling ecological and genomic divergence among lineages of listeria under an ‘‘extended mosaic genome concept’’

    USDA-ARS?s Scientific Manuscript database

    There is growing evidence for a discontinuity between genomic and ecological divergence in several groups of bacteria. Such evidence is difficult to reconcile with the traditional “species genome concept”; i.e., the concept that genomes of ecologically divergent lineages maintain a cohesive gene po...

  13. A striking profile: Soil ecological knowledge in restoration management and science

    Treesearch

    Mac A. Callaham; Charles C. Rhoades; Liam Heneghan

    2008-01-01

    Available evidence suggests that research in terrestrial restoration ecology has been dominated by the engineering and botanical sciences. Because restoration science is a relatively young discipline in ecology, the theoretical framework for this discipline is under development and new theoretical offerings appear regularly in the literature. In reviewing this...

  14. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA

    PubMed Central

    Stanish, Lee F.; Hull, Natalie M.; Robertson, Charles E.; Harris, J. Kirk; Stevens, Mark J.; Spear, John R.; Pace, Norman R.

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria), MLE1-12 (phylum Cyanobacteria), Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources. PMID:27362708

  15. Plasticity in Major Ampullate Silk Production in Relation to Spider Phylogeny and Ecology

    PubMed Central

    Boutry, Cecilia; Řezáč, Milan; Blackledge, Todd Alan

    2011-01-01

    Spider major ampullate silk is a high-performance biomaterial that has received much attention. However, most studies ignore plasticity in silk properties. A better understanding of silk plasticity could clarify the relative importance of chemical composition versus processing of silk dope for silk properties. It could also provide insight into how control of silk properties relates to spider ecology and silk uses. We compared silk plasticity (defined as variation in the properties of silk spun by a spider under different conditions) between three spider clades in relation to their anatomy and silk biochemistry. We found that silk plasticity exists in RTA clade and orbicularian spiders, two clades that differ in their silk biochemistry. Orbiculariae seem less dependent on external spinning conditions. They probably use a valve in their spinning duct to control friction forces and speed during spinning. Our results suggest that plasticity results from different processing of the silk dope in the spinning duct. Orbicularian spiders seem to display better control of silk properties, perhaps in relation to their more complex spinning duct valve. PMID:21818328

  16. Ecological and evolutionary processes at expanding range margins.

    PubMed

    Thomas, C D; Bodsworth, E J; Wilson, R J; Simmons, A D; Davies, Z G; Musche, M; Conradt, L

    2001-05-31

    Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded rapidly in association with recent climate warming. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past and future climate change.

  17. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA.

    PubMed

    Stanish, Lee F; Hull, Natalie M; Robertson, Charles E; Harris, J Kirk; Stevens, Mark J; Spear, John R; Pace, Norman R

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria), MLE1-12 (phylum Cyanobacteria), Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources.

  18. Study on ecological conservation planning of Xianyue Park in Xiamen City, China

    NASA Astrophysics Data System (ADS)

    Xu, Naizhong; Xi, Rong; Ren, Tingyan; Zhao, Peng; Chuai, Zeyao

    2017-08-01

    The paper discusses the current situation and existing problems of ecological restoration and tourist infrastructure development of Xiamen Xianyue Park located in Xiamen Island, China. Issues of ecosystem restoration and landscape improvement, restoring habitats, and ecosystem management system are analyzed. Options of further optimization of the tourist-targeted infrastructure are proposed, which take into account the ecological system and landscape pattern optimization, promotion of ecotourism, and implementation of the ecological management system. The particular solution envisages the park zoning with three primary zones (ecological protection, ecological buffer, and general activity zones) and five secondary ones (scenic landscape, ecotourism, religious activity, buildings and structures, and entertainment zones). By integrating the ecological principles into other land use objectives, taking full advantage of the park ecological and cultural heritage, and improving its ecological management, it is expected to provide the ecological restoration of the park under study and optimize its contribution to the regional economic and social development.

  19. Deep Ecology Education: Learning from Its Vaisnava Roots

    ERIC Educational Resources Information Center

    Haigh, Martin

    2006-01-01

    Deep ecology arises from the personal intuition that one's self is part of the world's environmental wholeness. This awareness may be constructed upon scientific foundations but it is more commonly thought a spiritual concept. Deep ecology pedagogy emerges from its three-step process of ecological Self-realization. This paper traces the roots of…

  20. Landscape ecology: Past, present, and future [Chapter 4

    Treesearch

    Samuel A. Cushman; Jeffrey S. Evans; Kevin McGarigal

    2010-01-01

    In the preceding chapters we discussed the central role that spatial and temporal variability play in ecological systems, the importance of addressing these explicitly within ecological analyses and the resulting need to carefully consider spatial and temporal scale and scaling. Landscape ecology is the science of linking patterns and processes across scale in both...

  1. Landscape ecology: what is the state of science?

    Treesearch

    Monica G. Turner

    2005-01-01

    Landscape ecology focuses on the reciprocal interactions between spatial pattern and ecological processes, and it is well integrated with ecology. The field has grown rapidly over the past 15 years. The persistent influence of land-use history and natural disturbance on contemporary ecosystems has become apparent Development of pattern metrics has largely stabilized,...

  2. Niche construction theory: a practical guide for ecologists.

    PubMed

    Odling-Smee, John; Erwin, Douglas H; Palkovacs, Eric P; Feldman, Marcus W; Laland, Kevin N

    2013-03-01

    Niche construction theory (NCT) explicitly recognizes environmental modication by organisms ("niche construction") and their legacy overtime ("ecological inheritance") to be evolutionary processes in their own right. Here we illustrate how niche construction theory provides usedl conceptual tools and theoretical insights for integrating ecosystem ecology and evolutionary theory. We begin by briefly describing NCT, and illustrating how it deifers from conventional evolutionary approaches. We then distinguish between two aspects ofniche construction--environment alteration and subsequent evolution in response to constructed environments--equating the first of these with "ecosystem engineering." We describe some of the ecological and evolutionary impacts on ecosystems of niche construction, ecosystem engineering and ecological inheritance, and illustrate how these processes trigger ecological and evolutionary feedbacks and leave detectable ecological signatures that are open to investigation. FIinally, we provide a practical guide to how NCT could be deployed by ecologists and evolutionary biologists to aeplore ecoeoolutionay dynamics. We suggest that, by highlighting the ecological and evolutionay ramifications of changes that organisms bring about in ecosystems, NCT helps link ecosystem ecology to evolutionary biology, potentially leading to a deeper understanding of how ecosystems change over time.

  3. Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies.

    PubMed

    Zhang, Ya; Li, Jianhua; Zhou, Lei; Wang, Guoqing; Feng, Yanhong; Wang, Zunyao; Yang, Xi

    2016-04-01

    The occurrence of antibacterial agents in natural environment was of scientific concern in recent years. As endocrine disrupting chemicals, they had potential risk on ecology system and human beings. In the present study, the photodegradation kinetics and pathways of florfenicol were investigated under solar and xenon lamp irradiation in aquatic systems. Direct photolysis half-lives of florfenicol were determined as 187.29 h under solar irradiation and 22.43 h under xenon lamp irradiation, respectively. Reactive oxygen species (ROS), such as hydroxyl radical (·OH) and singlet oxygen ((1)O2) were found to play an important role in indirect photolysis process. The presence of nitrate and dissolved organic matters (DOMs) could affect photolysis of florfenicol in solutions through light screening effect, quenching effect, and photoinduced oxidization process. Photoproducts of florfenicol in DOMs solutions were identified by solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) analysis techniques, and degradation pathways were proposed, including photoinduced hydrolysis, oxidation by (1)O2 and ·OH, dechlorination, and cleavage of the side chain.

  4. When mothering goes awry: Challenges and opportunities for utilizing evidence across rodent, nonhuman primate and human studies to better define the biological consequences of negative early caregiving☆

    PubMed Central

    Sánchez, Mar M.; Gonzalez, Andrea

    2016-01-01

    Across mammalian species, mothers shape socio-emotional development and serve as essential external regulators of infant physiology, brain development, behavior patterns, and emotional regulation. Caregiving quality, consistency and predictability shape the infant's underlying neurobiological processes. Although the requirements for “optimal” caregiving differ across species, the negative long-term consequences of the absence of needed caregiving (e.g. neglect) or the presence of harmful/aversive caregiving (e.g. physical abuse), are translatable across species. Recognizing the significant potential of cross species comparisons in terms of defining underlying mechanisms, effective translation requires consideration of the evolutionary, ecological, and fundamental biological and developmental differences between and among species. This review provides both an overview of several success stories of cross-species translations in relation to negative caregiving and a template for future studies seeking to most effectively define the underlying biological processes and advance research dedicated to mitigating the lasting negative health consequences of child maltreatment. PMID:26506032

  5. [Ecological demonstration activity and eco-civilization construction mode: review and prospects].

    PubMed

    Mao, Hui-ping; He, Xuan; He, Jia; Niu, Dong-jie; Bao, Cun-kuan

    2013-04-01

    Ecological civilization is to normalize human development behaviors to harmonize the relationships between social and ecological development and eco-environment protection. In this paper, a comparative analysis was made on the ecological demonstration activities of ecological demonstration areas led by the Ministry of Environmental Protection, exemplar cities of national environmental protection, and ecological provinces, cities, and counties. It was considered that all the ecological demonstration activities had the problems of lacking pertinence of construction goals, disordered construction subjects, inefficient construction processes, and lacking continuous incentive mechanisms of assessment. In the meantime, through the analysis of the connotations of eco-civilization, the relationships between eco-civilization and eco-demonstration constructions were approached, and the eco-civilization construction mode was put forward in terms of construction goal, construction subject, and construction processes and assessment. The construction mode included the construction goal based on regional characteristics; the synergistic cooperation of construction subjects, the expanding ways of public participation, and the establishment of evaluation system for comprehensively measuring the 'actions and results'.

  6. [The principle of the energy minimum in ontogeny and the channeling of developmental processes].

    PubMed

    Ozerniuk, N D

    1989-01-01

    The principle of minimum of energy in ontogenesis has been formulated on the basis of data concerning age changes in energetic metabolism, as well as the influence of ecological factors on this process. According to this principle the smallest expenditures of energy are observed in the zone of the most favorable developmental conditions. The minimal level of energetic metabolism at every developmental stage that corresponds to the most stable state of organism is treated as homeostasis and the developmental stability is treated as homeorrhesis. Regulation mechanisms of energetic metabolism during ontogenesis and under the influence of environmental factors are analyzed.

  7. Ecology of Florida black bears in the Okefenokee-Osceola ecosystem

    USGS Publications Warehouse

    Dobey, S.; Masters, D.V.; Scheick, B.K.; Clark, J.D.; Pelton, M.R.; Sunquist, M.E.

    2005-01-01

    The U.S. Fish and Wildlife Service (USFWS) concluded in 1998 that listing the Florida black bear as threatened under the Endangered Species Act of 1973 was not warranted. That decision was largely based on the stability and protection afforded to a few subpopulations within the range of the subspecies, which includes the Okefenokee-Osceola subpopulation; our results support that conclusion. However, we suggest that metapopulation processes among the various subpopulations be given greater consideration, with the ultimate goal of managing the sub-species as a unit rather than as an assemblage of independent components. Our study illustrates the importance of travel corridors for maintaining metapopulation processes.

  8. An ecological method to understand agricultural standardization in peach orchard ecosystems

    PubMed Central

    Wan, Nian-Feng; Zhang, Ming-Yi; Jiang, Jie-Xian; Ji, Xiang-Yun; Hao-Zhang

    2016-01-01

    While the worldwide standardization of agricultural production has been advocated and recommended, relatively little research has focused on the ecological significance of such a shift. The ecological concerns stemming from the standardization of agricultural production may require new methodology. In this study, we concentrated on how ecological two-sidedness and ecological processes affect the standardization of agricultural production which was divided into three phrases (pre-, mid- and post-production), considering both the positive and negative effects of agricultural processes. We constructed evaluation indicator systems for the pre-, mid- and post-production phases and here we presented a Standardization of Green Production Index (SGPI) based on the Full Permutation Polygon Synthetic Indicator (FPPSI) method which we used to assess the superiority of three methods of standardized production for peaches. The values of SGPI for pre-, mid- and post-production were 0.121 (Level IV, “Excellent” standard), 0.379 (Level III, “Good” standard), and 0.769 × 10−2 (Level IV, “Excellent” standard), respectively. Here we aimed to explore the integrated application of ecological two-sidedness and ecological process in agricultural production. Our results are of use to decision-makers and ecologists focusing on eco-agriculture and those farmers who hope to implement standardized agricultural production practices. PMID:26899360

  9. An ecological method to understand agricultural standardization in peach orchard ecosystems.

    PubMed

    Wan, Nian-Feng; Zhang, Ming-Yi; Jiang, Jie-Xian; Ji, Xiang-Yun; Hao-Zhang

    2016-02-22

    While the worldwide standardization of agricultural production has been advocated and recommended, relatively little research has focused on the ecological significance of such a shift. The ecological concerns stemming from the standardization of agricultural production may require new methodology. In this study, we concentrated on how ecological two-sidedness and ecological processes affect the standardization of agricultural production which was divided into three phrases (pre-, mid- and post-production), considering both the positive and negative effects of agricultural processes. We constructed evaluation indicator systems for the pre-, mid- and post-production phases and here we presented a Standardization of Green Production Index (SGPI) based on the Full Permutation Polygon Synthetic Indicator (FPPSI) method which we used to assess the superiority of three methods of standardized production for peaches. The values of SGPI for pre-, mid- and post-production were 0.121 (Level IV, "Excellent" standard), 0.379 (Level III, "Good" standard), and 0.769 × 10(-2) (Level IV, "Excellent" standard), respectively. Here we aimed to explore the integrated application of ecological two-sidedness and ecological process in agricultural production. Our results are of use to decision-makers and ecologists focusing on eco-agriculture and those farmers who hope to implement standardized agricultural production practices.

  10. [Applied ecology: retrospect and prospect].

    PubMed

    He, Xingyuan; Zeng, Dehui

    2004-10-01

    Applied ecology is evolved into a principal part of modern ecology that rapidly develops. The major stimulus for the development of applied ecology roots in seeking the solutions for the problems of human populations, resources and environments. Through four decades, the science of applied ecology has been becoming a huge group of disciplines. The future for the applied ecology should concern more with human-influenced and managed ecosystems, and acknowledge humans as the components of ecosystems. Nowadays and in future, the top-priorities in applied ecology should include following fields: sustainable ecosystems and biosphere, ecosystem services and ecological design, ecological assessment of genetically modified organisms, ecology of biological invasions, epidemical ecology, ecological forecasting, ecological process and its control. The authors believe that the comprehensive and active research hotspots coupled some new traits would occur around these fields in foreseeable future.

