Science.gov

Sample records for ecological simulation modeling

  1. Ecological simulation model of Los Angeles Harbor

    NASA Astrophysics Data System (ADS)

    Kremer, James N.; Kremer, Patricia

    1983-05-01

    A quasi-steady state numerical ecosystem model was designed to help evaluate the potential impact of various scenarios of effluent treatment and of a landfill on the distribution of phytoplankton and inorganic nutrients in Los Angeles and Long Beach harbors Formulations included (a) tidal circulation, (b) phytoplankton growth and oxygen production as a function of temperature, light, and nutrients, (c) grazing by zooplankton, (d) respiration and nutrient regeneration by the benthos, (e) biochemical oxidation of organics, and (f) nitrification Phytoplankton nitrogen, ammonium, nitrate, and oxygen were the state variables, which were simulated with diel and spatial variability for a range of seasonal conditions. Physical circulation was indicated to be a primary factor governing the distribution of state variables, and the landfill resulted in significant alterations. Simulated phytoplankton stocks approximated the upper range of reported concentrations, indicating a satisfactory prediction of bloom conditions. The model indicated that while light may usually regulate maximum phytoplankton levels, under bloom conditions nutrient limitation may also be important Most of the outer Los Angeles Harbor was affected by the effluent, as shown by comparison to the case with zero input Simulations for secondary versus primary treatment converged a short distance from the outfall in response to high BOD oxidation rates. In general, total phytoplankton crop was not greatly affected by the change from primary to secondary treatment, and predation on phytoplankton was small

  2. Simulation models of ecological economics developed with energy language methods

    SciTech Connect

    Odum, H.T. . Dept. of Environmental Engineering Sciences)

    1989-08-01

    The energy-systems language method of modelling and simulation, because of its energy constrained rules, is a means for transferring homologous concepts between levels of the hierarchies of nature. Mathematics of self-organization may justify emulation as the simulation of systems overview without details. Here, these methods are applied to the new fields of ecological economics and ecological engineering . Since the vitality of national economics depends on the symbiotic coupling of environmental resources and human economic behavior, the energy language is adapted to develop overview models of nations relevant to public policies. An overview model of a developing nation is given as an example with simulations for alternative policies. Maximum economic vitality was obtained with trade for external resources, but ultimate economic carrying capacity and standard of living was determined by indigenous resources, optimum utilization and absence of foreign debt.

  3. Simulation of socio-ecological impacts: Modeling a fishing village

    NASA Astrophysics Data System (ADS)

    Miller, Philip C.

    1982-03-01

    The interrelationship of society and environment is addressed here through the study of a remote fishing village of 750 people. An interdisciplinary study evaluated demographic, economic, and social aspects of the community, and simulation modeling was used to integrate these societal characteristics with environmental factors. The population of the village had grown gradually until the 1960's, when a decline began. Out-migration correlated with declining fish harvests and with increased communications with urban centers. Fishing had provided the greatest economic opportunity, followed by logging. A survey was conducted to investigate the costs and revenues of village fishermen. Diversification characterized the local fleet, and analysis showed that rates of return on investment in the current year were equal between vessel types. The variable levels and rate parameters of the demographic, economic, and social components of the model were specified through static and time series data. Sensitivity analysis to assess the effects of uncertainty, and validation tests against known historical changes were also conducted. Forecast scenarios identified the development options under several levels of fish abundance and investment. The weight given to ecological versus economic resource management registered disproportionate effects due to the interaction between investment and migration rates and resource stochasticity. This finding argues against a “golden mean” rule for evaluating policy trade-offs and argues for the importance of using a dynamic, socio-ecological perspective in designing development policies for rural communities.

  4. Computer simulation model of ecological succession in Australian subtropical rainforest. Environmental Sciences Division Publication No. 1407

    SciTech Connect

    Shugart, H.H.; Mortlock, A.T.; Hopkins, M.S.; Burgess, I.P.

    1980-04-01

    KIAMBRAM, a detailed simulation model for ecological succession in an Australian subtropical humid rainforest is documented in respect to model structure. Model parameters for 125 rainforest tree species are provided. A listing of the KIAMBRAM model and a sample of output from the model is included.

  5. Predicting waste stabilization pond performance using an ecological simulation model

    SciTech Connect

    New, G.R.

    1987-01-01

    Waste stabilization ponds (lagoons) are often favored in small communities because of their low cost and ease of operation. Most models currently used to predict performance are empirical or fail to address the primary lagoon cell. Empirical methods for predicting lagoon performance have been found to be off as much as 248 percent when used on a system other than the one they were developed for. Also, the present models developed for the primary cell lack the ability to predict parameters other than biochemical oxygen demand (BOD) and nitrogen. Oxygen consumption is usually estimated from BOD utilization. LAGOON is a fortran program which models the biogeochemical processes characteristic of the primary cell of facultative lagoons. Model parameters can be measured from lagoons in the vicinity of a proposed lagoon or estimated from laboratory studies. The model was calibrated utilizing a subset of the Corinne Utah lagoon data then validated utilizing a subset of the Corinne Utah data.

  6. CELSS-3D: a broad computer model simulating a controlled ecological life support system.

    PubMed

    Schneegurt, M A; Sherman, L A

    1997-01-01

    CELSS-3D is a dynamic, deterministic, and discrete computer simulation of a controlled ecological life support system (CELSS) focusing on biological issues. A series of linear difference equations within a graphic-based modeling environment, the IThink program, was used to describe a modular CELSS system. The overall model included submodels for crop growth chambers, food storage reservoirs, the human crew, a cyanobacterial growth chamber, a waste processor, fixed nitrogen reservoirs, and the atmospheric gases, CO, O2, and N2. The primary process variable was carbon, although oxygen and nitrogen flows were also modeled. Most of the input data used in CELSS-3D were from published sources. A separate linear optimization program, What'sBest!, was used to compare options for the crew's vegetarian diet. CELSS-3D simulations were run for the equivalent of 3 years with a 1-h time interval. Output from simulations run under nominal conditions was used to illustrate dynamic changes in the concentrations of atmospheric gases. The modular design of CELSS-3D will allow other configurations and various failure scenarios to be tested and compared.

  7. CELSS-3D: a broad computer model simulating a controlled ecological life support system.

    PubMed

    Schneegurt, M A; Sherman, L A

    1997-01-01

    CELSS-3D is a dynamic, deterministic, and discrete computer simulation of a controlled ecological life support system (CELSS) focusing on biological issues. A series of linear difference equations within a graphic-based modeling environment, the IThink program, was used to describe a modular CELSS system. The overall model included submodels for crop growth chambers, food storage reservoirs, the human crew, a cyanobacterial growth chamber, a waste processor, fixed nitrogen reservoirs, and the atmospheric gases, CO, O2, and N2. The primary process variable was carbon, although oxygen and nitrogen flows were also modeled. Most of the input data used in CELSS-3D were from published sources. A separate linear optimization program, What'sBest!, was used to compare options for the crew's vegetarian diet. CELSS-3D simulations were run for the equivalent of 3 years with a 1-h time interval. Output from simulations run under nominal conditions was used to illustrate dynamic changes in the concentrations of atmospheric gases. The modular design of CELSS-3D will allow other configurations and various failure scenarios to be tested and compared. PMID:11540449

  8. Adding ecology to particle capture models: numerical simulations of capture on a moving cylinder in crossflow.

    PubMed

    Krick, Julian; Ackerman, Josef Daniel

    2015-03-01

    The particle capture efficiency, η, of systems that remove suspended particles from ambient flow (e.g. suspension feeding, abiotic pollination) has been studied using static collectors in steady flows. Particle deposition on collectors moving due to fluid flow remains largely unknown, despite its ecological relevance. We used numerical modeling to simulate particle deposition on a 2D circular cylinder subject to flow-induced oscillation in a cross flow. Using parameter values relevant to wind pollination and other natural biological systems, we examined the influence of the direction, amplitude and frequency of the oscillation, the Stokes number (Stk=0.01-5, characterizing particle behavior), as well as the Reynolds number (Re=662 and 3309, characterizing flow regime) in steady and unsteady flow, on η. The numerical model was validated with empirical results for parts of the parameter space. Particle capture occurred via "inertial impaction", "direct interception" and "leeward deposition", as well as via a new mechanism, "collector chasing" for moving collectors. The η of an oscillating cylinder varied significantly relative to a static cylinder, depending on the parameters used, and on the magnitude of a numerical error that caused loss of particles. This variance of η was due to a change in relative momentum between the particle and the moving collector, which depends on Re, Stk and the oscillation parameters. Collector oscillation transverse to oncoming flow direction strongly increased η, whereas collector motion parallel to flow had little effect on capture efficiency. The oscillation also changed leeward capture significantly in some cases. For most conditions, however, leeward deposition was small. Results suggest that collector motion could have significant influence on the particle capture efficiency of natural systems, which indicates the need to incorporate these ecologically more relevant findings into current models. Empirical studies, however

  9. Adding ecology to particle capture models: numerical simulations of capture on a moving cylinder in crossflow.

    PubMed

    Krick, Julian; Ackerman, Josef Daniel

    2015-03-01

    The particle capture efficiency, η, of systems that remove suspended particles from ambient flow (e.g. suspension feeding, abiotic pollination) has been studied using static collectors in steady flows. Particle deposition on collectors moving due to fluid flow remains largely unknown, despite its ecological relevance. We used numerical modeling to simulate particle deposition on a 2D circular cylinder subject to flow-induced oscillation in a cross flow. Using parameter values relevant to wind pollination and other natural biological systems, we examined the influence of the direction, amplitude and frequency of the oscillation, the Stokes number (Stk=0.01-5, characterizing particle behavior), as well as the Reynolds number (Re=662 and 3309, characterizing flow regime) in steady and unsteady flow, on η. The numerical model was validated with empirical results for parts of the parameter space. Particle capture occurred via "inertial impaction", "direct interception" and "leeward deposition", as well as via a new mechanism, "collector chasing" for moving collectors. The η of an oscillating cylinder varied significantly relative to a static cylinder, depending on the parameters used, and on the magnitude of a numerical error that caused loss of particles. This variance of η was due to a change in relative momentum between the particle and the moving collector, which depends on Re, Stk and the oscillation parameters. Collector oscillation transverse to oncoming flow direction strongly increased η, whereas collector motion parallel to flow had little effect on capture efficiency. The oscillation also changed leeward capture significantly in some cases. For most conditions, however, leeward deposition was small. Results suggest that collector motion could have significant influence on the particle capture efficiency of natural systems, which indicates the need to incorporate these ecologically more relevant findings into current models. Empirical studies, however

  10. The use of typed lambda calculus for comprehension and construction of simulation models in the domain of ecology

    NASA Technical Reports Server (NTRS)

    Uschold, Michael

    1992-01-01

    We are concerned with two important issues in simulation modelling: model comprehension and model construction. Model comprehension is limited because many important choices taken during the modelling process are not documented. This makes it difficult for models to be modified or used by others. A key factor hindering model construction is the vast modelling search space which must be navigated. This is exacerbated by the fact that many modellers are unfamiliar with the terms and concepts catered to by current tools. The root of both problems is the lack of facilities for representing or reasoning about domain concepts in current simulation technology. The basis for our achievements in both of these areas is the development of a language with two distinct levels; one for representing domain information, and the other for representing the simulation model. Of equal importance, is the fact that we make formal connections between these two levels. The domain we are concerned with is ecological modelling. This language, called Elklogic, is based on the typed lambda calculus. Important features include a rich type structure, the use of various higher order functions, and semantics. This enables complex expressions to be constructed from relatively few primitives. The meaning of each expression can be determined in terms of the domain, the simulation model, or the relationship between the two. We describe a novel representation for sets and substructure, and a variety of other general concepts that are especially useful in the ecological domain. We use the type structure in a novel way: for controlling the modelling search space, rather than a proof search space. We facilitate model comprehension by representing modelling decisions that are embodied in the simulation model. We represent the simulation model separately from, but in terms of a domain mode. The explicit links between the two models constitute the modelling decisions. The semantics of Elklogic enables

  11. A Simulated Stream Ecology Study.

    ERIC Educational Resources Information Center

    Zampella, Robert A.

    1979-01-01

    Describes a simulated field experience to study stream ecology in the classroom. Secondary students determine the composition of the stream community, describe the distribution of the benthic invertebrates, and design a food web. (Author/MA)

  12. Simulation of regionally ecological land based on a cellular automation model: a case study of Beijing, China.

    PubMed

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-08-01

    Ecological land is like the "liver" of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem.

  13. Linking Bayesian and Agent-Based Models to Simulate Complex Social-Ecological Systems in the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Pope, A.; Gimblett, R.

    2013-12-01

    Interdependencies of ecologic, hydrologic, and social systems challenge traditional approaches to natural resource management in semi-arid regions. As a complex social-ecological system, water demands in the Sonoran Desert from agricultural and urban users often conflicts with water needs for its ecologically-significant riparian corridors. To explore this system, we developed an agent-based model to simulate complex feedbacks between human decisions and environmental conditions. Cognitive mapping in conjunction with stakeholder participation produced a Bayesian model of conditional probabilities of local human decision-making processes resulting to changes in water demand. Probabilities created in the Bayesian model were incorporated into the agent-based model, so that each agent had a unique probability to make a positive decision based on its perceived environment at each point in time and space. By using a Bayesian approach, uncertainty in the human decision-making process could be incorporated. The spatially-explicit agent-based model simulated changes in depth-to-groundwater by well pumping based on an agent's water demand. Depth-to-groundwater was then used as an indicator of unique vegetation guilds within the riparian corridor. Each vegetation guild provides varying levels of ecosystem services, the changes of which, along with changes in depth-to-groundwater, feedback to influence agent behavior. Using this modeling approach allowed us to examine resilience of semi-arid riparian corridors and agent behavior under various scenarios. The insight provided by the model contributes to understanding how specific interventions may alter the complex social-ecological system in the future.

  14. Comparison of simulation modeling and satellite techniques for monitoring ecological processes

    NASA Technical Reports Server (NTRS)

    Box, Elgene O.

    1988-01-01

    In 1985 improvements were made in the world climatic data base for modeling and predictive mapping; in individual process models and the overall carbon-balance models; and in the interface software for mapping the simulation results. Statistical analysis of the data base was begun. In 1986 mapping was shifted to NASA-Goddard. The initial approach involving pattern comparisons was modified to a more statistical approach. A major accomplishment was the expansion and improvement of a global data base of measurements of biomass and primary production, to complement the simulation data. The main accomplishments during 1987 included: production of a master tape with all environmental and satellite data and model results for the 1600 sites; development of a complete mapping system used for the initial color maps comparing annual and monthly patterns of Normalized Difference Vegetation Index (NDVI), actual evapotranspiration, net primary productivity, gross primary productivity, and net ecosystem production; collection of more biosphere measurements for eventual improvement of the biological models; and development of some initial monthly models for primary productivity, based on satellite data.

  15. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission

    PubMed Central

    Depinay, Jean-Marc O; Mbogo, Charles M; Killeen, Gerry; Knols, Bart; Beier, John; Carlson, John; Dushoff, Jonathan; Billingsley, Peter; Mwambi, Henry; Githure, John; Toure, Abdoulaye M; Ellis McKenzie, F

    2004-01-01

    Background Malaria is one of the oldest and deadliest infectious diseases in humans. Many mathematical models of malaria have been developed during the past century, and applied to potential interventions. However, malaria remains uncontrolled and is increasing in many areas, as are vector and parasite resistance to insecticides and drugs. Methods This study presents a simulation model of African malaria vectors. This individual-based model incorporates current knowledge of the mechanisms underlying Anopheles population dynamics and their relations to the environment. One of its main strengths is that it is based on both biological and environmental variables. Results The model made it possible to structure existing knowledge, assembled in a comprehensive review of the literature, and also pointed out important aspects of basic Anopheles biology about which knowledge is lacking. One simulation showed several patterns similar to those seen in the field, and made it possible to examine different analyses and hypotheses for these patterns; sensitivity analyses on temperature, moisture, predation and preliminary investigations of nutrient competition were also conducted. Conclusions Although based on some mathematical formulae and parameters, this new tool has been developed in order to be as explicit as possible, transparent in use, close to reality and amenable to direct use by field workers. It allows a better understanding of the mechanisms underlying Anopheles population dynamics in general and also a better understanding of the dynamics in specific local geographic environments. It points out many important areas for new investigations that will be critical to effective, efficient, sustainable interventions. PMID:15285781

  16. The possibility of coexistence and co-development in language competition: ecology-society computational model and simulation.

    PubMed

    Yun, Jian; Shang, Song-Chao; Wei, Xiao-Dan; Liu, Shuang; Li, Zhi-Jie

    2016-01-01

    Language is characterized by both ecological properties and social properties, and competition is the basic form of language evolution. The rise and decline of one language is a result of competition between languages. Moreover, this rise and decline directly influences the diversity of human culture. Mathematics and computer modeling for language competition has been a popular topic in the fields of linguistics, mathematics, computer science, ecology, and other disciplines. Currently, there are several problems in the research on language competition modeling. First, comprehensive mathematical analysis is absent in most studies of language competition models. Next, most language competition models are based on the assumption that one language in the model is stronger than the other. These studies tend to ignore cases where there is a balance of power in the competition. The competition between two well-matched languages is more practical, because it can facilitate the co-development of two languages. A third issue with current studies is that many studies have an evolution result where the weaker language inevitably goes extinct. From the integrated point of view of ecology and sociology, this paper improves the Lotka-Volterra model and basic reaction-diffusion model to propose an "ecology-society" computational model for describing language competition. Furthermore, a strict and comprehensive mathematical analysis was made for the stability of the equilibria. Two languages in competition may be either well-matched or greatly different in strength, which was reflected in the experimental design. The results revealed that language coexistence, and even co-development, are likely to occur during language competition.

  17. The possibility of coexistence and co-development in language competition: ecology-society computational model and simulation.

    PubMed

    Yun, Jian; Shang, Song-Chao; Wei, Xiao-Dan; Liu, Shuang; Li, Zhi-Jie

    2016-01-01

    Language is characterized by both ecological properties and social properties, and competition is the basic form of language evolution. The rise and decline of one language is a result of competition between languages. Moreover, this rise and decline directly influences the diversity of human culture. Mathematics and computer modeling for language competition has been a popular topic in the fields of linguistics, mathematics, computer science, ecology, and other disciplines. Currently, there are several problems in the research on language competition modeling. First, comprehensive mathematical analysis is absent in most studies of language competition models. Next, most language competition models are based on the assumption that one language in the model is stronger than the other. These studies tend to ignore cases where there is a balance of power in the competition. The competition between two well-matched languages is more practical, because it can facilitate the co-development of two languages. A third issue with current studies is that many studies have an evolution result where the weaker language inevitably goes extinct. From the integrated point of view of ecology and sociology, this paper improves the Lotka-Volterra model and basic reaction-diffusion model to propose an "ecology-society" computational model for describing language competition. Furthermore, a strict and comprehensive mathematical analysis was made for the stability of the equilibria. Two languages in competition may be either well-matched or greatly different in strength, which was reflected in the experimental design. The results revealed that language coexistence, and even co-development, are likely to occur during language competition. PMID:27386304

  18. COFLO: A Computer Aid for Teaching Ecological Simulation.

    ERIC Educational Resources Information Center

    Le vow, Roy B.

    A computer-assisted course was designed to provide students with an understanding of modeling and simulation techniques in quantitiative ecology. It deals with continuous systems and has two segments. One develops mathematical and computer tools, beginning with abstract systems and their relation to physical systems. Modeling principles are next…

  19. Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model

    PubMed Central

    Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan

    2016-01-01

    Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML. PMID:27023575

  20. Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model.

    PubMed

    Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan

    2016-03-24

    Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML.

  1. Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model.

    PubMed

    Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan

    2016-04-01

    Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML. PMID:27023575

  2. Long-term impacts of selective logging on two Amazonian tree species with contrasting ecological and reproductive characteristics: inferences from Eco-gene model simulations.

    PubMed

    Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T C R; Harris, S A; Boshier, D H

    2015-08-01

    The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests. PMID:24424164

  3. Modeling extreme risks in ecology.

    PubMed

    Burgman, Mark; Franklin, James; Hayes, Keith R; Hosack, Geoffrey R; Peters, Gareth W; Sisson, Scott A

    2012-11-01

    Extreme risks in ecology are typified by circumstances in which data are sporadic or unavailable, understanding is poor, and decisions are urgently needed. Expert judgments are pervasive and disagreements among experts are commonplace. We outline approaches to evaluating extreme risks in ecology that rely on stochastic simulation, with a particular focus on methods to evaluate the likelihood of extinction and quasi-extinction of threatened species, and the likelihood of establishment and spread of invasive pests. We evaluate the importance of assumptions in these assessments and the potential of some new approaches to account for these uncertainties, including hierarchical estimation procedures and generalized extreme value distributions. We conclude by examining the treatment of consequences in extreme risk analysis in ecology and how expert judgment may better be harnessed to evaluate extreme risks.

  4. Cosmic emergy based ecological systems modelling

    NASA Astrophysics Data System (ADS)

    Chen, H.; Chen, G. Q.; Ji, X.

    2010-09-01

    Ecological systems modelling based on the unified biophysical measure of cosmic emergy in terms of embodied cosmic exergy is illustrated in this paper with ecological accounting, simulation and scenario analysis, by a case study for the regional socio-economic ecosystem associated with the municipality of Beijing. An urbanized regional ecosystem model with eight subsystems of natural support, agriculture, urban production, population, finance, land area, potential environmental impact, and culture is representatively presented in exergy circuit language with 12 state variables governing by corresponding ecodynamic equations, and 60 flows and auxiliary variables. To characterize the regional socio-economy as an ecosystem, a series of ecological indicators based on cosmic emergy are devised. For a systematic ecological account, cosmic exergy transformities are provided for various dimensions including climate flows, natural resources, industrial products, cultural products, population with educational hierarchy, and environmental emissions. For the urban ecosystem of Beijing in the period from 1990 to 2005, ecological accounting is carried out and characterized in full details. Taking 2000 as the starting point, systems modelling is realized to predict the urban evolution in a one hundred time horizon. For systems regulation, scenario analyses with essential policy-making implications are made to illustrate the long term systems effects of the expected water diversion and rise in energy price.

  5. Auto-calibration of a one-dimensional hydrodynamic-ecological model using a Monte Carlo approach: simulation of hypoxic events in a polymictic lake

    NASA Astrophysics Data System (ADS)

    Luo, L.

    2011-12-01

    Automated calibration of complex deterministic water quality models with a large number of biogeochemical parameters can reduce time-consuming iterative simulations involving empirical judgements of model fit. We undertook auto-calibration of the one-dimensional hydrodynamic-ecological lake model DYRESM-CAEDYM, using a Monte Carlo sampling (MCS) method, in order to test the applicability of this procedure for shallow, polymictic Lake Rotorua (New Zealand). The calibration procedure involved independently minimising the root-mean-square-error (RMSE), maximizing the Pearson correlation coefficient (r) and Nash-Sutcliffe efficient coefficient (Nr) for comparisons of model state variables against measured data. An assigned number of parameter permutations was used for 10,000 simulation iterations. The 'optimal' temperature calibration produced a RMSE of 0.54 °C, Nr-value of 0.99 and r-value of 0.98 through the whole water column based on comparisons with 540 observed water temperatures collected between 13 July 2007 - 13 January 2009. The modeled bottom dissolved oxygen concentration (20.5 m below surface) was compared with 467 available observations. The calculated RMSE of the simulations compared with the measurements was 1.78 mg L-1, the Nr-value was 0.75 and the r-value was 0.87. The autocalibrated model was further tested for an independent data set by simulating bottom-water hypoxia events for the period 15 January 2009 to 8 June 2011 (875 days). This verification produced an accurate simulation of five hypoxic events corresponding to DO < 2 mg L-1 during summer of 2009-2011. The RMSE was 2.07 mg L-1, Nr-value 0.62 and r-value of 0.81, based on the available data set of 738 days. The auto-calibration software of DYRESM-CAEDYM developed here is substantially less time-consuming and more efficient in parameter optimisation than traditional manual calibration which has been the standard tool practiced for similar complex water quality models.

  6. Ecologic simulation of warm water aquaculture ponds

    SciTech Connect

    Piedrahitu, R.H.; Brune, D.E.; Orlob, G.T.; Tchobanoglous, G.

    1983-06-01

    A generalized ecologic model of a fertilized warm-water aquaculture pond is under development. The model is intended to represent the pond ecosystem and its response to external stimuli. The major physical, chemical and biological processes and parameters are included in the model. A total of 19 state variables are included in the model (dissolved oxygen, alkalinity, pH, ammonia, phytoplankton, etc.). The model is formulated as a system of mass balance equations. The equations include stimulatory and inhibitory effects of environmental parameters on processes taking place in the pond. The equations may be solved for the entire growth period and diurnal as well as seasonal fluctuations may be identified. The ultimate objective of the model is to predict the fish biomass that can be produced in a pond under a given set of environmental conditions.

  7. Simulated coevolution in a mutating ecology

    NASA Astrophysics Data System (ADS)

    Sá Martins, J. S.

    2000-03-01

    The bit-string Penna model is used to simulate the competition between an asexual parthenogenetic and a sexual population sharing the same environment. A newborn of either population can mutate and become a part of the other with some probability. In a stable environment the sexual population soon dies out. When an infestation by rapidly mutating genetically coupled parasites is introduced, however, sexual reproduction prevails, as predicted by the so-called Red Queen hypothesis for the evolution of sex.

  8. Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations.

    PubMed

    Curtarelli, Marcelo Pedroso; Ogashawara, Igor; de Araújo, Carlos Alberto Sampaio; Lorenzzetti, João Antônio; Leão, Joaquim Antônio Dionísio; Alcântara, Enner; Stech, José Luiz

    2016-05-01

    We used a three-dimensional model to assess the dynamics of diffusive carbon dioxide flux (F(CO2)) from a hydroelectric reservoir located at Amazon rainforest. Our results showed that for the studied periods (2013 summer/wet and winter/dry seasons) the surface averaged F(CO2) presented similar behaviors, with regular emissions peaks. The mean daily surface averaged F(CO2) showed no significant difference between the seasons (p>0.01), with values around -1338mg Cm-2day-1 (summer/wet) and -1395mg Cm-2day-1 (winter/dry). At diel scale, the F(CO2) was large during the night and morning and low during the afternoon in both seasons. Regarding its spatial distribution, the F(CO2) showed to be more heterogeneous during the summer/wet than during the winter/dry season. The highest F(CO2) were observed at transition zone (-300mg Cm-2h-1) during summer and at littoral zone (-55mg Cm-2h-1) during the winter. The total CO2 emitted by the reservoir along 2013 year was estimated to be 1.1Tg C year-1. By extrapolating our results we found that the total carbon emitted by all Amazonian reservoirs can be around 7Tg C year-1, which is 22% lower than the previous published estimate. This significant difference should not be neglected in the carbon inventories since the carbon emission is a key factor when comparing the environmental impacts of different sources of electricity generation and can influences decision makers in the selection of the more appropriate source of electricity and, in case of hydroelectricity, the geographical position of the reservoirs.

  9. Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations.

    PubMed

    Curtarelli, Marcelo Pedroso; Ogashawara, Igor; de Araújo, Carlos Alberto Sampaio; Lorenzzetti, João Antônio; Leão, Joaquim Antônio Dionísio; Alcântara, Enner; Stech, José Luiz

    2016-05-01

    We used a three-dimensional model to assess the dynamics of diffusive carbon dioxide flux (F(CO2)) from a hydroelectric reservoir located at Amazon rainforest. Our results showed that for the studied periods (2013 summer/wet and winter/dry seasons) the surface averaged F(CO2) presented similar behaviors, with regular emissions peaks. The mean daily surface averaged F(CO2) showed no significant difference between the seasons (p>0.01), with values around -1338mg Cm-2day-1 (summer/wet) and -1395mg Cm-2day-1 (winter/dry). At diel scale, the F(CO2) was large during the night and morning and low during the afternoon in both seasons. Regarding its spatial distribution, the F(CO2) showed to be more heterogeneous during the summer/wet than during the winter/dry season. The highest F(CO2) were observed at transition zone (-300mg Cm-2h-1) during summer and at littoral zone (-55mg Cm-2h-1) during the winter. The total CO2 emitted by the reservoir along 2013 year was estimated to be 1.1Tg C year-1. By extrapolating our results we found that the total carbon emitted by all Amazonian reservoirs can be around 7Tg C year-1, which is 22% lower than the previous published estimate. This significant difference should not be neglected in the carbon inventories since the carbon emission is a key factor when comparing the environmental impacts of different sources of electricity generation and can influences decision makers in the selection of the more appropriate source of electricity and, in case of hydroelectricity, the geographical position of the reservoirs. PMID:26914722

  10. Stochastic ecological network occupancy (SENO) models: a new tool for modeling ecological networks across spatial scales

    USGS Publications Warehouse

    Lafferty, Kevin D.; Dunne, Jennifer A.

    2010-01-01

    Stochastic ecological network occupancy (SENO) models predict the probability that species will occur in a sample of an ecological network. In this review, we introduce SENO models as a means to fill a gap in the theoretical toolkit of ecologists. As input, SENO models use a topological interaction network and rates of colonization and extinction (including consumer effects) for each species. A SENO model then simulates the ecological network over time, resulting in a series of sub-networks that can be used to identify commonly encountered community modules. The proportion of time a species is present in a patch gives its expected probability of occurrence, whose sum across species gives expected species richness. To illustrate their utility, we provide simple examples of how SENO models can be used to investigate how topological complexity, species interactions, species traits, and spatial scale affect communities in space and time. They can categorize species as biodiversity facilitators, contributors, or inhibitors, making this approach promising for ecosystem-based management of invasive, threatened, or exploited species.

  11. Ecological Impacts of the Cerro Grande Fire: Predicting Elk Movement and Distribution Patterns in Response to Vegetative Recovery through Simulation Modeling October 2005

    SciTech Connect

    Rupp, Susan P.

    2005-10-01

    In May 2000, the Cerro Grande Fire burned approximately 17,200 ha in north-central New Mexico as the result of an escaped prescribed burn initiated by Bandelier National Monument. The interaction of large-scale fires, vegetation, and elk is an important management issue, but few studies have addressed the ecological implications of vegetative succession and landscape heterogeneity on ungulate populations following large-scale disturbance events. Primary objectives of this research were to identify elk movement pathways on local and landscape scales, to determine environmental factors that influence elk movement, and to evaluate movement and distribution patterns in relation to spatial and temporal aspects of the Cerro Grande Fire. Data collection and assimilation reflect the collaborative efforts of National Park Service, U.S. Forest Service, and Department of Energy (Los Alamos National Laboratory) personnel. Geographic positioning system (GPS) collars were used to track 54 elk over a period of 3+ years and locational data were incorporated into a multi-layered geographic information system (GIS) for analysis. Preliminary tests of GPS collar accuracy indicated a strong effect of 2D fixes on position acquisition rates (PARs) depending on time of day and season of year. Slope, aspect, elevation, and land cover type affected dilution of precision (DOP) values for both 2D and 3D fixes, although significant relationships varied from positive to negative making it difficult to delineate the mechanism behind significant responses. Two-dimensional fixes accounted for 34% of all successfully acquired locations and may affect results in which those data were used. Overall position acquisition rate was 93.3% and mean DOP values were consistently in the range of 4.0 to 6.0 leading to the conclusion collar accuracy was acceptable for modeling purposes. SAVANNA, a spatially explicit, process-oriented ecosystem model, was used to simulate successional dynamics. Inputs to the

  12. WASP TRANSPORT MODELING AND WASP ECOLOGICAL MODELING

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  13. Toward an Ecological Evaluation Model.

    ERIC Educational Resources Information Center

    Parker, Jackson; Patterson, Jerry L.

    1979-01-01

    The authors suggest that the aura of authority traditionally placed on educational research and evaluation has been based on an outdated understanding of the scientific enterprise. They outline an alternative view of science which is more ecological and provides more scope and power for evaluating educational programs. They propose a new framework…

  14. Spatial Uncertainty Analysis of Ecological Models

    SciTech Connect

    Jager, H.I.; Ashwood, T.L.; Jackson, B.L.; King, A.W.

    2000-09-02

    The authors evaluated the sensitivity of a habitat model and a source-sink population model to spatial uncertainty in landscapes with different statistical properties and for hypothetical species with different habitat requirements. Sequential indicator simulation generated alternative landscapes from a source map. Their results showed that spatial uncertainty was highest for landscapes in which suitable habitat was rare and spatially uncorrelated. Although, they were able to exert some control over the degree of spatial uncertainty by varying the sampling density drawn from the source map, intrinsic spatial properties (i.e., average frequency and degree of spatial autocorrelation) played a dominant role in determining variation among realized maps. To evaluate the ecological significance of landscape variation, they compared the variation in predictions from a simple habitat model to variation among landscapes for three species types. Spatial uncertainty in predictions of the amount of source habitat depended on both the spatial life history characteristics of the species and the statistical attributes of the synthetic landscapes. Species differences were greatest when the landscape contained a high proportion of suitable habitat. The predicted amount of source habitat was greater for edge-dependent (interior) species in landscapes with spatially uncorrelated(correlated) suitable habitat. A source-sink model demonstrated that, although variation among landscapes resulted in relatively little variation in overall population growth rate, this spatial uncertainty was sufficient in some situations, to produce qualitatively different predictions about population viability (i.e., population decline vs. increase).

  15. Simulating the effects of fire and climate change on northern Rocky Mountain landscapes using the ecological process model FIRE-BGC

    SciTech Connect

    Keane, R.E.; Ryan, K.; Running, S.W.

    1995-12-31

    A mechanistic successional model, FIRE-BGC (a FIRE BioGeoChemical succession model), has been developed to investigate the role of fire and climate on long-term landscape dynamics in northern Rocky Mountain coniferous forests. This FIRE-BGC application explicitly simulates fire behavior and effects on landscape characteristics. Predictions of evapotranspiration are contrasted with and without fire over 200 years of simulation for the McDonald Drainage, Glacier National Park under current climate conditions are provided as an example of the potential of FIRE-BGC.

  16. An Interdisciplinary Model for Teaching Evolutionary Ecology.

    ERIC Educational Resources Information Center

    Coletta, John

    1992-01-01

    Describes a general systems evolutionary model and demonstrates how a previously established ecological model is a function of its past development based on the evolution of the rock, nutrient, and water cycles. Discusses the applications of the model in environmental education. (MDH)

  17. The Integration of Ecological processes into a Multi-layer Higher order closure Land Surface Model

    NASA Astrophysics Data System (ADS)

    Chang, K. Y.; Paw U, K. T.; Chen, S. H.

    2015-12-01

    The ecological impacts on biogeophysical and biogeochemical processes were investigated by a series of simulations conducted by a multi-layer higher order closure land surface model (UCD-ACASA) driven by a variety of meteorological and ecological conditions. The results show that the implementation of a more realistic ecological dataset, once carefully quality controlled, can significantly improve the biogeophysical and biogeochemical simulations, which suggests that the ecological impacts on surface layer simulations are as important as the reliability of the selected land surface model. Therefore, the ability to simulate realistic ecological conditions is imperative and beneficial to improve weather and climate simulations. We coupled the ecological processes in UCD-ACASA by adapting the fully prognostic plant carbon and nitrogen dynamics from the version 4.5 of the Community Land Model (CLM4.5). The simulated ecological conditions are sensitive to both radiative transfer processes and leaf distribution inside the canopy, and the multi-layer feature built in UCD-ACASA enables it to describe these properties more realistically as compared to the other big-leaf models. We conducted another set of simulations to examine the reliability of the simulated biogeophysical, biogeochemical and ecological results. The simulated Leaf Area Index (LAI) was compared with a high resolution remotely sensed LAI dataset, and the results show that the simulated LAI tends to overestimate mean LAI and underestimate annual LAI variation at the selected sites. However, the simulated LAI is reasonable enough to produce comparable simulation results against the simulations driven directly by remotely sensed LAI for the tested biogeophysical and biogeochemical fluxes. The results show that ecological impacts on biogeophysical and biogeochemical simulations are significant, and the implementation of biogeochemical processes into a land surface model has the potential to improve weather and

  18. Individual-based models in ecology after four decades

    PubMed Central

    Grimm, Volker

    2014-01-01

    Individual-based models simulate populations and communities by following individuals and their properties. They have been used in ecology for more than four decades, with their use and ubiquity in ecology growing rapidly in the last two decades. Individual-based models have been used for many applied or “pragmatic” issues, such as informing the protection and management of particular populations in specific locations, but their use in addressing theoretical questions has also grown rapidly, recently helping us to understand how the sets of traits of individual organisms influence the assembly of communities and food webs. Individual-based models will play an increasingly important role in questions posed by complex ecological systems. PMID:24991416

  19. Progress and challenges in coupled hydrodynamic-ecological estuarine modeling

    PubMed Central

    Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O’Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy M.; Vaudrey, Jamie M.P.

    2016-01-01

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy. PMID:27721675

  20. Simulating Ecological Complexity Using the Example of Pesticides in Ecosystems.

    ERIC Educational Resources Information Center

    Muir, Patricia S.; McCune, Bruce

    1993-01-01

    Describes a simulation exercise developed for an introductory biology course for nonmajors. The simulation focuses on the control of western spruce budworms in forests of the western United States. A nonlinear, multivariate simulation model is used. (PR)

  1. Crisis in Context Theory: An Ecological Model

    ERIC Educational Resources Information Center

    Myer, Rick A.; Moore, Holly B.

    2006-01-01

    This article outlines a theory for understanding the impact of a crisis on individuals and organizations. Crisis in context theory (CCT) is grounded in an ecological model and based on literature in the field of crisis intervention and on personal experiences of the authors. A graphic representation denotes key components and premises of CCT,…

  2. Social Ecological Model Analysis for ICT Integration

    ERIC Educational Resources Information Center

    Zagami, Jason

    2013-01-01

    ICT integration of teacher preparation programmes was undertaken by the Australian Teaching Teachers for the Future (TTF) project in all 39 Australian teacher education institutions and highlighted the need for guidelines to inform systemic ICT integration approaches. A Social Ecological Model (SEM) was used to positively inform integration…

  3. Modelling macroevolutionary patterns: An ecological perspective

    NASA Astrophysics Data System (ADS)

    Solé, R. V.

    Complex ecosystems display well-defined macroscopic regularities suggesting that some generic dynamical rules operate at the ecosystem level where the relevance of the single-species features is rather weak. Most evolutionary theory deals with genes/species as the units of selection operating on populations. However, the role of ecological networks and external perturbations seems to be at least as important as microevolutionary events based on natural selection operating at the smalle st levels. Here we review some of the recent theoretical approximations to ecosystem evolution based on network dynamics. It is suggested that the evolutionary dynamics of ecological networks underlie fundamental laws of ecology-level dynamics which naturally decouple micro from macroevolutionary dynamics. Using simple models of macroevolution, most of the available statistical information obtained from the fossil record is remarkably well reproduced and explained within a new theoretical framework.

  4. A Global Lake Ecological Observatory Network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models

    USGS Publications Warehouse

    David, Hamilton P; Carey, Cayelan C; Arvola, Lauri; Arzberger, Peter; Brewer, Carol A.; Cole, Jon J; Gaiser, Evelyn; Hanson, Paul C.; Ibelings, Bas W; Jennings, Eleanor; Kratz, Tim K; Lin, Fang-Pang; McBride, Christopher G; de Motta Marques, David; Muraoka, Kohji; Nishri, Ami; Qin, Boqiang; Read, Jordan S.; Rose, Kevin C.; Ryder, Elizabeth; Weathers, Kathleen C.; Zhu, Guangwei; Trolle, Dennis; Brookes, Justin D

    2014-01-01

    A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated response to the need for scientific understanding of lake processes, utilising technological advances available from autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process- based ecological models because model simulation time steps are better aligned with sensor measurements than with lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. The case studies demonstrate some of the difficulties of mapping sensor measurements directly to model state variable outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest.

  5. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors

    PubMed Central

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H.; Gambhir, Manoj; Fu, Joshua S.; Liu, Yang; Remais, Justin V.

    2014-01-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001–2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057–2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate. PMID:24772388

  6. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors.

    PubMed

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V

    2013-09-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate. PMID:24772388

  7. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors.

    PubMed

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V

    2013-09-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate.

  8. Simulating ecological changes caused by marine energy devices

    NASA Astrophysics Data System (ADS)

    Schuchert, Pia; Elsaesser, Bjoern; Pritchard, Daniel; Kregting, Louise

    2015-04-01

    Marine renewable energy from wave and tidal technology has the potential to contribute significantly globally to energy security for future generations. However common to both tidal and wave energy extraction systems is concern regarding the potential environmental consequences of the deployment of the technology as environmental and ecological effects are so far poorly understood. Ecological surveys and studies to investigate the environmental impacts are time consuming and costly and are generally reactive; a more efficient approach is to develop 2 and 3D linked hydrodynamic-ecological modelling which has the potential to be proactive and to allow forecasting of the effects of array installation. The objective of the study was to explore tools which can help model and evaluate possible far- and near field changes in the environment and ecosystem caused by the introduction of arrays of marine energy devices. Using the commercial software, MIKE by DHI, we can predict and model possible changes in the ecosystem. MIKE21 and ECOLab modelling software provide the opportunity to couple high level hydrodynamic models with process based ecological models and/or agent based models (ABM). The flow solutions of the model were determined in an idealised tidal basin with the dimensions similar to that of Strangford Lough, Northern Ireland, a body of water renowned for the location of the first grid-connected tidal turbine, SeaGen. In the first instance a simple process oriented ecological NPZD model was developed which are used to model marine and freshwater systems describing four state variables, Nutrient, Phytoplankton, Zooplankton and Detritus. The ecological model was run and evaluated under two hydrodynamic scenarios of the idealised basin. This included no tidal turbines (control) and an array of 55 turbines, an extreme scenario. Whilst an array of turbines has an effect on the hydrodynamics of the Lough, it is unlikely to see an extreme effect on the NPZD model

  9. An ecological process model of systems change.

    PubMed

    Peirson, Leslea J; Boydell, Katherine M; Ferguson, H Bruce; Ferris, Lorraine E

    2011-06-01

    In June 2007 the American Journal of Community Psychology published a special issue focused on theories, methods and interventions for systems change which included calls from the editors and authors for theoretical advancement in this field. We propose a conceptual model of systems change that integrates familiar and fundamental community psychology principles (succession, interdependence, cycling of resources, adaptation) and accentuates a process orientation. To situate our framework we offer a definition of systems change and a brief review of the ecological perspective and principles. The Ecological Process Model of Systems Change is depicted, described and applied to a case example of policy driven systems level change in publicly funded social programs. We conclude by identifying salient implications for thinking and action which flow from the Model. PMID:21203829

  10. Modelling the ecological niche from functional traits

    PubMed Central

    Kearney, Michael; Simpson, Stephen J.; Raubenheimer, David; Helmuth, Brian

    2010-01-01

    The niche concept is central to ecology but is often depicted descriptively through observing associations between organisms and habitats. Here, we argue for the importance of mechanistically modelling niches based on functional traits of organisms and explore the possibilities for achieving this through the integration of three theoretical frameworks: biophysical ecology (BE), the geometric framework for nutrition (GF) and dynamic energy budget (DEB) models. These three frameworks are fundamentally based on the conservation laws of thermodynamics, describing energy and mass balance at the level of the individual and capturing the prodigious predictive power of the concepts of ‘homeostasis’ and ‘evolutionary fitness’. BE and the GF provide mechanistic multi-dimensional depictions of climatic and nutritional niches, respectively, providing a foundation for linking organismal traits (morphology, physiology, behaviour) with habitat characteristics. In turn, they provide driving inputs and cost functions for mass/energy allocation within the individual as determined by DEB models. We show how integration of the three frameworks permits calculation of activity constraints, vital rates (survival, development, growth, reproduction) and ultimately population growth rates and species distributions. When integrated with contemporary niche theory, functional trait niche models hold great promise for tackling major questions in ecology and evolutionary biology. PMID:20921046

  11. Implicit assimilation for marine ecological models

    NASA Astrophysics Data System (ADS)

    Weir, B.; Miller, R.; Spitz, Y. H.

    2012-12-01

    We use a new data assimilation method to estimate the parameters of a marine ecological model. At a given point in the ocean, the estimated values of the parameters determine the behaviors of the modeled planktonic groups, and thus indicate which species are dominant. To begin, we assimilate in situ observations, e.g., the Bermuda Atlantic Time-series Study, the Hawaii Ocean Time-series, and Ocean Weather Station Papa. From there, we estimate the parameters at surrounding points in space based on satellite observations of ocean color. Given the variation of the estimated parameters, we divide the ocean into regions meant to represent distinct ecosystems. An important feature of the data assimilation approach is that it refines the confidence limits of the optimal Gaussian approximation to the distribution of the parameters. This enables us to determine the ecological divisions with greater accuracy.

  12. Aviation Safety Simulation Model

    NASA Technical Reports Server (NTRS)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.

  13. Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation

    NASA Astrophysics Data System (ADS)

    Marrasé, Celia

    2004-03-01

    Researchers in aquatic sciences have long been interested in describing temporal and biological heterogeneities at different observation scales. During the 1970s, scaling studies received a boost from the application of spectral analysis to ecological sciences. Since then, new insights have evolved in parallel with advances in observation technologies and computing power. In particular, during the last 2 decades, novel theoretical achievements were facilitated by the use of microstructure profilers, the application of mathematical tools derived from fractal and wavelet analyses, and the increase in computing power that allowed more complex simulations. The idea of publishing the Handbook of Scaling Methods in Aquatic Ecology arose out of a special session of the 2001 Aquatic Science Meeting of the American Society of Limnology and Oceanography. The edition of the book is timely, because it compiles a good amount of the work done in these last 2 decades. The book is comprised of three sections: measurements, analysis, and simulation. Each contains some review chapters and a number of more specialized contributions. The contents are multidisciplinary and focus on biological and physical processes and their interactions over a broad range of scales, from micro-layers to ocean basins. The handbook topics include high-resolution observation methodologies, as well as applications of different mathematical tools for analysis and simulation of spatial structures, time variability of physical and biological processes, and individual organism behavior. The scientific background of the authors is highly diverse, ensuring broad interest for the scientific community.

  14. Rainfall simulation experiments in ecological and conventional vineyards.

    NASA Astrophysics Data System (ADS)

    Adrian, Alexander; Brings, Christine; Rodrigo Comino, Jesús; Iserloh, Thomas; Ries, Johannes B.

    2015-04-01

    In October 2014, the Trier University started a measurement series, which defines, compares and evaluates the behavior of runoff and soil erosion with different farming productions in vineyards. The research area is located in Kanzem, a traditional wine village in the Saar Valley (Rheinland-Palatinate, Germany). The test fields show different cultivation methods: ecological (with natural vegetation cover under and around the vines) and conventional cultivated rows of wine. By using the small portable rainfall simulator of Trier University it shall be proved if the assumption that there is more runoff and soil erosion in the conventional part than in the ecological part of the tillage system. Rainfall simulations assess the generation of overland flow, soil erosion and infiltration. So, a trend of soil erosion and runoff of the different cultivation techniques are noted. The objective of this work is to compare the geomorphological dynamics of two different tillage systems. Therefore, 30 rainfall simulations plots were evenly distributed on a west exposition hillside with different slope angels (8-25°), vegetation- and stone-covers. In concrete, the plot surface reaches from strongly covered soil across lithoidal surfaces to bare soil often with compacted lanes of typical using machines. In addition, by using the collected substrate, an estimation and distribution of the grain size of the eroded material shall be given. The eroded substrate is compared to soil samples of the test plots. The first results have shown that there is slightly more runoff and soil erosion in the ecological area than on the conventional part of the vineyard.

  15. Model calibration criteria for estimating ecological flow characteristics

    USGS Publications Warehouse

    Vis, Marc; Knight, Rodney; Poole, Sandra; Wolfe, William; Seibert, Jan; Breuer, Lutz; Kraft, Philipp

    2016-01-01

    Quantification of streamflow characteristics in ungauged catchments remains a challenge. Hydrological modeling is often used to derive flow time series and to calculate streamflow characteristics for subsequent applications that may differ from those envisioned by the modelers. While the estimation of model parameters for ungauged catchments is a challenging research task in itself, it is important to evaluate whether simulated time series preserve critical aspects of the streamflow hydrograph. To address this question, seven calibration objective functions were evaluated for their ability to preserve ecologically relevant streamflow characteristics of the average annual hydrograph using a runoff model, HBV-light, at 27 catchments in the southeastern United States. Calibration trials were repeated 100 times to reduce parameter uncertainty effects on the results, and 12 ecological flow characteristics were computed for comparison. Our results showed that the most suitable calibration strategy varied according to streamflow characteristic. Combined objective functions generally gave the best results, though a clear underprediction bias was observed. The occurrence of low prediction errors for certain combinations of objective function and flow characteristic suggests that (1) incorporating multiple ecological flow characteristics into a single objective function would increase model accuracy, potentially benefitting decision-making processes; and (2) there may be a need to have different objective functions available to address specific applications of the predicted time series.

