A recirculating stream aquarium for ecological studies.
Gordon H. Reeves; Fred H. Everest; Carl E. McLemore
1983-01-01
Investigations of the ecological behavior of fishes often require studies in both natural and artificial stream environments. We describe a large, recirculating stream aquarium and its controls, constructed for ecological studies at the Forestry Sciences Laboratory in Corvallis.
Controlled ecological life support system higher plant flight experiments
NASA Technical Reports Server (NTRS)
Tibbitts, T. W.; Wheeler, R. M.
1984-01-01
Requirements for spaceflight experments which involve higher plants were determined. The plants are studied for use in controlled ecological life support systems (CELSS). Two categories of research requirements are discussed: (1) the physical needs which include nutrient, water and gas exchange requirements; (2) the biological and physiological functions which affect plants in zero gravity environments. Physical problems studies are given the priority since they affect all biological experiments.
Accurate and precise characterization of exposure of aquatic ecological resources to chemical stressors is required for ecological risk assessment. Within this assessment, the study of the vulnerability of these resources requires comparative exposure assessments across watershe...
Radar, Insect Population Ecology, and Pest Management
NASA Technical Reports Server (NTRS)
Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)
1979-01-01
Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.
Restoration ecology: The state of an emerging field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairns, J. Jr.; Heckman, J.R.
1996-12-31
The field of restoration ecology represents an emerging synthesis of ecological theory and concern about human impact on the natural world. Restoration ecology can be viewed as the study of how to repair anthropogenic damage to the integrity of ecological systems. However, attempts to repair ecological damage should not diminish protection of existing healthy ecosystems. Restoration ecology allows for the testing of ecological theories; however, restoration ecology is not limited to, nor is it a subdiscipline of, the field of ecology. Restoration ecology requires approaches that integrate ecology and environmental sciences, economics, sociology, and politics. This review illustrates these pointsmore » by providing a conceptual map of the origin, present practices, and future directions of the field. 97 refs., 4 tabs.« less
Ecological Investigations, Curriculum Guide.
ERIC Educational Resources Information Center
Washington City Board of Education, NC.
Activities which stress ecological concepts make up the major portion of this curriculum guide. Designed as a 12 week mini-course for students in grades eight and nine, the guide first presents the course schedule, including time requirements, lists the ecological concepts to be studied, and correlates the concepts with the activities. Following…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
... ecology, as well as the technological advancements made available since preparing the 1994 proposed rule..., advancement in our understanding of Lost River sucker's and shortnose sucker's ecology, and the technological... required for Lost River sucker and shortnose sucker from studies of this species' habitat, ecology, and...
NASA Astrophysics Data System (ADS)
Hunt, M. J.; Nuttle, W. K.; Cosby, B. J.; Marshall, F. E.
2005-05-01
Establishing minimum flow requirements in aquatic ecosystems is one way to stipulate controls on water withdrawals in a watershed. The basis of the determination is to identify the amount of flow needed to sustain a threshold ecological function. To develop minimum flow criteria an understanding of ecological response in relation to flow is essential. Several steps are needed including: (1) identification of important resources and ecological functions, (2) compilation of available information, (3) determination of historical conditions, (4) establishment of technical relationships between inflow and resources, and (5) identification of numeric criteria that reflect the threshold at which resources are harmed. The process is interdisciplinary requiring the integration of hydrologic and ecologic principles with quantitative assessments. The tools used quantify the ecological response and key questions related to how the quantity of flow influences the ecosystem are examined by comparing minimum flow determination in two different aquatic systems in South Florida. Each system is characterized by substantial hydrologic alteration. The first, the Caloosahatchee River is a riverine system, located on the southwest coast of Florida. The second, the Everglades- Florida Bay ecotone, is a wetland mangrove ecosystem, located on the southern tip of the Florida peninsula. In both cases freshwater submerged aquatic vegetation (Vallisneria americana or Ruppia maritima), located in areas of the saltwater- freshwater interface has been identified as a basis for minimum flow criteria. The integration of field studies, laboratory studies, and literature review was required. From this information we developed ecological modeling tools to quantify and predict plant growth in response to varying environmental variables. Coupled with hydrologic modeling tools questions relating to the quantity and timing of flow and ecological consequences in relation to normal variability are addressed.
Logan, John M; Bean, Sarah B; Myers, Andrew E
2017-01-01
Authorship is a central element of scientific research carrying a variety of rewards and responsibilities, and while various guidelines exist, actual author contributions are often ambiguous. Inconsistent or limited contributions threaten to devalue authorship as intellectual currency and diminish authors' responsibility for published content. Researchers have assessed author contributions in the medical literature and other research fields, but similar data for the field of ecological research are lacking. Authorship practices in ecological research are broadly representative of a variety of fields due to the cross-disciplinary nature of collaborations in ecological studies. To better understand author contributions to current research, we distributed a survey regarding co-author contributions to a random selection of 996 lead authors of manuscripts published in ecological journals in 2010. We obtained useable responses from 45% of surveyed authors. Reported lead author contributions in ecological research studies consistently included conception of the project idea, data collection, analysis, and writing. Middle and last author contributions instead showed a high level of individual variability. Lead authorship in ecology is well defined while secondary authorship is more ambiguous. Nearly half (48%) of all studies included in our survey had some level of non-compliance with Ecological Society of America (ESA) authorship guidelines and the majority of studies (78%) contained at least one co-author that did not meet International Committee of Medical Journal Editors (ICMJE) requirements. Incidence of non-compliance varied with lead author occupation and author position. The probability of a study including an author that was non-compliant with ESA guidelines was lowest for professor-led studies and highest for graduate student and post doctoral researcher-led studies. Among studies with > two co-authors, all lead authors met ESA guidelines and only 2% failed to meet ICMJE requirements. Middle (24% ESA, 63% ICMJE) and last (37% ESA, 60% ICMJE) authors had higher rates of non-compliance. The probability of a study containing a co-author that did not meet ESA or ICMJE requirements increased significantly with the number of co-authors per study although even studies with only two co-authors had a high probability of non-compliance of approximately 60% (ICMJE) and 15 to 40% (ESA). Given the variable and often limited contributions of authors in our survey and past studies of other research disciplines, institutions, journals, and scientific societies need to implement new approaches to instill meaning in authorship status. A byline approach may not alter author contributions but would better define individual contributions and reduce existing ambiguity regarding the meaning of authorship in modern ecological research.
A Case Study: Using Authentic Scientific Data for Teaching and Learning of Ecology
ERIC Educational Resources Information Center
Wyner, Yael
2013-01-01
This article describes a culminating assignment for students enrolled in a human ecology course in a Masters in Science Education program. The goal of this assignment was for students to use published scientific data to link daily life, human impact, and sustainability to ecological function. This activity required students to consider the…
Logan, John M.; Bean, Sarah B.; Myers, Andrew E.
2017-01-01
Authorship is a central element of scientific research carrying a variety of rewards and responsibilities, and while various guidelines exist, actual author contributions are often ambiguous. Inconsistent or limited contributions threaten to devalue authorship as intellectual currency and diminish authors’ responsibility for published content. Researchers have assessed author contributions in the medical literature and other research fields, but similar data for the field of ecological research are lacking. Authorship practices in ecological research are broadly representative of a variety of fields due to the cross-disciplinary nature of collaborations in ecological studies. To better understand author contributions to current research, we distributed a survey regarding co-author contributions to a random selection of 996 lead authors of manuscripts published in ecological journals in 2010. We obtained useable responses from 45% of surveyed authors. Reported lead author contributions in ecological research studies consistently included conception of the project idea, data collection, analysis, and writing. Middle and last author contributions instead showed a high level of individual variability. Lead authorship in ecology is well defined while secondary authorship is more ambiguous. Nearly half (48%) of all studies included in our survey had some level of non-compliance with Ecological Society of America (ESA) authorship guidelines and the majority of studies (78%) contained at least one co-author that did not meet International Committee of Medical Journal Editors (ICMJE) requirements. Incidence of non-compliance varied with lead author occupation and author position. The probability of a study including an author that was non-compliant with ESA guidelines was lowest for professor-led studies and highest for graduate student and post doctoral researcher-led studies. Among studies with > two co-authors, all lead authors met ESA guidelines and only 2% failed to meet ICMJE requirements. Middle (24% ESA, 63% ICMJE) and last (37% ESA, 60% ICMJE) authors had higher rates of non-compliance. The probability of a study containing a co-author that did not meet ESA or ICMJE requirements increased significantly with the number of co-authors per study although even studies with only two co-authors had a high probability of non-compliance of approximately 60% (ICMJE) and 15 to 40% (ESA). Given the variable and often limited contributions of authors in our survey and past studies of other research disciplines, institutions, journals, and scientific societies need to implement new approaches to instill meaning in authorship status. A byline approach may not alter author contributions but would better define individual contributions and reduce existing ambiguity regarding the meaning of authorship in modern ecological research. PMID:28650967
Nutrition and food technology for a Controlled Ecological Life Support System (CELSS)
NASA Technical Reports Server (NTRS)
Glaser, P. E.; Mabel, J. A.
1981-01-01
Food technology requirements and a nutritional strategy for a Controlled Ecological Life Support System (CELSS) to provide adequate food in an acceptable form in future space missions are discussed. The establishment of nutritional requirements, dietary goals, and a food service system to deliver acceptable foods in a safe and healthy form and the development of research goals and priorities were the main objectives of the study.
Metcalfe, J. D.; Le Quesne, W. J. F.; Cheung, W. W. L.; Righton, D. A.
2012-01-01
Physiological studies focus on the responses of cells, tissues and individuals to stressors, usually in laboratory situations. Conservation and management, on the other hand, focus on populations. The field of conservation physiology addresses the question of how abiotic drivers of physiological responses at the level of the individual alter requirements for successful conservation and management of populations. To achieve this, impacts of physiological effects at the individual level need to be scaled to impacts on population dynamics, which requires consideration of ecology. Successfully realizing the potential of conservation physiology requires interdisciplinary studies incorporating physiology and ecology, and requires that a constructive dialogue develops between these traditionally disparate fields. To encourage this dialogue, we consider the increasingly explicit incorporation of physiology into ecological models applied to marine fish conservation and management. Conservation physiology is further challenged as the physiology of an individual revealed under laboratory conditions is unlikely to reflect realized responses to the complex variable stressors to which it is exposed in the wild. Telemetry technology offers the capability to record an animal's behaviour while simultaneously recording environmental variables to which it is exposed. We consider how the emerging insights from telemetry can strengthen the incorporation of physiology into ecology. PMID:22566680
Review of ecological-based risk management approaches used at five Army Superfund sites.
Poucher, Sherri L; Tracey, Gregory A; Johnson, Mark S; Haines, Laurie B
2012-04-01
Factors used in environmental remedial decision making concerning ecological risk are not well understood or necessarily consistent. Recent Records of Decision (RODs) for Army CERCLA sites were reviewed to select case studies where remedial management occurred in response to ecological risks. Thirty-four Army RODs were evaluated representing decisions promulgated between 1996 and 2004. Five were selected based on assessments that remedial actions were clearly linked to concern for ecological receptors. The Ecological Risk Assessment (ERA) approach and the subsequent risk management process were reviewed for each site. The case studies demonstrated that the ERA findings, as well as critical management decisions regarding interpretation of identified ecological risks, were determinants of remedial action objectives. Decisions regarding the selection of remedial alternatives were based on a set of criteria prescribed by Superfund requirements and guidance. Remedial alternative evaluations require protection of human health and the environment, but protective conditions were determined using different methods at each site. Examining the remedial management process for the 5 case study sites revealed that uncertainty in the risk assessment and decisions regarding appropriate spatial scales for both risk assessment and remediation were important factors influencing remedial action decisions. The case reviews also revealed that levels of documentation were variable from site to site. In the future, more detailed documentation of decision criteria and the development of criteria that consider the resilience of the site will result in more technically defensible ecological risk management. Copyright © 2011 SETAC.
Approaches for advancing scientific understanding of macrosystems
Levy, Ofir; Ball, Becky A.; Bond-Lamberty, Ben; Cheruvelil, Kendra S.; Finley, Andrew O.; Lottig, Noah R.; Surangi W. Punyasena,; Xiao, Jingfeng; Zhou, Jizhong; Buckley, Lauren B.; Filstrup, Christopher T.; Keitt, Tim H.; Kellner, James R.; Knapp, Alan K.; Richardson, Andrew D.; Tcheng, David; Toomey, Michael; Vargas, Rodrigo; Voordeckers, James W.; Wagner, Tyler; Williams, John W.
2014-01-01
The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them.
Recent advances in primate nutritional ecology.
Righini, Nicoletta
2017-04-01
Nutritional ecology seeks to explain, in an ecological and evolutionary context, how individuals choose, acquire, and process food to satisfy their nutritional requirements. Historically, studies of primate feeding ecology have focused on characterizing diets in terms of the botanical composition of the plants consumed. Further, dietary studies have demonstrated how patch and food choice in relation to time spent foraging and feeding are influenced by the spatial and temporal distribution of resources and by social factors such as feeding competition, dominance, or partner preferences. From a nutritional perspective, several theories including energy and protein-to-fiber maximization, nutrient mixing, and toxin avoidance, have been proposed to explain the food choices of non-human primates. However, more recently, analytical frameworks such as nutritional geometry have been incorporated into primatology to explore, using a multivariate approach, the synergistic effects of multiple nutrients, secondary metabolites, and energy requirements on primate food choice. Dietary strategies associated with nutrient balancing highlight the tradeoffs that primates face in bypassing or selecting particular feeding sites and food items. In this Special Issue, the authors bring together a set of studies focusing on the nutritional ecology of a diverse set of primate taxa characterized by marked differences in dietary emphasis. The authors present, compare, and discuss the diversity of strategies used by primates in diet selection, and how species differences in ecology, physiology, anatomy, and phylogeny can affect patterns of nutrient choice and nutrient balancing. The use of a nutritionally explicit analytical framework is fundamental to identify the nutritional requirements of different individuals of a given species, and through its application, direct conservation efforts can be applied to regenerate and protect specific foods and food patches that offer the opportunity of a nutritionally balanced diet. © 2017 Wiley Periodicals, Inc.
Clutton-Brock, Tim; Sheldon, Ben C
2010-10-01
Many important questions in ecology and evolutionary biology can only be answered with data that extend over several decades and answering a substantial proportion of questions requires records of the life histories of recognisable individuals. We identify six advantages that long-term, individual based studies afford in ecology and evolution: (i) analysis of age structure; (ii) linkage between life history stages; (iii) quantification of social structure; (iv) derivation of lifetime fitness measures; (v) replication of estimates of selection; (vi) linkage between generations, and we review their impact on studies in six key areas of evolution and ecology. Our review emphasises the unusual opportunities and productivity of long-term, individual-based studies and documents the important role that they play in research on ecology and evolutionary biology as well as the difficulties they face. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ternjej, Ivancica; Mihaljevic, Zlatko
2017-10-01
Ecology is a science that studies the mutual interactions between organisms and their environment. The fundamental subject of interest in ecology is the individual. Topics of interest to ecologists include the diversity, distribution and number of particular organisms, as well as cooperation and competition between organisms, both within and among ecosystems. Today, ecology is a multidisciplinary science. This is particularly true when the subject of interest is the ecosystem or biosphere, which requires the knowledge and input of biologists, chemists, physicists, geologists, geographists, climatologists, hydrologists and many other experts. Ecology is applied in a science of restoration, repairing disturbed sites through human intervention, in natural resource management, and in environmental impact assessments.
Approaches to advancescientific understanding of macrosystems ecology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, Ofir; Ball, Becky; Bond-Lamberty, Benjamin
Macrosystem ecological studies inherently investigate processes that interact across multiple spatial and temporal scales, requiring intensive sampling and massive amounts of data from diverse sources to incorporate complex cross-scale and hierarchical interactions. Inherent challenges associated with these characteristics include high computational demands, data standardization and assimilation, identification of important processes and scales without prior knowledge, and the need for large, cross-disciplinary research teams that conduct long-term studies. Therefore, macrosystem ecology studies must utilize a unique set of approaches that are capable of encompassing these methodological characteristics and associated challenges. Several case studies demonstrate innovative methods used in current macrosystem ecologymore » studies.« less
2013-08-01
hunting, cleaner water, better views, and reduced human health risks and ecological risks). These require some interaction with, or at least some... evolution in collaboration. The discipline of ecology has possessed an underlying socio- economic character in several phases of its development as...environment. Early connection to concepts in evolution . Introduced the Greek term oikos linked to both ecology (study of the household) and
Focusing ecological research for conservation.
Cristescu, Bogdan; Boyce, Mark S
2013-11-01
Ecologists are increasingly actively involved in conservation. We identify five key topics from a broad sweep of ecology that merit research attention to meet conservation needs. We examine questions from landscape ecology, behavioral ecology, ecosystem dynamics, community ecology, and nutrient cycling related to key topics. Based on literature review and publication trend assessment, consultation with colleagues, and roundtable discussions at the 24th International Congress for Conservation Biology, focused research on the following topics could benefit conservation while advancing ecological understanding: 1. Carbon sequestration, requiring increased linkages to biodiversity conservation; 2. Ecological invasiveness, challenging our ability to find solutions to ecological aliens; 3. Individual variation, having applications in the conservation of rare species; 4. Movement of organisms, integrating ecological processes across landscapes and scales and addressing habitat fragmentation; and 5. Trophic-level interactions, driving ecological dynamics at the ecosystem-level. Addressing these will require cross-disciplinary research under the overarching framework of conservation ecology.
[Ecological agriculture: future of agriculture for Chinese material medica].
Guo, Lan-Ping; Wang, Tie-Lin; Yang, Wan-Zhen; Zhou, Liang-Yun; Chen, Nai-Fu; Han, Bang-Xing; Huang, Lu-Qi
2017-01-01
The ecological agriculture of traditional Chinese medicine (TCM) is generally acknowledged as the most advanced agricultural mode. However, it's still a doubt whether ecological agriculture could be widely applied in TCM agriculture. In this study, we first analyze both the differences and relationships between ecological and organic agriculture, which suggesting that ecological agriculture does not need all the inputs as traditional agriculture. After introducing the situation of ecological agriculture from all across the world, we analyze the differences and characteristics between ecological and chemical agricultures. Considered with the big challenge caused by chemical agriculture, we pointed out that ecological agriculture could definitely replace chemical agriculture. Last but not the least, combined with the situation and problems of Chinese agriculture, we analyze the distinctive advantages of TCM ecological agriculture from 3 aspects as its unique quality characteristics, its unique habitat requirements in production and its unique application and market characteristics, respectively. In conclusion, ecological agriculture is the straight way of TCM agriculture. Copyright© by the Chinese Pharmaceutical Association.
Developing ecological scenarios for the prospective aquatic risk assessment of pesticides.
Rico, Andreu; Van den Brink, Paul J; Gylstra, Ronald; Focks, Andreas; Brock, Theo Cm
2016-07-01
The prospective aquatic environmental risk assessment (ERA) of pesticides is generally based on the comparison of predicted environmental concentrations in edge-of-field surface waters with regulatory acceptable concentrations derived from laboratory and/or model ecosystem experiments with aquatic organisms. New improvements in mechanistic effect modeling have allowed a better characterization of the ecological risks of pesticides through the incorporation of biological trait information and landscape parameters to assess individual, population and/or community-level effects and recovery. Similarly to exposure models, ecological models require scenarios that describe the environmental context in which they are applied. In this article, we propose a conceptual framework for the development of ecological scenarios that, when merged with exposure scenarios, will constitute environmental scenarios for prospective aquatic ERA. These "unified" environmental scenarios are defined as the combination of the biotic and abiotic parameters that are required to characterize exposure, (direct and indirect) effects, and recovery of aquatic nontarget species under realistic worst-case conditions. Ideally, environmental scenarios aim to avoid a potential mismatch between the parameter values and the spatial-temporal scales currently used in aquatic exposure and effect modeling. This requires a deeper understanding of the ecological entities we intend to protect, which can be preliminarily addressed by the formulation of ecological scenarios. In this article we present a methodological approach for the development of ecological scenarios and illustrate this approach by a case-study for Dutch agricultural ditches and the example focal species Sialis lutaria. Finally, we discuss the applicability of ecological scenarios in ERA and propose research needs and recommendations for their development and integration with exposure scenarios. Integr Environ Assess Manag 2016;12:510-521. © 2015 SETAC. © 2015 SETAC.
Comprehensive evaluation of ecological security in mining area based on PSR-ANP-GRAY.