  11. Tradeoff between robustness and elaboration in carotenoid networks produces cycles of avian color diversification.

    PubMed

    Badyaev, Alexander V; Morrison, Erin S; Belloni, Virginia; Sanderson, Michael J

    2015-08-20

    Resolution of the link between micro- and macroevolution calls for comparing both processes on the same deterministic landscape, such as genomic, metabolic or fitness networks. We apply this perspective to the evolution of carotenoid pigmentation that produces spectacular diversity in avian colors and show that basic structural properties of the underlying carotenoid metabolic network are reflected in global patterns of elaboration and diversification in color displays. Birds color themselves by consuming and metabolizing several dietary carotenoids from the environment. Such fundamental dependency on the most upstream external compounds should intrinsically constrain sustained evolutionary elongation of multi-step metabolic pathways needed for color elaboration unless the metabolic network gains robustness - the ability to synthesize the same carotenoid from an additional dietary starting point. We found that gains and losses of metabolic robustness were associated with evolutionary cycles of elaboration and stasis in expressed carotenoids in birds. Lack of metabolic robustness constrained lineage's metabolic explorations to the immediate biochemical vicinity of their ecologically distinct dietary carotenoids, whereas gains of robustness repeatedly resulted in sustained elongation of metabolic pathways on evolutionary time scales and corresponding color elaboration. The structural link between length and robustness in metabolic pathways may explain periodic convergence of phylogenetically distant and ecologically distinct species in expressed carotenoid pigmentation; account for stasis in carotenoid colors in some ecological lineages; and show how the connectivity of the underlying metabolic network provides a mechanistic link between microevolutionary elaboration and macroevolutionary diversification.

  12. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    PubMed

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Ecological and Dynamical Study of the Creative Process and Affects of Scientific Students Working in Groups

    ERIC Educational Resources Information Center

    Peilloux, Aurélien; Botella, Marion

    2016-01-01

    Although creativity has drawn the attention of researchers during the past century, collaborative processes have barely been investigated. In this article, the collective dimension of a creative process is investigated, based on a dynamic and ecological approach that includes an affective component. "Dynamic" means that the creative…

  14. Plant Functional Traits: Soil and Ecosystem Services.

    PubMed

    Faucon, Michel-Pierre; Houben, David; Lambers, Hans

    2017-05-01

    Decline of ecosystem services has triggered numerous studies aiming at developing more sustainable agricultural management practices. Some agricultural practices may improve soil properties by expanding plant biodiversity. However, sustainable management of agroecosystems should be performed from a functional plant trait perspective. Advances in functional ecology, especially plant functional trait effects on ecosystem processes and services, provide pivotal knowledge for ecological intensification of agriculture; this approach acknowledges that a crop field is an agroecosystem whose ecological processes influence soil properties. We highlight the links between plant functional traits and soil properties in relation to four major ecosystem processes involved in vital ecosystem services: food production, crop protection, climate change mitigation, and soil and water conservation, aiming towards ecological intensification of sustainable agricultural and soil management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ecological Soil Screening Level

    EPA Pesticide Factsheets

    The Eco-SSL derivation process is used to derive a set of risk-based ecological soil screening levels (Eco-SSLs) for many of the soil contaminants that are frequently of ecological concern for plants and animals at hazardous waste sites.

  16. Integrated Ecology: The Process of Counseling with Nature.

    ERIC Educational Resources Information Center

    Cohen, Michael J.

    1994-01-01

    Discusses the theory behind an applied ecopsychology program based on Integrated Ecology. Integrated Ecology uses personal sensory contact with natural areas, in backyards, parks, or back country to unleash natural ability to relate and survive responsibly. (LZ)

  17. Current Challenges in Plant Eco-Metabolomics

    PubMed Central

    Peters, Kristian; Worrich, Anja; Alka, Oliver; Balcke, Gerd; Bruelheide, Helge; Dietz, Sophie; Dührkop, Kai; Heinig, Uwe; Kücklich, Marlen; Müller, Caroline; Poeschl, Yvonne; Pohnert, Georg; Ruttkies, Christoph; Schweiger, Rabea; Shahaf, Nir; Tortosa, Maria; Ueberschaar, Nico; Velasco, Pablo; Weiß, Brigitte M.; van Dam, Nicole M.

    2018-01-01

    The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant–organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology. PMID:29734799

  18. Looking Past Primary Productivity: Benchmarking System Processes that Drive Ecosystem Level Responses in Models

    NASA Astrophysics Data System (ADS)

    Cowdery, E.; Dietze, M.

    2017-12-01

    As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentration are highly variable and contain a considerable amount of uncertainty. Benchmarking model predictions against data are necessary to assess their ability to replicate observed patterns, but also to identify and evaluate the assumptions causing inter-model differences. We have implemented a novel benchmarking workflow as part of the Predictive Ecosystem Analyzer (PEcAn) that is automated, repeatable, and generalized to incorporate different sites and ecological models. Building on the recent Free-Air CO2 Enrichment Model Data Synthesis (FACE-MDS) project, we used observational data from the FACE experiments to test this flexible, extensible benchmarking approach aimed at providing repeatable tests of model process representation that can be performed quickly and frequently. Model performance assessments are often limited to traditional residual error analysis; however, this can result in a loss of critical information. Models that fail tests of relative measures of fit may still perform well under measures of absolute fit and mathematical similarity. This implies that models that are discounted as poor predictors of ecological productivity may still be capturing important patterns. Conversely, models that have been found to be good predictors of productivity may be hiding error in their sub-process that result in the right answers for the wrong reasons. Our suite of tests have not only highlighted process based sources of uncertainty in model productivity calculations, they have also quantified the patterns and scale of this error. Combining these findings with PEcAn's model sensitivity analysis and variance decomposition strengthen our ability to identify which processes need further study and additional data constraints. This can be used to inform future experimental design and in turn can provide an informative starting point for data assimilation.

  19. Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.

    2016-04-01

    Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project investigates the complex landscape dynamics between geological and ecological processes. This is done through cross-correlation of mapping results and implementation of modelling techniques that simulate geological and ecological processes in order to extrapolate the landscape evolution

  20. Revisiting the Holy Grail: using plant functional traits to understand ecological processes.

    PubMed

    Funk, Jennifer L; Larson, Julie E; Ames, Gregory M; Butterfield, Bradley J; Cavender-Bares, Jeannine; Firn, Jennifer; Laughlin, Daniel C; Sutton-Grier, Ariana E; Williams, Laura; Wright, Justin

    2017-05-01

    One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a 'Holy Grail' in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community- and ecosystem-level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait-based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta-analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized. © 2016 Cambridge Philosophical Society.

  1. Synergistic selection between ecological niche and mate preference primes diversification.

    PubMed

    Boughman, Janette W; Svanbäck, Richard

    2017-01-01

    The ecological niche and mate preferences have independently been shown to be important for the process of speciation. Here, we articulate a novel mechanism by which ecological niche use and mate preference can be linked to promote speciation. The degree to which individual niches are narrow and clustered affects the strength of divergent natural selection and population splitting. Similarly, the degree to which individual mate preferences are narrow and clustered affects the strength of divergent sexual selection and assortative mating between diverging forms. This novel perspective is inspired by the literature on ecological niches; it also explores mate preferences and how they may contribute to speciation. Unlike much comparative work, we do not search for evolutionary patterns using proxies for adaptation and sexual selection, but rather we elucidate how ideas from niche theory relate to mate preference, and how this relationship can foster speciation. Recognizing that individual and population niches are conceptually and ecologically linked to individual and population mate preference functions will significantly increase our understanding of rapid evolutionary diversification in nature. It has potential to help solve the difficult challenge of testing the role of sexual selection in the speciation process. We also identify ecological factors that are likely to affect individual niche and individual mate preference in synergistic ways and as a consequence to promote speciation. The ecological niche an individual occupies can directly affect its mate preference. Clusters of individuals with narrow, differentiated niches are likely to have narrow, differentiated mate preference functions. Our approach integrates ecological and sexual selection research to further our understanding of diversification processes. Such integration may be necessary for progress because these processes seem inextricably linked in the natural world. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  2. Linking demographic processes and foraging ecology in wandering albatross-Conservation implications.

    PubMed

    Weimerskirch, Henri

    2018-07-01

    Population dynamics and foraging ecology are two fields of the population ecology that are generally studied separately. Yet, foraging determines allocation processes and therefore demography. Studies on wandering albatrosses Diomedea exulans over the past 50 years have contributed to better understand the links between population dynamics and foraging ecology. This article reviews how these two facets of population ecology have been combined to better understand ecological processes, but also have contributed fundamentally for the conservation of this long-lived threatened species. Wandering albatross research has combined a 50-year long-term study of marked individuals with two decades of tracking studies that have been initiated on this species, favoured by its large size and tameness. At all stages of their life history, the body mass of individuals plays a central role in allocation processes, in particular in influencing adult and juvenile survival, decisions to recruit into the population or to invest into provisioning the offspring or into maintenance. Strong age-related variations in demographic parameters are observed and are linked to age-related differences in foraging distribution and efficiency. Marked sex-specific differences in foraging distribution, foraging efficiency and changes in mass over lifetime are directly related to the strong sex-specific investment in breeding and survival trajectories of the two sexes, with body mass playing a pivotal role especially in males. Long-term study has allowed determining the sex-specific and age-specific demographic causes of population decline, and the tracking studies have been able to derive where and how these impacts occur, in particular the role of long-line fisheries. © 2018 The Author. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  3. Bioremediation of oil-contaminated soils by composting

    NASA Astrophysics Data System (ADS)

    Golodyaev, G. P.; Kostenkov, N. M.; Oznobikhin, V. I.

    2009-08-01

    Composting oil-contaminated soils under field conditions with the simultaneous optimization of their physicochemical and agrochemical parameters revealed the high efficiency of the soil purification, including that from benz[a]pyrene. The application of fertilizers and lime favored the intense development of indigenous microcenoses and the effective destruction of the oil. During the 95-day experimental period, the average daily rate of the oil decomposition was 157 mg/kg of soil. After the completion of the process, the soil became ecologically pure.

  4. Climate change and evolutionary adaptation.

    PubMed

    Hoffmann, Ary A; Sgrò, Carla M

    2011-02-24

    Evolutionary adaptation can be rapid and potentially help species counter stressful conditions or realize ecological opportunities arising from climate change. The challenges are to understand when evolution will occur and to identify potential evolutionary winners as well as losers, such as species lacking adaptive capacity living near physiological limits. Evolutionary processes also need to be incorporated into management programmes designed to minimize biodiversity loss under rapid climate change. These challenges can be met through realistic models of evolutionary change linked to experimental data across a range of taxa.

  5. Preliminary analysis of the potential of LANDSAT imagery to study desertification. [Xique-Xique, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Decarvalho, V. C.

    1980-01-01

    The use of LANDSAT imagery to define and delimit areas under process of desertification was investigated. Imagery for two different years (1973 and 1978) and two different seasons (dry and rainy seasons in 1976), were used to identify terrain morphology and vegetation cover. The analysis of LANDSAT interpretation, combined with geological and soil information obtained from published literature, allowed the identification of eleven ecological units which were classified corresponding to the degree of the Xique Xique region of Rio Sao Francisco.

  6. Smartphones in ecology and evolution: a guide for the app-rehensive.

    PubMed

    Teacher, Amber G F; Griffiths, David J; Hodgson, David J; Inger, Richard

    2013-12-01

    Smartphones and their apps (application software) are now used by millions of people worldwide and represent a powerful combination of sensors, information transfer, and computing power that deserves better exploitation by ecological and evolutionary researchers. We outline the development process for research apps, provide contrasting case studies for two new research apps, and scan the research horizon to suggest how apps can contribute to the rapid collection, interpretation, and dissemination of data in ecology and evolutionary biology. We emphasize that the usefulness of an app relies heavily on the development process, recommend that app developers are engaged with the process at the earliest possible stage, and commend efforts to create open-source software scaffolds on which customized apps can be built by nonexperts. We conclude that smartphones and their apps could replace many traditional handheld sensors, calculators, and data storage devices in ecological and evolutionary research. We identify their potential use in the high-throughput collection, analysis, and storage of complex ecological information.

  7. Agroforestry landscapes and global change: landscape ecology tools for management and conservation

    Treesearch

    Guillermo Martinez Pastur; Emilie Andrieu; Louis R. Iverson; Pablo Luis Peri

    2012-01-01

    Forest ecosystems are impacted by multiple uses under the influence of global drivers, and where landscape ecology tools may substantially facilitate the management and conservation of the agroforestry ecosystems. The use of landscape ecology tools was described in the eight papers of the present special issue, including changes in forested landscapes due to...

  8. 77 FR 25218 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change To List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... Huntington US Equity Rotation Strategy ETF and Huntington EcoLogical Strategy ETF Under NYSE Arca Equities...''): Huntington US Equity Rotation Strategy ETF and Huntington EcoLogical Strategy ETF. The text of the proposed... Managed Fund Shares: \\3\\ Huntington US Equity Rotation Strategy ETF and Huntington EcoLogical Strategy ETF...

  9. Regime, phase and paradigm shifts: making community ecology the basic science for fisheries

    PubMed Central

    Mangel, Marc; Levin, Phillip S.

    2005-01-01

    Modern fishery science, which began in 1957 with Beverton and Holt, is ca. 50 years old. At its inception, fishery science was limited by a nineteenth century mechanistic worldview and by computational technology; thus, the relatively simple equations of population ecology became the fundamental ecological science underlying fisheries. The time has come for this to change and for community ecology to become the fundamental ecological science underlying fisheries. This point will be illustrated with two examples. First, when viewed from a community perspective, excess production must be considered in the context of biomass left for predators. We argue that this is a better measure of the effects of fisheries than spawning biomass per recruit. Second, we shall analyse a simple, but still multi-species, model for fishery management that considers the alternatives of harvest regulations, inshore marine protected areas and offshore marine protected areas. Population or community perspectives lead to very different predictions about the efficacy of reserves. PMID:15713590

  10. Resource recovery and epidemiology of anaerobic wastewater treatment process in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Li, Ku-Yen; Hunt, Madelyn D.

    1995-01-01

    The results of work accomplished under two different areas: (1) Resource Recovery of an Anaerobic Wastewater Treatment process, and (2) Epidemiological Study of an Anaerobic Wastewater Treatment Process are documented. The first part of the work was to set up and test three anaerobic digesters and then run these three digesters with a NASA-simulated wastewater. The second part of the work was to use a multi-drug resistant strain of Salmonella choleraesuis as the indicator bacteria for the epidemiological study. Details of these two parts can be found in two master's theses and are described in Sections 3 and 4 of this report. Several important results condensed from these two parts are summarized in Section 2.

  11. Processing of nutritious, safe and acceptable foods from cells candidate crops

    NASA Astrophysics Data System (ADS)

    Fu, B.; Nelson, P. E.; Irvine, R.; Kanach, L. L.

    A controlled ecological life-support system (CELSS) is required to sustain life for long-duration space missions. The challenge is preparing a wide variety of tasty, familiar, and nutritious foods from CELSS candidate crops under space environmental conditions. Conventional food processing technologies will have to be modified to adapt to the space environment. Extrusion is one of the processes being examined as a means of converting raw plant biomass into familiar foods. A nutrition-improved pasta has been developed using cowpea as a replacement for a portion of the durum semolina. A freeze-drying system that simulates the space conditions has also been developed. Other technologies that would fulfill the requirements of a CELSS will also be addressed.

  12. Processing of nutritious, safe and acceptable foods from CELSS candidate crops

    NASA Technical Reports Server (NTRS)

    Fu, B.; Nelson, P. E.; Irvine, R.; Kanach, L. L.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    A controlled ecological life-support system (CELSS) is required to sustain life for long-duration space missions. The challenge is preparing a wide variety of tasty, familiar, and nutritious foods from CELSS candidate crops under space environmental conditions. Conventional food processing technologies will have to be modified to adapt to the space environment. Extrusion is one of the processes being examined as a means of converting raw plant biomass into familiar foods. A nutrition-improved pasta has been developed using cowpea as a replacement for a portion of the durum semolina. A freeze-drying system that simulates the space conditions has also been developed. Other technologies that would fulfill the requirements of a CELSS will also be addressed.