  16. An overview of the utility of population simulation software in molecular ecology.

    PubMed

    Hoban, Sean

    2014-05-01

    Stochastic simulation software that simultaneously model genetic, population and environmental processes can inform many topics in molecular ecology. These include forecasting species and community response to environmental change, inferring dispersal ecology, revealing cryptic mating, quantifying past population dynamics, assessing in situ management options and monitoring neutral and adaptive biodiversity change. Advances in population demographic-genetic simulation software, especially with respect to individual life history, landscapes and genetic processes, are transforming and expanding the ways that molecular data can be used. The aim of this review is to explain the roles that such software can play in molecular ecology studies (whether as a principal component or a supporting function) so that researchers can decide whether, when and precisely how simulations can be incorporated into their work. First, I use seven case studies to demonstrate how simulations are employed, their specific advantage/necessity and what alternative or complementary (nonsimulation) approaches are available. I also explain how simulations can be integrated with existing spatial, environmental, historical and genetic data sets. I next describe simulation features that may be of interest to molecular ecologists, such as spatial and behavioural considerations and species' interactions, to provide guidance on how particular simulation capabilities can serve particular needs. Lastly, I discuss the prospect of simulation software in emerging challenges (climate change, biodiversity monitoring, population exploitation) and opportunities (genomics, ancient DNA), in order to emphasize that the scope of simulation-based work is expanding. I also suggest practical considerations, priorities and elements of best practice. This should accelerate the uptake of simulation approaches and firmly embed them as a versatile tool in the molecular ecologist's toolbox.

  17. Simulating social-ecological systems: the Island Digital Ecosystem Avatars (IDEA) consortium.

    PubMed

    Davies, Neil; Field, Dawn; Gavaghan, David; Holbrook, Sally J; Planes, Serge; Troyer, Matthias; Bonsall, Michael; Claudet, Joachim; Roderick, George; Schmitt, Russell J; Zettler, Linda Amaral; Berteaux, Véronique; Bossin, Hervé C; Cabasse, Charlotte; Collin, Antoine; Deck, John; Dell, Tony; Dunne, Jennifer; Gates, Ruth; Harfoot, Mike; Hench, James L; Hopuare, Marania; Kirch, Patrick; Kotoulas, Georgios; Kosenkov, Alex; Kusenko, Alex; Leichter, James J; Lenihan, Hunter; Magoulas, Antonios; Martinez, Neo; Meyer, Chris; Stoll, Benoit; Swalla, Billie; Tartakovsky, Daniel M; Murphy, Hinano Teavai; Turyshev, Slava; Valdvinos, Fernanda; Williams, Rich; Wood, Spencer

    2016-01-01

    Systems biology promises to revolutionize medicine, yet human wellbeing is also inherently linked to healthy societies and environments (sustainability). The IDEA Consortium is a systems ecology open science initiative to conduct the basic scientific research needed to build use-oriented simulations (avatars) of entire social-ecological systems. Islands are the most scientifically tractable places for these studies and we begin with one of the best known: Moorea, French Polynesia. The Moorea IDEA will be a sustainability simulator modeling links and feedbacks between climate, environment, biodiversity, and human activities across a coupled marine-terrestrial landscape. As a model system, the resulting knowledge and tools will improve our ability to predict human and natural change on Moorea and elsewhere at scales relevant to management/conservation actions.

  18. Simulating social-ecological systems: the Island Digital Ecosystem Avatars (IDEA) consortium.

    PubMed

    Davies, Neil; Field, Dawn; Gavaghan, David; Holbrook, Sally J; Planes, Serge; Troyer, Matthias; Bonsall, Michael; Claudet, Joachim; Roderick, George; Schmitt, Russell J; Zettler, Linda Amaral; Berteaux, Véronique; Bossin, Hervé C; Cabasse, Charlotte; Collin, Antoine; Deck, John; Dell, Tony; Dunne, Jennifer; Gates, Ruth; Harfoot, Mike; Hench, James L; Hopuare, Marania; Kirch, Patrick; Kotoulas, Georgios; Kosenkov, Alex; Kusenko, Alex; Leichter, James J; Lenihan, Hunter; Magoulas, Antonios; Martinez, Neo; Meyer, Chris; Stoll, Benoit; Swalla, Billie; Tartakovsky, Daniel M; Murphy, Hinano Teavai; Turyshev, Slava; Valdvinos, Fernanda; Williams, Rich; Wood, Spencer

    2016-01-01

    Systems biology promises to revolutionize medicine, yet human wellbeing is also inherently linked to healthy societies and environments (sustainability). The IDEA Consortium is a systems ecology open science initiative to conduct the basic scientific research needed to build use-oriented simulations (avatars) of entire social-ecological systems. Islands are the most scientifically tractable places for these studies and we begin with one of the best known: Moorea, French Polynesia. The Moorea IDEA will be a sustainability simulator modeling links and feedbacks between climate, environment, biodiversity, and human activities across a coupled marine-terrestrial landscape. As a model system, the resulting knowledge and tools will improve our ability to predict human and natural change on Moorea and elsewhere at scales relevant to management/conservation actions. PMID:26998258

  19. Computer Modeling and Simulation

    SciTech Connect

    Pronskikh, V. S.

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  20. Theory Modeling and Simulation

    SciTech Connect

    Shlachter, Jack

    2012-08-23

    Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.

  1. Dynamic simulation of the laboratory-scale controlled ecological life support system.

    PubMed

    Finn, C K; Srinivasan, V

    1995-01-01

    There are a number of design and control issues that need to be resolved in order to make a crop growth chamber an integral part of a controlled ecological life support system (CELSS) capable of supporting life on extended space missions. A modeling and simulation effort, along with the construction of an experimental testbed, are underway at NASA Ames Research Center to explore the long-term dynamic behavior of closed-loop life support systems. One problem that has been isolated for investigation is the stability and robustness of closed-loop systems over extended periods of time. Currently a crop growth chamber is being integrated with a solid waste processor to study closure of the carbon loop. A dynamic simulation model of the system was developed to evaluate system design options and operational alternatives. The model was also used to simulate the impact of system buffer size on the dynamic behavior of conditions inside the crop growth chamber. PMID:11538310

  2. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  3. System dynamic modelling of industrial growth and landscape ecology in China.

    PubMed

    Xu, Jian; Kang, Jian; Shao, Long; Zhao, Tianyu

    2015-09-15

    With the rapid development of large industrial corridors in China, the landscape ecology of the country is currently being affected. Therefore, in this study, a system dynamic model with multi-dimensional nonlinear dynamic prediction function that considers industrial growth and landscape ecology is developed and verified to allow for more sustainable development. Firstly, relationships between industrial development and landscape ecology in China are examined, and five subsystems are then established: industry, population, urban economy, environment and landscape ecology. The main influencing factors are then examined for each subsystem to establish flow charts connecting those factors. Consequently, by connecting the subsystems, an overall industry growth and landscape ecology model is established. Using actual data and landscape index calculated based on GIS of the Ha-Da-Qi industrial corridor, a typical industrial corridor in China, over the period 2005-2009, the model is validated in terms of historical behaviour, logical structure and future prediction, where for 84.8% of the factors, the error rate of the model is less than 5%, the mean error rate of all factors is 2.96% and the error of the simulation test for the landscape ecology subsystem is less than 2%. Moreover, a model application has been made to consider the changes in landscape indices under four industrial development modes, and the optimal industrial growth plan has been examined for landscape ecological protection through the simulation prediction results over 2015-2020.

  4. Controlled Ecological Life Support System (CELSS) modeling

    NASA Technical Reports Server (NTRS)

    Drysdale, Alan; Thomas, Mark; Fresa, Mark; Wheeler, Ray

    1992-01-01

    Attention is given to CELSS, a critical technology for the Space Exploration Initiative. OCAM (object-oriented CELSS analysis and modeling) models carbon, hydrogen, and oxygen recycling. Multiple crops and plant types can be simulated. Resource recovery options from inedible biomass include leaching, enzyme treatment, aerobic digestion, and mushroom and fish growth. The benefit of using many small crops overlapping in time, instead of a single large crop, is demonstrated. Unanticipated results include startup transients which reduce the benefit of multiple small crops. The relative contributions of mass, energy, and manpower to system cost are analyzed in order to determine appropriate research directions.

  5. Ocean Biogeochemistry and Phytoplankton Ecology in a Global Simulation

    NASA Astrophysics Data System (ADS)

    Moore, J. K.; Doney, S. C.; Lindsay, K.

    2005-05-01

    A coupled Biogeochemistry/Ecosystem/Circulation (BEC) model is used to examine ocean biogeochemistry and phytoplankton ecology at the global scale. Phytoplankton groups represented in the model include diatoms, diazotrophs, coccolithophores and picoplankton. The groups experience differential grazing pressure and compete for light and the potentially growth-limiting nutrients iron, nitrate, ammonium, phosphate, and silicate. The model includes several key aspects of the global nitrogen cycle including nitrogen fixation (by the diazotrophs), water column denitrification under low oxygen conditions, and atmospheric nitrogen deposition to the oceans. We examine how these nitrogen fluxes influence ecosystem structure and also how light and nutrient availability restrict phytoplankton growth rates over seasonal timescales. Atmospheric deposition of mineral dust also inputs dissolved iron to the ocean model. These iron additions modify phytoplankton community composition, and rates of production and export in the iron-limited High Nitrate, Low Chlorophyll regions, and indirectly modify ecosystem dynamics by altering rates of nitrogen fixation in nitrogen-depleted, tropical and subtropical regions. We will examine the links between dust/iron deposition and nitrogen cycling in the oceans.

  6. Stochastic Downscaling for Hydrodynamic and Ecological Modeling of Lakes

    NASA Astrophysics Data System (ADS)

    Schlabing, D.; Eder, M.; Frassl, M.; Rinke, K.; Bárdossy, A.

    2012-04-01

    Weather generators are of interest in climate impact studies, because they allow different modi operandi: (1) More realizations of the past, (2) possible futures as defined by the modeler and (3) possible futures according to the combination of greenhouse gas emission scenarios and their Global Circulation Model (GCM) consequences. Climate modeling has huge inherently unquantifiable uncertainties, yet the results present themselves as single point values without any measure of uncertainty. Given this reduction of risk-relevant information, stochastic downscaling offers itself as a tool to recover the variability present in local measurements. One should bear in mind that the lake models that are fed with downscaling results are themselves deterministic and single runs may prove to be misleading. Especially population dynamics simulated by ecological models are sensitive to very particular events in the input data. A way to handle this sensitivity is to perform Monte Carlo studies with varying meteorological driving forces using a weather generator. For these studies, the Vector-Autoregressive Weather generator (VG), which was first presented at the EGU 2011, was developed further. VG generates daily air temperature, humidity, long- and shortwave radiance and wind. Wind and shortwave radiation is subsequently disaggregated to hourly values, because their short term variability has proven important for the application. Changes relative to the long-term values are modeled as disturbances that act during the autoregressive generation of the synthetic time series. The method preserves the dependence structure between the variables, as changes in the disturbed variable, say temperature, are propagated to the other variables. The approach is flexible because the disturbances can be chosen freely. Changes in mean can be represented as constant disturbance, changes in variability as episodes of certain length and amplitude. The disturbances can also be extracted from GCMs

  7. Southern marl prairies conceptual ecological model

    USGS Publications Warehouse

    Davis, S.M.; Loftus, W.F.; Gaiser, E.E.; Huffman, A.E.

    2005-01-01

    About 190,000 ha of higher-elevation marl prairies flank either side of Shark River Slough in the southern Everglades. Water levels typically drop below the ground surface each year in this landscape. Consequently, peat soil accretion is inhibited, and substrates consist either of calcitic marl produced by algal periphyton mats or exposed limestone bedrock. The southern marl prairies support complex mosaics of wet prairie, sawgrass sawgrass (Cladium jamaicense), tree islands, and tropical hammock communities and a high diversity of plant species. However, relatively short hydroperiods and annual dry downs provide stressful conditions for aquatic fauna, affecting survival in the dry season when surface water is absent. Here, we present a conceptual ecological model developed for this landscape through scientific concensus, use of empirical data, and modeling. The two major societal drivers affecting the southern marl prairies are water management practices and agricultural and urban development. These drivers lead to five groups of ecosystem stressors: loss of spatial extent and connectivity, shortened hydroperiod and increased drought severity, extended hydroperiod and drying pattern reversals, introduction and spread of non-native trees, and introduction and spread of non-native fishes. Major ecological attributes include periphyton mats, plant species diversity and community mosaic, Cape Sable seaside sparrow (Ammodramus maritimus mirabilis), marsh fishes and associated aquatic fauna prey base, American alligator (Alligator mississippiensis), and wading bird early dry season foraging. Water management and development are hypothesized to have a negative effect on the ecological attributes of the southern marl prairies in the following ways. Periphyton mats have decreased in cover in areas where hydroperiod has been significantly reduced and changed in community composition due to inverse responses to increased nutrient availability. Plant species diversity and

  8. The role of ecological models in linking ecological risk assessment to ecosystem services in agroecosystems.

    PubMed

    Galic, Nika; Schmolke, Amelie; Forbes, Valery; Baveco, Hans; van den Brink, Paul J

    2012-01-15

    Agricultural practices are essential for sustaining the human population, but at the same time they can directly disrupt ecosystem functioning. Ecological risk assessment (ERA) aims to estimate possible adverse effects of human activities on ecosystems and their parts. Current ERA practices, however, incorporate very little ecology and base the risk estimates on the results of standard tests with several standard species. The main obstacles for a more ecologically relevant ERA are the lack of clear protection goals and the inherent complexity of ecosystems that is hard to approach empirically. In this paper, we argue that the ecosystem services framework offers an opportunity to define clear and ecologically relevant protection goals. At the same time, ecological models provide the tools to address ecological complexity to the degree needed to link measurement endpoints and ecosystem services, and to quantify service provision and possible adverse effects from human activities. We focus on the ecosystem services relevant for agroecosystem functioning, including pollination, biocontrol and eutrophication effects and present modeling studies relevant for quantification of each of the services. The challenges of the ecosystem services approach are discussed as well as the limitations of ecological models in the context of ERA. A broad, multi-stakeholder dialog is necessary to aid the definition of protection goals in terms of services delivered by ecosystems and their parts. The need to capture spatio-temporal dynamics and possible interactions among service providers pose challenges for ecological models as a basis for decision making. However, we argue that both fields are advancing quickly and can prove very valuable in achieving more ecologically relevant ERA. PMID:21802704

  9. Gyrokinetic particle simulation model

    SciTech Connect

    Lee, W.W.

    1986-07-01

    A new type of particle simulation model based on the gyrophase-averaged Vlasov and Poisson equations is presented. The reduced system, in which particle gyrations are removed from the equations of motion while the finite Larmor radius effects are still preserved, is most suitable for studying low frequency microinstabilities in magnetized plasmas. It is feasible to simulate an elongated system (L/sub parallel/ >> L/sub perpendicular/) with a three-dimensional grid using the present model without resorting to the usual mode expansion technique, since there is essentially no restriction on the size of ..delta..x/sub parallel/ in a gyrokinetic plasma. The new approach also enables us to further separate the time and spatial scales of the simulation from those associated with global transport through the use of multiple spatial scale expansion. Thus, the model can be a very efficient tool for studying anomalous transport problems related to steady-state drift-wave turbulence in magnetic confinement devices. It can also be applied to other areas of plasma physics.

  10. Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    EPA Science Inventory

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...

  11. Hydrodynamic and Ecological Assessment of Nearshore Restoration: A Modeling Study

    SciTech Connect

    Yang, Zhaoqing; Sobocinski, Kathryn L.; Heatwole, Danelle W.; Khangaonkar, Tarang; Thom, Ronald M.; Fuller, Roger

    2010-04-10

    Along the Pacific Northwest coast, much of the estuarine habitat has been diked over the last century for agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect coastal habitats that are vital to aquatic species, many restoration projects are currently underway to restore the estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Information on physical processes and hydrodynamic conditions are critical for the assessment of the success of restoration actions. Restoration of a 160- acre property at the mouth of the Stillaguamish River in Puget Sound has been proposed. The goal is to restore native tidal habitats and estuary-scale ecological processes by removing the dike. In this study, a three-dimensional hydrodynamic model was developed for the Stillaguamish River estuary to simulate estuarine processes. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Responses were evaluated at the scale of the restoration footprint. Model data was combined with biophysical data to predict habitat responses at the site. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (< 5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.

  12. A Conceptual Framework for Evaluating the Domains of Applicability of Ecological Models and its Implementation in the Ecological Production Function Library - International Society for Ecological Modelling Conference

    EPA Science Inventory

    The use of computational ecological models to inform environmental management and policy has proliferated in the past 25 years. These models have become essential tools as linkages and feedbacks between human actions and ecological responses can be complex, and as funds for sampl...

  13. Modeling the ecological impact of heavy metals on aquatic ecosystems: a framework for the development of an ecological model.

    PubMed

    He, M; Wang, Z; Tang, H

    2001-02-01

    In this paper, an ecological model is proposed to predict the effects of heavy metals on aquatic ecosystems. The bioavailable concentration of metals and a concept of toxicity strength (TS) are combined. The integrated ecological model relates the transport, distribution and speciation of heavy metals and their toxicity, and the effect of environmental variability on metal toxicity. It also emphasizes the link between physical and chemical processes of heavy metals in rivers and ecological effects. Based on the data obtained from research in the CERP project (Co-operative Ecological Research Project), the ecological impact of heavy metals on the aquatic ecosystem of the Le An River (polluted by heavy metals from a copper mine) was predicted. The results show that the estimated values of toxicity strength for surface water are in agreement with the percentage inhibition for the test organism (P. phosphoreum) and that the predicted ecological effect of polluted sediment is consistent with natural variability in aquatic ecosystems. PMID:11258829

  14. A Complementary Ecological Model of the Coordinated School Health Program

    ERIC Educational Resources Information Center

    Lohrmann, David K.

    2010-01-01

    Background: A complementary ecological model of the coordinated school health program (CSHP) reflecting 20 years of evolved changes is proposed. Ecology refers to the complex interrelationship between intrapersonal factors, interpersonal processes and primary groups, institutional factors, community factors, and public policy. Methods: Public…

  15. Documentation of the Ecological Risk Assessment Computer Model ECORSK.5

    SciTech Connect

    Anthony F. Gallegos; Gilbert J. Gonzales

    1999-06-01

    The FORTRAN77 ecological risk computer model--ECORSK.5--has been used to estimate the potential toxicity of surficial deposits of radioactive and non-radioactive contaminants to several threatened and endangered (T and E) species at the Los Alamos National Laboratory (LANL). These analyses to date include preliminary toxicity estimates for the Mexican spotted owl, the American peregrine falcon, the bald eagle, and the southwestern willow flycatcher. This work has been performed as required for the Record of Decision for the construction of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility at LANL as part of the Environmental Impact Statement. The model is dependent on the use of the geographic information system and associated software--ARC/INFO--and has been used in conjunction with LANL's Facility for Information Management and Display (FIMAD) contaminant database. The integration of FIMAD data and ARC/INFO using ECORSK.5 allows the generation of spatial information from a gridded area of potential exposure called an Ecological Exposure Unit. ECORSK.5 was used to simulate exposures using a modified Environmental Protection Agency Quotient Method. The model can handle a large number of contaminants within the home range of T and E species. This integration results in the production of hazard indices which, when compared to risk evaluation criteria, estimate the potential for impact from consumption of contaminants in food and ingestion of soil. The assessment is considered a Tier-2 type of analysis. This report summarizes and documents the ECORSK.5 code, the mathematical models used in the development of ECORSK.5, and the input and other requirements for its operation. Other auxiliary FORTRAN 77 codes used for processing and graphing output from ECORSK.5 are also discussed. The reader may refer to reports cited in the introduction to obtain greater detail on past applications of ECORSK.5 and assumptions used in deriving model parameters.

  16. [Simulation of urban ecological security pattern based on cellular automata: a case of Dongguan City, Guangdong Province of South China].

    PubMed

    Yang, Qing-Sheng; Qiao, Ji-Gang; Ai, Bin

    2013-09-01

    Taking the Dongguan City with rapid urbanization as a case, and selecting landscape ecological security level as evaluation criterion, the urbanization cellular number of 1 km x 1 km ecological security cells was obtained, and imbedded into the transition rules of cellular automata (CA) as the restraint term to control urban development, establish ecological security urban CA, and simulate ecological security urban development pattern. The results showed the integrated landscape ecological security index of the City decreased from 0.497 in 1998 to 0.395 in 2005, indicating that the ecological security at landscape scale was decreased. The CA-simulated integrated ecological security index of the City in 2005 was increased from the measured 0.395 to 0.479, showing that the simulated urban landscape ecological pressure from human became lesser, ecological security became better, and integrated landscape ecological security became higher. CA could be used as an effective tool in researching urban ecological security.

  17. Analytically tractable model for community ecology with many species.

    PubMed

    Dickens, Benjamin; Fisher, Charles K; Mehta, Pankaj

    2016-08-01

    A fundamental problem in community ecology is understanding how ecological processes such as selection, drift, and immigration give rise to observed patterns in species composition and diversity. Here, we analyze a recently introduced, analytically tractable, presence-absence (PA) model for community assembly, and we use it to ask how ecological traits such as the strength of competition, the amount of diversity, and demographic and environmental stochasticity affect species composition in a community. In the PA model, species are treated as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Building upon previous work, we show that, despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent studies of large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special ("critical") point corresponding to Hubbell's neutral theory of biodiversity. These results suggest that the concepts of ecological "phases" and phase diagrams can provide a powerful framework for thinking about community ecology, and that the PA model captures the essential ecological dynamics of community assembly. PMID:27627348

  18. Analytically tractable model for community ecology with many species

    NASA Astrophysics Data System (ADS)

    Dickens, Benjamin; Fisher, Charles K.; Mehta, Pankaj

    2016-08-01

    A fundamental problem in community ecology is understanding how ecological processes such as selection, drift, and immigration give rise to observed patterns in species composition and diversity. Here, we analyze a recently introduced, analytically tractable, presence-absence (PA) model for community assembly, and we use it to ask how ecological traits such as the strength of competition, the amount of diversity, and demographic and environmental stochasticity affect species composition in a community. In the PA model, species are treated as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Building upon previous work, we show that, despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent studies of large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special ("critical") point corresponding to Hubbell's neutral theory of biodiversity. These results suggest that the concepts of ecological "phases" and phase diagrams can provide a powerful framework for thinking about community ecology, and that the PA model captures the essential ecological dynamics of community assembly.

  19. Disentangling nestedness from models of ecological complexity.

    PubMed

    James, Alex; Pitchford, Jonathan W; Plank, Michael J

    2012-07-12

    Complex networks of interactions are ubiquitous and are particularly important in ecological communities, in which large numbers of species exhibit negative (for example, competition or predation) and positive (for example, mutualism) interactions with one another. Nestedness in mutualistic ecological networks is the tendency for ecological specialists to interact with a subset of species that also interact with more generalist species. Recent mathematical and computational analysis has suggested that such nestedness increases species richness. By examining previous results and applying computational approaches to 59 empirical data sets representing mutualistic plant–pollinator networks, we show that this statement is incorrect. A simpler metric—the number of mutualistic partners a species has—is a much better predictor of individual species survival and hence, community persistence. Nestedness is, at best, a secondary covariate rather than a causative factor for biodiversity in mutualistic communities. Analysis of complex networks should be accompanied by analysis of simpler, underpinning mechanisms that drive multiple higher-order network properties.

  20. Boechera, a model system for ecological genomics

    PubMed Central

    Rushworth, Catherine A.; Song, Bao-Hua; Lee, Cheng-Ruei; Mitchell-Olds, Thomas

    2011-01-01

    The selection and development of a study system for evolutionary and ecological functional genomics (EEFG) depends on a variety of factors. Here we present the genus Boechera as an exemplary system with which to address ecological and evolutionary questions. Our focus on Boechera is based on several characteristics: 1) native populations in undisturbed habitats where current environments reflect historical conditions over several thousand years; 2) functional genomics benefitting from its close relationship to Arabidopsis thaliana; 3) inbreeding tolerance enabling development of recombinant inbred lines, near-isogenic lines, and positional cloning; 4) interspecific crosses permitting mapping for genetic analysis of speciation; 5) apomixis (asexual reproduction by seeds) in a genetically tractable diploid; and 6) broad geographic distribution in North America, permitting ecological genetics for a large research community. These characteristics, along with the current sequencing of three Boechera species by the Joint Genome Institute, position Boechera as a rapidly advancing system for EEFG studies. PMID:22059452

  1. Ecological risk assessment of genetically modified crops based on cellular automata modeling.

    PubMed

    Yang, Jun; Wang, Zhi-Rui; Yang, De-Li; Yang, Qing; Yan, Jun; He, Ming-Feng

    2009-01-01

    The assessment of ecological risk in genetically modified (GM) biological systems is critically important for decision-making and public acceptance. Cellular automata (CA) provide a potential modeling and simulation framework for representing relationships and interspecies interactions both temporally and spatially. In this paper, a simple subsystem contains only four species: crop, target pest, non-target pest and enemy insect, and a three layer arrangement of LxL stochastic cellular automata with a periodic boundary were established. The simulation of this simplified system showed abundant and sufficient complexity in population assembly and densities, suggesting a prospective application in ecological risk assessment of GM crops. PMID:19477260

  2. Ecological risk assessment of genetically modified crops based on cellular automata modeling.

    PubMed

    Yang, Jun; Wang, Zhi-Rui; Yang, De-Li; Yang, Qing; Yan, Jun; He, Ming-Feng

    2009-01-01

    The assessment of ecological risk in genetically modified (GM) biological systems is critically important for decision-making and public acceptance. Cellular automata (CA) provide a potential modeling and simulation framework for representing relationships and interspecies interactions both temporally and spatially. In this paper, a simple subsystem contains only four species: crop, target pest, non-target pest and enemy insect, and a three layer arrangement of LxL stochastic cellular automata with a periodic boundary were established. The simulation of this simplified system showed abundant and sufficient complexity in population assembly and densities, suggesting a prospective application in ecological risk assessment of GM crops.

  3. Probabilistic ecological risk assessment of effluent toxicity of a wastewater reclamation plant based on process modeling.

    PubMed

    Zeng, Siyu; Huang, Yunqing; Sun, Fu; Li, Dan; He, Miao

    2016-09-01

    The growing use of reclaimed wastewater for environmental purposes such as stream flow augmentation requires comprehensive ecological risk assessment and management. This study applied a system analysis approach, regarding a wastewater reclamation plant (WRP) and its recipient water body as a whole system, and assessed the ecological risk of the recipient water body caused by the WRP effluent. Instead of specific contaminants, two toxicity indicators, i.e. genotoxicity and estrogenicity, were selected to directly measure the biological effects of all bio-available contaminants in the reclaimed wastewater, as well as characterize the ecological risk of the recipient water. A series of physically based models were developed to simulate the toxicity indicators in a WRP through a typical reclamation process, including ultrafiltration, ozonation, and chlorination. After being validated against the field monitoring data from a full-scale WRP in Beijing, the models were applied to simulate the probability distribution of effluent toxicity of the WRP through Latin Hypercube Sampling to account for the variability of influent toxicity and operation conditions. The simulated effluent toxicity was then used to derive the predicted environmental concentration (PEC) in the recipient stream, considering the variations of the toxicity and flow of the upstream inflow as well. The ratio of the PEC of each toxicity indicator to its corresponding predicted no-effect concentration was finally used for the probabilistic ecological risk assessment. Regional sensitivity analysis was also performed with the developed models to identify the critical control variables and strategies for ecological risk management. PMID:27219046

  4. Probabilistic ecological risk assessment of effluent toxicity of a wastewater reclamation plant based on process modeling.

    PubMed

    Zeng, Siyu; Huang, Yunqing; Sun, Fu; Li, Dan; He, Miao

    2016-09-01

    The growing use of reclaimed wastewater for environmental purposes such as stream flow augmentation requires comprehensive ecological risk assessment and management. This study applied a system analysis approach, regarding a wastewater reclamation plant (WRP) and its recipient water body as a whole system, and assessed the ecological risk of the recipient water body caused by the WRP effluent. Instead of specific contaminants, two toxicity indicators, i.e. genotoxicity and estrogenicity, were selected to directly measure the biological effects of all bio-available contaminants in the reclaimed wastewater, as well as characterize the ecological risk of the recipient water. A series of physically based models were developed to simulate the toxicity indicators in a WRP through a typical reclamation process, including ultrafiltration, ozonation, and chlorination. After being validated against the field monitoring data from a full-scale WRP in Beijing, the models were applied to simulate the probability distribution of effluent toxicity of the WRP through Latin Hypercube Sampling to account for the variability of influent toxicity and operation conditions. The simulated effluent toxicity was then used to derive the predicted environmental concentration (PEC) in the recipient stream, considering the variations of the toxicity and flow of the upstream inflow as well. The ratio of the PEC of each toxicity indicator to its corresponding predicted no-effect concentration was finally used for the probabilistic ecological risk assessment. Regional sensitivity analysis was also performed with the developed models to identify the critical control variables and strategies for ecological risk management.

  5. INVASIVE SPECIES: PREDICTING GEOGRAPHIC DISTRIBUTIONS USING ECOLOGICAL NICHE MODELING

    EPA Science Inventory

    Present approaches to species invasions are reactive in nature. This scenario results in management that perpetually lags behind the most recent invasion and makes control much more difficult. In contrast, spatially explicit ecological niche modeling provides an effective solut...

  6. An analytically tractable model for community ecology with many species

    NASA Astrophysics Data System (ADS)

    Dickens, Benjamin; Fisher, Charles; Mehta, Pankaj; Pankaj Mehta Biophysics Theory Group Team

    A fundamental problem in community ecology is to understand how ecological processes such as selection, drift, and immigration yield observed patterns in species composition and diversity. Here, we present an analytically tractable, presence-absence (PA) model for community assembly and use it to ask how ecological traits such as the strength of competition, diversity in competition, and stochasticity affect species composition in a community. In our PA model, we treat species as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent work on large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special (``critical'') point corresponding to Hubbell's neutral theory of biodiversity. Our results suggest that the concepts of ``phases'' and phase diagrams can provide a powerful framework for thinking about community ecology and that the PA model captures the essential ecological dynamics of community assembly. Pm was supported by a Simons Investigator in the Mathematical Modeling of Living Systems and a Sloan Research Fellowship.

  7. Meeting in Korea: WASP Transport Modeling and WASP Ecological Modeling

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  8. Meeting in Turkey: WASP Transport Modeling and WASP Ecological Modeling

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  9. SSPX simulation model

    SciTech Connect

    Fowler, T K

    1999-09-20

    An analytical approximation to an R-L-C circuit representing SSPX is shown to reproduce the observed capacitor bank efficiency and gun optimization data. As in the SPICE code, the spheromak gun is represented by a fixed resistance chosen to balance energy transfer to the gun. A revised estimate of the magnetic decay time in SSPX Shot 1822 then brings our estimate of the gun efficiency itself in line with the observed spheromak magnetic field for this shot. Prompted by these successes, we present a turbulence-based theoretical model for the spheromak resistance that can be implemented in the SPICE code, of the form: R{sub s} = {kappa}I (1-I{sub 0}/I){sup 2} where I is the gun current, I{sub 0} = ({Lambda}{sub 0}/{mu}{sub 0}){Phi} with bias flux and Taylor eigenvalue {lambda}{sub 0}, and {kappa} is a coefficient based on the magnetic turbulence model employed in Dan Hua's spheromak simulation code. The value of {kappa} giving a good energy balance (around 0.1 m{Omega}/KA) implies substantial turbulence levels. Implementing our model in SPICE would provide a calibration for theoretical calculations of the turbulence. Our analytic approximation to the SPICE code provides guidance to optimize future performance in SSPX, the greatest benefit appearing to come from reducing or eliminating the protective resistor to increase bank efficiency. Eliminating the resistor altogether doubles the bank efficiency and the spheromak magnetic energy.

  10. Electricity Portfolio Simulation Model

    2005-09-01

    Stakeholders often have competing interests when selecting or planning new power plants. The purpose of developing this preliminary Electricity Portfolio Simulation Model (EPSim) is to provide a first cut, dynamic methodology and approach to this problem, that can subsequently be refined and validated, that may help energy planners, policy makers, and energy students better understand the tradeoffs associated with competing electricity portfolios. EPSim allows the user to explore competing electricity portfolios annually from 2002 tomore » 2025 in terms of five different criteria: cost, environmental impacts, energy dependence, health and safety, and sustainability. Four additional criteria (infrastructure vulnerability, service limitations, policy needs and science and technology needs) may be added in future versions of the model. Using an analytic hierarchy process (AHP) approach, users or groups of users apply weights to each of the criteria. The default energy assumptions of the model mimic Department of Energy’s (DOE) electricity portfolio to 2025 (EIA, 2005). At any time, the user can compare alternative portfolios to this reference case portfolio.« less

  11. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling.

    PubMed

    Escobar, Luis E; Craft, Meggan E

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks. PMID:27547199

  12. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling

    PubMed Central

    Escobar, Luis E.; Craft, Meggan E.

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks. PMID:27547199

  13. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling.

    PubMed

    Escobar, Luis E; Craft, Meggan E

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks.

  14. Spatial models of ecological systems and processes: The role of GIS

    SciTech Connect

    Hunsaker, C.T.; Turner, M.G. ); Nisbet, R.A.; Botkin, D.B. . Dept. of Biological Sciences); Lam, D. . Canadian Center for Inland Waters); Browder, J.A. . Miami Lab.); Baker, W.L. (Wyoming U

    1991-01-01

    This overview paper provides a foundation for the discussion of methods and techniques to integrate spatial ecological models with the technology of geographic information systems (GISs). A brief review is provided of historical modeling approaches for terrestrial, freshwater, and marine ecosystems that have some spatial component or can be extended into space. Examples of current spatial models are discussed for these ecosystems, and the use of distributional mosaic models for the simulation of broad-scale landscape disturbances such as fire and pests is examined. Spatial modeling is terrestrial and freshwater ecosystems in more advanced than in marine systems; however, marine systems are well suited for the application of GIS's and spatial models. Future needs and directions that will enable ecological models to capitalize on the capabilities of GISs are discussed with regard to data base management; remotely sensed data; landscape-level models; model-based management systems; data and model sensitivity, errors, and uncertainties; and environmental risk assessment.

  15. History, development and characteristics of lake ecological models.

    PubMed

    Xu, Fu-liu; Tao, Shu; Dawson, Richard W; Lu, Xiao-yan

    2002-04-01

    This paper provides some introductory information on the history, development, and characteristics of various lake ecosystem models. The modeling of lake ecological processes began to gain importance in the early 1960s. There are a number of models available today, with varying levels of complexity to cope with the variety of environmental problems found in lake environments, e.g. eutrophication, acidification, oxygen depletion, wetland management, heavy metal and pesticide pollution, as well as hydrodynamic problems. In particular, this paper focuses on lake eutrophication and wetland models, as well as addressing strategies appropriate for the design and development of reliable lake ecological models.

  16. SALSA: a simulation tool to assess ecological sustainability of agricultural production.

    PubMed

    Eriksson, Ingrid Strid; Elmquist, Helena; Nybrant, Thomas

    2005-06-01

    In order to assess the ecological sustainability of agricultural production systems, there is a need for effective tools. We describe an environmental systems analysis tool called SALSA (Systems Ana/ysis for Sustainable Agriculture). It consists of substance/material flow models in which the simulation results are interpreted with life-cycle assessment methodology. The application of SALSA is demonstrated in a case study in which three different ways of producing pigs are compared with respect to energy input and the environmental impacts of global warming, eutrophication, and acidification. The scenario that combined a low-protein diet without soy meal with an improved manure-management technique with low nitrogen losses was the best for all impact categories studied. The strength of the SALSA models was their capacity to capture consequences of management options that had an influence on several processes on a farm, which enabled the type of complex studies we describe. PMID:16092274

  17. SALSA: a simulation tool to assess ecological sustainability of agricultural production.

    PubMed

    Eriksson, Ingrid Strid; Elmquist, Helena; Nybrant, Thomas

    2005-06-01

    In order to assess the ecological sustainability of agricultural production systems, there is a need for effective tools. We describe an environmental systems analysis tool called SALSA (Systems Ana/ysis for Sustainable Agriculture). It consists of substance/material flow models in which the simulation results are interpreted with life-cycle assessment methodology. The application of SALSA is demonstrated in a case study in which three different ways of producing pigs are compared with respect to energy input and the environmental impacts of global warming, eutrophication, and acidification. The scenario that combined a low-protein diet without soy meal with an improved manure-management technique with low nitrogen losses was the best for all impact categories studied. The strength of the SALSA models was their capacity to capture consequences of management options that had an influence on several processes on a farm, which enabled the type of complex studies we describe.

  18. On correct mathematical models of ecological LSS of high closure

    NASA Astrophysics Data System (ADS)

    Bartsev, S. I.

    Usually mathematical models of natural ecological systems are implicitly based on the assumption of stoichiometrically rigid metabolism In most cases such assumption is applicable but in the case of ecological systems of high closure it can cause errors of forecast For completely closed ecological system the assumption of rigid metabolism results in completely incorrect forecast Since CELSS for long-duration missions have to be of high closure then using adequate mathematical description is of great importance for successfulness of a space mission Possible variants of non-rigid metabolism applicable to different type of biological components of CELSS are considered in the paper It is shown non-rigid models of metabolism not only eliminate incorrectness of mathematical description but as well allow to obtain more adequate estimation of stability of closed ecological systems

  19. A New Ecological Model Oriented Forest Plantation Map of China

    NASA Astrophysics Data System (ADS)

    Ying, Q.; Hurtt, G. C.; Zhao, M.; Chini, L. P.; Fisk, J. P.; Liang, S.

    2012-12-01

    provided a layer of uncertainty map to quantify the varying range of each pixel value. With the new ecological model-oriented forest plantation map, we can better simulate the carbon budget in China and evaluate the afforestation programs. Results from this research can benefit land-use reconstructions and projections as well as the coupled human-earth system modeling study.

  20. Contrail Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Paoli, Roberto; Shariff, Karim

    2016-01-01

    There is large uncertainty in the radiative forcing induced by aircraft contrails, particularly after they transform to cirrus. It has recently become possible to simulate contrail evolution for long periods after their formation. We review the main physical processes and simulation efforts in the four phases of contrail evolution, namely the jet, vortex, vortex dissipation, and diffusion phases. Recommendations for further work are given.

  1. Guide for developing conceptual models for ecological risk assessments

    SciTech Connect

    Suter, G.W., II

    1996-05-01

    Ecological conceptual models are the result of the problem formulation phase of an ecological risk assessment, which is an important component of the Remedial Investigation process. They present hypotheses of how the site contaminants might affect the site ecology. The contaminant sources, routes, media, routes, and endpoint receptors are presented in the form of a flow chart. This guide is for preparing the conceptual models; use of this guide will standardize the models so that they will be of high quality, useful to the assessment process, and sufficiently consistent so that connections between sources of exposure and receptors can be extended across operable units (OU). Generic conceptual models are presented for source, aquatic integrator, groundwater integrator, and terrestrial OUs.

  2. The Social-Ecological Model: A Framework for Violence Prevention

    ERIC Educational Resources Information Center

    Centers for Disease Control and Prevention, 2002

    2002-01-01

    The ultimate goal of the work of violence prevention is to stop violence before it begins. The Centers for Disease Control (CDC) uses a four-level social-ecological model (SEM) to better understand and prevent violence. The four levels are: (1) Individual; (2) Relationship; (3) Community; and (4) Societal. This model considers the complex…

  3. Nonlinear Statistical Modeling and Model Discovery for Ecological Data

    NASA Astrophysics Data System (ADS)

    Luchinsky, D. G.; Smelyanskiy, V. N.; Timucin, D. A.; Millonas, M. M.

    2005-12-01

    The search for dynamical models (dynamical inference) underlying time-varying phenomena is of fundamental importance for understanding and controlling complex systems in science and technology. Often, however, only part of the system's dynamics can be measured and the state of the dynamical system remains invisible (or hidden). Furthermore, the measurements are usually corrupted by noise and the dynamics is complicated by the interplay of nonlinearity and random perturbations. The problem of dynamical inference in these general settings is challenging researchers for decades. We demonstrate here a path-integral approach to this problem, in which measured data act effectively as a control force driving algorithm towards the most probable solution. The approach is semi-analytical; consequently, the resulting algorithm does not require an extensive global search for the model parameters, provides optimal compensation for the effects of dynamical noise, and is robust for a broad range of dynamical models [1,2]. The strengths of the algorithm are illustrated by inferring the parameters of the stochastic Lorenz system and comparing the results with those of earlier research. The efficiency of the algorithm is further demonstrated by solving an intensively studied problem from the population dynamics of predator-prey system [3] where the prey populations may be observed while the number of predators is difficult or impossible to estimate. We emphasize that the predator-prey dynamics is fully nonlinear, perturbed stochastically by environmental factors and is not known beforehand. We apply our approach to recover both the unknown dynamics of predators and model parameters (including parameters that are traditionally very difficult to estimate) directly from measurements of the prey dynamics The presented method can be further extended to encompass cases of colored noise and specially distributed systems. . It is hoped that techniques such as developed here may be very

  4. Multimodeling: new approaches for linking ecological models

    USGS Publications Warehouse

    Gross, Louis J.; DeAngelis, Donald L.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.

    2006-01-01

    The Everglades region of South Florida presents one of the major natural system management challenges facing the United States. With its assortment of alligators, crocodiles, manatees, panthers, large mixed flocks of wading birds, highly diverse subtropical flora, and sea of sawgrass, the ecosystem is unique in this country (Davis and Ogden 1994). The region is also perhaps the largest human-controlled system on the planet in that the major environmental factor influencing the region is water, and water flows are managed on a daily basis--subject to the vagaries of rainfall--by a massive system of locks, pumps, canals, and levees constructed over the past century. The changes brought about by such control have led to extensive modifications of historical patterns and magnitudes of flow, causing large declines in many native species, extensive changes in nutrient cycling and vegetation across south Florida, and great increases in pollutants such as mercury. Constrained by the conflicting demands of agriculture, urban human populations, and wildlife for control of water resources, and the varying agendas of hosts of government agencies and nongovernmental organizations, there is now an ongoing effort to plan for major changes to the system with expenditure estimates of eight billion dollars or more over the next several decades (USACOE 1999). Carrying out such planning, particularly as it impacts the natural systems of the region, provides one of the major challenges to the new field of computational ecology.

  5. Ecology.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of nine Audubon Nature Bulletins, providing teachers and students with informational reading on various ecological topics. The bulletins have these titles: Schoolyard Laboratories, Owls and Predators, The Forest Community, Life in Freshwater Marshes, Camouflage in the Animal World, Life in the Desert, The…

  6. Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model

    ERIC Educational Resources Information Center

    Li, Weidong; Rukavina, Paul

    2012-01-01

    In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…

  7. Climate and atmosphere simulator for experiments on ecological systems in changing environments.

    PubMed

    Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François

    2014-01-01

    Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.

  8. Numerical wind speed simulation model

    SciTech Connect

    Ramsdell, J.V.; Athey, G.F.; Ballinger, M.Y.

    1981-09-01

    A relatively simple stochastic model for simulating wind speed time series that can be used as an alternative to time series from representative locations is described in this report. The model incorporates systematic seasonal variation of the mean wind, its standard deviation, and the correlation speeds. It also incorporates systematic diurnal variation of the mean speed and standard deviation. To demonstrate the model capabilities, simulations were made using model parameters derived from data collected at the Hanford Meteorology Station, and results of analysis of simulated and actual data were compared.

  9. Individual-based modeling of ecological and evolutionary processes

    USGS Publications Warehouse

    DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.

  10. Ecological niche modeling of lyme disease in British Columbia, Canada.

    PubMed

    Mak, Sunny; Morshed, Muhammad; Henry, Bonnie

    2010-01-01

    The purpose of this study was to describe the geographic distribution and model the ecological niche for Borrelia burgdorferi (Johnson, Schmidt, Hyde, Steigerwaldt & Brenner), Ixodes pacificus (Cooley & Kohls), and Ixodes angustus (Neumann), the bacterium and primary tick vectors for Lyme disease, in British Columbia (BC), Canada. We employed a landscape epidemiology approach using geographic information systems mapping and ecological niche modeling (Genetic Algorithm for Rule-set Prediction) to identify geographical areas of disease transmission risk. Forecasted optimal ecological niche areas for B. burgdorferi are focused along the coast of Vancouver Island, the southwestern coast of the BC mainland, and in valley systems of interior BC roughly along and below the N51 degree line of latitude. These findings have been used to increase public and physician awareness of Lyme disease risk, and prioritize future field sampling for ticks in BC. PMID:20180315

  11. Model Organisms Retain an “Ecological Memory” of Complex Ecologically Relevant Environmental Variation

    PubMed Central

    Beer, Karlyn D.; Wurtmann, Elisabeth J.; Pinel, Nicolás

    2014-01-01

    Although tractable model organisms are essential to characterize the molecular mechanisms of evolution and adaptation, the ecological relevance of their behavior is not always clear because certain traits are easily lost during long-term laboratory culturing. Here, we demonstrate that despite their long tenure in the laboratory, model organisms retain “ecological memory” of complex environmental changes. We have discovered that Halobacterium salinarum NRC-1, a halophilic archaeon that dominates microbial communities in a dynamically changing hypersaline environment, simultaneously optimizes fitness to total salinity, NaCl concentration, and the [K]/[Mg] ratio. Despite being maintained under controlled conditions over the last 50 years, peaks in the three-dimensional fitness landscape occur in salinity and ionic compositions that are not replicated in laboratory culturing but are routinely observed in the natural hypersaline environment of this organism. Intriguingly, adaptation to variations in ion composition was associated with differential regulation of anaerobic metabolism genes, suggesting an intertwined relationship between responses to oxygen and salinity. Our results suggest that the ecological memory of complex environmental variations is imprinted in the networks for coordinating multiple cellular processes. These coordination networks are also essential for dealing with changes in other physicochemically linked factors present during routine laboratory culturing and, hence, retained in model organisms. PMID:24413600

  12. Probability bounds analysis for nonlinear population ecology models.

    PubMed

    Enszer, Joshua A; Andrei Măceș, D; Stadtherr, Mark A

    2015-09-01

    Mathematical models in population ecology often involve parameters that are empirically determined and inherently uncertain, with probability distributions for the uncertainties not known precisely. Propagating such imprecise uncertainties rigorously through a model to determine their effect on model outputs can be a challenging problem. We illustrate here a method for the direct propagation of uncertainties represented by probability bounds though nonlinear, continuous-time, dynamic models in population ecology. This makes it possible to determine rigorous bounds on the probability that some specified outcome for a population is achieved, which can be a core problem in ecosystem modeling for risk assessment and management. Results can be obtained at a computational cost that is considerably less than that required by statistical sampling methods such as Monte Carlo analysis. The method is demonstrated using three example systems, with focus on a model of an experimental aquatic food web subject to the effects of contamination by ionic liquids, a new class of potentially important industrial chemicals.

  13. Joint modeling and simulation system

    NASA Astrophysics Data System (ADS)

    Boyer, Richard T.; McQuay, William K.

    1993-08-01

    The defense budget is shrinking. Weapon systems are getting more complex. Test requirements are increasing. The training and war gaming scenarios are getting more demanding as fielded systems and training simulators are integrated to support combined arms training. To cope with these requirements and still stay within the budget, the Department of Defense is relying on modeling and simulation. The state of the modeling and simulation (M&S) art has advanced to the point where a user can now create incredibly realistic, extremely detailed models which can augment test and evaluation, support the acquisition process, enhance training and war gaming, facilitate intelligence gathering, and support detailed engineering.

  14. Ecological Models: Family Systems and Beyond. A Symposium.

    ERIC Educational Resources Information Center

    Jasnoski, M. L.; O'Connor, William A.

    There has been a resurgence of interest in human ecosystems, attributable to the growth of community mental health centers and public sector funding. The first of two papers discusses human ecology models based on this resurgence. Implications for future development of the mental health area are presented with the challenge to integrate…

  15. Development of stable isotope mixing models in ecology - Fremantle

    EPA Science Inventory

    More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...

  16. Development of stable isotope mixing models in ecology - Perth

    EPA Science Inventory

    More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...

  17. Development of stable isotope mixing models in ecology - Sydney

    EPA Science Inventory

    More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...

  18. Historical development of stable isotope mixing models in ecology

    EPA Science Inventory

    More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...

  19. ASSESSMENT OF SPATIAL AUTOCORRELATION IN EMPIRICAL MODELS IN ECOLOGY

    EPA Science Inventory

    Statistically assessing ecological models is inherently difficult because data are autocorrelated and this autocorrelation varies in an unknown fashion. At a simple level, the linking of a single species to a habitat type is a straightforward analysis. With some investigation int...

  20. Development of stable isotope mixing models in ecology - Dublin

    EPA Science Inventory

    More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...

  1. Back-end Science Model Integration for Ecological Risk Assessment

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) relies on a number of ecological risk assessment models that have been developed over 30-plus years of regulating pesticide exposure and risks under Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Endangered Spe...

  2. Back-end Science Model Integration for Ecological Risk Assessment.

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) relies on a number of ecological risk assessment models that have been developed over 30-plus years of regulating pesticide exposure and risks under Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Endangered Spe...