He, Gang; Yu, Baohua; Li, Shuzhou; Zhu, Yanna
2017-09-06
With the large exploitation of mineral resources, a series of problems have appeared in the ecological environment of the mining area. Therefore, evaluating the ecological security of mining area is of great significance to promote its healthy development. In this paper, the evaluation index system of ecological security in mining area was constructed from three dimensions of nature, society and economy, combined with Pressure-State-Response framework model. Then network analytic hierarchy process and GRAY relational analysis method were used to evaluate the ecological security of the region, and the weighted correlation degree of ecological security was calculated through the index data of a coal mine from 2012 to 2016 in China. The results show that the ecological security in the coal mine area is on the rise as a whole, though it alternatively rose and dropped from 2012 to 2016. Among them, the ecological security of the study mining area is at the general security level from 2012 to 2015, and at a relatively safe level in 2016. It shows that the ecological environment of the study mining area can basically meet the requirement of the survival and development of the enterprises.
A regional-scale ecological risk framework for environmental flow evaluations
NASA Astrophysics Data System (ADS)
O'Brien, Gordon C.; Dickens, Chris; Hines, Eleanor; Wepener, Victor; Stassen, Retha; Quayle, Leo; Fouchy, Kelly; MacKenzie, James; Graham, P. Mark; Landis, Wayne G.
2018-02-01
Environmental flow (E-flow) frameworks advocate holistic, regional-scale, probabilistic E-flow assessments that consider flow and non-flow drivers of change in a socio-ecological context as best practice. Regional-scale ecological risk assessments of multiple stressors to social and ecological endpoints, which address ecosystem dynamism, have been undertaken internationally at different spatial scales using the relative-risk model since the mid-1990s. With the recent incorporation of Bayesian belief networks into the relative-risk model, a robust regional-scale ecological risk assessment approach is available that can contribute to achieving the best practice recommendations of E-flow frameworks. PROBFLO is a holistic E-flow assessment method that incorporates the relative-risk model and Bayesian belief networks (BN-RRM) into a transparent probabilistic modelling tool that addresses uncertainty explicitly. PROBFLO has been developed to evaluate the socio-ecological consequences of historical, current and future water resource use scenarios and generate E-flow requirements on regional spatial scales. The approach has been implemented in two regional-scale case studies in Africa where its flexibility and functionality has been demonstrated. In both case studies the evidence-based outcomes facilitated informed environmental management decision making, with trade-off considerations in the context of social and ecological aspirations. This paper presents the PROBFLO approach as applied to the Senqu River catchment in Lesotho and further developments and application in the Mara River catchment in Kenya and Tanzania. The 10 BN-RRM procedural steps incorporated in PROBFLO are demonstrated with examples from both case studies. PROBFLO can contribute to the adaptive management of water resources and contribute to the allocation of resources for sustainable use of resources and address protection requirements.
David W. Peterson; Erich Dodson
2016-01-01
Post-fire forest management commonly requires accepting some negative ecological impacts from management activities in order to achieve management objectives. Managers need to know, however, whether ecological impacts from post-fire management activities are transient or cause long-term ecosystem degradation. We studied the long-term response of understory vegetation...
Ecological restoration of an old-growth longleaf pine stand utilizing prescribed fire
J. Morgan Varner; John S. Kush; Ralph S. Meldahl
2000-01-01
Ecological restoration using prescribed fire has been underway for 3 years in an uncut, old-growth longleaf pine (Pinus palustris) stand located in south Alabama. The longleaf pine ecosystem requires frequent (once every 1-10 years) surface fire to prevent succesion to later several stages. Before this study began, this stand had not burned in >...
Engaging Imagination in Ecological Education: Practical Strategies for Teaching
ERIC Educational Resources Information Center
Judson, Gillian
2015-01-01
"Engaging Imagination in Ecological Education" illustrates how to connect students to the natural world and encourage them to care about a more sustainable, ecologically secure planet. Cultivating ecological understanding can be more challenging for teachers than simply imparting knowledge of ecological issues; it requires reimagining…
Zhang, Yinan; Chu, Chunli; Liu, Lei; Xu, Shengguo; Ruan, Xiaoxue; Ju, Meiting
2017-08-02
A 'red line' was established, identifying an area requiring for ecological protection in Tianjin, China. Within the protected area of the red line area, the Qilihai wetland is an important ecotope with complex ecological functions, although the ecosystem is seriously disturbed due to anthropogenic activities in the surrounding areas. This study assesses the water quality status of the Qilihai wetlands to identify the pollution sources and potential improvements based on the ecological red line policy, to improve and protect the waters of the Qilihai wetlands. An indicator system was established to assess water quality status using single factor evaluation and a comprehensive evaluation method, supported by data from 2010 to 2013. Assessment results show that not all indicators met the requirement of the Environmental Quality Standards for Surface Water (GB3838-2002) and that overall, waters in the Qilihai wetland were seriously polluted. Based on these findings we propose restrictions on all polluting anthropogenic activities in the red line area and implementation of restoration projects to improve water quality.
Crook, David A; Lowe, Winsor H; Allendorf, Frederick W; Erős, Tibor; Finn, Debra S; Gillanders, Bronwyn M; Hadwen, Wade L; Harrod, Chris; Hermoso, Virgilio; Jennings, Simon; Kilada, Raouf W; Nagelkerken, Ivan; Hansen, Michael M; Page, Timothy J; Riginos, Cynthia; Fry, Brian; Hughes, Jane M
2015-11-15
Understanding the drivers and implications of anthropogenic disturbance of ecological connectivity is a key concern for the conservation of biodiversity and ecosystem processes. Here, we review human activities that affect the movements and dispersal of aquatic organisms, including damming of rivers, river regulation, habitat loss and alteration, human-assisted dispersal of organisms and climate change. Using a series of case studies, we show that the insight needed to understand the nature and implications of connectivity, and to underpin conservation and management, is best achieved via data synthesis from multiple analytical approaches. We identify four key knowledge requirements for progressing our understanding of the effects of anthropogenic impacts on ecological connectivity: autecology; population structure; movement characteristics; and environmental tolerance/phenotypic plasticity. Structuring empirical research around these four broad data requirements, and using this information to parameterise appropriate models and develop management approaches, will allow for mitigation of the effects of anthropogenic disturbance on ecological connectivity in aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Jian; Zhang, Chao-Xing; Yu, Ying-Tan; Li, Fa-Yun; Ma, Fang
2012-08-01
Water resources ecological footprint can directly reflect the pressure of human social and economic activities to water resources, and provide important reference for the rational utilization of water resources. Based on the existing ecological footprint models and giving full consideration of the water resources need of urban ecological system, this paper established a new calculation model of urban water resources ecological footprint, including domestic water account, process water account, public service water account, and ecological water requirement account. According to the actual situation of Shenyang City, the key parameters of the model were determined, and the water resources ecological footprint and ecological carrying capacity of the City were calculated and analyzed. From 2000 to 2009, the water resources ecological footprint per capita of the City presented an overall decreasing trend, but still had an annual ecological deficit. As compared to that in 2000, the water resources ecological footprint per capita was decreased to 0.31 hm2 in 2005, increased slightly in 2006 and 2007, and remained stable in 2008 and 2009, which suggested that the sustainable utilization of water resources in Shenyang City had definite improvement, but was still in an unsustainable development situation.
Wang, Xiaoying; Liang, Wenju; Wen, Dazhong
2004-10-01
The ecological and physiological water requirement of rice was studied in a paddy field of north China, and the field experiment was conducted at Shenyang Experimental Station of Ecology, Chinese Academy of Sciences. Under continuous flooding irrigation (CSF) and intermittent irrigation (IT) conditions, the evapotranspiration and soil evaporation of paddy fields were measured by non-weighing lysimeters and micro-lysimeters, respectively. The results showed that compared with continuous flooding irrigation, the transpiration under intermittent irrigation condition was not significantly reduced, but 16% and 24% of water amounts were reduced by decreasing the water losses through soil water evaporation and percolation, respectively. The water use efficiency of intermittent irrigation was increased 10%, without any adverse effects on biomass and grain yield of rice. Although the amount of water requirement under IT treatment was reduced significantly compared with CSF treatment, about 60% of total water requirement was still lost through deep percolation. Based on the results obtained, the corresponding countermeasures to reduce the amounts of soil water evaporation and percolation and to increase the water use efficiency were put forward in this paper.
Rowe, David K; Parkyn, Stephanie; Quinn, John; Collier, Kevin; Hatton, Chris; Joy, Michael K; Maxted, John; Moore, Stephen
2009-06-01
A method was developed to score the ecological condition of first- to third-order stream reaches in the Auckland region of New Zealand based on the performance of their key ecological functions. Such a method is required by consultants and resource managers to quantify the reduction in ecological condition of a modified stream reach relative to its unmodified state. This is a fundamental precursor for the determination of fair environmental compensation for achieving no-net-loss in overall stream ecological value. Field testing and subsequent use of the method indicated that it provides a useful measure of ecological condition related to the performance of stream ecological functions. It is relatively simple to apply compared to a full ecological study, is quick to use, and allows identification of the degree of impairment of each of the key ecological functions. The scoring system was designed so that future improvements in the measurement of stream functions can be incorporated into it. Although the methodology was specifically designed for Auckland streams, the principles can be readily adapted to other regions and stream types.
Morphological similarity and ecological overlap in two rotifer species.
Gabaldón, Carmen; Montero-Pau, Javier; Serra, Manuel; Carmona, María José
2013-01-01
Co-occurrence of cryptic species raises theoretically relevant questions regarding their coexistence and ecological similarity. Given their great morphological similitude and close phylogenetic relationship (i.e., niche retention), these species will have similar ecological requirements and are expected to have strong competitive interactions. This raises the problem of finding the mechanisms that may explain the coexistence of cryptic species and challenges the conventional view of coexistence based on niche differentiation. The cryptic species complex of the rotifer Brachionus plicatilis is an excellent model to study these questions and to test hypotheses regarding ecological differentiation. Rotifer species within this complex are filtering zooplankters commonly found inhabiting the same ponds across the Iberian Peninsula and exhibit an extremely similar morphology-some of them being even virtually identical. Here, we explore whether subtle differences in body size and morphology translate into ecological differentiation by comparing two extremely morphologically similar species belonging to this complex: B. plicatilis and B. manjavacas. We focus on three key ecological features related to body size: (1) functional response, expressed by clearance rates; (2) tolerance to starvation, measured by growth and reproduction; and (3) vulnerability to copepod predation, measured by the number of preyed upon neonates. No major differences between B. plicatilis and B. manjavacas were found in the response to these features. Our results demonstrate the existence of a substantial niche overlap, suggesting that the subtle size differences between these two cryptic species are not sufficient to explain their coexistence. This lack of evidence for ecological differentiation in the studied biotic niche features is in agreement with the phylogenetic limiting similarity hypothesis but requires a mechanistic explanation of the coexistence of these species not based on differentiation related to biotic niche axes.
Morphological Similarity and Ecological Overlap in Two Rotifer Species
Gabaldón, Carmen; Montero-Pau, Javier; Serra, Manuel; Carmona, María José
2013-01-01
Co-occurrence of cryptic species raises theoretically relevant questions regarding their coexistence and ecological similarity. Given their great morphological similitude and close phylogenetic relationship (i.e., niche retention), these species will have similar ecological requirements and are expected to have strong competitive interactions. This raises the problem of finding the mechanisms that may explain the coexistence of cryptic species and challenges the conventional view of coexistence based on niche differentiation. The cryptic species complex of the rotifer Brachionus plicatilis is an excellent model to study these questions and to test hypotheses regarding ecological differentiation. Rotifer species within this complex are filtering zooplankters commonly found inhabiting the same ponds across the Iberian Peninsula and exhibit an extremely similar morphology—some of them being even virtually identical. Here, we explore whether subtle differences in body size and morphology translate into ecological differentiation by comparing two extremely morphologically similar species belonging to this complex: B. plicatilis and B. manjavacas. We focus on three key ecological features related to body size: (1) functional response, expressed by clearance rates; (2) tolerance to starvation, measured by growth and reproduction; and (3) vulnerability to copepod predation, measured by the number of preyed upon neonates. No major differences between B. plicatilis and B. manjavacas were found in the response to these features. Our results demonstrate the existence of a substantial niche overlap, suggesting that the subtle size differences between these two cryptic species are not sufficient to explain their coexistence. This lack of evidence for ecological differentiation in the studied biotic niche features is in agreement with the phylogenetic limiting similarity hypothesis but requires a mechanistic explanation of the coexistence of these species not based on differentiation related to biotic niche axes. PMID:23451154
Delonay, Aaron J.; Chojnacki, Kimberly A.; Jacobson, Robert B.; Albers, Janice L.; Braaten, Patrick J.; Bulliner, Edward A.; Elliott, Caroline M.; Erwin, Susannah O.; Fuller, David B; Haas, Justin D.; Ladd, Hallie L.A.; Mestl, Gerald E.; Papoulias, Diana M.; Wildhaber, Mark L.
2016-01-20
Scientific understanding of the ecological requirements of pallid sturgeon has increased almost exponentially in the last two decades, and efforts are now turning from understanding fundamental biology of the species to quantifying how population dynamics relate to potential management actions. Progress in developing the science needed to inform management actions on the Missouri River may benefit from continuation of monitoring of reproductive cycles, reproductive movements, growth, and survival of telemetry tagged adults, increased emphasis on focused, complementary field and laboratory studies of factors influencing early life history, implementation of studies to resolve the role of food limitations in growth, survival, and reproductive condition, and implementation of studies designed specifically to parameterize models linking management to populations.
Chromosome inversions and ecological plasticity in the main African malaria mosquitoes
Ayala, Diego; Acevedo, Pelayo; Pombi, Marco; Dia, Ibrahima; Boccolini, Daniela; Costantini, Carlo; Simard, Frédéric; Fontenille, Didier
2017-01-01
Chromosome inversions have fascinated the scientific community, mainly because of their role in the rapid adaption of different taxa to changing environments. However, the ecological traits linked to chromosome inversions have been poorly studied. Here, we investigated the roles played by 23 chromosome inversions in the adaptation of the four major African malaria mosquitoes to local environments in Africa. We studied their distribution patterns by using spatially explicit modeling and characterized the ecogeographical determinants of each inversion range. We then performed hierarchical clustering and constrained ordination analyses to assess the spatial and ecological similarities among inversions. Our results show that most inversions are environmentally structured, suggesting that they are actively involved in processes of local adaptation. Some inversions exhibited similar geographical patterns and ecological requirements among the four mosquito species, providing evidence for parallel evolution. Conversely, common inversion polymorphisms between sibling species displayed divergent ecological patterns, suggesting that they might have a different adaptive role in each species. These results are in agreement with the finding that chromosomal inversions play a role in Anopheles ecotypic adaptation. This study establishes a strong ecological basis for future genome-based analyses to elucidate the genetic mechanisms of local adaptation in these four mosquitoes. PMID:28071788
Space ecosynthesis: An approach to the design of closed ecosystems for use in space
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Averner, M. M.
1978-01-01
The use of closed ecological systems for the regeneration of wastes, air, and water is discussed. It is concluded that such systems, if they are to be used for the support of humans in space, will require extensive mechanical and physico-chemical support. The reason for this is that the buffering capacity available in small systems is inadequate, and that natural biological and physical regulatory mechanisms rapidly become inoperative. It is proposed that mathematical models of the dynamics of a closed ecological system may provide the best means of studying the initial problems of ecosystem closure. A conceptual and mathematical model of a closed ecosystem is described which treats the biological components as a farm, calculates the rates of flow of elements through the system by mass-balance techniques and control theory postulates, and can evaluate the requirements for mechanical buffering activities. It is suggested that study of the closure of ecosystems can significantly aid in the establishment of general principles of ecological systems.
Nevada Applied Ecology Group procedures handbook for environmental transuranics
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.G.; Dunaway, P.B.
The activities of the Nevada Applied Ecology Group (NAEG) integrated research studies of environmental plutonium and other transuranics at the Nevada Test Site have required many standardized field and laboratory procedures. These include sampling techniques, collection and preparation, radiochemical and wet chemistry analysis, data bank storage and reporting, and statistical considerations for environmental samples of soil, vegetation, resuspended particles, animals, and others. This document, printed in two volumes, includes most of the Nevada Applied Ecology Group standard procedures, with explanations as to the specific applications involved in the environmental studies. Where there is more than one document concerning a procedure,more » it has been included to indicate special studies or applications perhaps more complex than the routine standard sampling procedures utilized.« less
Nevada Applied Ecology Group procedures handbook for environmental transuranics
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.G.; Dunaway, P.B.
The activities of the Nevada Applied Ecology Group (NAEG) integrated research studies of environmental plutonium and other transuranics at the Nevada Test Site have required many standardized field and laboratory procedures. These include sampling techniques, collection and preparation, radiochemical and wet chemistry analysis, data bank storage and reporting, and statistical considerations for environmental samples of soil, vegetation, resuspended particles, animals, and other biological material. This document, printed in two volumes, includes most of the Nevada Applied Ecology Group standard procedures, with explanations as to the specific applications involved in the environmental studies. Where there is more than one document concerningmore » a procedure, it has been included to indicate special studies or applications more complex than the routine standard sampling procedures utilized.« less
Ezard, Thomas H.G.; Jørgensen, Peter S.; Zimmerman, Naupaka; Chamberlain, Scott; Salguero-Gómez, Roberto; Curran, Timothy J.; Poisot, Timothée
2014-01-01
Proficiency in mathematics and statistics is essential to modern ecological science, yet few studies have assessed the level of quantitative training received by ecologists. To do so, we conducted an online survey. The 937 respondents were mostly early-career scientists who studied biology as undergraduates. We found a clear self-perceived lack of quantitative training: 75% were not satisfied with their understanding of mathematical models; 75% felt that the level of mathematics was “too low” in their ecology classes; 90% wanted more mathematics classes for ecologists; and 95% more statistics classes. Respondents thought that 30% of classes in ecology-related degrees should be focused on quantitative disciplines, which is likely higher than for most existing programs. The main suggestion to improve quantitative training was to relate theoretical and statistical modeling to applied ecological problems. Improving quantitative training will require dedicated, quantitative classes for ecology-related degrees that contain good mathematical and statistical practice. PMID:24688862
Measures of precision for dissimilarity-based multivariate analysis of ecological communities.
Anderson, Marti J; Santana-Garcon, Julia
2015-01-01
Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Moreno-Opo, Rubén; Fernández-Olalla, Mariana; Margalida, Antoni; Arredondo, Ángel; Guil, Francisco
2012-01-01
The application of scientific-based conservation measures requires that sampling methodologies in studies modelling similar ecological aspects produce comparable results making easier their interpretation. We aimed to show how the choice of different methodological and ecological approaches can affect conclusions in nest-site selection studies along different Palearctic meta-populations of an indicator species. First, a multivariate analysis of the variables affecting nest-site selection in a breeding colony of cinereous vulture (Aegypius monachus) in central Spain was performed. Then, a meta-analysis was applied to establish how methodological and habitat-type factors determine differences and similarities in the results obtained by previous studies that have modelled the forest breeding habitat of the species. Our results revealed patterns in nesting-habitat modelling by the cinereous vulture throughout its whole range: steep and south-facing slopes, great cover of large trees and distance to human activities were generally selected. The ratio and situation of the studied plots (nests/random), the use of plots vs. polygons as sampling units and the number of years of data set determined the variability explained by the model. Moreover, a greater size of the breeding colony implied that ecological and geomorphological variables at landscape level were more influential. Additionally, human activities affected in greater proportion to colonies situated in Mediterranean forests. For the first time, a meta-analysis regarding the factors determining nest-site selection heterogeneity for a single species at broad scale was achieved. It is essential to homogenize and coordinate experimental design in modelling the selection of species' ecological requirements in order to avoid that differences in results among studies would be due to methodological heterogeneity. This would optimize best conservation and management practices for habitats and species in a global context. PMID:22413023
Sustaining recruitment of oak reproduction in uneven-aged stands in the Ozark Highlands.
David R. Larsen; Edward F. Loewenstein; Paul S. Johnson
1999-01-01
Successful application of the single-tree selection system in Ozark oak forests depends on sustaining adequate recruitment of reproduction into the overstory. In turn, this requires maintaining stand density at ecologically appropriate levels. The ecological requirements for oak recruitment are discussed and guiding curves are presented that meet those requirements...
Beyond positivist ecology: toward an integrated ecological ethics.
Norton, Bryan G
2008-12-01
A post-positivist understanding of ecological science and the call for an "ecological ethic" indicate the need for a radically new approach to evaluating environmental change. The positivist view of science cannot capture the essence of environmental sciences because the recent work of "reflexive" ecological modelers shows that this requires a reconceptualization of the way in which values and ecological models interact in scientific process. Reflexive modelers are ecological modelers who believe it is appropriate for ecologists to examine the motives for their choices in developing models; this self-reflexive approach opens the door to a new way of integrating values into public discourse and to a more comprehensive approach to evaluating ecological change. This reflexive building of ecological models is introduced through the transformative simile of Aldo Leopold, which shows that learning to "think like a mountain" involves a shift in both ecological modeling and in values and responsibility. An adequate, interdisciplinary approach to ecological valuation, requires a re-framing of the evaluation questions in entirely new ways, i.e., a review of the current status of interdisciplinary value theory with respect to ecological values reveals that neither of the widely accepted theories of environmental value-neither economic utilitarianism nor intrinsic value theory (environmental ethics)-provides a foundation for an ecologically sensitive evaluation process. Thus, a new, ecologically sensitive, and more comprehensive approach to evaluating ecological change would include an examination of the metaphors that motivate the models used to describe environmental change.