  13. Adopting an ecological view of metropolitan landscape: the case of "three circles" system for ecological construction and restoration in Beijing area.

    PubMed

    Zhang, Feng; Zhang, Xin-shi

    2004-01-01

    Ecological construction and restoration for sustainable development are now a driving paradigm. It is increasingly recognized that ecological principles, especially landscape ecology theory, are not only necessary but also essential to maintain the long-term sustainability worldwide. Key landscape ecology principles-element, structure and process, dynamics, heterogeneity, hierarchies, connectivity, place and time were reviewed, and use Beijing area as a case study to illustrate how these principles might be applied to ecological construction and restoration, to eventually achieve sustainability. An example to more effectively incorporate the ecological principles in sustainable planning in China was presented.

  14. NexGen PVAs: Incorporating Eco-Evolutionary Processes into Population Viability Models

    EPA Science Inventory

    We examine how the integration of evolutionary and ecological processes in population dynamics – an emerging framework in ecology – could be incorporated into population viability analysis (PVA). Driven by parallel, complementary advances in population genomics and computational ...

  15. PREFACE: MARINE AND COASTAL APPLICATIONS IN LANDSCAPE ECOLOGY

    EPA Science Inventory

    Landscape ecology traditionally has been limited to the study of terrestrial systems; however, the questions and methods defining the science are equally relevant for marine and coastal systems. The reciprocal relationship between spatial pattern and ecological processes and the...

  16. Quantifying Landscape Spatial Pattern: What Is the State of the Art?

    Treesearch

    Eric J. Gustafson

    1998-01-01

    Landscape ecology is based on the premise that there are strong links between ecological pattern and ecological function and process. Ecological systems are spatially heterogeneous, exhibiting consid-erable complexity and variability in time and space. This variability is typically represented by categorical maps or by a collection of samples taken at specific spatial...

  17. Forest economics, natural disturbances and the new ecology

    Treesearch

    Thomas P. Holmes; Robert J. Huggett; John M. Pye

    2008-01-01

    The major thesis of this chapter is that the economic analysis of forest disturbances will be enhanced by linking economic and ecologic models. Although we only review a limited number of concepts drawn generally from mathematical and empirical ecology, the overarching theme we present is that ecological models of forest disturbance processes are complex and not...

  18. The Ecosystem Concept and Linking Models of Physical-Chemical Processes to Ecological Responses: Introduction and Annotated Bibliography

    DTIC Science & Technology

    2007-07-01

    Schneider, D. C. 1994. Quantitative ecology. Spatial and temporal scaling. Academic Press. Shugart, H. H. 1990. Ecological models and the ecotone . In: The...ecology and management of aquatic-terrestrial ecotones . Man and the biosphere series, Vol. 4. ed. R. J. Naiman and H. Decamps, 23-36. Paris, France

  19. Social-ecological research in urban natural areas: an emergent process for integration

    Treesearch

    Michelle L. Johnson; D. S. Novem Auyeung; Nancy F. Sonti; Clara C. Pregitzer; Heather L. McMillen; Richard Hallett; Lindsay K. Campbell; Helen M. Forgione; Mina Kim; Sarah Charlop-Powers; Erika S. Svendsen

    2018-01-01

    Understanding the structure and function of urban landscapes requires integrating social and ecological research. Here, we integrate parallel social and ecological assessments of natural areas within New York City. We examined social data (from a rapid assessment of park use and meaning, collected at a park zone level) alongside ecological data (froma plot-based...

  20. An Investigation of the Effectiveness of Computer Simulation Programs as Tutorial Tools for Teaching Population Ecology at University.

    ERIC Educational Resources Information Center

    Korfiatis, K.; Papatheodorou, E.; Paraskevopoulous, S.; Stamou, G. P.

    1999-01-01

    Describes a study of the effectiveness of computer-simulation programs in enhancing biology students' familiarity with ecological modeling and concepts. Finds that computer simulations improved student comprehension of ecological processes expressed in mathematical form, but did not allow a full understanding of ecological concepts. Contains 28…

  1. The big data-big model (BDBM) challenges in ecological research

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2015-12-01

    The field of ecology has become a big-data science in the past decades due to development of new sensors used in numerous studies in the ecological community. Many sensor networks have been established to collect data. For example, satellites, such as Terra and OCO-2 among others, have collected data relevant on global carbon cycle. Thousands of field manipulative experiments have been conducted to examine feedback of terrestrial carbon cycle to global changes. Networks of observations, such as FLUXNET, have measured land processes. In particular, the implementation of the National Ecological Observatory Network (NEON), which is designed to network different kinds of sensors at many locations over the nation, will generate large volumes of ecological data every day. The raw data from sensors from those networks offer an unprecedented opportunity for accelerating advances in our knowledge of ecological processes, educating teachers and students, supporting decision-making, testing ecological theory, and forecasting changes in ecosystem services. Currently, ecologists do not have the infrastructure in place to synthesize massive yet heterogeneous data into resources for decision support. It is urgent to develop an ecological forecasting system that can make the best use of multiple sources of data to assess long-term biosphere change and anticipate future states of ecosystem services at regional and continental scales. Forecasting relies on big models that describe major processes that underlie complex system dynamics. Ecological system models, despite great simplification of the real systems, are still complex in order to address real-world problems. For example, Community Land Model (CLM) incorporates thousands of processes related to energy balance, hydrology, and biogeochemistry. Integration of massive data from multiple big data sources with complex models has to tackle Big Data-Big Model (BDBM) challenges. Those challenges include interoperability of multiple, heterogeneous data sets; intractability of structural complexity of big models; equifinality of model structure selection and parameter estimation; and computational demand of global optimization with Big Models.

  2. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics.

    PubMed Central

    Solé, Ricard V; Montoya, José M; Erwin, Douglas H

    2002-01-01

    Biotic recoveries following mass extinctions are characterized by a process in which whole ecologies are reconstructed from low-diversity systems, often characterized by opportunistic groups. The recovery process provides an unexpected window to ecosystem dynamics. In many aspects, recovery is very similar to ecological succession, but important differences are also apparently linked to the innovative patterns of niche construction observed in the fossil record. In this paper, we analyse the similarities and differences between ecological succession and evolutionary recovery to provide a preliminary ecological theory of recoveries. A simple evolutionary model with three trophic levels is presented, and its properties (closely resembling those observed in the fossil record) are compared with characteristic patterns of ecological response to disturbances in continuous models of three-level ecosystems. PMID:12079530

  3. Using circuit theory to model connectivity in ecology, evolution, and conservation.

    PubMed

    McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B

    2008-10-01

    Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.

  4. From Darwin's Origin of Species toward a theory of natural history.

    PubMed

    Boero, Ferdinando

    2015-01-01

    Darwin is the father of evolutionary theory because he identified evolutionary patterns and, with Natural Selection, he ascertained the exquisitely ecological ultimate processes that lead to evolution. The proximate processes of evolution he proposed, however, predated the discovery of genetics, the backbone of modern evolutionary theory. The later discovery of the laws of inheritance by Mendel and the rediscovery of Mendel in the early 20th century led to two reforms of Darwinism: Neo-Darwinism and the Modern Synthesis (and subsequent refinements). If Darwin's evolutionary thought required much refinement, his ecological insight is still very modern. In the first edition of The Origin of Species, Darwin did not use either the word "evolution" or the word "ecology". "Ecology" was not coined until after the publication of the Origin. Evolution, for him, was the origin of varieties, then species, which he referred to as well-marked varieties, whereas, instead of using ecology, he used "the economy of nature". The Origin contains a high proportion of currently accepted ecological principles. Darwin labelled himself a naturalist. His discipline (natural history) was a blend of ecology and evolution in which he investigated both the patterns and the processes that determine the organization of life. Reductionist approaches, however, often keep the two disciplines separated from each other, undermining a full understanding of natural phenomena that might be favored by blending ecology and evolution through the development of a modern Theory of Natural History based on Darwin's vision of the study of life.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Huaiyong, E-mail: huaiyongshao@163.com; Center for Global Change and Earth Observations, Michigan State University, East Lansing 48823, MI; Sun, Xiaofei

    The Chinese government has conducted the Returning Grazing Land to Grassland Project (RGLGP) across large portions of grasslands from western China since 2003. In order to explore and understand the impact in the grassland's eco-environment during the RGLGP, we utilized Projection Pursuit Model (PPM) and Geographic Information System (GIS) to develop a spatial assessment model to examine the ecological vulnerability of the grassland. Our results include five indications: (1) it is practical to apply the spatial PPM on ecological vulnerability assessment for the grassland. This methodology avoids creating an artificial hypothesis, thereby providing objective results that successfully execute a multi-indexmore » assessment process and analysis under non-linear systems in eco-environments; (2) the spatial PPM is not only capable of evaluating regional eco-environmental vulnerability in a quantitative way, but also can quantitatively demonstrate the degree of effect in each evaluation index for regional eco-environmental vulnerability; (3) the eco-environment of the Xianshui River Basin falls into the medium range level. The normalized difference vegetation index (NDVI) and land use cover and change (LUCC) crucially influence the Xianshui River Basin's eco-environmental vulnerability. Generally, in the Xianshui River Basin, regional eco-environmental conditions improved during 2000 and 2010. The RGLGP positively affected NDVI and LUCC structure, thereby promoting the enhancement of the regional eco-environment; (4) the Xianshui River Basin divides its ecological vulnerability across different levels; therefore our study investigates three ecological regions and proposes specific suggestions for each in order to assist in eco-environmental protection and rehabilitation; and lastly that (5) the spatial PPM established by this study has the potential to be applied on all types of grassland eco-environmental vulnerability assessments under the RGLGP and under the similar conditions in the Returning Agriculture Land to Forest Project (RALFP). However, when establishing an eco-environmental vulnerability assessment model, it is necessary to choose suitable evaluation indexes in accordance with regional eco-environmental characteristics. - Highlights: • We present a method for regional eco-environmental vulnerability assessment. • The method combines Projection Pursuit Model with Geographic Information System. • The Returning Grazing Land to Grassland Project is crucial to environment recovery. • The method is more objective to assess regional eco-environmental vulnerability.« less

  6. Modeling the potential persistence of various ecological systems under CMIP5 future climate and land use scenarios throughout California, USA

    NASA Astrophysics Data System (ADS)

    Baker, B.; Ferschweiler, K.; Bachelet, D. M.; Sleeter, B. M.

    2016-12-01

    California's geographic location, topographic complexity and latitudinal climatic gradient give rise to great biological and ecological diversity. However, increased land use pressure, altered seasonal weather patterns, and changes in temperature and precipitation regimes are having pronounced effects on ecosystems and the multitude of services they provide for an increasing population. As a result, natural resource managers are faced with formidable challenges to maintain these critical services. The goals of this project were to better understand how projected 21st century climate and land-use change scenarios may alter ecosystem dynamics, the spatial distribution of various vegetation types and land-use patterns, and to provide a coarse scale "triage map" of where land managers may want to concentrate efforts to reduce ecological stress in order to mitigate the potential impacts of a changing climate. We used the MC2 dynamic global vegetation model and the LUCAS state-and-transition simulation model to simulate the potential effects of future climate and land-use change on ecological processes for the state of California. Historical climate data were obtained from the PRISM dataset and nine CMIP5 climate models were run for the RCP 8.5 scenario. Climate projections were combined with a business-as-usual land-use scenario based on local-scale land use histories. For ease of discussion, results from five simulation runs (historic, hot-dry, hot-wet, warm-dry, and warm-wet) are presented. Results showed large changes in the extent of urban and agricultural lands. In addition, several simulated potential vegetation types persisted in situ under all four future scenarios, although alterations in total area, total ecosystem carbon, and forest vigor (NPP/LAI) were noted. As might be expected, the majority of the forested types that persisted occurred on public lands. However, more than 78% of the simulated subtropical mixed forest and 26% of temperate evergreen needleleaf forest types persisted on private lands under all four future scenarios. Result suggest that building collaborations across management borders could be valuable tool to guide natural resource management actions into the future.

  7. Combining correlative and mechanistic habitat suitability models to improve ecological compensation.

    PubMed

    Meineri, Eric; Deville, Anne-Sophie; Grémillet, David; Gauthier-Clerc, Michel; Béchet, Arnaud

    2015-02-01

    Only a few studies have shown positive impacts of ecological compensation on species dynamics affected by human activities. We argue that this is due to inappropriate methods used to forecast required compensation in environmental impact assessments. These assessments are mostly descriptive and only valid at limited spatial and temporal scales. However, habitat suitability models developed to predict the impacts of environmental changes on potential species' distributions should provide rigorous science-based tools for compensation planning. Here we describe the two main classes of predictive models: correlative models and individual-based mechanistic models. We show how these models can be used alone or synoptically to improve compensation planning. While correlative models are easier to implement, they tend to ignore underlying ecological processes and lack accuracy. On the contrary, individual-based mechanistic models can integrate biological interactions, dispersal ability and adaptation. Moreover, among mechanistic models, those considering animal energy balance are particularly efficient at predicting the impact of foraging habitat loss. However, mechanistic models require more field data compared to correlative models. Hence we present two approaches which combine both methods for compensation planning, especially in relation to the spatial scale considered. We show how the availability of biological databases and software enabling fast and accurate population projections could be advantageously used to assess ecological compensation requirement efficiently in environmental impact assessments. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  8. Ecological specialization to fluctuating resources prevents long-distance migratory raptors from becoming sedentary on islands.

    PubMed

    Gangoso, Laura; López-López, Pascual; Grande, Juan Manuel; Mellone, Ugo; Limiñana, Rubén; Urios, Vicente; Ferrer, Miguel

    2013-01-01

    The adaptive transition between behavioral strategies, such as the shift from migratoriness to sedentariness, remains an outstanding question in evolutionary ecology. Density-dependent variation in the age of first breeding has been proposed as a feasible mechanism through which long-lived migratory birds with deferred sexual maturity should become sedentary to persist on islands. Although this pattern seems to hold for most raptors and herons, a few exceptions have been identified. One of these exceptions is the Eleonora's falcon, a long-distance migratory bird, which shows one of the most peculiar adaptations in the timing of reproduction and food requirements among raptors. Here, we compiled data concerning demography, banding recoveries and satellite tracking of Eleonora's falcons to discuss likely explanations for the exceptional behavior of this insular long-distance migratory species. New data reveal that Eleonora's falcons do return to the natal colonies in their first year and young birds are able to breed. However, in contrast to previous hypothesis, the highly specialized strategy of this and other ecologically similar species, as well as the virtual lack of food during winter at breeding areas prevent them from becoming sedentary on islands. Although the ultimate mechanisms underlying the process of sedentarization remain poorly understood, the evidence provided reveal the existence of important trade-offs associated with ecological specialization that may become particularly relevant in the present context of global change.

  9. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.

    PubMed

    Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille

    2017-07-01

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  10. Early Warning Signals of Social Transformation: A Case Study from the US Southwest.