  3. A Novel Integrated Ecological Model for the study of Sustainability

    EPA Science Inventory

    In recent years, there has been a growing interest among various sections of the society in the study of sustainability. Recently, a generalized mathematical model depicting a combined economic-ecological-social system has been proposed to help in the formal study of sustainabili...

  4. A Model of Practice in Special Education: Dynamic Ecological Analysis

    ERIC Educational Resources Information Center

    Hannant, Barbara; Lim, Eng Leong; McAllum, Ruth

    2010-01-01

    Dynamic Ecological Analysis (DEA) is a model of practice which increases a teams' efficacy by enabling the development of more effective interventions through collaboration and collective reflection. This process has proved to be useful in: a) clarifying thinking and problem-solving, b) transferring knowledge and thinking to significant parties,…

  5. INTEGRATION OF AN ECONOMIC WITH AN ECOLOGICAL MODEL

    EPA Science Inventory

    We summarize our work on integration of an economy under imperfect competition with a simple Lotka-Volterra type ecological model. Firms and households operate within a single period planning horizon, thus there is no savings or investment. Wages are set by a dominant employer. P...

  6. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1988-01-01

    The objective of automatic programming is to improve the overall environment for describing the program. This improved environment is realized by a reduction in the amount of detail that the programmer needs to know and is exposed to. Furthermore, this improved environment is achieved by a specification language that is more natural to the user's problem domain and to the user's way of thinking and looking at the problem. The goal of this research is to apply the concepts of automatic programming (AP) to modeling discrete event simulation system. Specific emphasis is on the design and development of simulation tools to assist the modeler define or construct a model of the system and to then automatically write the corresponding simulation code in the target simulation language, GPSS/PC. A related goal is to evaluate the feasibility of various languages for constructing automatic programming simulation tools.

  7. Simulation modeling of estuarine ecosystems

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1980-01-01

    A simulation model has been developed of Galveston Bay, Texas ecosystem. Secondary productivity measured by harvestable species (such as shrimp and fish) is evaluated in terms of man-related and controllable factors, such as quantity and quality of inlet fresh-water and pollutants. This simulation model used information from an existing physical parameters model as well as pertinent biological measurements obtained by conventional sampling techniques. Predicted results from the model compared favorably with those from comparable investigations. In addition, this paper will discuss remotely sensed and conventional measurements in the framework of prospective models that may be used to study estuarine processes and ecosystem productivity.

  8. Modeling and Simulation with INS.

    ERIC Educational Resources Information Center

    Roberts, Stephen D.; And Others

    INS, the Integrated Network Simulation language, puts simulation modeling into a network framework and automatically performs such programming activities as placing the problem into a next event structure, coding events, collecting statistics, monitoring status, and formatting reports. To do this, INS provides a set of symbols (nodes and branches)…

  9. Disturbed nonlinear multispecies models in ecology.

    PubMed

    Summers, D; Wu, Z Y; Sabin, G C

    1991-05-01

    We analyze a disturbed form of the general Lotka-Volterra model of an ecosystem with m interacting species. The disturbances act on the intrinsic growth rates of the species and are assumed to be bounded but otherwise unknown. We employ a Lyapunov technique and the concept of "reachable set" from control theory to estimate the set of all possible population densities that are attainable as a result of the disturbances. To calculate estimates for this reachable set, a number of numerical methods that entail the solution to one or more global optimization problems are developed. Specific examples involving two, three, and four species are solved. We also derive an explicit analytical expression that represents an estimate for the reachable set in the m-dimensional case. The estimate is conservative but can be evaluated without carrying out any optimization procedure. We show that methods developed in this paper can be applied to certain other types of nonlinear ecosystem models.

  10. Progress in modeling and simulation.

    PubMed

    Kindler, E

    1998-01-01

    For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.

  11. Assessing the Effectiveness of a Computer Simulation for Teaching Ecological Experimental Design

    ERIC Educational Resources Information Center

    Stafford, Richard; Goodenough, Anne E.; Davies, Mark S.

    2010-01-01

    Designing manipulative ecological experiments is a complex and time-consuming process that is problematic to teach in traditional undergraduate classes. This study investigates the effectiveness of using a computer simulation--the Virtual Rocky Shore (VRS)--to facilitate rapid, student-centred learning of experimental design. We gave a series of…

  12. TREAT Modeling and Simulation Strategy

    SciTech Connect

    DeHart, Mark David

    2015-09-01

    This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.

  13. Modeling and Simulation at NASA

    NASA Technical Reports Server (NTRS)

    Steele, Martin J.

    2009-01-01

    This slide presentation is composed of two topics. The first reviews the use of modeling and simulation (M&S) particularly as it relates to the Constellation program and discrete event simulation (DES). DES is defined as a process and system analysis, through time-based and resource constrained probabilistic simulation models, that provide insight into operation system performance. The DES shows that the cycles for a launch from manufacturing and assembly to launch and recovery is about 45 days and that approximately 4 launches per year are practicable. The second topic reviews a NASA Standard for Modeling and Simulation. The Columbia Accident Investigation Board made some recommendations related to models and simulations. Some of the ideas inherent in the new standard are the documentation of M&S activities, an assessment of the credibility, and reporting to decision makers, which should include the analysis of the results, a statement as to the uncertainty in the results,and the credibility of the results. There is also discussion about verification and validation (V&V) of models. There is also discussion about the different types of models and simulation.

  14. Relationship of stream ecological conditions to simulated hydraulic metrics across a gradient of basin urbanization

    USGS Publications Warehouse

    Steuer, J.J.; Bales, J.D.; Giddings, E.M.P.

    2009-01-01

    The relationships among urbanization, stream hydraulics, and aquatic biology were investigated across a gradient of urbanization in 30 small basins in eastern Wisconsin, USA. Simulation of hydraulic metrics with 1-dimensional unsteady flow models was an effective means for mechanistically coupling the effects of urbanization with stream ecological conditions (i.e., algae, invertebrates, and fish). Urbanization, characterized by household, road, and urban land density, was positively correlated with the lowest shear stress for 2 adjacent transects in a reach for the low-flow summer (p < 0.001) and autumn (p < 0.01) periods. Urbanization also was positively correlated with Reynolds number and % exposed stream bed during months with moderate to low flows. Our study demonstrated the value of temporally and spatially explicit hydraulic models for providing mechanistic insight into the relationships between hydraulic variables and biological responses. For example, the positive correlation between filter-feeding invertebrate richness and minimum 2-transect shear stress observed in our study is consistent with a higher concentration of water-column particulates available for filtration. The strength of correlations between hydraulic and biological metrics is related to the time period (annual, seasonal, or monthly) considered. The hydraulic modeling approach, whether based on hourly or daily flow data, allowed documentation of the effects of a spatially variable response within a reach, and the results suggest that stream response to urbanization varies with hydraulic habitat type. ?? North American Benthological Society.

  15. Advanced Space Shuttle simulation model

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1982-01-01

    A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.

  16. Inferential consequences of modeling rather than measuring snow accumulation in studies of animal ecology.

    PubMed

    Brennan, Angela; Cross, Paul C; Higgs, Megan; Beckmann, Jon P; Klaver, Robert W; Scurlock, Brandon M; Creel, Scott

    2013-04-01

    It is increasingly common for studies of animal ecology to use model-based predictions of environmental variables as explanatory or predictor variables, even though model prediction uncertainty is typically unknown. To demonstrate the potential for misleading inferences when model predictions with error are used in place of direct measurements, we compared snow water equivalent (SWE) and snow depth as predicted by the Snow Data Assimilation System (SNODAS) to field measurements of SWE and snow depth. We examined locations on elk (Cervus canadensis) winter ranges in western Wyoming, because modeled data such as SNODAS output are often used for inferences on elk ecology. Overall, SNODAS predictions tended to overestimate field measurements, prediction uncertainty was high, and the difference between SNODAS predictions and field measurements was greater in snow shadows for both snow variables compared to non-snow shadow areas. We used a simple simulation of snow effects on the probability of an elk being killed by a predator to show that, if SNODAS prediction uncertainty was ignored, we might have mistakenly concluded that SWE was not an important factor in where elk were killed in predatory attacks during the winter. In this simulation, we were interested in the effects of snow at finer scales (< 1 km2) than the resolution of SNODAS. If bias were to decrease when SNODAS predictions are averaged over coarser scales, SNODAS would be applicable to population-level ecology studies. In our study, however, averaging predictions over moderate to broad spatial scales (9-2200 km2) did not reduce the differences between SNODAS predictions and field measurements. This study highlights the need to carefully evaluate two issues when using model output as an explanatory variable in subsequent analysis: (1) the model's resolution relative to the scale of the ecological question of interest and (2) the implications of prediction uncertainty on inferences when using model predictions

  17. Inferential consequences of modeling rather than measuring snow accumulation in studies of animal ecology.

    PubMed

    Brennan, Angela; Cross, Paul C; Higgs, Megan; Beckmann, Jon P; Klaver, Robert W; Scurlock, Brandon M; Creel, Scott

    2013-04-01

    It is increasingly common for studies of animal ecology to use model-based predictions of environmental variables as explanatory or predictor variables, even though model prediction uncertainty is typically unknown. To demonstrate the potential for misleading inferences when model predictions with error are used in place of direct measurements, we compared snow water equivalent (SWE) and snow depth as predicted by the Snow Data Assimilation System (SNODAS) to field measurements of SWE and snow depth. We examined locations on elk (Cervus canadensis) winter ranges in western Wyoming, because modeled data such as SNODAS output are often used for inferences on elk ecology. Overall, SNODAS predictions tended to overestimate field measurements, prediction uncertainty was high, and the difference between SNODAS predictions and field measurements was greater in snow shadows for both snow variables compared to non-snow shadow areas. We used a simple simulation of snow effects on the probability of an elk being killed by a predator to show that, if SNODAS prediction uncertainty was ignored, we might have mistakenly concluded that SWE was not an important factor in where elk were killed in predatory attacks during the winter. In this simulation, we were interested in the effects of snow at finer scales (< 1 km2) than the resolution of SNODAS. If bias were to decrease when SNODAS predictions are averaged over coarser scales, SNODAS would be applicable to population-level ecology studies. In our study, however, averaging predictions over moderate to broad spatial scales (9-2200 km2) did not reduce the differences between SNODAS predictions and field measurements. This study highlights the need to carefully evaluate two issues when using model output as an explanatory variable in subsequent analysis: (1) the model's resolution relative to the scale of the ecological question of interest and (2) the implications of prediction uncertainty on inferences when using model predictions

  18. Correlated percolation models of structured habitat in ecology

    NASA Astrophysics Data System (ADS)

    Huth, Géraldine; Lesne, Annick; Munoz, François; Pitard, Estelle

    2014-12-01

    Percolation offers acknowledged models of random media when the relevant medium characteristics can be described as a binary feature. However, when considering habitat modeling in ecology, a natural constraint comes from nearest-neighbor correlations between the suitable/unsuitable states of the spatial units forming the habitat. Such constraints are also relevant in the physics of aggregation where underlying processes may lead to a form of correlated percolation. However, in ecology, the processes leading to habitat correlations are in general not known or very complex. As proposed by Hiebeler (2000), these correlations can be captured in a lattice model by an observable aggregation parameter q, supplementing the density p of suitable sites. We investigate this model as an instance of correlated percolation. We analyze the phase diagram of the percolation transition and compute the cluster size distribution, the pair-connectedness function C(r) and the correlation function g(r). We find that while g(r) displays a power-law decrease associated with long-range correlations in a wide domain of parameter values, critical properties are compatible with the universality class of uncorrelated percolation. We contrast the correlation structures obtained respectively for the correlated percolation model and for the Ising model, and show that the diversity of habitat configurations generated by the Hiebeler model is richer than the archetypal Ising model. We also find that emergent structural properties are peculiar to the implemented algorithm, leading to questioning the notion of a well-defined model of aggregated habitat. We conclude that the choice of model and algorithm has strong consequences on what insights ecological studies can get using such models of species habitat.

  19. Ecological prediction with nonlinear multivariate time-frequency functional data models

    USGS Publications Warehouse

    Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.

    2013-01-01

    Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.

  20. Ecological dynamic model of grassland and its practical verification.

    PubMed

    Zeng, Xiaodong; Wang, Aihui; Zhao, Gang; Shen, Samuel S P; Zeng, Xubin; Zeng, Qingcun

    2005-02-01

    Based on the physico-biophysical considerations, mathematical analysis and some approximate formulations generally adopted in meteorology and ecology, an ecological dynamic model of grassland is developed. The model consists of three interactive variables, i.e. the biomass of living grass, the biomass of wilted grass, and the soil wetness. The major biophysical processes are represented in parameterization formulas, and the model parameters can be determined inversely by using the observational climatological and ecological data. Some major parameters are adjusted by this method to fit the data (although incomplete) in the Inner Mongolia grassland, and other secondary parameters are estimated through sensitivity studies. The model results are well agreed with reality, e.g., (i) the maintenance of grassland requires a minimum amount of annual precipitation (approximately 300 mm); (ii) there is a significant relationship between the annual precipitation and the biomass of living grass; and (iii) the overgrazing will eventually result in desertification. A specific emphasis is put on the shading effect of the wilted grass accumulated on the soil surface. It effectively reduces the soil surface temperature and the evaporation, hence benefits the maintenance of grassland and the reduction of water loss in the soil. PMID:15844356

  1. Modeling hydrologic and ecologic responses using a new eco-hydrological model for identification of droughts

    NASA Astrophysics Data System (ADS)

    Sawada, Yohei; Koike, Toshio; Jaranilla-Sanchez, Patricia Ann

    2014-07-01

    Drought severely damages water and agricultural resources, and both hydrological and ecological responses are important for its understanding. First, precipitation deficit induces soil moisture deficiency and high plant water stress causing agricultural droughts. Second, hydrological drought characterized by deficit of river discharge and groundwater follows agricultural drought. However, contributions of vegetation dynamics to these processes at basin scale have not been quantified. To address this issue, we develop an eco-hydrological model that can calculate river discharge, groundwater, energy flux, and vegetation dynamics as diagnostic variables at basin scale within a distributed hydrological modeling framework. The model is applied to drought analysis in the Medjerda River basin. From model inputs and outputs, we calculate drought indices for different drought types. The model shows reliable accuracy in reproducing observed river discharge in long-term (19 year) simulation. Moreover, the drought index calculated from the model-estimated annual peak of leaf area index correlates well (correlation coefficient r = 0.89) with the drought index from nationwide annual crop production, which demonstrates that the modeled leaf area index is capable of representing agricultural droughts related to historical food shortages. We show that vegetation dynamics have a more rapid response to meteorological droughts than river discharge and groundwater dynamics in the Medjerda basin because vegetation dynamics are sensitive to soil moisture in surface layers, whereas soil moisture in deeper layers strongly contributes to streamflow and groundwater level. Our modeling framework can contribute to analyze drought progress, although analyses for other climate conditions are needed.

  2. Inferential consequences of modeling rather than measuring snow accumulation in studies of animal ecology

    USGS Publications Warehouse

    Cross, Faul C.; Klaver, Robert W.; Brennan, Angela; Creel, Scott; Beckmann, Jon P.; Higgs, Megan D.; Scurlock, Brandon M.

    2013-01-01

    Abstract. It is increasingly common for studies of animal ecology to use model-based predictions of environmental variables as explanatory or predictor variables, even though model prediction uncertainty is typically unknown. To demonstrate the potential for misleading inferences when model predictions with error are used in place of direct measurements, we compared snow water equivalent (SWE) and snow depth as predicted by the Snow Data Assimilation System (SNODAS) to field measurements of SWE and snow depth. We examined locations on elk (Cervus canadensis) winter ranges in western Wyoming, because modeled data such as SNODAS output are often used for inferences on elk ecology. Overall, SNODAS predictions tended to overestimate field measurements, prediction uncertainty was high, and the difference between SNODAS predictions and field measurements was greater in snow shadows for both snow variables compared to non-snow shadow areas. We used a simple simulation of snow effects on the probability of an elk being killed by a predator to show that, if SNODAS prediction uncertainty was ignored, we might have mistakenly concluded that SWE was not an important factor in where elk were killed in predatory attacks during the winter. In this simulation, we were interested in the effects of snow at finer scales (2) than the resolution of SNODAS. If bias were to decrease when SNODAS predictions are averaged over coarser scales, SNODAS would be applicable to population-level ecology studies. In our study, however, averaging predictions over moderate to broad spatial scales (9–2200 km2) did not reduce the differences between SNODAS predictions and field measurements. This study highlights the need to carefully evaluate two issues when using model output as an explanatory variable in subsequent analysis: (1) the model’s resolution relative to the scale of the ecological question of interest and (2) the implications of prediction uncertainty on inferences when using model

  3. Sticklebacks as model hosts in ecological and evolutionary parasitology.

    PubMed

    Barber, Iain

    2013-11-01

    The three-spined stickleback is a small teleost fish, native to coastal regions of the Northern Hemisphere, which has emerged as a key model organism in evolutionary biology and ecology. Sticklebacks possess a well-documented and experimentally amenable parasite fauna, and are well suited to both laboratory and field parasitological investigation. As a consequence, sticklebacks have been extensively used as model hosts in studies of host-parasite interactions, and these studies have provided considerable insight into the roles of parasites in ecology and evolutionary biology. In this review, I discuss key advances in our understanding of host-parasite interactions that have arisen from studies involving stickleback hosts, highlight areas of current research activity, and identify potentially promising areas for future research.

  4. Applying ecological modeling to parenting for Australian refugee families.

    PubMed

    Grant, Julian; Guerin, Pauline B

    2014-10-01

    Children in families with parents from refugee backgrounds are often viewed as a vulnerable group with increased risks of developing physical or psychological problems. However, there is very little research regarding the strategies that parents might use to parent their children in a new country while they also manage the interrelated challenges of poverty, social isolation, maternal stress, and mental ill health that often go along with resettlement. We explore the application of ecological modeling, specifically at individual, institutional, and policy levels, within an Australian context to critique the factors that shape the development of parenting capacity within refugee families settling in a new Western country. Ecological modeling enables examination of how public policy at local state and national levels influences the individual and family directly and through the organizations that are given the task of implementing many of the policy recommendations. Recommendations for health practice and research are made.

  5. Applying ecological modeling to parenting for Australian refugee families.

    PubMed

    Grant, Julian; Guerin, Pauline B

    2014-10-01

    Children in families with parents from refugee backgrounds are often viewed as a vulnerable group with increased risks of developing physical or psychological problems. However, there is very little research regarding the strategies that parents might use to parent their children in a new country while they also manage the interrelated challenges of poverty, social isolation, maternal stress, and mental ill health that often go along with resettlement. We explore the application of ecological modeling, specifically at individual, institutional, and policy levels, within an Australian context to critique the factors that shape the development of parenting capacity within refugee families settling in a new Western country. Ecological modeling enables examination of how public policy at local state and national levels influences the individual and family directly and through the organizations that are given the task of implementing many of the policy recommendations. Recommendations for health practice and research are made. PMID:24583875

  6. So Many Variables: Joint Modeling in Community Ecology.

    PubMed

    Warton, David I; Blanchet, F Guillaume; O'Hara, Robert B; Ovaskainen, Otso; Taskinen, Sara; Walker, Steven C; Hui, Francis K C

    2015-12-01

    Technological advances have enabled a new class of multivariate models for ecology, with the potential now to specify a statistical model for abundances jointly across many taxa, to simultaneously explore interactions across taxa and the response of abundance to environmental variables. Joint models can be used for several purposes of interest to ecologists, including estimating patterns of residual correlation across taxa, ordination, multivariate inference about environmental effects and environment-by-trait interactions, accounting for missing predictors, and improving predictions in situations where one can leverage knowledge of some species to predict others. We demonstrate this by example and discuss recent computation tools and future directions. PMID:26519235

  7. So Many Variables: Joint Modeling in Community Ecology.

    PubMed

    Warton, David I; Blanchet, F Guillaume; O'Hara, Robert B; Ovaskainen, Otso; Taskinen, Sara; Walker, Steven C; Hui, Francis K C

    2015-12-01

    Technological advances have enabled a new class of multivariate models for ecology, with the potential now to specify a statistical model for abundances jointly across many taxa, to simultaneously explore interactions across taxa and the response of abundance to environmental variables. Joint models can be used for several purposes of interest to ecologists, including estimating patterns of residual correlation across taxa, ordination, multivariate inference about environmental effects and environment-by-trait interactions, accounting for missing predictors, and improving predictions in situations where one can leverage knowledge of some species to predict others. We demonstrate this by example and discuss recent computation tools and future directions.

  8. Dense and sparse aggregations in complex motion: Video coupled with simulation modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In censuses of aggregations composed of highly mobile animals, the link between image processing technology and simulation modeling remains relatively unexplored despite demonstrated ecological needs for abundance and density assessments. We introduce a framework that connects video censusing with ...

  9. Structural Equation Modeling: Applications in ecological and evolutionary biology research

    USGS Publications Warehouse

    Pugesek, Bruce H.; von Eye, Alexander; Tomer, Adrian

    2003-01-01

    This book presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems. Supplementary information can be found at the authors website, http://www.jamesbgrace.com/. • Details why multivariate analyses should be used to study ecological systems • Exposes unappreciated weakness in many current popular analyses • Emphasizes the future methodological developments needed to advance our understanding of ecological systems.

  10. Ecological consequences of global bifurcations in some food chain models.

    PubMed

    van Voorn, George A K; Kooi, Bob W; Boer, Martin P

    2010-08-01

    Food chain models of ordinary differential equations (ode's) are often used in ecology to gain insight in the dynamics of populations of species, and the interactions of these species with each other and their environment. One powerful analysis technique is bifurcation analysis, focusing on the changes in long-term (asymptotic) behaviour under parameter variation. For the detection of local bifurcations there exists standardised software, but until quite recently most software did not include any capabilities for the detection and continuation of global bifurcations. We focus here on the occurrence of global bifurcations in four food chain models, and discuss the implications of their occurrence. In two stoichiometric models (one piecewise continuous, one smooth) there exists a homoclinic bifurcation, that results in the disappearance of a limit cycle attractor. Instead, a stable positive equilibrium becomes the global attractor. The models are also capable of bistability. In two three-dimensional models a Shil'nikov homoclinic bifurcation functions as the organising centre of chaos, while tangencies of homoclinic cycle-to-cycle connections 'cut' the chaotic attractors, which is associated with boundary crises. In one model this leads to extinction of the top predator, while in the other model hysteresis occurs. The types of ecological events occurring because of a global bifurcation will be categorized. Global bifurcations are always catastrophic, leading to the disappearance or merging of attractors. However, there is no 1-on-1 coupling between global bifurcation type and the possible ecological consequences. This only emphasizes the importance of including global bifurcations in the analysis of food chain models.

  11. Ecological consequences of global bifurcations in some food chain models.

    PubMed

    van Voorn, George A K; Kooi, Bob W; Boer, Martin P

    2010-08-01

    Food chain models of ordinary differential equations (ode's) are often used in ecology to gain insight in the dynamics of populations of species, and the interactions of these species with each other and their environment. One powerful analysis technique is bifurcation analysis, focusing on the changes in long-term (asymptotic) behaviour under parameter variation. For the detection of local bifurcations there exists standardised software, but until quite recently most software did not include any capabilities for the detection and continuation of global bifurcations. We focus here on the occurrence of global bifurcations in four food chain models, and discuss the implications of their occurrence. In two stoichiometric models (one piecewise continuous, one smooth) there exists a homoclinic bifurcation, that results in the disappearance of a limit cycle attractor. Instead, a stable positive equilibrium becomes the global attractor. The models are also capable of bistability. In two three-dimensional models a Shil'nikov homoclinic bifurcation functions as the organising centre of chaos, while tangencies of homoclinic cycle-to-cycle connections 'cut' the chaotic attractors, which is associated with boundary crises. In one model this leads to extinction of the top predator, while in the other model hysteresis occurs. The types of ecological events occurring because of a global bifurcation will be categorized. Global bifurcations are always catastrophic, leading to the disappearance or merging of attractors. However, there is no 1-on-1 coupling between global bifurcation type and the possible ecological consequences. This only emphasizes the importance of including global bifurcations in the analysis of food chain models. PMID:20447411

  12. Unifying wildfire models from ecology and statistical physics.

    PubMed

    Zinck, Richard D; Grimm, Volker

    2009-11-01

    Understanding the dynamics of wildfire regimes is crucial for both regional forest management and predicting global interactions between fire regimes and climate. Accordingly, spatially explicit modeling of forest fire ecosystems is a very active field of research, including both generic and highly specific models. There is, however, a second field in which wildfire has served as a metaphor for more than 20 years: statistical physics. So far, there has been only limited interaction between these two fields of wildfire modeling. Here we show that two typical generic wildfire models from ecology are structurally equivalent to the most commonly used model from statistical physics. All three models can be unified to a single model in which they appear as special cases of regrowth-dependent flammability. This local "ecological memory" of former fire events is key to self-organization in wildfire ecosystems. The unified model is able to reproduce three different patterns observed in real boreal forests: fire size distributions, fire shapes, and a hump-shaped relationship between disturbance intensity (average annual area burned) and diversity of succession stages. The unification enables us to bring together insights from both disciplines in a novel way and to identify limitations that provide starting points for further research.

  13. Unifying wildfire models from ecology and statistical physics.

    PubMed

    Zinck, Richard D; Grimm, Volker

    2009-11-01

    Understanding the dynamics of wildfire regimes is crucial for both regional forest management and predicting global interactions between fire regimes and climate. Accordingly, spatially explicit modeling of forest fire ecosystems is a very active field of research, including both generic and highly specific models. There is, however, a second field in which wildfire has served as a metaphor for more than 20 years: statistical physics. So far, there has been only limited interaction between these two fields of wildfire modeling. Here we show that two typical generic wildfire models from ecology are structurally equivalent to the most commonly used model from statistical physics. All three models can be unified to a single model in which they appear as special cases of regrowth-dependent flammability. This local "ecological memory" of former fire events is key to self-organization in wildfire ecosystems. The unified model is able to reproduce three different patterns observed in real boreal forests: fire size distributions, fire shapes, and a hump-shaped relationship between disturbance intensity (average annual area burned) and diversity of succession stages. The unification enables us to bring together insights from both disciplines in a novel way and to identify limitations that provide starting points for further research. PMID:19799499

  14. Stochastic models: theory and simulation.

    SciTech Connect

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  15. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling

    USGS Publications Warehouse

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  16. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    NASA Astrophysics Data System (ADS)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-06-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  17. Advancing Ecological Models to Compare Scale in Multi-Level Educational Change

    ERIC Educational Resources Information Center

    Woo, David James

    2016-01-01

    Education systems as units of analysis have been metaphorically likened to ecologies to model change. However, ecological models to date have been ineffective in modelling educational change that is multi-scale and occurs across multiple levels of an education system. Thus, this paper advances two innovative, ecological frameworks that improve on…

  18. On the specification of structural equation models for ecological systems

    USGS Publications Warehouse

    Grace, J.B.; Michael, Anderson T.; Han, O.; Scheiner, S.M.

    2010-01-01

    The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical concepts using latent variables. In this paper, we discuss characteristics of ecological theory and some of the challenges for proper specification of theoretical ideas in structural equation models (SE models). In our presentation, we describe some of the requirements for classical latent variable models in which observed variables (indicators) are interpreted as the effects of underlying causes. We also describe alternative model specifications in which indicators are interpreted as having causal influences on the theoretical concepts. We suggest that this latter nonclassical specification (which involves another variable type-the composite) will often be appropriate for ecological studies because of the multifaceted nature of our theoretical concepts. In this paper, we employ the use of meta-models to aid the translation of theory into SE models and also to facilitate our ability to relate results back to our theories. We demonstrate our approach by showing how a synthetic theory of grassland biodiversity can be evaluated using SEM and data from a coastal grassland. In this example, the theory focuses on the responses of species richness to abiotic stress and disturbance, both directly and through intervening effects on community biomass. Models examined include both those based on classical forms (where each concept is represented using a single latent variable) and also ones in which the concepts are recognized to be multifaceted and modeled as such. To address the challenge of matching SE models with the conceptual level of our theory, two approaches are illustrated, compositing and aggregation. Both approaches are shown to have merits, with the former being preferable for cases where the multiple facets of a concept have widely differing effects in the

  19. Research on agricultural ecology and environment analysis and modeling based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Chen, Hongfu; Wang, Mingsheng

    2009-07-01

    Analysis of agricultural ecology and environment is based on the data of agricultural resources, which are obtained by RS monitoring. The over-exploitation of farmlands will cause structural changes of the soil composition, and damage the planting environment and the agro-ecosystem. Through the research on the dynamic monitoring methods of multitemporal RS images and GIS technology, the crop growth status, crop acreage and other relevant information in agricultural production are extracted based on the monitor and analysis of the conditions of the fields and crop growth. The agro-ecological GIS platform is developed with the establishment of the agricultural resources management database, which manages spatial data, RS data and attribute data of agricultural resources. Using the RS, GIS analysis results, the reasons of agro-ecological destruction are analyzed and the evaluation methods are established. This paper puts forward the concept of utilization capacity of farmland, which describes farmland space for development and utilization that is influenced by the conditions of the land, water resources, climate, pesticides and chemical fertilizers and many other agricultural production factors. Assessment model of agricultural land use capacity is constructed with the help of Fuzzy. Assessing the utilization capacity of farmland can be helpful to agricultural production and ecological protection of farmland. This paper describes the application of the capacity evaluation model with simulated data in two aspects, namely, in evaluating the status of farmland development and utilization and in optimal planting.

  20. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1990-01-01

    The concepts of software engineering were used to improve the simulation modeling environment. Emphasis was placed on the application of an element of rapid prototyping, or automatic programming, to assist the modeler define the problem specification. Then, once the problem specification has been defined, an automatic code generator is used to write the simulation code. The following two domains were selected for evaluating the concepts of software engineering for discrete event simulation: manufacturing domain and a spacecraft countdown network sequence. The specific tasks were to: (1) define the software requirements for a graphical user interface to the Automatic Manufacturing Programming System (AMPS) system; (2) develop a graphical user interface for AMPS; and (3) compare the AMPS graphical interface with the AMPS interactive user interface.

  1. QSAR in predictive models for ecological risk assessment

    SciTech Connect

    Passino-Reader, D.R.; Hickey, J.P.

    1994-12-31

    The end use of toxicity and exposure data is risk assessment to determine the probability that receptors experience harmful effects from exposure to environmental contaminants at a site. Determination of processes and development of predictive models precede the collection of data for risk assessment. The presence of hundreds of contaminants at a site and absence of data for many contaminants lead to the use of QSAR to implement the models. Examples of the use of linear salvation energy relationships (LSER) to provide estimates of aquatic toxicity and exposure endpoints will be provided. Integration of QSAR estimates and measured data must be addressed in the uncertainty analysis accompanying ecological risk assessment.

  2. An ecological model organism flies into the genomics era.

    PubMed

    Santure, Anna W

    2016-03-01

    Despite the very rapid 'genomicization' of the field of Molecular Ecology in recent years, there have been relatively few annotated whole-genome assemblies of nonmodel organisms published. Instead, molecular ecologists have more frequently utilized next-generation sequencing technologies to develop genome-wide markers or to generate transcriptome data. Whole-genome assemblies are more expensive and require considerable computational resources and bioinformatic expertise. However, the availability of an annotated genome offers exciting opportunities to address fundamental questions in ecology and evolution that are difficult to address with moderate sets of markers or by transcriptome sequencing. Such questions include elucidating the roles of natural and sexual selection in shaping diversity, determining the roles of regulatory and protein-coding change in the evolution of traits, and determining the genomic architecture of sex-specific trait variation. Arguably, these questions are most tractable--and most interesting--in well-characterized species for which there is already some knowledge of natural and sexual selection, and of the traits that are most likely to link to fitness. In this issue, Mueller et al. (2016) present the assembly and annotation of the genome of the blue tit (Cyanistes caeruleus), a model ecological species. In addition, by sequencing the transcriptome of male and female blue tits, the authors identify and annotate sex-biased gene expression and conclude that noncoding RNA genes are likely to play a significant role in sex-biased expression. By making their assembly and annotation publically available and accessible via a genome browser, Mueller et al. (2016) offer exciting possibilities for further research into the genomic basis of adaptation, and investigation of the roles of natural and sexual selection, in this well-studied ecological model species.

  3. Introducing MERGANSER: A Flexible Framework for Ecological Niche Modeling

    NASA Astrophysics Data System (ADS)

    Klawonn, M.; Dow, E. M.

    2015-12-01

    Ecological Niche Modeling (ENM) is a collection of techniques to find a "fundamental niche", the range of environmental conditions suitable for a species' survival in the absence of inter-species interactions, given a set of environmental parameters. Traditional approaches to ENM face a number of obstacles including limited data accessibility, data management problems, computational costs, interface usability, and model validation. The MERGANSER system, which stands for Modeling Ecological Residency Given A Normalized Set of Environmental Records, addresses these issues through powerful data persistence and flexible data access, coupled with a clear presentation of results and fine-tuned control over model parameters. MERGANSER leverages data measuring 72 weather related phenomena, land cover, soil type, population, species occurrence, general species information, and elevation, totaling over 1.5 TB of data. To the best of the authors' knowledge, MERGANSER uses higher-resolution spatial data sets than previously published models. Since MERGANSER stores data in an instance of Apache SOLR, layers generated in support of niche models are accessible to users via simplified Apache Lucene queries. This is made even simpler via an HTTP front end that generates Lucene queries automatically. Specifically, a user need only enter the name of a place and a species to run a model. Using this approach to synthesizing model layers, the MERGANSER system has successfully reproduced previously published niche model results with a simplified user experience. Input layers for the model are generated dynamically using OpenStreetMap and SOLR's spatial search functionality. Models are then run using either user-specified or automatically determined parameters after normalizing them into a common grid. Finally, results are visualized in the web interface, which allows for quick validation. Model results and all surrounding metadata are also accessible to the user for further study.

  4. Economic Analysis. Computer Simulation Models.

    ERIC Educational Resources Information Center

    Sterling Inst., Washington, DC. Educational Technology Center.

    A multimedia course in economic analysis was developed and used in conjunction with the United States Naval Academy. (See ED 043 790 and ED 043 791 for final reports of the project evaluation and development model.) This volume of the text discusses the simulation of behavioral relationships among variable elements in an economy and presents…

  5. Estimation of Forest Biomass Increment Using Tree-ring data and Hydro-Ecological Modeling in a Rugged Forested Landscape

    NASA Astrophysics Data System (ADS)

    Lee, B.; Kang, S.; Kim, E.; Kim, Y.

    2006-12-01

    Terrestrial carbon sequestration by forest biomass is an important component of global carbon cycle, which is closely related to the greenhouse effect and climate system. Many researchers have studied on how to estimate forest biomass accurately and they utilized various methods including ecological modeling, remote sensing, and field measurements. However, it is still highly uncertain to estimate the forest biomass accurately and predict the future change. In particular, where water limitation is likely expected, carbon and water relations should be considered importantly in predicting vegetation primary production. The main objective of this study is to estimate biomass increments in the Gwangneung Experimental Forest (GEF) and to compare them with the simulation results of RHESSys, a GIS-based hydro-ecological model designed to simulate water and nutrient fluxes. We measured biomass and to estimate biomass increments using tree-ring data from 1991 to 2004, and they were calculated by using the single tree biomass equation. Average biomass increment during the study period was 271.38 g C m-2yr-1. RHESSys simulations need to a certain number of years to allow carbon and nitrogen stores to stabilize (spin up), which provides initial condition of the model simulation from 1991 to 2004. The data of Leaf Area Index (LAI) and daily stream discharge were used for model calibration. In addition, the results of biomass increment measurement from 1991 to 1997 in GEF were used for model parameterization, and those from 1998 to 2004 were used for validation. Our preliminary simulation results indicated that the simulation results of RHESSys model on the biomass increment was reasonably accurate, but in order to improve the prediction accuracy of this model, we concluded that various efforts on model verification and field data collection are required. *Keyword: Biomass increment, Hydro-Ecological Model. *Acknowledgement : This work was supported by the 2nd phase Brain Korea

  6. Using a probabilistic approach in an ecological risk assessment simulation tool: test case for depleted uranium (DU).

    PubMed

    Fan, Ming; Thongsri, Tepwitoon; Axe, Lisa; Tyson, Trevor A

    2005-06-01

    A probabilistic approach was applied in an ecological risk assessment (ERA) to characterize risk and address uncertainty employing Monte Carlo simulations for assessing parameter and risk probabilistic distributions. This simulation tool (ERA) includes a Window's based interface, an interactive and modifiable database management system (DBMS) that addresses a food web at trophic levels, and a comprehensive evaluation of exposure pathways. To illustrate this model, ecological risks from depleted uranium (DU) exposure at the US Army Yuma Proving Ground (YPG) and Aberdeen Proving Ground (APG) were assessed and characterized. Probabilistic distributions showed that at YPG, a reduction in plant root weight is considered likely to occur (98% likelihood) from exposure to DU; for most terrestrial animals, likelihood for adverse reproduction effects ranges from 0.1% to 44%. However, for the lesser long-nosed bat, the effects are expected to occur (>99% likelihood) through the reduction in size and weight of offspring. Based on available DU data for the firing range at APG, DU uptake will not likely affect survival of aquatic plants and animals (<0.1% likelihood). Based on field and laboratory studies conducted at APG and YPG on pocket mice, kangaroo rat, white-throated woodrat, deer, and milfoil, body burden concentrations observed fall into the distributions simulated at both sites.

  7. Modeling and Simulation for Safeguards

    SciTech Connect

    Swinhoe, Martyn T.

    2012-07-26

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R&D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  8. Multiscale Stochastic Simulation and Modeling

    SciTech Connect

    James Glimm; Xiaolin Li

    2006-01-10

    Acceleration driven instabilities of fluid mixing layers include the classical cases of Rayleigh-Taylor instability, driven by a steady acceleration and Richtmyer-Meshkov instability, driven by an impulsive acceleration. Our program starts with high resolution methods of numerical simulation of two (or more) distinct fluids, continues with analytic analysis of these solutions, and the derivation of averaged equations. A striking achievement has been the systematic agreement we obtained between simulation and experiment by using a high resolution numerical method and improved physical modeling, with surface tension. Our study is accompanies by analysis using stochastic modeling and averaged equations for the multiphase problem. We have quantified the error and uncertainty using statistical modeling methods.

  9. Assessment of Molecular Modeling & Simulation

    SciTech Connect

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  10. From actors to agents in socio-ecological systems models.

    PubMed

    Rounsevell, M D A; Robinson, D T; Murray-Rust, D

    2012-01-19

    The ecosystem service concept has emphasized the role of people within socio-ecological systems (SESs). In this paper, we review and discuss alternative ways of representing people, their behaviour and decision-making processes in SES models using an agent-based modelling (ABM) approach. We also explore how ABM can be empirically grounded using information from social survey. The capacity for ABM to be generalized beyond case studies represents a crucial next step in modelling SESs, although this comes with considerable intellectual challenges. We propose the notion of human functional types, as an analogy of plant functional types, to support the expansion (scaling) of ABM to larger areas. The expansion of scope also implies the need to represent institutional agents in SES models in order to account for alternative governance structures and policy feedbacks. Further development in the coupling of human-environment systems would contribute considerably to better application and use of the ecosystem service concept. PMID:22144388

  11. From actors to agents in socio-ecological systems models

    PubMed Central

    Rounsevell, M. D. A.; Robinson, D. T.; Murray-Rust, D.

    2012-01-01

    The ecosystem service concept has emphasized the role of people within socio-ecological systems (SESs). In this paper, we review and discuss alternative ways of representing people, their behaviour and decision-making processes in SES models using an agent-based modelling (ABM) approach. We also explore how ABM can be empirically grounded using information from social survey. The capacity for ABM to be generalized beyond case studies represents a crucial next step in modelling SESs, although this comes with considerable intellectual challenges. We propose the notion of human functional types, as an analogy of plant functional types, to support the expansion (scaling) of ABM to larger areas. The expansion of scope also implies the need to represent institutional agents in SES models in order to account for alternative governance structures and policy feedbacks. Further development in the coupling of human-environment systems would contribute considerably to better application and use of the ecosystem service concept. PMID:22144388

  12. Modeling and Simulation For A Variable Sprayerrate System

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Liang, Anbo; Yuan, Haibo; Zhang, Chunmei; Li, Junlong

    Variable spraying technology is an important content and developing direction in current plant protection machinery, which can effectively save pesticide and lighten burden of ecological environment in agriculture according to characteristic of spraying targets and speed of aircraft crew. Paper established mathematic model and delivery function of variable spraying system based on designed hardware of variable spraying machine, making use of PID controlling algorithm to simulate in matlab. Simulating result explained that the model can conveniently control gushing amounts and can arrive at satisfied controlling.

  13. Modeling and Simulation For A Variable Sprayerrate System

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Liang, Anbo; Yuan, Haibo; Zhang, Chunmei; Li, Junlong

    Variable spraying technology is an important content and developing direction in current plant protection machinery, which can effectively save pesticide and lighten burden of ecological environment in agriculture according to characteristic of spraying targets and speed of aircraft crew. Paper established mathematic model and delivery function of variable spraying system based on designed hardware of variable spraying machine, making use of PID controlling algorithm to simulate in MATLAB. Simulating result explained that the model can conveniently control gushing amounts and can arrive at satisfied controlling.

  14. Modeling ecological traps for the control of feral pigs

    PubMed Central

    Dexter, Nick; McLeod, Steven R

    2015-01-01

    Ecological traps are habitat sinks that are preferred by dispersing animals but have higher mortality or reduced fecundity compared to source habitats. Theory suggests that if mortality rates are sufficiently high, then ecological traps can result in extinction. An ecological trap may be created when pest animals are controlled in one area, but not in another area of equal habitat quality, and when there is density-dependent immigration from the high-density uncontrolled area to the low-density controlled area. We used a logistic population model to explore how varying the proportion of habitat controlled, control mortality rate, and strength of density-dependent immigration for feral pigs could affect the long-term population abundance and time to extinction. Increasing control mortality, the proportion of habitat controlled and the strength of density-dependent immigration decreased abundance both within and outside the area controlled. At higher levels of these parameters, extinction was achieved for feral pigs. We extended the analysis with a more complex stochastic, interactive model of feral pig dynamics in the Australian rangelands to examine how the same variables as the logistic model affected long-term abundance in the controlled and uncontrolled area and time to extinction. Compared to the logistic model of feral pig dynamics, the stochastic interactive model predicted lower abundances and extinction at lower control mortalities and proportions of habitat controlled. To improve the realism of the stochastic interactive model, we substituted fixed mortality rates with a density-dependent control mortality function, empirically derived from helicopter shooting exercises in Australia. Compared to the stochastic interactive model with fixed mortality rates, the model with the density-dependent control mortality function did not predict as substantial decline in abundance in controlled or uncontrolled areas or extinction for any combination of variables

  15. Modelling dendritic ecological networks in space: anintegrated network perspective

    USGS Publications Warehouse

    Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.

    2013-01-01

    the context of stream ecology. Within this context, we summarise the key innovations of a new family of spatial statistical models that describe spatial relationships in DENs. Finally, we discuss how different network analyses may be combined to address more complex and novel research questions. While our main focus is streams, the taxonomy of network analyses is also relevant anywhere spatial patterns in both network and 2-D space can be used to explore the influence of multi-scale processes on biota and their habitat (e.g. plant morphology and pest infestation, or preferential migration along stream or road corridors).

  16. Simulation Framework for Teaching in Modeling and Simulation Areas

    ERIC Educational Resources Information Center

    De Giusti, Marisa Raquel; Lira, Ariel Jorge; Villarreal, Gonzalo Lujan

    2008-01-01

    Simulation is the process of executing a model that describes a system with enough detail; this model has its entities, an internal state, some input and output variables and a list of processes bound to these variables. Teaching a simulation language such as general purpose simulation system (GPSS) is always a challenge, because of the way it…

  17. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  18. Fiber 3.0: An ecological growth model for northeastern forest types. Forest Service general technical report (Final)

    SciTech Connect

    Solomon, D.S.; Herman, D.A.; Leak, W.B.

    1995-05-22

    Fiber, a stand projection growth model, simulates the growth and structural development of stands in the Northeast. The internal structure of the model is specified and constructed by the ecological type classifications of sugar maple--ash, beech--red maple, oad--white pine, spruce--fir, hemlock--spruce, and cedar--black spruce. Guidelines are provided on operational procedures for the major commercial species growing on these different ecologic land classifications for a range of even-aged and uneven-aged silvicultural treatments and harvesting schedules.

  19. Standard for Models and Simulations

    NASA Technical Reports Server (NTRS)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  20. Simulating spin models on GPU

    NASA Astrophysics Data System (ADS)

    Weigel, Martin

    2011-09-01

    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

  1. Rule-based simulation models

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Seraphine, Kathleen M.

    1991-01-01

    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.

  2. Process-Driven Ecological Modeling for Landscape Change Analysis

    NASA Astrophysics Data System (ADS)

    Altman, S.; Reif, M. K.; Swannack, T. M.

    2013-12-01

    can correlate to landscape pattern and that ecosystem function changes significantly as pattern changes. However, the number of links between landscape metrics and ecological processes are highly variable. Extensively studied processes such as biodiversity can be linked to numerous landscape metrics. In contrast, correlations between sediment cycling and landscape pattern have only been evaluated for a limited number of metrics. We are incorporating these data into a relational database linking landscape and ecological patterns, processes and metrics. The database will be used to parameterize site-specific landscape evolution models projecting how landscape pattern will change as a result of future ecosystem restoration projects. The model is a spatially-explicit, grid-based model that projects changes in community composition based on changes in soil elevations. To capture scalar differences in landscape change, local and regional landscape metrics are analyzed at each time step and correlated with ecological processes to determine how ecosystem function changes with scale over time.

  3. Creating Simulated Microgravity Patient Models

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Bacal, Kira

    2004-01-01

    The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).

  4. Modeling socioeconomic and ecologic aspects of land-use change

    SciTech Connect

    Dale, V.H.; Pedlowski, M.A.; O'Neill, R.V.; Southworth, F.

    1992-01-01

    Land use change is one of the major factors affecting global environmental conditions. Prevalent types of land-use change include replacing forests with agriculture, mines or ranches; forest degradation from collection of firewood; and forest logging. A global effect of wide-scale deforestation is an increase in atmospheric carbon dioxide concentration, which may affect climate. Regional effects include loss of biodiversity and disruption of hydrologic regimes. Local effects include soil erosion, siltation and decreases in soil fertility, loss of extractive reserves, and disruption of indigenous people. Modeling land use change requires combining socioeconomic and ecological factors because socioeconomic forces frequently initiate land-use change and are affected by the subsequent ecological degradation. This paper describes a modeling system that integrates submodels of human colonization and impacts to estimate patterns and rates of deforestation under different immigration and land use scenarios. Immigration which follows road building or paving is a major factor in the rapid deforestation of previously inaccessible areas. Roads facilitate colonization, allow access for large machines, and provide transportation routes for mort of raw materials and produce.

  5. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology

    USGS Publications Warehouse

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.

    2005-01-01

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  6. Development of a zoning-based environmental-ecological coupled model for lakes: a case study of Baiyangdian Lake in northern China

    NASA Astrophysics Data System (ADS)

    Zhao, Y. W.; Xu, M. J.; Xu, F.; Wu, S. R.; Yin, X. A.

    2014-06-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical, and biological processes in highly complex ecosystems. Most research has focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e. considering the lake to be one well-mixed box), which is appropriate for small-scale lakes but is not sufficient to capture spatial variations within middle-scale or large-scale lakes. In response to this problem, this paper seeks to establish a zoning-based environmental-ecological coupled model for a lake. Hierarchical cluster analysis was adopted to determine the number of zones in a given lake based on hydrological, water quality, and ecological data analysis. The MIKE 21 model was used to construct 2-D hydrodynamics and water quality simulations. STELLA software was used to create a lake ecological model that can simulate the spatial variations of ecological condition based on flow field distribution results generated by MIKE 21. Baiyangdian Lake, the largest freshwater lake in northern China, was adopted as the study case. The results showed that the new model is promising for predicting spatial variations of ecological conditions in response to changes in lake water quantity and quality, and could be useful for lake management.

  7. Development of a zoning-based environmental-ecological-coupled model for lakes: a case study of Baiyangdian Lake in North China

    NASA Astrophysics Data System (ADS)

    Zhao, Y. W.; Xu, M. J.; Xu, F.; Wu, S. R.; Yin, X. A.

    2014-02-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. In response to this problem, this paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The hierarchical cluster analysis (HCA) was adopted to determine the number of zones for a lake based on the analysis of hydrological, water quality and ecological data. MIKE21 model was used to construct two-dimensional hydrodynamics and water quality simulations. STELLA software was used to create a lake ecological model which can simulate the spatial variations of ecological condition based on flow field distribution results generated by MIKE21. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The results showed that the new model was promising to predict the spatial variation trends of ecological condition in response to the changes of water quantity and water quality for lakes, and could provide a great convenience for lake management.