Quantifying ecological thresholds from response surfaces
Heather E. Lintz; Bruce McCune; Andrew N. Gray; Katherine A. McCulloh
2011-01-01
Ecological thresholds are abrupt changes of ecological state. While an ecological threshold is a widely accepted concept, most empirical methods detect them in time or across geographic space. Although useful, these approaches do not quantify the direct drivers of threshold response. Causal understanding of thresholds detected empirically requires their investigation...
Water Environment Assessment as an Ecological Red Line Management Tool for Marine Wetland Protection
Zhang, Yinan; Chu, Chunli; Liu, Lei; Xu, Shengguo; Ruan, Xiaoxue; Ju, Meiting
2017-01-01
A ‘red line’ was established, identifying an area requiring for ecological protection in Tianjin, China. Within the protected area of the red line area, the Qilihai wetland is an important ecotope with complex ecological functions, although the ecosystem is seriously disturbed due to anthropogenic activities in the surrounding areas. This study assesses the water quality status of the Qilihai wetlands to identify the pollution sources and potential improvements based on the ecological red line policy, to improve and protect the waters of the Qilihai wetlands. An indicator system was established to assess water quality status using single factor evaluation and a comprehensive evaluation method, supported by data from 2010 to 2013. Assessment results show that not all indicators met the requirement of the Environmental Quality Standards for Surface Water (GB3838-2002) and that overall, waters in the Qilihai wetland were seriously polluted. Based on these findings we propose restrictions on all polluting anthropogenic activities in the red line area and implementation of restoration projects to improve water quality. PMID:28767096
Getting the message across: using ecological integrity to communicate with resource managers
Mitchell, Brian R.; Tierney, Geraldine L.; Schweiger, E. William; Miller, Kathryn M.; Faber-Langendoen, Don; Grace, James B.
2014-01-01
This chapter describes and illustrates how concepts of ecological integrity, thresholds, and reference conditions can be integrated into a research and monitoring framework for natural resource management. Ecological integrity has been defined as a measure of the composition, structure, and function of an ecosystem in relation to the system’s natural or historical range of variation, as well as perturbations caused by natural or anthropogenic agents of change. Using ecological integrity to communicate with managers requires five steps, often implemented iteratively: (1) document the scale of the project and the current conceptual understanding and reference conditions of the ecosystem, (2) select appropriate metrics representing integrity, (3) define externally verified assessment points (metric values that signify an ecological change or need for management action) for the metrics, (4) collect data and calculate metric scores, and (5) summarize the status of the ecosystem using a variety of reporting methods. While we present the steps linearly for conceptual clarity, actual implementation of this approach may require addressing the steps in a different order or revisiting steps (such as metric selection) multiple times as data are collected. Knowledge of relevant ecological thresholds is important when metrics are selected, because thresholds identify where small changes in an environmental driver produce large responses in the ecosystem. Metrics with thresholds at or just beyond the limits of a system’s range of natural variability can be excellent, since moving beyond the normal range produces a marked change in their values. Alternatively, metrics with thresholds within but near the edge of the range of natural variability can serve as harbingers of potential change. Identifying thresholds also contributes to decisions about selection of assessment points. In particular, if there is a significant resistance to perturbation in an ecosystem, with threshold behavior not occurring until well beyond the historical range of variation, this may provide a scientific basis for shifting an ecological assessment point beyond the historical range. We present two case studies using ongoing monitoring by the US National Park Service Vital Signs program that illustrate the use of an ecological integrity approach to communicate ecosystem status to resource managers. The Wetland Ecological Integrity in Rocky Mountain National Park case study uses an analytical approach that specifically incorporates threshold detection into the process of establishing assessment points. The Forest Ecological Integrity of Northeastern National Parks case study describes a method for reporting ecological integrity to resource managers and other decision makers. We believe our approach has the potential for wide applicability for natural resource management.
Big questions, big science: meeting the challenges of global ecology.
Schimel, David; Keller, Michael
2015-04-01
Ecologists are increasingly tackling questions that require significant infrastucture, large experiments, networks of observations, and complex data and computation. Key hypotheses in ecology increasingly require more investment, and larger data sets to be tested than can be collected by a single investigator's or s group of investigator's labs, sustained for longer than a typical grant. Large-scale projects are expensive, so their scientific return on the investment has to justify the opportunity cost-the science foregone because resources were expended on a large project rather than supporting a number of individual projects. In addition, their management must be accountable and efficient in the use of significant resources, requiring the use of formal systems engineering and project management to mitigate risk of failure. Mapping the scientific method into formal project management requires both scientists able to work in the context, and a project implementation team sensitive to the unique requirements of ecology. Sponsoring agencies, under pressure from external and internal forces, experience many pressures that push them towards counterproductive project management but a scientific community aware and experienced in large project science can mitigate these tendencies. For big ecology to result in great science, ecologists must become informed, aware and engaged in the advocacy and governance of large ecological projects.
Saive, Anne-Lise; Royet, Jean-Pierre; Garcia, Samuel; Thévenet, Marc; Plailly, Jane
2015-01-01
Episodic memory is defined as the conscious retrieval of specific past events. Whether accurate episodic retrieval requires a recollective experience or if a feeling of knowing is sufficient remains unresolved. We recently devised an ecological approach to investigate the controlled cued-retrieval of episodes composed of unnamable odors (What) located spatially (Where) within a visual context (Which context). By combining the Remember/Know procedure with our laboratory-ecological approach in an original way, the present study demonstrated that the accurate odor-evoked retrieval of complex and multimodal episodes overwhelmingly required conscious recollection. A feeling of knowing, even when associated with a high level of confidence, was not sufficient to generate accurate episodic retrieval. Interestingly, we demonstrated that the recollection of accurate episodic memories was promoted by odor retrieval-cue familiarity and describability. In conclusion, our study suggested that semantic knowledge about retrieval-cues increased the recollection which is the state of awareness required for the accurate retrieval of complex episodic memories. PMID:26630170
Saive, Anne-Lise; Royet, Jean-Pierre; Garcia, Samuel; Thévenet, Marc; Plailly, Jane
2015-01-01
Episodic memory is defined as the conscious retrieval of specific past events. Whether accurate episodic retrieval requires a recollective experience or if a feeling of knowing is sufficient remains unresolved. We recently devised an ecological approach to investigate the controlled cued-retrieval of episodes composed of unnamable odors (What) located spatially (Where) within a visual context (Which context). By combining the Remember/Know procedure with our laboratory-ecological approach in an original way, the present study demonstrated that the accurate odor-evoked retrieval of complex and multimodal episodes overwhelmingly required conscious recollection. A feeling of knowing, even when associated with a high level of confidence, was not sufficient to generate accurate episodic retrieval. Interestingly, we demonstrated that the recollection of accurate episodic memories was promoted by odor retrieval-cue familiarity and describability. In conclusion, our study suggested that semantic knowledge about retrieval-cues increased the recollection which is the state of awareness required for the accurate retrieval of complex episodic memories.
Measures of precision for dissimilarity-based multivariate analysis of ecological communities
Anderson, Marti J; Santana-Garcon, Julia
2015-01-01
Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided. PMID:25438826
NASA Astrophysics Data System (ADS)
Zhang, H. W.; Hu, P.; Ni, G.; Jia, Y. W.; Ge, J. J.
2017-12-01
The presence of an estuary gate changes the existing hydrologic regime and produces a far-reaching and accumulated impact on river biotopes and fish stocks. This work investigates the estuary gate effect in the Yong River valley on the species Elopichthys bambusa (E. bambusa). By combininge hydrodynamic results from the MIKE FLOOD model with observations of the E. bambusa habitat indicators. After the establishment of the gate, the hydrological conditions required for spawning, egg hatching and oviposition stimulation, were analysed, and the corresponding strategies for ecological water demand were proposed. This study finds that satisfactory fish egg hatching hydrodynamic conditions are created when the Fenghua River flow reaches 120 m3/s in the spawning season. With Fenghua River, Yao River gate, and Yong River gate discharges at 120 m3/s, 90 m3/s, and 210 m3/s respectively, an average flow speed increase above 0.2 m/s/day may be generated for E. bambusa spawning sites and migration passages. This hydraulic condition stimulates spawning in natural streams. At the most suitable spawning season temperature, an ecological scheduling scheme that maintains a pulse flow for 5-7 days provides E. bambusa with the hydrodynamic conditions required for the whole process of reproduction, thereby maintaining healthy stream ecology. The flow rate scheduling rules, as provided in this paper, may serve as references in watershed ecological scheduling after gate installation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... from the Washington State Department of Ecology (Ecology) to demonstrate that the SIP meets the...; Chapter 43.21 RCW Department of Ecology; Chapter 34.05 RCW Administrative Procedure Act; Chapter 42.30 RCW...) which requires Ecology to provide for or conduct surveillance program that: monitors the quality of the...
Loren D. Kellogg; Stephen J. Pilkerton
2013-01-01
Since the early 1990s, several studies have been undertaken to determine the planning requirements, productivity, costs, and residual stand damage of harvest operations in thinning treatments designed to promote development of complex forest structure in order to enhance ecological functioning and biological diversity. Th ese studies include the Oregon State...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... expertise in the following disciplines: Landscape ecology; terrestrial ecology; systems ecology; and... regulation. The form may be viewed and downloaded through the ``Ethics Requirements for Advisors'' link on...
Development paths of China's agricultural Pharmaceutical industry under Eco-agriculture background.
Li, Jinkai; Gong, Liutang; Ji, Xi; Zhang, Jin; Miao, Pei
2014-07-01
Using pesticides has double effects. On one hand, it contributes to pests control and regulates the growth of crops; On the other hand, it does harm to the environment. To develop ecological agriculture should not only emphasize the output level of agriculture to pursuit of economic efficiency, but also need to keep the ecological environment protected and focus on the social benefits during the development of the industry. As a large agricultural country in the world, China is vigorously promoting the development of ecological agriculture, which is bound to put forward to developing the pesticide industry and green ecological development requirements to promote the transformation and upgrading of agricultural pharmaceutical industry. This paper discusses the mechanism of pesticide pollution on the ecological environment and analyzes China's agricultural problems in the pharmaceutical industry. Then study on the development of Chinese green pesticides and try to find the proper paths of agricultural pharmaceutical to achieve industrial upgrading.
Diversity spurs diversification in ecological communities
Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice
2017-01-01
Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss. PMID:28598423
Diversity spurs diversification in ecological communities
NASA Astrophysics Data System (ADS)
Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice
2017-06-01
Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.
Diversity spurs diversification in ecological communities.
Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice
2017-06-09
Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.
Pollinators, pests, and predators: Recognizing ecological trade-offs in agroecosystems.
Saunders, Manu E; Peisley, Rebecca K; Rader, Romina; Luck, Gary W
2016-02-01
Ecological interactions between crops and wild animals frequently result in increases or declines in crop yield. Yet, positive and negative interactions have mostly been treated independently, owing partly to disciplinary silos in ecological and agricultural sciences. We advocate a new integrated research paradigm that explicitly recognizes cost-benefit trade-offs among animal activities and acknowledges that these activities occur within social-ecological contexts. Support for this paradigm is presented in an evidence-based conceptual model structured around five evidence statements highlighting emerging trends applicable to sustainable agriculture. The full range of benefits and costs associated with animal activities in agroecosystems cannot be quantified by focusing on single species groups, crops, or systems. Management of productive agroecosystems should sustain cycles of ecological interactions between crops and wild animals, not isolate these cycles from the system. Advancing this paradigm will therefore require integrated studies that determine net returns of animal activity in agroecosystems.
NORMATIVE SCIENCE: A CORRUPTING INFLUENCE IN ECOLOGICAL AND NATURAL RESOURCE POLICY
Effectively resolving the typical ecological or natural resource policy issue requires providing an array of scientific information to decision-makers. The ability of scientists (and scientific information) to constructively inform ecological policy deliberations has been dimi...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-05
... Washington State Department of Ecology (Ecology) regulatory changes that strengthen the control measures... Standard (NAAQS) on August 7, 1987 (52 FR 29383). Ecology and ORCAA worked with the communities of Lacey... requirements imposed by the 1990 CAA Amendments, Ecology submitted a supplement to the attainment plan in...
Social-ecological research in urban natural areas: an emergent process for integration
Michelle L. Johnson; D. S. Novem Auyeung; Nancy F. Sonti; Clara C. Pregitzer; Heather L. McMillen; Richard Hallett; Lindsay K. Campbell; Helen M. Forgione; Mina Kim; Sarah Charlop-Powers; Erika S. Svendsen
2018-01-01
Understanding the structure and function of urban landscapes requires integrating social and ecological research. Here, we integrate parallel social and ecological assessments of natural areas within New York City. We examined social data (from a rapid assessment of park use and meaning, collected at a park zone level) alongside ecological data (froma plot-based...
Soranno, Patricia A; Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Cheruvelil, Kendra S; Christel, Samuel T; Claucherty, Matt; Collins, Sarah M; Conroy, Joseph D; Downing, John A; Dukett, Jed; Fergus, C Emi; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Skaff, Nicholas K; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Tan, Pang-Ning; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai
2017-12-01
Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600-12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. © The Author 2017. Published by Oxford University Press.
Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Christel, Samuel T; Claucherty, Matt; Conroy, Joseph D; Downing, John A; Dukett, Jed; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai
2017-01-01
Abstract Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states. LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. PMID:29053868
Soranno, Patricia A.; Bacon, Linda C.; Beauchene, Michael; Bednar, Karen E.; Bissell, Edward G.; Boudreau, Claire K.; Boyer, Marvin G.; Bremigan, Mary T.; Carpenter, Stephen R.; Carr, Jamie W.; Cheruvelil, Kendra S.; Christel, Samuel T.; Claucherty, Matt; Collins, Sarah M.; Conroy, Joseph D.; Downing, John A.; Dukett, Jed; Fergus, C. Emi; Filstrup, Christopher T.; Funk, Clara; Gonzalez, Maria J.; Green, Linda T.; Gries, Corinna; Halfman, John D.; Hamilton, Stephen K.; Hanson, Paul C.; Henry, Emily N.; Herron, Elizabeth M.; Hockings, Celeste; Jackson, James R.; Jacobson-Hedin, Kari; Janus, Lorraine L.; Jones, William W.; Jones, John R.; Keson, Caroline M.; King, Katelyn B.S.; Kishbaugh, Scott A.; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A.; Lee, Yuehlin; Lottig, Noah R.; Lynch, Jason A.; Matthews, Leslie J.; McDowell, William H.; Moore, Karen E.B.; Neff, Brian; Nelson, Sarah J.; Oliver, Samantha K.; Pace, Michael L.; Pierson, Donald C.; Poisson, Autumn C.; Pollard, Amina I.; Post, David M.; Reyes, Paul O.; Rosenberry, Donald; Roy, Karen M.; Rudstam, Lars G.; Sarnelle, Orlando; Schuldt, Nancy J.; Scott, Caren E.; Skaff, Nicholas K.; Smith, Nicole J.; Spinelli, Nick R.; Stachelek, Joseph J.; Stanley, Emily H.; Stoddard, John L.; Stopyak, Scott B.; Stow, Craig A.; Tallant, Jason M.; Tan, Pang-Ning; Thorpe, Anthony P.; Vanni, Michael J.; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C.; Webster, Katherine E.; White, Jeffrey D.; Wilmes, Marcy K.; Yuan, Shuai
2017-01-01
Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales.
Combining correlative and mechanistic habitat suitability models to improve ecological compensation.
Meineri, Eric; Deville, Anne-Sophie; Grémillet, David; Gauthier-Clerc, Michel; Béchet, Arnaud
2015-02-01
Only a few studies have shown positive impacts of ecological compensation on species dynamics affected by human activities. We argue that this is due to inappropriate methods used to forecast required compensation in environmental impact assessments. These assessments are mostly descriptive and only valid at limited spatial and temporal scales. However, habitat suitability models developed to predict the impacts of environmental changes on potential species' distributions should provide rigorous science-based tools for compensation planning. Here we describe the two main classes of predictive models: correlative models and individual-based mechanistic models. We show how these models can be used alone or synoptically to improve compensation planning. While correlative models are easier to implement, they tend to ignore underlying ecological processes and lack accuracy. On the contrary, individual-based mechanistic models can integrate biological interactions, dispersal ability and adaptation. Moreover, among mechanistic models, those considering animal energy balance are particularly efficient at predicting the impact of foraging habitat loss. However, mechanistic models require more field data compared to correlative models. Hence we present two approaches which combine both methods for compensation planning, especially in relation to the spatial scale considered. We show how the availability of biological databases and software enabling fast and accurate population projections could be advantageously used to assess ecological compensation requirement efficiently in environmental impact assessments. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Toward a social-ecological theory of forest macrosystems for improved ecosystem management
Kleindl, William J.; Stoy, Paul C.; Binford, Michael W.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Staudhammer, Christina; Wood, David J. A.
2018-01-01
The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?
Responsibility for the Violation of Ecological Safety Requirements
NASA Astrophysics Data System (ADS)
Selivanovskaya, J. I.; Gilmutdinova, I.
2018-01-01
The article deals with the problems of responsibility for the violation of ecological safety requirements from the point of view of sustainable development of the state. Such types of responsibility as property, disciplinary, financial, administrative and criminal responsibility in the area are analysed. Suggestions on the improvement of legislation are put forward. Among other things it is suggested to introduce criminal sanctions against legal bodies (enterprises) for ecological crimes with punishments in the form of fines, suspension or discontinuation of activities.
Ecological risk assessment for detonation emissions at an Army Depot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisberg, M.; Fischer, T.
1999-07-01
Treatment of munitions at an Army Depot located in Nevada required a RCRA Part B Subpart X permit. Part of the permitting requirements were to assess ecological impacts from emissions associated with the detonation (treatment) of the munitions. A multi-media multi-pathway ecological risk assessment was performed to assess these impacts. Food-chain exposure, as well as intake of impacted soil, was considered. Of the eight selected receptor wildlife species, estimated hazard quotients were all below thresholds of concern.
Sampling in ecology and evolution - bridging the gap between theory and practice
Albert, C.H.; Yoccoz, N.G.; Edwards, T.C.; Graham, C.H.; Zimmermann, N.E.; Thuiller, W.
2010-01-01
Sampling is a key issue for answering most ecological and evolutionary questions. The importance of developing a rigorous sampling design tailored to specific questions has already been discussed in the ecological and sampling literature and has provided useful tools and recommendations to sample and analyse ecological data. However, sampling issues are often difficult to overcome in ecological studies due to apparent inconsistencies between theory and practice, often leading to the implementation of simplified sampling designs that suffer from unknown biases. Moreover, we believe that classical sampling principles which are based on estimation of means and variances are insufficient to fully address many ecological questions that rely on estimating relationships between a response and a set of predictor variables over time and space. Our objective is thus to highlight the importance of selecting an appropriate sampling space and an appropriate sampling design. We also emphasize the importance of using prior knowledge of the study system to estimate models or complex parameters and thus better understand ecological patterns and processes generating these patterns. Using a semi-virtual simulation study as an illustration we reveal how the selection of the space (e.g. geographic, climatic), in which the sampling is designed, influences the patterns that can be ultimately detected. We also demonstrate the inefficiency of common sampling designs to reveal response curves between ecological variables and climatic gradients. Further, we show that response-surface methodology, which has rarely been used in ecology, is much more efficient than more traditional methods. Finally, we discuss the use of prior knowledge, simulation studies and model-based designs in defining appropriate sampling designs. We conclude by a call for development of methods to unbiasedly estimate nonlinear ecologically relevant parameters, in order to make inferences while fulfilling requirements of both sampling theory and field work logistics. ?? 2010 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melendrez, Melanie C.; Becraft, Eric D.; Wood, Jason M.