    PubMed

    Spielmann, Katherine A; Peeples, Matthew A; Glowacki, Donna M; Dugmore, Andrew

    2016-01-01

    Recent research in ecology suggests that generic indicators, referred to as early warning signals (EWS), may occur before significant transformations, both critical and non-critical, in complex systems. Up to this point, research on EWS has largely focused on simple models and controlled experiments in ecology and climate science. When humans are considered in these arenas they are invariably seen as external sources of disturbance or management. In this article we explore ways to include societal components of socio-ecological systems directly in EWS analysis. Given the growing archaeological literature on 'collapses,' or transformations, in social systems, we investigate whether any early warning signals are apparent in the archaeological records of the build-up to two contemporaneous cases of social transformation in the prehistoric US Southwest, Mesa Verde and Zuni. The social transformations in these two cases differ in scope and severity, thus allowing us to explore the contexts under which warning signals may (or may not) emerge. In both cases our results show increasing variance in settlement size before the transformation, but increasing variance in social institutions only before the critical transformation in Mesa Verde. In the Zuni case, social institutions appear to have managed the process of significant social change. We conclude that variance is of broad relevance in anticipating social change, and the capacity of social institutions to mitigate transformation is critical to consider in EWS research on socio-ecological systems.

  11. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish.

    PubMed

    Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K

    2017-06-01

    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the ecological impact of climate change, (2) the separate and combined effects of climate and non-native invading species and (3) the underlying ecological processes or mechanisms responsible for changes in patterns of biodiversity.

  12. Smoke considerations for using fire in maintaining healthy forest ecosystems

    Treesearch

    Roger D. Ottmar; Mark D. Schaaf; Ernesto Alvarado

    1996-01-01

    Fire is the single most important ecological disturbance process throughout the interior Pacific Northwest (Mutch and others 1993; Agee 1994). It is also a natural process that helps maintain a diverse ecological landscape. Fire suppression and timber harvesting have drastically altered this process during the past 50 to 90 years. Natural resource specialists generally...

  13. [Ecological vulnerability of coal mining area: a case study of Shengli Coalfield in Xilinguole of Inner Mongolia, China].

    PubMed

    Quan, Zhan-Jun; Li, Yuan; Li, Jun-Sheng; Han, Yu; Xiao, Neng-Wen; Fu, Meng-Di

    2013-06-01

    In this paper, an ecological vulnerability evaluation index system for the Shengli Coalfield in Xilinguole of Inner Mongolia was established, which included 16 factors in ecological sensitivity, natural and social pressure, and ecological recovery capacity, respectively. Based on the expert scoring method and analytic hierarchy process (AHP), an ecological vulnerability model was built for the calculation of the regional ecological vulnerability by means of RS and GIS spatial analysis. An analysis of the relationships between land use and ecological vulnerability was also made, and the results were tested by spatial auto-correlation analysis. Overall, the ecological vulnerability of the study area was at medium-high level. The exploitation of four opencast areas in the Coalfield caused a significant increase of ecological vulnerability. Moreover, due to the effects of mine drained water and human activities, the 300 -2000 m around the opencast areas was turning into higher ecologically fragile area. With further exploitation, the whole Coalfield was evolved into moderate and heavy ecological vulnerability area, and the coal resources mining was a key factor in this process. The cluster analysis showed that the spatial distribution of the ecological vulnerability in the study area had reasonable clustering characteristics. To decrease the population density, control the grazing capacity of grassland, and regulate the ratios of construction land and cultivated land could be the optimal ways for resolving the natural and social pressure, and to increase the investment and improve the vegetation recovery coefficient could be the fundamental measures for decreasing the ecological vulnerability of the study area.

  14. Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel

    2016-01-01

    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions.

  15. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua).

    PubMed

    Holt, Rebecca E; Jørgensen, Christian

    2014-01-01

    Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology.

  16. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments.

    PubMed

    Roberts, David A

    2012-04-01

    Sediments act as a net sink for anthropogenic contaminants in marine ecosystems and contaminated sediments may have a range of toxicological effects on benthic fauna and associated species. When resuspended, however, particulate-bound contaminants may be remobilised into the water column and become bioavailable to an additional assemblage of species. Such resuspension occurs through a range of natural and anthropogenic processes each of which may be thought of as pulsed disturbances resulting in pulsed exposures to contaminants. Thus, it is important to understand not only the toxicological responses of organisms to resuspended contaminated sediments (RCS), but also the frequency, magnitude and duration of sediment disturbance events. Such information is rarely collected together with toxicological data. Rather, the majority of published studies (>50% of the articles captured in this review) have taken the form of fixed-duration laboratory-based exposures with individual species. While this research has clearly demonstrated that resuspension of contaminated sediments can liberate sediment-bound contaminants leading to toxicity and bioaccumulation under controlled conditions, the potential for ecological effects in the field is often unclear. Monitoring studies suggest that recurrent natural disturbances such as tides and waves may cause the majority of contaminant release in many environments. However, various processes also act to limit the spatial and temporal scales across which contaminants are remobilised to the most toxic dissolved state. Various natural and anthropogenic disturbances of contaminated sediments have been linked to both community-level and sub-lethal responses in exposed populations of invertebrates and fish in the field. Together these findings suggest that resuspension of contaminated sediments is a frequently recurring ecological threat in contaminated marine habitats. Further consideration of how marine communities respond to temporally variable exposures to RCS is required, as well as research into the relative importance of various disturbances under field conditions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  17. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua)

    PubMed Central

    Holt, Rebecca E.; Jørgensen, Christian

    2014-01-01

    Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology. PMID:27293671

  18. Phylogenetic ecology at world scale, a new fusion between ecology and evolution.

    PubMed

    Westoby, Mark

    2006-07-01

    One fusion between ecology and evolution is well established, under the title of population biology. The years 2006-2020 will see a new fusion, likely to prove equally creative. Inputs from ecology to this second fusion will be worldwide data sets for ecological traits across many species. Inputs from evolution will be phylogenetic trees with well-resolved topology and with increasingly tight geological dates for each branch point. There will be unification of two aims: first to explain the spread of different ways of making a living, across the range of present-day species; and second, to narrate the evolutionary history that has led up to present-day ecology.

  19. Multiple hypotheses testing of fish incidence patterns in an urbanized ecosystem

    USGS Publications Warehouse

    Chizinski, C.J.; Higgins, C.L.; Shavlik, C.E.; Pope, K.L.

    2006-01-01

    Ecological and evolutionary theories have focused traditionally on natural processes with little attempt to incorporate anthropogenic influences despite the fact that humans are such an integral part of virtually all ecosystems. A series of alternate models that incorporated anthropogenic factors and traditional ecological mechanisms of invasion to account for fish incidence patterns in urban lakes was tested. The models were based on fish biology, human intervention, and habitat characteristics. However, the only models to account for empirical patterns were those that included fish invasiveness, which incorporated species-specific information about overall tolerance and fecundity. This suggests that species-specific characteristics are more important in general distributional patterns than human-mediated dispersal. Better information of illegal stocking activities is needed to improve human-mediated models, and more insight into basic life history of ubiquitous species is needed to truly understand underlying mechanisms of biotic homogenization. ?? Springer 2005.

  20. The changing hydro-ecological dynamics of rivers and deltas of the Western Indian Ocean: Anthropogenic and environmental drivers, local adaptation and policy response

    NASA Astrophysics Data System (ADS)

    Duvail, Stéphanie; Hamerlynck, Olivier; Paron, Paolo; Hervé, Dominique; Nyingi, Wanja D.; Leone, Michele

    2017-10-01

    The rivers flowing into the Western Indian Ocean have steep headwater gradients and carry high sediment loads. In combination with strong tides and seasonal rainfall, these rivers create dynamic deltas with biodiversity-rich and productive ecosystems that, through flooding, have sustained indigenous use systems for centuries. However, river catchments are rapidly changing due to deforestation. Hydropower dams also increasingly alter flood characteristics, reduce sediment supply and contribute to coastal erosion. These impacts are compounded by climate change. Altogether, these changes affect the livelihoods of the delta users. Here, based on prior works that we and others have conducted in the region, we analyse the drivers of these hydro-ecological changes. We then provide recommendations for improved dam design and operations to sustain the underlying delta-building processes, the ecosystem values and the needs of the users.

  1. [Cell renovation in the intestinal epithelium in aging].

    PubMed

    Gusel'nikova, E A; Konovalov, S S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The ability to cell renovation of two basic cell types of intestinal mucosa is the important mechanism for the regulation and support of the gut physiological functions in aging and under the influence of the ecological negative factors. The study of the processes of cell renovation of the intestinal epithelial and neuroendocrine cells in physiological and radiological aging has a great interest, because the irradiation in the subletal doses could be considered as the model of artificial aging, and this fact enables studying of the radiological influence as the ecological factor, promoting the aging. In this study, the increase of cell proliferation in intestinal mucosa in physiological as well as artificial aging was observed. It was shown, that the total population of mitotic cells increases two times. These data testify about active participation of the mechanisms of cell renovation in the safety of gut functions during aging.

  2. Flushing of a coastal lagoon in the Red Sea

    NASA Astrophysics Data System (ADS)

    Sultan, S. A. R.; Ahmad, F.

    1990-09-01

    Shu'aiba Lagoon (Lat. 20°45'N; Long. 39°28'E) is located on the eastern coast of the Red Sea. It is relatively shallow with an area of approximately 11·7 km 2. The inlet to the lagoon is narrow with a cross-sectional area of about 245 m 2. This lagoon is a future site to develop mariculture. With this objective in view the flushing time scale of the lagoon was calculated, as flushing is an important abiotic factor in lagoon ecology. The average flushing time for the months February to June and September to November is about 20 days. Oceanic inputs play an important part in the process of fertilization of the lagoons. The marine environment in arid zone lagoons is under natural stress due to high temperatures and salinities. However, the flushing time scale of 20 days may not exert intolerable stress on the ecology of the Shu'aiba Lagoon.

  3. Discontinuities, cross-scale patterns, and the organization of ecosystems

    USGS Publications Warehouse

    Nash, Kirsty L.; Allen, Craig R.; Angeler, David G.; Barichievy, Chris; Eason, Tarsha; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Knutson, Melinda; Nelson, R. John; Nystrom, Magnus; Stow, Craig A.; Sandstrom, Shana M.

    2014-01-01

    Ecological structures and processes occur at specific spatiotemporal scales, and interactions that occur across multiple scales mediate scale-specific (e.g., individual, community, local, or regional) responses to disturbance. Despite the importance of scale, explicitly incorporating a multi-scale perspective into research and management actions remains a challenge. The discontinuity hypothesis provides a fertile avenue for addressing this problem by linking measureable proxies to inherent scales of structure within ecosystems. Here we outline the conceptual framework underlying discontinuities and review the evidence supporting the discontinuity hypothesis in ecological systems. Next we explore the utility of this approach for understanding cross-scale patterns and the organization of ecosystems by describing recent advances for examining nonlinear responses to disturbance and phenomena such as extinctions, invasions, and resilience. To stimulate new research, we present methods for performing discontinuity analysis, detail outstanding knowledge gaps, and discuss potential approaches for addressing these gaps.

  4. Environmental release of living modified organisms: current approaches and case studies.

    PubMed

    Thomas, E; Nickson, Ph D

    2005-01-01

    Agricultural biotechnology is being rapidly adopted as evidenced by the acreage of genetically modified (GM) crops planted and tonnes of product (grain and fiber) harvested. Concurrent with this technological progress, is a growing concern that the worlds biological diversity is coming under increasing threat from human activities. As such, ecological risk assessment approaches are being developed for GM crop plants as international agreements regulating the transboundary movements of these products are being implemented. This paper reviews the ecological risk assessment approach that has been used to date to approve GM crops to date. The process has been case-by-case, using a comparative, science-based approach balancing the potential risks and benefits of the new technology versus those present with the currently accepted practices. The approach used to evaluate and approve these products is consistent with the conditions and requirements outlined in the Cartagena Protocol.

  5. The Cosmic Habitat for Earth-Life and the Issue of Sustainable Development

    NASA Astrophysics Data System (ADS)

    Piątek, Zdzisława

    2017-12-01

    The subjects under consideration here are the philosophical consequences arising as the cosmic dimension to ecology is taken into account. If the habitat for Earthlife is a part of the cosmic environment, then cosmology and astrophysics become a part of ecology. The human species is furthermore a participant in a vast process of cosmic evolution, with sustainable-development strategy thus defi ning the conditions for - and time needed to achieve - a technological civilisation allowing Earth-life to be evacuated to another part of the galaxy as and when the further existence of life on this planet becomes (or threatens to become) an impossibility. In the context of such a cosmic perspective, the value ascribable to our scientifi c and technological civilisation (and future versions thereof) changes, given that only this kind of civilisation offers a chance for Earth-life to persist in an extra-terrestrial environment.

  6. Ecological Principles for Invasive Plant Management

    USDA-ARS?s Scientific Manuscript database

    Invasive annual grasses continue to advance at an alarming rate despite efforts of control by land managers. Ecologically-based invasive plant management (EBIPM) is a holistic framework that integrates ecosystem health assessment, knowledge of ecological processes and adaptive management into a succ...

  7. Predictors for reproductive isolation in a ring species complex following genetic and ecological divergence.

    PubMed

    Pereira, Ricardo J; Monahan, William B; Wake, David B

    2011-07-06

    Reproductive isolation (RI) is widely accepted as an important "check point" in the diversification process, since it defines irreversible evolutionary trajectories. Much less consensus exists about the processes that might drive RI. Here, we employ a formal quantitative analysis of genetic interactions at several stages of divergence within the ring species complex Ensatina eschscholtzii in order to assess the relative contribution of genetic and ecological divergence for the development of RI. By augmenting previous genetic datasets and adding new ecological data, we quantify levels of genetic and ecological divergence between populations and test how they correlate with a restriction of genetic admixture upon secondary contact. Our results indicate that the isolated effect of ecological divergence between parental populations does not result in reproductively isolated taxa, even when genetic transitions between parental taxa are narrow. Instead, processes associated with overall genetic divergence are the best predictors of reproductive isolation, and when parental taxa diverge in nuclear markers we observe a complete cessation of hybridization, even to sympatric occurrence of distinct evolutionary lineages. Although every parental population has diverged in mitochondrial DNA, its degree of divergence does not predict the extent of RI. These results show that in Ensatina, the evolutionary outcomes of ecological divergence differ from those of genetic divergence. While evident properties of taxa may emerge via ecological divergence, such as adaptation to local environment, RI is likely to be a byproduct of processes that contribute to overall genetic divergence, such as time in geographic isolation, rather than being a direct outcome of local adaptation.

  8. EcoPAD, an interactive platform for near real-time ecological forecasting by assimilating data into model

    NASA Astrophysics Data System (ADS)

    MA, S.; Huang, Y.; Stacy, M.; Jiang, J.; Sundi, N.; Ricciuto, D. M.; Hanson, P. J.; Luo, Y.; Saruta, V.

    2017-12-01

    Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our study presents a smart system - Ecological Platform for Assimilation of Data (EcoPAD) - which streamlines web request-response, data management, model execution, result storage and visualization. EcoPAD allows users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, (v) conduct ecological forecasting, and (vi) detect ecosystem acclimation to climate change. One of the key innovations of the web-based EcoPAD is the automated near- or real-time forecasting of ecosystem dynamics with uncertainty fully quantified. The user friendly webpage enables non-modelers to explore their data for simulation and data assimilation. As a case study, we applied EcoPAD to the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment project in the northern peatland, assimilated multiple data streams into a process based ecosystem model, enhanced timely feedback between modelers and experimenters, ultimately improved ecosystem forecasting and made better use of current knowledge. Built in a framework with flexible API, EcoPAD is easily portable and will benefit scientific communities, policy makers as well as the general public.