  8. Simulation model for the closed plant experiment facility of CEEF

    NASA Astrophysics Data System (ADS)

    Abe, Koichi; Ishikawa, Yoshio; Kibe, Seishiro; Nitta, Keiji

    The Closed Ecology Experiment Facilities (CEEF) is a testbed for Controlled Ecological Life Support Systems (CELSS) investigations. CEEF including the physico-chemical material regenerative system has been constructed for the experiments of material circulation among plants, breeding animals and crew of CEEF. Because CEEF is a complex system, an appropriate schedule for the operation must be prepared in advance. The CEEF behavioral Prediction System, CPS, that will help to confirm the operation schedule, is under development. CPS will simulate CEEFs behavior with data (conditions of equipments, quantity of materials in tanks, etc.) of CEEF and an operation schedule that will be made by the operation team everyday, before the schedule will be carried out. The result of the simulation will show whether the operation schedule is appropriate or not. In order to realize CPS, models of the simulation program that is installed in CPS must mirror the real facilities of CEEF. For the first step of development, a flexible algorithm of the simulation program was investigated. The next step was development of a replicate simulation model of the material circulation system for the Closed Plant Experiment Facility (CPEF) that is a part of CEEF. All the parts of a real material circulation system for CPEF are connected together and work as a complex mechanism. In the simulation model, the system was separated into 38 units according to its operational segmentation. In order to develop each model for its corresponding unit, specifications for the model were fixed based on the specifications of the real part. These models were put into a simulation model for the system.

  9. Verifying and Validating Simulation Models

    SciTech Connect

    Hemez, Francois M.

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  10. Electricity Generation Cost Simulation Model

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  11. Evolutionary model on market ecology of investors and investments

    NASA Astrophysics Data System (ADS)

    Gao, Ya-Chun; Cai, Shi-Min; Lü, Linyuan; Wang, Bing-Hong

    2013-08-01

    The interactions between investors and investments are of significant importance to understand the dynamics of financial markets. An evolutionary model is proposed to investigate the dynamic behaviors of investors and investments in a market ecology. The investors are divided into two groups, active ones and passive ones, distinguished by different selection capabilities based on the partial information, while the investments are simply categorized as good ones and bad ones. Without external influence, the system consisting of both investors and investments can self-organize to a quasi-stationary state according to their own strategies associating with the gains of market information. The model suggests that the partial information asymmetry of investors and various qualities of investments commonly give rise to a diverse dynamic behavior of the system by quantifying the fraction of active investors and of good investment at the quasi-stationary state.

  12. SEMI Modeling and Simulation Roadmap

    SciTech Connect

    Hermina, W.L.

    2000-10-02

    With the exponential growth in the power of computing hardware and software, modeling and simulation is becoming a key enabler for the rapid design of reliable Microsystems. One vision of the future microsystem design process would include the following primary software capabilities: (1) The development of 3D part design, through standard CAD packages, with automatic design rule checks that guarantee the manufacturability and performance of the microsystem. (2) Automatic mesh generation, for 3D parts as manufactured, that permits computational simulation of the process steps, and the performance and reliability analysis for the final microsystem. (3) Computer generated 2D layouts for process steps that utilize detailed process models to generate the layout and process parameter recipe required to achieve the desired 3D part. (4) Science-based computational tools that can simulate the process physics, and the coupled thermal, fluid, structural, solid mechanics, electromagnetic and material response governing the performance and reliability of the microsystem. (5) Visualization software that permits the rapid visualization of 3D parts including cross-sectional maps, performance and reliability analysis results, and process simulation results. In addition to these desired software capabilities, a desired computing infrastructure would include massively parallel computers that enable rapid high-fidelity analysis, coupled with networked compute servers that permit computing at a distance. We now discuss the individual computational components that are required to achieve this vision. There are three primary areas of focus: design capabilities, science-based capabilities and computing infrastructure. Within each of these areas, there are several key capability requirements.

  13. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities

    PubMed Central

    Chisholm, Ryan A.; Pacala, Stephen W.

    2010-01-01

    A fundamental challenge in ecology is to understand the mechanisms that govern patterns of relative species abundance. Previous numerical simulations have suggested that complex niche-structured models produce species abundance distributions (SADs) that are qualitatively similar to those of very simple neutral models that ignore differences between species. However, in the absence of an analytical treatment of niche models, one cannot tell whether the two classes of model produce the same patterns via similar or different mechanisms. We present an analytical proof that, in the limit as diversity becomes large, a strong niche model give rises to exactly the same asymptotic form of SAD as the neutral model, and we verify the analytical predictions for a Panamanian tropical forest data set. Our results strongly suggest that neutral processes drive patterns of relative species abundance in high-diversity ecological communities, even when strong niche structure exists. However, neutral theory cannot explain what generates high diversity in the first place, and it may not be valid in low-diversity communities. Our results also confirm that neutral theory cannot be used to infer an absence of niche structure or to explain ecosystem function. PMID:20733073

  14. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D'Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; Clough, J.

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise. Copyright 2012 by the American Geophysical Union.

  15. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, Sergio; Kirwan, Matthew L.; Mudd, Simon M.; Guntenspergen, Glenn R.; Temmerman, Stijn; D'Alpaos, Andrea; van de Koppel, Johan; Rybczyk, John; Reyes, Enrique; Craft, Chris; Clough, Jonathan

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

  16. Simulating landscape change in the Olympic Peninsula using spatial ecological and socioeconomic data

    SciTech Connect

    Flamm, R.O. ); Gottfried, R. ); Lee, R.G.; Naiman, R.J. ); Turner, M.G. ); Wear, D. )

    1994-06-01

    Ecological and socioeconomic data were integrated to study landscape change for the Dungeness River basin in the Olympic Peninsula, Washington State. A multinomial logit procedure was used to evaluate twenty-two maps representing various data themes to derive transition probabilities of land cover change. Probabilities of forest disturbance were greater on private land than public. Between 1975 and 1988, forest cover increased, grassy/brushy covers decreased, and the number of forest patches increased about 30%. Simulations were run to estimate future land cover. These results were represented as frequency distributions for proportion cover and patch characteristics.

  17. Ecological risk model of childhood obesity in Chinese immigrant children.

    PubMed

    Zhou, Nan; Cheah, Charissa S L

    2015-07-01

    Chinese Americans are the largest and fastest growing Asian American subgroup, increasing about one-third during the 2000s. Despite the slender Asian stereotype, nearly one-third of 6-to-11 year old Chinese American children were found to be overweight (above the 85th percentile in BMI). Importantly, unique and severe health risks are associated with being overweight/obese in Chinese. Unfortunately, Chinese immigrant children have been neglected in the literature on obesity. This review aimed to identify factors at various levels of the ecological model that may place Chinese immigrant children at risk for being overweight/obese in the U.S. Key contextual factors at the micro-, meso-, exo-, macro- and chronosystem were identified guided by Bronfenbrenner's ecological systems theory. The corresponding mediating and moderating processes among the factors were also reviewed and proposed. By presenting a conceptual framework and relevant research, this review can provide a basic framework for directing future interdisciplinary research in seeking solutions to childhood obesity within this understudied population.

  18. Ecological Risk Model of Childhood Obesity in Chinese Immigrant Children

    PubMed Central

    Zhou, Nan; Cheah, Charissa S. L.

    2015-01-01

    Chinese Americans are the largest and fastest growing Asian American subgroup, increasing about one-third during the 2000s. Despite the slender Asian stereotype, nearly one-third of 6-to-11 years old Chinese American children were found to be overweight (above the 85th percentile in BMI). Importantly, unique and severe health risks are associated with being overweight/obese in Chinese. Unfortunately, Chinese immigrant children have been neglected in the literature on obesity. This review aimed to identify factors at various levels of the ecological model that may place Chinese immigrant children at risk for being overweight/obese in the U.S. Key contextual factors at the micro-, meso-, exo-, macro- and chronosystem were identified guided by Bronfenbrenner’s ecological systems theory. The corresponding mediating and moderating processes among the factors were also reviewed and proposed. By presenting a conceptual framework and relevant research, this review can provide a basic framework for directing future interdisciplinary research in seeking solutions to childhood obesity within this understudied population. PMID:25728887

  19. Simulated annealing model of acupuncture

    NASA Astrophysics Data System (ADS)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  20. Uterine Contraction Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Liu, Miao; Belfore, Lee A.; Shen, Yuzhong; Scerbo, Mark W.

    2010-01-01

    Building a training system for medical personnel to properly interpret fetal heart rate tracing requires developing accurate models that can relate various signal patterns to certain pathologies. In addition to modeling the fetal heart rate signal itself, the change of uterine pressure that bears strong relation to fetal heart rate and provides indications of maternal and fetal status should also be considered. In this work, we have developed a group of parametric models to simulate uterine contractions during labor and delivery. Through analysis of real patient records, we propose to model uterine contraction signals by three major components: regular contractions, impulsive noise caused by fetal movements, and low amplitude noise invoked by maternal breathing and measuring apparatus. The regular contractions are modeled by an asymmetric generalized Gaussian function and least squares estimation is used to compute the parameter values of the asymmetric generalized Gaussian function based on uterine contractions of real patients. Regular contractions are detected based on thresholding and derivative analysis of uterine contractions. Impulsive noise caused by fetal movements and low amplitude noise by maternal breathing and measuring apparatus are modeled by rational polynomial functions and Perlin noise, respectively. Experiment results show the synthesized uterine contractions can mimic the real uterine contractions realistically, demonstrating the effectiveness of the proposed algorithm.

  1. Operations planning simulation: Model study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of simulation modeling for the identification of system sensitivities to internal and external forces and variables is discussed. The technique provides a means of exploring alternate system procedures and processes, so that these alternatives may be considered on a mutually comparative basis permitting the selection of a mode or modes of operation which have potential advantages to the system user and the operator. These advantages are measurements is system efficiency are: (1) the ability to meet specific schedules for operations, mission or mission readiness requirements or performance standards and (2) to accomplish the objectives within cost effective limits.

  2. Introducing BioSARN - an ecological niche model refinement tool.

    PubMed

    Heap, Marshall J

    2016-08-01

    Environmental niche modeling outputs a biological species' potential distribution. Further work is needed to arrive at a species' realized distribution. The Biological Species Approximate Realized Niche (BioSARN) application provides the ecological modeler with a toolset to refine Environmental niche models (ENMs). These tools include soil and land class filtering, niche area quantification and novelties like enhanced temporal corridor definition, and output to a high spatial resolution land class model. BioSARN is exemplified with a study on Fraser fir, a tree species with strong land class and edaphic correlations. Soil and land class filtering caused the potential distribution area to decline 17%. Enhanced temporal corridor definition permitted distinction of current, continuing, and future niches, and thus niche change and movement. Tile quantification analysis provided further corroboration of these trends. BioSARN does not substitute other established ENM methods. Rather, it allows the experimenter to work with their preferred ENM, refining it using their knowledge and experience. Output from lower spatial resolution ENMs to a high spatial resolution land class model is a pseudo high-resolution result. Still, it maybe the best that can be achieved until wide range high spatial resolution environmental data and accurate high precision species occurrence data become generally available. PMID:27547356

  3. Introducing BioSARN - an ecological niche model refinement tool.

    PubMed

    Heap, Marshall J

    2016-08-01

    Environmental niche modeling outputs a biological species' potential distribution. Further work is needed to arrive at a species' realized distribution. The Biological Species Approximate Realized Niche (BioSARN) application provides the ecological modeler with a toolset to refine Environmental niche models (ENMs). These tools include soil and land class filtering, niche area quantification and novelties like enhanced temporal corridor definition, and output to a high spatial resolution land class model. BioSARN is exemplified with a study on Fraser fir, a tree species with strong land class and edaphic correlations. Soil and land class filtering caused the potential distribution area to decline 17%. Enhanced temporal corridor definition permitted distinction of current, continuing, and future niches, and thus niche change and movement. Tile quantification analysis provided further corroboration of these trends. BioSARN does not substitute other established ENM methods. Rather, it allows the experimenter to work with their preferred ENM, refining it using their knowledge and experience. Output from lower spatial resolution ENMs to a high spatial resolution land class model is a pseudo high-resolution result. Still, it maybe the best that can be achieved until wide range high spatial resolution environmental data and accurate high precision species occurrence data become generally available.

  4. Integrated Bayesian network framework for modeling complex ecological issues.

    PubMed

    Johnson, Sandra; Mengersen, Kerrie

    2012-07-01

    The management of environmental problems is multifaceted, requiring varied and sometimes conflicting objectives and perspectives to be considered. Bayesian network (BN) modeling facilitates the integration of information from diverse sources and is well suited to tackling the management challenges of complex environmental problems. However, combining several perspectives in one model can lead to large, unwieldy BNs that are difficult to maintain and understand. Conversely, an oversimplified model may lead to an unrealistic representation of the environmental problem. Environmental managers require the current research and available knowledge about an environmental problem of interest to be consolidated in a meaningful way, thereby enabling the assessment of potential impacts and different courses of action. Previous investigations of the environmental problem of interest may have already resulted in the construction of several disparate ecological models. On the other hand, the opportunity may exist to initiate this modeling. In the first instance, the challenge is to integrate existing models and to merge the information and perspectives from these models. In the second instance, the challenge is to include different aspects of the environmental problem incorporating both the scientific and management requirements. Although the paths leading to the combined model may differ for these 2 situations, the common objective is to design an integrated model that captures the available information and research, yet is simple to maintain, expand, and refine. BN modeling is typically an iterative process, and we describe a heuristic method, the iterative Bayesian network development cycle (IBNDC), for the development of integrated BN models that are suitable for both situations outlined above. The IBNDC approach facilitates object-oriented BN (OOBN) modeling, arguably viewed as the next logical step in adaptive management modeling, and that embraces iterative development

  5. A modular BLSS simulation model

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Volk, Tyler

    1987-01-01

    A bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on Earth. A related problem in BLSS design is providing an interface between the various life support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processors or the plants themselves, drive transient responses in the model system, allowing the examination of the effectiveness of the system reservoirs as buffers. The results from simulations help to determine control strategies and BLSS design requirements. An evolved version could be used as an interactive control aid in a future BLSS.

  6. [Measuring water ecological carrying capacity with the ecosystem-service-based ecological footprint (ESEF) method: Theory, models and application].

    PubMed

    Jiao, Wen-jun; Min, Qing-wen; Li, Wen-hua; Fuller, Anthony M

    2015-04-01

    Integrated watershed management based on aquatic ecosystems has been increasingly acknowledged. Such a change in the philosophy of water environment management requires recognizing the carrying capacity of aquatic ecosystems for human society from a more general perspective. The concept of the water ecological carrying capacity is therefore put forward, which considers both water resources and water environment, connects socio-economic development to aquatic ecosystems and provides strong support for integrated watershed management. In this paper, the authors proposed an ESEF-based measure of water ecological carrying capacity and constructed ESEF-based models of water ecological footprint and capacity, aiming to evaluate water ecological carrying capacity with footprint methods. A regional model of Taihu Lake Basin was constructed and applied to evaluate the water ecological carrying capacity in Changzhou City which located in the upper reaches of the basin. Results showed that human demand for water ecosystem services in this city had exceeded the supply capacity of local aquatic ecosystems and the significant gap between demand and supply had jeopardized the sustainability of local aquatic ecosystems. Considering aqua-product provision, water supply and pollutant absorption in an integrated way, the scale of population and economy aquatic ecosystems in Changzhou could bear only 54% of the current status.

  7. Collective Philanthropy: Describing and Modeling the Ecology of Giving

    PubMed Central

    Gottesman, William L.; Reagan, Andrew James; Dodds, Peter Sheridan

    2014-01-01

    Reflective of income and wealth distributions, philanthropic gifting appears to follow an approximate power-law size distribution as measured by the size of gifts received by individual institutions. We explore the ecology of gifting by analysing data sets of individual gifts for a diverse group of institutions dedicated to education, medicine, art, public support, and religion. We find that the detailed forms of gift-size distributions differ across but are relatively constant within charity categories. We construct a model for how a donor's income affects their giving preferences in different charity categories, offering a mechanistic explanation for variations in institutional gift-size distributions. We discuss how knowledge of gift-sized distributions may be used to assess an institution's gift-giving profile, to help set fundraising goals, and to design an institution-specific giving pyramid. PMID:24983864

  8. Airborne castanea pollen forecasting model for ecological and allergological implementation.

    PubMed

    Astray, G; Fernández-González, M; Rodríguez-Rajo, F J; López, D; Mejuto, J C

    2016-04-01

    Castanea sativa Miller belongs to the natural vegetation of many European deciduous forests prompting impacts in the forestry, ecology, allergological and chestnut food industry fields. The study of the Castanea flowering represents an important tool for evaluating the ecological conservation of North-Western Spain woodland and the possible changes in the chestnut distribution due to recent climatic change. The Castanea pollen production and dispersal capacity may cause hypersensitivity reactions in the sensitive human population due to the relationship between patients with chestnut pollen allergy and a potential cross reactivity risk with other pollens or plant foods. In addition to Castanea pollen's importance as a pollinosis agent, its study is also essential in North-Western Spain due to the economic impact of the industry around the chestnut tree cultivation and its beekeeping interest. The aim of this research is to develop an Artificial Neural Networks for predict the Castanea pollen concentration in the atmosphere of the North-West Spain area by means a 20years data set. It was detected an increasing trend of the total annual Castanea pollen concentrations in the atmosphere during the study period. The Artificial Neural Networks (ANNs) implemented in this study show a great ability to predict Castanea pollen concentration one, two and three days ahead. The model to predict the Castanea pollen concentration one day ahead shows a high linear correlation coefficient of 0.784 (individual ANN) and 0.738 (multiple ANN). The results obtained improved those obtained by the classical methodology used to predict the airborne pollen concentrations such as time series analysis or other models based on the correlation of pollen levels with meteorological variables.

  9. Airborne castanea pollen forecasting model for ecological and allergological implementation.

    PubMed

    Astray, G; Fernández-González, M; Rodríguez-Rajo, F J; López, D; Mejuto, J C

    2016-04-01

    Castanea sativa Miller belongs to the natural vegetation of many European deciduous forests prompting impacts in the forestry, ecology, allergological and chestnut food industry fields. The study of the Castanea flowering represents an important tool for evaluating the ecological conservation of North-Western Spain woodland and the possible changes in the chestnut distribution due to recent climatic change. The Castanea pollen production and dispersal capacity may cause hypersensitivity reactions in the sensitive human population due to the relationship between patients with chestnut pollen allergy and a potential cross reactivity risk with other pollens or plant foods. In addition to Castanea pollen's importance as a pollinosis agent, its study is also essential in North-Western Spain due to the economic impact of the industry around the chestnut tree cultivation and its beekeeping interest. The aim of this research is to develop an Artificial Neural Networks for predict the Castanea pollen concentration in the atmosphere of the North-West Spain area by means a 20years data set. It was detected an increasing trend of the total annual Castanea pollen concentrations in the atmosphere during the study period. The Artificial Neural Networks (ANNs) implemented in this study show a great ability to predict Castanea pollen concentration one, two and three days ahead. The model to predict the Castanea pollen concentration one day ahead shows a high linear correlation coefficient of 0.784 (individual ANN) and 0.738 (multiple ANN). The results obtained improved those obtained by the classical methodology used to predict the airborne pollen concentrations such as time series analysis or other models based on the correlation of pollen levels with meteorological variables. PMID:26802339

  10. Modeling Channelization in Coastal Wetlands with Ecological Feedbacks

    NASA Astrophysics Data System (ADS)

    Hughes, Z. J.; Mahadevan, A.; Pennings, S.; FitzGerald, D.

    2014-12-01

    In coastal wetlands in Georgia and South Carolina, dendritic channel networks are actively incising headward at the rate of nearly 2 m/yr. The future geomorphic evolution of these marshes remains in question as rates of relative sea-level rise increase. Our objective is to understand the mechanisms that lead to the evolution of these channel networks through field observations and modeling. We model the geomorphological evolution of tidal creeks by viewing the wetland as a permeable medium. The porosity of the medium affects its hydraulic conductivity, which in turn is altered by erosion. Our multiphase model spontaneously generates channelization and branching networks through flow and erosion. In our field studies, we find that crabs play an active role in grazing vegetation and in the bioturbation of sediments. These effects are incorporated in our model based on field and laboratory observations of crab behavior and its effects on the marsh. We find the erosional patterns and channelization are significantly altered by the faunal feedback. Crabs enhance the growth of channels, inducing the headward erosion of creeks where flow-induced stresses are weakest. They are instrumental in generating high rates of creek extension, which channelize the marsh more effectively in response to sea-level rise. This indicates that the evolution of coastal wetlands is responding to interactions between physics and ecology and highlights the importance of the faunal contribution to these feedbacks.

  11. Social network models predict movement and connectivity in ecological landscapes.

    PubMed

    Fletcher, Robert J; Acevedo, Miguel A; Reichert, Brian E; Pias, Kyle E; Kitchens, Wiley M

    2011-11-29

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data. PMID:22084081

  12. Social network models predict movement and connectivity in ecological landscapes

    USGS Publications Warehouse

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  13. Application of QUAL2K Model to Assess Ecological Purification Technology for a Polluted River

    PubMed Central

    Zhu, Wenting; Niu, Qian; Zhang, Ruibin; Ye, Rui; Qian, Xin; Qian, Yu

    2015-01-01

    Industrialization and urbanization have caused water pollution and ecosystem degradation, especially in urban canals and rivers in China; accordingly, effective water quality improvement programs are needed. In this study, the Tianlai River in Jiangsu, China was taken as a research site, and a combination of ecological purification technologies consisting of biological rope, phytoremediation, and activated carbon were applied in a laboratory-scale study to examine degradation coefficients under dynamic water conditions. Coefficients were then input into the QUAL2K model to simulate various hypothetical scenarios and determine the minimum density of ecological purification combination and hydraulic retention time (HRT) to meet Grade V or IV of the China standard for surface water. The minimum densities for Grade V and IV were 1.6 times and 2 times the experimental density, while the minimum HRTs for Grade V and IV were 2.4 day and 3 day. The results of this study should provide a practical and efficient design method for ecological purification programs. PMID:25689997

  14. Application of QUAL2K model to assess ecological purification technology for a polluted river.

    PubMed

    Zhu, Wenting; Niu, Qian; Zhang, Ruibin; Ye, Rui; Qian, Xin; Qian, Yu

    2015-02-16

    Industrialization and urbanization have caused water pollution and ecosystem degradation, especially in urban canals and rivers in China; accordingly, effective water quality improvement programs are needed. In this study, the Tianlai River in Jiangsu, China was taken as a research site, and a combination of ecological purification technologies consisting of biological rope, phytoremediation, and activated carbon were applied in a laboratory-scale study to examine degradation coefficients under dynamic water conditions. Coefficients were then input into the QUAL2K model to simulate various hypothetical scenarios and determine the minimum density of ecological purification combination and hydraulic retention time (HRT) to meet Grade V or IV of the China standard for surface water. The minimum densities for Grade V and IV were 1.6 times and 2 times the experimental density, while the minimum HRTs for Grade V and IV were 2.4 day and 3 day. The results of this study should provide a practical and efficient design method for ecological purification programs.

  15. Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS

    USGS Publications Warehouse

    Bolker, Benjamin M.; Gardner, Beth; Maunder, Mark; Berg, Casper W.; Brooks, Mollie; Comita, Liza; Crone, Elizabeth; Cubaynes, Sarah; Davies, Trevor; de Valpine, Perry; Ford, Jessica; Gimenez, Olivier; Kéry, Marc; Kim, Eun Jung; Lennert-Cody, Cleridy; Magunsson, Arni; Martell, Steve; Nash, John; Nielson, Anders; Regentz, Jim; Skaug, Hans; Zipkin, Elise

    2013-01-01

    1. Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. 2. R is convenient and (relatively) easy to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. 3. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield) to specific suggestions about how to change the mathematical description of models to make them more amenable to parameter estimation. 4. A companion web site (https://groups.nceas.ucsb.edu/nonlinear-modeling/projects) presents detailed examples of application of the three tools to a variety of typical ecological estimation problems; each example links both to a detailed project report and to full source code and data.

  16. Analysis of ecological transitions in the Black Sea during the last four decades: A modelling study

    NASA Astrophysics Data System (ADS)

    Akoglu, Ekin; Salihoglu, Baris; Oguz, Temel

    2010-05-01

    This work investigates the Black Sea ecosystem and the changes it had undergone in the second half of the 20th century from a fisheries perspective using Ecopath, a widely adopted fisheries model. Different states of the Black Sea ecosystem were modeled using 5 simulation scenarios: Simulation 1, represents the quasi-pristine conditions of the Black Sea ecosystem during early 1960's; Simulation 2, represents the over-enrichment period of the ecosystem during early 1980's before the fisheries collapse and the outburst of alien ctenophore Mnemiopsis leidyi; Simulation 3, represents the changes in the ecosystem along with the outburst of Mnemiopsis in 1989; Simulation 4, represents the aftermath effects in the components of the Black Sea ecosystem just after the collapse of the fisheries; and Simulation 5, represents the recovery period of the fish stocks in the very beginning of the 1990's. According to the results of the model runs, it was found that the Black Sea ecosystem in its quasi-pristine conditions during early 1960's was top-down controlled. The piscivorous pelagic fish and dolphins exerted predation pressure on small pelagic fish species and suppressed their over-development. Our findings suggest that after the removal of these top predators from the ecosystem due to fishing and whaling, the small pelagic fish species had the opportunity to thrive themselves along with the over-enrichment of the Black Sea and reached high biomass levels in 1980's. Small pelagic fishes prevailed in the Black Sea ecosystem until the highly debated outburst of alien ctenophore Mnemiopsis leidyi. In 1989, the biomass of small pelagic fish species declined drastically and their population did not recover until the very beginning of 1990's due to various ecological and anthropogenic effects put forward by the outcomes of the simulations.

  17. Galaxy Alignments: Theory, Modelling & Simulations

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  18. Propulsion System Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile

    2002-01-01

    The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.

  19. Modeling of Army Research Laboratory EMP simulators

    SciTech Connect

    Miletta, J.R.; Chase, R.J.; Luu, B.B. ); Williams, J.W.; Viverito, V.J. )

    1993-12-01

    Models are required that permit the estimation of emitted field signatures from EMP simulators to design the simulator antenna structure, to establish the usable test volumes, and to estimate human exposure risk. This paper presents the capabilities and limitations of a variety of EMP simulator models useful to the Army's EMP survivability programs. Comparisons among frequency and time-domain models are provided for two powerful US Army Research Laboratory EMP simulators: AESOP (Army EMP Simulator Operations) and VEMPS II (Vertical EMP Simulator II).

  20. Georeferenced model simulations efficiently support targeted monitoring

    NASA Astrophysics Data System (ADS)

    Berlekamp, Jürgen; Klasmeier, Jörg

    2010-05-01

    The European Water Framework Directive (WFD) demands the good ecological and chemical status of surface waters. To meet the definition of good chemical status of the WFD surface water concentrations of priority pollutants must not exceed established environmental quality standards (EQS). Surveillance of the concentrations of numerous chemical pollutants in whole river basins by monitoring is laborious and time-consuming. Moreover, measured data do often not allow for immediate source apportionment which is a prerequisite for defining promising reduction strategies to be implemented within the programme of measures. In this context, spatially explicit model approaches are highly advantageous because they provide a direct link between local point emissions (e.g. treated wastewater) or diffuse non-point emissions (e.g. agricultural runoff) and resulting surface water concentrations. Scenario analyses with such models allow for a priori investigation of potential positive effects of reduction measures such as optimization of wastewater treatment. The geo-referenced model GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers) has been designed to calculate spatially resolved averaged concentrations for different flow conditions (e.g. mean or low flow) based on emission estimations for local point source emissions such as treated effluents from wastewater treatment plants. The methodology was applied to selected pharmaceuticals (diclofenac, sotalol, metoprolol, carbamazepin) in the Main river basin in Germany (approx. 27,290 km²). Average concentrations of the compounds were calculated for each river reach in the whole catchment. Simulation results were evaluated by comparison with available data from orienting monitoring and used to develop an optimal monitoring strategy for the assessment of water quality regarding micropollutants at the catchment scale.

  1. Sensitivity analysis as an aid in modelling and control of (poorly-defined) ecological systems. [closed ecological systems

    NASA Technical Reports Server (NTRS)

    Hornberger, G. M.; Rastetter, E. B.

    1982-01-01

    A literature review of the use of sensitivity analyses in modelling nonlinear, ill-defined systems, such as ecological interactions is presented. Discussions of previous work, and a proposed scheme for generalized sensitivity analysis applicable to ill-defined systems are included. This scheme considers classes of mathematical models, problem-defining behavior, analysis procedures (especially the use of Monte-Carlo methods), sensitivity ranking of parameters, and extension to control system design.

  2. Interdisciplinary Industrial Ecology Education: Recommendations for an Inclusive Pedagogical Model

    ERIC Educational Resources Information Center

    Sharma, Archana

    2009-01-01

    Industrial ecology education is being developed and delivered predominantly within the domains of engineering and management. Such an approach could prove somewhat limiting to the broader goal of developing industrial ecology as an integrated knowledge base inclusive of diverse disciplines, contributing to sustainable development. This paper…

  3. Testing Natureserve's ecological integrity assessment model in Michigan and Indiana

    EPA Science Inventory

    NatureServe, in partnership with member programs from the Natural Heritage Network and federal agencies, has developed an assessment of ecosystems condition, structured around the concept of ecological integrity. Our multi-metric approach for our Ecological Integrity Assessment m...

  4. An approximate model for pulsar navigation simulation

    NASA Astrophysics Data System (ADS)

    Jovanovic, Ilija; Enright, John

    2016-02-01

    This paper presents an approximate model for the simulation of pulsar aided navigation systems. High fidelity simulations of these systems are computationally intensive and impractical for simulating periods of a day or more. Simulation of yearlong missions is done by abstracting navigation errors as periodic Gaussian noise injections. This paper presents an intermediary approximate model to simulate position errors for periods of several weeks, useful for building more accurate Gaussian error models. This is done by abstracting photon detection and binning, replacing it with a simple deterministic process. The approximate model enables faster computation of error injection models, allowing the error model to be inexpensively updated throughout a simulation. Testing of the approximate model revealed an optimistic performance prediction for non-millisecond pulsars with more accurate predictions for pulsars in the millisecond spectrum. This performance gap was attributed to noise which is not present in the approximate model but can be predicted and added to improve accuracy.

  5. Modelling parasite aggregation: disentangling statistical and ecological approaches.

    PubMed

    Yakob, Laith; Soares Magalhães, Ricardo J; Gray, Darren J; Milinovich, Gabriel; Wardrop, Nicola; Dunning, Rebecca; Barendregt, Jan; Bieri, Franziska; Williams, Gail M; Clements, Archie C A

    2014-05-01

    The overdispersion in macroparasite infection intensity among host populations is commonly simulated using a constant negative binomial aggregation parameter. We describe an alternative to utilising the negative binomial approach and demonstrate important disparities in intervention efficacy projections that can come about from opting for pattern-fitting models that are not process-explicit. We present model output in the context of the epidemiology and control of soil-transmitted helminths due to the significant public health burden imposed by these parasites, but our methods are applicable to other infections with demonstrable aggregation in parasite numbers among hosts.

  6. Stability of ecological industry chain: an entropy model approach.

    PubMed

    Wang, Qingsong; Qiu, Shishou; Yuan, Xueliang; Zuo, Jian; Cao, Dayong; Hong, Jinglan; Zhang, Jian; Dong, Yong; Zheng, Ying

    2016-07-01

    A novel methodology is proposed in this study to examine the stability of ecological industry chain network based on entropy theory. This methodology is developed according to the associated dissipative structure characteristics, i.e., complexity, openness, and nonlinear. As defined in the methodology, network organization is the object while the main focus is the identification of core enterprises and core industry chains. It is proposed that the chain network should be established around the core enterprise while supplementation to the core industry chain helps to improve system stability, which is verified quantitatively. Relational entropy model can be used to identify core enterprise and core eco-industry chain. It could determine the core of the network organization and core eco-industry chain through the link form and direction of node enterprises. Similarly, the conductive mechanism of different node enterprises can be examined quantitatively despite the absence of key data. Structural entropy model can be employed to solve the problem of order degree for network organization. Results showed that the stability of the entire system could be enhanced by the supplemented chain around the core enterprise in eco-industry chain network organization. As a result, the sustainability of the entire system could be further improved.

  7. [Ecological characteristics of different Pseudosciaena crocea culture models].

    PubMed

    Lu, Guang-Ming; Xu, Yong-Jian; Lu, Hui-Xian

    2011-05-01

    A comparative study was conducted on the ecological characteristics of different Pseudosciaena crocea culture models including monoculture P. crocea (F) and polyculture P. crocea with seaweed Gracilaria lichevoides (FG), benthos Perinereis aibuhitensis (FP), and G. lichevoides plus P. aibuhitensis (FGP) in land-based enclosures, with the sediment and water environment condition, culture benefit, and nitrogen (N) and phosphorus (P) reclaim efficiency analyzed. G. lichevoides could effectively remove the N and P in the water body. The water N and P concentrations in FG and FGP were significantly lower than those in F and FP, and the P utilization efficiency reached 33.8% - 34.0% of the total P input. P. aibuhitensis improved sediment environment condition. The sediment N and P concentrations in FP and FGP were lower than those in F and FG, and had significant differences between surface sediment (1-2 cm) and subsurface sediment (2-4 cm). Comparing with those in F, the total N, total P, and inorganic P in FP and FGP reduced by 8.9% -9.2% , 6.1% -6.3% and 8.0% -8.1%, respectively. P. aibuhitensis had a higher efficiency in reclaiming sediment P (7.5% -7.8% of the total P input), being able to effectively mitigate the P accumulation in sediment. Among the test models, FGP had the best material utilization efficiency and optimal resource benefit.

  8. Unusual Dynamics of Extinction in a Simple Ecological Model

    NASA Astrophysics Data System (ADS)

    Sinha, Somdatta; Parthasarathy, S.

    1996-02-01

    Studies on natural populations and harvesting biological resources have led to the view, commonly held, that (i) populations exhibiting chaotic oscillations run a high risk of extinction; and (ii) a decrease in emigration / exploitation may reduce the risk of extinction. Here we describe a simple ecological model with emigration / depletion that shows behavior in contrast to this. This model displays unusual dynamics of extinction and survival, where populations growing beyond a critical rate can persist within a band of high depletion rates, whereas extinction occurs for lower depletion rates. Though prior to extinction at lower depletion rates the population exhibits chaotic dynamics with large amplitudes of variation and very low minima, at higher depletion rates the population persists at chaos but with reduced variation and increased minima. For still higher values, within the band of persistence, the dynamics show period reversal leading to stability. These results illustrate that chaos does not necessarily lead to population extinction. In addition, the persistence of populations at high depletion rates has important implications in the considerations of strategies for the management of biological resources.

  9. Public sector administration of ecological economics systems using mediated modeling.

    PubMed

    van den Belt, Marjan; Kenyan, Jennifer R; Krueger, Elizabeth; Maynard, Alison; Roy, Matthew Galen; Raphael, Ian

    2010-01-01

    In today's climate of government outsourcing and multiple stakeholder involvement in public sector management and service delivery, it is more important than ever to rethink and redesign the structure of how policy decisions are made, implemented, monitored, and adapted to new realities. The traditional command-and-control approach is now less effective because an increasing amount of responsibility to deliver public goods and services falls on networks of nongovernment agencies. Even though public administrators are seeking new decision-making models in an increasingly more complex environment, the public sector currently only sparsely utilizes Mediated Modeling (MM). There is growing evidence, however, that by employing MM and similar tools, public interest networks can be better equipped to deal with their long-term viability while maintaining the short-term needs of their clients. However, it may require a shift in organizational culture within and between organizations to achieve the desired results. This paper explores the successes and barriers to implementing MM and similar tools in the public sector and offers insights into utilizing them through a review of case studies and interdisciplinary literature. We aim to raise a broader interest in MM and similar tools among public sector administrators at various administrative levels. We focus primarily, but not exclusively, on those cases operating at the interface of ecology and socio-economic systems.

  10. Stability of ecological industry chain: an entropy model approach.

    PubMed

    Wang, Qingsong; Qiu, Shishou; Yuan, Xueliang; Zuo, Jian; Cao, Dayong; Hong, Jinglan; Zhang, Jian; Dong, Yong; Zheng, Ying

    2016-07-01

    A novel methodology is proposed in this study to examine the stability of ecological industry chain network based on entropy theory. This methodology is developed according to the associated dissipative structure characteristics, i.e., complexity, openness, and nonlinear. As defined in the methodology, network organization is the object while the main focus is the identification of core enterprises and core industry chains. It is proposed that the chain network should be established around the core enterprise while supplementation to the core industry chain helps to improve system stability, which is verified quantitatively. Relational entropy model can be used to identify core enterprise and core eco-industry chain. It could determine the core of the network organization and core eco-industry chain through the link form and direction of node enterprises. Similarly, the conductive mechanism of different node enterprises can be examined quantitatively despite the absence of key data. Structural entropy model can be employed to solve the problem of order degree for network organization. Results showed that the stability of the entire system could be enhanced by the supplemented chain around the core enterprise in eco-industry chain network organization. As a result, the sustainability of the entire system could be further improved. PMID:27055893

  11. [Ecological security early-warning in Zhoushan Islands based on variable weight model].

    PubMed

    Zhou, Bin; Zhong, Lin-sheng; Chen, Tian; Zhou, Rui

    2015-06-01

    Ecological security early warning, as an important content of ecological security research, is of indicating significance in maintaining regional ecological security. Based on driving force, pressure, state, impact and response (D-P-S-I-R) framework model, this paper took Zhoushan Islands in Zhejiang Province as an example to construct the ecological security early warning index system, test degrees of ecological security early warning of Zhoushan Islands from 2000 to 2012 by using the method of variable weight model, and forecast ecological security state of 2013-2018 by Markov prediction method. The results showed that the variable weight model could meet the study needs of ecological security early warning of Zhoushan Islands. There was a fluctuant rising ecological security early warning index from 0.286 to 0.484 in Zhoushan Islands between year 2000 and 2012, in which the security grade turned from "serious alert" into " medium alert" and the indicator light turned from "orange" to "yellow". The degree of ecological security warning was "medium alert" with the light of "yellow" for Zhoushan Islands from 2013 to 2018. These findings could provide a reference for ecological security maintenance of Zhoushan Islands.

  12. Simulation and experimental studies of operators` decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

    SciTech Connect

    Meshkati, N.; Buller, B.J.; Azadeh, M.A.

    1995-04-01

    The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and a mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.

  13. Benchmark simulation models, quo vadis?

    PubMed

    Jeppsson, U; Alex, J; Batstone, D J; Benedetti, L; Comas, J; Copp, J B; Corominas, L; Flores-Alsina, X; Gernaey, K V; Nopens, I; Pons, M-N; Rodríguez-Roda, I; Rosen, C; Steyer, J-P; Vanrolleghem, P A; Volcke, E I P; Vrecko, D

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.

  14. Aeroacoustic simulation for phonation modeling

    NASA Astrophysics Data System (ADS)

    Irwin, Jeffrey; Hanford, Amanda; Craven, Brent; Krane, Michael

    2011-11-01

    The phonation process occurs as air expelled from the lungs creates a pressure drop and a subsequent air flow across the larynx. The fluid-structure interaction between the turbulent air flow and oscillating vocal folds, combined with additional resonance in the oral and nasal cavities, creates much of what we hear in the human voice. As many voice-related disorders can be traced to irregular vocal tract shape or motion, it is important to understand in detail the physics involved in the phonation process. To numerically compute the physics of phonation, a solver must be able to accurately model acoustic airflow through a moving domain. The open-source CFD package OpenFOAM is currently being used to evaluate existing solvers against simple acoustic test cases, including an open-ended resonator and an expansion chamber, both of which utilize boundary conditions simulating acoustic sources as well as anechoic termination. Results of these test cases will be presented and compared with theory, and the future development of a three-dimensional vocal tract model and custom-mode acoustic solver will be discussed. Acknowledge support of NIH grant 5R01DC005642 and ARL E&F program.

  15. Model simulations for Europa's atmosphere

    NASA Astrophysics Data System (ADS)

    Wong, M. C.; Carlson, R. W.; Johnson, R. E.

    2000-10-01

    Europa's tenuous atmosphere is thought to be produced from sputtering of surface species (predominantly H2O ice ) by heavy ions in the Jovian magnetosphere. Because of its low residence time at Europa's surface temperature, O2, a stable decomposition product of H2O, has been predicted to exist in a significant amount in Europa's atmosphere [Johnson et al. 1982, Eviatar et al. 1985, Johnson 1990]. Recent HST observations have confirmed that and suggested an O2 atmospheric column of 1015 cm-2 on Europa [Hall et al. 1995]. Recent theoretical studies applied to modeling of pure oxygen atmospheres on Europa [Ip et al. 1996, Saur et al. 1998, Shematovich and Johnson 2000] have produced results that are consistent with the above scenerio. In addition to water products, recent observations from Galileo NIMS instruments have suggested the existence of hydrated salt minerals and sulfuric acid on Europa's surface [McCord et al. 1999, Carlson et al. 1999]. Therefore, it is expected that decomposition of these materials by magnetospheric ions can produce volatile species such as H2S, SO2, CO2 and Na in Europa's atmosphere. In fact, Na has been identified in the extended atmosphere of Europa [Brown and Hill, 1996]. In this paper, we will use a kinetic model to study the fate and abundance of these volatile species in addition to simulating the formation of an oxygen atmosphere on Europa.

  16. Ecological models in support of regulatory risk assessments of pesticides: developing a strategy for the future.

    PubMed

    Forbes, Valery E; Hommen, Udo; Thorbek, Pernille; Heimbach, Fred; Van den Brink, Paul J; Wogram, Jörn; Thulke, Hans-Hermann; Grimm, Volker

    2009-01-01

    This brief communication reports on the main findings of the LEMTOX workshop, held from 9 to 12 September 2007, at the Helmholtz Centre for Environmental Research (UFZ) in Leipzig, Germany. The workshop brought together a diverse group of stakeholders from academia, regulatory authorities, contract research organizations, and industry, representing Europe, the United States, and Asia, to discuss the role of ecological modeling in risk assessments of pesticides, particularly under the European regulatory framework. The following questions were addressed: What are the potential benefits of using ecological models in pesticide registration and risk assessment? What obstacles prevent ecological modeling from being used routinely in regulatory submissions? What actions are needed to overcome the identified obstacles? What recommendations should be made to ensure good modeling practice in this context? The workshop focused exclusively on population models, and discussion was focused on those categories of population models that link effects on individuals (e.g., survival, growth, reproduction, behavior) to effects on population dynamics. The workshop participants concluded that the overall benefits of ecological modeling are that it could bring more ecology into ecological risk assessment, and it could provide an excellent tool for exploring the importance of, and interactions among, ecological complexities. However, there are a number of challenges that need to be overcome before such models will receive wide acceptance for pesticide risk assessment, despite having been used extensively in other contexts (e.g., conservation biology). The need for guidance on Good Modeling Practice (on model development, analysis, interpretation, evaluation, documentation, and communication), as well as the need for case studies that can be used to explore the added value of ecological models for risk assessment, were identified as top priorities. Assessing recovery potential of exposed

  17. Identifying Droughts by Modeling the Hydrologic and Ecologic Responses in the Medjerda River Basin, Tunisia

    NASA Astrophysics Data System (ADS)

    Sawada, Y.; Koike, T.; Jaranilla-sanchez, P. A.

    2013-12-01

    Drought brings severe damage to water and agricultural resources, and both of hydrological and ecological responses are important for understanding droughts. However, the ecological contributions to drought characteristics at the basin scale have not been quantified. To address this issue, we developed an eco-hydrological model that can calculate vegetation dynamics as a diagnostic valuable in a distributed-hydrological modeling framework and identified different drought types in the Medjerda River Basin where drought is a predominant issue. From the inputs and outputs of the model, we calculate drought indices for different drought types. The model shows reliable accuracy in reproducing the observed river discharge and the satellite observed leaf area index in the long-term (19-year) simulation. Moreover, the drought index calculated from model estimated annual peak of leaf area index is well correlated (correlation coefficient; r = 0.89; see Figure) with drought index from nationwide annual crop production, which show the modeled leaf area index has enough capacity to reproducing agricultural droughts that can be related with historical food shortage on 1988-1989 and 1993-1995. Our model can estimate vegetation dynamics and water cycle simultaneously in the enough accuracy to analyze the basin-scale agricultural and hydrological droughts separately. We clarify that vegetation dynamics has quicker response to meteorological droughts than river discharge and groundwater dynamics in Medjerda River Basin because vegetation dynamics is sensitive to soil moisture in surface layers while soil moisture in deeper layers strongly contributes to stream flow and depth of groundwater level. Therefore, historical agricultural droughts predominantly occurred prior to hydrological droughts and in the 1988-1989 drought, the hydrological drought lasted much longer even after crop production recovered. Standardized anomaly index (SA) for estimated annual maximum leaf area index

  18. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  19. Power analysis for generalized linear mixed models in ecology and evolution

    PubMed Central

    Johnson, Paul C D; Barry, Sarah J E; Ferguson, Heather M; Müller, Pie

    2015-01-01

    ‘Will my study answer my research question?’ is the most fundamental question a researcher can ask when designing a study, yet when phrased in statistical terms – ‘What is the power of my study?’ or ‘How precise will my parameter estimate be?’ – few researchers in ecology and evolution (EE) try to answer it, despite the detrimental consequences of performing under- or over-powered research. We suggest that this reluctance is due in large part to the unsuitability of simple methods of power analysis (broadly defined as any attempt to quantify prospectively the ‘informativeness’ of a study) for the complex models commonly used in EE research. With the aim of encouraging the use of power analysis, we present simulation from generalized linear mixed models (GLMMs) as a flexible and accessible approach to power analysis that can account for random effects, overdispersion and diverse response distributions.We illustrate the benefits of simulation-based power analysis in two research scenarios: estimating the precision of a survey to estimate tick burdens on grouse chicks and estimating the power of a trial to compare the efficacy of insecticide-treated nets in malaria mosquito control. We provide a freely available R function, sim.glmm, for simulating from GLMMs.Analysis of simulated data revealed that the effects of accounting for realistic levels of random effects and overdispersion on power and precision estimates were substantial, with correspondingly severe implications for study design in the form of up to fivefold increases in sampling effort. We also show the utility of simulations for identifying scenarios where GLMM-fitting methods can perform poorly.These results illustrate the inadequacy of standard analytical power analysis methods and the flexibility of simulation-based power analysis for GLMMs. The wider use of these methods should contribute to improving the quality of study design in EE. PMID:25893088

  20. Structured building model reduction toward parallel simulation

    SciTech Connect

    Dobbs, Justin R.; Hencey, Brondon M.

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  1. An introduction to enterprise modeling and simulation

    SciTech Connect

    Ostic, J.K.; Cannon, C.E.

    1996-09-01

    As part of an ongoing effort to continuously improve productivity, quality, and efficiency of both industry and Department of Energy enterprises, Los Alamos National Laboratory is investigating various manufacturing and business enterprise simulation methods. A number of enterprise simulation software models are being developed to enable engineering analysis of enterprise activities. In this document the authors define the scope of enterprise modeling and simulation efforts, and review recent work in enterprise simulation at Los Alamos National Laboratory as well as at other industrial, academic, and research institutions. References of enterprise modeling and simulation methods and a glossary of enterprise-related terms are provided.

  2. The Future of Eurasian Boreal Forests: Ecological Modeling Projections in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Lutz, D.; Shugart, H.

    2008-12-01

    Ecological modeling is one of the primary methodologies for making predictions on future changes in forested ecosystems such as those occurring in Northern Eurasia and Siberia. In particular, combining ecological modeling with global circulation model simulation outputs is a method in which scientists can forecast the impact of climate change on biodiversity (Thuiller, 2007) as well as the forested landscape. Dynamic global vegetation models (DGVMs) have been designed for specifically this purpose, however, these vegetation models run at large spatial scales and as a result make predictions that are highly uncertain (Purves and Pacala, 2008). In previous papers, we discussed the FAREAST forest gap model and its ability to accurately predict boreal forest dynamics at smaller scales and higher resolution than DGVMs. This presentation investigates the use of the FAREAST gap model, modified for spatial expansion to cover the entire country of Russia, to predict future land cover trends under different warming scenarios. The poster provides the initial framework for the project, as well as some initial results. The collection of input variables needed by FAREAST to model the Russian continent will involve collaboration with the Russian Academy of Sciences (CEPF). Together we have developed a framework in which to amalgamate both original (temperature, precipitation, soil values) parameters as well as new parameters (fire probability, logging probability) into a GIS database that can be integrated with the FAREAST model. This framework will be capable of providing visual and graphical output for interpretation of large model runs. In order to ensure accuracy in FAREAST's ability to simulate the current environment, a run of the model under current-day conditions will be compared to recent remote sensing land cover maps. The GLC2000 land cover classification project (EU JRC) will be the primary validation method with additional validation through other biophysical

  3. Modeling on an ecological food chain with recycling

    NASA Astrophysics Data System (ADS)

    Cai, Qinghua; Mohamad, Zakaria; Yuan, Yuan

    2012-12-01

    We propose two nutrient-phytoplankton models with instantaneous and time delayed recycling, investigate the dynamics and examine the responses to model complexities. Instead of the familiar specific uptake rate and growth rate functions, we assume only that the nutrient uptake and phytoplankton growth rate functions are positive, increasing and bounded above. We use geometrical and analytical methods to find conditions for the existence of none, one, or at most two positive steady states and analyze the stability properties of each of these equilibria. With the variation of parameters, the system may lose its stability and bifurcation may occur. We study the occurrence of Hopf bifurcation and the possibility of stability switching. Numerical simulations illustrate the analytical results and provide further insight into the dynamics of the models, biological interpretations are given.