Recent studies of bacterial speciation have claimed to support the biological species concept—that reduced recombination is required for bacterial populations to diverge into species. This conclusion has been reached from the discovery that ecologically distinct clades show lower rates of recombination than that which occurs among closest relatives. However, these previous studies did not attempt to determine whether the more-rapidly recombining close relatives within the clades studied may also have diversified ecologically, without benefit of sexual isolation. Here we have measured the impact of recombination on ecological diversification within and between two ecologically distinct clades (A and B’) of Synechococcusmore » in a hot spring microbial mat in Yellowstone National Park, using a cultivation-free, multi-locus approach. Bacterial artificial chromosome (BAC) libraries were constructed from mat samples collected at 60°C and 65°C. Analysis of multiple linked loci near Synechococcus 16S rRNA genes showed little evidence of recombination between the A and B’ lineages, but a record of recombination was apparent within each lineage. Recombination and mutation rates within each lineage were of similar magnitude, but recombination had a somewhat greater impact on sequence diversity than mutation, as also seen in many other bacteria and archaea. Despite recombination within the A and B’ lineages, there was evidence of ecological diversification within each lineage. The algorithm Ecotype Simulation identified sequence clusters consistent with ecologically distinct populations (ecotypes), and several hypothesized ecotypes were distinct in their habitat associations and in their adaptations to different microenvironments. We conclude that sexual isolation is more likely to follow ecological divergence than to precede it. Thus, an ecology-based model of speciation appears more appropriate than the biological species concept for bacterial and archaeal diversification.« less
Melendrez, Melanie C.; Becraft, Eric D.; Wood, Jason M.; ...
2016-01-14
Recent studies of bacterial speciation have claimed to support the biological species concept—that reduced recombination is required for bacterial populations to diverge into species. This conclusion has been reached from the discovery that ecologically distinct clades show lower rates of recombination than that which occurs among closest relatives. However, these previous studies did not attempt to determine whether the more-rapidly recombining close relatives within the clades studied may also have diversified ecologically, without benefit of sexual isolation. Here we have measured the impact of recombination on ecological diversification within and between two ecologically distinct clades (A and B’) of Synechococcusmore » in a hot spring microbial mat in Yellowstone National Park, using a cultivation-free, multi-locus approach. Bacterial artificial chromosome (BAC) libraries were constructed from mat samples collected at 60°C and 65°C. Analysis of multiple linked loci near Synechococcus 16S rRNA genes showed little evidence of recombination between the A and B’ lineages, but a record of recombination was apparent within each lineage. Recombination and mutation rates within each lineage were of similar magnitude, but recombination had a somewhat greater impact on sequence diversity than mutation, as also seen in many other bacteria and archaea. Despite recombination within the A and B’ lineages, there was evidence of ecological diversification within each lineage. The algorithm Ecotype Simulation identified sequence clusters consistent with ecologically distinct populations (ecotypes), and several hypothesized ecotypes were distinct in their habitat associations and in their adaptations to different microenvironments. We conclude that sexual isolation is more likely to follow ecological divergence than to precede it. Thus, an ecology-based model of speciation appears more appropriate than the biological species concept for bacterial and archaeal diversification.« less
Stanford, Craig B
2006-01-01
The behavioral ecology of the great apes is key evidence used in the reconstruction of the behavior of extinct ape and hominid taxa. Chimpanzees and gorillas have been studied in detail in the wild, and some studies of their behavioral ecology in sympatry have also been been carried out. Although the two ape species have divergent behavior and ecology in important respects, recent studies have shown that the interspecific differences are not as stark as previously thought and subsequently urge new consideration of how they share forest resources when sympatric. These new data require re-examination of assumptions about key aspects of chimpanzee-gorilla ecological divergence, such as diet, ranging and nesting patterns, and the mating system. Diet is a key component of the species' adaptive complexes that facilitates avoidance of direct competition from the other. While the nutritional basis for chimpanzee food choice remains unclear and no doubt varies from site to site, this species is a ripe fruit specialist and ranges farther during periods of ripe fruit scarcity. Gorillas in the same habitat also feed on ripe fruit when widely available, but fall back onto fibrous plant foods during lean periods. The inclusion of animal protein in the diet of the chimpanzees and its absence in that of the gorillas also distinguish the species ecologically. It may also offer clues to aspects of ecological divergence among early members of the hominid phylogeny. The paper concludes by suggesting likely characteristics of sympatric associations of Pliocene hominids, based on field data from extant sympatric apes.
Methods for measuring bird-mediated seed rain: Insights from a Hawaiian mesic forest
Rose, Eli; Stewart, Meredith; Brinkman, Andrew; Paxton, Eben H.; Yelenik, Stephanie G.
2017-01-01
Amount and diversity of bird-dispersed seed rain play important roles in determining forest composition, yet neither is easy to quantify. The complex ecological processes that influence seed movement make the best approach highly context specific. Although recent advances in seed rain theory emphasize quantifying source-specific seed shadows, many ecological questions can be addressed u sing a less mechanistic approach that requires fewer assumptions. Using seed rain rates from 0.38 m2 hoop traps sampled twice monthly over the course of a year, we show that number of traps required to identify changes in seed rain varies across seed species and forest type. Detecting a 50% increase in amount of seed rain required from 65 to >300 traps, while detecting a 200% increase generally required ≤⃒50 traps. Trap size and ecological context dictate the number of seeds found in each trap, but the coefficient of variation (CV) across traps in a given ecological context can help inform future studies about number of traps needed to detect change. To better understand factors influencing variation around estimates of seed rain, we simulated both clustered and evenly distributed patterns of fecal deposition using three different levels of seed aggregation (number of seeds in each fecal deposit). When patterns of fecal deposition were clustered, rather than evenly dispersed across the study area, they required >1.5 times the number of traps to identify a 100% increase in seed rain. Similarly, we found that low seed aggregation required >1.5 times the number of traps to detect a 100% change than when aggregation was medium or high. At low aggregations, fewer seed rain traps contained seeds (low, 33 ± 5%; medium, 23 ± 4%; high, 24 ± 5%), resulting in more variation across traps than medium and high aggregations. We also illustrate the importance of training observers to discern between morphologically similar seeds from different species and provide resources to help identify bird-dispersed seeds commonly found within midelevation mesic Hawaiian forests.
Calculating Puerto Rico’s Ecological Footprint (1970–2010) Using Freely Available Data
Ecological Footprint Analysis (EFA) is appealing as a metric of sustainability because it is straightforward in theory and easy to conceptualize. However, EFA is difficult to implement because it requires extensive data. A simplified approach to EFA that requires fewer data can s...
40 CFR 52.2470 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Table 1—Washington Department of Ecology Regulations State citation Title/Subject Stateeffective date... Explanations Washington Department of Ecology Regulations 173-433-200 Regulatory Actions and Penalties 10/18/90... deterioration increment or result in visibility impairment. Washington Department of Ecology may require removal...
Public ecology: an environmental science and policy for global society
David P. Robertson; R. Bruce Hull
2003-01-01
Public ecology exists at the interface of science and policy. Public ecology is an approach to environmental inquiry and decision making that does not expect scientific knowledge to be perfect or complete. Rather, public ecology requires that science be produced in collaboration with a wide variety of stakeholders in order to construct a body of knowledge that will...
The development of an ecological approach to manage the pollution risk from highway runoff.
Crabtree, B; Dempsey, P; Johnson, I; Whitehead, M
2009-01-01
In the UK, the Highways Agency is responsible for operating, maintaining and improving the strategic road network in England. One focus of the Highways Agency's ongoing research into the nature and impact of highway runoff is aimed at ensuring that the Highways Agency will meet the requirements of the EU Water Framework Directive. A research programme, undertaken in partnership with the Environment Agency, is in progress to develop a better understanding of pollutants in highway runoff and their ecological impact. The paper presents the outcome of a study to: (1) monitor pollutants in highway runoff under different climate and traffic conditions; (2) develop standards to assess potential ecological risks from soluble pollutants in highway runoff; and (3) develop a model to predict pollutant concentrations in highway runoff. The model has been embedded in a design tool incorporating risk assessment procedures and receiving water standards for soluble and insoluble pollutants--the latter has been developed elsewhere in another project within the research programme. The design tool will be used to support improved guidance on where, and to what level, treatment of runoff is required for highway designers to manage the risk of ecological impact from highway runoff.
A brief introduction to mixed effects modelling and multi-model inference in ecology
Donaldson, Lynda; Correa-Cano, Maria Eugenia; Goodwin, Cecily E.D.
2018-01-01
The use of linear mixed effects models (LMMs) is increasingly common in the analysis of biological data. Whilst LMMs offer a flexible approach to modelling a broad range of data types, ecological data are often complex and require complex model structures, and the fitting and interpretation of such models is not always straightforward. The ability to achieve robust biological inference requires that practitioners know how and when to apply these tools. Here, we provide a general overview of current methods for the application of LMMs to biological data, and highlight the typical pitfalls that can be encountered in the statistical modelling process. We tackle several issues regarding methods of model selection, with particular reference to the use of information theory and multi-model inference in ecology. We offer practical solutions and direct the reader to key references that provide further technical detail for those seeking a deeper understanding. This overview should serve as a widely accessible code of best practice for applying LMMs to complex biological problems and model structures, and in doing so improve the robustness of conclusions drawn from studies investigating ecological and evolutionary questions. PMID:29844961
A brief introduction to mixed effects modelling and multi-model inference in ecology.
Harrison, Xavier A; Donaldson, Lynda; Correa-Cano, Maria Eugenia; Evans, Julian; Fisher, David N; Goodwin, Cecily E D; Robinson, Beth S; Hodgson, David J; Inger, Richard
2018-01-01
The use of linear mixed effects models (LMMs) is increasingly common in the analysis of biological data. Whilst LMMs offer a flexible approach to modelling a broad range of data types, ecological data are often complex and require complex model structures, and the fitting and interpretation of such models is not always straightforward. The ability to achieve robust biological inference requires that practitioners know how and when to apply these tools. Here, we provide a general overview of current methods for the application of LMMs to biological data, and highlight the typical pitfalls that can be encountered in the statistical modelling process. We tackle several issues regarding methods of model selection, with particular reference to the use of information theory and multi-model inference in ecology. We offer practical solutions and direct the reader to key references that provide further technical detail for those seeking a deeper understanding. This overview should serve as a widely accessible code of best practice for applying LMMs to complex biological problems and model structures, and in doing so improve the robustness of conclusions drawn from studies investigating ecological and evolutionary questions.
Energyscapes and prey fields shape a North Atlantic seabird wintering hotspot under climate change
Fort, J.; Mathewson, P. D.; Speirs, D. C.; Perret, S.; Porter, W. P.; Wilson, R. J.
2018-01-01
There is an urgent need for a better understanding of animal migratory ecology under the influence of climate change. Most current analyses require long-term monitoring of populations on the move, and shorter-term approaches are needed. Here, we analysed the ecological drivers of seabird migration within the framework of the energyscape concept, which we defined as the variations in the energy requirements of an organism across geographical space as a function of environmental conditions. We compared the winter location of seabirds with their modelled energy requirements and prey fields throughout the North Atlantic. Across six winters, we tracked the migration of 94 little auks (Alle alle), a key sentinel Arctic species, between their East Greenland breeding site and wintering areas off Newfoundland. Winter energyscapes were modelled with Niche Mapper™, a mechanistic tool which takes into account local climate and bird ecophysiology. Subsequently, we used a resource selection function to explain seabird distributions through modelled energyscapes and winter surface distribution of one of their main prey, Calanus finmarchicus. Finally, future energyscapes were calculated according to IPCC climate change scenarios. We found that little auks targeted areas with high prey densities and moderately elevated energyscapes. Predicted energyscapes for 2050 and 2095 showed a decrease in winter energy requirements under the high emission scenario, which may be beneficial if prey availability is maintained. Overall, our study demonstrates the great potential of the energyscape concept for the study of animal spatial ecology, in particular in the context of global change. PMID:29410875
Investigating intertemporal choice through experimental evolutionary robotics.
Paglieri, Fabio; Parisi, Domenico; Patacchiola, Massimiliano; Petrosino, Giancarlo
2015-06-01
In intertemporal choices, subjects face a trade-off between value and delay: achieving the most valuable outcome requires a longer time, whereas the immediately available option is objectively poorer. Intertemporal choices are ubiquitous, and comparative studies reveal commonalities and differences across species: all species devalue future rewards as a function of delay (delay aversion), yet there is a lot of inter-specific variance in how rapidly such devaluation occurs. These differences are often interpreted in terms of ecological rationality, as depending on environmental factors (e.g., feeding ecology) and the physiological and morphological constraints of different species (e.g., metabolic rate). Evolutionary hypotheses, however, are hard to verify in vivo, since it is difficult to observe precisely enough real environments, not to mention ancestral ones. In this paper, we discuss the viability of an approach based on evolutionary robotics: in Study 1, we evolve robots without a metabolism in five different ecologies; in Study 2, we evolve metabolic robots (i.e., robots that consume energy over time) in three different ecologies. The intertemporal choices of the robots are analyzed both in their ecology and under laboratory conditions. Results confirm the generality of delay aversion and the usefulness of studying intertemporal choice through experimental evolutionary robotics. Copyright © 2015 Elsevier B.V. All rights reserved.
Chetan, Nag; Praveen, Karanth K.; Vasudeva, Gururaja Kotambylu
2014-01-01
Hanuman langur is one of the widely distributed and extensively studied non-human diurnal primates in India. Until recently it was believed to be a single species - Semnopithecus entellus. Recent molecular and morphological studies suggest that the Hanuman langurs consists of at least three species S. entellus, S. hypoleucos and S. priam. Furthermore, morphological studies suggested that both S. hypoleucos and S. priam have at least three subspecies in each. We explored the use of ecological niche modeling (ENM) to confirm the validity of these seven taxa and an additional taxon S. johnii belonging to the same genus. MaxEnt modeling tool was used with 19 bioclimatic, 12 vegetation and 6 hydrological environmental layers. We reduced total environmental variables to 14 layers after testing for collinearity and an independent test for model prediction was done using ENMTools. A total of 196 non-overlapping data points from primary and secondary sources were used as inputs for ENM. Results showed eight distinct ecological boundaries, corroborating the eight taxa mentioned above thereby confirming validity of these eight taxa. The study, for the first time provided ecological variables that determined the ecological requirements and distribution of members of the Hanuman langur species complex in the Indian peninsula. PMID:24498377
Nag, Chetan; Chetan, Nag; Karanth, K Praveen; Praveen, Karanth K; Gururaja, Kotambylu Vasudeva; Vasudeva, Gururaja Kotambylu
2014-01-01
Hanuman langur is one of the widely distributed and extensively studied non-human diurnal primates in India. Until recently it was believed to be a single species - Semnopithecus entellus. Recent molecular and morphological studies suggest that the Hanuman langurs consists of at least three species S. entellus, S. hypoleucos and S. priam. Furthermore, morphological studies suggested that both S. hypoleucos and S. priam have at least three subspecies in each. We explored the use of ecological niche modeling (ENM) to confirm the validity of these seven taxa and an additional taxon S. johnii belonging to the same genus. MaxEnt modeling tool was used with 19 bioclimatic, 12 vegetation and 6 hydrological environmental layers. We reduced total environmental variables to 14 layers after testing for collinearity and an independent test for model prediction was done using ENMTools. A total of 196 non-overlapping data points from primary and secondary sources were used as inputs for ENM. Results showed eight distinct ecological boundaries, corroborating the eight taxa mentioned above thereby confirming validity of these eight taxa. The study, for the first time provided ecological variables that determined the ecological requirements and distribution of members of the Hanuman langur species complex in the Indian peninsula.
Measuring Your School's Ecological Footprint.
ERIC Educational Resources Information Center
Sawchuk Julie; Cameron Tim
2000-01-01
Explaining ecological footprint analyses, this activity consists of a survey as a preliminary activity. Presents the survey questions and a chart of required calculations for ecological footprint activity. Lists the chart in five categories: waste management, energy, water, transportation, green space, and food. Provides information for follow-up…
Petchey, Owen L.; Fox, Jeremy W.; Haddon, Lindsay
2014-01-01
Researchers contribute to the scientific peer review system by providing reviews, and “withdraw” from it by submitting manuscripts that are subsequently reviewed. So far as we are aware, there has been no quantification of the balance of individual's contributions and withdrawals. We compared the number of reviews provided by individual researchers (i.e., their contribution) to the number required by their submissions (i.e. their withdrawals) in a large and anonymised database provided by the British Ecological Society. The database covered the Journal of Ecology, Journal of Animal Ecology, Journal of Applied Ecology, and Functional Ecology from 2003–2010. The majority of researchers (64%) did not have balanced contributions and withdrawals. Depending on assumptions, 12% to 44% contributed more than twice as much as required; 20% to 52% contributed less than half as much as required. Balance, or lack thereof, varied little in relation to the number of years a researcher had been active (reviewing or submitting). Researchers who contributed less than required did not lack the opportunity to review. Researchers who submitted more were more likely to accept invitations to review. These finding suggest overall that peer review of the four analysed journals is not in crisis, but only due to the favourable balance of over- and under-contributing researchers. These findings are limited to the four journals analysed, and therefore cannot include researcher's other peer review activities, which if included might change the proportions reported. Relatively low effort was required to assemble, check, and analyse the data. Broader analyses of individual researcher's peer review activities would contribute to greater quality, efficiency, and fairness in the peer review system. PMID:24658631
Petchey, Owen L; Fox, Jeremy W; Haddon, Lindsay
2014-01-01
Researchers contribute to the scientific peer review system by providing reviews, and "withdraw" from it by submitting manuscripts that are subsequently reviewed. So far as we are aware, there has been no quantification of the balance of individual's contributions and withdrawals. We compared the number of reviews provided by individual researchers (i.e., their contribution) to the number required by their submissions (i.e. their withdrawals) in a large and anonymised database provided by the British Ecological Society. The database covered the Journal of Ecology, Journal of Animal Ecology, Journal of Applied Ecology, and Functional Ecology from 2003-2010. The majority of researchers (64%) did not have balanced contributions and withdrawals. Depending on assumptions, 12% to 44% contributed more than twice as much as required; 20% to 52% contributed less than half as much as required. Balance, or lack thereof, varied little in relation to the number of years a researcher had been active (reviewing or submitting). Researchers who contributed less than required did not lack the opportunity to review. Researchers who submitted more were more likely to accept invitations to review. These finding suggest overall that peer review of the four analysed journals is not in crisis, but only due to the favourable balance of over- and under-contributing researchers. These findings are limited to the four journals analysed, and therefore cannot include researcher's other peer review activities, which if included might change the proportions reported. Relatively low effort was required to assemble, check, and analyse the data. Broader analyses of individual researcher's peer review activities would contribute to greater quality, efficiency, and fairness in the peer review system.
Bocchi, Stefano; La Rosa, Daniele; Pileri, Paolo
2012-10-01
The innovative approach to the protection and management of water resources at the basin scale introduced by the European Union water framework directive (WFD) requires new scientific tools. WFD implementation also requires the participation of many stakeholders (administrators, farmers and citizens) with the aim of improving the quality of river waters and basin ecosystems through cooperative planning. This approach encompasses different issues, such as agro-ecology, land use planning and water management. This paper presents the results of a methodology suggested for implementing the WFD in the case of the Seveso river contract in Italy, one of the recent WFD applications. The Seveso basin in the Lombardy region has been one of the most rapidly urbanizing areas in Italy over the last 50 years. First, land use changes in the last 50 years are assessed with the use of historical aerial photos. Then, elements of an ecological network along the river corridor are outlined, and different scenarios for enhancing existing ecological connections are assessed using indicators from graph theory. These scenarios were discussed in technical workshops with involved stakeholders of the river contract. The results show a damaged rural landscape, where urbanization processes have decimated the system of linear green features (hedges/rows). Progressive reconnections of some of the identified network nodes may significantly increase the connectivity and circuitry of the study area.
Visser, Vernon; Molofsky, Jane
2015-01-01
• Polyploidization frequently results in the creation of new plant species, the establishment of which is thought to often be facilitated by ecological niche differentiation from the diploid species. We tested this hypothesis using the cosmopolitan grass genus Phalaris (Poaceae), consisting of 19 species that range from diploid to tetraploid to hexaploid. Specifically, we tested whether (1) polyploids occupy more extreme environments and/or (2) have broader niche breadths and/or (3) whether the polyploid species' distributions indicate a niche shift from diploid species.• We employed a bootstrapping approach using distribution data for each species and eight environmental variables to investigate differences between species in the means, extremes, and breadths of each environmental variable. We used a kernel smoothing technique to quantify niche overlap between species.• Although we found some support for the three hypotheses for a few diploid-polyploid pairs and for specific environmental variables, none of these hypotheses were generally supported.• Our results suggest that these commonly held hypotheses about the effects of polyploidization on ecological distributions are not universally applicable. Correlative biogeographic studies like ours provide a necessary first step for suggesting specific hypotheses that require experimental verification. A combination of genetic, physiological, and ecological studies will be required to achieve a better understanding of the role of polyploidization in niche evolution. © 2015 Botanical Society of America, Inc.
Ecologically-focused Calibration of Hydrological Models for Environmental Flow Applications
NASA Astrophysics Data System (ADS)
Adams, S. K.; Bledsoe, B. P.