  9. Experimental Biodiversity Enrichment in Oil-Palm-Dominated Landscapes in Indonesia

    PubMed Central

    Teuscher, Miriam; Gérard, Anne; Brose, Ulrich; Buchori, Damayanti; Clough, Yann; Ehbrecht, Martin; Hölscher, Dirk; Irawan, Bambang; Sundawati, Leti; Wollni, Meike; Kreft, Holger

    2016-01-01

    Tropical biodiversity is threatened by the expansion of oil-palm plantations. Reduced-impact farming systems such as agroforests, have been proposed to increase biodiversity and ecosystem functioning. In regions where oil-palm plantations already dominate the landscape, this increase can only be achieved through systematic ecological restoration. However, our knowledge about the underlying ecological and socio-economic processes, constraints, and trade-offs of ecological restoration in oil-palm landscapes is very limited. To bridge this gap, we established a long-term biodiversity enrichment experiment. We established experimental tree islands in a conventional oil-palm plantation and systematically varied plot size, tree diversity, and tree species composition. Here, we describe the rationale and the design of the experiment, the ecosystem variables (soil, topography, canopy openness) and biotic characteristics (associated vegetation, invertebrates, birds) of the experimental site prior to the establishment of the experiment, and initial experimental effects on the fauna. Already one year after establishment of the experiment, tree plantings had an overall positive effect on the bird and invertebrate communities at the plantation scale. The diversity and abundance of invertebrates was positively affected by the size of the tree islands. Based on these results, we expect a further increase of biodiversity and associated ecological functions in the future. The long-term interdisciplinary monitoring of ecosystem variables, flora, fauna, and socio-economic aspects will allow us to evaluate the suitability of tree islands as a restoration measure. Thereof, guidelines for ecologically improved and socio-economically viable restoration and management concepts could be developed. PMID:27799935

  10. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).

    PubMed

    Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T

    2014-10-01

    Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  11. An ecological public health approach to understanding the relationships between sustainable urban environments, public health and social equity.

    PubMed

    Bentley, Michael

    2014-09-01

    The environmental determinants of public health and social equity present many challenges to a sustainable urbanism-climate change, water shortages and oil dependency to name a few. There are many pathways from urban environments to human health. Numerous links have been described but some underlying mechanisms behind these relationships are less understood. Combining theory and methods is a way of understanding and explaining how the underlying structures of urban environments relate to public health and social equity. This paper proposes a model for an ecological public health, which can be used to explore these relationships. Four principles of an ecological public health-conviviality, equity, sustainability and global responsibility-are used to derive theoretical concepts that can inform ecological public health thinking, which, among other things, provides a way of exploring the underlying mechanisms that link urban environments to public health and social equity. Theories of more-than-human agency inform ways of living together (conviviality) in urban areas. Political ecology links the equity concerns about environmental and social justice. Resilience thinking offers a better way of coming to grips with sustainability. Integrating ecological ethics into public health considers the global consequences of local urban living and thus attends to global responsibility. This way of looking at the relationships between urban environments, public health and social equity answers the call to craft an ecological public health for the twenty-first century by re-imagining public health in a way that acknowledges humans as part of the ecosystem, not separate from it, though not central to it. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. [Development of APSIM (agricultural production systems simulator) and its application].

    PubMed

    Shen, Yuying; Nan, Zhibiao; Bellotti, Bill; Robertson, Michael; Chen, Wen; Shao, Xinqing

    2002-08-01

    Soil-crop simulator model is an effective tool for providing decision on agricultural management. APSIM (Agricultural Production Systems Simulator) was developed to simulate the biophysical process in farming system, and particularly in the economic and ecological features of the systems under climatic risk. The current literatures revealed that APSIM could be applied in wide zone, including temperate continental, temperate maritime, sub-tropic and arid climate, and Mediterranean climates, with the soil type of clay, duplex soil, vertisol, silt sandy, silt loam and silt clay loam. More than 20 crops have been simulated well. APSIM is powerful on describing crop structure, crop sequence, yield prediction, and quality control as well as erosion estimation under different planting pattern.

  13. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding.

    PubMed

    Holliday, Jason A; Aitken, Sally N; Cooke, Janice E K; Fady, Bruno; González-Martínez, Santiago C; Heuertz, Myriam; Jaramillo-Correa, Juan-Pablo; Lexer, Christian; Staton, Margaret; Whetten, Ross W; Plomion, Christophe

    2017-02-01

    Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology. © 2016 John Wiley & Sons Ltd.

  14. Climate Change and Socio-Hydrological Dynamics: Adaptations and Feedbacks

    NASA Astrophysics Data System (ADS)

    Woyessa, Yali E.; Welderufael, Worku A.

    2012-10-01

    A functioning ecological system results in ecosystem goods and services which are of direct value to human beings. Ecosystem services are the conditions and processes which sustain and fulfil human life, and maintain biodiversity and the production of ecosystem goods. However, human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threatens to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the provision of ecosystem services and how they change under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting landuse changes. Recently, the focus has shifted away from using mathematically oriented models to agent-based modeling (ABM) approach to simulate land use scenarios. The agent-based perspective, with regard to land-use cover change, is centered on the general nature and rules of land-use decision making by individuals. A conceptual framework is developed to investigate the possibility of incorporating the human dimension of land use decision and climate change model into a hydrological model in order to assess the impact of future land use scenario and climate change on the ecological system in general and water resources in particular.

  15. Hydrogeomorphic and ecological control on carbonate dissolution in a patterned landscape in South Florida

    NASA Astrophysics Data System (ADS)

    Dong, X.; Heffernan, J. B.; Murray, A. B.; Cohen, M. J.; Martin, J. B.

    2016-12-01

    The evolution of the critical zone both shapes and reflects hydrologic, geochemical, and ecological processes. These interactions are poorly understood in karst landscapes with highly soluble bedrock. In this study, we used the regular-dispersed wetland basins of Big Cypress National Preserve in Florida as a focal case to model the hydrologic, geochemical, and biological mechanisms that affect soil development in karst landscapes. We addressed two questions: (1) What is the minimum timescale for wetland basin development, and (2) do changes in soil depth feed back on dissolution processes and if so by what mechanism? We developed an atmosphere-water-soil model with coupled water-solute transport, incorporating major ion equilibria and kinetic non-equilibrium chemistry, and biogenic acid production via roots distributed through the soil horizon. Under current Florida climate, weathering to a depth of 2 m (a typical depth of wetland basins) would take 4000 6000 yrs, suggesting that landscape pattern could have origins as recent as the most recent stabilization of sea level. Our model further illustrates that interactions between ecological and hydrologic processes influence the rate and depth-dependence of weathering. Absent inundation, dissolution rate decreased exponentially with distance from the bedrock to groundwater table. Inundation generally increased bedrock dissolution, but surface water chemistry and residence time produced complex and non-linear effects on dissolution rate. Biogenic acidity accelerated the dissolution rate by 50 and 1,000 times in inundated and exposed soils. Phase portrait analysis indicated that exponential decreases in bedrock dissolution rate with soil depth could produce stable basin depths. Negative feedback between hydro-period and total basin volume could stabilize the basin radius, but the lesser strength of this mechanism may explain the coalescence of wetland basins observed in some parts of the Big Cypress Landscape.

  16. Ecological Niche Modeling of Risk Factors for H7N9 Human Infection in China

    PubMed Central

    Xu, Min; Cao, Chunxiang; Li, Qun; Jia, Peng; Zhao, Jian

    2016-01-01

    China was attacked by a serious influenza A (H7N9) virus in 2013. The first human infection case was confirmed in Shanghai City and soon spread across most of eastern China. Using the methods of Geographic Information Systems (GIS) and ecological niche modeling (ENM), this research quantitatively analyzed the relationships between the H7N9 occurrence and the main environmental factors, including meteorological variables, human population density, bird migratory routes, wetland distribution, and live poultry farms, markets, and processing factories. Based on these relationships the probability of the presence of H7N9 was predicted. Results indicated that the distribution of live poultry processing factories, farms, and human population density were the top three most important determinants of the H7N9 human infection. The relative contributions to the model of live poultry processing factories, farms and human population density were 39.9%, 17.7% and 17.7%, respectively, while the maximum temperature of the warmest month and mean relative humidity had nearly no contribution to the model. The paper has developed an ecological niche model (ENM) that predicts the spatial distribution of H7N9 cases in China using environmental variables. The area under the curve (AUC) values of the model were greater than 0.9 (0.992 for the training samples and 0.961 for the test data). The findings indicated that most of the high risk areas were distributed in the Yangtze River Delta. These findings have important significance for the Chinese government to enhance the environmental surveillance at multiple human poultry interfaces in the high risk area. PMID:27322296

  17. Ecological Niche Modeling of Risk Factors for H7N9 Human Infection in China.

    PubMed

    Xu, Min; Cao, Chunxiang; Li, Qun; Jia, Peng; Zhao, Jian

    2016-06-16

    China was attacked by a serious influenza A (H7N9) virus in 2013. The first human infection case was confirmed in Shanghai City and soon spread across most of eastern China. Using the methods of Geographic Information Systems (GIS) and ecological niche modeling (ENM), this research quantitatively analyzed the relationships between the H7N9 occurrence and the main environmental factors, including meteorological variables, human population density, bird migratory routes, wetland distribution, and live poultry farms, markets, and processing factories. Based on these relationships the probability of the presence of H7N9 was predicted. Results indicated that the distribution of live poultry processing factories, farms, and human population density were the top three most important determinants of the H7N9 human infection. The relative contributions to the model of live poultry processing factories, farms and human population density were 39.9%, 17.7% and 17.7%, respectively, while the maximum temperature of the warmest month and mean relative humidity had nearly no contribution to the model. The paper has developed an ecological niche model (ENM) that predicts the spatial distribution of H7N9 cases in China using environmental variables. The area under the curve (AUC) values of the model were greater than 0.9 (0.992 for the training samples and 0.961 for the test data). The findings indicated that most of the high risk areas were distributed in the Yangtze River Delta. These findings have important significance for the Chinese government to enhance the environmental surveillance at multiple human poultry interfaces in the high risk area.

  18. When is connectivity important? A case study of the spatial pattern of sudden oak death

    Treesearch

    A. Ellis; T. Vaclavik; R.K. Meentemeyer

    2010-01-01

    Although connectivity has been examined from many different angles and in many ecological disciplines, few studies have tested in which systems and under what conditions connectivity is important in determining ecological dynamics. Identifying general rules governing when connectivity is important is crucial not only for basic ecology, but also for our ability to...

  19. Taking a systems approach to ecological systems

    USGS Publications Warehouse

    Grace, James B.

    2015-01-01

    Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.

  20. Integrating models with data in ecology and palaeoecology: advances towards a model-data fusion approach.

    PubMed

    Peng, Changhui; Guiot, Joel; Wu, Haibin; Jiang, Hong; Luo, Yiqi

    2011-05-01

    It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process-based ecological models and data in cohesive, systematic ways. Model-data fusion (MDF) is an emerging area of research in ecology and palaeoecology. It provides a new quantitative approach that offers a high level of empirical constraint over model predictions based on observations using inverse modelling and data assimilation (DA) techniques. Increasing demands to integrate model and data methods in the past decade has led to MDF utilization in palaeoecology, ecology and earth system sciences. This paper reviews key features and principles of MDF and highlights different approaches with regards to DA. After providing a critical evaluation of the numerous benefits of MDF and its current applications in palaeoecology (i.e., palaeoclimatic reconstruction, palaeovegetation and palaeocarbon storage) and ecology (i.e. parameter and uncertainty estimation, model error identification, remote sensing and ecological forecasting), the paper discusses method limitations, current challenges and future research direction. In the ongoing data-rich era of today's world, MDF could become an important diagnostic and prognostic tool in which to improve our understanding of ecological processes while testing ecological theory and hypotheses and forecasting changes in ecosystem structure, function and services. © 2011 Blackwell Publishing Ltd/CNRS.

  1. An inventory of continental U.S. terrestrial candidate ecological restoration areas based on landscape context

    Treesearch

    James Wickham; Kurt Riitters; Peter Vogt; Jennifer Costanza; Anne Neale

    2017-01-01

    Landscape context is an important factor in restoration ecology, but the use of landscape context for site prioritization has not been as fully developed.We used morphological image processing to identify candidate ecological restoration areas based on their proximity to existing natural vegetation. We identified 1,102,720 candidate ecological restoration areas across...

  2. Beyond urban legends: an emerging framework of urban ecology, as illustrated by the Baltimore Ecosystem Study

    Treesearch

    Steward T.A. Pickett; Mary L. Cadenasso; J. Morgan Grove; Peter M. Groffman; Lawrence E. Band; Christopher G. Boone; William R., Jr. Burch; Susan B. Grimmond; John Hom; Jennifer C. Jenkins; Neely L. Law; Charles H. Nilon; Richard V. Pouyat; Katalin Szlavecz; Paige S. Warren; Matthew A. Wilson

    2008-01-01

    The emerging discipline of urban ecology is shifting focus from ecological processes embedded within cities to integrative studies of large urban areas as biophysical-social complexes. Yet this discipline lacks a theory. Results from the Baltimore Ecosystem Study, part of the Long Term Ecological Research Network, expose new assumptions and test existing assumptions...

  3. Regional forest resource assessment in an ecological framework: the Southern United States

    Treesearch

    Victor A. Rudis

    1998-01-01

    Information about forest resources grouped by ecologically homogeneous area can be used to discern relationships between those resources and ecological processes. The author used forest resource data from 0.4-ha plots, and data on population and land area (by county), together with a global-to-local hierarchical framework of land areas with similar ecological potential...

  4. [Study on ecological risk assessment technology of fluoride pollution from arid oasis soil].

    PubMed

    Xue, Su-Yin; Li, Ping; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    According to translocation regulation of fluoride in the typical oasis soil-plant system under field, an ecological risk assessment model of fluoride was established, and this model was used to assess ecological risk to fluoride pollution from suburban oasis soils in Baiyin City, which was specifically expressed with the potential ecological risk of bioavailability (ER(bc)) model to assess ecological risk of fluoride pollution in oasis regions. Results showed that the ecological risk indices of fluoride pollution from this region were 1.37-24.81, the level of risk at most sites was high to very high, the average ecological risk index was 11.28, belonged to very high risk. This indicated that in the suburb soil of Baiyin City needs to be concerned about the remediation of fluoride pollution.

  5. A Global Lake Ecological Observatory Network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models

    USGS Publications Warehouse

    David, Hamilton P; Carey, Cayelan C.; Arvola, Lauri; Arzberger, Peter; Brewer, Carol A.; Cole, Jon J; Gaiser, Evelyn; Hanson, Paul C.; Ibelings, Bas W; Jennings, Eleanor; Kratz, Tim K; Lin, Fang-Pang; McBride, Christopher G.; de Motta Marques, David; Muraoka, Kohji; Nishri, Ami; Qin, Boqiang; Read, Jordan S.; Rose, Kevin C.; Ryder, Elizabeth; Weathers, Kathleen C.; Zhu, Guangwei; Trolle, Dennis; Brookes, Justin D

    2014-01-01

    A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated response to the need for scientific understanding of lake processes, utilising technological advances available from autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process- based ecological models because model simulation time steps are better aligned with sensor measurements than with lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. The case studies demonstrate some of the difficulties of mapping sensor measurements directly to model state variable outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest.