  4. Group-based modeling of ecological trajectories in restored wetlands.

    PubMed

    Matthews, Jeffrey W

    2015-03-01

    Repeated measures taken at the same restoration sites over time are used to describe restoration trajectories and identify sites that are trending toward unexpected outcomes. Analogously, social scientists use repeated measures of individuals to describe developmental trajectories of behaviors or other outcomes. Group-based trajectory modeling (GBTM) is one statistical method used in behavioral and health sciences for this purpose. I introduce the use of GBTM to identify clusters of similar restoration trajectories within a sample of sites. Data collected at 54 restored wetlands in Illinois for up to 15 years post-restoration were used to describe trajectories of six indicators: plant species richness, number of Carex (sedge) species, mean coefficient of conservatism (mean C), native plant cover, perennial plant cover, and planted species cover. For each indicator, I used GBTM to classify wetlands into three to four groups with distinct trajectories. In general, cover by native and planted species declined, while species richness and mean C increased over time or peaked then declined. Site context and management may explain trajectory group membership. Specifically, wetlands restored more recently and those restored within forested contexts were more likely to follow increasing trajectories. I show GBTM to be useful for identifying typical restoration trajectory patterns, developing hypotheses regarding factors driving those patterns and pinpointing critical times for intervention. Furthermore, GBTM might be applied more broadly in ecological research to identify common patterns of community assembly in large numbers of plots or sites.

  5. Locating Pleistocene Refugia: Comparing Phylogeographic and Ecological Niche Model Predictions

    PubMed Central

    Waltari, Eric; Hijmans, Robert J.; Peterson, A. Townsend; Nyári, Árpád S.; Perkins, Susan L.; Guralnick, Robert P.

    2007-01-01

    Ecological niche models (ENMs) provide a means of characterizing the spatial distribution of suitable conditions for species, and have recently been applied to the challenge of locating potential distributional areas at the Last Glacial Maximum (LGM) when unfavorable climate conditions led to range contractions and fragmentation. Here, we compare and contrast ENM-based reconstructions of LGM refugial locations with those resulting from the more traditional molecular genetic and phylogeographic predictions. We examined 20 North American terrestrial vertebrate species from different regions and with different range sizes for which refugia have been identified based on phylogeographic analyses, using ENM tools to make parallel predictions. We then assessed the correspondence between the two approaches based on spatial overlap and areal extent of the predicted refugia. In 14 of the 20 species, the predictions from ENM and predictions based on phylogeographic studies were significantly spatially correlated, suggesting that the two approaches to development of refugial maps are converging on a similar result. Our results confirm that ENM scenario exploration can provide a useful complement to molecular studies, offering a less subjective, spatially explicit hypothesis of past geographic patterns of distribution. PMID:17622339

  6. EPA ’s ECOLOGICAL MODELS FOR INTEGRATED WATERSHED MANAGEMENT

    EPA Science Inventory

    Aquatic ecological populations and communities are affected by the nature and quality of the water in which they live. Specific factors that affect instream biota include chemical variables, biotic interactions, energy source, flow regime, and habitat structure. As watershed mana...

  7. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include food sources for animals, water sources for plants, pollution sources...

  8. Simulation model for the Closed Plant Experimental Facilities of CEEF

    NASA Astrophysics Data System (ADS)

    Abe, K.; Ishikawa, Y.; Kibe, S.; Nitta, K.

    The Closed Ecology Experiment Facilities (CEEF) is a testbed for CELSS investigations. CEEF including the physico-chemical material regenerative system has been constructed for the experiments of material circulation among plants, breeding animals, humans (crew of the CEEF). Because CEEF is a complex system, an appropriate schedule for the operation must be prepared in advance. The CEEF behavioral Prediction System, CPS, that will help to confirm the operation schedule, is under development. CPS will simulate CEEF's behavior with data (conditions of equipments, quantity of materials in tanks, etc.) of CEEF and an operation schedule that will be made by the operation team everyday, before the schedule will be carried out. The result of the simulation will show whether the operation schedule is appropriate or not. In order to realize CPS, models of the simulation program that is installed in CPS must mirror the real facilities of CEEF. A flexible algorithm for the first step of development of the simulation program was already investigated. The next step was development of a replicate simulation model of the material circulation system for the Closed Plant Experimental Facilities (CPEF) that is a part of CEEF. All the parts of real material circulation system for CPEF are connected together and work as a complex mechanism. In the simulation model, the system was separated into 38 units according to its operational segmentation. In order to develop each model for its corresponding unit, specifications for the model were fixed based on the specifications of the real part. These models were put into a simulation model for the system.

  9. [Ecological security evaluation of Heilongjiang Province with pressure-state-response model].

    PubMed

    Qiu, Wei; Zhao, Qing-liang; Li, Song; Chang, Chein-chi

    2008-04-01

    The ecological security index (ESI) system including 27 indices for Heilongjiang Province was built up with the pressure-state-response (P-S-R) model. The weights of the indices were determined by analytical hierarchy process (AHP) and the ecological security status classification was evaluated by the ESI model for the years of 2000-2005. Then the development trend of ecological security from 2006 to 2010 was forecasted with the grey dynamic model. The results showed that the ecological security ranked the V grade in 2000 and the III grade in 2005, indicating the increase of ecological security. The forecasting results show that the ecological security will be the III grade for 2006, the II grade for 2007-2009, and the I grade for 2010 (ideal security). Thus it can be seen that the ecological security is ascending year by year, and the ecological environment quality is obviously improved with the implementation of eco-province construction since 2000. Through the effective facilitation of eco-province construction etc., the sustainable and healthy development of ecological security will be finally realized in Heilongjiang Province.

  10. Comparing the ecological relevance of four wave exposure models

    NASA Astrophysics Data System (ADS)

    Sundblad, G.; Bekkby, T.; Isæus, M.; Nikolopoulos, A.; Norderhaug, K. M.; Rinde, E.

    2014-03-01

    Wave exposure is one of the main structuring forces in the marine environment. Methods that enable large scale quantification of environmental variables have become increasingly important for predicting marine communities in the context of spatial planning and coastal zone management. Existing methods range from cartographic solutions to numerical hydrodynamic simulations, and differ in the scale and spatial coverage of their outputs. Using a biological exposure index we compared the performance of four wave exposure models ranging from simple to more advanced techniques. All models were found to be related to the biological exposure index and their performance, measured as bootstrapped R2 distributions, overlapped. Qualitatively, there were differences in the spatial patterns indicating higher complexity with more advanced techniques. In order to create complex spatial patterns wave exposure models should include diffraction, especially in coastal areas rich in islands. The inclusion of wind strength and frequency, in addition to wind direction and bathymetry, further tended to increase the amount of explained variation. The large potential of high-resolution numerical models to explain the observed patterns of species distribution in complex coastal areas provide exciting opportunities for future research. Easy access to relevant wave exposure models will aid large scale habitat classification systems and the continuously growing field of marine species distribution modelling, ultimately serving marine spatial management and planning.

  11. Importance of the predator's ecological neighborhood in modeling predation on migrating prey

    USGS Publications Warehouse

    DeAngelis, Donald L.; Petersen, James H.

    2001-01-01

    Most mathematical descriptions of predator-prey interactions fail to take into account the spatio-temporal structures of the populations, which can lead to errors or misinterpretations. For example, a compact pulse of prey migrating through a field of quasi-stationary predators may not be well described by standard predator-prey models, because the predators and prey are unlikely to be well mixed; that is, the prey may be exposed to only a fraction of the predator population at a time. This underscores the importance of properly accounting for the ecological neighborhood, or effective feeding range, of predators in models. We illustrate this situation with a series of models of salmon smolts migrating through a reservoir arrayed with predators. The reservoir is divided into a number of longitudinal compartments or spatial cells, the length of each cell representing the upstream-downstream range over which predators can forage. In this series of models a 100-km-long reservoir is divided, successively into 2, 5, 10, 25, 50, 100, 200, and 400 cells, with respective cell lengths of 50, 20, 10, 4, 2, 1, 0.5, and 0.25 km. We used a detailed individual-based simulation model at first, but to ensure robustness of results we supplemented this with a simple analytic model. Both models showed sharp differences in the predicted mortality to a compact pulse of smolt prey moving through the reservoir, depending on the number of spatial cells in the model. In particular, models with fewer than about 10 cells vastly overpredicted the amount of mortality due to predators with activity ranges of not more than a few kilometers. These results corroborate recent theoretical and simulation studies on the importance of spatial scale and behavior in modeling predator-prey dynamics.

  12. Theory, Modeling, and Simulation of Semiconductor Lasers

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Saini, Subbash (Technical Monitor)

    1998-01-01

    Semiconductor lasers play very important roles in many areas of information technology. In this talk, I will first give an overview of semiconductor laser theory. This will be followed by a description of different models and their shortcomings in modeling and simulation. Our recent efforts in constructing a fully space and time resolved simulation model will then be described. Simulation results based on our model will be presented. Finally the effort towards a self-consistent and comprehensive simulation capability for the opto-electronics integrated circuits (OEICs) will be briefly reviewed.

  13. A Generic Multibody Parachute Simulation Model

    NASA Technical Reports Server (NTRS)

    Neuhaus, Jason Richard; Kenney, Patrick Sean

    2006-01-01

    Flight simulation of dynamic atmospheric vehicles with parachute systems is a complex task that is not easily modeled in many simulation frameworks. In the past, the performance of vehicles with parachutes was analyzed by simulations dedicated to parachute operations and were generally not used for any other portion of the vehicle flight trajectory. This approach required multiple simulation resources to completely analyze the performance of the vehicle. Recently, improved software engineering practices and increased computational power have allowed a single simulation to model the entire flight profile of a vehicle employing a parachute.

  14. Application of an integrative hydro-ecological model to study water resources management in the upper and middle parts of the Yellow River basin

    NASA Astrophysics Data System (ADS)

    Li, Xianglian; Gao, Qiong; Lei, Tingwu; Yang, Xiusheng

    2011-03-01

    This study presents an application of a well-calibrated integrative hydro-ecological model to examine water resources management in the upper and middle parts of the Yellow River basin, an arid and semiarid area in northwestern China. The hydro-ecological model was developed to simulate dynamic and accumulative hydrologic, ecologic, and economic variables at different spatial units. Four water management scenarios based on water use priorities, a business-as-usual scenario, an ecological scenario, an irrigation use efficiency scenario and water use scenario were designed and modeled over the period of 2011-2020 to reflect alternative water management pathways to the future. Water resource conditions were assessed in terms streamflow, actual evapotranspiration, soil water, groundwater yield, overall water yield, and derived indicator of drought index. Unit crop yield was to assess ecological production, and monetary values of crop productivity and water productivity were used to assess economic output. Scenario analysis results suggested that water stress would continue in the study region under both current water use patterns and ecological scenarios of river flow being fully satisfied.Water use scenarios would result in decreased water availability and ecosystem degradation in the long run. Improving irrigation use efficiency would be the most efficient approach in securing long-term water and food supply. The simulation results from this study provided useful information for evaluating long-term water resources management strategies, and will contribute to the knowledge of interdisciplinary modeling for water resources management in the study region.

  15. A Conceptual Framework for Evaluating the Domains of Applicability of Ecological Models and its Implementation in the Ecological Production Function Library

    EPA Science Inventory

    The use of computational ecological models to inform environmental management and policy has proliferated in the past 25 years. These models have become essential tools as linkages and feedbacks between human actions and ecological responses can be complex, and as funds for sampl...

  16. The Efficacy of Ecological Macro-Models in Preservice Teacher Education: Transforming States of Mind

    ERIC Educational Resources Information Center

    Stibbards, Adam; Puk, Tom

    2011-01-01

    The present study aimed to describe and evaluate a transformative, embodied, emergent learning approach to acquiring ecological literacy through higher education. A class of teacher candidates in a bachelor of education program filled out a survey, which had them rate their level of agreement with 15 items related to ecological macro-models.…

  17. VHDL simulation with access to transistor models

    NASA Technical Reports Server (NTRS)

    Gibson, J.

    1991-01-01

    Hardware description languages such as VHDL have evolved to aid in the design of systems with large numbers of elements and a wide range of electronic and logical abstractions. For high performance circuits, behavioral models may not be able to efficiently include enough detail to give designers confidence in a simulation's accuracy. One option is to provide a link between the VHDL environment and a transistor level simulation environment. The coupling of the Vantage Analysis Systems VHDL simulator and the NOVA simulator provides the combination of VHDL modeling and transistor modeling.

  18. Resist profile simulation with fast lithography model

    NASA Astrophysics Data System (ADS)

    He, Yan-Ying; Chou, Chih-Shiang; Tang, Yu-Po; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2014-03-01

    A traditional approach to construct a fast lithographic model is to match wafer top-down SEM images, contours and/or gauge CDs with a TCC model plus some simple resist representation. This modeling method has been proven and is extensively used for OPC modeling. As the technology moves forward, this traditional approach has become insufficient in regard to lithography weak point detection, etching bias prediction, etc. The drawback of this approach is from metrology and simulation. First, top-down SEM is only good for acquiring planar CD information. Some 3D metrology such as cross-section SEM or AFM is necessary to obtain the true resist profile. Second, the TCC modeling approach is only suitable for planar image simulation. In order to model the resist profile, full 3D image simulation is needed. Even though there are many rigorous simulators capable of catching the resist profile very well, none of them is feasible for full-chip application due to the tremendous consumption of computational resource. The authors have proposed a quasi-3D image simulation method in the previous study [1], which is suitable for full-chip simulation with the consideration of sidewall angles, to improve the model accuracy of planar models. In this paper, the quasi-3D image simulation is extended to directly model the resist profile with AFM and/or cross-section SEM data. Resist weak points detected by the model generated with this 3D approach are verified on the wafer.

  19. Framework for analyzing ecological trait-based models in multidimensional niche spaces

    NASA Astrophysics Data System (ADS)

    Biancalani, Tommaso; DeVille, Lee; Goldenfeld, Nigel

    2015-05-01

    We develop a theoretical framework for analyzing ecological models with a multidimensional niche space. Our approach relies on the fact that ecological niches are described by sequences of symbols, which allows us to include multiple phenotypic traits. Ecological drivers, such as competitive exclusion, are modeled by introducing the Hamming distance between two sequences. We show that a suitable transform diagonalizes the community interaction matrix of these models, making it possible to predict the conditions for niche differentiation and, close to the instability onset, the asymptotically long time population distributions of niches. We exemplify our method using the Lotka-Volterra equations with an exponential competition kernel.

  20. Ecological models of human performance based on affordance, emotion and intuition.

    PubMed

    Gielo-Perczak, Krystyna; Karwowski, Waldemar

    2003-01-15

    This paper proposes a complementary approach to Rasmussen's taxonomy of the human skill-, rule-, and knowledge-based performance models by combining the ecological concept of affordances with the neural concepts of human emotion and intuition. The classical cognitive engineering framework is extended through the neuro-ecological approach, including personal human attributes important in exercising control over the work environment. The proposed affordance-, emotion-, and intuition-based models correspond to the three types of human performance, namely: learning, adaptive and tuning control, respectively. The new framework is not a predictive model of the operator behaviour, but rather it describes the processes of neuro-ecological control of the human environment.

  1. Framework for analyzing ecological trait-based models in multidimensional niche spaces.

    PubMed

    Biancalani, Tommaso; DeVille, Lee; Goldenfeld, Nigel

    2015-05-01

    We develop a theoretical framework for analyzing ecological models with a multidimensional niche space. Our approach relies on the fact that ecological niches are described by sequences of symbols, which allows us to include multiple phenotypic traits. Ecological drivers, such as competitive exclusion, are modeled by introducing the Hamming distance between two sequences. We show that a suitable transform diagonalizes the community interaction matrix of these models, making it possible to predict the conditions for niche differentiation and, close to the instability onset, the asymptotically long time population distributions of niches. We exemplify our method using the Lotka-Volterra equations with an exponential competition kernel. PMID:26066119

  2. Models of Dispersal Evolution Highlight Several Important Issues in Evolutionary and Ecological Modeling.

    PubMed

    Bocedi, Greta; Travis, Justin M J

    2016-01-01

    Previous results showing that lack of information on local population density leads to higher emigration probabilities in unpredictable environments but to lower emigration probabilities in constant or highly predictable scenarios have recently been challenged by Poethke et al. By reimplementing both our model and that of Poethke and colleagues, we demonstrate that our original results indeed hold to the presented critiques and do not contradict previous findings. The comment by Poethke and colleagues does, however, present potentially intriguing results suggesting that negative density-dependent dispersal evolves under white noise for some model formulations. Here, through intermodel comparison, we seek to better understand the source of the differences in results obtained in our study and theirs. We conclude that the apparent negative density dependence reported by Poethke et al. is effectively density independence and that the shape of the reaction norm they obtain is a model artefact. Further, this response provides an opportunity to elaborate on some important issues in evolutionary and ecological modeling regarding (i) the importance of carefully considering different models' assumptions in comparisons among models, (ii) the need to consider the role of stochasticity and uncertainty when presenting and interpreting results from stochastic individual-based models, (iii) the adequate choice of the underlying ecological model that creates the selective pressures determining the evolution of behavioral reaction norms, and (iv) the appropriate choice of mutation models. PMID:27277411

  3. Global sensitivity analysis for complex ecological models: a case study of riparian cottonwood population dynamics.

    PubMed

    Harper, Elizabeth B; Stella, John C; Fremier, Alexander K

    2011-06-01

    Mechanism-based ecological models are a valuable tool for understanding the drivers of complex ecological systems and for making informed resource-management decisions. However, inaccurate conclusions can be drawn from models with a large degree of uncertainty around multiple parameter estimates if uncertainty is ignored. This is especially true in nonlinear systems with multiple interacting variables. We addressed these issues for a mechanism-based, demographic model of Populus fremontii (Fremont cottonwood), the dominant riparian tree species along southwestern U.S. rivers. Many cottonwood populations have declined following widespread floodplain conversion and flow regulation. As a result, accurate predictive models are needed to analyze effects of future climate change and water management decisions. To quantify effects of parameter uncertainty, we developed an analytical approach that combines global sensitivity analysis (GSA) with classification and regression trees (CART) and Random Forest, a bootstrapping CART method. We used GSA to quantify the interacting effects of the full range of uncertainty around all parameter estimates, Random Forest to rank parameters according to their total effect on model predictions, and CART to identify higher-order interactions. GSA simulations yielded a wide range of predictions, including annual germination frequency of 10-100%, annual first-year survival frequency of 0-50%, and patch occupancy of 0-100%. This variance was explained primarily by complex interactions among abiotic parameters including capillary fringe height, stage-discharge relationship, and floodplain accretion rate, which interacted with biotic factors to affect survival. Model precision was primarily influenced by well-studied parameter estimates with minimal associated uncertainty and was virtually unaffected by parameter estimates for which there are no available empirical data and thus a large degree of uncertainty. Therefore, research to improve

  4. Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations.

    PubMed

    Fisher, Rosie; McDowell, Nate; Purves, Drew; Moorcroft, Paul; Sitch, Stephen; Cox, Peter; Huntingford, Chris; Meir, Patrick; Woodward, F Ian

    2010-08-01

    *Second-generation Dynamic Global Vegetation Models (DGVMs) have recently been developed that explicitly represent the ecological dynamics of disturbance, vertical competition for light, and succession. Here, we introduce a modified second-generation DGVM and examine how the representation of demographic processes operating at two-dimensional spatial scales not represented by these models can influence predicted community structure, and responses of ecosystems to climate change. *The key demographic processes we investigated were seed advection, seed mixing, sapling survival, competitive exclusion and plant mortality. We varied these parameters in the context of a simulated Amazon rainforest ecosystem containing seven plant functional types (PFTs) that varied along a trade-off surface between growth and the risk of starvation induced mortality. *Varying the five unconstrained parameters generated community structures ranging from monocultures to equal co-dominance of the seven PFTs. When exposed to a climate change scenario, the competing impacts of CO(2) fertilization and increasing plant mortality caused ecosystem biomass to diverge substantially between simulations, with mid-21st century biomass predictions ranging from 1.5 to 27.0 kg C m(-2). *Filtering the results using contemporary observation ranges of biomass, leaf area index (LAI), gross primary productivity (GPP) and net primary productivity (NPP) did not substantially constrain the potential outcomes. We conclude that demographic processes represent a large source of uncertainty in DGVM predictions. PMID:20618912

  5. Assessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models

    NASA Astrophysics Data System (ADS)

    Coll, Marta; Navarro, Joan; Olson, Robert J.; Christensen, Villy

    2013-10-01

    We synthesized available information from ecological models at local and regional scales to obtain a global picture of the trophic position and ecological role of squids in marine ecosystems. First, static food-web models were used to analyze basic ecological parameters and indicators of squids: biomass, production, consumption, trophic level, omnivory index, predation mortality diet, and the ecological role. In addition, we developed various dynamic temporal simulations using two food-web models that included squids in their parameterization, and we investigated potential impacts of fishing pressure and environmental conditions for squid populations and, consequently, for marine food webs. Our results showed that squids occupy a large range of trophic levels in marine food webs and show a large trophic width, reflecting the versatility in their feeding behaviors and dietary habits. Models illustrated that squids are abundant organisms in marine ecosystems, and have high growth and consumption rates, but these parameters are highly variable because squids are adapted to a large variety of environmental conditions. Results also show that squids can have a large trophic impact on other elements of the food web, and top-down control from squids to their prey can be high. In addition, some squid species are important prey of apical predators and may be keystone species in marine food webs. In fact, we found strong interrelationships between neritic squids and the populations of their prey and predators in coastal and shelf areas, while the role of squids in open ocean and upwelling ecosystems appeared more constrained to a bottom-up impact on their predators. Therefore, large removals of squids will likely have large-scale effects on marine ecosystems. In addition, simulations confirm that squids are able to benefit from a general increase in fishing pressure, mainly due to predation release, and quickly respond to changes triggered by the environment. Squids may thus

  6. Next generation dynamic global vegetation models: learning from community ecology (Invited)

    NASA Astrophysics Data System (ADS)

    Scheiter, S.; Higgins, S.; Langan, L.

    2013-12-01

    Dynamic global vegetation models are a powerful tool to project past, current and future vegetation patterns and the associated biogeochemical cycles. However, most models are limited by their representation of vegetation by using static and pre-defined plant functional types and by their simplistic representation of competition. We discuss how concepts from community assembly theory and coexistence theory can help to improve dynamic vegetation models. We present a trait- and individual-based dynamic vegetation model, the aDGVM2, that allows individual plants to adopt a unique combination of trait values. These traits define how individual plants grow, compete and reproduce under the given biotic and abiotic conditions. A genetic optimization algorithm is used to simulate trait inheritance and reproductive isolation between individuals. These model properties allow the assembly of plant communities that are adapted to biotic and abiotic conditions. We show (1) that the aDGVM2 can simulate coarse vegetation patterns in Africa, (2) that changes in the environmental conditions and disturbances strongly influence trait diversity and the assembled plant communities by influencing traits such as leaf phenology and carbon allocation patterns of individual plants and (3) that communities do not necessarily return to the initial state when environmental conditions return to the initial state. The aDGVM2 deals with functional diversity and competition fundamentally differently from current models and allows novel insights as to how vegetation may respond to climate change. We believe that the aDGVM2 approach could foster collaborations between research communities that focus on functional plant ecology, plant competition, plant physiology and Earth system science.

  7. Modelling the ecological-functional diversification of marine Metazoa on geological time scales.

    PubMed

    Bush, Andrew M; Novack-Gottshall, Philip M

    2012-02-23

    The ecological traits and functional capabilities of marine animals have changed significantly since their origin in the late Precambrian. These changes can be analysed quantitatively using multi-dimensional parameter spaces in which the ecological lifestyles of species are represented by particular combinations of parameter values. Here, we present models that describe the filling of this multi-dimensional 'ecospace' by ecological lifestyles during metazoan diversification. These models reflect varying assumptions about the processes that drove ecological diversification; they contrast diffusive expansion with driven expansion and niche conservatism with niche partitioning. Some models highlight the importance of interactions among organisms (ecosystem engineering and predator-prey escalation) in promoting new lifestyles or eliminating existing ones. These models reflect processes that were not mutually exclusive; rigorous analyses will continue to reveal their applicability to episodes in metazoan history. PMID:21813550

  8. Composition and analysis of a model waste for a CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.

    1983-01-01

    A model waste based on a modest vegetarian diet is given, including composition and elemental analysis. Its use is recommended for evaluation of candidate waste treatment processes for a Controlled Ecological Life Support System (CELSS).

  9. Effects of simulation language and modeling methodology on simulation modeling performance

    SciTech Connect

    Wang, T.J.

    1987-01-01

    Research in simulation modeling has made little advance over the past two decades. Many simulation languages and modeling methodologies were designed but not evaluated. Model developers were given no criteria for selecting from among these modeling tools. A framework of research in simulation modeling was developed to identify factors that might most affect simulation modeling performance. First, two simulation languages (MAGIE and GPSS) that differ greatly in complexity were compared. Both languages are similar in their design philosophy. However, MAGIE is a small simulation language with ten model building blocks while GPSS is a large simulation language with fifty-six model building blocks. Secondly, two modeling methodologies, namely the top-down and the bottom-up approaches, were compared. This research shows that it is feasible to apply the user-based empirical research methodology to study simulation modeling. It is also concluded that modeling with a large simulation language does not necessarily yield better results than modeling with a small simulation language. Furthermore, it was found that using the top-down modeling approach does not necessarily yield better results than using the bottom-up modeling approach.

  10. SIMULATION MODELING OF GASTROINTESTINAL ABSORPTION

    EPA Science Inventory

    Mathematical dosimetry models incorporate mechanistic determinants of chemical disposition in a living organism to describe relationships between exposure concentration and the internal dose needed for PBPK models and human health risk assessment. Because they rely on determini...

  11. Quantum simulation of the t- J model

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Fumiko; Yamamoto, Yoshihisa

    2002-12-01

    Computer simulation of a many-particle quantum system is bound to reach the inevitable limits of its ability as the system size increases. The primary reason for this is that the memory size used in a classical simulator grows polynomially whereas the Hilbert space of the quantum system does so exponentially. Replacing the classical simulator by a quantum simulator would be an effective method of surmounting this obstacle. The prevailing techniques for simulating quantum systems on a quantum computer have been developed for purposes of computing numerical algorithms designed to obtain approximate physical quantities of interest. The method suggested here requires no numerical algorithms; it is a direct isomorphic translation between a quantum simulator and the quantum system to be simulated. In the quantum simulator, physical parameters of the system, which are the fixed parameters of the simulated quantum system, are under the control of the experimenter. A method of simulating a model for high-temperature superconducting oxides, the t- J model, by optical control, as an example of such a quantum simulation, is presented.

  12. An Extensible Reduced Order Model Builder for Simulation and Modeling

    SciTech Connect

    2012-09-28

    REVEAL is a software framework for building reduced order models (surrogate models) for high fidelity complex scientific simulations. REVEAL is designed to do reduced order modeling and sensitivity analysis for scientific simulations. REVEAL incorporates a range of sampling and regression methods. It provides complete user environment and is adaptable to new simulators, runs jobs on any computing platform of choice, automatically post processes simulation results and provides a range of data analysis tools. The software is generic and can easily be extended to incorporate new methods, simulators.

  13. An Extensible Reduced Order Model Builder for Simulation and Modeling

    2012-09-28

    REVEAL is a software framework for building reduced order models (surrogate models) for high fidelity complex scientific simulations. REVEAL is designed to do reduced order modeling and sensitivity analysis for scientific simulations. REVEAL incorporates a range of sampling and regression methods. It provides complete user environment and is adaptable to new simulators, runs jobs on any computing platform of choice, automatically post processes simulation results and provides a range of data analysis tools. The softwaremore » is generic and can easily be extended to incorporate new methods, simulators.« less

  14. Ecologically-focused Calibration of Hydrological Models for Environmental Flow Applications

    NASA Astrophysics Data System (ADS)

    Adams, S. K.; Bledsoe, B. P.

    2015-12-01

    Hydrologic alteration resulting from watershed urbanization is a common cause of aquatic ecosystem degradation. Developing environmental flow criteria for urbanizing watersheds requires quantitative flow-ecology relationships that describe biological responses to streamflow alteration. Ideally, gaged flow data are used to develop flow-ecology relationships; however, biological monitoring sites are frequently ungaged. For these ungaged locations, hydrologic models must be used to predict streamflow characteristics through calibration and testing at gaged sites, followed by extrapolation to ungaged sites. Physically-based modeling of rainfall-runoff response has frequently utilized "best overall fit" calibration criteria, such as the Nash-Sutcliffe Efficiency (NSE), that do not necessarily focus on specific aspects of the flow regime relevant to biota of interest. This study investigates the utility of employing flow characteristics known a priori to influence regional biological endpoints as "ecologically-focused" calibration criteria compared to traditional, "best overall fit" criteria. For this study, 19 continuous HEC-HMS 4.0 models were created in coastal southern California and calibrated to hourly USGS streamflow gages with nearby biological monitoring sites using one "best overall fit" and three "ecologically-focused" criteria: NSE, Richards-Baker Flashiness Index (RBI), percent of time when the flow is < 1 cfs (%<1), and a Combined Calibration (RBI and %<1). Calibrated models were compared using calibration accuracy, environmental flow metric reproducibility, and the strength of flow-ecology relationships. Results indicate that "ecologically-focused" criteria can be calibrated with high accuracy and may provide stronger flow-ecology relationships than "best overall fit" criteria, especially when multiple "ecologically-focused" criteria are used in concert, despite inabilities to accurately reproduce additional types of ecological flow metrics to which the

  15. The big data-big model (BDBM) challenges in ecological research

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2015-12-01

    The field of ecology has become a big-data science in the past decades due to development of new sensors used in numerous studies in the ecological community. Many sensor networks have been established to collect data. For example, satellites, such as Terra and OCO-2 among others, have collected data relevant on global carbon cycle. Thousands of field manipulative experiments have been conducted to examine feedback of terrestrial carbon cycle to global changes. Networks of observations, such as FLUXNET, have measured land processes. In particular, the implementation of the National Ecological Observatory Network (NEON), which is designed to network different kinds of sensors at many locations over the nation, will generate large volumes of ecological data every day. The raw data from sensors from those networks offer an unprecedented opportunity for accelerating advances in our knowledge of ecological processes, educating teachers and students, supporting decision-making, testing ecological theory, and forecasting changes in ecosystem services. Currently, ecologists do not have the infrastructure in place to synthesize massive yet heterogeneous data into resources for decision support. It is urgent to develop an ecological forecasting system that can make the best use of multiple sources of data to assess long-term biosphere change and anticipate future states of ecosystem services at regional and continental scales. Forecasting relies on big models that describe major processes that underlie complex system dynamics. Ecological system models, despite great simplification of the real systems, are still complex in order to address real-world problems. For example, Community Land Model (CLM) incorporates thousands of processes related to energy balance, hydrology, and biogeochemistry. Integration of massive data from multiple big data sources with complex models has to tackle Big Data-Big Model (BDBM) challenges. Those challenges include interoperability of multiple

  16. From the Conceptual Change Model to the Productive Ecological Koinos Model: Learning that transcends

    NASA Astrophysics Data System (ADS)

    Gelpi-Rodriguez, Phaedra

    This investigation presents the analysis of a model of teaching science called the Conceptual Change Model. This model stimulates students to identify their own and alternate science concepts, and to confront these concepts with dynamic situations that will incite a conceptual change and promote their ability to master and understand the conceptual systems that serve as foundations for scientific knowledge. During a previous research made by this investigator on the Conceptual Change Model, a proposal for a new teaching model came up which she called the Productive Ecological Koinos Model. This model incorporates, among other things, the teacher's reflection and inner thoughts about the concepts taught and the learning experiences achieved in concurrence with students. Using action research, an exploration and analysis was done that focused upon how students and teachers modified their perspective of science while testing the Productive Ecological Koinos Model during the teaching-learning processes that took place in a microbiology course. The action research design allows the researcher to analyze these points from the experiential perspective, while also allowing the researcher to participate in the study. The study employed qualitative research techniques such as reflective diaries, personal profiles of participants, document analysis, audio tape recordings and transcriptions. All of these techniques are accepted within action research (Elliot, 1991). The Wolcott Model was the data analysis method used in the research. The description, analysis and interpretation carried out allowed for the examination of the various components of the Productive Ecological Koinos Model with students and teachers as to the scientific terms virus and contagion, and their experiences during the learning process within and outside the classroom. From the analysis of the Model a modification cropped up which places emphasis on conscious introspection on the learning process. This new

  17. Modeling and simulation of fire spreading through the activity tracking paradigm

    SciTech Connect

    Muzy,; Nutaro, James J; Zeigler, Bernard P; Coquillard,

    2008-01-01

    Modeling and simulation is essential for understanding complex ecological systems. However, knowledge of the structure and behavior of these systems is limited, and models must be revised frequently as our understanding of a system improves. Moreover, the dynamic, spatial distribution of activity in very large systems necessitates mapping natural mechanisms as logically as possible onto computer structures. This paper describes theoretical and algorithmic tools for building component-based models and simulations of dynamic spatial phenomena. These methods focus attention on and exploit the irregular distribution of activity in ecological processes. We use the DEVS formalism as the basis for a component based approach to modeling spatially distributed systems. DEVS is a mathematical theory of discrete-event systems that is well suited for describing large systems that are described by small parts with irregular, short-range interactions. This event-based approach to modeling leads naturally to efficient simulations algorithms which focus on the active parts of a large model. Ecological modeling benefits from these efficient the simulation algorithms and the reusability of the model s basic components. Our event-based method is demonstrated with a physics-based model of fire spread.

  18. Software-Engineering Process Simulation (SEPS) model

    NASA Technical Reports Server (NTRS)

    Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.

    1992-01-01

    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.

  19. Predicting ecological roles in the rhizosphere using metabolome and transportome modeling

    SciTech Connect

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; Blanchard, Jeffrey L.

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.

  20. Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling.

    PubMed

    Larsen, Peter E; Collart, Frank R; Dai, Yang

    2015-01-01

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad's ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism's transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data. PMID:26332409

  1. Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling

    PubMed Central

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang

    2015-01-01

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data. PMID:26332409

  2. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André

    2009-04-01

    SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.

  3. Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps.

    PubMed

    Kimball, J. S.; Keyser, A. R.; Running, S. W.; Saatchi, S. S.

    2000-06-01

    An ecological process model (BIOME-BGC) was used to assess boreal forest regional net primary production (NPP) and response to short-term, year-to-year weather fluctuations based on spatially explicit, land cover and biomass maps derived by radar remote sensing, as well as soil, terrain and daily weather information. Simulations were conducted at a 30-m spatial resolution, over a 1205 km(2) portion of the BOREAS Southern Study Area of central Saskatchewan, Canada, over a 3-year period (1994-1996). Simulations of NPP for the study region were spatially and temporally complex, averaging 2.2 (+/- 0.6), 1.8 (+/- 0.5) and 1.7 (+/- 0.5) Mg C ha(-1) year(-1) for 1994, 1995 and 1996, respectively. Spatial variability of NPP was strongly controlled by the amount of aboveground biomass, particularly photosynthetic leaf area, whereas biophysical differences between broadleaf deciduous and evergreen coniferous vegetation were of secondary importance. Simulations of NPP were strongly sensitive to year-to-year variations in seasonal weather patterns, which influenced the timing of spring thaw and deciduous bud-burst. Reductions in annual NPP of approximately 17 and 22% for 1995 and 1996, respectively, were attributed to 3- and 5-week delays in spring thaw relative to 1994. Boreal forest stands with greater proportions of deciduous vegetation were more sensitive to the timing of spring thaw than evergreen coniferous stands. Similar relationships were found by comparing simulated snow depth records with 10-year records of aboveground NPP measurements obtained from biomass harvest plots within the BOREAS region. These results highlight the importance of sub-grid scale land cover complexity in controlling boreal forest regional productivity, the dynamic response of the biome to short-term interannual climate variations, and the potential implications of climate change and other large-scale disturbances.

  4. Structural model uncertainty in stochastic simulation

    SciTech Connect

    McKay, M.D.; Morrison, J.D.

    1997-09-01

    Prediction uncertainty in stochastic simulation models can be described by a hierarchy of components: stochastic variability at the lowest level, input and parameter uncertainty at a higher level, and structural model uncertainty at the top. It is argued that a usual paradigm for analysis of input uncertainty is not suitable for application to structural model uncertainty. An approach more likely to produce an acceptable methodology for analyzing structural model uncertainty is one that uses characteristics specific to the particular family of models.

  5. Theory, modeling, and simulation annual report, 1992

    SciTech Connect

    Not Available

    1993-05-01

    This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.

  6. Mathematical Model Development and Simulation Support

    NASA Technical Reports Server (NTRS)

    Francis, Ronald C.; Tobbe, Patrick A.

    2000-01-01

    This report summarizes the work performed in support of the Contact Dynamics 6DOF Facility and the Flight Robotics Lab at NASA/ MSFC in the areas of Mathematical Model Development and Simulation Support.

  7. MODELING CONCEPTS FOR BMP/LID SIMULATION

    EPA Science Inventory

    Enhancement of simulation options for stormwater best management practices (BMPs) and hydrologic source control is discussed in the context of the EPA Storm Water Management Model (SWMM). Options for improvement of various BMP representations are presented, with emphasis on inco...

  8. A Simulation To Model Exponential Growth.

    ERIC Educational Resources Information Center

    Appelbaum, Elizabeth Berman

    2000-01-01

    Describes a simulation using dice-tossing students in a population cluster to model the growth of cancer cells. This growth is recorded in a scatterplot and compared to an exponential function graph. (KHR)

  9. DAIS Models Simulation System (DMSS)

    NASA Astrophysics Data System (ADS)

    Brewer, A. C.

    1981-05-01

    The DMSS software support effort enhanced the capabilities and value of DMSS by accomplishing the following four objectives: (1) Addition of VATS/Pave Tack and Maverick Missile models; (2) Enhancing the existing software; (3) Creating meaningful, up-to-date documentation; and (4) Providing comprehensive training. The new models were developed using top-down structuring techniques and were implemented in RATFOR (a structured FORTRAN preprocessor). The existing models were restructured using top-down structuring techniques, RATFOR, and meaningful comments. The documentation was updated to adhere to MIL-STD-483 and 490.

  10. Heat pipe modeling and simulation

    SciTech Connect

    Peterson, G.P.

    1985-01-01

    Presented herein is a parametric study of the defining equations which govern the steady state operational characteristics of the Grumman Monogroove Dual Passage Heat Pipe. These defining equations are combined to develop a mathematical model which describes and predicts the operational and performance capabilities of a specific heat pipe, given the necessary physical characteristics and working fluid. Included is a brief review of the current literature, a discussion of the governing equations, and a description of both the mathematical and computer model. Final results of preliminary test runs of the model are presented and compared with experimental tests performed by Grumman on actual prototypes.

  11. Hemispherical sky simulator for daylighting model studies

    NASA Astrophysics Data System (ADS)

    Selkowitz, S.

    1981-07-01

    The design of a 24 foot diameter hemispherical sky simulator is described. A facility in which large models is tested, which is suitable for research, teaching, and design which could provide a uniform sky, an overcast sky, and several clear sky luminance distributions, as well as accommodating an artificial sun was produced. Initial operating experience with the facility is described, the sky simulator capabilities are reviewed, and its strengths and weaknesses relative to outdoor modelling tests are discussed.

  12. Minimum-complexity helicopter simulation math model

    NASA Technical Reports Server (NTRS)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  13. Modeling of transformers using circuit simulators

    SciTech Connect

    Archer, W.E.; Deveney, M.F.; Nagel, R.L.

    1994-07-01

    Transformers of two different designs; and unencapsulated pot core and an encapsulated toroidal core have been modeled for circuit analysis with circuit simulation tools. We selected MicroSim`s PSPICE and Anology`s SABER as the simulation tools and used experimental BH Loop and network analyzer measurements to generate the needed input data. The models are compared for accuracy and convergence using the circuit simulators. Results are presented which demonstrate the effects on circuit performance from magnetic core losses, eddy currents, and mechanical stress on the magnetic cores.

  14. Intelligent Simulation Model To Facilitate EHR Training

    PubMed Central

    Mohan, Vishnu; Scholl, Gretchen; Gold, Jeffrey A.

    2015-01-01

    Despite the rapid growth of EHR use, there are currently no standardized protocols for EHR training. A simulation EHR environment may offer significant advantages with respect to EHR training, but optimizing the training paradigm requires careful consideration of the simulation model itself, and how it is to be deployed during training. In this paper, we propose Six Principles that are EHR-agnostic and provide the framework for the development of an intelligent simulation model that can optimize EHR training by replicating real-world clinical conditions and appropriate cognitive loads. PMID:26958229

  15. [Assessment on the ecological suitability in Zhuhai City, Guangdong, China, based on minimum cumulative resistance model].

    PubMed

    Li, Jian-fei; Li, Lin; Guo, Luo; Du, Shi-hong

    2016-01-01

    Urban landscape has the characteristics of spatial heterogeneity. Because the expansion process of urban constructive or ecological land has different resistance values, the land unit stimulates and promotes the expansion of ecological land with different intensity. To compare the effect of promoting and hindering functions in the same land unit, we firstly compared the minimum cumulative resistance value of promoting and hindering functions, and then looked for the balance of two landscape processes under the same standard. According to the ecology principle of minimum limit factor, taking the minimum cumulative resistance analysis method under two expansion processes as the evaluation method of urban land ecological suitability, this research took Zhuhai City as the study area to estimate urban ecological suitability by relative evaluation method with remote sensing image, field survey, and statistics data. With the support of ArcGIS, five types of indicators on landscape types, ecological value, soil erosion sensitivity, sensitivity of geological disasters, and ecological function were selected as input parameters in the minimum cumulative resistance model to compute urban ecological suitability. The results showed that the ecological suitability of the whole Zhuhai City was divided into five levels: constructive expansion prohibited zone (10.1%), constructive expansion restricted zone (32.9%), key construction zone (36.3%), priority development zone (2.3%), and basic cropland (18.4%). Ecological suitability of the central area of Zhuhai City was divided into four levels: constructive expansion prohibited zone (11.6%), constructive expansion restricted zone (25.6%), key construction zone (52.4%), priority development zone (10.4%). Finally, we put forward the sustainable development framework of Zhuhai City according to the research conclusion. On one hand, the government should strictly control the development of the urban center area. On the other hand, the

  16. [Assessment on the ecological suitability in Zhuhai City, Guangdong, China, based on minimum cumulative resistance model].

    PubMed

    Li, Jian-fei; Li, Lin; Guo, Luo; Du, Shi-hong

    2016-01-01

    Urban landscape has the characteristics of spatial heterogeneity. Because the expansion process of urban constructive or ecological land has different resistance values, the land unit stimulates and promotes the expansion of ecological land with different intensity. To compare the effect of promoting and hindering functions in the same land unit, we firstly compared the minimum cumulative resistance value of promoting and hindering functions, and then looked for the balance of two landscape processes under the same standard. According to the ecology principle of minimum limit factor, taking the minimum cumulative resistance analysis method under two expansion processes as the evaluation method of urban land ecological suitability, this research took Zhuhai City as the study area to estimate urban ecological suitability by relative evaluation method with remote sensing image, field survey, and statistics data. With the support of ArcGIS, five types of indicators on landscape types, ecological value, soil erosion sensitivity, sensitivity of geological disasters, and ecological function were selected as input parameters in the minimum cumulative resistance model to compute urban ecological suitability. The results showed that the ecological suitability of the whole Zhuhai City was divided into five levels: constructive expansion prohibited zone (10.1%), constructive expansion restricted zone (32.9%), key construction zone (36.3%), priority development zone (2.3%), and basic cropland (18.4%). Ecological suitability of the central area of Zhuhai City was divided into four levels: constructive expansion prohibited zone (11.6%), constructive expansion restricted zone (25.6%), key construction zone (52.4%), priority development zone (10.4%). Finally, we put forward the sustainable development framework of Zhuhai City according to the research conclusion. On one hand, the government should strictly control the development of the urban center area. On the other hand, the

  17. Stream ecological condition modeling at the reach and the hydrologic unit (HUC) scale: A look at model performance and mapping

    EPA Science Inventory

    The National Hydrography and updated Watershed Boundary Datasets provide a ready-made framework for hydrographic modeling. Determining particular stream reaches or watersheds in poor ecological condition across large regions is an essential goal for monitoring and management. T...

  18. An Ecological Model of Developing Researcher Competence: The Case of Software Technology in Doctoral Research

    ERIC Educational Resources Information Center

    Stelma, Juup

    2011-01-01

    This paper presents an ecological model of developing researcher competence, with a particular focus on doctoral students' use of research software. The model extends on theoretical work done by Young et al. ("Instructional Science 30"(1): 47-63, 2002), modelling the intentional dynamics of technological learning contexts. The development of the…

  19. Teaching Population Ecology Modeling by Means of the Hewlett-Packard 9100A.

    ERIC Educational Resources Information Center

    Tuinstra, Kenneth E.

    The incorporation of mathematical modeling experiences into an undergraduate biology course is described. Detailed expositions of three models used to teach concepts of population ecology are presented, including introductions to major concepts, user instructions, trial data and problem sets. The models described are: 1) an exponential/logistic…

  20. Supervision in School Psychology: The Developmental/Ecological/Problem-Solving Model

    ERIC Educational Resources Information Center

    Simon, Dennis J.; Cruise, Tracy K.; Huber, Brenda J.; Swerdlik, Mark E.; Newman, Daniel S.

    2014-01-01

    Effective supervision models guide the supervisory relationship and supervisory tasks leading to reflective and purposeful practice. The Developmental/Ecological/Problem-Solving (DEP) Model provides a contemporary framework for supervision specific to school psychology. Designed for the school psychology internship, the DEP Model is also…

  1. Conceptual ecological models to support detection of ecological change on Alaska National Wildlife Refuges

    USGS Publications Warehouse

    Woodward, Andrea; Beever, Erik A.

    2011-01-01

    More than 31 million hectares of land are protected and managed in 16 refuges by the U.S. Fish and Wildlife Service (USFWS) in Alaska. The vastness and isolation of Alaskan refuges give rise to relatively intact and complete ecosystems. The potential for these lands to provide habitat for trust species is likely to be altered, however, due to global climate change, which is having dramatic effects at high latitudes. The ability of USFWS to effectively manage these lands in the future will be enhanced by a regional inventory and monitoring program that integrates and supplements monitoring currently being implemented by individual refuges. Conceptual models inform monitoring programs in a number of ways, including summarizing important ecosystem components and processes as well as facilitating communication, discussion and debate about the nature of the system and important management issues. This process can lead to hypotheses regarding future changes, likely results of alternative management actions, identification of monitoring indicators, and ultimately, interpretation of monitoring results. As a first step towards developing a monitoring program, the 16 refuges in Alaska each created a conceptual model of their refuge and the landscape context. Models include prominent ecosystem components, drivers, and processes by which components are linked or altered. The Alaska refuge system also recognizes that designing and implementing monitoring at regional and ecoregional extents has numerous scientific, fiscal, logistical, and political advantages over monitoring conducted exclusively at refuge-specific scales. Broad-scale monitoring is particularly advantageous for examining phenomena such as climate change because effects are best interpreted at broader spatial extents. To enable an ecoregional perspective, a rationale was developed for deriving ecoregional boundaries for four ecoregions (Polar, Interior Alaska, Bering Coast, and North Pacific Coast) from the

  2. MODEL FOR SIMULATING FLOODS IN RIVERS.

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    1985-01-01

    A one-dimensional model capable of simulating flood wave propagation in a river or network of channels is presented. The computer model is programmed to provide maximum flexibility in the adaptation of channel geometry, the specification of conveyance properties, and the treatment of boundary conditions. An equation transformation procedure is employed in the model to minimize computer storage and execution time requirements by reducing the order of the resultant coefficient matrices. Based on a four-point implicit finite-difference approximation of the governing, nonlinear, flow equations, the model can be used to simulate the wide range of flow conditions typically encountered in various natural waterbody systems. Two particular applications are presented to demonstrate the computational features and capabilities of the model in the simulation of flood wave propagation.

  3. Dynamic modeling and simulation of planetary rovers

    NASA Astrophysics Data System (ADS)

    Lindemann, Randel A.

    1992-02-01

    This paper documents a preliminary study into the dynamic modeling and computer simulation of wheeled surface vehicles. The research centered on the feasibility of using commercially available multibody dynamics codes running on engineering workstations to perform the analysis. The results indicated that physically representative vehicle mechanics can be modeled and simulated in state-of-the-art Computer Aided Engineering environments, but at excessive cost in modeling and computation time. The results lead to the recommendation for the development of an efficient rover mobility-specific software system. This system would be used for vehicle design and simulation in planetary environments; controls prototyping, design, and testing; as well as local navigation simulation and expectation planning.