2015-12-01
Hydrologic alteration resulting from watershed urbanization is a common cause of aquatic ecosystem degradation. Developing environmental flow criteria for urbanizing watersheds requires quantitative flow-ecology relationships that describe biological responses to streamflow alteration. Ideally, gaged flow data are used to develop flow-ecology relationships; however, biological monitoring sites are frequently ungaged. For these ungaged locations, hydrologic models must be used to predict streamflow characteristics through calibration and testing at gaged sites, followed by extrapolation to ungaged sites. Physically-based modeling of rainfall-runoff response has frequently utilized "best overall fit" calibration criteria, such as the Nash-Sutcliffe Efficiency (NSE), that do not necessarily focus on specific aspects of the flow regime relevant to biota of interest. This study investigates the utility of employing flow characteristics known a priori to influence regional biological endpoints as "ecologically-focused" calibration criteria compared to traditional, "best overall fit" criteria. For this study, 19 continuous HEC-HMS 4.0 models were created in coastal southern California and calibrated to hourly USGS streamflow gages with nearby biological monitoring sites using one "best overall fit" and three "ecologically-focused" criteria: NSE, Richards-Baker Flashiness Index (RBI), percent of time when the flow is < 1 cfs (%<1), and a Combined Calibration (RBI and %<1). Calibrated models were compared using calibration accuracy, environmental flow metric reproducibility, and the strength of flow-ecology relationships. Results indicate that "ecologically-focused" criteria can be calibrated with high accuracy and may provide stronger flow-ecology relationships than "best overall fit" criteria, especially when multiple "ecologically-focused" criteria are used in concert, despite inabilities to accurately reproduce additional types of ecological flow metrics to which the models are not explicitly calibrated.
Quantitative approaches in climate change ecology
Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J
2011-01-01
Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.
Perspectives on ecological research at the Outdoor StreamLab, a field-scale experimental stream
NASA Astrophysics Data System (ADS)
Merten, E. C.; Dieterman, D.; Kramarczuk, K.; Lightbody, A.; Orr, C. H.; Wellnitz, T.
2009-12-01
Artificial streams hold great promise for examining ecological processes. They lend themselves to manipulations of discharge, sediment load, water chemistry, and other parameters difficult or impossible to control in natural streams. However, artificial streams also have important limitations. In this presentation we describe insights gained from several ecological studies conducted at the St. Anthony Falls Laboratory’s Outdoor StreamLab, including, 1) short-term turbidity exposure effects on fish health, 2) macroinvertebrate grazing rates on periphyton as a function of velocity, 3) rates of macroinvertebrate colonization as related to velocity, and 4) fine-scale correlations of periphytic biomass with hydraulic conditions. Several lessons emerge from these initial attempts at ecological research in the Outdoor StreamLab. We have learned that the size, flow rate, substrate, water chemistry, and available colonization population of the artificial stream limit the kinds of organisms and types of ecological processes that can be examined and the types of experiments that can be run. We suggest that short-term biotic responses are best for study in a system of this type, and note that constant experiment maintenance is essential. Operating artificial streams to meet the needs of multiple researchers also presents challenges of scheduling, coordination, and conflict resolution. Although ecological research in artificial streams has considerable potential, the planning required is no less than that of traditional field studies.
Cortez, Michael H; Ellner, Stephen P
2010-11-01
The accumulation of evidence that ecologically important traits often evolve at the same time and rate as ecological dynamics (e.g., changes in species' abundances or spatial distributions) has outpaced theory describing the interplay between ecological and evolutionary processes with comparable timescales. The disparity between experiment and theory is partially due to the high dimensionality of models that include both evolutionary and ecological dynamics. Here we show how the theory of fast-slow dynamical systems can be used to reduce model dimension, and we use that body of theory to study a general predator-prey system exhibiting fast evolution in either the predator or the prey. Our approach yields graphical methods with predictive power about when new and unique dynamics (e.g., completely out-of-phase oscillations and cryptic dynamics) can arise in ecological systems exhibiting fast evolution. In addition, we derive analytical expressions for determining when such behavior arises and how evolution affects qualitative properties of the ecological dynamics. Finally, while the theory requires a separation of timescales between the ecological and evolutionary processes, our approach yields insight into systems where the rates of those processes are comparable and thus is a step toward creating a general ecoevolutionary theory.
Ecology and Geography of Plague Transmission Areas in Northeastern Brazil
Giles, John; Peterson, A. Townsend; Almeida, Alzira
2011-01-01
Plague in Brazil is poorly known and now rarely seen, so studies of its ecology are difficult. We used ecological niche models of historical (1966-present) records of human plague cases across northeastern Brazil to assess hypotheses regarding environmental correlates of plague occurrences across the region. Results indicate that the apparently focal distribution of plague in northeastern Brazil is indeed discontinuous, and that the causes of the discontinuity are not necessarily only related to elevation—rather, a diversity of environmental dimensions correlate to presence of plague foci in the region. Perhaps most interesting is that suitable areas for plague show marked seasonal variation in photosynthetic mass, with peaks in April and May, suggesting links to particular land cover types. Next steps in this line of research will require more detailed and specific examination of reservoir ecology and natural history. PMID:21245925
Valuing ecological systems and services
Kubiszewski, Ida; Ervin, David; Bluffstone, Randy; Boyd, James; Brown, Darrell; Chang, Heejun; Dujon, Veronica; Granek, Elise; Polasky, Stephen; Shandas, Vivek; Yeakley, Alan
2011-01-01
Making trade-offs between ecological services and other contributors to human well-being is a difficult but critical process that requires valuation. This allows both better recognition of the ecological, social, and economic trade-offs and also allows us to bill those who use up or destroy ecological services and reward those that produce or enhance them. It also aids improved ecosystems policy. In this paper we clarify some of the controversies in defining the contributions to human well-being from functioning ecosystems, many of which people are not even aware of. We go on to describe the applicability of the various valuation methods that can be used in estimating the benefits of ecosystem services. Finally, we describe some recent case studies and lay out the research agenda for ecosystem services analysis, modeling, and valuation going forward. PMID:21876725
Kristin Vanderbilt; John H. Porter; Sheng-Shan Lu; Nic Bertrand; David Blankman; Xuebing Guo; Honglin He; Don Henshaw; Karpjoo Jeong; Eun-Shik Kim; Chau-Chin Lin; Margaret O' Brien; Takeshi Osawa; Éamonn Ó Tuama; Wen Su; Haibo Yang
2017-01-01
Shared ecological data have the potential to revolutionize ecological research just as shared genetic sequence data have done for biological research. However, for ecological data to be useful, it must first be discoverable. A broad-scale research topic may require that a researcher be able to locate suitable data from a variety of global, regional and national data...
A strategy to facilitate cleanup at the Mare Island Naval Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, J.; Albert, D.
1995-12-31
A strategy based on an early realistic estimation of ecological risk was devised to facilitate cleanup of installation restoration units at the Mare Island Naval Station. The strategy uses the results of 100 years of soil-plant studies, which centered on maximizing the bioavailability of nutrients for crop growth. The screening strategy classifies sites according to whether they present (1) little or no ecological risk and require no further action, (2) an immediate and significant risk, and (3) an ecological risk that requires further quantification. The strategy assumes that the main focus of screening level risk assessment is quantification of themore » potential for abiotic-to-biotic transfer (bioavailability) of contaminants, especially at lower trophic levels where exposure is likely to be at a maximum. Sediment screening criteria developed by the California Environmental Protection Agency is used as one regulatory endpoint for evaluating total chemical concentrations. A realistic estimation of risk is then determined by estimating the bioavailability of contaminants.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... modeling; atmospheric science and engineering; ecology and ecological risk assessment; epidemiology... assessment; environmental modeling; industrial ecology; environmental engineering; environmental medicine... ``Ethics Requirements for Advisors'' link on the blue navigational bar on the SAB Web site at http://www...
Packaging and distributing ecological data from multisite studies
NASA Technical Reports Server (NTRS)
Olson, R. J.; Voorhees, L. D.; Field, J. M.; Gentry, M. J.
1996-01-01
Studies of global change and other regional issues depend on ecological data collected at multiple study areas or sites. An information system model is proposed for compiling diverse data from dispersed sources so that the data are consistent, complete, and readily available. The model includes investigators who collect and analyze field measurements, science teams that synthesize data, a project information system that collates data, a data archive center that distributes data to secondary users, and a master data directory that provides broader searching opportunities. Special attention to format consistency is required, such as units of measure, spatial coordinates, dates, and notation for missing values. Often data may need to be enhanced by estimating missing values, aggregating to common temporal units, or adding other related data such as climatic and soils data. Full documentation, an efficient data distribution mechanism, and an equitable way to acknowledge the original source of data are also required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, V.L.; Baron, L.A.
1994-05-01
This report provides specific details and requirements for the WAG 2 remedial investigation and site investigation Ecological Assessment Task, Kingfisher Study, including information that will contribute to safe completion of the project. The report includes historical background; a site map; project organization; task descriptions and hazard evaluations; controls; and monitoring, personal protective equipment, decontamination, and medical surveillance program requirements. The report also includes descriptions of site personnel and their certifications as well as suspected WAG 2 contaminants and their characteristics. The primary objective of the WAG 2 Kingfisher Study is to assess the feasibility of using kingfishers as biological monitorsmore » of contaminants on the Oak Ridge Reservation (ORR). Kingfisher sample collection will be used to determine the levels of contaminants and degree of bioaccumulation within a common piscivorous bird feeding on contaminated fish from streams on the ORR.« less
Gülci, Sercan; Akay, Abdullah Emin
2015-12-01
Major roads cause barrier effect and fragmentation on wildlife habitats that are suitable places for feeding, mating, socializing, and hiding. Due to wildlife collisions (Wc), human-wildlife conflicts result in lost lives and loss of biodiversity. Geographical information system (GIS)-based multi criteria evaluation (MCE) methods have been successfully used in short-term planning of road networks considering wild animals. Recently, wildlife passages have been effectively utilized as road engineering structures provide quick and certain solutions for traffic safety and wildlife conservation problems. GIS-based MCE methods provide decision makers with optimum location for ecological passages based on habitat suitability models (HSMs) that classify the areas based on ecological requirements of target species. In this study, ecological passages along Motorway 52 within forested areas in Mediterranean city of Osmaniye in Turkey were evaluated. Firstly, HSM coupled with nine eco-geographic decision variables were developed based on ecological requirements of roe deer (Capreolus capreolus) that were chosen as target species. Then specified decision variables were evaluated using GIS-based weighted linear combination (WLC) method to estimate movement corridors and mitigation points along the motorway. In the solution process, two linkage nodes were evaluated for eco-passages which were determined based on the least-cost movement corridor intersecting with the motorway. One of the passages was identified as a natural wildlife overpass while the other was suggested as underpass construction. The results indicated that computer-based models provide accurate and quick solutions for positioning ecological passages to reduce environmental effects of road networks on wild animals.
A six-gene phylogeny provides new insights into choanoflagellate evolution.
Carr, Martin; Richter, Daniel J; Fozouni, Parinaz; Smith, Timothy J; Jeuck, Alexandra; Leadbeater, Barry S C; Nitsche, Frank
2017-02-01
Recent studies have shown that molecular phylogenies of the choanoflagellates (Class Choanoflagellatea) are in disagreement with their traditional taxonomy, based on morphology, and that Choanoflagellatea requires considerable taxonomic revision. Furthermore, phylogenies suggest that the morphological and ecological evolution of the group is more complex than has previously been recognized. Here we address the taxonomy of the major choanoflagellate order Craspedida, by erecting four new genera. The new genera are shown to be morphologically, ecologically and phylogenetically distinct from other choanoflagellate taxa. Furthermore, we name five novel craspedid species, as well as formally describe ten species that have been shown to be either misidentified or require taxonomic revision. Our revised phylogeny, including 18 new species and sequence data for two additional genes, provides insights into the morphological and ecological evolution of the choanoflagellates. We examine the distribution within choanoflagellates of these two additional genes, EF-1A and EFL, closely related translation GTPases which are required for protein synthesis. Mapping the presence and absence of these genes onto the phylogeny highlights multiple events of gene loss within the choanoflagellates. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Sewage impacts coral reefs at multiple levels of ecological organization.
Reopanichkul, Pasinee; Schlacher, Thomas A; Carter, R W; Worachananant, Suchai
2009-09-01
Against a backdrop of rising sea temperatures and ocean acidification which pose global threats to coral reefs, excess nutrients and turbidity continue to be significant stressors at regional and local scales. Because interventions usually require local data on pollution impacts, we measured ecological responses to sewage discharges in Surin Marine Park, Thailand. Wastewater disposal significantly increased inorganic nutrients and turbidity levels, and this degradation in water quality resulted in substantial ecological shifts in the form of (i) increased macroalgal density and species richness, (ii) lower cover of hard corals, and (iii) significant declines in fish abundance. Thus, the effects of nutrient pollution and turbidity can cascade across several levels of ecological organization to change key properties of the benthos and fish on coral reefs. Maintenance or restoration of ecological reef health requires improved wastewater management and run-off control for reefs to deliver their valuable ecosystems services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Brennan T; Jager, Yetta; March, Patrick
Reservoir releases are typically operated to maximize the efficiency of hydropower production and the value of hydropower produced. In practice, ecological considerations are limited to those required by law. We first describe reservoir optimization methods that include mandated constraints on environmental and other water uses. Next, we describe research to formulate and solve reservoir optimization problems involving both energy and environmental water needs as objectives. Evaluating ecological objectives is a challenge in these problems for several reasons. First, it is difficult to predict how biological populations will respond to flow release patterns. This problem can be circumvented by using ecologicalmore » models. Second, most optimization methods require complex ecological responses to flow to be quantified by a single metric, preferably a currency that can also represent hydropower benefits. Ecological valuation of instream flows can make optimization methods that require a single currency for the effects of flow on energy and river ecology possible. Third, holistic reservoir optimization problems are unlikely to be structured such that simple solution methods can be used, necessitating the use of flexible numerical methods. One strong advantage of optimal control is the ability to plan for the effects of climate change. We present ideas for developing holistic methods to the point where they can be used for real-time operation of reservoirs. We suggest that developing ecologically sound optimization tools should be a priority for hydropower in light of the increasing value placed on sustaining both the ecological and energy benefits of riverine ecosystems long into the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, Gretchen M.; Terusaki, Stan H.
2013-12-01
An ecological risk assessment is required as part of the Resource Recovery and Conservation Act (RCRA) permit renewal process for Miscellaneous Units subject to 22 CCR 66270.23. This risk assessment is prepared in support of the RCRA permit renewal for the Explosives Waste Treatment Facility (EWTF) at Site 300 of the Lawrence Livermore National Laboratory (LLNL). LLNL collected soil samples and used the resulting data to produce a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. The scoping-levelmore » ecological risk assessment provides a framework to determine the potential interaction between ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF. A scoping-level ecological risk assessment includes the step of conducting soil sampling in the area of the treatment units. The Sampling Plan in Support of the Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory, (Terusaki, 2007), outlines the EWTF project-specific soil sampling requirements. Soil samples were obtained and analyzed for constituents from four chemical groups: furans, explosives, semi-volatiles and metals. Analytical results showed that furans, explosives and semi-volatiles were not detected; therefore, no further analysis was conducted. The soil samples did show the presence of metals. Soil samples analyzed for metals were compared to site-wide background levels, which had been developed for site -wide cleanup activities pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Total metal concentrations from 28 discrete soil samples obtained in the EWTF area were all below CERCLA-developed background levels. Therefore, following DTSC 1996 guidance, the EWTF hazardous waste treatment units exit the ecological risk evaluation process upon completion of the requirements of a scoping-level assessment report. This summary report documents that the requirements of a scoping-level assessment have been met.« less
The Ecology of Human Development in Retrospect and Prospect.
ERIC Educational Resources Information Center
Bronfenbrenner, Urie
In attempting to define the "ecology" of human development, the term's history and connotations are discussed. The ecological approach requires that the person, the environment, and the relations between them be conceptualized in terms of systems, and subsystems within systems. The experimental situation is not limited to being…
Workshop on Closed System Ecology
NASA Technical Reports Server (NTRS)
1982-01-01
Self maintaining laboratory scale ecological systems completely isolated from exchanges of matter with external systems were demonstrated. These research tools are discussed in terms of their anticipated value in understanding (1) global ecological material and energy balances, (2) the dynamics of stability and instability in ecosystems, (3) the effects of man-made substances and structures on ecosystems, and (4) the precise requirements for dynamic control of controlled ecology life support systems (CELSS).
Hwang, Jonathan; Zhao, Qi; Yang, Zhu L; Wang, Zheng; Townsend, Jeffrey P
2015-08-01
The relation between ecological and genetic divergence of Helvella species (saddle fungi) has been perplexing. While a few species have been clearly demonstrated to be ectomycorrhizal fungi, ecological roles of many other species have been controversial, alternately considered as either saprotrophic or mycorrhizal. We applied SATé to build an inclusive deoxyribonucleic acid sequence alignment for the internal transcribed spacers (ITS) of annotated Helvella species and related environmental sequences. Phylogenetic informativeness of ITS and its regions were assessed using PhyDesign. Mycorrhizal lineages present a diversity of ecology, host type and geographic distribution. In two Helvella clades, no Helvella ITS sequences were recovered from root tips. Inclusion of environmental sequences in the ITS phylogeny from these sequences has the potential to link these data and reveal Helvella ecology. This study can serve as a model for revealing the diversity of relationships between unculturable fungi and their potential plant hosts. How non-mycorrhizal life styles within Helvella evolved will require expanded metagenomic investigation of soil and other environmental samples along with study of Helvella genomes. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Sun, Lian; Li, Chunhui; Cai, Yanpeng; Wang, Xuan
2017-06-14
In this study, an interval optimization model is developed to maximize the benefits of a water rights transfer system that comprises industry and agriculture sectors in the Ningxia Hui Autonomous Region in China. The model is subjected to a number of constraints including water saving potential from agriculture and ecological groundwater levels. Ecological groundwater levels serve as performance indicators of terrestrial ecology. The interval method is applied to present the uncertainty of parameters in the model. Two scenarios regarding dual industrial development targets (planned and unplanned ones) are used to investigate the difference in potential benefits of water rights transfer. Runoff of the Yellow River as the source of water rights fluctuates significantly in different years. Thus, compensation fees for agriculture are calculated to reflect the influence of differences in the runoff. Results show that there are more available water rights to transfer for industrial development. The benefits are considerable but unbalanced between buyers and sellers. The government should establish a water market that is freer and promote the interest of agriculture and farmers. Though there has been some success of water rights transfer, the ecological impacts and the relationship between sellers and buyers require additional studies.
NASA Astrophysics Data System (ADS)
Wang, J.; Nathan, R.; Horne, A.
2017-12-01
Traditional approaches to characterize water-dependent ecosystem outcomes in response to flow have been based on time-averaged hydrological indicators, however there is increasing recognition for the need to characterize ecological processes that are highly dependent on the sequencing of flow conditions (i.e. floods and droughts). This study considers the representation of flow regimes when considering assessment of ecological outcomes, and in particular, the need to account for sequencing and variability of flow. We conducted two case studies - one in the largely unregulated Ovens River catchment and one in the highly regulated Murray River catchment (both located in south-eastern Australia) - to explore the importance of flow sequencing to the condition of a typical long-lived ecological asset in Australia, the River Red Gum forests. In the first, the Ovens River case study, the implications of representing climate change using different downscaling methods (annual scaling, monthly scaling, quantile mapping, and weather generator method) on the sequencing of flows and resulting ecological outcomes were considered. In the second, the Murray River catchment, sequencing within a historic drought period was considered by systematically making modest adjustments on an annual basis to the hydrological records. In both cases, the condition of River Red Gum forests was assessed using an ecological model that incorporates transitions between ecological conditions in response to sequences of required flow components. The results of both studies show the importance of considering how hydrological alterations are represented when assessing ecological outcomes. The Ovens case study showed that there is significant variation in the predicted ecological outcomes when different downscaling techniques are applied. Similarly, the analysis in the Murray case study showed that the drought as it historically occurred provided one of the best possible outcomes for River Red Gum forests when compared to other re-arrangements of flow within the same drought. These results have implications for the way we represent climate change impacts and drought risk assessments where ecological outcomes are a key management objective.
Formalizing the definition of meta-analysis in Molecular Ecology.