  6. PROCESS TRANSFER FUNCTIONS TO RELATE STREAM ECOLOGICAL CONDITION METRICS TO NITRATE RETENTION

    EPA Science Inventory

    Ecologists have developed hydrological metrics to characterize the nutrient processing capability of streams. In most cases these are used qualitatively to draw inferences on ecological function. In this work, several of these metrics have been integrated in a nonsteady state adv...

  7. ECOLOGICAL RISK ASSESSMENT: PROTECTING NORTHWEST ANADROMOUS SALMONID STOCKS

    EPA Science Inventory

    Ecological risk assessment is usually defined as the process that evaluates the likelihood that adverse ecological effects are occurring, or may occur, as a result of exposure to one or mare stressors. he basic concept, while straightforward, is difficult to apply. trong reaction...

  8. Long Distance Dispersal of Zooplankton Endemic to Isolated Mountaintops - an Example of an Ecological Process Operating on an Evolutionary Time Scale

    PubMed Central

    Vanschoenwinkel, Bram; Mergeay, Joachim; Pinceel, Tom; Waterkeyn, Aline; Vandewaerde, Hanne; Seaman, Maitland; Brendonck, Luc

    2011-01-01

    Recent findings suggest a convergence of time scales between ecological and evolutionary processes which is usually explained in terms of rapid micro evolution resulting in evolution on ecological time scales. A similar convergence, however, can also emerge when slow ecological processes take place on evolutionary time scales. A good example of such a slow ecological process is the colonization of remote aquatic habitats by passively dispersed zooplankton. Using variation at the protein coding mitochondrial COI gene, we investigated the balance between mutation and migration as drivers of genetic diversity in two Branchipodopsis fairy shrimp species (Crustacea, Anostraca) endemic to remote temporary rock pool clusters at the summit of isolated mountaintops in central South Africa. We showed that both species colonized the region almost simultaneously c. 0.8 My ago, but exhibit contrasting patterns of regional genetic diversity and demographic history. The haplotype network of the common B. cf. wolfi showed clear evidence of 11 long distance dispersal events (up to 140 km) with five haplotypes that are shared among distant inselbergs, as well as some more spatially isolated derivates. Similar patterns were not observed for B. drakensbergensis presumably since this rarer species experienced a genetic bottleneck. We conclude that the observed genetic patterns reflect rare historic colonization events rather than frequent ongoing gene flow. Moreover, the high regional haplotype diversity combined with a high degree of haplotype endemicity indicates that evolutionary- (mutation) and ecological (migration) processes in this system operate on similar time scales. PMID:22102865

  9. Exploring coral reef responses to millennial-scale climatic forcings: insights from the 1-D numerical tool pyReef-Core v1.0

    NASA Astrophysics Data System (ADS)

    Salles, Tristan; Pall, Jodie; Webster, Jody M.; Dechnik, Belinda

    2018-06-01

    Assemblages of corals characterise specific reef biozones and the environmental conditions that change spatially across a reef and with depth. Drill cores through fossil reefs record the time and depth distribution of assemblages, which captures a partial history of the vertical growth response of reefs to changing palaeoenvironmental conditions. The effects of environmental factors on reef growth are well understood on ecological timescales but are poorly constrained at centennial to geological timescales. pyReef-Core is a stratigraphic forward model designed to solve the problem of unobservable environmental processes controlling vertical reef development by simulating the physical, biological and sedimentological processes that determine vertical assemblage changes in drill cores. It models the stratigraphic development of coral reefs at centennial to millennial timescales under environmental forcing conditions including accommodation (relative sea-level upward growth), oceanic variability (flow speed, nutrients, pH and temperature), sediment input and tectonics. It also simulates competitive coral assemblage interactions using the generalised Lotka-Volterra system of equations (GLVEs) and can be used to infer the influence of environmental conditions on the zonation and vertical accretion and stratigraphic succession of coral assemblages over decadal timescales and greater. The tool can quantitatively test carbonate platform development under the influence of ecological and environmental processes and efficiently interpret vertical growth and karstification patterns observed in drill cores. We provide two realistic case studies illustrating the basic capabilities of the model and use it to reconstruct (1) the Holocene history (from 8500 years to present) of coral community responses to environmental changes and (2) the evolution of an idealised coral reef core since the last interglacial (from 140 000 years to present) under the influence of sea-level change, subsidence and karstification. We find that the model reproduces the details of the formation of existing coral reef stratigraphic sequences both in terms of assemblages succession, accretion rates and depositional thicknesses. It can be applied to estimate the impact of changing environmental conditions on growth rates and patterns under many different settings and initial conditions.

  10. Controlled Ecological Life Support System: Research and Development Guidelines

    NASA Technical Reports Server (NTRS)

    Mason, R. M. (Editor); Carden, J. L. (Editor)

    1982-01-01

    Results of a workshop designed to provide a base for initiating a program of research and development of controlled ecological life support systems (CELSS) are summarized. Included are an evaluation of a ground based manned demonstration as a milestone in CELSS development, and a discussion of development requirements for a successful ground based CELSS demonstration. Research recommendations are presented concerning the following topics: nutrition and food processing, food production, waste processing, systems engineering and modelling, and ecology-systems safety.

  11. Ecological-geomorphological assessment of the suburban area of Astana

    NASA Astrophysics Data System (ADS)

    Akiyanova, F. Zh; Zinabdin, N. B.; Kenzhebayeva, A. Zh; Adilbekova, F. G.; Ilyassova, A. T.; Karakulov, E. M.

    2018-01-01

    The results of ecological-geomorphological assessment of the suburban zone of Astana is presented in the paper. Climatic and hydrological factors, which are the agents of pollutants’ transport and caused the development of exogenous processes in the suburban area of Astana were studied and mapped. On the base of the geoinformation technologies and field studies the geomorphologic structure and morphogenetic processes were studied. The analysis of the data complex led to assess ecological-geomorphological conditions of the suburban area of Astana.

  12. Disturbance Regimes Predictably Alter Diversity in an Ecologically Complex Bacterial System

    PubMed Central

    Scholz, Monika; Hutchison, Alan L.; Dinner, Aaron R.; Gilbert, Jack A.; Coleman, Maureen L.

    2016-01-01

    ABSTRACT Diversity is often associated with the functional stability of ecological communities from microbes to macroorganisms. Understanding how diversity responds to environmental perturbations and the consequences of this relationship for ecosystem function are thus central challenges in microbial ecology. Unimodal diversity-disturbance relationships, in which maximum diversity occurs at intermediate levels of disturbance, have been predicted for ecosystems where life history tradeoffs separate organisms along a disturbance gradient. However, empirical support for such peaked relationships in macrosystems is mixed, and few studies have explored these relationships in microbial systems. Here we use complex microbial microcosm communities to systematically determine diversity-disturbance relationships over a range of disturbance regimes. We observed a reproducible switch between community states, which gave rise to transient diversity maxima when community states were forced to mix. Communities showed reduced compositional stability when diversity was highest. To further explore these dynamics, we formulated a simple model that reveals specific regimes under which diversity maxima are stable. Together, our results show how both unimodal and non-unimodal diversity-disturbance relationships can be observed as a system switches between two distinct microbial community states; this process likely occurs across a wide range of spatially and temporally heterogeneous microbial ecosystems. PMID:27999158

  13. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species

    PubMed Central

    Kastman, Erik K.; Kamelamela, Noelani; Norville, Josh W.; Cosetta, Casey M.; Dutton, Rachel J.

    2016-01-01

    ABSTRACT Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ. Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. PMID:27795388

  14. Simulating evolutionary responses of an introgressed insect resistance trait for ecological effect assessment of transgene flow: a model for supporting informed decision-making in environmental risk assessment

    PubMed Central

    Meier, Matthias S; Trtikova, Miluse; Suter, Matthias; Edwards, Peter J; Hilbeck, Angelika

    2013-01-01

    Predicting outcomes of transgene flow from arable crops requires a system perspective that considers ecological and evolutionary processes within a landscape context. In Europe, the arable weed Raphanus raphanistrum is a potential hybridization partner of oilseed rape, and the two species are ecologically linked through the common herbivores Meligethes spp. Observations in Switzerland show that high densities of Meligethes beetles maintained by oilseed rape crops can lead to considerable damage on R. raphanistrum. We asked how increased insect resistance in R. raphanistrum – as might be acquired through introgression from transgenic oilseed rape – would affect seed production under natural herbivore pressure. In simulation experiments, plants protected against Meligethes beetles produced about twice as many seeds as unprotected plants. All stages in the development of reproductive structures from buds to pods were negatively affected by the herbivore, with the transition from buds to flowers being the most vulnerable. We conclude that resistance to Meligethes beetles could confer a considerable selective advantage upon R. raphanistrum in regions where oilseed rape is widely grown. PMID:23467842

  15. Ecological complexity buffers the impacts of future climate on marine consumers

    NASA Astrophysics Data System (ADS)

    Goldenberg, Silvan U.; Nagelkerken, Ivan; Marangon, Emma; Bonnet, Angélique; Ferreira, Camilo M.; Connell, Sean D.

    2018-03-01

    Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities1-3. Yet, our understanding of the ecological imprint of ocean acidification (elevated CO2) and climate change (elevated temperature) is largely based on reports of negative effects on single species in simplified laboratory systems4,5. By combining a large mesocosm experiment with a global meta-analysis, we reveal the capacity of consumers (fish and crustaceans) to resist the impacts of elevated CO2. While individual behaviours were impaired by elevated CO2, consumers could restore their performances in more complex environments that allowed for compensatory processes. Consequently, consumers maintained key traits such as foraging, habitat selection and predator avoidance despite elevated CO2 and sustained their populations. Our observed increase in risk-taking under elevated temperature, however, predicts greater vulnerability of consumers to predation. Yet, CO2 as a resource boosted the biomass of consumers through species interactions and may stabilize communities by countering the negative effects of elevated temperature. We conclude that compensatory dynamics inherent in the complexity of nature can buffer the impacts of future climate on species and their communities.

  16. A model of ecological and evolutionary consequences of color polymorphism.

    PubMed

    Forsman, Anders; Ahnesjö, Jonas; Caesar, Sofia; Karlsson, Magnus

    2008-01-01

    We summarize direct and indirect effects on fitness components of animal color pattern and present a synthesis of theories concerning the ecological and evolutionary dynamics of chromatic multiple niche polymorphisms. Previous endeavors have aimed primarily at identifying conditions that promote the evolution and maintenance of polymorphisms. We consider in a conceptual model also the reciprocal influence of color polymorphism on population processes and propose that polymorphism entails selective advantages that may promote the ecological success of polymorphic species. The model begins with an evolutionary branching event from mono- to polymorphic condition that, under the influence of correlational selection, is predicted to promote the evolution of physical integration of coloration and other traits (cf. multi-trait coevolution and complex phenotypes). We propose that the coexistence within a population of alternative ecomorphs with coadapted gene complexes promotes utilization of diverse environmental resources, population stability and persistence, colonization success, and range expansions, and enhances the evolutionary potential and speciation. Conversely, we predict polymorphic populations to be less vulnerable to environmental change and at lower risk of range contractions and extinctions compared with monomorphic populations. We offer brief suggestions as to how these falsifiable predictions may be tested.

  17. Modelling ecological systems in a changing world

    PubMed Central

    Evans, Matthew R.

    2012-01-01

    The world is changing at an unprecedented rate. In such a situation, we need to understand the nature of the change and to make predictions about the way in which it might affect systems of interest; often we may also wish to understand what might be done to mitigate the predicted effects. In ecology, we usually make such predictions (or forecasts) by making use of mathematical models that describe the system and projecting them into the future, under changed conditions. Approaches emphasizing the desirability of simple models with analytical tractability and those that use assumed causal relationships derived statistically from data currently dominate ecological modelling. Although such models are excellent at describing the way in which a system has behaved, they are poor at predicting its future state, especially in novel conditions. In order to address questions about the impact of environmental change, and to understand what, if any, action might be taken to ameliorate it, ecologists need to develop the ability to project models into novel, future conditions. This will require the development of models based on understanding the processes that result in a system behaving the way it does, rather than relying on a description of the system, as a whole, remaining valid indefinitely. PMID:22144381

  18. The geography of spatial synchrony.

    PubMed

    Walter, Jonathan A; Sheppard, Lawrence W; Anderson, Thomas L; Kastens, Jude H; Bjørnstad, Ottar N; Liebhold, Andrew M; Reuman, Daniel C

    2017-07-01

    Spatial synchrony, defined as correlated temporal fluctuations among populations, is a fundamental feature of population dynamics, but many aspects of synchrony remain poorly understood. Few studies have examined detailed geographical patterns of synchrony; instead most focus on how synchrony declines with increasing linear distance between locations, making the simplifying assumption that distance decay is isotropic. By synthesising and extending prior work, we show how geography of synchrony, a term which we use to refer to detailed spatial variation in patterns of synchrony, can be leveraged to understand ecological processes including identification of drivers of synchrony, a long-standing challenge. We focus on three main objectives: (1) showing conceptually and theoretically four mechanisms that can generate geographies of synchrony; (2) documenting complex and pronounced geographies of synchrony in two important study systems; and (3) demonstrating a variety of methods capable of revealing the geography of synchrony and, through it, underlying organism ecology. For example, we introduce a new type of network, the synchrony network, the structure of which provides ecological insight. By documenting the importance of geographies of synchrony, advancing conceptual frameworks, and demonstrating powerful methods, we aim to help elevate the geography of synchrony into a mainstream area of study and application. © 2017 John Wiley & Sons Ltd/CNRS.

  19. Potential Biological and Ecological Effects of Flickering Artificial Light

    PubMed Central

    Inger, Richard; Bennie, Jonathan; Davies, Thomas W.; Gaston, Kevin J.

    2014-01-01

    Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological processes. However, the extent and density of artificial lighting within the environment has increased recently, causing widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology, behaviour, and reproductive success, and thence community composition and ecosystem functioning. Until now, most attention has focussed on effects of the occurrence, timing, and spectral composition of artificial lighting. Little considered is that many types of lamp do not produce a constant stream of light but a series of pulses. This flickering light has been shown to have detrimental effects in humans and other species. Whether a species is likely to be affected will largely be determined by its visual temporal resolution, measured as the critical fusion frequency. That is the frequency at which a series of light pulses are perceived as a constant stream. Here we use the largest collation to date of critical fusion frequencies, across a broad range of taxa, to demonstrate that a significant proportion of species can detect such flicker in widely used lamps. Flickering artificial light thus has marked potential to produce ecological effects that have not previously been considered. PMID:24874801

  20. Integrative modelling reveals mechanisms linking productivity and plant species richness.

    PubMed

    Grace, James B; Anderson, T Michael; Seabloom, Eric W; Borer, Elizabeth T; Adler, Peter B; Harpole, W Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M; Pärtel, Meelis; Bakker, Jonathan D; Buckley, Yvonne M; Crawley, Michael J; Damschen, Ellen I; Davies, Kendi F; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hector, Andy; Knops, Johannes M H; MacDougall, Andrew S; Melbourne, Brett A; Morgan, John W; Orrock, John L; Prober, Suzanne M; Smith, Melinda D

    2016-01-21

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.