  4. USING STRUCTURAL EQUATION MODELING TO INVESTIGATE RELATIONSHIPS AMONG ECOLOGICAL VARIABLES

    EPA Science Inventory

    This paper gives an introductory account of Structural Equation Modeling (SEM) and demonstrates its application using LISREL< with a model utilizing environmental data. Using nine EMAP data variables, we analyzed their correlation matrix with an SEM model. The model characterized...

  5. River system environmental modeling and simulation methodology

    SciTech Connect

    Rao, N.B.

    1981-01-01

    Several computer models have been built to examine pollution in rivers. However, the current state of the art in this field emphasizes problem solving using specific programs. A general methodology for building and simulating models of river systems is lacking. Thus, the purpose of this research was to develop a methodology which can be used to conceptualize, visualize, construct and analyze using simulation, models of pollution in river systems. The conceptualization and visualization of these models was facilitated through a network representation. The implementation of the models was accomplished using the capabilities of an existing simulation language, GASP V. The methodology also provides data management facilities for model outputs through the use of the Simulation Data Language (SDL), and high quality plotting facilities through the use of the graphics package DISSPLA (Display Integrated Software System and Plotting Language). Using this methodology, a river system is modeled as consisting of certain elements, namely reaches, junctions, dams, reservoirs, withdrawals and pollutant sources. All these elements of the river system are described in a standard form which has been implemented on a computer. This model, when executed, produces spatial and temporal distributions of the pollutants in the river system. Furthermore, these outputs can be stored in a database and used to produce high quality plots. The result of this research is a methodology for building, implementing and examining the results of models of pollution in river systems.

  6. Architecting a Simulation Framework for Model Rehosting

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2004-01-01

    The utility of vehicle math models extends beyond human-in-the-loop simulation. It is desirable to deploy a given model across a multitude of applications that target design, analysis, and research. However, the vehicle model alone represents an incomplete simulation. One must also replicate the environment models (e.g., atmosphere, gravity, terrain) to achieve identical vehicle behavior across all applications. Environment models are increasing in complexity and represent a substantial investment to re-engineer for a new application. A software component that can be rehosted in each application is one solution to the deployment problem. The component must encapsulate both the vehicle and environment models. The component must have a well-defined interface that abstracts the bulk of the logic to operate the models. This paper examines the characteristics of a rehostable modeling component from the perspective of a human-in-the-loop simulation framework. The Langley Standard Real-Time Simulation in C++ (LaSRS++) is used as an example. LaSRS++ was recently redesigned to transform its modeling package into a rehostable component.

  7. Towards a coupled hydro-ecological catchment modeling approach Pt.2: water quality model

    NASA Astrophysics Data System (ADS)

    Hartwig, Melanie; Borchardt, Dietrich

    2010-05-01

    Fine sediments are a key constraint for the functions of a river. On the one hand they impact the light and heat regime and, consequently, the primary production. On the other hand they control the hydraulic connectivity of the hyporheic zone, determining residence time and oxygen availability and, hence, bio-geochemical reactions and habitat suitability. In turn, fine sediment delivery to and its fate in the aquatic system is a matter of catchment hydrology and erodability as well as transport capacity and load, respectively. This study aims to assess the influence of fine sediments on the aquatic system and the responses thereupon. The holistic modeling of fine sediment dynamics at catchment scale is challenging because of a lack of available information (input data), knowledge gaps in mathematical descriptions and the large range of spatiotemporal resolutions. In order to face these problems we approach to link distributed overland transport to in stream processes. Study site is the Kharaa river in northern Mongolia that shows a gradual degradation from pristine headwaters to disturbed lower reaches impacted by agricultural practices. Besides effects of climate change and population growth there are several pressures enhancing soil erosion from land surface or bank structures: deforestation and wildfires at headwater hill slopes, intensive grazing at floodplains, diminishing of riparian vegetation from downstream the mid reaches on and irrigated agriculture on vast stretches. Former investigations revealed deficits in benthic communities developed within the middle region and an increase in fine sediment colonisers. The part presented here concerns the water quality modeling using a compartmentalisation approach that describes the water column and sediment compartment at the same time. This is done according to the compendium described within the River Water Quality Model No.1 (RWQM1) and implemented through the AQUASIM Program for Identification and Simulation

  8. OCAM - A CELSS modeling tool: Description and results. [Object-oriented Controlled Ecological Life Support System Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Drysdale, Alan; Thomas, Mark; Fresa, Mark; Wheeler, Ray

    1992-01-01

    Controlled Ecological Life Support System (CELSS) technology is critical to the Space Exploration Initiative. NASA's Kennedy Space Center has been performing CELSS research for several years, developing data related to CELSS design. We have developed OCAM (Object-oriented CELSS Analysis and Modeling), a CELSS modeling tool, and have used this tool to evaluate CELSS concepts, using this data. In using OCAM, a CELSS is broken down into components, and each component is modeled as a combination of containers, converters, and gates which store, process, and exchange carbon, hydrogen, and oxygen on a daily basis. Multiple crops and plant types can be simulated. Resource recovery options modeled include combustion, leaching, enzyme treatment, aerobic or anaerobic digestion, and mushroom and fish growth. Results include printouts and time-history graphs of total system mass, biomass, carbon dioxide, and oxygen quantities; energy consumption; and manpower requirements. The contributions of mass, energy, and manpower to system cost have been analyzed to compare configurations and determine appropriate research directions.

  9. It is the economy, stupid! Projecting the fate of fish populations using ecological-economic modeling.

    PubMed

    Quaas, Martin F; Reusch, Thorsten B H; Schmidt, Jörn O; Tahvonen, Olli; Voss, Rudi

    2016-01-01

    Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond. PMID:26348787

  10. It is the economy, stupid! Projecting the fate of fish populations using ecological-economic modeling.

    PubMed

    Quaas, Martin F; Reusch, Thorsten B H; Schmidt, Jörn O; Tahvonen, Olli; Voss, Rudi

    2016-01-01

    Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond.

  11. Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models

    SciTech Connect

    Sarmiento, Jorge L.; Gnanadesikan, Anand; Gruber, Nicolas; Jin, Xin; Armstrong, Robert

    2007-06-21

    This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecological-biogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to an increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1; and, December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the

  12. A Rangeland Hydrology and Erosion Model for Developing Ecological Site Descriptions

    NASA Astrophysics Data System (ADS)

    Nearing, M. A.; Hernandez, M.; Armendariz, G.; Barker, S.; Williams, C. J.

    2014-12-01

    Predicting soil erosion is common practice in natural resource management for assessing the effects of management practices and control techniques of soil productivity, sediment delivery and off site water quality. The Rangeland Hydrology and Erosion Model (RHEM) was designed for this purpose. RHEM is an event-based model that estimates runoff, erosion, and sediment delivery rates and volumes at the spatial scale of the hillslope and the temporal scale of as single rainfall event. It represents erosion processes under normal and fire-impacted rangeland conditions. Moreover, it adopts a new splash erosion and thin sheet -flow transport equation developed from rangeland data, and it links the model hydrologic and erosion parameters with rangeland plant community by providing a new system of parameter estimation equations based on 204 plots at 49 rangeland sites distributed across 15 western U.S. states. Testing was done using long-term runoff and erosion data from small semi-aridland catchments. One of our goals with this project is to develop a framework for incorporating key ecohydrologic information/relationships in Ecological Site Descriptions and thereby enhanced utility of Ecological Site Descriptions s for guiding management. These key ecohydrologic relationships govern the ecologic resilience of the various states and community phases on many rangeland ecological sites and are strongly affected by management practices, land use, and disturbances. However, ecohydrologic data and relationships are often missing in Ecological Site Descriptions and resilience-based state-and-transition models. In this study we applied the RHEM model to data from multiple points in several ecological sites in Arizona, New Mexico, and Utah to assess the utility of the model for informing these Ecological Site Descriptions.

  13. A Model-Driven Sensor Web Simulator

    NASA Astrophysics Data System (ADS)

    Burns, R. W.

    2008-12-01

    Although numerous strides in weather forecasting were achieved in the past forty years, many of the operational concepts for today's observing systems remain essentially unchanged. Improvements have been suggested to address this, particularly the use of a model-driven sensor web architecture. Such a sensor web would potentially consist of ground systems, weather models, sensors and other components. The sensor web would enable cooperative, real-time measurements and targeted observations that can be used to improve operational efficiency and the forecast model's predictive skill. Implementing such a sensor web system, however, would impose significant costs and risks. Therefore, NASA Goddard is developing a tool called the Sensor Web Simulator. This tool is designed to simulate the behavior of a real-world, model-driven sensor web. The simulator leverages technology from Observing System Simulation Experiments (OSSEs) to create simulated observations for the desired observing platforms. Through the use of a workflow tool and data services, the Sensor Web Simulator integrates multiple models and software components and allows users to configure options and then execute a sensor web scenario. Although the work is in its early stages, the potential for its benefits have already been demonstrated. An initial experiment using sensor web concepts shows how a model-driven operations concept with the GWOS lidar could minimize the required number of lidar shots without compromising the information of the model's atmospheric state. Future work on the Sensor Web Simulator was proposed to expand the system beyond a "breadboard" system of components into an integrated mission design tool for scientists and engineers.

  14. Electrical Load Modeling and Simulation

    SciTech Connect

    Chassin, David P.

    2013-01-01

    Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.

  15. Modeling the growth dynamics of four candidate crops for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1987-01-01

    The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data.

  16. Non-linear transformer modeling and simulation

    SciTech Connect

    Archer, W.E.; Deveney, M.F.; Nagel, R.L.

    1994-08-01

    Transformers models for simulation with Pspice and Analogy`s Saber are being developed using experimental B-H Loop and network analyzer measurements. The models are evaluated for accuracy and convergence using several test circuits. Results are presented which demonstrate the effects on circuit performance from magnetic core losses eddy currents and mechanical stress on the magnetic cores.

  17. A School Finance Computer Simulation Model

    ERIC Educational Resources Information Center

    Boardman, Gerald R.

    1974-01-01

    Presents a description of the computer simulation model developed by the National Educational Finance Project for use by States in planning and evaluating alternative approaches for State support programs. Provides a general introduction to the model, a program operation overview, a sample run, and some conclusions. (Author/WM)

  18. Estimating solar radiation for plant simulation models

    SciTech Connect

    Hodges, T.; French, V.; Leduc, S.

    1985-01-01

    Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.

  19. Ecological model of occupational stress. Application to urban firefighters.

    PubMed

    Salazar, M K; Beaton, R

    2000-10-01

    1. Multiple individual and organizational barriers make it difficult for occupational health nurses and other providers to understand and handle stress in the workplace. 2. Recent research suggests adverse health effects resulting from occupational stress are more related to the context or conditions of work than workers' characteristics. 3. The ecological approach described in this article provides a means to examine the context in which stress occurs through an analysis of four levels of influence. The levels of influence include the microsystem, the organizational system, the peri-organizational system, and the extra-organizational system. 4. Through a careful analysis using this approach, an identification of the entire spectrum of factors contributing to the occurrence of workplace stressors can be identified, and more effective interventions addressing existing and potential problems related to occupational stress can be developed.

  20. Mars Smart Lander Parachute Simulation Model

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.; Raiszadeh, Ben

    2002-01-01

    A multi-body flight simulation for the Mars Smart Lander has been developed that includes six degree-of-freedom rigid-body models for both the supersonically-deployed and subsonically-deployed parachutes. This simulation is designed to be incorporated into a larger simulation of the entire entry, descent and landing (EDL) sequence. The complete end-to-end simulation will provide attitude history predictions of all bodies throughout the flight as well as loads on each of the connecting lines. Other issues such as recontact with jettisoned elements (heat shield, back shield, parachute mortar covers, etc.), design of parachute and attachment points, and desirable line properties can also be addressed readily using this simulation.

  1. PIXE simulation: Models, methods and technologies

    SciTech Connect

    Batic, M.; Pia, M. G.; Saracco, P.; Weidenspointner, G.

    2013-04-19

    The simulation of PIXE (Particle Induced X-ray Emission) is discussed in the context of general-purpose Monte Carlo systems for particle transport. Dedicated PIXE codes are mainly concerned with the application of the technique to elemental analysis, but they lack the capability of dealing with complex experimental configurations. General-purpose Monte Carlo codes provide powerful tools to model the experimental environment in great detail, but so far they have provided limited functionality for PIXE simulation. This paper reviews recent developments that have endowed the Geant4 simulation toolkit with advanced capabilities for PIXE simulation, and related efforts for quantitative validation of cross sections and other physical parameters relevant to PIXE simulation.

  2. A queuing model for road traffic simulation

    SciTech Connect

    Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.; Farhi, N.

    2015-03-10

    We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme.

  3. Using circuit theory to model connectivity in ecology, evolution, and conservation.

    PubMed

    McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B

    2008-10-01

    Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.

  4. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Friedlaender, Ari S.; Johnston, David W.; Fraser, William R.; Burns, Jennifer; Halpin, Patrick N.; Costa, Daniel P.

    2011-07-01

    Adélie penguins ( Pygoscelis adeliae), carabeater seals ( Lobodon carcinophagus), humpback ( Megaptera novaeangliae), and minke whales ( Balaenoptera bonaernsis) are found in the waters surrounding the Western Antarctic Peninsula. Each species relies primarily on Antarctic krill ( Euphausia superba) and has physiological constraints and foraging behaviors that dictate their ecological niches. Understanding the degree of ecological overlap between sympatric krill predators is critical to understanding and predicting the impacts on climate-driven changes to the Antarctic marine ecosystem. To explore ecological relationships amongst sympatric krill predators, we developed ecological niche models using a maximum entropy modeling approach (Maxent) that allows the integration of data collected by a variety of means (e.g. satellite-based locations and visual observations). We created spatially explicit probability distributions for the four krill predators in fall 2001 and 2002 in conjunction with a suite of environmental variables. We find areas within Marguerite Bay with high krill predator occurrence rates or biological hot spots. We find the modeled ecological niches for Adélie penguins and crabeater seals may be affected by their physiological needs to haul-out on substrate. Thus, their distributions may be less dictated by proximity to prey and more so by physical features that over time provide adequate access to prey. Humpback and minke whales, being fully marine and having greater energetic demands, occupy ecological niches more directly proximate to prey. We also find evidence to suggest that the amount of overlap between modeled niches is relatively low, even for species with similar energetic requirements. In a rapidly changing and variable environment, our modeling work shows little indication that krill predators maintain similar ecological niches across years around Marguerite Bay. Given the amount of variability in the marine environment around the

  5. Simulating Runoff from a Grid Based Mercury Model: Flow Comparisons

    EPA Science Inventory

    Several mercury cycling models, including general mass balance approaches, mixed-batch reactors in streams or lakes, or regional process-based models, exist to assess the ecological exposure risks associated with anthropogenically increased atmospheric mercury (Hg) deposition, so...

  6. Predicting fish species distribution in estuaries: Influence of species' ecology in model accuracy

    NASA Astrophysics Data System (ADS)

    França, Susana; Cabral, Henrique N.

    2016-10-01

    Current threats to biodiversity, combined with limited data availability, have made for species distribution models (SDMs) to be increasingly used due to their ability to predict species' potential distribution, by relating species occurrence with environmental estimates. Often used in ecology, conservation biology and environmental management, SDMs have been informing conservation strategies, and thus it is becoming crucial to understand how trustworthy their predictions are. Uncertainty in model predictions is expected, but knowing the origin of prediction errors may help reducing it. Indeed, uncertainty may be related not only with data quality and the modelling algorithm used, but also with species ecological characteristics. To investigate whether the performance of SDM's may vary with species' ecological characteristics, distribution models for 21 fish species occurring in estuaries from the Portuguese coast were examined. These models were built at two distinct spatial resolutions and seven environmental explanatory variables were used as predictors. SDMs' accuracy was assessed with the area under the curve (AUC) of receiver operating characteristics (ROC) plots, sensitivity and specificity. Relationships between each measure of accuracy and species ecological characteristics were then examined. SDMs of the fish species presented small differences between the considered scales, and predictors as latitude, temperature and salinity were often selected at both scales. Measures of model accuracy presented differences between species and scales, but generally higher accuracy was obtained at smaller spatial scales. Among the ecological traits tested, species feeding mode and estuarine use functional groups were the most influential on the performance of distribution models. Habitat tolerance (number of habitat types frequented), species abundance, body size and spawning period also showed some effect. This analyses will contribute to distinguish, based on species

  7. Agent-based modeling to simulate the dengue spread

    NASA Astrophysics Data System (ADS)

    Deng, Chengbin; Tao, Haiyan; Ye, Zhiwei

    2008-10-01

    In this paper, we introduce a novel method ABM in simulating the unique process for the dengue spread. Dengue is an acute infectious disease with a long history of over 200 years. Unlike the diseases that can be transmitted directly from person to person, dengue spreads through a must vector of mosquitoes. There is still no any special effective medicine and vaccine for dengue up till now. The best way to prevent dengue spread is to take precautions beforehand. Thus, it is crucial to detect and study the dynamic process of dengue spread that closely relates to human-environment interactions where Agent-Based Modeling (ABM) effectively works. The model attempts to simulate the dengue spread in a more realistic way in the bottom-up way, and to overcome the limitation of ABM, namely overlooking the influence of geographic and environmental factors. Considering the influence of environment, Aedes aegypti ecology and other epidemiological characteristics of dengue spread, ABM can be regarded as a useful way to simulate the whole process so as to disclose the essence of the evolution of dengue spread.

  8. Forest Productivity and Diversity: Using Ecological Theory and Landscape Models to Guide Sustainable Forest Management

    SciTech Connect

    Huston, M.A.

    1998-11-01

    Sustainable forest management requires maintaining or increasing ecosystem productivity, while preserving or restoring natural levels of biodiversity. Application of general concepts from ecological theory, along with use of mechanistic, landscape-based computer models, can contribute to the successful achievement of both of these objectives. Ecological theories based on the energetics and dynamics of populations can be used to predict the general distribution of individual species, the diversity of different types of species, ecosystem process rates and pool sizes, and patterns of spatial and temporal heterogeneity over a broad range of environmental conditions. This approach requires subdivision of total biodiversity into functional types of organisms, primarily because different types of organisms respond very differently to the spatial and temporal variation of environmental conditions on landscapes. The diversity of species of the same functional type (particularly among plants) tends to be highest at relatively low levels of net primary productivity, while the total number of different functional types (particularly among animals) tends to be highest at high levels of productivity (e.g., site index or potential net primary productivity). In general, the diversity of animals at higher trophic levels (e.g., predators) reaches its maximum at much higher levels of productivity than the diversity of lower trophic levels (e.g., plants). This means that a single environment cannot support high diversity of all types of organisms. Within the framework of the general patterns described above, the distributions, population dynamics, and diversity of organisms in specific regions can be predicted more precisely using a combination of computer simulation models and GIS data based on satellite information and ground surveys. Biophysical models that use information on soil properties, climate, and hydrology have been developed to predict how the abundance and spatial

  9. Simulation Modeling of Software Development Processes

    NASA Technical Reports Server (NTRS)

    Calavaro, G. F.; Basili, V. R.; Iazeolla, G.

    1996-01-01

    A simulation modeling approach is proposed for the prediction of software process productivity indices, such as cost and time-to-market, and the sensitivity analysis of such indices to changes in the organization parameters and user requirements. The approach uses a timed Petri Net and Object Oriented top-down model specification. Results demonstrate the model representativeness, and its usefulness in verifying process conformance to expectations, and in performing continuous process improvement and optimization.

  10. Incorporation of RAM techniques into simulation modeling

    SciTech Connect

    Nelson, S.C. Jr.; Haire, M.J.; Schryver, J.C.

    1995-07-01

    This work concludes that reliability, availability, and maintainability (RAM) analytical techniques can be incorporated into computer network simulation modeling to yield an important new analytical tool. This paper describes the incorporation of failure and repair information into network simulation to build a stochastic computer model represents the RAM Performance of two vehicles being developed for the US Army: The Advanced Field Artillery System (AFAS) and the Future Armored Resupply Vehicle (FARV). The AFAS is the US Army`s next generation self-propelled cannon artillery system. The FARV is a resupply vehicle for the AFAS. Both vehicles utilize automation technologies to improve the operational performance of the vehicles and reduce manpower. The network simulation model used in this work is task based. The model programmed in this application requirements a typical battle mission and the failures and repairs that occur during that battle. Each task that the FARV performs--upload, travel to the AFAS, refuel, perform tactical/survivability moves, return to logistic resupply, etc.--is modeled. Such a model reproduces a model reproduces operational phenomena (e.g., failures and repairs) that are likely to occur in actual performance. Simulation tasks are modeled as discrete chronological steps; after the completion of each task decisions are programmed that determine the next path to be followed. The result is a complex logic diagram or network. The network simulation model is developed within a hierarchy of vehicle systems, subsystems, and equipment and includes failure management subnetworks. RAM information and other performance measures are collected which have impact on design requirements. Design changes are evaluated through ``what if`` questions, sensitivity studies, and battle scenario changes.

  11. Automated experimentation in ecological networks

    PubMed Central

    2011-01-01

    Background In ecological networks, natural communities are studied from a complex systems perspective by representing interactions among species within them in the form of a graph, which is in turn analysed using mathematical tools. Topological features encountered in complex networks have been proved to provide the systems they represent with interesting attributes such as robustness and stability, which in ecological systems translates into the ability of communities to resist perturbations of different kinds. A focus of research in community ecology is on understanding the mechanisms by which these complex networks of interactions among species in a community arise. We employ an agent-based approach to model ecological processes operating at the species' interaction level for the study of the emergence of organisation in ecological networks. Results We have designed protocols of interaction among agents in a multi-agent system based on ecological processes occurring at the interaction level between species in plant-animal mutualistic communities. Interaction models for agents coordination thus engineered facilitate the emergence of network features such as those found in ecological networks of interacting species, in our artificial societies of agents. Conclusions Agent based models developed in this way facilitate the automation of the design an execution of simulation experiments that allow for the exploration of diverse behavioural mechanisms believed to be responsible for community organisation in ecological communities. This automated way of conducting experiments empowers the study of ecological networks by exploiting the expressive power of interaction models specification in agent systems. PMID:21554669

  12. Range bagging: a new method for ecological niche modelling from presence-only data

    PubMed Central

    Drake, John M.

    2015-01-01

    The ecological niche is the set of environments in which a population of a species can persist without introduction of individuals from other locations. A good mathematical or computational representation of the niche is a prerequisite to addressing many questions in ecology, biogeography, evolutionary biology and conservation. A particularly challenging question for ecological niche modelling is the problem of presence-only modelling. That is, can an ecological niche be identified from records drawn only from the set of niche environments without records from non-niche environments for comparison? Here, I introduce a new method for ecological niche modelling from presence-only data called range bagging. Range bagging draws on the concept of a species' environmental range, but was inspired by the empirical performance of ensemble learning algorithms in other areas of ecological research. This paper extends the concept of environmental range to multiple dimensions and shows that range bagging is computationally feasible even when the number of environmental dimensions is large. The target of the range bagging base learner is an environmental tolerance of the species in a projection of its niche and is therefore an ecologically interpretable property of a species' biological requirements. The computational complexity of range bagging is linear in the number of examples, which compares favourably with the main alternative, Qhull. In conclusion, range bagging appears to be a reasonable choice for niche modelling in applications in which a presence-only method is desired and may provide a solution to problems in other disciplines where one-class classification is required, such as outlier detection and concept learning. PMID:25948612

  13. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology

    USGS Publications Warehouse

    Bowker, Matthew A.; Maestre, Fernando T.; Eldridge, David; Belnap, Jayne; Castillo-Monroy, Andrea; Escolar, Cristina; Soliveres, Santiago

    2014-01-01

    Model systems have had a profound influence on the development of ecological theory and general principles. Compared to alternatives, the most effective models share some combination of the following characteristics: simpler, smaller, faster, general, idiosyncratic or manipulable. We argue that biological soil crusts (biocrusts) have unique combinations of these features that should be more widely exploited in community, landscape and ecosystem ecology. In community ecology, biocrusts are elucidating the importance of biodiversity and spatial pattern for maintaining ecosystem multifunctionality due to their manipulability in experiments. Due to idiosyncrasies in their modes of facilitation and competition, biocrusts have led to new models on the interplay between environmental stress and biotic interactions and on the maintenance of biodiversity by competitive processes. Biocrusts are perhaps one of the best examples of micro-landscapes—real landscapes that are small in size. Although they exhibit varying patch heterogeneity, aggregation, connectivity and fragmentation, like macro-landscapes, they are also compatible with well-replicated experiments (unlike macro-landscapes). In ecosystem ecology, a number of studies are imposing small-scale, low cost manipulations of global change or state factors in biocrust micro-landscapes. The versatility of biocrusts to inform such disparate lines of inquiry suggests that they are an especially useful model system that can enable researchers to see ecological principles more clearly and quickly.

  14. Variable selection with random forest: Balancing stability, performance, and interpretation in ecological and environmental modeling

    EPA Science Inventory

    Random forest (RF) is popular in ecological and environmental modeling, in part, because of its insensitivity to correlated predictors and resistance to overfitting. Although variable selection has been proposed to improve both performance and interpretation of RF models, it is u...

  15. Families of Chronically Ill Children: A Systems and Social-Ecological Model of Adaptation and Challenge.

    ERIC Educational Resources Information Center

    Kazak, Anne E.

    1989-01-01

    Presents family systems model for understanding adaptation and coping in childhood chronic illness. Provides overview of systems and social-ecological theories relevant to this population. Reviews literature on stress and coping in these families. Examines unique issues and discusses importance of these models for responding to families with…

  16. COMPARING THE UTILITY OF MULTIMEDIA MODELS FOR HUMAN AND ECOLOGICAL EXPOSURE ANALYSIS: TWO CASES

    EPA Science Inventory

    A number of models are available for exposure assessment; however, few are used as tools for both human and ecosystem risks. This discussion will consider two modeling frameworks that have recently been used to support human and ecological decision making. The study will compare ...

  17. A Systematic Ecological Model for Adapting Physical Activities: Theoretical Foundations and Practical Examples

    ERIC Educational Resources Information Center

    Hutzler, Yeshayahu

    2007-01-01

    This article proposes a theory- and practice-based model for adapting physical activities. The ecological frame of reference includes Dynamic and Action System Theory, World Health Organization International Classification of Function and Disability, and Adaptation Theory. A systematic model is presented addressing (a) the task objective, (b) task…

  18. INTEGRATION OF AN ECONOMY UNDER IMPERFECT COMPETITION WITH A TWELVE-CELL ECOLOGICAL MODEL

    EPA Science Inventory

    This report documents the scientific research work done to date on developing a generalized mathematical model depicting a combined economic-ecological-social system with the goal of making it available to the scientific community. The model is preliminary and has not been tested...

  19. Distributed earth model/orbiter simulation

    NASA Technical Reports Server (NTRS)

    Geisler, Erik; Mcclanahan, Scott; Smith, Gary

    1989-01-01

    Distributed Earth Model/Orbiter Simulation (DEMOS) is a network based application developed for the UNIX environment that visually monitors or simulates the Earth and any number of orbiting vehicles. Its purpose is to provide Mission Control Center (MCC) flight controllers with a visually accurate three dimensional (3D) model of the Earth, Sun, Moon and orbiters, driven by real time or simulated data. The project incorporates a graphical user interface, 3D modelling employing state-of-the art hardware, and simulation of orbital mechanics in a networked/distributed environment. The user interface is based on the X Window System and the X Ray toolbox. The 3D modelling utilizes the Programmer's Hierarchical Interactive Graphics System (PHIGS) standard and Raster Technologies hardware for rendering/display performance. The simulation of orbiting vehicles uses two methods of vector propagation implemented with standard UNIX/C for portability. Each part is a distinct process that can run on separate nodes of a network, exploiting each node's unique hardware capabilities. The client/server communication architecture of the application can be reused for a variety of distributed applications.

  20. Common modeling system for digital simulation

    NASA Technical Reports Server (NTRS)

    Painter, Rick

    1994-01-01

    The Joint Modeling and Simulation System is a tri-service investigation into a common modeling framework for the development digital models. The basis for the success of this framework is an X-window-based, open systems architecture, object-based/oriented methodology, standard interface approach to digital model construction, configuration, execution, and post processing. For years Department of Defense (DOD) agencies have produced various weapon systems/technologies and typically digital representations of the systems/technologies. These digital representations (models) have also been developed for other reasons such as studies and analysis, Cost Effectiveness Analysis (COEA) tradeoffs, etc. Unfortunately, there have been no Modeling and Simulation (M&S) standards, guidelines, or efforts towards commonality in DOD M&S. The typical scenario is an organization hires a contractor to build hardware and in doing so an digital model may be constructed. Until recently, this model was not even obtained by the organization. Even if it was procured, it was on a unique platform, in a unique language, with unique interfaces, and, with the result being UNIQUE maintenance required. Additionally, the constructors of the model expended more effort in writing the 'infrastructure' of the model/simulation (e.g. user interface, database/database management system, data journalizing/archiving, graphical presentations, environment characteristics, other components in the simulation, etc.) than in producing the model of the desired system. Other side effects include: duplication of efforts; varying assumptions; lack of credibility/validation; and decentralization in policy and execution. J-MASS provides the infrastructure, standards, toolset, and architecture to permit M&S developers and analysts to concentrate on the their area of interest.

  1. Effective Advocacy in Rural Domains: Applying an Ecological Model to Understanding Advocates' Relationships.

    PubMed

    Johnson, Melencia; McGrath, Shelly A; Miller, Michelle Hughes

    2014-01-23

    Past scholarship has explored the ecological model as it pertains to intimate partner violence from the victim's perspective. Missing from this literature is the application of the ecological model to victim advocates, specifically rural victim advocates. This article explores the microsystem and exosystem levels of the ecological model to understand victim advocates' relationships with their clients and criminal justice personnel. To investigate these relationships, we used a sample of rural advocates located within the Mississippi Delta Region. The findings from the interviews and focus group indicate that the density of rural relationships both help facilitate and create barriers to effective victim advocacy. Social capital specific to the rural domain is being generated by the advocates to benefit themselves and their clients.

  2. Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling

    PubMed Central

    Iglesias, Virginia; Yospin, Gabriel I.; Whitlock, Cathy

    2015-01-01

    Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity. PMID:25657652

  3. Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling.

    PubMed

    Iglesias, Virginia; Yospin, Gabriel I; Whitlock, Cathy

    2014-01-01

    Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity.

  4. Studying dissolved organic carbon export from the Penobscot Watershed in to Gulf of Maine using Regional Hydro-Ecological Simulation System (RHESSys)

    NASA Astrophysics Data System (ADS)

    Rouhani, S. F. B. B.; Schaaf, C.; Douglas, E. M.; Choate, J. S.; Yang, Y.; Kim, J.

    2014-12-01

    The movement of Dissolved Organic Carbon (DOC) from terrestrial system into aquatic system plays an important role for carbon sequestration in ecosystems and affects the formation of soil organic matters.Carbon cycling, storage, and transport to marine systems have become critical issues in global-change science, especially with regard to northern latitudes (Freeman et al., 2001; Benner et al., 2004). DOC, as an important composition of the carbon cycling, leaches from the terrestrial watersheds is a large source of marine DOC. The Penobscot River basin in north-central Maine is the second largest watershed in New England, which drains in to Gulf of Maine. Approximately 89% of the watershed is forested (Griffith and Alerich, 1996).Studying temporal and spatial changes in DOC export can help us to understand terrestrial carbon cycling and to detect any shifts from carbon sink to carbon source or visa versa in northern latitude forested ecosystems.Despite for the importance of understanding carbon cycling in terrestrial and aquatic biogeochemistry, the Doc export, especially the combination of DOC production from bio-system and DOC transportation from the terrestrial in to stream has been lightly discussed in most conceptual or numerical models. The Regional Hydro-Ecological Simulation System (RHESSys), which has been successfully applied in many study sites, is a physical process based terrestrial model that has the ability to simulate both the source and transportation of DOC by combining both hydrological and ecological processes. The focus of this study is on simulating the DOC concentration and flux from the land to the water using RHESSys in the Penobscot watershed. The simulated results will be compared with field measurement of DOC from the watershed to explore the spatial and temporal DOC export pattern. This study will also enhance our knowledge to select sampling locations properly and also improve our understanding on DOC production and transportation in

  5. Ecological models supporting environmental decision making: a strategy for the future

    USGS Publications Warehouse

    Schmolke, Amelie; Thorbek, Pernille; DeAngelis, Donald L.; Grimm, Volker

    2010-01-01

    Ecological models are important for environmental decision support because they allow the consequences of alternative policies and management scenarios to be explored. However, current modeling practice is unsatisfactory. A literature review shows that the elements of good modeling practice have long been identified but are widely ignored. The reasons for this might include lack of involvement of decision makers, lack of incentives for modelers to follow good practice, and the use of inconsistent terminologies. As a strategy for the future, we propose a standard format for documenting models and their analyses: transparent and comprehensive ecological modeling (TRACE) documentation. This standard format will disclose all parts of the modeling process to scrutiny and make modeling itself more efficient and coherent.

  6. METC Gasifier Advanced Simulation (MGAS) model

    SciTech Connect

    Syamlal, M.; Bissett, L.A.

    1992-01-01

    Morgantown Energy Technology Center is developing an advanced moving-bed gasifier, which is the centerpiece of the Integrated Gasifier Combined-Cycle (IGCC) system, with the features of good efficiency, low cost, and minimal environmental impact. A mathematical model of the gasifier, the METC-Gasifier Advanced Simulation (MGAS) model, has been developed for the analysis and design of advanced gasifiers and other moving-bed gasifiers. This report contains the technical and the user manuals of the MGAS model. The MGAS model can describe the transient operation of coflow, counterflow, or fixed-bed gasifiers. It is a one-dimensional model and can simulate the addition and withdrawal of gas and solids at multiple locations in the bed, a feature essential for simulating beds with recycle. The model describes the reactor in terms of a gas phase and a solids (coal or char) phase. These phases may exist at different temperatures. The model considers several combustion, gasification, and initial stage reactions. The model consists of a set of mass balances for 14 gas species and three coal (pseudo-) species and energy balances for the gas and the solids phases. The resulting partial differential equations are solved using a finite difference technique.

  7. Computational modeling for eco engineering: Making the connections between engineering and ecology (Invited)

    NASA Astrophysics Data System (ADS)

    Bowles, C.

    2013-12-01

    Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of

  8. Predicting ecological roles in the rhizosphere using metabolome and transportome modeling

    DOE PAGES

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; Blanchard, Jeffrey L.

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter ofmore » plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less

  9. Simulation and modeling for military air operations

    NASA Astrophysics Data System (ADS)

    Kreichauf, Ruth D.; Bedros, Saad; Ateskan, Yusuf; Hespanha, Joao; Kizilocak, Hakan

    2001-09-01

    The Joint Forces Air Component Commander (JFACC) in military air operations controls the allocation of resources (wings, squadrons, air defense systems, AWACS) to different geographical locations in the theater of operations. The JFACC mission is to define a sequence of tasks for the aerospace systems at each location, and providing feedback control for the execution of these tasks in the presence of uncertainties and a hostile enemy. Honeywell Labs has been developing an innovative method for control of military air operations. The novel model predictive control (MPC) method extends the models and optimization algorithms utilized in traditional model predictive control systems. The enhancements include a tasking controller and, in a joint effort with USC, a probabilistic threat/survival map indicating high threat regions for aircraft and suggesting optimal routes to avoid these regions. A simulation/modeling environment using object-oriented methodologies has been developed to serve as an aide to demonstrate the value of MPC and facilitate its development. The simulation/modeling environment is based on an open architecture that enables the integration, evaluation, and implementation of different control approaches. The simulation offers a graphical user interface displaying the battlefield, the control performance, and a probability map displaying high threat regions. This paper describes the features of the different control approaches and their integration into the simulation environment.

  10. ECOLOGICAL THEORY. A general consumer-resource population model.

    PubMed

    Lafferty, Kevin D; DeLeo, Giulio; Briggs, Cheryl J; Dobson, Andrew P; Gross, Thilo; Kuris, Armand M

    2015-08-21

    Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model.

  11. Entomopathogenic Nematodes as a Model System for Advancing the Frontiers of Ecology

    PubMed Central

    Campos–Herrera, Raquel; Barbercheck, Mary; Hoy, Casey W.; Stock, S. Patricia

    2012-01-01

    Entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematidae have a mutualistic–symbiotic association with enteric γ-Proteobacteria (Steinernema–Xenorhabdus and Heterorhabditis–Photorhabdus), which confer high virulence against insects. EPNs have been studied intensively because of their role as a natural mortality factor for soil-dwelling arthropods and their potential as biological control agents for belowground insect pests. For many decades, research on EPNs focused on the taxonomy, phylogeny, biogeography, genetics, physiology, biochemistry and ecology, as well as commercial production and application technologies. More recently, EPNs and their bacterial symbionts are being viewed as a model system for advancing research in other disciplines such as soil ecology, symbiosis and evolutionary biology. Integration of existing information, particularly the accumulating information on their biology, into increasingly detailed population models is critical to improving our ability to exploit and manage EPNs as a biological control agent and to understand ecological processes in a changing world. Here, we summarize some recent advances in phylogeny, systematics, biogeography, community ecology and population dynamics models of EPNs, and describe how this research is advancing frontiers in ecology. PMID:23482825

  12. Integrating water quality modeling with ecological risk assessment for nonpoint source pollution control: A conceptual framework

    SciTech Connect

    Chen, Y.D.; McCutcheon, S.C.; Rasmussen, T.C.; Nutter, W.L.; Carsel, R.F.

    1993-01-01

    The historical development of water quality protection goals and strategies in the United States is reviewed. The review leads to the identification and discussion of three components (i.e., management mechanism, environmental investigation approaches, and environmental assessment and criteria) for establishing a management framework for nonpoint source pollution control. Water quality modeling and ecological risk assessment are the two most important and promising approaches to the operation of the proposed management framework. A conceptual framework that shows the general integrative relationships between water quality modeling and ecological risk assessment is presented. (Copyright (c) 1993 IAWQ.)

  13. The impacts of multiple stressors to model ecological structures

    SciTech Connect

    Landis, W.G.; Kelly, S.A.; Markiewicz, A.J.; Matthews, R.A.; Matthews, G.B.

    1995-12-31

    The basis of the community conditioning hypothesis is that ecological structures are the result of their unique etiology. Systems that have been exposed to a variety of stressors should reflect this history. The authors how conducted a series of microcosm experiments that can compare the effects of multiple stressors upon community dynamics. The microcosm protocols are derived from the Standardized Aquatic Microcosm (SAM) and have Lemma and additional protozoan species. Two multiple stressor experiments have been conducted. In an extended length SAM (ELSAM), two of four treatments were dosed with the turbine fuel JP-8 one week into the experiment. Two treatments were later exposed to the heat stress, one that had received jet fuel and one that had not. Similarly, an ELSAM was conducted with the second stressor being the further addition of JP-8 replacing the heat shock. Biological, physical and chemical data were analyzed with multivariate techniques including nonmetric clustering and association analysis. Space-time worms and phase diagrams were also employed to ascertain the dynamic relationships of variables identified as important by the multivariate techniques. The experiments do not result in a simple additive linear response to the additional stressor. Examination of the relative population dynamics reveal alterations in trajectories that suggest treatment related effects. As in previous single stressor experiments, recovery does not occur even after extended experimental periods. The authors are now attempting to measure the resulting trajectories, changes in similarity vectors and overall dynamics. However, community conditioning does appear to be an important framework in understanding systems with a heterogeneous array of stressors.

  14. Simulator studies and psychophysical ride comfort models

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    An elementary psychophysical model to predict ride comfort was developed using flight and simulator data where subjects were exposed to six degrees of freedom. The model presumes that the comfort response is proportional to the logarithm of the stimulus above some threshold stimulus. In order to verify this concept of comfort modeling, it was necessary to obtain ride comfort data for single degree of freedom random motions and for combinations of random motions. Accordingly, a simulator program was performed at the NASA Langley Research Center to measure subjective comfort response ratings using one degree of freedom, two degrees of freedom, three degrees of freedom, and six degrees of freedom. An analysis of the single degree of freedom and two degrees of freedom data is presented. Preliminary models of ride comfort response for single degree of freedom random motions and for certain combinations of two degrees of freedom random motions were developed.

  15. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ram; Van Brutzel, Laurent; Tikare, Veena; Bartel, Timothy; Besmann, Theodore M; Stan, Marius; Van Uffelen, Paul

    2010-01-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios and small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  16. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ramaswami; Van Brutzel, Laurent; Chartier, Alan; Gueneau, Christine; Mattsson, Ann E.; Tikare, Veena; Bartel, Timothy; Besmann, T. M.; Stan, Marius; Van Uffelen, Paul

    2010-10-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios, and the small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  17. Predicting the Current and Future Potential Distributions of Lymphatic Filariasis in Africa Using Maximum Entropy Ecological Niche Modelling

    PubMed Central

    Slater, Hannah; Michael, Edwin

    2012-01-01

    Modelling the spatial distributions of human parasite species is crucial to understanding the environmental determinants of infection as well as for guiding the planning of control programmes. Here, we use ecological niche modelling to map the current potential distribution of the macroparasitic disease, lymphatic filariasis (LF), in Africa, and to estimate how future changes in climate and population could affect its spread and burden across the continent. We used 508 community-specific infection presence data collated from the published literature in conjunction with five predictive environmental/climatic and demographic variables, and a maximum entropy niche modelling method to construct the first ecological niche maps describing potential distribution and burden of LF in Africa. We also ran the best-fit model against climate projections made by the HADCM3 and CCCMA models for 2050 under A2a and B2a scenarios to simulate the likely distribution of LF under future climate and population changes. We predict a broad geographic distribution of LF in Africa extending from the west to the east across the middle region of the continent, with high probabilities of occurrence in the Western Africa compared to large areas of medium probability interspersed with smaller areas of high probability in Central and Eastern Africa and in Madagascar. We uncovered complex relationships between predictor ecological niche variables and the probability of LF occurrence. We show for the first time that predicted climate change and population growth will expand both the range and risk of LF infection (and ultimately disease) in an endemic region. We estimate that populations at risk to LF may range from 543 and 804 million currently, and that this could rise to between 1.65 to 1.86 billion in the future depending on the climate scenario used and thresholds applied to signify infection presence. PMID:22359670

  18. Autocatalysis in cultural ecology: model ecosystems and the dynamics of biocultural evolution.

    PubMed

    Geiger, G

    1985-01-01

    Using a well-known mathematical model frequently applied in theoretical population dynamics, certain ecological mechanisms are investigated that are inherent in the organic evolution of cultural capacities in man. Culture is argued to involve ecological interactions exhibiting analogies to the interaction of chemical species in autocatalytic biomolecular reactions. In the model, biocultural evolution proceeds by more and more broadening ecological niches and, thus, releasing competitive selection pressure on the populations involved. This, in turn, facilitates the maintenance of polymorphism in these populations as well as the individual acquisition of organic traits through learning and cultural transmission. The result is that the genetic variance in phenotypic expressions decreases at an accelerated rate. PMID:3995164

  19. Thermohydraulic modeling and simulation of breeder reactors

    SciTech Connect

    Agrawal, A.K.; Khatib-Rahbar, M.; Curtis, R.T.; Hetrick, D.L.; Girijashankar, P.V.

    1982-01-01

    This paper deals with the modeling and simulation of system-wide transients in LMFBRs. Unprotected events (i.e., the presumption of failure of the plant protection system) leading to core-melt are not considered in this paper. The existing computational capabilities in the area of protected transients in the US are noted. Various physical and numerical approximations that are made in these codes are discussed. Finally, the future direction in the area of model verification and improvements is discussed.

  20. Love Kills:. Simulations in Penna Ageing Model

    NASA Astrophysics Data System (ADS)

    Stauffer, Dietrich; Cebrat, Stanisław; Penna, T. J. P.; Sousa, A. O.

    The standard Penna ageing model with sexual reproduction is enlarged by adding additional bit-strings for love: Marriage happens only if the male love strings are sufficiently different from the female ones. We simulate at what level of required difference the population dies out.

  1. Simulation Modeling on the Macintosh using STELLA.

    ERIC Educational Resources Information Center

    Costanza, Robert

    1987-01-01

    Describes a new software package for the Apple Macintosh computer which can be used to create elaborate simulation models in a fraction of the time usually required without using a programming language. Illustrates the use of the software which relates to water usage. (TW)

  2. Center for Advanced Modeling and Simulation Intern

    ScienceCinema

    Gertman, Vanessa

    2016-07-12

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  3. Center for Advanced Modeling and Simulation Intern

    SciTech Connect

    Gertman, Vanessa

    2010-01-01

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  4. Teaching Environmental Systems Modelling Using Computer Simulation.

    ERIC Educational Resources Information Center

    Moffatt, Ian

    1986-01-01

    A computer modeling course in environmental systems and dynamics is presented. The course teaches senior undergraduates to analyze a system of interest, construct a system flow chart, and write computer programs to simulate real world environmental processes. An example is presented along with a course evaluation, figures, tables, and references.…

  5. Using Simulation Models in Demonstrating Statistical Applications.

    ERIC Educational Resources Information Center

    Schuermann, Allen C.; Hommertzheim, Donald L.

    1983-01-01

    Describes five statistical simulation programs developed at Wichita State University--Coin Flip and Raindrop, which demonstrate the binomial, Poisson, and other related distributions; Optimal Search; QSIM; and RANDEV, a random deviate generation program. Advantages of microcomputers over mainframes and the educational uses of models are noted.…

  6. Ecological responses to simulated agricultural runoff in a riverine backwater wetland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riverine backwater wetlands within river floodplains provide valuable ecological functions such as acting as filters for suspended sediment, nutrients and pesticides entering from adjacent agricultural fields, as well as habitat and refugia for aquatic biota. A 500 m long, 20 m wide riverine backwa...

  7. ECO-LIFE: A Simulation of an Ecological System. Student Booklet.

    ERIC Educational Resources Information Center

    Chen, David

    This document contains an instructional unit which deals with one major topic in ecology. It focuses on the variables which affect the development of populations and determine their final size within a given period of time. The variables operating in nature which determine the development of populations are numerous, thus complicating the task of…

  8. An Ecological Perspective and Model for Campus Design

    ERIC Educational Resources Information Center

    Banning, James H.; Kaiser, Leland

    1974-01-01

    The authors introduce the concept of "ecosystems." An ecosystem is one in which there is a true transaction between mutually dependent partners, with the assumption on college campuses that either may change so that mutual benefit may result. A model for bringing about change is presented, and methodology for using the model is described.…

  9. A Model of the Textbook in the Ecology of Education.

    ERIC Educational Resources Information Center

    Thompson, Patricia J.

    This paper presents a model and conceptual framework for textbook research. The model will help scholars from a variety of disciplines approach textbook research from a common theoretical grounding and later compare and synthesize their findings using agreed-upon categories and a shared vocabulary. The author first describes two rudimentary models…

  10. Integrating Empirical-Modeling Approaches to Improve Understanding of Terrestrial Ecology Processes

    SciTech Connect

    McCarthy, Heather; Luo, Yiqi; Wullschleger, Stan D

    2012-01-01

    Recent decades have seen tremendous increases in the quantity of empirical ecological data collected by individual investigators, as well as through research networks such as FLUXNET (Baldocchi et al., 2001). At the same time, advances in computer technology have facilitated the development and implementation of large and complex land surface and ecological process models. Separately, each of these information streams provides useful, but imperfect information about ecosystems. To develop the best scientific understanding of ecological processes, and most accurately predict how ecosystems may cope with global change, integration of empirical and modeling approaches is necessary. However, true integration - in which models inform empirical research, which in turn informs models (Fig. 1) - is not yet common in ecological research (Luo et al., 2011). The goal of this workshop, sponsored by the Department of Energy, Office of Science, Biological and Environmental Research (BER) program, was to bring together members of the empirical and modeling communities to exchange ideas and discuss scientific practices for increasing empirical - model integration, and to explore infrastructure and/or virtual network needs for institutionalizing empirical - model integration (Yiqi Luo, University of Oklahoma, Norman, OK, USA). The workshop included presentations and small group discussions that covered topics ranging from model-assisted experimental design to data driven modeling (e.g. benchmarking and data assimilation) to infrastructure needs for empirical - model integration. Ultimately, three central questions emerged. How can models be used to inform experiments and observations? How can experimental and observational results be used to inform models? What are effective strategies to promote empirical - model integration?