ArchMiller, Althea A; Bauer, Eric F; Koch, Rebecca E; Wijayawardena, Bhagya K; Anil, Ammu; Kottwitz, Jack J; Munsterman, Amelia S; Wilson, Alan E
2015-08-01
Meta-analysis, the statistical synthesis of pertinent literature to develop evidence-based conclusions, is relatively new to the field of molecular ecology, with the first meta-analysis published in the journal Molecular Ecology in 2003 (Slate & Phua 2003). The goal of this article is to formalize the definition of meta-analysis for the authors, editors, reviewers and readers of Molecular Ecology by completing a review of the meta-analyses previously published in this journal. We also provide a brief overview of the many components required for meta-analysis with a more specific discussion of the issues related to the field of molecular ecology, including the use and statistical considerations of Wright's FST and its related analogues as effect sizes in meta-analysis. We performed a literature review to identify articles published as 'meta-analyses' in Molecular Ecology, which were then evaluated by at least two reviewers. We specifically targeted Molecular Ecology publications because as a flagship journal in this field, meta-analyses published in Molecular Ecology have the potential to set the standard for meta-analyses in other journals. We found that while many of these reviewed articles were strong meta-analyses, others failed to follow standard meta-analytical techniques. One of these unsatisfactory meta-analyses was in fact a secondary analysis. Other studies attempted meta-analyses but lacked the fundamental statistics that are considered necessary for an effective and powerful meta-analysis. By drawing attention to the inconsistency of studies labelled as meta-analyses, we emphasize the importance of understanding the components of traditional meta-analyses to fully embrace the strengths of quantitative data synthesis in the field of molecular ecology. © 2015 John Wiley & Sons Ltd.
Tucker Lima, Joanna M; Valle, Denis; Moretto, Evandro Mateus; Pulice, Sergio Mantovani Paiva; Zuca, Nadia Lucia; Roquetti, Daniel Rondinelli; Beduschi, Liviam Elizabeth Cordeiro; Praia, Amanda Salles; Okamoto, Claudia Parucce Franco; da Silva Carvalhaes, Vinicius Leite; Branco, Evandro Albiach; Barbezani, Bruna; Labandera, Emily; Timpe, Kelsie; Kaplan, David
2016-08-30
Recognized as one of the world's most vital natural and cultural resources, the Amazon faces a wide variety of threats from natural resource and infrastructure development. Within this context, rigorous scientific study of the region's complex social-ecological system is critical to inform and direct decision-making toward more sustainable environmental and social outcomes. Given the Amazon's tightly linked social and ecological components and the scope of potential development impacts, effective study of this system requires an easily accessible resource that provides a broad and reliable data baseline. This paper brings together multiple datasets from diverse disciplines (including human health, socio-economics, environment, hydrology, and energy) to provide investigators with a variety of baseline data to explore the multiple long-term effects of infrastructure development in the Brazilian Amazon.
Tucker Lima, Joanna M.; Valle, Denis; Moretto, Evandro Mateus; Pulice, Sergio Mantovani Paiva; Zuca, Nadia Lucia; Roquetti, Daniel Rondinelli; Beduschi, Liviam Elizabeth Cordeiro; Praia, Amanda Salles; Okamoto, Claudia Parucce Franco; da Silva Carvalhaes, Vinicius Leite; Branco, Evandro Albiach; Barbezani, Bruna; Labandera, Emily; Timpe, Kelsie; Kaplan, David
2016-01-01
Recognized as one of the world’s most vital natural and cultural resources, the Amazon faces a wide variety of threats from natural resource and infrastructure development. Within this context, rigorous scientific study of the region’s complex social-ecological system is critical to inform and direct decision-making toward more sustainable environmental and social outcomes. Given the Amazon’s tightly linked social and ecological components and the scope of potential development impacts, effective study of this system requires an easily accessible resource that provides a broad and reliable data baseline. This paper brings together multiple datasets from diverse disciplines (including human health, socio-economics, environment, hydrology, and energy) to provide investigators with a variety of baseline data to explore the multiple long-term effects of infrastructure development in the Brazilian Amazon. PMID:27575915
NASA Astrophysics Data System (ADS)
Mukherjee, Nibedita; Dahdouh-Guebas, Farid; Kapoor, Vena; Arthur, Rohan; Koedam, Nico; Sridhar, Aarthi; Shanker, Kartik
2010-09-01
More than half a decade has passed since the December 26th 2004 tsunami hit the Indian coast leaving a trail of ecological, economic and human destruction in its wake. We reviewed the coastal ecological research carried out in India in the light of the tsunami. In addition, we also briefly reviewed the ecological research in other tsunami affected countries in Asia namely Sri Lanka, Indonesia, Thailand and Maldives in order to provide a broader perspective of ecological research after tsunami. A basic search in ISI Web of Knowledge using keywords “tsunami” and “India” resulted in 127 peer reviewed journal articles, of which 39 articles were pertaining to ecological sciences. In comparison, Sri Lanka, Indonesia, Thailand and Maldives had, respectively, eight, four, 21 and two articles pertaining to ecology. In India, bioshields received the major share of scientific interest (14 out of 39) while only one study (each) was dedicated to corals, seagrasses, seaweeds and meiofauna, pointing to the paucity of research attention dedicated to these critical ecosystems. We noted that very few interdisciplinary studies looked at linkages between pure/applied sciences and the social sciences in India. In addition, there appears to be little correlation between the limited research that was done and its influence on policy in India. This review points to gap areas in ecological research in India and highlights the lessons learnt from research in other tsunami-affected countries. It also provides guidance on the links between science and policy that are required for effective coastal zone management.
Gurley, Emily S.
2017-01-01
Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social–ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social–ecological interactions. The social–ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289265
Shimatani, Ichiro Ken; Yoda, Ken; Katsumata, Nobuhiro; Sato, Katsufumi
2012-01-01
To analyze an animal's movement trajectory, a basic model is required that satisfies the following conditions: the model must have an ecological basis and the parameters used in the model must have ecological interpretations, a broad range of movement patterns can be explained by that model, and equations and probability distributions in the model should be mathematically tractable. Random walk models used in previous studies do not necessarily satisfy these requirements, partly because movement trajectories are often more oriented or tortuous than expected from the models. By improving the modeling for turning angles, this study aims to propose a basic movement model. On the basis of the recently developed circular auto-regressive model, we introduced a new movement model and extended its applicability to capture the asymmetric effects of external factors such as wind. The model was applied to GPS trajectories of a seabird (Calonectris leucomelas) to demonstrate its applicability to various movement patterns and to explain how the model parameters are ecologically interpreted under a general conceptual framework for movement ecology. Although it is based on a simple extension of a generalized linear model to circular variables, the proposed model enables us to evaluate the effects of external factors on movement separately from the animal's internal state. For example, maximum likelihood estimates and model selection suggested that in one homing flight section, the seabird intended to fly toward the island, but misjudged its navigation and was driven off-course by strong winds, while in the subsequent flight section, the seabird reset the focal direction, navigated the flight under strong wind conditions, and succeeded in approaching the island.
Closed-ecology life support systems /CELSS/ for long-duration, manned missions
NASA Technical Reports Server (NTRS)
Modell, M.; Spurlock, J. M.
1979-01-01
Studies were conducted to scope the principal areas of technology that can contribute to the development of closed-ecology life support systems (CELSS). Such systems may be required for future space activities, such as space stations, manufacturing facilities, or colonies. A major feature of CELSS is the regeneration of food from carbon in waste materials. Several processes, using biological and/or physico-chemical components, have been postulated for closing the recycle loop. At the present time, limits of available technical information preclude the specification of an optimum scheme. Nevertheless, the most significant technical requirements can be determined by way of an iterative procedure of formulating, evaluating and comparing various closed-system scenario. The functions features and applications of this systems engineering procedure are discussed.
The ecological mandala of M. K. Gandhi
NASA Astrophysics Data System (ADS)
Willey, Priscilla Kamala
Industrialization and urbanization have brought about environmental disassociation. The works of Orr, Naess, College of the Atlantic, conservation groups, communities such as Findhorn indicate that responsible personal behavior to the earth is an evident necessity, and growing requirement. This study is a philosophical analysis of Mohandas Karamchand Gandhi's ecological education. Gandhi's role in the political emancipation India was inseparable from the groundwork he laid environmentally, to light a path in creating a new India through a new human consciousness. Gandhi sought to transform his own life and mind radically along with many dimensions of the social, physical and ideational environment around him with his experiments with Truth. This study accepts as ecological Reality, the Truth that Gandhi claimed to be the purpose and source of his life. The study builds a literary Ecological Mandala, through the theoretical background of Gandhi's ecological education. Using inherently universal human ethics, which I have called universal Simples consisting of three groups, the framework of the Ecological Mandala is built (chapters 2 and 3). The Simples assist the observances, which I have also called the root tools, as they act upon the core of the individual. These are; fearlessness, control of the palate, tolerance, equality, non-possession and non-stealing which found its ideal in Trusteeship, bread labor and brahmacharya. The goal of these observances was Ahimsa, or Truth. Satyagraha is explained as a comprehensive methodology for ecological education which utilizes all aspects of the universal Simples. The fast is a weapon in its arsenal. The applications of Gandhi's ecological education are examined as seen in the eco-communities he established in South Africa, Phoenix and Tolstoy, and in the Ashrams in India (chapters 4 and 5). The eco-communities served as prototypes for the national education that Gandhi sought to implement through the constructive program (chapter 6). The role of the eco-communities, life and ecological education within them is explicated. The constructive program concentrates on the educational aspect of Gandhi's work. The study concludes with an artistic depiction of Gandhi's Ecological Mandala as suggested by the findings.
Towards a macrosystems approach for successful coastal management
Managing coastal resources for resiliency and sustainability often requires integrative, multi-disciplinary approaches across varying spatial and temporal scales to engage stakeholders and inform decision-makers. We discuss case studies integrating wetland ecology, economics, soc...
Requirements for psychological models to support design: Towards ecological task analysis
NASA Technical Reports Server (NTRS)
Kirlik, Alex
1991-01-01
Cognitive engineering is largely concerned with creating environmental designs to support skillful and effective human activity. A set of necessary conditions are proposed for psychological models capable of supporting this enterprise. An analysis of the psychological nature of the design product is used to identify a set of constraints that models must meet if they can usefully guide design. It is concluded that cognitive engineering requires models with resources for describing the integrated human-environment system, and that these models must be capable of describing the activities underlying fluent and effective interaction. These features are required in order to be able to predict the cognitive activity that will be required given various design concepts, and to design systems that promote the acquisition of fluent, skilled behavior. These necessary conditions suggest that an ecological approach can provide valuable resources for psychological modeling to support design. Relying heavily on concepts from Brunswik's and Gibson's ecological theories, ecological task analysis is proposed as a framework in which to predict the types of cognitive activity required to achieve productive behavior, and to suggest how interfaces can be manipulated to alleviate certain types of cognitive demands. The framework is described in terms, and illustrated with an example from the previous research on modeling skilled human-environment interaction.
In characterizing ecological risks, considerable consensus building and professional judgments are required to develop conclusions about risk. This is because how to evaluate all the factors that determine ecological risk is not well defined and is subject to interpretation. Here...
Ecological support for rural land-use planning.
David M. Theobald; Thomas Spies; Jeff Kline; Bruce Maxwell; N. T. Hobbs; Virginia H. Dale
2005-01-01
How can ecologists be more effective in supporting ecologically informed rural land-use planning and policy? Improved decision making about rural lands requires careful consideration of how ecological information and analyses can inform specific planning and policy needs. We provide a brief overview of rural land-use planning, including recently developed approaches to...
Ecological Activism in Post-Soviet Russia and the Western World (A Comparative Analysis)
ERIC Educational Resources Information Center
Usacheva, O. A.
2012-01-01
Ecological activism (henceforth ecoactivism) in Russia, a country with a predominant European culture, has common roots with the Europe of the late 19th and early 20th centuries. A process of intensive industrialization and urbanization required that unspoiled, natural landscapes be preserved for rest, recreation, and ecological education. This…
Understanding and predicting ecological dynamics: Are major surprises inevitable
Doak, Daniel F.; Estes, James A.; Halpern, Benjamin S.; Jacob, Ute; Lindberg, D.R.; Lovvorn, James R.; Monson, Daniel H.; Tinker, M. Tim; Williams, Terrie M.; Wootton, J. Timothy; Carroll, Ian; Emmerson, Mark; Micheli, Fiorenza; Novak, Mark
2008-01-01
Ecological surprises, substantial and unanticipated changes in the abundance of one or more species that result from previously unsuspected processes, are a common outcome of both experiments and observations in community and population ecology. Here, we give examples of such surprises along with the results of a survey of well-established field ecologists, most of whom have encountered one or more surprises over the course of their careers. Truly surprising results are common enough to require their consideration in any reasonable effort to characterize nature and manage natural resources. We classify surprises as dynamic-, pattern-, or intervention-based, and we speculate on the common processes that cause ecological systems to so often surprise us. A long-standing and still growing concern in the ecological literature is how best to make predictions of future population and community dynamics. Although most work on this subject involves statistical aspects of data analysis and modeling, the frequency and nature of ecological surprises imply that uncertainty cannot be easily tamed through improved analytical procedures, and that prudent management of both exploited and conserved communities will require precautionary and adaptive management approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroymson, R.A.; Jackson, B.L.; Jones, D.S.
1996-05-01
This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridgemore » National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.« less
Takemoto, Kazuhiro; Aie, Kazuki
2017-05-25
Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.
Sustainability of utility-scale solar energy – critical ecological concepts
Moore-O'Leary, Kara A.; Hernandez, Rebecca R.; Johnston, Dave S.; Abella, Scott R.; Tanner, Karen E.; Swanson, Amanda C.; Kreitler, Jason R.; Lovich, Jeffrey E.
2017-01-01
Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists – including those from academia, industry, and government agencies – have only recently begun to quantify trade-offs in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.
NASA Astrophysics Data System (ADS)
Li, Junwei; Xie, Xiaoyong; Zhu, Changbo; Guo, Yongjian; Chen, Suwen
2017-10-01
Sipunculus nudus is an important economic species because of its high nutritional and medicinal values. The exploitation and utilization of S. nudus primarily occur in the coastal regions of the Beibu Gulf. However, wild resource of S. nudus is rapidly decreasing because of the overexploitation, which has led to considerable developments of artificial breeding techniques. The cultivation scale of S. nudus has increased in response to successful artificial breeding; however, methods for culturing S. nudus in tidal flats or ponds require further study. Most studies have focused on the breeding, nutrition, medical value and ecological impact of these worms. Studies on the distribution, sediment requirements, nutrition characteristics, breeding techniques and aquaculture ecology of this species are summarized in this paper to promote the development of the aquaculture industry for S. nudus. The high biomass of S. nudus in the Beibu Gulf is positively correlated with the sediment characteristics and water quality of the region. The production of peanut worm has improved to some extent through culturing; however, the nutrient value and ecological environment problems have been observed, which reflect the over exploitation of trace elements and the sediment. These problems will worsen unless they are resolved, and the release of organic materials, nitrogen and phosphorus during harvesting impacts the coastal environment. Moreover, genetic erosion is a potential risk for larvae in artificial breeding programs in tidal flats. Therefore, culturing and collecting methods should be improved and the wild resource conservation should be implemented to promote the sustainable development of the peanut worm.
A Risk-Based Ecohydrological Approach to Assessing Environmental Flow Regimes
NASA Astrophysics Data System (ADS)
Mcgregor, Glenn B.; Marshall, Jonathan C.; Lobegeiger, Jaye S.; Holloway, Dean; Menke, Norbert; Coysh, Julie
2018-03-01
For several decades there has been recognition that water resource development alters river flow regimes and impacts ecosystem values. Determining strategies to protect or restore flow regimes to achieve ecological outcomes is a focus of water policy and legislation in many parts of the world. However, consideration of existing environmental flow assessment approaches for application in Queensland identified deficiencies precluding their adoption. Firstly, in managing flows and using ecosystem condition as an indicator of effectiveness, many approaches ignore the fact that river ecosystems are subjected to threatening processes other than flow regime alteration. Secondly, many focus on providing flows for responses without considering how often they are necessary to sustain ecological values in the long-term. Finally, few consider requirements at spatial-scales relevant to the desired outcomes, with frequent focus on individual places rather than the regions supporting sustainability. Consequently, we developed a risk-based ecohydrological approach that identifies ecosystem values linked to desired ecological outcomes, is sensitive to flow alteration and uses indicators of broader ecosystem requirements. Monitoring and research is undertaken to quantify flow-dependencies and ecological modelling is used to quantify flow-related ecological responses over an historical flow period. The relative risk from different flow management scenarios can be evaluated at relevant spatial-scales. This overcomes the deficiencies identified above and provides a robust and useful foundation upon which to build the information needed to support water planning decisions. Application of the risk assessment approach is illustrated here by two case studies.
NASA Astrophysics Data System (ADS)
Chen, Duan; Chen, Qiuwen; Li, Ruonan; Blanckaert, Koen; Cai, Desuo
2014-06-01
Ecologically-friendly reservoir operation procedures aim to conserve key ecosystem properties in the rivers, while minimizing the sacrifice of socioeconomic interests. This study focused on the Jinping cascaded reservoirs as a case study. An optimization model was developed to explore a balance between the ecological flow requirement (EFR) of a target fish species ( Schizothorax chongi) in the dewatered natural channel section, and annual power production. The EFR for the channel was determined by the Tennant method and a fish habitat model, respectively. The optimization model was solved by using an adaptive real-coded genetic algorithm. Several operation scenarios corresponding to the ecological flow series were evaluated using the optimization model. Through comparisons, an optimal operational scheme, which combines relatively low power production loss with a preferred ecological flow regime in the dewatered channel, is proposed for the cascaded reservoirs. Under the recommended scheme, the discharge into the Dahewan river reach in the dry season ranges from 36 to 50 m3/s. This will enable at least 50% of the target fish habitats in the channel to be conserved, at a cost of only 2.5% annual power production loss. The study demonstrates that the use of EFRs is an efficient approach to the optimization of reservoir operation in an ecologically friendly way. Similar modeling, for other important fish species and ecosystem functions, supplemented by field validation of results, is needed in order to secure the long-term conservation of the affected river ecosystem.
Applying ecological models to communities of genetic elements: the case of neutral theory.
Linquist, Stefan; Cottenie, Karl; Elliott, Tyler A; Saylor, Brent; Kremer, Stefan C; Gregory, T Ryan
2015-07-01
A promising recent development in molecular biology involves viewing the genome as a mini-ecosystem, where genetic elements are compared to organisms and the surrounding cellular and genomic structures are regarded as the local environment. Here, we critically evaluate the prospects of ecological neutral theory (ENT), a popular model in ecology, as it applies at the genomic level. This assessment requires an overview of the controversy surrounding neutral models in community ecology. In particular, we discuss the limitations of using ENT both as an explanation of community dynamics and as a null hypothesis. We then analyse a case study in which ENT has been applied to genomic data. Our central finding is that genetic elements do not conform to the requirements of ENT once its assumptions and limitations are made explicit. We further compare this genome-level application of ENT to two other, more familiar approaches in genomics that rely on neutral mechanisms: Kimura's molecular neutral theory and Lynch's mutational-hazard model. Interestingly, this comparison reveals that there are two distinct concepts of neutrality associated with these models, which we dub 'fitness neutrality' and 'competitive neutrality'. This distinction helps to clarify the various roles for neutral models in genomics, for example in explaining the evolution of genome size. © 2015 John Wiley & Sons Ltd.
Reinventing Flashcards to Increase Student Learning
ERIC Educational Resources Information Center
Senzaki, Sawa; Hackathorn, Jana; Appleby, Drew C.; Gurung, Regan A. R.
2017-01-01
Two studies examined the effectiveness of a flashcard-based study strategy, "Flashcards-Plus," in an ecologically valid context. The strategy requires students to create flashcards designed to increase their ability to retain, comprehend, and apply textbook material to exams. In Studies 1a (n = 73) and 1b (n = 62), we introduced all…
The role of ecological theory in microbial ecology.
Prosser, James I; Bohannan, Brendan J M; Curtis, Tom P; Ellis, Richard J; Firestone, Mary K; Freckleton, Rob P; Green, Jessica L; Green, Laura E; Killham, Ken; Lennon, Jack J; Osborn, A Mark; Solan, Martin; van der Gast, Christopher J; Young, J Peter W
2007-05-01
Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.
Big questions, big science: meeting the challenges of global ecology
David Schimel; Michael Keller
2015-01-01
Ecologists are increasingly tackling questions that require significant infrastucture, large experiments, networks of observations, and complex data and computation. Key hypotheses in ecology increasingly require more investment, and larger data sets to be tested than can be collected by a single investigatorâs or s group of investigatorâs labs, sustained for longer...