  1. Interactive network configuration maintains bacterioplankton community structure under elevated CO2 in a eutrophic coastal mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Huang, Ruiping; Li, Yan; Li, Futian; Wu, Yaping; Hutchins, David A.; Dai, Minhan; Gao, Kunshan

    2018-01-01

    There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on the bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, southern China. Through sequencing the bacterial 16S rRNA gene V3-V4 region, we found that the bacterioplankton community in this high-nutrient coastal environment was relatively resilient to changes in seawater carbonate chemistry. Based on comparative ecological network analysis, we found that elevated CO2 hardly altered the network structure of high-abundance bacterioplankton taxa but appeared to reassemble the community network of low abundance taxa. This led to relatively high resilience of the whole bacterioplankton community to the elevated CO2 level and associated chemical changes. We also observed that the Flavobacteria group, which plays an important role in the microbial carbon pump, showed higher relative abundance under the elevated CO2 condition during the early stage of the phytoplankton bloom in the mesocosms. Our results provide new insights into how elevated CO2 may influence bacterioplankton community structure.

  2. Cultivating Bakhtin in the garden: Children's ecological narratives on becoming community gardeners

    NASA Astrophysics Data System (ADS)

    Grugel, Annie H.

    2009-12-01

    This dissertation illustrates how a children's community garden, designed specifically to promote intergenerational, multi-sociocultural relationships, is an "ideological environment" linking individuals and their community and connecting people with nature, in order to promote feelings of belonging, social connection, and encourage a sense of stewardship and identification with the environment (Bakhtin, 1978). By spending time in a community garden, responding to the natural ecosystems which exist on this land, and reflecting, through image and story about our childhood experience, the participants and I engaged in the dialogic process of what Thomashow (1996) refers to as "doing ecological identity work." Throughout this study I question how our past experiences with nature in ideological environments shape our ecological epistemologies, and how the dialogic process of becoming a gardener within the context of a community garden shapes a person's ecological identity. To frame this exploration of ecological identity work as a dialogic process and its role in the development of an ecological identity, I draw from sociocultural theory (Holland, et al., 1998), Bakhtin's theory of dialogism, and ecological identity studies (Clayton and Opotow, 2003; Cobb, 1993; Orr, 1994, 2006; Sobel, 1996, 2008; Thomashow, 1996). A large body of scholarly writing done by environmental researchers is devoted to examining and describing how adults, who self-identify as environmentalists, developed an ecological worldview. However, only a fraction of research is devoted to theorizing how children develop an environmental epistemology. In this study, I focus on how community gardens are dialogic spaces that provide a place for elementary-aged children to "experience" the discourse of gardening. Here, I describe the discourses that shape the garden and describe how gardeners, as a result of their collaborative experiences between human and non-human actors, take up social and dialogical tools for authoring new ecological identities.

  3. Sensitivity of alpine watersheds to global change

    NASA Astrophysics Data System (ADS)

    Zierl, B.; Bugmann, H.

    2003-04-01

    Mountains provide society with a wide range of goods and services, so-called mountain ecosystem services. Besides many others, these services include the most precious element for life on earth: fresh water. Global change imposes significant environmental pressure on mountain watersheds. Climate change is predicted to modify water availability as well as shift its seasonality. In fact, the continued capacity of mountain regions to provide fresh water to society is threatened by the impact of environmental and social changes. We use RHESSys (Regional HydroEcological Simulation System) to analyse the impact of climate as well as land use change (e.g. afforestation or deforestation) on hydrological processes in mountain catchments using sophisticated climate and land use scenarios. RHESSys combines distributed flow modelling based on TOPMODEL with an ecophysiological canopy model based on BIOME-BGC and a climate interpolation scheme based on MTCLIM. It is a spatially distributed daily time step model designed to solve the coupled cycles of water, carbon, and nitrogen in mountain catchments. The model is applied to various mountain catchments in the alpine area. Dynamic hydrological and ecological properties such as river discharge, seasonality of discharge, peak flows, snow cover processes, soil moisture, and the feedback of a changing biosphere on hydrology are simulated under current as well as under changed environmental conditions. Results of these studies will be presented and discussed. This project is part of an over overarching EU-project called ATEAM (acronym for Advanced Terrestrial Ecosystem Analysis and Modelling) assessing the vulnerability of European ecosystem services.

  4. Self-organization of head-centered visual responses under ecological training conditions.

    PubMed

    Mender, Bedeho M W; Stringer, Simon M

    2014-01-01

    We have studied the development of head-centered visual responses in an unsupervised self-organizing neural network model which was trained under ecological training conditions. Four independent spatio-temporal characteristics of the training stimuli were explored to investigate the feasibility of the self-organization under more ecological conditions. First, the number of head-centered visual training locations was varied over a broad range. Model performance improved as the number of training locations approached the continuous sampling of head-centered space. Second, the model depended on periods of time where visual targets remained stationary in head-centered space while it performed saccades around the scene, and the severity of this constraint was explored by introducing increasing levels of random eye movement and stimulus dynamics. Model performance was robust over a range of randomization. Third, the model was trained on visual scenes where multiple simultaneous targets where always visible. Model self-organization was successful, despite never being exposed to a visual target in isolation. Fourth, the duration of fixations during training were made stochastic. With suitable changes to the learning rule, it self-organized successfully. These findings suggest that the fundamental learning mechanism upon which the model rests is robust to the many forms of stimulus variability under ecological training conditions.

  5. Preventing regime shifts on the Colorado Plateau: Application of ecological threshold concepts to land management decision making

    USDA-ARS?s Scientific Manuscript database

    Investigating the mechanisms responsible for ecological thresholds is essential to understanding processes leading to ecosystem regime shifts. Dryland ecosystems are especially prone to threshold behavior wherein stressor-mediated alteration of patterns and processes can shift systems to alternative...

  6. Episodic processes, invasion and faunal mosaics in evolutionary and ecological time

    USDA-ARS?s Scientific Manuscript database

    Episodes of ecological perturbation and faunal turnover represent crises for global biodiversity and have occurred periodically across Earth history on a continuum linking deep evolutionary and shallow ecological time. Major extinction events and biodiversity crises across the 540 milion years of th...

  7. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments - Interim Final

    EPA Pesticide Factsheets

    This document provides guidance to site managers and Remedial Project Managers who are legally responsible for the management of a site on how to design and conduct technically defensible ecological risk assessments for the Superfund program.

  8. Relic components within the soil cover of Mexico: regional variability

    NASA Astrophysics Data System (ADS)

    Solleiro Rebolledo, Elizabeth; Sedov, Sergey

    2015-04-01

    The case of paleosols persisting on the land surface (non-buried paleosols or relict soils) besides paleoecological interest has specific implications for studies of soil geography, ecology and management. In fact these soil bodies form part of the modern soil mantle and provide ecological services for the current (agro)ecosystems but are neither formed nor re-produced by these ecosystems, conforming locally extinct soils (although similar profiles can develop at present under other bioclimatic conditions). In consequence, they are a heritage of past climatic and biotic conditions now extinct, thus presenting a non-restorable component of the present landscape. Mexico has so abundant and diverse paleosols, both surface and buried, that really could be considered to be a "paleopedological paradise". Two groups of factors promote generation of this abundance: Major part of territory of Mexico is occupied by mountainous landscapes with high intensity of tectonic, volcanic and geomorphic processes. These processes create a complex mosaic of geological materials and landforms of different age (like alluvial and lake terraces, eroded slopes, and volcanic deposits of various eruptions). Meanwhile younger landsurfaces are occupied by the recently developed soils, the older ones could bear the relict soil bodies. The same processes produce sedimentary strata (alluvial, colluvial, pyroclastic, etc.) which frequently cover the pre-existing landsurfaces and soils, producing series of buried paleosols. In this work we present three study cases of relict paleosols that are integrated to the modern soil cover of Mexico: the case of reddish-brown soils in the arid landscapes of Sonora (in the north); the pedosediments (tepetates) in central Mexico; and the red soils developed under humid conditions in Yucatan (in the south).

  9. Many shades of green: the dynamic tropical forest–savannah transition zones

    PubMed Central

    Oliveras, Immaculada; Malhi, Yadvinder

    2016-01-01

    The forest–savannah transition is the most widespread ecotone in tropical areas, separating two of the most productive terrestrial ecosystems. Here, we review current understanding of the factors that shape this transition, and how it may change under various drivers of local or global change. At broadest scales, the location of the transition is shaped by water availability, mediated strongly at local scales by fire regimes, herbivory pressure and spatial variation in soil properties. The frequently dynamic nature of this transition suggests that forest and savannah can exist as alternative stable states, maintained and separated by fire–grass feedbacks and tree shade–fire suppression feedback. However, this theory is still contested and the relative contributions of the main biotic and abiotic drivers and their interactions are yet not fully understood. These drivers interplay with a wide range of ecological processes and attributes at the global, continental, regional and local scales. The evolutionary history of the biotic and abiotic drivers and processes plays an important role in the current distributions of these transitions as well as in their species composition and ecosystem functioning. This ecotone can be sensitive to shifts in climate and other driving factors, but is also potentially stabilized by negative feedback processes. There is abundant evidence that these transitions are shifting under contemporary global and local changes, but the direction of shift varies according to region. However, it still remains uncertain how these transitions will respond to rapid and multi-faceted ongoing current changes, and how increasing human influence will interact with these shifts. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502373

  10. 76 FR 48183 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... established in 1986 studying the foraging ecology, population dynamics, census and reproductive success and energetic of Antarctic seals. In addition, the applicant will continue studies of the behavioral ecology and...

  11. Ecological networks are more sensitive to plant than to animal extinction under climate change

    PubMed Central

    Schleuning, Matthias; Fründ, Jochen; Schweiger, Oliver; Welk, Erik; Albrecht, Jörg; Albrecht, Matthias; Beil, Marion; Benadi, Gita; Blüthgen, Nico; Bruelheide, Helge; Böhning-Gaese, Katrin; Dehling, D. Matthias; Dormann, Carsten F.; Exeler, Nina; Farwig, Nina; Harpke, Alexander; Hickler, Thomas; Kratochwil, Anselm; Kuhlmann, Michael; Kühn, Ingolf; Michez, Denis; Mudri-Stojnić, Sonja; Plein, Michaela; Rasmont, Pierre; Schwabe, Angelika; Settele, Josef; Vujić, Ante; Weiner, Christiane N.; Wiemers, Martin; Hof, Christian

    2016-01-01

    Impacts of climate change on individual species are increasingly well documented, but we lack understanding of how these effects propagate through ecological communities. Here we combine species distribution models with ecological network analyses to test potential impacts of climate change on >700 plant and animal species in pollination and seed-dispersal networks from central Europe. We discover that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change. In contrast, biotic specialization of plants is not related to climatic niche breadth and vulnerability. A simulation model incorporating different scenarios of species coextinction and capacities for partner switches shows that projected plant extinctions under climate change are more likely to trigger animal coextinctions than vice versa. This result demonstrates that impacts of climate change on biodiversity can be amplified via extinction cascades from plants to animals in ecological networks. PMID:28008919

  12. Ecological networks are more sensitive to plant than to animal extinction under climate change.

    PubMed

    Schleuning, Matthias; Fründ, Jochen; Schweiger, Oliver; Welk, Erik; Albrecht, Jörg; Albrecht, Matthias; Beil, Marion; Benadi, Gita; Blüthgen, Nico; Bruelheide, Helge; Böhning-Gaese, Katrin; Dehling, D Matthias; Dormann, Carsten F; Exeler, Nina; Farwig, Nina; Harpke, Alexander; Hickler, Thomas; Kratochwil, Anselm; Kuhlmann, Michael; Kühn, Ingolf; Michez, Denis; Mudri-Stojnić, Sonja; Plein, Michaela; Rasmont, Pierre; Schwabe, Angelika; Settele, Josef; Vujić, Ante; Weiner, Christiane N; Wiemers, Martin; Hof, Christian

    2016-12-23

    Impacts of climate change on individual species are increasingly well documented, but we lack understanding of how these effects propagate through ecological communities. Here we combine species distribution models with ecological network analyses to test potential impacts of climate change on >700 plant and animal species in pollination and seed-dispersal networks from central Europe. We discover that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change. In contrast, biotic specialization of plants is not related to climatic niche breadth and vulnerability. A simulation model incorporating different scenarios of species coextinction and capacities for partner switches shows that projected plant extinctions under climate change are more likely to trigger animal coextinctions than vice versa. This result demonstrates that impacts of climate change on biodiversity can be amplified via extinction cascades from plants to animals in ecological networks.

  13. Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change

    PubMed Central

    Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie

    2016-01-01

    Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change. PMID:27621443

  14. Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change.

    PubMed

    Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie

    2016-09-27

    Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change.

  15. Comparison of lead and cadmium contents in cruciferous vegetables grown under diversified ecological conditions: Cracow region of Poland.

    PubMed

    Kapusta-Duch, Joanna; Leszczyńska, Teresa; Florkiewicz, Adam; Filipiak-Florkiewicz, Agnieszka

    2011-01-01

    The aim of the present study was to compare lead and cadmium contents in cruciferous vegetables grown under diversified ecological conditions for three consecutive years, independently of the climatic and agrotechnical conditions. The research was conducted in the Cracow region of Poland and tests vegetables near the Steelworks, from ecological farms, and from local markets. The heavy metal contents were determined using the validated Atomic Absorption Spectrometry method, including electrothermal atomization, with an ET-AAS graphite cuvette (Varian AA240Z, made by Varian). Cruciferous vegetables cultivated in the areas surrounding the steelworks were characterized by alarmingly high lead content versus ecological and commercially available vegetables, while the contents of this metal in vegetables from the two latter locations did not differ. It cannot be definitively stated that the origin of vegetables influenced their cadmium content.

  16. Applications Research of Microbial Ecological Preparation in Sea Cucumber Culture

    NASA Astrophysics Data System (ADS)

    Jiang, Jiahui; Wang, Guangyu

    2017-12-01

    At present, micro ecological preparation is widely applied in aquaculture with good effect. The application of micro ecological preparation in sea cucumber culture can effectively improve the economic benefits. The micro ecological preparation can play the role of inhibiting harmful bacteria, purifying water quality and saving culture cost in the process of sea cucumber culture. We should select appropriate bacteria, guarantee stable environment and use with long-term in the applications of microbial ecological preparation in sea cucumber culture to obtain good effects.

  17. Ecological networks and their fragility.

    PubMed

    Montoya, José M; Pimm, Stuart L; Solé, Ricard V

    2006-07-20

    Darwin used the metaphor of a 'tangled bank' to describe the complex interactions between species. Those interactions are varied: they can be antagonistic ones involving predation, herbivory and parasitism, or mutualistic ones, such as those involving the pollination of flowers by insects. Moreover, the metaphor hints that the interactions may be complex to the point of being impossible to understand. All interactions can be visualized as ecological networks, in which species are linked together, either directly or indirectly through intermediate species. Ecological networks, although complex, have well defined patterns that both illuminate the ecological mechanisms underlying them and promise a better understanding of the relationship between complexity and ecological stability.