  11. Ecological Niche Model used to examine the distribution of an invasive, non-indigenous coral.

    PubMed

    Carlos-Júnior, L A; Barbosa, N P U; Moulton, T P; Creed, J C

    2015-02-01

    All organisms have a set of ecological conditions (or niche) which they depend on to survive and establish in a given habitat. The ecological niche of a species limits its geographical distribution. In the particular case of non-indigenous species (NIS), the ecological requirements of the species impose boundaries on the potential distribution of the organism in the new receptor regions. This is a theoretical assumption implicit when Ecological Niche Models (ENMs) are used to assess the potential distribution of NIS. This assumption has been questioned, given that in some cases niche shift may occur during the process of invasion. We used ENMs to investigate whether the model fit with data from the native range of the coral Tubastraea coccinea Lesson, 1829 successfully predicts its invasion in the Atlantic. We also identified which factors best explain the distribution of this NIS. The broad native distributional range of T. coccinea predicted the invaded sites well, especially along the Brazilian coast, the Caribbean Sea and Gulf of Mexico. The occurrence of T. coccinea was positively related to calcite levels and negatively to eutrophy, but was rather unaffected to other variables that often limit other marine organisms, suggesting that this NIS has wide ecological limits, a trait typical of invasive species. PMID:25465286

  12. Twitter's tweet method modelling and simulation

    NASA Astrophysics Data System (ADS)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    This paper seeks to purpose the concept of Twitter marketing methods. The tools that Twitter provides are modelled and simulated using iThink in the context of a Twitter media-marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following models have been developed for a twitter marketing agent/company and tested in real circumstances and with real numbers. These models were finalized through a number of revisions and iterators of the design, develop, simulate, test and evaluate. It also addresses these methods that suit most organized promotion through targeting, to the Twitter social media service. The validity and usefulness of these Twitter marketing methods models for the day-to-day decision making are authenticated by the management of the company organization. It implements system dynamics concepts of Twitter marketing methods modelling and produce models of various Twitter marketing situations. The Tweet method that Twitter provides can be adjusted, depending on the situation, in order to maximize the profit of the company/agent.

  13. Local Geostatistical Models and Big Data in Hydrological and Ecological Applications

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios

    2015-04-01

    The advent of the big data era creates new opportunities for environmental and ecological modelling but also presents significant challenges. The availability of remote sensing images and low-cost wireless sensor networks implies that spatiotemporal environmental data to cover larger spatial domains at higher spatial and temporal resolution for longer time windows. Handling such voluminous data presents several technical and scientific challenges. In particular, the geostatistical methods used to process spatiotemporal data need to overcome the dimensionality curse associated with the need to store and invert large covariance matrices. There are various mathematical approaches for addressing the dimensionality problem, including change of basis, dimensionality reduction, hierarchical schemes, and local approximations. We present a Stochastic Local Interaction (SLI) model that can be used to model local correlations in spatial data. SLI is a random field model suitable for data on discrete supports (i.e., regular lattices or irregular sampling grids). The degree of localization is determined by means of kernel functions and appropriate bandwidths. The strength of the correlations is determined by means of coefficients. In the "plain vanilla" version the parameter set involves scale and rigidity coefficients as well as a characteristic length. The latter determines in connection with the rigidity coefficient the correlation length of the random field. The SLI model is based on statistical field theory and extends previous research on Spartan spatial random fields [2,3] from continuum spaces to explicitly discrete supports. The SLI kernel functions employ adaptive bandwidths learned from the sampling spatial distribution [1]. The SLI precision matrix is expressed explicitly in terms of the model parameter and the kernel function. Hence, covariance matrix inversion is not necessary for parameter inference that is based on leave-one-out cross validation. This property

  14. Advances in NLTE Modeling for Integrated Simulations

    SciTech Connect

    Scott, H A; Hansen, S B

    2009-07-08

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  15. Computational Spectrum of Agent Model Simulation

    SciTech Connect

    Perumalla, Kalyan S

    2010-01-01

    The study of human social behavioral systems is finding renewed interest in military, homeland security and other applications. Simulation is the most generally applied approach to studying complex scenarios in such systems. Here, we outline some of the important considerations that underlie the computational aspects of simulation-based study of human social systems. The fundamental imprecision underlying questions and answers in social science makes it necessary to carefully distinguish among different simulation problem classes and to identify the most pertinent set of computational dimensions associated with those classes. We identify a few such classes and present their computational implications. The focus is then shifted to the most challenging combinations in the computational spectrum, namely, large-scale entity counts at moderate to high levels of fidelity. Recent developments in furthering the state-of-the-art in these challenging cases are outlined. A case study of large-scale agent simulation is provided in simulating large numbers (millions) of social entities at real-time speeds on inexpensive hardware. Recent computational results are identified that highlight the potential of modern high-end computing platforms to push the envelope with respect to speed, scale and fidelity of social system simulations. Finally, the problem of shielding the modeler or domain expert from the complex computational aspects is discussed and a few potential solution approaches are identified.

  16. Using historical and projected future climate model simulations as drivers of agricultural and biological models (Invited)

    NASA Astrophysics Data System (ADS)

    Stefanova, L. B.

    2013-12-01

    Climate model evaluation is frequently performed as a first step in analyzing climate change simulations. Atmospheric scientists are accustomed to evaluating climate models through the assessment of model climatology and biases, the models' representation of large-scale modes of variability (such as ENSO, PDO, AMO, etc) and the relationship between these modes and local variability (e.g. the connection between ENSO and the wintertime precipitation in the Southeast US). While these provide valuable information about the fidelity of historical and projected climate model simulations from an atmospheric scientist's point of view, the application of climate model data to fields such as agriculture, ecology and biology may require additional analyses focused on the particular application's requirements and sensitivities. Typically, historical climate simulations are used to determine a mapping between the model and observed climate, either through a simple (additive for temperature or multiplicative for precipitation) or a more sophisticated (such as quantile matching) bias correction on a monthly or seasonal time scale. Plants, animals and humans however are not directly affected by monthly or seasonal means. To assess the impact of projected climate change on living organisms and related industries (e.g. agriculture, forestry, conservation, utilities, etc.), derivative measures such as the heating degree-days (HDD), cooling degree-days (CDD), growing degree-days (GDD), accumulated chill hours (ACH), wet season onset (WSO) and duration (WSD), among others, are frequently useful. We will present a comparison of the projected changes in such derivative measures calculated by applying: (a) the traditional temperature/precipitation bias correction described above versus (b) a bias correction based on the mapping between the historical model and observed derivative measures themselves. In addition, we will present and discuss examples of various application-based climate

  17. An approach to the mathematical modelling of a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Averner, M. M.

    1981-01-01

    An approach to the design of a computer based model of a closed ecological life-support system suitable for use in extraterrestrial habitats is presented. The model is based on elemental mass balance and contains representations of the metabolic activities of biological components. The model can be used as a tool in evaluating preliminary designs for closed regenerative life support systems and as a method for predicting the behavior of such systems.

  18. Robust three-body water simulation model

    NASA Astrophysics Data System (ADS)

    Tainter, C. J.; Pieniazek, P. A.; Lin, Y.-S.; Skinner, J. L.

    2011-05-01

    The most common potentials used in classical simulations of liquid water assume a pairwise additive form. Although these models have been very successful in reproducing many properties of liquid water at ambient conditions, none is able to describe accurately water throughout its complicated phase diagram. The primary reason for this is the neglect of many-body interactions. To this end, a simulation model with explicit three-body interactions was introduced recently [R. Kumar and J. L. Skinner, J. Phys. Chem. B 112, 8311 (2008), 10.1021/jp8009468]. This model was parameterized to fit the experimental O-O radial distribution function and diffusion constant. Herein we reparameterize the model, fitting to a wider range of experimental properties (diffusion constant, rotational correlation time, density for the liquid, liquid/vapor surface tension, melting point, and the ice Ih density). The robustness of the model is then verified by comparing simulation to experiment for a number of other quantities (enthalpy of vaporization, dielectric constant, Debye relaxation time, temperature of maximum density, and the temperature-dependent second and third virial coefficients), with good agreement.

  19. Fault diagnosis based on continuous simulation models

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan

    1987-01-01

    The results are described of an investigation of techniques for using continuous simulation models as basis for reasoning about physical systems, with emphasis on the diagnosis of system faults. It is assumed that a continuous simulation model of the properly operating system is available. Malfunctions are diagnosed by posing the question: how can we make the model behave like that. The adjustments that must be made to the model to produce the observed behavior usually provide definitive clues to the nature of the malfunction. A novel application of Dijkstra's weakest precondition predicate transformer is used to derive the preconditions for producing the required model behavior. To minimize the size of the search space, an envisionment generator based on interval mathematics was developed. In addition to its intended application, the ability to generate qualitative state spaces automatically from quantitative simulations proved to be a fruitful avenue of investigation in its own right. Implementations of the Dijkstra transform and the envisionment generator are reproduced in the Appendix.

  20. Flight Simulation Model Exchange. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce

    2011-01-01

    The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the appendices to the main report.

  1. Flight Simulation Model Exchange. Volume 1

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce

    2011-01-01

    The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the results of the assessment.

  2. Atmospheric Modeling And Sensor Simulation (AMASS) study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1984-01-01

    The capabilities of the atmospheric modeling and sensor simulation (AMASS) system were studied in order to enhance them. This system is used in processing atmospheric measurements which are utilized in the evaluation of sensor performance, conducting design-concept simulation studies, and also in the modeling of the physical and dynamical nature of atmospheric processes. The study tasks proposed in order to both enhance the AMASS system utilization and to integrate the AMASS system with other existing equipment to facilitate the analysis of data for modeling and image processing are enumerated. The following array processors were evaluated for anticipated effectiveness and/or improvements in throughput by attachment of the device to the P-e: (1) Floating Point Systems AP-120B; (2) Floating Point Systems 5000; (3) CSP, Inc. MAP-400; (4) Analogic AP500; (5) Numerix MARS-432; and (6) Star Technologies, Inc. ST-100.

  3. Compressible homogeneous shear: Simulation and modeling

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1992-01-01

    Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.

  4. Advancing Material Models for Automotive Forming Simulations

    NASA Astrophysics Data System (ADS)

    Vegter, H.; An, Y.; ten Horn, C. H. L. J.; Atzema, E. H.; Roelofsen, M. E.

    2005-08-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path. The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary. Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials. Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations

  5. Recent trends in the development of ecological models applied on aquatic ecosystems.

    PubMed

    Jørgensen, S E

    2002-02-12

    This paper presents an overview of the application of models on aquatic ecosystems. More than 17% of the models published in the focal journal in the field, Ecological Modelling, are aquatic ecosystem models. An increasing number of papers are dealing with the theoretical aspects of modeling--new modeling approaches and techniques, how models can be used to reveal ecosystem properties, and how models can better reflect the properties of ecosystems. This development implies that today we have more types of models. The characteristics, the advantages, and the disadvantages of these model types are presented briefly. The selection criteria for the presented model types are discussed, and the application of these types to models for aquatic ecosystems is reviewed. A recent improvement in model calibration of particular interest for aquatic ecosystems is presented, and the perspectives resulting from this new calibration procedure and from possible hybrids of the presented model types are discussed. PMID:12806024

  6. Using Teacher-Generated Ecological Models to Assess Knowledge Gained During Teacher Training

    NASA Astrophysics Data System (ADS)

    Dresner, M.; Moldenke, A.

    2005-12-01

    Developing a capacity for systems thinking (ways to understand complex systems) requires both immersion in challenging, real-world problem contexts and exposure to systems analysis language, tools and procedures, such as ecosystem modeling. Modeling is useful as a means of conveying complex, dynamic interactions. Models of ecosystems can facilitate an ability to be attentive to whole systems by illustrating multiple factors of interaction, feedback, subsystems and inputs and outputs, which lead to a greater understanding of ecosystem functioning. Concept mapping, which uses models of students' ideas organized hierarchically is used in assessment, but it does not having any outside utility. Ecosystem models, on the other hand, are legitimate end-products in and of themselves. A change made in a learner-generated model that conforms to patterns observed in nature by the learner can be seen as reflections of his or her understanding. Starting with their own reflections on previous ecological knowledge, teachers will model components of the ecosystem they are about to study. 'Teaching models' will be used to familiarize learners with the symbolic language of models and to teach some basic ecology concepts. Teachers then work directly with ecologists in conducting research, using the steps of a straightforward study as a guide, and then observe and discuss patterns in the data they have collected. Higher-order thinking skills are practiced through the reflective use of ecological models. Through a series of questions including analysis, relational reasoning, synthesis, testing, and explaining, pairs of teacher describe the principles and theories about ecology that they think might be operating in their models to one another. They describe the consequences of human-caused impacts and possible causal patterns. They explain any differences in their understanding of ecosystem interactions before and after their research experiences

  7. Effects of stream topology on ecological community results from neutral models

    EPA Science Inventory

    While neutral theory and models have stimulated considerable literature, less well investigated is the effect of topology on neutral metacommunity model simulations. We implemented a neutral metacommunity model using two different stream network topologies, a widely branched netw...

  8. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bumble bees are a longstanding model system for studies on behavior, ecology, and evolution, due to their well-studied social lifestyle, invaluable roles as both wild and managed pollinators, and their ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of ...

  9. A Faculty-Development Model for Transforming Introductory Biology and Ecology Courses

    ERIC Educational Resources Information Center

    D'Avanzo, Charlene; Anderson, Charles W.; Hartley, Laurel M.; Pelaez, Nancy

    2012-01-01

    The Diagnostic Question Cluster (DQC) project integrates education research and faculty development to articulate a model for the effective transformation of introductory biology and ecology teaching. Over three years, faculty members from a wide range of institutions used active teaching and DQCs, a type of concept inventory, as pre- and…

  10. Exploring the Influence of a Social Ecological Model on School-Based Physical Activity

    ERIC Educational Resources Information Center

    Langille, Jessie-Lee D.; Rodgers, Wendy M.

    2010-01-01

    Among rising rates of overweight and obesity, schools have become essential settings to promote health behaviors, such as physical activity (PA). As schools exist within a broader environment, the social ecological model (SEM) provided a framework to consider how different levels interact and influence PA. The purpose of this study was to provide…

  11. An Ecological Risk Model for Early Childhood Anxiety: The Importance of Early Child Symptoms and Temperament

    ERIC Educational Resources Information Center

    Mian, Nicholas D.; Wainwright, Laurel; Briggs-Gowan, Margaret J.; Carter, Alice S.

    2011-01-01

    Childhood anxiety is impairing and associated with later emotional disorders. Studying risk factors for child anxiety may allow earlier identification of at-risk children for prevention efforts. This study applied an ecological risk model to address how early childhood anxiety symptoms, child temperament, maternal anxiety and depression symptoms,…

  12. Social Ecological Model of Illness Management in High-Risk Youths with Type 1 Diabetes

    ERIC Educational Resources Information Center

    Naar-King, Sylvie; Podolski, Cheryl-Lynn; Ellis, Deborah A.; Frey, Maureen A.; Templin, Thomas

    2006-01-01

    In this study, the authors tested a social ecological model of illness management in high-risk, urban adolescents with Type 1 diabetes. It was hypothesized that management behaviors would be associated with individual adolescent characteristics as well as family, peer, and provider relationships. Questionnaires were collected from 96 adolescents…

  13. Applying the Social Ecological Model to Creating Asthma-Friendly Schools in Louisiana

    ERIC Educational Resources Information Center

    Nuss, Henry J.; Hester, Laura L.; Perry, Mark A.; Stewart-Briley, Collette; Reagon, Valamar M.; Collins, Pamela

    2016-01-01

    Background: In 2010, the Louisiana Asthma Management and Prevention Program (LAMP) implemented the Asthma-Friendly Schools Initiative in high-risk Louisiana populations. The social ecological model (SEM) was used as a framework for an asthma program implemented in 70 state K-12 public schools over 2 years. Methods: Activities included a needs…

  14. Application of the Rangeland Hydrology and Erosion Model to Ecological Site Descriptions and Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility of Ecological Site Descriptions (ESDs) and State-and-Transition Models (STMs) concepts in guiding rangeland management hinges on their ability to accurately describe and predict community dynamics and the associated consequences. For many rangeland ecosystems, plant community dynamics ar...

  15. Ecological niche modeling of Coccidioides spp. in western North American deserts.

    PubMed

    Baptista-Rosas, Raúl C; Hinojosa, Alejandro; Riquelme, Meritxell

    2007-09-01

    Coccidioidomycosis is an endemic infectious disease in western North American deserts caused by the dimorphic ascomycete Coccidioides spp. Even though there has been an increase in the number of reported cases in the last years, few positive isolations have been obtained from soil samples in endemic areas for the disease. This low correlation between epidemiological and environmental data prompted us to better characterize the fundamental ecological niche of this important fungal pathogen. By using a combination of environmental variables and geospatially referenced points, where positive isolations had been obtained in southern California and Arizona (USA) and Sonora (Mexico), we have applied Genetic Algorithm for Rule Set Production (GARP) and Geographical Information Systems (GIS) to characterize the most likely ecological conditions favorable for the presence of the fungus. This model, based on environmental variables, allowed us to identify hotspots for the presence of the fungus in areas of southern California, Arizona, Texas, Baja California, and northern Mexico, whereas an alternative model based on bioclimatic variables gave us much broader probable distribution areas. We have overlapped the hotspots obtained with the environmental model with the available epidemiological information and have found a high match. Our model suggests that the most probable fundamental ecological niche for Coccidioides spp. is found in the arid lands of the North American deserts and provides the methodological basis to further characterize the realized ecological niche of Coccidioides spp., which would ultimately contribute to design smart field-sampling strategies.

  16. A CONCEPTUAL MODEL FOR EVALUATING RELATIVE POTENCY DATA FOR USE IN ECOLOGICAL RISK ASSESSMENTS

    EPA Science Inventory

    For chemicals with a common mechanism of toxicity, relative potency factors (RPFs) allow dose and exposure measures to be normalized to an equivalent toxicity amount of a model chemical... In ecological risk assessments the large number of possible target species, variety of expo...

  17. SPATIAL FOREST SOIL PROPERTIES FOR ECOLOGICAL MODELING IN THE WESTERN OREGON CASCADES

    EPA Science Inventory

    The ultimate objective of this work is to provide a spatially distributed database of soil properties to serve as inputs to model ecological processes in western forests at the landscape scale. The Central Western Oregon Cascades are rich in biodiversity and they are a fascinati...

  18. Forest-succession models and their ecological and management implications

    SciTech Connect

    West, D.; Smith, T.M.; Weinstein, D.A.; Shugart, H.H.

    1981-01-01

    Computer models of forest succession have been developed to an extent that allows their use as a tool for predicting forest ecosystem behavior over long periods of time. This paper outlines the use of one approach to forest succession modeling for a variety of problems including: (1) determining the effect of climate change on forests; (2) integrating information on wildlife habitat changes with the changes in forest structure associated with timber management; (3) assessing the potential effect of air pollutants on forest dynamics; and (4) determining the theoretical importance of disturbance on forest community diversity and function.

  19. ECOLOGICAL ENDPOINT MODELING: EFFECTS OF SEDIMENT ON FISH POPULATIONS

    EPA Science Inventory

    Sediment is one of the main stressors of concern for TMDLs (Total Maximum Daily Loads) for streams, and often it is a concern because of its impact on biological endpoints. The National Research Council (NRC) has recommended that the EPA promote the development of models that ca...

  20. Cognitive Niches: An Ecological Model of Strategy Selection

    ERIC Educational Resources Information Center

    Marewski, Julian N.; Schooler, Lael J.

    2011-01-01

    How do people select among different strategies to accomplish a given task? Across disciplines, the strategy selection problem represents a major challenge. We propose a quantitative model that predicts how selection emerges through the interplay among strategies, cognitive capacities, and the environment. This interplay carves out for each…

  1. Ecological Models and Methods in the Study of School Psychology.

    ERIC Educational Resources Information Center

    Scott, Myrtle

    School psychology is a very complex field further complicated by current socio-political contexts which mandate the development of a psychology of school psychology, requiring two things as first steps. The first step is a model which outlines the conceptual map of the area, gives direction to investigations in the area, and checks on the…

  2. Management of marine construction works using ecological modelling

    NASA Astrophysics Data System (ADS)

    Bach, H. K.; Jensen, K.; Lyngby, J. E.

    1997-01-01

    A system of bridges and tunnels between Denmark and Sweden is being constructed. The environmental management of the dredging and reclamation work includes planning using a mathematical model which can forecast the effect of different spill scenarios in order to minimize adverse effects on eelgrass beds. To develop the model, plots of eelgrass beds (4 m 2) were covered with nets excluding 30, 60 and 90% of the light. Shoot density, leaf and root/rhizome biomass, and soluble carbohydrates in roots and rhizomes were observed in order to determine the response of the plants to shading. In selected plots, all aboveground biomass was harvested to assess the re-growth potential. The minimum level of soluble carbohydrates necessary for securing re-growth was 60-90 mg g -1. The inclusion of the subsediment parts of the eelgrass permits model runs beyond one growth season, and the prediction of re-growth after subsequent shading and winter dormancy. The model has been satisfyingly calibrated and validated. A feedback monitoring system has been developed based on field studies of eelgrass variables, a set of pre-fixed environmental criteria and forecasting of the effects of the construction works. The system facilitates planning and management of the dredging and reclamation operations, and mitigating actions during the progression of the work.

  3. Understanding the Codevelopment of Modeling Practice and Ecological Knowledge

    ERIC Educational Resources Information Center

    Manz, Eve

    2012-01-01

    Despite a recent focus on engaging students in epistemic practices, there is relatively little research on how learning environments can support the simultaneous, coordinated development of both practice and the knowledge that emerges from and supports scientific activity. This study reports on the co-construction of modeling practice and…

  4. Developing Mindful Learners Model: A 21st Century Ecological Approach.

    ERIC Educational Resources Information Center

    Fluellen, Jerry

    The Developing Mindful Learners Model (DMLM), developed within the framework of Howard Gardner's multiple intelligences theory, connects three factors--content, framework, and world vision--for the purpose of helping underachieving students to become more "mindful": i.e., to become one who welcomes new ideas, considers more than one perspective,…

  5. Facebook's personal page modelling and simulation

    NASA Astrophysics Data System (ADS)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    In this paper we will try to define the utility of Facebook's Personal Page marketing method. This tool that Facebook provides, is modelled and simulated using iThink in the context of a Facebook marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following model has been developed for a social media marketing agent/company, Facebook platform oriented and tested in real circumstances. This model is finalized through a number of revisions and iterators of the design, development, simulation, testing and evaluation processes. The validity and usefulness of this Facebook marketing model for the day-to-day decision making are authenticated by the management of the company organization. Facebook's Personal Page method can be adjusted, depending on the situation, in order to maximize the total profit of the company which is to bring new customers, keep the interest of the old customers and deliver traffic to its website.

  6. Towards Better Coupling of Hydrological Simulation Models

    NASA Astrophysics Data System (ADS)

    Penton, D.; Stenson, M.; Leighton, B.; Bridgart, R.

    2012-12-01

    Standards for model interoperability and scientific workflow software provide techniques and tools for coupling hydrological simulation models. However, model builders are yet to realize the benefits of these and continue to write ad hoc implementations and scripts. Three case studies demonstrate different approaches to coupling models, the first using tight interfaces (OpenMI), the second using a scientific workflow system (Trident) and the third using a tailored execution engine (Delft Flood Early Warning System - Delft-FEWS). No approach was objectively better than any other approach. The foremost standard for coupling hydrological models is the Open Modeling Interface (OpenMI), which defines interfaces for models to interact. An implementation of the OpenMI standard involves defining interchange terms and writing a .NET/Java wrapper around the model. An execution wrapper such as OatC.GUI or Pipistrelle executes the models. The team built two OpenMI implementations for eWater Source river system models. Once built, it was easy to swap river system models. The team encountered technical challenges with versions of the .Net framework (3.5 calling 4.0) and with the performance of the execution wrappers when running daily simulations. By design, the OpenMI interfaces are general, leaving significant decisions around the semantics of the interfaces to the implementer. Increasingly, scientific workflow tools such as Kepler, Taverna and Trident are able to replace custom scripts. These tools aim to improve the provenance and reproducibility of processing tasks. In particular, Taverna and the myExperiment website have had success making many bioinformatics workflows reusable and sharable. The team constructed Trident activities for hydrological software including IQQM, REALM and eWater Source. They built an activity generator for model builders to build activities for particular river systems. The models were linked at a simulation level, without any daily time

  7. [Calculation model of urban water resources ecological footprint and its application: a case study in Shenyang City of Northeast China].

    PubMed

    Wang, Jian; Zhang, Chao-Xing; Yu, Ying-Tan; Li, Fa-Yun; Ma, Fang

    2012-08-01

    Water resources ecological footprint can directly reflect the pressure of human social and economic activities to water resources, and provide important reference for the rational utilization of water resources. Based on the existing ecological footprint models and giving full consideration of the water resources need of urban ecological system, this paper established a new calculation model of urban water resources ecological footprint, including domestic water account, process water account, public service water account, and ecological water requirement account. According to the actual situation of Shenyang City, the key parameters of the model were determined, and the water resources ecological footprint and ecological carrying capacity of the City were calculated and analyzed. From 2000 to 2009, the water resources ecological footprint per capita of the City presented an overall decreasing trend, but still had an annual ecological deficit. As compared to that in 2000, the water resources ecological footprint per capita was decreased to 0.31 hm2 in 2005, increased slightly in 2006 and 2007, and remained stable in 2008 and 2009, which suggested that the sustainable utilization of water resources in Shenyang City had definite improvement, but was still in an unsustainable development situation. PMID:23189707

  8. [Calculation model of urban water resources ecological footprint and its application: a case study in Shenyang City of Northeast China].

    PubMed

    Wang, Jian; Zhang, Chao-Xing; Yu, Ying-Tan; Li, Fa-Yun; Ma, Fang

    2012-08-01

    Water resources ecological footprint can directly reflect the pressure of human social and economic activities to water resources, and provide important reference for the rational utilization of water resources. Based on the existing ecological footprint models and giving full consideration of the water resources need of urban ecological system, this paper established a new calculation model of urban water resources ecological footprint, including domestic water account, process water account, public service water account, and ecological water requirement account. According to the actual situation of Shenyang City, the key parameters of the model were determined, and the water resources ecological footprint and ecological carrying capacity of the City were calculated and analyzed. From 2000 to 2009, the water resources ecological footprint per capita of the City presented an overall decreasing trend, but still had an annual ecological deficit. As compared to that in 2000, the water resources ecological footprint per capita was decreased to 0.31 hm2 in 2005, increased slightly in 2006 and 2007, and remained stable in 2008 and 2009, which suggested that the sustainable utilization of water resources in Shenyang City had definite improvement, but was still in an unsustainable development situation.

  9. A review and synthesis of late Pleistocene extinction modeling: progress delayed by mismatches between ecological realism, interpretation, and methodological transparency.

    PubMed

    Yule, Jeffrey V; Fournier, Robert J; Jensen, Christopher X J; Yang, Jinyan

    2014-06-01

    Late Pleistocene extinctions occurred globally over a period of about 50,000 years, primarily affecting mammals of > or = 44 kg body mass (i.e., megafauna) first in Australia, continuing in Eurasia and, finally, in the Americas. Polarized debate about the cause(s) of the extinctions centers on the role of climate change and anthropogenic factors (especially hunting). Since the late 1960s, investigators have developed mathematical models to simulate the ecological interactions that might have contributed to the extinctions. Here, we provide an overview of the various methodologies used and conclusions reached in the modeling literature, addressing both the strengths and weaknesses of modeling as an explanatory tool. Although late Pleistocene extinction models now provide a solid foundation for viable future work, we conclude, first, that single models offer less compelling support for their respective explanatory hypotheses than many realize; second, that disparities in methodology (both in terms of model parameterization and design) prevent meaningful comparison between models and, more generally, progress from model to model in increasing our understanding of these extinctions; and third, that recent models have been presented and possibly developed without sufficient regard for the transparency of design that facilitates scientific progress. PMID:24984323

  10. A review and synthesis of late Pleistocene extinction modeling: progress delayed by mismatches between ecological realism, interpretation, and methodological transparency.

    PubMed

    Yule, Jeffrey V; Fournier, Robert J; Jensen, Christopher X J; Yang, Jinyan

    2014-06-01

    Late Pleistocene extinctions occurred globally over a period of about 50,000 years, primarily affecting mammals of > or = 44 kg body mass (i.e., megafauna) first in Australia, continuing in Eurasia and, finally, in the Americas. Polarized debate about the cause(s) of the extinctions centers on the role of climate change and anthropogenic factors (especially hunting). Since the late 1960s, investigators have developed mathematical models to simulate the ecological interactions that might have contributed to the extinctions. Here, we provide an overview of the various methodologies used and conclusions reached in the modeling literature, addressing both the strengths and weaknesses of modeling as an explanatory tool. Although late Pleistocene extinction models now provide a solid foundation for viable future work, we conclude, first, that single models offer less compelling support for their respective explanatory hypotheses than many realize; second, that disparities in methodology (both in terms of model parameterization and design) prevent meaningful comparison between models and, more generally, progress from model to model in increasing our understanding of these extinctions; and third, that recent models have been presented and possibly developed without sufficient regard for the transparency of design that facilitates scientific progress.

  11. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology

    USGS Publications Warehouse

    Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.

    2015-01-01

    In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.

  12. Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson.

    PubMed

    Warren, Ben H; Simberloff, Daniel; Ricklefs, Robert E; Aguilée, Robin; Condamine, Fabien L; Gravel, Dominique; Morlon, Hélène; Mouquet, Nicolas; Rosindell, James; Casquet, Juliane; Conti, Elena; Cornuault, Josselin; Fernández-Palacios, José María; Hengl, Tomislav; Norder, Sietze J; Rijsdijk, Kenneth F; Sanmartín, Isabel; Strasberg, Dominique; Triantis, Kostas A; Valente, Luis M; Whittaker, Robert J; Gillespie, Rosemary G; Emerson, Brent C; Thébaud, Christophe

    2015-02-01

    The study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, 'An equilibrium theory of insular zoogeography', was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities. Here, building on such developments, we highlight prospects for research on islands to improve our understanding of the ecology and evolution of communities in general. Throughout, we emphasise how attributes of islands combine to provide unusual research opportunities, the implications of which stretch far beyond islands. Molecular tools and increasing data acquisition now permit re-assessment of some fundamental issues that interested MacArthur and Wilson. These include the formation of ecological networks, species abundance distributions, and the contribution of evolution to community assembly. We also extend our prospects to other fields of ecology and evolution - understanding ecosystem functioning, speciation and diversification - frequently employing assets of oceanic islands in inferring the geographic area within which evolution has occurred, and potential barriers to gene flow. Although island-based theory is continually being enriched, incorporating non-equilibrium dynamics is identified as a major challenge for the future.

  13. Theory, modeling and simulation: Annual report 1993

    SciTech Connect

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.

  14. eShopper modeling and simulation

    NASA Astrophysics Data System (ADS)

    Petrushin, Valery A.

    2001-03-01

    The advent of e-commerce gives an opportunity to shift the paradigm of customer communication into a highly interactive mode. The new generation of commercial Web servers, such as the Blue Martini's server, combines the collection of data on a customer behavior with real-time processing and dynamic tailoring of a feedback page. The new opportunities for direct product marketing and cross selling are arriving. The key problem is what kind of information do we need to achieve these goals, or in other words, how do we model the customer? The paper is devoted to customer modeling and simulation. The focus is on modeling an individual customer. The model is based on the customer's transaction data, click stream data, and demographics. The model includes the hierarchical profile of a customer's preferences to different types of products and brands; consumption models for the different types of products; the current focus, trends, and stochastic models for time intervals between purchases; product affinity models; and some generalized features, such as purchasing power, sensitivity to advertising, price sensitivity, etc. This type of model is used for predicting the date of the next visit, overall spending, and spending for different types of products and brands. For some type of stores (for example, a supermarket) and stable customers, it is possible to forecast the shopping lists rather accurately. The forecasting techniques are discussed. The forecasting results can be used for on- line direct marketing, customer retention, and inventory management. The customer model can also be used as a generative model for simulating the customer's purchasing behavior in different situations and for estimating customer's features.

  15. Incorporating channel network information in hydrologic response modelling: model development and validation using ecologically relevant indicators

    NASA Astrophysics Data System (ADS)

    Biswal, B.; Singh, R.

    2015-12-01

    Many studies in the past have revealed that hydrologic response of a basin carries imprints of its channel network. However, accurate representation of channel networks in hydrologic models has been a challenge. In addition, dominating flow processes during high flow periods are not the same as those during recession periods, and there is a need for models that can represent these varying behaviors. In this study, we develop two model structures that aim to address the challenges above. The first model assumes that flow processes can be classified into two main categories: i) pure surface flow (PSF) and ii) mixed surface-subsurface flow (MSSF). The second model is a special case of the first model which neglects PSF. Using channel networks extracted from digital elevation models, we develop instantaneous unit hydrographs (IUHs) separately for PSF (PSFIUHs) and MSSF (MSSFIUHs). PSFIUH is descried by the channel 'network width function', whereas MSSFIUH is obtained by modifying a recently developed channel network morphology based recession flow model. To obtain the simulated streamflow time series for a basin, we convolute the PSFIUH and the MSSFIUH with the respective effective rainfall time series. The effective rainfall time series is obtained by using the probability distributed model (PDM). For comparison purposes, we also use a dual linear-bucket model for routing flow. Comparing model performance across 78 watersheds in the United States using the Nash Sutcliffe efficiency (NSE), we find that the two model structures that incorporate channel network information outperform the linear-bucket model in 56 watersheds. Further testing model performance using indicators that capture frequency and duration of low and high flows shows that the two developed models outperform the linear-bucket model in four out of five indicators.

  16. An ecologically relevant guinea pig model of fetal behavior

    PubMed Central

    Bellinger, S. A.; Lucas, D.; Kleven, G. A.

    2015-01-01

    The laboratory guinea pig, Cavia porcellus, shares with humans many similarities during pregnancy and prenatal development, including precocial offspring and social dependence. These similarities suggest the guinea pig as a promising model of fetal behavioral development as well. Using innovative methods of behavioral acclimation, fetal offspring of female IAF hairless guinea pigs time mated to NIH multi-colored Hartley males were observed longitudinally without restraint using noninvasive ultrasound at weekly intervals across the 10 week gestation. To insure that the ultrasound procedure did not cause significant stress, salivary cortisol was collected both before and after each observation. Measures of fetal spontaneous movement and behavioral state were quantified from video recordings from week 3 through the last week before birth. Results from prenatal quantification of Interlimb Movement Synchrony and state organization reveal guinea pig fetal development to be strikingly similar to that previously reported for other rodents and preterm human infants. Salivary cortisol readings taken before and after sonography did not differ at any observation time point. These results suggest this model holds translational promise for studying the prenatal mechanisms of neurobehavioral development, including those that may result from adverse events. Because the guinea pig is a highly social mammal with a wide range of socially oriented vocalizations, this model may also have utility for studying the prenatal origins and trajectories of developmental disabilities with social-emotional components, such as autism. PMID:25655512

  17. An ecologically relevant guinea pig model of fetal behavior.

    PubMed

    Bellinger, S A; Lucas, D; Kleven, G A

    2015-04-15

    The laboratory guinea pig, Cavia porcellus, shares with humans many similarities during pregnancy and prenatal development, including precocial offspring and social dependence. These similarities suggest the guinea pig as a promising model of fetal behavioral development as well. Using innovative methods of behavioral acclimation, fetal offspring of female IAF hairless guinea pigs time mated to NIH multicolored Hartley males were observed longitudinally without restraint using noninvasive ultrasound at weekly intervals across the 10 week gestation. To ensure that the ultrasound procedure did not cause significant stress, salivary cortisol was collected both before and after each observation. Measures of fetal spontaneous movement and behavioral state were quantified from video recordings from week 3 through the last week before birth. Results from prenatal quantification of Interlimb Movement Synchrony and state organization reveal guinea pig fetal development to be strikingly similar to that previously reported for other rodents and preterm human infants. Salivary cortisol readings taken before and after sonography did not differ at any observation time point. These results suggest this model holds translational promise for studying the prenatal mechanisms of neurobehavioral development, including those that may result from adverse events. Because the guinea pig is a highly social mammal with a wide range of socially oriented vocalizations, this model may also have utility for studying the prenatal origins and trajectories of developmental disabilities with social-emotional components, such as autism. PMID:25655512

  18. An ecologically relevant guinea pig model of fetal behavior.

    PubMed

    Bellinger, S A; Lucas, D; Kleven, G A

    2015-04-15

    The laboratory guinea pig, Cavia porcellus, shares with humans many similarities during pregnancy and prenatal development, including precocial offspring and social dependence. These similarities suggest the guinea pig as a promising model of fetal behavioral development as well. Using innovative methods of behavioral acclimation, fetal offspring of female IAF hairless guinea pigs time mated to NIH multicolored Hartley males were observed longitudinally without restraint using noninvasive ultrasound at weekly intervals across the 10 week gestation. To ensure that the ultrasound procedure did not cause significant stress, salivary cortisol was collected both before and after each observation. Measures of fetal spontaneous movement and behavioral state were quantified from video recordings from week 3 through the last week before birth. Results from prenatal quantification of Interlimb Movement Synchrony and state organization reveal guinea pig fetal development to be strikingly similar to that previously reported for other rodents and preterm human infants. Salivary cortisol readings taken before and after sonography did not differ at any observation time point. These results suggest this model holds translational promise for studying the prenatal mechanisms of neurobehavioral development, including those that may result from adverse events. Because the guinea pig is a highly social mammal with a wide range of socially oriented vocalizations, this model may also have utility for studying the prenatal origins and trajectories of developmental disabilities with social-emotional components, such as autism.

  19. Abstracts and program proceedings of the 1994 meeting of the International Society for Ecological Modelling North American Chapter

    SciTech Connect

    Kercher, J.R.

    1994-06-01

    This document contains information about the 1994 meeting of the International Society for Ecological Modelling North American Chapter. The topics discussed include: extinction risk assessment modelling, ecological risk analysis of uranium mining, impacts of pesticides, demography, habitats, atmospheric deposition, and climate change.

  20. Assessment of water ecological carrying capacity under the two policies in Tieling City on the basis of the integrated system dynamics model.

    PubMed

    Wang, Shuo; Xu, Ling; Yang, Fenglin; Wang, He

    2014-02-15

    Considering the limitation of the traditional method to assess the ecological carrying capacity and the complexity of the water ecological system, we used system dynamics, ANN, and CA-Markov to model a water ecological system. The social component was modeled according to Granger causality test by system dynamics. The natural component consists of the water resource and water environmental capacity, which were forecasted through the prediction of precipitation and change in land use cover. The interaction of the social component and the natural component mainly reflected environmental policies, such as the imposition of an environmental fee and environmental tax based on their values. Simulation results showed the different assessments on water ecological carrying capacity under the two policies. The population grew (2.9 million), and less pollution (86,632.37 t COD and 2854.5 t NH4N) was observed with the imposition of environmental tax compared with the imposition of an environmental fee (2.85 million population, 10,8381 t COD and 3543 t NH4N) at the same GDP level of 585 billion CNY in 2030. According to the causality loop, we discussed the different states under the policies and the reasons that caused the differences in water ecological carrying capacity state. According to game theory, we explained the limitation of the environmental fee policy on the basis of marginal benefit and cost. The externality was cleared up by the environmental tax policy.

  1. Simulation model of clastic sedimentary processes

    SciTech Connect

    Tetzlaff, D.M.

    1987-01-01

    This dissertation describes SEDSIM, a computer model that simulates erosion, transport, and deposition of clastic sediments by free-surface flow in natural environments. SEDSIM is deterministic and is applicable to sedimentary processes in rivers, deltas, continental shelves, submarine canyons, and turbidite fans. The model is used to perform experiments in clastic sedimentation. Computer experimentation is limited by computing power available, but is free from scaling problems associated with laboratory experiments. SEDSIM responds to information provided to it at the outset of a simulation experiment, including topography, subsurface configuration, physical parameters of fluid and sediment, and characteristics of sediment sources. Extensive computer graphics are incorporated in SEDSIM. The user can display the three-dimensional geometry of simulated deposits in the form of successions of contour maps, perspective diagrams, vector plots of current velocities, and vertical sections of any azimuth orientation. The sections show both sediment age and composition. SEDSIM works realistically with processes involving channel shifting and topographic changes. Example applications include simulation of an ancient submarine canyon carved into a Cretaceous sequence in the National Petroleum Reserve in Alaska, known mainly from seismic sections and a sequence of Tertiary age in the Golden Meadow oil field of Louisiana, known principally from well logs.

  2. Wave modelling as a proxy for seagrass ecological modelling: Comparing fetch and process-based predictions for a bay and reef lagoon

    NASA Astrophysics Data System (ADS)

    Callaghan, David P.; Leon, Javier X.; Saunders, Megan I.

    2015-02-01

    The distribution, abundance, behaviour, and morphology of marine species is affected by spatial variability in the wave environment. Maps of wave metrics (e.g. significant wave height Hs, peak energy wave period Tp, and benthic wave orbital velocity URMS) are therefore useful for predictive ecological models of marine species and ecosystems. A number of techniques are available to generate maps of wave metrics, with varying levels of complexity in terms of input data requirements, operator knowledge, and computation time. Relatively simple "fetch-based" models are generated using geographic information system (GIS) layers of bathymetry and dominant wind speed and direction. More complex, but computationally expensive, "process-based" models are generated using numerical models such as the Simulating Waves Nearshore (SWAN) model. We generated maps of wave metrics based on both fetch-based and process-based models and asked whether predictive performance in models of benthic marine habitats differed. Predictive models of seagrass distribution for Moreton Bay, Southeast Queensland, and Lizard Island, Great Barrier Reef, Australia, were generated using maps based on each type of wave model. For Lizard Island, performance of the process-based wave maps was significantly better for describing the presence of seagrass, based on Hs, Tp, and URMS. Conversely, for the predictive model of seagrass in Moreton Bay, based on benthic light availability and Hs, there was no difference in performance using the maps of the different wave metrics. For predictive models where wave metrics are the dominant factor determining ecological processes it is recommended that process-based models be used. Our results suggest that for models where wave metrics provide secondarily useful information, either fetch- or process-based models may be equally useful.

  3. Ecological risks of dioxin and PCBs to fish populations: A modeling assessment

    SciTech Connect

    Munns, W.R. Jr.; Black, D.

    1994-12-31

    The US Environmental Protection Agency is reevaluating ecological risks associated with 2,3,7,8-tetrachlorodibenzo-p-dioxin and similar chemicals using biologically based exposure-response models. As part of this reevaluation, dioxin and PCB effects on reproductive and other demographic characteristics of the mummichog (Fundulus heteroclitus) were quantified by EPA`s Environmental Research Laboratory in Narragansett, RI. Data from laboratory studies of dietary exposure to dioxin and from surveys of populations collected from a heavily PCB-contaminated harbor located in the northeast United States were used to parameterize stage-classified population projection models. Exposure-response models were then developed to relate population growth effects to exposure concentration for use in risk quantification exercises. The population models were also used to evaluate the sensitivity of mummichog population dynamics to changes in demographic rates to identify appropriate toxicity test endpoints. This work provides ecological relevant information concerning the potential risks of chlorinated compounds to estuarine fish populations.

  4. High-Fidelity Roadway Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit

    2010-01-01

    Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.

  5. Model parameters for simulation of physiological lipids

    PubMed Central

    McGlinchey, Nicholas

    2016-01-01

    Coarse grain simulation of proteins in their physiological membrane environment can offer insight across timescales, but requires a comprehensive force field. Parameters are explored for multicomponent bilayers composed of unsaturated lipids DOPC and DOPE, mixed‐chain saturation POPC and POPE, and anionic lipids found in bacteria: POPG and cardiolipin. A nonbond representation obtained from multiscale force matching is adapted for these lipids and combined with an improved bonding description of cholesterol. Equilibrating the area per lipid yields robust bilayer simulations and properties for common lipid mixtures with the exception of pure DOPE, which has a known tendency to form nonlamellar phase. The models maintain consistency with an existing lipid–protein interaction model, making the force field of general utility for studying membrane proteins in physiologically representative bilayers. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26864972

  6. Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Antonsson, Erik; Gombosi, Tamas

    2005-01-01

    Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.

  7. Macro Level Simulation Model Of Space Shuttle Processing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.

  8. The spatial optimism model research for the regional land use based on the ecological constraint

    NASA Astrophysics Data System (ADS)

    XU, K.; Lu, J.; Chi, Y.

    2013-12-01

    The study focuses on the Yunnan-Guizhou (i.e. Yunnan province and Guizhou province) Plateau in China. Since the Yunnan-Guizhou region consists of closed basins, the land resources suiting for development are in a shortage, and the ecological problems in the area are quite complicated. In such circumstance, in order to get the applicable basins area and distribution, certain spatial optimism model is needed. In this research, Digital Elevation Model (DEM) and land use data are used to get the boundary rules of the basins distribution. Furthermore, natural risks, ecological risks and human-made ecological risks are integrated to be analyzed. Finally, the spatial overlay analysis method is used to model the developable basins area and distribution for industries and urbanization. The study process can be divided into six steps. First, basins and their distribution need to be recognized. In this way, the DEM data is used to extract the geomorphology characteristics. The plaque regions with gradient under eight degrees are selected. Among these regions, the total area of the plaque with the area above 8 km2 is 54,000 km2, 10% of the total area. These regions are selected to the potential application of industries and urbanization. In the later five steps, analyses are aimed at these regions. Secondly, the natural risks are analyzed. The conditions of the earthquake, debris flow and rainstorm and flood are combined to classify the natural risks. Thirdly, the ecological risks are analyzed containing the ecological sensibility and ecosystem service function importance. According to the regional ecologic features, the sensibility containing the soil erosion, acid rain, stony desertification and survive condition factors is derived and classified according to the medium value to get the ecological sensibility partition. The ecosystem service function importance is classified and divided considering the biology variation protection and water conservation factors. The fourth

  9. Using structural equation modeling to investigate relationships among ecological variables

    USGS Publications Warehouse

    Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.

    2000-01-01

    Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0

  10. Theory, Modeling and Simulation Annual Report 2000

    SciTech Connect

    Dixon, David A.; Garrett, Bruce C.; Straatsma, Tp; Jones, Donald R.; Studham, Ronald S.; Harrison, Robert J.; Nichols, Jeffrey A.

    2001-11-01

    This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM&S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems.

  11. Theory, Modeling and Simulation Annual Report 2000

    SciTech Connect

    Dixon, David A; Garrett, Bruce C; Straatsma, TP; Jones, Donald R; Studham, Scott; Harrison, Robert J; Nichols, Jeffrey A

    2001-11-01

    This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM and S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems.

  12. Simulation and modeling of homogeneous, compressed turbulence

    NASA Technical Reports Server (NTRS)

    Wu, C. T.; Ferziger, J. H.; Chapman, D. R.

    1985-01-01

    Low Reynolds number homogeneous turbulence undergoing low Mach number isotropic and one-dimensional compression was simulated by numerically solving the Navier-Stokes equations. The numerical simulations were performed on a CYBER 205 computer using a 64 x 64 x 64 mesh. A spectral method was used for spatial differencing and the second-order Runge-Kutta method for time advancement. A variety of statistical information was extracted from the computed flow fields. These include three-dimensional energy and dissipation spectra, two-point velocity correlations, one-dimensional energy spectra, turbulent kinetic energy and its dissipation rate, integral length scales, Taylor microscales, and Kolmogorov length scale. Results from the simulated flow fields were used to test one-point closure, two-equation models. A new one-point-closure, three-equation turbulence model which accounts for the effect of compression is proposed. The new model accurately calculates four types of flows (isotropic decay, isotropic compression, one-dimensional compression, and axisymmetric expansion flows) for a wide range of strain rates.

  13. Progress in Modeling and Simulation of Batteries

    SciTech Connect

    Turner, John A

    2016-01-01

    Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: * Thermal behavior and characteristics * Battery management system design and analysis * Moderately high-fidelity 3D capabilities * Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.

  14. Use of an integrated flow model to estimate ecologically relevant hydrologic characteristics at stream biomonitoring sites

    USGS Publications Warehouse

    Kennen, J.G.; Kauffman, L.J.; Ayers, M.A.; Wolock, D.M.; Colarullo, S.J.