An ecological method to understand agricultural standardization in peach orchard ecosystems
Wan, Nian-Feng; Zhang, Ming-Yi; Jiang, Jie-Xian; Ji, Xiang-Yun; Hao-Zhang
2016-01-01
While the worldwide standardization of agricultural production has been advocated and recommended, relatively little research has focused on the ecological significance of such a shift. The ecological concerns stemming from the standardization of agricultural production may require new methodology. In this study, we concentrated on how ecological two-sidedness and ecological processes affect the standardization of agricultural production which was divided into three phrases (pre-, mid- and post-production), considering both the positive and negative effects of agricultural processes. We constructed evaluation indicator systems for the pre-, mid- and post-production phases and here we presented a Standardization of Green Production Index (SGPI) based on the Full Permutation Polygon Synthetic Indicator (FPPSI) method which we used to assess the superiority of three methods of standardized production for peaches. The values of SGPI for pre-, mid- and post-production were 0.121 (Level IV, “Excellent” standard), 0.379 (Level III, “Good” standard), and 0.769 × 10−2 (Level IV, “Excellent” standard), respectively. Here we aimed to explore the integrated application of ecological two-sidedness and ecological process in agricultural production. Our results are of use to decision-makers and ecologists focusing on eco-agriculture and those farmers who hope to implement standardized agricultural production practices. PMID:26899360
An ecological method to understand agricultural standardization in peach orchard ecosystems.
Wan, Nian-Feng; Zhang, Ming-Yi; Jiang, Jie-Xian; Ji, Xiang-Yun; Hao-Zhang
2016-02-22
While the worldwide standardization of agricultural production has been advocated and recommended, relatively little research has focused on the ecological significance of such a shift. The ecological concerns stemming from the standardization of agricultural production may require new methodology. In this study, we concentrated on how ecological two-sidedness and ecological processes affect the standardization of agricultural production which was divided into three phrases (pre-, mid- and post-production), considering both the positive and negative effects of agricultural processes. We constructed evaluation indicator systems for the pre-, mid- and post-production phases and here we presented a Standardization of Green Production Index (SGPI) based on the Full Permutation Polygon Synthetic Indicator (FPPSI) method which we used to assess the superiority of three methods of standardized production for peaches. The values of SGPI for pre-, mid- and post-production were 0.121 (Level IV, "Excellent" standard), 0.379 (Level III, "Good" standard), and 0.769 × 10(-2) (Level IV, "Excellent" standard), respectively. Here we aimed to explore the integrated application of ecological two-sidedness and ecological process in agricultural production. Our results are of use to decision-makers and ecologists focusing on eco-agriculture and those farmers who hope to implement standardized agricultural production practices.
Maciejewski, Kristine; Kerley, Graham I H
2014-07-01
In order to sustainably conserve biodiversity, many protected areas, particularly private protected areas, must find means of self-financing. Ecotourism is increasingly seen as a mechanism to achieve such financial sustainability. However, there is concern that ecotourism operations are driven to achieve successful game-viewing, influencing the management of charismatic species. An abundance of such species, including the African elephant (Loxodonta africana), has been stocked in protected areas under the assumption that they will increase ecotourism value. At moderate to high densities, the impact of elephants is costly; numerous studies have documented severe changes in biodiversity through the impacts of elephants. Protected areas that focus on maintaining high numbers of elephants may therefore face a conflict between socioeconomic demands and the capacity of ecological systems. We address this conflict by analyzing tourist elephant-sighting records from six private and one statutory protected area, the Addo Elephant National Park (AENP), in the Eastern Cape Province of South Africa, in relation to elephant numbers. We found no relationship between elephant density and elephant-viewing success. Even though elephant density in the AENP increased over time, a hierarchical partitioning analysis indicated that elephant density was not a driver of tourist numbers. In contrast, annual tourist numbers for the AENP were positively correlated with general tourist numbers recorded for South Africa. Our results indicate that the socioeconomic and ecological requirements of protected areas in terms of tourism and elephants, respectively, converge. Thus, high elephant densities and their associated ecological costs are not required to support ecotourism operations for financial sustainability. Understanding the social and ecological feedbacks that dominate the dynamics of protected areas, particularly within private protected areas, can help to elucidate the management challenges of minimizing ecological trade-offs while meeting ecotourist demands and achieving sustainability.
Environmental and ecological changes associated with a marina.
Rivero, Natalie K; Dafforn, Katherine A; Coleman, Melinda A; Johnston, Emma L
2013-01-01
Anthropogenic modifications to waterways are common and their ecological consequences must be understood to effectively conserve local biodiversity. The facilitation of recreational boating activities often requires substantial alteration of natural areas, however the environmental and ecological consequences of such alterations are rarely described in the scientific literature. In this study, ecological and physico-chemical conditions were investigated in a recreational boating marina, located inside a marine park on the south-east coast of Australia. Recruitment panels were deployed for 8 weeks both inside and outside the marina, and differences in the composition of the developing fouling communities were observed. The recruitment of taxa, which often have short-lived larvae, was increased inside the marina (bryozoans, spirorbids and sponges) while the recruitment of taxa, which often have longer-lived larvae, was reduced or absent (barnacles, solitary ascidians and non-spirorbid polychaetes). Differences were also observed in environmental conditions inside the marina cf. directly outside. The marina environment had higher turbidity, temperature and pH along with higher concentrations of lead and copper in suspended sediments, while flow rates and trapped sediment loads were reduced inside the marina. The differences observed in the study suggest that there may be marked environmental changes associated with marina developments. The potential ecological consequences of these changes should be a primary consideration during the planning process, particularly for developments in locations of notable ecological value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harwell, M.; Ault, J.; Gentile, J.
1995-12-31
The conduct of comparative ecological risk assessments (CERA) resulting from the release of anthropogenic stressors into coastal marine environments requires theoretical and methodological innovations to integrate contaminant exposure with populations at risk over time and space scales. Consequently, predicted risks must be scaled to allow comparisons of relative ecological impacts in three physical dimensions plus time. This study was designed to compare the risks from hypothetical spills of Orimulsion and Fuel Oil No. 6 into the Tampa Bay ecosystem. The CERA framework used in this study integrates numerical hydrodynamic and transport-and-fate, toxicological, and biological models with extensive spatially explicit databasesmore » that describe the distributions of critical species and habitats. The presentation of the comparative ecological risks is facilitated by visualization and GIS techniques to allow realistic comparisons of toxicant exposures and their co-occurrence with key biological resources over time and across the seascape. A scaling methodology is presented that uses toxicological data as scalars for graphically representing the ecological effects associated with exposure levels for each scenario simulation. The CERA model serves as an interactive tool for assessing the relative ecological consequences of a range of potential exposure scenarios and for forecasting the longer-term productivity of critical biological resources and habitats that are key to ecosystem structure and function.« less
The evolution of ecological tolerance in prokaryotes
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Bauld, J.
1989-01-01
The ecological ranges of Archaeobacteria and Eubacteria are constrained by a requirement for liquid water and the physico-chemical stability limits of biomolecules, but within this broad envelope, prokaryotes have evolved adaptations that permit them to tolerate a remarkable spectrum of habitats. Laboratory experiments indicate that prokaryotes can adapt rapidly to novel environmental conditions, yet geological studies suggest early diversification and long-term stasis within the prokaryotic kingdoms. These apparently contradictory perspectives can be reconciled by understanding that, in general, rates and patterns of prokaryotic evolution reflect the developmental history of the Earth's surface environments. Our understanding of modern microbial ecology provides a lens through which our accumulating knowledge of physiology, molecular phylogeny and the Earth's history can be integrated and focussed on the phenomenon of prokaryotic evolution.
Linking catchment characteristics and water chemistry with the ecological status of Irish rivers.
Donohue, Ian; McGarrigle, Martin L; Mills, Paul
2006-01-01
Requirements of the EU Water Framework Directive for the introduction of ecological quality objectives for surface waters and the stipulation that all surface waters in the EU must be of 'good' ecological status by 2015 necessitate a quantitative understanding of the linkages among catchment attributes, water chemistry and the ecological status of aquatic ecosystems. Analysis of lotic ecological status, as indicated by an established biotic index based primarily on benthic macroinvertebrate community structure, of 797 hydrologically independent river sites located throughout Ireland showed highly significant inverse associations between the ecological status of rivers and measures of catchment urbanisation and agricultural intensity, densities of humans and cattle and chemical indicators of water quality. Stepwise logistic regression suggested that urbanisation, arable farming and extent of pasturelands are the principal factors impacting on the ecological status of streams and rivers in Ireland and that the likelihood of a river site complying with the demands of the EU Water Framework Directive, and be of 'good' ecological status, can be predicted with reasonable accuracy using simple models that utilise either widely available landcover data or chemical monitoring data. Non-linear landcover and chemical 'thresholds' derived from these models provide a useful tool in the management of risk in catchments, and suggest strongly that more careful planning of land use in Ireland is essential in order to restore and maintain water quality as required by the Directive.
Sylvio Mannel; Mark A. Rumble; Maribeth Price; Thomas M. Juntti; Dong Hua
2006-01-01
Many aspects of ecological research require measurement of characteristics within plots. Often, the time spent establishing plots is small relative to the time spent collecting and recording data. However, some studies require larger numbers of plots, where the time spent establishing the plot is consequential to the field effort. In open habitats, circular plots are...
Glycomics: revealing the dynamic ecology and evolution of sugar molecules.
Springer, Stevan A; Gagneux, Pascal
2016-03-01
Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution. Copyright © 2015 Elsevier B.V. All rights reserved.
Landscape ecological security response to land use change in the tidal flat reclamation zone, China.
Zhang, Runsen; Pu, Lijie; Li, Jianguo; Zhang, Jing; Xu, Yan
2016-01-01
As coastal development becomes a national strategy in Eastern China, land use and landscape patterns have been affected by reclamation projects. In this study, taking Rudong County, China as a typical area, we analyzed land use change and its landscape ecological security responses in the tidal flat reclamation zone. The results show that land use change in the tidal flat reclamation zone is characterized by the replacement of natural tidal flat with agricultural and construction land, which has also led to a big change in landscape patterns. We built a landscape ecological security evaluation system, which consists of landscape interference degree and landscape fragile degree, and then calculated the landscape ecological security change in the tidal flat reclamation zone from 1990 to 2008 to depict the life cycle in tidal flat reclamation. Landscape ecological security exhibited a W-shaped periodicity, including the juvenile stage, growth stage, and maturation stage. Life-cycle analysis demonstrates that 37 years is required for the land use system to transform from a natural ecosystem to an artificial ecosystem in the tidal flat reclamation zone.
Metabolomics in chemical ecology.
Kuhlisch, Constanze; Pohnert, Georg
2015-07-01
Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology.
What can morphology tell us about ecology of four invasive goby species?
Jakubčinová, K; Simonović, P; Števove, B; Čanak Atlagić, J; Kováč, V
2017-05-01
This study presents a detailed comparative analysis of external morphology of four of the most invasive goby species in Europe (round goby Neogobius melanostomus, bighead goby Ponticola kessleri, monkey goby Neogobius fluviatilis and racer goby Ponticola gymnotrachelus) and interprets some ecological requirements of these species based on their morphological attributes. The results are evaluated within an ontogenetic context, and the morphological differences between the species are discussed in terms of the question: can special external shape adaptations help to assess the invasive potential of each species? The morphometric analyses demonstrate important differences between the four invasive gobies. Neogobius melanostomus appears to have the least specialized external morphology that may favour its invasive success: little specialization to habitat or diet means reduced restraints on overall ecological requirements. The other three species were found to possess some morphological specializations (P. kessleri to large prey, N. fluviatilis to sandy habitats and P. gymnotrachelus to macrophytes), but none of these gobies have managed to colonize such large areas or to reach such overall abundances as N. melanostomus. © 2017 The Fisheries Society of the British Isles.
Source Water Quality Monitoring Networks
Harmful Algal Blooms (HABs) are increasingly impacting aquatic systems, reducing provided ecological services and requiring expensive engineered solutions. HABs, particularly those dominated by cyanobacteria (cyanoHABs) are a public health, ecologic, and economic concern. Charac...
SCIENCE, SCIENTISTS, AND POLICY ADVOCACY
Effectively resolving the typical ecological policy issue requires providing an array of scientific information to decision-makers. In my experience, the ability of scientists (and scientific information) to inform constructively ecological policy deliberations has been diminishe...
Arthur, Ronan F; Gurley, Emily S; Salje, Henrik; Bloomfield, Laura S P; Jones, James H
2017-05-05
Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social-ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social-ecological interactions. The social-ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).
Ecological connectivity networks in rapidly expanding cities.
Nor, Amal Najihah M; Corstanje, Ron; Harris, Jim A; Grafius, Darren R; Siriwardena, Gavin M
2017-06-01
Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow ( Passer montanus ) and Yellow-vented bulbul ( Pycnonotus goiavier ) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for biodiversity conservation and urban planning.
[Sociology of health, social ecology and media democracy].
Julesz, Máté
2012-05-27
The correlation of the sociology of health, social ecology and media democracy is demonstrated in the study. In societies of today, the role of the media is unquestionable in disseminating information relating to health and the environment. According to Paragraph (1) of Article XXI of the Hungarian Constitution of 2011, everyone has the right to a healthy environment. An environmentalist media democracy may forward environmental justice, environmental education, and environmentalist economy, etc. All these are required in order to establish a society where the healthy environment is an objective value.
2014-03-01
not provide effective control. Most tropical fi sh commercially available to hobbyists have recommended temperature requirements > 20 oC (e.g...at 10-12 oC (RR-C). This suggests lower lethal temperatures of 12-14 oC, but laboratory studies by the Florida Fish and Wildlife Conservation...55(5): 58-60. Flecker, A.S. 1992. Fish trophic guilds and the structure of a tropical stream: Weak vs. strong indirect effects . Ecology 73
NASA Astrophysics Data System (ADS)
Heatwole, Harold; Lillywhite, Harvey; Grech, Alana
2016-09-01
Recent, more accurate delineation of the distributions of sea kraits and prior dubious use of proxy temperatures and mean values in correlative studies requires re-assessment of the relationships of temperature and salinity as determinants of the size of the geographic ranges of sea kraits. Correcting the sizes of geographic ranges resolved the paradox of lack of correspondence of size of range with degree of terrestrialism, but did not form a definitive test of the theory. Recent ecological, physiological, and behavioural studies provide an example of the kind of approach likely to either validate or refute present theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A; Orth, Dr. Donald J; Davis, Dr, Mary
Generalized and quantitative relationships between flow and ecology are pivotal to developing environmental flow standards based on socially acceptable ecological conditions. Informing management at regional scales requires compiling sufficient hydrologic and ecological sources of information, identifying information gaps, and creating a framework for hypothesis development and testing. We compiled studies of empirical and theoretical relationships between flow and ecology in the South Atlantic region (SAR) of the United States to evaluate their utility for the development of environmental flow standards. Using database searches, internet searches, and agency contacts, we gathered 186 sources of information that provided a qualitative or quantitativemore » relationship between flow and ecology within states encompassing the SAR. A total of 109 of the 186 sources had sufficient information to support quantitative analyses. Ecological responses to natural changes in flow magnitude, frequency, and duration were highly variable regardless of the direction and magnitude of changes in flow. In contrast, the majority of ecological responses to anthropogenic-induced flow alterations were negative. Fish consistently showed negative responses to anthropogenic flow alterations whereas other ecological groups showed somewhat variable responses (e.g. macroinvertebrates and riparian vegetation) and even positive responses (e.g. algae). Fish and organic matter had sufficient sample sizes to stratify natural flow-ecology relationships by specific flow categories (e.g. high flow, baseflows) or by region (e.g. coastal plain, uplands). After stratifying relationships, we found that significant correlations existed between changes in natural flow and ecological responses. In addition, a regression tree explained 57% of the variation in fish responses to anthropogenic and natural changes in flow. Because of some ambiguity in interpreting the directionality in ecological responses, we utilized ecological gains or losses, where each represents a benefit or reduction to ecosystem services, respectively. Variables explained 49% of the variation in ecological gains and losses for all ecological groups combined. Altogether, our results suggested that the source of flow change and the ecological group of interest played primary roles in determining the direction and magnitude of ecological responses. Furthermore, our results suggest that developing broadly generalized relationships between ecology and changes in flow at a regional scale is unlikely unless relationships are placed within meaningful contexts, such as environmental flow components or by geomorphic setting.« less
Xiao, Yang; Xiao, Qiang
2018-03-29
Because natural ecosystems and ecosystem services (ES) are both critical to the well-being of humankind, it is important to understand their relationships and congruence for conservation planning. Spatial conservation planning is required to set focused preservation priorities and to assess future ecological implications. This study uses the combined measures of ES models and ES potential to estimate and analyze all four groups of ecosystem services to generate opportunities to maximize ecosystem services. Subsequently, we identify the key areas of conservation priorities as future forestation and conservation hotspot zones to improve the ecological management in Chongqing City, located in the upper reaches of the Three Gorges Reservoir Area, China. Results show that ecosystem services potential is extremely obvious. Compared to ecosystem services from 2000, we determined that soil conservation could be increased by 59.11%, carbon sequestration by 129.51%, water flow regulation by 83.42%, and water purification by 84.42%. According to our prioritization results, approximately 48% of area converted to forests exhibited high improvements in all ecosystem services (categorized as hotspot-1, hotspot-2, and hotspot-3). The hotspots identified in this study can be used as an excellent surrogate for evaluation ecological engineering benefits and can be effectively applied in improving ecological management planning.
Ecological mitigation measures in English Environmental Impact Assessment.
Drayson, Katherine; Thompson, Stewart
2013-04-15
Built development is one of the main drivers of biodiversity loss in the UK. Major built developments usually require an Environmental Impact Assessment (EIA) to be conducted, which frequently includes an Ecological Impact Assessment (EcIA) chapter. By identifying the flaws in EcIA mitigation measure proposals and their implementation in completed developments, it may be possible to develop measures to reduce biodiversity loss and help meet the UK's EU obligation to halt biodiversity loss by 2020. A review of 112 English EcIAs from 2000 onwards was conducted to provide a broad-scale overview of the information provision and detail of ecological mitigation measures. Audits of seven EIA development case study sites provided finer-scale detail of mitigation measure implementation, and the effectiveness of their grassland and marginal habitat creation and management measures was assessed using standard NVC methodology. Despite higher than expected levels of mitigation measure implementation in completed developments, EcIA mitigation proposal information and detail has seen little improvement since a 1997 review, and the effectiveness of the habitat mitigation measures studied was poor. This suggests that measures to improve ecological mitigation measures are best targeted at ecological consultants. A recommendation for EcIA-specific training of Competent Authorities is also made. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tree species distribution in temperate forests is more influenced by soil than by climate.
Walthert, Lorenz; Meier, Eliane Seraina
2017-11-01
Knowledge of the ecological requirements determining tree species distributions is a precondition for sustainable forest management. At present, the abiotic requirements and the relative importance of the different abiotic factors are still unclear for many temperate tree species. We therefore investigated the relative importance of climatic and edaphic factors for the abundance of 12 temperate tree species along environmental gradients. Our investigations are based on data from 1,075 forest stands across Switzerland including the cold-induced tree line of all studied species and the drought-induced range boundaries of several species. Four climatic and four edaphic predictors represented the important growth factors temperature, water supply, nutrient availability, and soil aeration. The climatic predictors were derived from the meteorological network of MeteoSwiss, and the edaphic predictors were available from soil profiles. Species cover abundances were recorded in field surveys. The explanatory power of the predictors was assessed by variation partitioning analyses with generalized linear models. For six of the 12 species, edaphic predictors were more important than climatic predictors in shaping species distribution. Over all species, abundances depended mainly on nutrient availability, followed by temperature, water supply, and soil aeration. The often co-occurring species responded similar to these growth factors. Drought turned out to be a determinant of the lower range boundary for some species. We conclude that over all 12 studied tree species, soil properties were more important than climate variables in shaping tree species distribution. The inclusion of appropriate soil variables in species distribution models allowed to better explain species' ecological niches. Moreover, our study revealed that the ecological requirements of tree species assessed in local field studies and in experiments are valid at larger scales across Switzerland.
USDA-ARS?s Scientific Manuscript database
Free-ranging animal behavior is a multifaceted and complex phenomenon within rangeland ecology that must be understood and ultimately managed. Improving behavioral studies requires tools appropriate for use at the landscape scale. Though tools alone do not assure research will generate accurate in...
Taking a systems approach to ecological systems
Grace, James B.
2015-01-01
Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.