  18. Using an ecological ethics framework to make decisions about the relocation of wildlife.

    PubMed

    McCoy, Earl D; Berry, Kristin

    2008-12-01

    Relocation is an increasingly prominent conservation tool for a variety of wildlife, but the technique also is controversial, even among conservation practitioners. An organized framework for addressing the moral dilemmas often accompanying conservation actions such as relocation has been lacking. Ecological ethics may provide such a framework and appears to be an important step forward in aiding ecological researchers and biodiversity managers to make difficult moral choices. A specific application of this framework can make the reasoning process more transparent and give more emphasis to the strong sentiments about non-human organisms held by many potential users. Providing an example of the application of the framework may also increase the appeal of the reasoning process to ecological researchers and biodiversity managers. Relocation as a conservation action can be accompanied by a variety of moral dilemmas that reflect the interconnection of values, ethical positions, and conservation decisions. A model that is designed to address moral dilemmas arising from relocation of humans provides/demonstrates/illustrates a possible way to apply the ecological ethics framework and to involve practicing conservationists in the overall decision-making process.

  19. A Critical Reading of Ecocentrism and Its Meta-Scientific Use of Ecology: Instrumental versus Emancipatory Approaches in Environmental Education and Ecology Education

    ERIC Educational Resources Information Center

    Hovardas, Tasos

    2013-01-01

    The aim of the paper is to make a critical reading of ecocentrism and its meta-scientific use of ecology. First, basic assumptions of ecocentrism will be examined, which involve nature's intrinsic value, postmodern and modern positions in ecocentrism, and the subject-object dichotomy under the lenses of ecocentrism. Then, we will discuss…

  20. The role of ecology, neutral processes and antagonistic coevolution in an apparent sexual arms race.

    PubMed

    Perry, Jennifer C; Garroway, Colin J; Rowe, Locke

    2017-09-01

    Some of the strongest examples of a sexual 'arms race' come from observations of correlated evolution in sexually antagonistic traits among populations. However, it remains unclear whether these cases truly represent sexually antagonistic coevolution; alternatively, ecological or neutral processes might also drive correlated evolution. To investigate these alternatives, we evaluated the contributions of intersex genetic correlations, ecological context, neutral genetic divergence and sexual coevolution in the correlated evolution of antagonistic traits among populations of Gerris incognitus water striders. We could not detect intersex genetic correlations for these sexually antagonistic traits. Ecological variation was related to population variation in the key female antagonistic trait (spine length, a defence against males), as well as body size. Nevertheless, population covariation between sexually antagonistic traits remained substantial and significant even after accounting for all of these processes. Our results therefore provide strong evidence for a contemporary sexual arms race. © 2017 John Wiley & Sons Ltd/CNRS.

  1. The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)

    DOE PAGES

    Milano, E. R.; Lowry, D. B.; Juenger, T. E.

    2016-09-09

    The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less

  2. The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milano, E. R.; Lowry, D. B.; Juenger, T. E.

    The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less

  3. Should I use that model? Assessing the transferability of ecological models to new settings

    EPA Science Inventory

    Analysts and scientists frequently apply existing models that estimate ecological endpoints or simulate ecological processes to settings where the models have not been used previously, and where data to parameterize and validate the model may be sparse. Prior to transferring an ...

  4. Estimating hydrologic and erosion response for use in ecological site descriptions

    USDA-ARS?s Scientific Manuscript database

    Ecological resilience of rangeland landscapes is strongly related to eco-hydrologic pattern-process feedbacks that regulate the retention or loss of water and soil resources. However, key ecohydrologic information is often lacking in Ecological Site Descriptions (ESDs) used to guide management of ra...

  5. Principles for ecologically based invasive plant management

    Treesearch

    Jeremy J. James; Brenda S. Smith; Edward A. Vasquez; Roger L. Sheley

    2010-01-01

    Land managers have long identified a critical need for a practical and effective framework for designing restoration strategies, especially where invasive plants dominate. A holistic, ecologically based, invasive plant management (EBIPM) framework that integrates ecosystem health assessment, knowledge of ecological processes, and adaptive management into a successional...

  6. HUMAN AND ECOLOGICAL RISK ASSESSMENT: ASSOCIATIONS AMONG HUMAN HEALTH, ECOLOGICAL, AND ENVIRONMENTAL MONITORING

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  7. HUMAN AND ECOLOGICAL RISK: CORRELATIONS AMONG HUMAN HEALTH, ECOLOGICAL AND ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  8. HUMAN AND ECOLOGICAL RISK ASSESSMENT: ASSOCIATIONS AMONG HUMAN HEALTH, ECOLOGICAL AND ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  9. Traditional ecological knowledge and restoration practice

    Treesearch

    René Senos; Frank K. Lake; Nancy Turner; Dennis Martinez

    2006-01-01

    Ecological restoration is a process, a directed action aimed at repairing damage to ecocultural systems for which humans are responsible. Environmental degradation has impaired the functioning of both ecological and cultural systems and disrupted traditional practices that maintained these systems over several millennia. Indigenous and local peoples who depend...

  10. An industrial ecology approach to municipal solid waste management: I. Methodology

    EPA Science Inventory

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with e...

  11. HUMAN AND ECOLOGICAL RISK ASSESSMENT: ASSOCIATIONS AMONH HUMAN HEALTH, ECOLOGICAL AND ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  12. Terrestrial species viability assessments for national forests in northeastern Washington

    Treesearch

    William L. Gaines; Barbara C. Wales; Lowell H. Suring; James S. Begley; Kim Mellen-McLean; Shawne. Mohoric

    2017-01-01

    We developed a process to address terrestrial wildlife species for which management for ecosystem diversity may be inadequate for providing ecological conditions capable of sustaining viable populations. The process includes (1) identifying species of conservation concern, (2) describing source habitats, and other important ecological factors, (3) organizing species...

  13. River conservation and terrestrial mammals: key ecological processes

    Treesearch

    Thomas A. Hanley

    2008-01-01

    Key ecological processes affecting interactions between rivers and terrestrial mammals are identified and explained, using flood plains of Alaska as examples of relatively pristine systems. Both coastal (southeast Alaska) and interior Alaska examples are used. Coastal Alaskan rivers tend to be relatively short, flashy, rain-driven systems, whereas interior Alaska...

  14. Natural disturbance and stand development principles for ecological forestry

    Treesearch

    Jerry F. Franklin; Robert J. Mitchell; Brian J. Palik

    2007-01-01

    Foresters use natural disturbances and stand development processes as models for silvicultural practices in broad conceptual ways. Incorporating an understanding of natural disturbance and stand development processes more fully into silvicultural practice is the basis for an ecological forestry approach. Such an approach must include 1) understanding the importance of...

  15. Ecological Congruence Assessment for Classroom Activities and Routines: Identifying Goals and Intervention Practices in Childcare.

    ERIC Educational Resources Information Center

    Wolery, Mark; Brashers, Margaret Sigalove; Neitzel, Jennifer C.

    2002-01-01

    This article explains how educators can use the ecological congruence assessment process for identifying functional goals for young children with disabilities. Process steps include: teacher collects information about functioning in usual classroom activities, routines, and transitions; summarizes the collected information; and shares the…

  16. Evaluating landscape health: Integrating societal goals and biophysical process

    USGS Publications Warehouse

    Rapport, D.J.; Gaudet, C.; Karr, J.R.; Baron, Jill S.; Bohlen, C.; Jackson, W.; Jones, Bruce; Naiman, R.J.; Norton, B.; Pollock, M. M.

    1998-01-01

    Evaluating landscape change requires the integration of the social and natural sciences. The social sciences contribute to articulating societal values that govern landscape change, while the natural sciences contribute to understanding the biophysical processes that are influenced by human activity and result in ecological change. Building upon Aldo Leopold's criteria for landscape health, the roles of societal values and biophysical processes in shaping the landscape are explored. A framework is developed for indicators of landscape health and integrity. Indicators of integrity are useful in measuring biological condition relative to the condition in landscapes largely unaffected by human activity, while indicators of health are useful in evaluating changes in highly modified landscapes. Integrating societal goals and biophysical processes requires identification of ecological services to be sustained within a given landscape. It also requires the proper choice of temporal and spatial scales. Societal values are based upon inter-generational concerns at regional scales (e.g. soil and ground water quality). Assessing the health and integrity of the environment at the landscape scale over a period of decades best integrates societal values with underlying biophysical processes. These principles are illustrated in two contrasting case studies: (1) the South Platte River study demonstrates the role of complex biophysical processes acting at a distance; and (2) the Kissimmee River study illustrates the critical importance of social, cultural and economic concerns in the design of remedial action plans. In both studies, however, interactions between the social and the biophysical governed the landscape outcomes. The legacy of evolution and the legacy of culture requires integration for the purpose of effectively coping with environmental change.

  17. Using assemblage data in ecological indicators: A comparison and evaluation of commonly available statistical tools

    USGS Publications Warehouse

    Smith, Joseph M.; Mather, Martha E.

    2012-01-01

    Ecological indicators are science-based tools used to assess how human activities have impacted environmental resources. For monitoring and environmental assessment, existing species assemblage data can be used to make these comparisons through time or across sites. An impediment to using assemblage data, however, is that these data are complex and need to be simplified in an ecologically meaningful way. Because multivariate statistics are mathematical relationships, statistical groupings may not make ecological sense and will not have utility as indicators. Our goal was to define a process to select defensible and ecologically interpretable statistical simplifications of assemblage data in which researchers and managers can have confidence. For this, we chose a suite of statistical methods, compared the groupings that resulted from these analyses, identified convergence among groupings, then we interpreted the groupings using species and ecological guilds. When we tested this approach using a statewide stream fish dataset, not all statistical methods worked equally well. For our dataset, logistic regression (Log), detrended correspondence analysis (DCA), cluster analysis (CL), and non-metric multidimensional scaling (NMDS) provided consistent, simplified output. Specifically, the Log, DCA, CL-1, and NMDS-1 groupings were ≥60% similar to each other, overlapped with the fluvial-specialist ecological guild, and contained a common subset of species. Groupings based on number of species (e.g., Log, DCA, CL and NMDS) outperformed groupings based on abundance [e.g., principal components analysis (PCA) and Poisson regression]. Although the specific methods that worked on our test dataset have generality, here we are advocating a process (e.g., identifying convergent groupings with redundant species composition that are ecologically interpretable) rather than the automatic use of any single statistical tool. We summarize this process in step-by-step guidance for the future use of these commonly available ecological and statistical methods in preparing assemblage data for use in ecological indicators.

  18. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example].

    PubMed

    Dai, Er Fu; Zhou, Heng; Wu, Zhuo; Wang, Xiao-Fan; Xi, Wei Min; Zhu, Jian Jia

    2016-10-01

    Global climate warming has significant effect on territorial ecosystem, especially on forest ecosystem. The increase in temperature and radiative forcing will significantly alter the structure and function of forest ecosystem. The southern plantation is an important part of forests in China, its response to climate change is getting more and more intense. In order to explore the responses of southern plantation to climate change under future climate scenarios and to reduce the losses that might be caused by climate change, we used climatic estimated data under three new emission scenarios, representative concentration pathways (RCPs) scenarios (RCP2.6 scenario, RCP4.5 scenario, and RCP8.5 scenario). We used the spatially dynamic forest landscape model LANDIS-2, coupled with a forest ecosystem process model PnET-2, to simulate the impact of climate change on aboveground net primary production (ANPP), species' establishment probability (SEP) and aboveground biomass of Moshao forest farm in Huitong Ecological Station, which located in Hunan Province during the period of 2014-2094. The results showed that there were obvious differences in SEP and ANPP among different forest types under changing climate. The degrees of response of SEP to climate change for different forest types were shown as: under RCP2.6 and RCP4.5, artificial coniferous forest>natural broadleaved forest>artificial broadleaved forest. Under RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The degrees of response of ANPP to climate change for different forest types were shown as: under RCP2.6, artificial broadleaved forest> natural broadleaved forest>artificial coniferous forest. Under RCP4.5 and RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The aboveground biomass of the artificial coniferous forest would decline at about 2050, but the natural broadleaved forest and artificial broadleaved forest showed a rising trend in general. During the period of 2014-2094, the total aboveground biomass under RCP2.6, RCP4.5 and RCP8.5 scenarios increased by 68.2%, 79.3% and 72.6%, respectively. The total aboveground biomass under various climatic scenarios sort as: RCP4.5>RCP8.5>RCP2.6. We thought that an appropriate temperature might be beneficial to the biomass accumulation in this study area. However, overextended temperature might hinder the sustainable development of forest production and ecological function.

  19. The historical dynamics of social-ecological traps.

    PubMed

    Boonstra, Wiebren J; de Boer, Florianne W

    2014-04-01

    Environmental degradation is a typical unintended outcome of collective human behavior. Hardin's metaphor of the "tragedy of the commons" has become a conceived wisdom that captures the social dynamics leading to environmental degradation. Recently, "traps" has gained currency as an alternative concept to explain the rigidity of social and ecological processes that produce environmental degradation and livelihood impoverishment. The trap metaphor is, however, a great deal more complex compared to Hardin's insight. This paper takes stock of studies using the trap metaphor. It argues that the concept includes time and history in the analysis, but only as background conditions and not as a factor of causality. From a historical-sociological perspective this is remarkable since social-ecological traps are clearly path-dependent processes, which are causally produced through a conjunction of events. To prove this point the paper conceptualizes social-ecological traps as a process instead of a condition, and systematically compares history and timing in one classic and three recent studies of social-ecological traps. Based on this comparison it concludes that conjunction of social and environmental events contributes profoundly to the production of trap processes. The paper further discusses the implications of this conclusion for policy intervention and outlines how future research might generalize insights from historical-sociological studies of traps.

  20. Response of a multi-stressed Mediterranean river to future climate and socio-economic scenarios.

    PubMed

    Stefanidis, Konstantinos; Panagopoulos, Yiannis; Mimikou, Maria

    2018-06-15

    Streams and rivers are among the most threatened ecosystems in Europe due to the combined effects of multiple pressures related to anthropogenic activities. Particularly in the Mediterranean region, changes in hydromorphology along with increased nutrient loadings are known to affect the ecological functions and ecosystem services of streams and rivers with the anticipated climate change being likely to further impair their functionality and structure. In this study, we investigated the combined effects of agricultural driven stressors on the ecology and delivered services of the Pinios river basin in Greece under three future world scenarios developed within the EU funded MARS project. Scenarios are based on combinations of Representative Concentration Pathways and Shared Socioeconomic Pathways and refer to early century (2030) and mid-century (2060) representing future climate worlds with particular socioeconomic characteristics. To assess the responses of ecological and ecosystem service indicators to the scenarios we first simulated hydrology and water quality in Pinios with a process-based model. Simulated abiotic stressor parameters (predictors) were linked to two biotic indicators, the macroinvertebrate indicators ASPT and EPT, with empirical modelling based on boosted regression trees and general linear models. Our results showed that the techno world scenario driven by fast economic growth and intensive exploitation of energy resources had the largest impact on both the abiotic status (nutrient loads and concentrations in water) and the biotic indicators. In contrast, the predicted changes under the other two future worlds, consensus and fragmented, were more diverse and were mostly dictated by the projected climate. This work showed that the future scenarios, especially the mid-century ones, had significant impact on both abiotic status and biotic responses underpinning the need for implementing catchment management practices able to mitigate the ecological threat on waters in the long-term. Copyright © 2018 Elsevier B.V. All rights reserved.

Top