    2008-01-01

    We developed an integrated hydroecological model to provide a comprehensive set of hydrologic variables representing five major components of the flow regime at 856 aquatic-invertebrate monitoring sites in New Jersey. The hydroecological model simulates streamflow by routing water that moves overland and through the subsurface from atmospheric delivery to the watershed outlet. Snow accumulation and melt, evapotranspiration, precipitation, withdrawals, discharges, pervious- and impervious-area runoff, and lake storage were accounted for in the water balance. We generated more than 78 flow variables, which describe the frequency, magnitude, duration, rate of change, and timing of flow events. Highly correlated variables were filtered by principal component analysis to obtain a non-redundant subset of variables that explain the majority of the variation in the complete set. This subset of variables was used to evaluate the effect of changes in the flow regime on aquatic-invertebrate assemblage structure at 856 biomonitoring sites. We used non-metric multidimensional scaling (NMS) to evaluate variation in aquatic-invertebrate assemblage structure across a disturbance gradient. We employed multiple linear regression (MLR) analysis to build a series of MLR models that identify the most important environmental and hydrologic variables driving the differences in the aquatic-invertebrate assemblages across the disturbance gradient. The first axis of NMS ordination was significantly related to many hydrologic, habitat, and land-use/land-cover variables, including the average number of annual storms producing runoff, ratio of 25-75% exceedance flow (flashiness), diversity of natural stream substrate, and the percentage of forested land near the stream channel (forest buffer). Modifications in the hydrologic regime as the result of changes in watershed land use appear to promote the retention of highly tolerant aquatic species; in contrast, species that are sensitive to

  15. An evolutionary ecological perspective on demographic transitions: modeling multiple currencies.

    PubMed

    Low, Bobbi S; Simon, Carl P; Anderson, Kermyt G

    2002-01-01

    Life history theory postulates tradeoffs of current versus future reproduction; today women face evolutionarily novel versions of these tradeoffs. Optimal age at first birth is the result of tradeoffs in fertility and mortality; ceteris paribus, early reproduction is advantageous. Yet modern women in developed nations experience relatively late first births; they appear to be trading off socioeconomic status and the paths to raised SES, education and work, against early fertility. Here, [1] using delineating parameter values drawn from data in the literature, we model these tradeoffs to determine how much socioeconomic advantage will compensate for delayed first births and lower lifetime fertility; and [2] we examine the effects of work and education on women's lifetime and age-specific fertility using data from seven cohorts in the Panel Study of Income Dynamics (PSID). PMID:11891931

  16. Computer Models Simulate Fine Particle Dispersion

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  17. Requirements for psychological models to support design: Towards ecological task analysis

    NASA Technical Reports Server (NTRS)

    Kirlik, Alex

    1991-01-01

    Cognitive engineering is largely concerned with creating environmental designs to support skillful and effective human activity. A set of necessary conditions are proposed for psychological models capable of supporting this enterprise. An analysis of the psychological nature of the design product is used to identify a set of constraints that models must meet if they can usefully guide design. It is concluded that cognitive engineering requires models with resources for describing the integrated human-environment system, and that these models must be capable of describing the activities underlying fluent and effective interaction. These features are required in order to be able to predict the cognitive activity that will be required given various design concepts, and to design systems that promote the acquisition of fluent, skilled behavior. These necessary conditions suggest that an ecological approach can provide valuable resources for psychological modeling to support design. Relying heavily on concepts from Brunswik's and Gibson's ecological theories, ecological task analysis is proposed as a framework in which to predict the types of cognitive activity required to achieve productive behavior, and to suggest how interfaces can be manipulated to alleviate certain types of cognitive demands. The framework is described in terms, and illustrated with an example from the previous research on modeling skilled human-environment interaction.

  18. Biomedical Simulation Models of Human Auditory Processes

    NASA Technical Reports Server (NTRS)

    Bicak, Mehmet M. A.

    2012-01-01

    Detailed acoustic engineering models that explore noise propagation mechanisms associated with noise attenuation and transmission paths created when using hearing protectors such as earplugs and headsets in high noise environments. Biomedical finite element (FE) models are developed based on volume Computed Tomography scan data which provides explicit external ear, ear canal, middle ear ossicular bones and cochlea geometry. Results from these studies have enabled a greater understanding of hearing protector to flesh dynamics as well as prioritizing noise propagation mechanisms. Prioritization of noise mechanisms can form an essential framework for exploration of new design principles and methods in both earplug and earcup applications. These models are currently being used in development of a novel hearing protection evaluation system that can provide experimentally correlated psychoacoustic noise attenuation. Moreover, these FE models can be used to simulate the effects of blast related impulse noise on human auditory mechanisms and brain tissue.

  19. Ecological risk assessment of water environment for Luanhe River Basin based on relative risk model.

    PubMed

    Liu, Jingling; Chen, Qiuying; Li, Yongli

    2010-11-01

    The relative risk model (RRM) was applied in regional ecological risk assessments successfully. In this study, the RRM was developed through increasing the data of risk source and introducing the source-stressor-habitat exposure filter (SSH), the endpoint-habitat exposure filter (EH) and the stressor-endpoint effect filter (SE) to reflect the meaning of exposure and effect more explicit. Water environment which include water quality, water quantity and aquatic ecosystems was selected as the ecological risk assessment endpoints. The Luanhe River Basin located in the North China was selected as model case. The results showed that there were three low risk regions, one medium risk region and two high risk regions in the Luanhe River Basin. The results also indicated habitat destruction was the largest stressor with the risk scores as high as 11.87 for the Luanhe water environment, the second was oxygen consuming organic pollutants (9.28) and the third was nutrients (7.78). So these three stressors were the main influencing factors of the ecological pressure in the study area. Furthermore, animal husbandry was the biggest source with the risk scores as high as 20.38, the second was domestic sewage (14.00), and the third was polluting industry (9.96). For habitats, waters and farmland were enduring the bigger pressure and should be taken considerable attention. Water deterioration and ecological service values damaged were facing the biggest risk pressure, and secondly was biodiversity decreased and landscape fragmentation. PMID:20683654

  20. Microbial ecology-based methods to characterize the bacterial communities of non-model insects.

    PubMed

    Prosdocimi, Erica M; Mapelli, Francesca; Gonella, Elena; Borin, Sara; Crotti, Elena

    2015-12-01

    Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities.

  1. Microbial ecology-based methods to characterize the bacterial communities of non-model insects.

    PubMed

    Prosdocimi, Erica M; Mapelli, Francesca; Gonella, Elena; Borin, Sara; Crotti, Elena

    2015-12-01

    Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities. PMID:26476138

  2. Ecological Acclimation and Hydrologic Response: Problem Complexity and Modeling Challenges

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Srinivasan, V.; Le, P. V. V.; Drewry, D.

    2012-04-01

    Elevated CO2 in the atmosphere leads to a number of acclimatory responses in different vegetation types. These may be characterized as structural such as vegetation height or foliage density, ecophysiological such as reduction in stomatal conductance, and biochemical such as photosynthetic down-regulation. Furthermore, the allocation of assimilated carbon to different vegetation parts such as leaves, roots, stem and seeds is also altered such that empirical allometric relations are no longer valid. The extent and nature of these acclimatory responses vary between C3 and C4 vegetation and across species. These acclimatory responses have significant impact on hydrologic fluxes both pertaining to water and energy with the possibility of large-scale hydrologic influence. Capturing the pathways of acclimatory response to provide accurate ecohydrologic response predictions requires incorporating subtle relationships that are accentuated under elevated CO2. The talk will discuss the challenges of modeling these as well as applications to soybean, maize and bioenergy crops such as switchgrass and miscanthus.

  3. Integrating Visualizations into Modeling NEST Simulations.

    PubMed

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work.

  4. Atomistic modeling and simulation of nanopolycrystalline solids

    NASA Astrophysics Data System (ADS)

    Yang, Zidong

    In the past decades, nanostructured materials have opened new and fascinating avenues for research. Nanopolycrystalline solids, which consist of nano-sized crystalline grains and significant volume fractions of amorphous grain boundaries, are believed to have substantially different response to the thermal-mechanical-electric-magnetic loads, as compared to the response of single-crystalline materials. Nanopolycrystalline materials are expected to play a key role in the next generation of smart materials. This research presents a framework (1) to generate full atomistic models, (2) to perform non-equilibrium molecular dynamics simulations, and (3) to study multi-physics phenomena of nanopolycrystalline solids. This work starts the physical model and mathematical representation with the framework of molecular dynamics. In addition to the latest theories and techniques of molecular dynamics simulations, this work implemented principle of objectivity and incorporates multi-physics features. Further, a database of empirical interatomic potentials is established and the combination scheme for potentials is revisited, which enables investigation of a broad spectrum of chemical elements (as in periodic table) and compounds (such as rocksalt, perovskite, wurtzite, diamond, etc.). The configurational model of nanopolycrystalline solids consists of two spatial components: (1) crystalline grains, which can be obtained through crystal structure optimization, and (2) amorphous grain boundaries, which can be obtained through amorphization process. Therefore, multi-grain multi-phase nanopolycrystalline material system can be constructed by partitioning the space for grains, followed by filling the inter-grain space with amorphous grain boundaries. Computational simulations are performed on several representative crystalline materials and their mixture, such as rocksalt, perovskite and diamond. Problems of relaxation, mechanical loading, thermal stability, heat conduction

  5. Integrating Visualizations into Modeling NEST Simulations

    PubMed Central

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  6. Ecological hierarchies and self-organisation - Pattern analysis, modelling and process integration across scales

    USGS Publications Warehouse

    Reuter, H.; Jopp, F.; Blanco-Moreno, J. M.; Damgaard, C.; Matsinos, Y.; DeAngelis, D.L.

    2010-01-01

    A continuing discussion in applied and theoretical ecology focuses on the relationship of different organisational levels and on how ecological systems interact across scales. We address principal approaches to cope with complex across-level issues in ecology by applying elements of hierarchy theory and the theory of complex adaptive systems. A top-down approach, often characterised by the use of statistical techniques, can be applied to analyse large-scale dynamics and identify constraints exerted on lower levels. Current developments are illustrated with examples from the analysis of within-community spatial patterns and large-scale vegetation patterns. A bottom-up approach allows one to elucidate how interactions of individuals shape dynamics at higher levels in a self-organisation process; e.g., population development and community composition. This may be facilitated by various modelling tools, which provide the distinction between focal levels and resulting properties. For instance, resilience in grassland communities has been analysed with a cellular automaton approach, and the driving forces in rodent population oscillations have been identified with an agent-based model. Both modelling tools illustrate the principles of analysing higher level processes by representing the interactions of basic components.The focus of most ecological investigations on either top-down or bottom-up approaches may not be appropriate, if strong cross-scale relationships predominate. Here, we propose an 'across-scale-approach', closely interweaving the inherent potentials of both approaches. This combination of analytical and synthesising approaches will enable ecologists to establish a more coherent access to cross-level interactions in ecological systems. ?? 2010 Gesellschaft f??r ??kologie.

  7. LISP based simulation generators for modeling complex space processes

    NASA Technical Reports Server (NTRS)

    Tseng, Fan T.; Schroer, Bernard J.; Dwan, Wen-Shing

    1987-01-01

    The development of a simulation assistant for modeling discrete event processes is presented. Included are an overview of the system, a description of the simulation generators, and a sample process generated using the simulation assistant.

  8. A DPSIR model for ecological security assessment through indicator screening: a case study at Dianchi Lake in China.

    PubMed

    Wang, Zhen; Zhou, Jingqing; Loaiciga, Hugo; Guo, Huaicheng; Hong, Song

    2015-01-01

    Given the important role of lake ecosystems in social and economic development, and the current severe environmental degradation in China, a systematic diagnosis of the ecological security of lakes is essential for sustainable development. A Driving-force, Pressure, Status, Impact, and Risk (DPSIR) model, combined with data screening for lake ecological security assessment was developed to overcome the disadvantages of data selection in existing assessment methods. Correlation and principal component analysis were used to select independent and representative data. The DPSIR model was then applied to evaluate the ecological security of Dianchi Lake in China during 1988-2007 using an ecological security index. The results revealed a V-shaped trend. The application of the DPSIR model with data screening provided useful information regarding the status of the lake's ecosystem, while ensuring information efficiency and eliminating multicollinearity. The modeling approach described here is practical and operationally efficient, and provides an attractive alternative approach to assess the ecological security of lakes.

  9. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    USGS Publications Warehouse

    Krstolic, Jennifer L.

    2015-01-01

    Time-series analyses were used to investigate changes in habitat availability with increased water withdrawals of 10, 20, and almost 50 percent (48.6 percent) up to the 2040 amounts projected by local water supply plans. Adult and sub-adult smallmouth bass frequently had habitat availability outside the normal range for habitat conditions during drought years, yet 10- or 20-percent increases in withdrawals did not contribute to a large reduction in habitat. When withdrawals were increased by 50 percent, there was an additional decrease in habitat. During 2002 drought scenarios, reduced habitat availability for sub-adult redbreast sunfish or river chub was only slightly evident with 50-percent increased withdrawal scenarios. Recreational habitat represented by canoeing decreased lower than normal during the 2002 drought. For a recent normal year, like 2012, increased water-withdrawal scenarios did not affect habitat availability for fish such as adult and sub-adult smallmouth bass, sub-adult redbreast sunfish, or river chub. Canoeing habitat availability was within the normal range most of 2012, and increased water-withdrawal scenarios showed almost no affect. For both ecological fish habitat and recreational canoeing habitat, the antecedent conditions (habitat within normal range of habitat or below normal) appear to govern whether additional water withdrawals will affect habitat availability. As human populations and water demands increase, many of the ecological or recreational stresses may be lessened by managing the timing of water withdrawals from the system.

  10. Upscaling aquatic ecology: Pairing modern analytics with Big Data to simulate 2500 U.S. lakes

    NASA Astrophysics Data System (ADS)

    Read, J. S.; Winslow, L.; Hansen, G.; Van Den Hoek, J.; Markfort, C. D.; Booth, N.

    2013-12-01

    Lakes are increasingly recognized as relevant engines in global processes, as recent estimates of the number of lakes and their contribution to biogeochemical cycles greatly exceed estimates from earlier assessments. Currently, our understanding of the diversity of physical controls on lake ecosystems is lacking, in part due to geographically limited observational campaigns and a failure to integrate Big Data products and informatics into modern limnological science practices. Momentum towards the interoperability of cyber-infrastructure in the fields of hydrology, climatology, remote sensing, and the geosciences has provided timely access to the pursuit of research aimed at upscaling our knowledge of the drivers of aquatic ecosystems. Here we share details of an open-source, standards-based data manipulation framework and one-dimensional model that were used to simulate water temperature dynamics for thousands of individual lakes. In addition to the automated scaling of gridded meteorological driver data, we integrated satellite estimates of water clarity and surrounding canopy heights in order to parameterize important lake-specific characteristics that influence lake physics. These methods keep terabyte-scale data off of the desktop through the use of web processing services, which performed many of our data-rich and computationally intensive tasks. We highlight results from a regional test-bed (the state of Wisconsin), as well as discuss opportunities for aquatic ecologists to leverage future pairings between Big Data and web-informatics. Supporting datasets include satellite imagery, space and airborne LIDAR, gridded climate reanalysis data, hydrography inventories, and citizen scientist measurements of water temperature; all components of the successful modeling of daily water temperature profiles for 2,500 lakes during 1979-2011. These results are being used to explain the long-term climate component of trends in the populations of two staples of the

  11. An online database for informing ecological network models: http://kelpforest.ucsc.edu

    USGS Publications Warehouse

    Beas-Luna, Rodrigo; Tinker, M. Tim; Novak, Mark; Carr, Mark H.; Black, August; Caselle, Jennifer E.; Hoban, Michael; Malone, Dan; Iles, Alison C.

    2014-01-01

    Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/data​baseui).

  12. An Online Database for Informing Ecological Network Models: http://kelpforest.ucsc.edu

    PubMed Central

    Beas-Luna, Rodrigo; Novak, Mark; Carr, Mark H.; Tinker, Martin T.; Black, August; Caselle, Jennifer E.; Hoban, Michael; Malone, Dan; Iles, Alison

    2014-01-01

    Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui). PMID:25343723

  13. [Modeling and Simulation of Spectral Polarimetric BRDF].

    PubMed

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances. PMID:27228737

  14. Best Practices for Crash Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    Aviation safety can be greatly enhanced by the expeditious use of computer simulations of crash impact. Unlike automotive impact testing, which is now routine, experimental crash tests of even small aircraft are expensive and complex due to the high cost of the aircraft and the myriad of crash impact conditions that must be considered. Ultimately, the goal is to utilize full-scale crash simulations of aircraft for design evaluation and certification. The objective of this publication is to describe "best practices" for modeling aircraft impact using explicit nonlinear dynamic finite element codes such as LS-DYNA, DYNA3D, and MSC.Dytran. Although "best practices" is somewhat relative, it is hoped that the authors' experience will help others to avoid some of the common pitfalls in modeling that are not documented in one single publication. In addition, a discussion of experimental data analysis, digital filtering, and test-analysis correlation is provided. Finally, some examples of aircraft crash simulations are described in several appendices following the main report.

  15. Desktop Modeling and Simulation: Parsimonious, yet Effective Discrete-Event Simulation Analysis

    NASA Technical Reports Server (NTRS)

    Bradley, James R.

    2012-01-01

    This paper evaluates how quickly students can be trained to construct useful discrete-event simulation models using Excel The typical supply chain used by many large national retailers is described, and an Excel-based simulation model is constructed of it The set of programming and simulation skills required for development of that model are then determined we conclude that six hours of training are required to teach the skills to MBA students . The simulation presented here contains all fundamental functionallty of a simulation model, and so our result holds for any discrete-event simulation model. We argue therefore that Industry workers with the same technical skill set as students having completed one year in an MBA program can be quickly trained to construct simulation models. This result gives credence to the efficacy of Desktop Modeling and Simulation whereby simulation analyses can be quickly developed, run, and analyzed with widely available software, namely Excel.

  16. Simulation Assisted Risk Assessment: Blast Overpressure Modeling

    NASA Technical Reports Server (NTRS)

    Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael

    2006-01-01

    A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.

  17. A Simple Memristor Model for Circuit Simulations

    NASA Astrophysics Data System (ADS)

    Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team

    This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.

  18. Application of simulation models for the optimization of business processes

    NASA Astrophysics Data System (ADS)

    Jašek, Roman; Sedláček, Michal; Chramcov, Bronislav; Dvořák, Jiří

    2016-06-01

    The paper deals with the applications of modeling and simulation tools in the optimization of business processes, especially in solving an optimization of signal flow in security company. As a modeling tool was selected Simul8 software that is used to process modeling based on discrete event simulation and which enables the creation of a visual model of production and distribution processes.

  19. Closed loop models for analyzing engineering requirements for simulators

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Kleinman, D.

    1980-01-01

    A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.

  20. Studies of the effect of simulated acid rain on the ecological equilibrium of the soil system.

    PubMed

    Fischer, Z; Angiel, M; Bieńkowski, P; Dowgiałło, A; Focht, U

    1996-05-01

    Introduction to the problem of environmental pollution caused by acid depositions. Presentation of principles of the six-year field experiment with simulated acid rain. Short characteristics of particular parts of the series of papers.

  1. Nutritional models for a Controlled Ecological Life Support System (CELSS): Linear mathematical modeling

    NASA Technical Reports Server (NTRS)

    Wade, Rose C.

    1989-01-01

    The NASA Controlled Ecological Life Support System (CELSS) Program is involved in developing a biogenerative life support system that will supply food, air, and water to space crews on long-duration missions. An important part of this effort is in development of the knowledge and technological capability of producing and processing foods to provide optimal diets for space crews. This involves such interrelated factors as determination of the diet, based on knowledge of nutrient needs of humans and adjustments in those needs that may be required as a result of the conditions of long-duration space flight; determination of the optimal mixture of crops required to provide nutrients at levels that are sufficient but not excessive or toxic; and consideration of the critical issues of spacecraft space and power limitations, which impose a phytomass minimization requirement. The complex interactions among these factors are examined with the goal of supplying a diet that will satisfy human needs while minimizing the total phytomass requirement. The approach taken was to collect plant nutritional composition and phytomass production data, identify human nutritional needs and estimate the adjustments to the nutrient requirements likely to result from space flight, and then to generate mathematical models from these data.

  2. Geometric Modeling, Radiation Simulation, Rendering, Analysis Package

    1995-01-17

    RADIANCE is intended to aid lighting designers and architects by predicting the light levels and appearance of a space prior to construction. The package includes programs for modeling and translating scene geometry, luminaire data and material properties, all of which are needed as input to the simulation. The lighting simulation itself uses ray tracing techniques to compute radiance values (ie. the quantity of light passing through a specific point in a specific direction), which aremore » typically arranged to form a photographic quality image. The resulting image may be analyzed, displayed and manipulated within the package, and converted to other popular image file formats for export to other packages, facilitating the production of hard copy output.« less

  3. Assumed PDF modeling in rocket combustor simulations

    NASA Astrophysics Data System (ADS)

    Lempke, M.; Gerlinger, P.; Aigner, M.

    2013-03-01

    In order to account for the interaction between turbulence and chemistry, a multivariate assumed PDF (Probability Density Function) approach is used to simulate a model rocket combustor with finite-rate chemistry. The reported test case is the PennState preburner combustor with a single shear coaxial injector. Experimental data for the wall heat flux is available for this configuration. Unsteady RANS (Reynolds-averaged Navier-Stokes) simulation results with and without the assumed PDF approach are analyzed and compared with the experimental data. Both calculations show a good agreement with the experimental wall heat flux data. Significant changes due to the utilization of the assumed PDF approach can be observed in the radicals, e. g., the OH mass fraction distribution, while the effect on the wall heat flux is insignificant.

  4. Models for naturally fractured, carbonate reservoir simulations

    SciTech Connect

    Tuncay, K.; Park, A.; Ozkan, G.; Zhan, X.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    This report outlines the need for new tools for the simulation of fractured carbonate reservoirs. Several problems are identified that call for the development of new reservoir simulation physical models and numerical techniques. These include: karst and vuggy media wherein Darcy`s and traditional multi-phase flow laws do not apply; the need for predicting the preproduction state of fracturing and stress so that the later response of effective stress-dependent reservoirs can be predicted; and methods for predicting the fracturing and collapse of vuggy and karst reservoirs in response to draw-down pressure created during production. Specific research directions for addressing each problem are outlined and preliminary results are noted.

  5. [Analysis on sustainable development of marine economy in Jiangsu Province based on marine ecological footprint correction model].

    PubMed

    Yang, Shan; Wang, Yu-ting

    2011-03-01

    Based on the theories and methods of ecological footprint, the concept of marine ecological footprint was proposed. According to the characteristics of marine environment in Jiangsu Province, five sub-models of marine ecological footprints, including fishery, transporation, marine engineering construction, marine energy, and tidal flat, were constructed. The equilibrium factors of the five marine types were determined by using improved entropy method, and the marine footprints and capacities in Jiangsu Province from 2000 to 2008 were calculated and analyzed. In 2000-2008, the marine ecology footprint per capita in Jiangsu Province increased nearly seven times, from 36.90 hm2 to 252.94 hm2, and the ecological capacity per capita grew steadily, from 105.01 hm2 to 185.49 hm2. In 2000, the marine environment in the Province was in a state of ecological surplus, and the marine economy was in a weak sustainable development state. Since 2004, the marine ecological environment deteriorated sharply, with ecological deficit up to 109660.5 hm2, and the sustainability of marine economy declined. The high ecological footprint of fishery was the main reason for the ecological deficit. Tidal flat was the important reserve resource for the sustainable development of marine economy in Jiangsu Province.

  6. Vertical eddy heat fluxes from model simulations

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Yao, Mao-Sung

    1991-01-01

    Vertical eddy fluxes of heat are calculated from simulations with a variety of climate models, ranging from three-dimensional GCMs to a one-dimensional radiative-convective model. The models' total eddy flux in the lower troposphere is found to agree well with Hantel's analysis from observations, but in the mid and upper troposphere the models' values are systematically 30 percent to 50 percent smaller than Hantel's. The models nevertheless give very good results for the global temperature profile, and the reason for the discrepancy is unclear. The model results show that the manner in which the vertical eddy flux is carried is very sensitive to the parameterization of moist convection. When a moist adiabatic adjustment scheme with a critical value for the relative humidity of 100 percent is used, the vertical transports by large-scale eddies and small-scale convection on a global basis are equal: but when a penetrative convection scheme is used, the large-scale flux on a global basis is only about one-fifth to one-fourth the small-scale flux. Comparison of the model results with observations indicates that the results with the latter scheme are more realistic. However, even in this case, in mid and high latitudes the large and small-scale vertical eddy fluxes of heat are comparable in magnitude above the planetary boundary layer.

  7. Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams.

    PubMed

    Schuwirth, Nele; Reichert, Peter

    2013-02-01

    For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.

  8. A Flexible Microarray Data Simulation Model

    PubMed Central

    Dembélé, Doulaye

    2013-01-01

    Microarray technology allows monitoring of gene expression profiling at the genome level. This is useful in order to search for genes involved in a disease. The performances of the methods used to select interesting genes are most often judged after other analyzes (qPCR validation, search in databases...), which are also subject to error. A good evaluation of gene selection methods is possible with data whose characteristics are known, that is to say, synthetic data. We propose a model to simulate microarray data with similar characteristics to the data commonly produced by current platforms. The parameters used in this model are described to allow the user to generate data with varying characteristics. In order to show the flexibility of the proposed model, a commented example is given and illustrated. An R package is available for immediate use.

  9. Ecological interpretation of short-term toxicity results: Development of a population model for Arbacia

    SciTech Connect

    Munns, W.R. Jr.; Nacci, D.E.; Walker, H.A.; Johnston, R.K.

    1994-12-31

    The Arbacia punctulata fertilization and larval development tests are used extensively in regulatory and research programs to evaluate toxicity associated with contaminants in aqueous media. These short-term assays are inexpensive, easy to use, and provide information regarding the effects of environmental contaminants on critical life history stages of the sea urchin. Despite substantial consideration of the precision of assay methods, and a clear understanding of the statistical significance of treatment differences, an appreciation of the ecological significance of treatment effects is lacking. To address this problem, a stage classified population projection model was developed to relate short-term test endpoints to potential effects at the population level. The model was applied to evaluate population-level effects using short-term toxicity data obtained in an estuarine ecological risk assessment conducted for Portsmouth Naval Shipyard, Kittery, Maine. The model also was used to examine which test endpoints provide useful information relative to population growth dynamics. Population modeling approaches can be extremely valuable in extrapolating single species toxicity information to higher level ecological endpoints and for identifying appropriate measurement endpoints during toxicity test development.

  10. Do Ecological Niche Models Accurately Identify Climatic Determinants of Species Ranges?

    PubMed

    Searcy, Christopher A; Shaffer, H Bradley

    2016-04-01

    Defining species' niches is central to understanding their distributions and is thus fundamental to basic ecology and climate change projections. Ecological niche models (ENMs) are a key component of making accurate projections and include descriptions of the niche in terms of both response curves and rankings of variable importance. In this study, we evaluate Maxent's ranking of environmental variables based on their importance in delimiting species' range boundaries by asking whether these same variables also govern annual recruitment based on long-term demographic studies. We found that Maxent-based assessments of variable importance in setting range boundaries in the California tiger salamander (Ambystoma californiense; CTS) correlate very well with how important those variables are in governing ongoing recruitment of CTS at the population level. This strong correlation suggests that Maxent's ranking of variable importance captures biologically realistic assessments of factors governing population persistence. However, this result holds only when Maxent models are built using best-practice procedures and variables are ranked based on permutation importance. Our study highlights the need for building high-quality niche models and provides encouraging evidence that when such models are built, they can reflect important aspects of a species' ecology. PMID:27028071

  11. A Transmission Model for the Ecology of an Avian Blood Parasite in a Temperate Ecosystem

    PubMed Central

    Murdock, Courtney C.; Foufopoulos, Johannes; Simon, Carl P.

    2013-01-01

    Most of our knowledge about avian haemosporidian parasites comes from the Hawaiian archipelago, where recently introduced Plasmodiumrelictum has contributed to the extinction of many endemic avian species. While the ecology of invasive malaria is reasonably understood, the ecology of endemic haemosporidian infection in mainland systems is poorly understood, even though it is the rule rather than the exception. We develop a mathematical model to explore and identify the ecological factors that most influence transmission of the common avian parasite, Leucocytozoonfringillinarum (Apicomplexa). The model was parameterized from White-crowned Sparrow (Zonotrichialeucophrys) and S. silvestre / craigi black fly populations breeding in an alpine ecosystem. We identify and examine the importance of altricial nestlings, the seasonal relapse of infected birds for parasite persistence across breeding seasons, and potential impacts of seasonal changes in black fly emergence on parasite prevalence in a high elevation temperate system. We also use the model to identify and estimate the parameters most influencing transmission dynamics. Our analysis found that relapse of adult birds and young of the year birds were crucial for parasite persistence across multiple seasons. However, distinguishing between nude nestlings and feathered young of the year was unnecessary. Finally, due to model sensitivity to many black fly parameters, parasite prevalence and sparrow recruitment may be most affected by seasonal changes in environmental temperature driving shifts in black fly emergence and gonotrophic cycles. PMID:24073288

  12. Turning on the heat: ecological response to simulated warming in the sea.

    PubMed

    Smale, Dan A; Wernberg, Thomas; Peck, Lloyd S; Barnes, David K A

    2011-01-14

    Significant warming has been observed in every ocean, yet our ability to predict the consequences of oceanic warming on marine biodiversity remains poor. Experiments have been severely limited because, until now, it has not been possible to manipulate seawater temperature in a consistent manner across a range of marine habitats. We constructed a "hot-plate" system to directly examine ecological responses to elevated seawater temperature in a subtidal marine system. The substratum available for colonisation and overlying seawater boundary layer were warmed for 36 days, which resulted in greater biomass of marine organisms and a doubling of space coverage by a dominant colonial ascidian. The "hot-plate" system will facilitate complex manipulations of temperature and multiple stressors in the field to provide valuable information on the response of individuals, populations and communities to environmental change in any aquatic habitat.

  13. Computer Simulation in Chemical Kinetics

    ERIC Educational Resources Information Center

    Anderson, Jay Martin

    1976-01-01

    Discusses the use of the System Dynamics technique in simulating a chemical reaction for kinetic analysis. Also discusses the use of simulation modelling in biology, ecology, and the social sciences, where experimentation may be impractical or impossible. (MLH)

  14. Simulation Model of Mobile Detection Systems

    SciTech Connect

    Edmunds, T; Faissol, D; Yao, Y

    2009-01-27

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains

  15. Multi-formalism modelling and simulation: application to cardiac modelling

    PubMed Central

    Defontaine, Antoine; Hernández, Alfredo; Carrault, Guy

    2004-01-01

    Cardiovascular modelling has been a major research subject for the last decades. Different cardiac models have been developed at a cellular level as well as at the whole organ level. Most of these models are defined by a comprehensive cellular modelling using continuous formalisms or by a tissue-level modelling often based on discrete formalisms. Nevertheless, both views still suffer from difficulties that reduce their clinical applications: the first approach requires heavy computational resources while the second one is not able to reproduce certain pathologies. This paper presents an original methodology trying to gather advantages from both approaches, by means of an hybrid model mixing discrete and continuous formalisms. This method has been applied to define a hybrid model of cardiac action potential propagation on a 2D grid of endocardial cells, combining cellular automata and a set of cells defined by the Beeler Reuter model. For simulations under physiologic and ischemic conditions, results show that the action potential propagation as well as electrogram reconstructions are consistent with clinical diagnosis. Finally, the interest of the proposed approach is discussed within the frame of cardiac modelling and simulation. PMID:15520534

  16. Monte Carlo Simulation of River Meander Modelling

    NASA Astrophysics Data System (ADS)

    Posner, A. J.; Duan, J. G.

    2010-12-01

    This study first compares the first order analytical solutions for flow field by Ikeda et. al. (1981) and Johanesson and Parker (1989b). Ikeda et. al.’s (1981) linear bank erosion model was implemented to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic variable that varies with physical properties of the bank (e.g. cohesiveness, stratigraphy, vegetation density). The developed model was used to predict the evolution of meandering planforms. Then, the modeling results were analyzed and compared to the observed data. Since the migration of meandering channel consists of downstream translation, lateral expansion, and downstream or upstream rotations. Several measures are formulated in order to determine which of the resulting planform is closest to the experimental measured one. Results from the deterministic model highly depend on the calibrated erosion coefficient. Since field measurements are always limited, the stochastic model yielded more realistic predictions of meandering planform evolutions. Due to the random nature of bank erosion coefficient, the meandering planform evolution is a stochastic process that can only be accurately predicted by a stochastic model. Quasi-2D Ikeda (1989) flow solution with Monte Carlo Simulation of Bank Erosion Coefficient.

  17. Coarse-grained models for biological simulations

    NASA Astrophysics Data System (ADS)

    Wu, Zhe; Cui, Qiang; Yethiraj, Arun

    2011-03-01

    The large timescales and length-scales of interest in biophysics preclude atomistic study of many systems and processes. One appealing approach is to use coarse-grained (CG) models where several atoms are grouped into a single CG site. In this work we describe a new CG force field for lipids, surfactants, and amino acids. The topology of CG sites is the same as in the MARTINI force field, but the new model is compatible with a recently developed CG electrostatic water (Big Multiple Water, BMW) model. The model not only gives correct structural, elastic properties and phase behavior for lipid and surfactants, but also reproduces electrostatic properties at water-membrane interface that agree with experiment and atomistic simulations, including the potential of mean force for charged amino acid residuals at membrane. Consequently, the model predicts stable attachment of cationic peptides (i.e., poly-Arg) on lipid bilayer surface, which is not shown in previous models with non-electrostatic water.

  18. Exploring Biomolecular Recognition by Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Wade, Rebecca

    2007-12-01

    Biomolecular recognition is complex. The balance between the different molecular properties that contribute to molecular recognition, such as shape, electrostatics, dynamics and entropy, varies from case to case. This, along with the extent of experimental characterization, influences the choice of appropriate computational approaches to study biomolecular interactions. I will present computational studies in which we aim to make concerted use of bioinformatics, biochemical network modeling and molecular simulation techniques to study protein-protein and protein-small molecule interactions and to facilitate computer-aided drug design.

  19. Modeling and simulation technology readiness levels.

    SciTech Connect

    Clay, Robert L.; Shneider, Max S.; Marburger, S. J.; Trucano, Timothy Guy

    2006-01-01

    This report summarizes the results of an effort to establish a framework for assigning and communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) capabilities at Sandia National Laboratories. This effort was undertaken as a special assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from January to September 2006. This report summarizes the results, conclusions, and recommendations, and is intended to help guide the program office in their decisions about the future direction of this work. The work was broken out into several distinct phases, starting with establishing the scope and definition of the assignment. These are characterized in a set of key assertions provided in the body of this report. Fundamentally, the assignment involved establishing an intellectual framework for TRL assignments to Sandia's modeling and simulation capabilities, including the development and testing of a process to conduct the assignments. To that end, we proposed a methodology for both assigning and understanding the TRLs, and outlined some of the restrictions that need to be placed on this process and the expected use of the result. One of the first assumptions we overturned was the notion of a ''static'' TRL--rather we concluded that problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool's readiness level depends on how it is used, and by whom). While we leveraged the classic TRL results from NASA, DoD, and Sandia's NW program, we came up with a substantially revised version of the TRL definitions, maintaining consistency with the classic level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the foundation the PCMM team provided, and augmented that as needed. Given the modeling and simulation TRL definitions and our proposed assignment methodology, we conducted four ''field trials'' to

  20. Simulating temperature-dependent ecological processes at the sub-continental scale: male gypsy moth flight phenology as an example

    NASA Astrophysics Data System (ADS)

    Régnière, J.; Sharov, Alexei

    We simulated male gypsy moth flight phenology for the location of 1371 weather stations east of 100° W longitude and north of 35° N latitude in North America. The output of these simulations, based on average weather conditions from 1961 to 1990, was submitted to two map-interpolation methods: multiple regression and universal kriging. Multiple regression was found to be as accurate as universal kriging and demands less computing power. A map of the date of peak male gypsy moth flight was generated by universal kriging. This map itself constitutes a useful pest-management planning tool; in addition, the map delineates the potential range of the gypsy moth based on its seasonality at the northern edge of its current distribution in eastern North America. The simulation and map-interpolation methods described in this paper thus constitute an interesting approach to the study and monitoring of the ecological impacts of climate change and shifts in land-use patterns at the sub-continental level.

  1. Modelling non-Euclidean movement and landscape connectivity in highly structured ecological networks

    USGS Publications Warehouse

    Sutherland, Christopher; Fuller, Angela K.; Royle, J. Andrew

    2015-01-01

    The ecological distance SCR model uses spatially indexed capture-recapture data to estimate how activity patterns are influenced by landscape structure. As well as reducing bias in estimates of abundance, this approach provides biologically realistic representations of home range geometry, and direct information about species-landscape interactions. The incorporation of both structural (landscape) and functional (movement) components of connectivity provides a direct measure of species-specific landscape connectivity.

  2. Modeling VOC transport in simulated waste drums

    SciTech Connect

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum.

  3. Distributed Slip Model for Simulating Virtual Earthquakes

    NASA Astrophysics Data System (ADS)

    Shani-Kadmiel, S.; Tsesarsky, M.; Gvirtzman, Z.

    2014-12-01

    We develop a physics based, generic finite fault source, which we call the Distributed Slip Model (DSM) for simulating large virtual earthquakes. This task is a necessary step towards ground motion prediction in earthquake-prone areas with limited instrumental coverage. A reliable ground motion prediction based on virtual earthquakes must account for site, path, and source effects. Assessment of site effect mainly depends on near-surface material properties which are relatively well constrained, using geotechnical site data and borehole measurements. Assessment of path effect depends on the deeper geological structure, which is also typically known to an acceptable resolution. Contrarily to these two effects, which remain constant for a given area of interest, the earthquake rupture process and geometry varies from one earthquake to the other. In this study we focus on a finite fault source representation which is both generic and physics-based, for simulating large earthquakes where limited knowledge is available. Thirteen geometric and kinematic parameters are used to describe the smooth "pseudo-Gaussian" slip distribution, such that slip decays from a point of peak slip within an elliptical rupture patch to zero at the borders of the patch. Radiation pattern and spectral charectaristics of our DSM are compared to those of commonly used finite fault models, i.e., the classical Haskell's Model (HM) and the modified HM with Radial Rupture Propagation (HM-RRP) and the Point Source Model (PSM). Ground motion prediction based on our DSM benefits from the symmetry of the PSM and the directivity of the HM while overcoming inadequacy for modeling large earthquakes of the former and the non-physical uniform slip of the latter.

  4. Modeling, Simulation, and Forecasting of Subseasonal Variability

    NASA Technical Reports Server (NTRS)

    Waliser, Duane; Schubert, Siegfried; Kumar, Arun; Weickmann, Klaus; Dole, Randall

    2003-01-01

    A planning workshop on "Modeling, Simulation and Forecasting of Subseasonal Variability" was held in June 2003. This workshop was the first of a number of meetings planned to follow the NASA-sponsored workshop entitled "Prospects For Improved Forecasts Of Weather And Short-Term Climate Variability On Sub-Seasonal Time Scales" that was held April 2002. The 2002 workshop highlighted a number of key sources of unrealized predictability on subseasonal time scales including tropical heating, soil wetness, the Madden Julian Oscillation (MJO) [a.k.a Intraseasonal Oscillation (ISO)], the Arctic Oscillation (AO) and the Pacific/North American (PNA) pattern. The overarching objective of the 2003 follow-up workshop was to proceed with a number of recommendations made from the 2002 workshop, as well as to set an agenda and collate efforts in the areas of modeling, simulation and forecasting intraseasonal and short-term climate variability. More specifically, the aims of the 2003 workshop were to: 1) develop a baseline of the "state of the art" in subseasonal prediction capabilities, 2) implement a program to carry out experimental subseasonal forecasts, and 3) develop strategies for tapping the above sources of predictability by focusing research, model development, and the development/acquisition of new observations on the subseasonal problem. The workshop was held over two days and was attended by over 80 scientists, modelers, forecasters and agency personnel. The agenda of the workshop focused on issues related to the MJO and tropicalextratropical interactions as they relate to the subseasonal simulation and prediction problem. This included the development of plans for a coordinated set of GCM hindcast experiments to assess current model subseasonal prediction capabilities and shortcomings, an emphasis on developing a strategy to rectify shortcomings associated with tropical intraseasonal variability, namely diabatic processes, and continuing the implementation of an

  5. Orion Landing Simulation Eight Soil Model Comparison

    NASA Technical Reports Server (NTRS)

    Mark, Stephen D.

    2009-01-01

    LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.

  6. Simulation model for port shunting yards

    NASA Astrophysics Data System (ADS)

    Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.

    2016-08-01

    Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.

  7. Grand challenges in modeling and simulation

    NASA Astrophysics Data System (ADS)

    Gordon, Steven C.

    2002-07-01

    Few argue with the need for modeling and simulation (M&S) to better or more completely represent current and expected military operations. The challenge is to decide where to make specific improvements in M&S representation and functionality within time, funding, technology, and research limitations. So, it is natural to select key areas - Grand Challenges - for a significant evolution in M&S where a major effort of many at considerable cost is needed to deal with the critical issues ahead. This paper selects three proposed and related Grand Challenges. First, M&S Depiction of Information and Effects-Based Operations, as a Grand Challenge, will assist in creating sufficiently realistic battlespaces for M&S users. Second, M&S Support to Crisis Response and Military Operations, as a Grand Challenge, is a key area that will help the Department of Defense meet transformation goals. Third, Effective Development of Future Simulations, as a Grand Challenge, will set the standards by which future M&S improvements and new M&S programs will be acquired to ensure needed simulations are delivered on time and at desired cost.

  8. Development of stressor-response models for an ecological risk assessment case study

    SciTech Connect

    Nacci, D.E.; Munns, W.R.; Cayula, S.; Serbst, J.; Johnston, R.K.; Walker, H.A.

    1994-12-31

    An estuarine ecological risk assessment for the Portsmouth Naval Shipyard (Kittery, ME) is being conducted following the US EPA`s Framework for Ecological Risk Assessment (ERA). As part of the Analysis phase of the ERA, laboratory studies were conducted to develop stressor-response models for lead, the primary contaminant of concern. Thirty-day exposures to adult sea urchins, Arbacia punctulata, occurred via food or suspended sediment. Exposure media were amended with lead sulfate to 10--100 or 100--300 times uncontaminated levels for the Feeding or Sediment Experiments, respectively. The sea urchin experimental model was selected because it permitted the measurement of biological endpoints with significance at the population level (e.g., adult survival and reproduction success), including those used in standard marine bioassays (i.e., fertilization and larval development). Feeding Experiment treatments produced few effects. Sediment Experiment treatments resulted in reductions in survival, growth and reproductive output of exposed adults and were directly toxic to early lifestages. However, in uncontaminated sea water, gametes from Sediment Experiment adults fertilized and completed larval development normally. Data from these experimental systems will be used to produce models relating lead exposure to specific biological responses and, ultimately, ecological risk.

  9. Elicitation by design in ecology: using expert opinion to inform priors for Bayesian statistical models.

    PubMed

    Choy, Samantha Low; O'Leary, Rebecca; Mengersen, Kerrie

    2009-01-01

    Bayesian statistical modeling has several benefits within an ecological context. In particular, when observed data are limited in sample size or representativeness, then the Bayesian framework provides a mechanism to combine observed data with other "prior" information. Prior information may be obtained from earlier studies, or in their absence, from expert knowledge. This use of the Bayesian framework reflects the scientific "learning cycle," where prior or initial estimates are updated when new data become available. In this paper we outline a framework for statistical design of expert elicitation processes for quantifying such expert knowledge, in a form suitable for input as prior information into Bayesian models. We identify six key elements: determining the purpose and motivation for using prior information; specifying the relevant expert knowledge available; formulating the statistical model; designing effective and efficient numerical encoding; managing uncertainty; and designing a practical elicitation protocol. We demonstrate this framework applies to a variety of situations, with two examples from the ecological literature and three from our experience. Analysis of these examples reveals several recurring important issues affecting practical design of elicitation in ecological problems.

  10. Simulation and modeling of an acoustically forced model rocket injector

    NASA Astrophysics Data System (ADS)

    Gers, David Michael

    A numerical and experimental study was performed to assess the capability of the Loci-CHEM CFD solver in simulating dynamic interaction between hydrogen-oxygen turbulent diffusion flames and periodic pressure waves. Previous experimental studies involving a single-element shear-coaxial model injector revealed an unusual flame-acoustic interaction mechanism affecting combustion instability characteristics. To directly compare the simulation and experiments, various models in the present solver were examined and additional experiments conducted. A customized mesh and corresponding boundary conditions were designed and developed, closely approximating the experimental setup. Full 3-D simulations were conducted using a hybrid RANS/LES framework with appropriate chemistry and turbulence models. The results were compared for both reacting and non-reacting flows that were excited at various forcing frequencies representing both resonant and non-resonant behaviors. Although a good qualitative agreement was obtained for the most part, there was a significant discrepancy in simulating the flame-acoustic interaction behavior observed under non-resonant forcing conditions.

  11. An empirical model of the Baltic Sea reveals the importance of social dynamics for ecological regime shifts.

    PubMed

    Lade, Steven J; Niiranen, Susa; Hentati-Sundberg, Jonas; Blenckner, Thorsten; Boonstra, Wiebren J; Orach, Kirill; Quaas, Martin F; Österblom, Henrik; Schlüter, Maja

    2015-09-01

    Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social-ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social-ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social-ecological models.

  12. An empirical model of the Baltic Sea reveals the importance of social dynamics for ecological regime shifts.

    PubMed

    Lade, Steven J; Niiranen, Susa; Hentati-Sundberg, Jonas; Blenckner, Thorsten; Boonstra, Wiebren J; Orach, Kirill; Quaas, Martin F; Österblom, Henrik; Schlüter, Maja

    2015-09-01

    Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social-ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social-ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social-ecological models. PMID:26283344

  13. Study on ecological impact evaluation for land consolidation based on cloud model: a case study of Miaotan town

    NASA Astrophysics Data System (ADS)

    Liu, Yao-lin; Fan, Min; Yang, Xiao-yu; Liu, Hui

    2008-10-01

    Combining the basic theory of cloud model and the process of ecological impact evaluation for land consolidation, the author constructs the rule of ecological impact evaluation and the cloud models of the antecedent and the consequent, by translating the uncertain factor conditions into quantitative values with the uncertain illation based on cloud model, computes the evaluation factor scores and comprehensive scores of MiaoTan, and then, comparing the results with composite index computation method and fuzzy comprehensive assessment, a feasible method used in Ecological Impact Evaluation for Land Consolidation is proposed.

  14. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect

    Jacob Jacobson; A. M. Yacout; Gretchen Matthern; Steven Piet; David Shropshire; Tyler Schweitzer

    2010-11-01

    The nuclear fuel cycle consists of a set of complex components that work together in unison. In order to support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION.

  15. Modeling and visual simulation of Microalgae photobioreactor

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Hou, Dapeng; Hu, Dawei

    Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.

  16. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  17. At the Biological Modeling and Simulation Frontier

    PubMed Central

    Ropella, Glen E. P.; Lam, Tai Ning; Tang, Jonathan; Kim, Sean H. J.; Engelberg, Jesse A.; Sheikh-Bahaei, Shahab

    2009-01-01

    We provide a rationale for and describe examples of synthetic modeling and simulation (M&S) of biological systems. We explain how synthetic methods are distinct from familiar inductive methods. Synthetic M&S is a means to better understand the mechanisms that generate normal and disease-related phenomena observed in research, and how compounds of interest interact with them to alter phenomena. An objective is to build better, working hypotheses of plausible mechanisms. A synthetic model is an extant hypothesis: execution produces an observable mechanism and phenomena. Mobile objects representing compounds carry information enabling components to distinguish between them and react accordingly when different compounds are studied simultaneously. We argue that the familiar inductive approaches contribute to the general inefficiencies being experienced by pharmaceutical R&D, and that use of synthetic approaches accelerates and improves R&D decision-making and thus the drug development process. A reason is that synthetic models encourage and facilitate abductive scientific reasoning, a primary means of knowledge creation and creative cognition. When synthetic models are executed, we observe different aspects of knowledge in action from different perspectives. These models can be tuned to reflect differences in experimental conditions and individuals, making translational research more concrete while moving us closer to personalized medicine. Electronic supplementary material The online version of this article (doi:10.1007/s11095-009-9958-3) contains supplementary material, which is available to authorized users. PMID:19756975

  18. Plasma simulation studies using multilevel physics models

    SciTech Connect

    Park, W.; Belova, E.V.; Fu, G.Y.

    2000-01-19

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future.

  19. Braiding DNA: Experiments, Simulations, and Models

    PubMed Central

    Charvin, G.; Vologodskii, A.; Bensimon, D.; Croquette, V.

    2005-01-01

    DNA encounters topological problems in vivo because of its extended double-helical structure. As a consequence, the semiconservative mechanism of DNA replication leads to the formation of DNA braids or catenanes, which have to be removed for the completion of cell division. To get a better understanding of these structures, we have studied the elastic behavior of two braided nicked DNA molecules using a magnetic trap apparatus. The experimental data let us identify and characterize three regimes of braiding: a slightly twisted regime before the formation of the first crossing, followed by genuine braids which, at large braiding number, buckle to form plectonemes. Two different approaches support and quantify this characterization of the data. First, Monte Carlo (MC) simulations of braided DNAs yield a full description of the molecules' behavior and their buckling transition. Second, modeling the braids as a twisted swing provides a good approximation of the elastic response of the molecules as they are intertwined. Comparisons of the experiments and the MC simulations with this analytical model allow for a measurement of the diameter of the braids and its dependence upon entropic and electrostatic repulsive interactions. The MC simulations allow for an estimate of the effective torsional constant of the braids (at a stretching force F = 2 pN): Cb ∼ 48 nm (as compared with C ∼100 nm for a single unnicked DNA). Finally, at low salt concentrations and for sufficiently large number of braids, the diameter of the braided molecules is observed to collapse to that of double-stranded DNA. We suggest that this collapse is due to the partial melting and fraying of the two nicked molecules and the subsequent right- or left-handed intertwining of the stretched single strands. PMID:15778439

  20. Conceptualizing Ecology: A Learning Cycle Approach.

    ERIC Educational Resources Information Center

    Lauer, Thomas E.

    2003-01-01

    Proposes a teaching strategy to teach ecological concepts and terminology through the use of games and simulations. Includes examples from physiological ecology, population ecology, and ecosystem ecology. (Author/SOE)