Samarakoon, Miriya; Rowan, John S
2008-03-01
This article critically reviews environmental assessment (EA) practices in Sri Lanka, with a particular focus on ecology. An overview is provided of the domestic and international influences which have shaped the administrative process which is currently a two-tiered scheme. An Initial Environmental Examination (IEE) provides a preliminary screening tool, prior to the requirement for a full Environmental Impact Assessment (EIA). A comprehensive survey of Sri Lankan national archives showed that 463 EAs were completed in the period 1981-2005, with the bulk of these in the more populated Western and North Western Provinces. Two-thirds were IEE surveys, while the remaining third advanced to full EIA. A representative sample of 130 EAs (both IEEs and full EIAs) spanning a broad range of project types, scales, and environmental settings was selected to evaluate the quality of the ecological investigations within the published environmental impact statements (EISs). These were assigned into five classes of "explanatory power", on the basis of their scientific content in relation to survey, analysis, and reporting of ecological interests. Within most EISs, the ecological impact assessment (EcIA) was restricted to the lowest two categories of ecological assessment, i.e., tokenistic presentation of reconnaissance-level species lists without further analysis of the development implications for individual organisms or communities. None of the assessments reviewed provided statistically rigorous analysis, which would be required if ecological impact studies are to include quantitative and testable predictions of impact, which could then be followed up by appropriate post-impact monitoring programs. Attention to key local issues such as biodiversity or ecosystem services, which also have strong social dimensions in the developing world, was also notably underrepresented. It was thus concluded that despite the existence of a sound legislative framework in Sri Lanka, the analysis contained within EISs generally fails to convey meaningful information to the relevant stakeholders and decision makers involved in protecting ecological interests and promoting sustainable development. The introduction of strategic environmental assessment (SEA) is considered an important tool to strengthen the institutional capacity of Sri Lankan government to implement current regulations and, in particular, to combat the cumulative effects of incremental development.
ECOLOGICAL FORECASTING FOR WATERSHEDS
To effectively manage watersheds, the assessment of watershed ecological response to physicochemical stressors such as nutrients, sediments, pathogens, and toxics over broad spatial and temporal scales is needed. Assessments at this level of complexity requires the development of...
Guiding the development of a controlled ecological life support system
NASA Technical Reports Server (NTRS)
Mason, R. M. (Editor); Carden, J. L. (Editor)
1979-01-01
The workshop is reported which was held to establish guidelines for future development of ecological support systems, and to develop a group of researchers who understand the interdisciplinary requirements of the overall program.
40 CFR 52.181 - Significant deterioration of air quality.
Code of Federal Regulations, 2010 CFR
2010-07-01
...”) submitted April 23, 1981 (as adopted by the Arkansas Commission on Pollution Control and Ecology (ACPCE) on... the Arkansas Pollution Control and Ecology Commission on January 22, 1999) (b) The requirements of...
30 CFR 947.773 - Requirements for permits and permit processing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... regulations: (1) Department of Ecology: Surface Water Rights Permit, RCW 90.03.250 Dam Safety Approval, RCW 90... deny a permit application to the Washington Department of Natural Resources, the Department of Ecology...
40 CFR 52.181 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
...”) submitted April 23, 1981 (as adopted by the Arkansas Commission on Pollution Control and Ecology (ACPCE) on... the Arkansas Pollution Control and Ecology Commission on January 22, 1999) (b) The requirements of...
30 CFR 947.773 - Requirements for permits and permit processing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... regulations: (1) Department of Ecology: Surface Water Rights Permit, RCW 90.03.250 Dam Safety Approval, RCW 90... deny a permit application to the Washington Department of Natural Resources, the Department of Ecology...
Malcicka, Miriama; Agosta, Salvatore J; Harvey, Jeffrey A
2015-09-01
Many invasive species are able to escape from coevolved enemies and thus enjoy a competitive advantage over native species. However, during the invasion phase, non-native species must overcome many ecological and/or physiological hurdles before they become established and spread in their new habitats. This may explain why most introduced species either fail to establish or remain as rare interstitials in their new ranges. Studies focusing on invasive species have been based on plants or animals where establishment requires the possession of preadapted traits from their native ranges that enables them to establish and spread in their new habitats. The possession of preadapted traits that facilitate the exploitation of novel resources or to colonize novel habitats is known as 'ecological fitting'. Some species have evolved traits and life histories that reflect highly intimate associations with very specific types of habitats or niches. For these species, their phenological windows are narrow, and thus the ability to colonize non-native habitats requires that a number of conditions need to be met in accordance with their more specialized life histories. Some of the strongest examples of more complex ecological fitting involve invasive parasites that require different animal hosts to complete their life cycles. For instance, the giant liver fluke, Fascioloides magna, is a major parasite of several species of ungulates in North America. The species exhibits a life cycle whereby newly hatched larvae must find suitable intermediate hosts (freshwater snails) and mature larvae, definitive hosts (ungulates). Intermediate and definitive host ranges of F. magna in its native range are low in number, yet this parasite has been successfully introduced into Europe where it has become a parasite of native European snails and deer. We discuss how the ability of these parasites to overcome multiple ecophysiological barriers represents an excellent example of 'multiple-level ecological fitting'. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mitroi, V.; de Coninck, A.; Vinçon-Leite, B.; Deroubaix, J.-F.
2014-09-01
The (re)construction of the ecological continuity is stated as one of the main objectives of the European Water Framework Directive for watershed management in Europe. Analysing the social, political, technical and scientific processes characterising the implementation of different projects of ecological continuity in two adjacent peri-urban territories in Ile-de-France, we observed science-driven approaches disregarding the social contexts. We show that, in urbanized areas, ecological continuity requires not only important technical and ecological expertise, but also social and political participation to the definition of a common vision and action plan. Being a challenge for both, technical water management institutions and "classical" ecological policies, we propose some social science contributions to deal with ecological unpredictability and reconsider stakeholder resistance to this kind of project.
Tigers and their prey: Predicting carnivore densities from prey abundance
Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Link, W.A.; Hines, J.E.
2004-01-01
The goal of ecology is to understand interactions that determine the distribution and abundance of organisms. In principle, ecologists should be able to identify a small number of limiting resources for a species of interest, estimate densities of these resources at different locations across the landscape, and then use these estimates to predict the density of the focal species at these locations. In practice, however, development of functional relationships between abundances of species and their resources has proven extremely difficult, and examples of such predictive ability are very rare. Ecological studies of prey requirements of tigers Panthera tigris led us to develop a simple mechanistic model for predicting tiger density as a function of prey density. We tested our model using data from a landscape-scale long-term (1995-2003) field study that estimated tiger and prey densities in 11 ecologically diverse sites across India. We used field techniques and analytical methods that specifically addressed sampling and detectability, two issues that frequently present problems in macroecological studies of animal populations. Estimated densities of ungulate prey ranged between 5.3 and 63.8 animals per km2. Estimated tiger densities (3.2-16.8 tigers per 100 km2) were reasonably consistent with model predictions. The results provide evidence of a functional relationship between abundances of large carnivores and their prey under a wide range of ecological conditions. In addition to generating important insights into carnivore ecology and conservation, the study provides a potentially useful model for the rigorous conduct of macroecological science.
MRI and MRS on preserved samples as a tool in fish ecology.
Bock, Christian; Wermter, Felizitas C; Mintenbeck, Katja
2017-05-01
Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) gain increasing attention and importance as a tool in marine ecology. So far, studies were largely limited to morphological studies, e.g. for the creation of digital libraries. Here, the utility of MRI and MRS for ecologists is tested and exemplified using formalin preserved samples of the Antarctic silverfish, Pleuragramma antarctica. As this species lacks a swim bladder, buoyancy is attained by the deposition of large amounts of lipids that are mainly stored in subcutaneous and intermuscular lipid sacs. In this study MRI and MRS are not only used to study internal morphology, but additionally to investigate functional morphology and to measure parameters of high ecological interest. The data are compared with literature data obtained by means of traditional ecological methods. The results from this study show that MR scans are not only an alternative to histological sections (as shown before), but even allow the visualization of particular features in delicate soft tissues, such as Pleuragramma's lipid sacs. 3D rendering techniques proved to be a useful tool to study organ volumes and lipid content, which usually requires laborious chemical lipid extraction and analysis. Moreover, the application of MRS even allows for an analysis of lipids and fatty acids within lipid sacs, which wouldn't be possible using destructive methods. MRI and MRS, in particular when used in combination, have the capacity to provide useful data on parameters of high ecological relevance and thus have proven to be a highly valuable addition, if not alternative, to the classical methods. Copyright © 2016 Elsevier Inc. All rights reserved.
Management of Subtle Cognitive Communication Deficits.
ERIC Educational Resources Information Center
Milton, Sandra B.
1988-01-01
Traumatically head-injured individuals who reach the higher stages of recovery typically exhibit cognitive communication disorders. Patient management requires, among other considerations, a focus on functional communication competency, an ecologic-systematic perspective, and use of compensatory techniques. A case study applies this management…
Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates
USDA-ARS?s Scientific Manuscript database
Caenorhabditis elegans, a bacterivorous soil nematode, lives in a complex environment that requires chemical communication for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied...
Verchot, Louis V.; Ward, Naomi L.; Belnap, Jayne; Bossio, Deborah; Coughenour, Michael; Gibson, John; Hanotte, Olivier; Muchiru, Andrew N.; Phillips, Susan L.; Steven, Blaire; Wall, Diana H.; Reid, Robin S.
2015-01-01
Generally, ecological research has considered the aboveground and belowground components of ecosystems separately. Consequently, frameworks for integrating the two components are not well developed. Integrating the microbial components into ecosystem ecology requires different approaches from those offered by plant ecology, partly because of the scales at which microbial processes operate and partly because of measurement constraints. Studies have begun to relate microbial community structure to ecosystem function. results suggest that excluding people and livestock from the MMNR, or preventing heavier livestock from grazing around settlements, may not change the general structure of the ecosystem (soils, plant structure), but can change the numbers and diversity of wildlife, nematodes and microbes in this ecosystem in subtle ways.
From Darwin's Origin of Species toward a theory of natural history.
Boero, Ferdinando
2015-01-01
Darwin is the father of evolutionary theory because he identified evolutionary patterns and, with Natural Selection, he ascertained the exquisitely ecological ultimate processes that lead to evolution. The proximate processes of evolution he proposed, however, predated the discovery of genetics, the backbone of modern evolutionary theory. The later discovery of the laws of inheritance by Mendel and the rediscovery of Mendel in the early 20th century led to two reforms of Darwinism: Neo-Darwinism and the Modern Synthesis (and subsequent refinements). If Darwin's evolutionary thought required much refinement, his ecological insight is still very modern. In the first edition of The Origin of Species, Darwin did not use either the word "evolution" or the word "ecology". "Ecology" was not coined until after the publication of the Origin. Evolution, for him, was the origin of varieties, then species, which he referred to as well-marked varieties, whereas, instead of using ecology, he used "the economy of nature". The Origin contains a high proportion of currently accepted ecological principles. Darwin labelled himself a naturalist. His discipline (natural history) was a blend of ecology and evolution in which he investigated both the patterns and the processes that determine the organization of life. Reductionist approaches, however, often keep the two disciplines separated from each other, undermining a full understanding of natural phenomena that might be favored by blending ecology and evolution through the development of a modern Theory of Natural History based on Darwin's vision of the study of life.
Wijermans, Nanda; Schlüter, Maja; Lindahl, Therese
2016-01-01
Cooperation amongst resource users holds the key to overcoming the social dilemma that characterizes community-based common-pool resource management. But is cooperation alone enough to achieve sustainable resource use? The short answer is no. Developing management strategies in a complex social-ecological environment also requires ecological knowledge and approaches to deal with perceived environmental uncertainty. Recent behavioral experimental research indicates variation in the degree to which a group of users can identify a sustainable exploitation level. In this paper, we identify social-ecological micro-foundations that facilitate cooperative sustainable common-pool resource use. We do so by using an agent-based model (ABM) that is informed by behavioral common-pool resource experiments. In these experiments, groups that cooperate do not necessarily manage the resource sustainably, but also over- or underexploit. By reproducing the patterns of the behavioral experiments in a qualitative way, the ABM represents a social-ecological explanation for the experimental observations. We find that the ecological knowledge of each group member cannot sufficiently explain the relationship between cooperation and sustainable resource use. Instead, the development of a sustainable exploitation level depends on the distribution of ecological knowledge among the group members, their influence on each other’s knowledge, and the environmental uncertainty the individuals perceive. The study provides insights about critical social-ecological micro-foundations underpinning collective action and sustainable resource management. These insights may inform policy-making, but also point to future research needs regarding the mechanisms of social learning, the development of shared management strategies and the interplay of social and ecological uncertainty. PMID:27556175
Schill, Caroline; Wijermans, Nanda; Schlüter, Maja; Lindahl, Therese
2016-01-01
Cooperation amongst resource users holds the key to overcoming the social dilemma that characterizes community-based common-pool resource management. But is cooperation alone enough to achieve sustainable resource use? The short answer is no. Developing management strategies in a complex social-ecological environment also requires ecological knowledge and approaches to deal with perceived environmental uncertainty. Recent behavioral experimental research indicates variation in the degree to which a group of users can identify a sustainable exploitation level. In this paper, we identify social-ecological micro-foundations that facilitate cooperative sustainable common-pool resource use. We do so by using an agent-based model (ABM) that is informed by behavioral common-pool resource experiments. In these experiments, groups that cooperate do not necessarily manage the resource sustainably, but also over- or underexploit. By reproducing the patterns of the behavioral experiments in a qualitative way, the ABM represents a social-ecological explanation for the experimental observations. We find that the ecological knowledge of each group member cannot sufficiently explain the relationship between cooperation and sustainable resource use. Instead, the development of a sustainable exploitation level depends on the distribution of ecological knowledge among the group members, their influence on each other's knowledge, and the environmental uncertainty the individuals perceive. The study provides insights about critical social-ecological micro-foundations underpinning collective action and sustainable resource management. These insights may inform policy-making, but also point to future research needs regarding the mechanisms of social learning, the development of shared management strategies and the interplay of social and ecological uncertainty.
Computational ecology as an emerging science
Petrovskii, Sergei; Petrovskaya, Natalia
2012-01-01
It has long been recognized that numerical modelling and computer simulations can be used as a powerful research tool to understand, and sometimes to predict, the tendencies and peculiarities in the dynamics of populations and ecosystems. It has been, however, much less appreciated that the context of modelling and simulations in ecology is essentially different from those that normally exist in other natural sciences. In our paper, we review the computational challenges arising in modern ecology in the spirit of computational mathematics, i.e. with our main focus on the choice and use of adequate numerical methods. Somewhat paradoxically, the complexity of ecological problems does not always require the use of complex computational methods. This paradox, however, can be easily resolved if we recall that application of sophisticated computational methods usually requires clear and unambiguous mathematical problem statement as well as clearly defined benchmark information for model validation. At the same time, many ecological problems still do not have mathematically accurate and unambiguous description, and available field data are often very noisy, and hence it can be hard to understand how the results of computations should be interpreted from the ecological viewpoint. In this scientific context, computational ecology has to deal with a new paradigm: conventional issues of numerical modelling such as convergence and stability become less important than the qualitative analysis that can be provided with the help of computational techniques. We discuss this paradigm by considering computational challenges arising in several specific ecological applications. PMID:23565336
Biosphere Lost: Rethinking the Study of Global Environmental Systems
NASA Astrophysics Data System (ADS)
Foley, J. A.
2008-12-01
It is fair to say that our planet's most precious resource is land. Land is the source of the vast majority of our food and freshwater, nearly all of our fiber and raw materials, and many other important goods and services. It is also our home. But our relationship to the land has been dramatically changing over the history of our species, mainly through the invention and evolution of agriculture. Today, with the emergence of modern agricultural practices, coupled with the population growth and technological developments of recent centuries, we have transformed a staggering amount of the Earth's surface into highly managed landscapes. Even more startling: the widespread use of irrigation and chemical fertilizers has fundamentally altered the flows of water and nutrients across large regions of the globe. These modifications to the land have driven fundamental changes to the ecology of our planet. Even the effects of future climate change may not have such a major, transformative effect on the environment and on human society as human land use practices. However, despite the importance of land use in the global environment, we still know relatively little about how it affects ecological systems across local, regional and global scales. Here I will discuss new approaches to the study of a human-dominated biosphere. This work requires new, interdisciplinary research to help us understand the changing relationships between human actions and Earth's complex ecological systems. It also requires integrating this latest science into real-world decision- making and public policy, with the ultimate goal of managing our planet's ecological systems sustainably into the future.
Competition for vitamin B1 (thiamin) structures numerous ecological interactions.
Kraft, Clifford E; Angert, Esther R
2017-06-01
Thiamin (vitamin B1) is a cofactor required for essential biochemical reactions in all living organisms, yet free thiamin is scarce in the environment. The diversity of biochemical pathways involved in the acquisition, degradation, and synthesis of thiamin indicates that organisms have evolved numerous ecological strategies for meeting this nutritional requirement. In this review we synthesize information from multiple disciplines to show how the complex biochemistry of thiamin influences ecological outcomes of interactions between organisms in environments ranging from the open ocean and the Australian outback to the gastrointestinal tract of animals. We highlight population and ecosystem responses to the availability or absence of thiamin. These include widespread mortality of fishes, birds, and mammals, as well as the thiamin-dependent regulation of ocean productivity. Overall, we portray thiamin biochemistry as the foundation for molecularly mediated ecological interactions that influence survival and abundance of a vast array of organisms.
Ecological Challenges for Closed Systems
NASA Astrophysics Data System (ADS)
Nelson, Mark; Dempster, William; Allen, John P.
2012-07-01
Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, the sustaining of healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and measures and options which may be necessary to ensure long-term operation of closed ecological systems.
Key ecological challenges for closed systems facilities
NASA Astrophysics Data System (ADS)
Nelson, Mark; Dempster, William F.; Allen, John P.
2013-07-01
Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.
The Ecological Footprint: A New Way To Look at Our Impact on the Planet.
ERIC Educational Resources Information Center
Turner, Tim
1995-01-01
Describes a tool used at an outdoor school to demonstrate human impact on ecology. The ecological footprint is a measure in hectares of the land used by an individual to meet needs and receive waste materials, or of the land required to sustain a city, region or country. The footprint helps students understand the concept of sustainability. (AIM)
Binford, Michael W.; Lee, Tae Jeong; Townsend, Robert M.
2004-01-01
Environmental variability is an important risk factor in rural agricultural communities. Testing models requires empirical sampling that generates data that are representative in both economic and ecological domains. Detrended correspondence analysis of satellite remote sensing data were used to design an effective low-cost sampling protocol for a field study to create an integrated socioeconomic and ecological database when no prior information on ecology of the survey area existed. We stratified the sample for the selection of tambons from various preselected provinces in Thailand based on factor analysis of spectral land-cover classes derived from satellite data. We conducted the survey for the sampled villages in the chosen tambons. The resulting data capture interesting variations in soil productivity and in the timing of good and bad years, which a purely random sample would likely have missed. Thus, this database will allow tests of hypotheses concerning the effect of credit on productivity, the sharing of idiosyncratic risks, and the economic influence of environmental variability. PMID:15254298
Extending nonlinear analysis to short ecological time series.
Hsieh, Chih-hao; Anderson, Christian; Sugihara, George
2008-01-01
Nonlinearity is important and ubiquitous in ecology. Though detectable in principle, nonlinear behavior is often difficult to characterize, analyze, and incorporate mechanistically into models of ecosystem function. One obvious reason is that quantitative nonlinear analysis tools are data intensive (require long time series), and time series in ecology are generally short. Here we demonstrate a useful method that circumvents data limitation and reduces sampling error by combining ecologically similar multispecies time series into one long time series. With this technique, individual ecological time series containing as few as 20 data points can be mined for such important information as (1) significantly improved forecast ability, (2) the presence and location of nonlinearity, and (3) the effective dimensionality (the number of relevant variables) of an ecological system.
Studies on maximum yield of wheat for the controlled environments of space
NASA Technical Reports Server (NTRS)
Bugbee, B. G.; Salisbury, F. B.
1986-01-01
The economic feasibility of using food-producing crop plants in a closed ecological Life-Support System (CELSS) will ultimately depend on the energy and area (or volume) required to provide the nutritional requirements for each person. Energy and area requirements are, to some extent, inversely related; that is, an increased energy input results in a decreased area requirement and vice versa. A major goal of the research effort was to determine the controlled-environment good-production efficiency of wheat per unit area, per unit time, and per unit energy input.
Flemish consumer attitudes towards more sustainable food choices.
Vanhonacker, Filiep; Van Loo, Ellen J; Gellynck, Xavier; Verbeke, Wim
2013-03-01
Intensive agricultural practices and current western consumption patterns are associated with increased ecological pressure. One way to reduce the ecological impact could be a shift to more sustainable food choices. This study investigates consumer opinions towards a series of food choices with a lower ecological impact. The investigated food choices range from well-known meat substitutes to alternatives which are more radical or innovative and that require an adaptation of food habits and cultural patterns. Results are obtained through a survey among 221 Flemish respondents in Spring 2011. Many consumers underestimate the ecological impact of animal production. Well-known alternatives such as organic meat, moderation of meat consumption and sustainable fish are accepted, although willingness to pay is clearly lower than willingness to consume. Consumers are more reluctant to alternatives that (partly) ban or replace meat in the meal. Opportunities of introducing insects currently appear to be non-existent. Five consumer segments were identified based on self-evaluated ecological footprint and personal relevance of the ecological footprint. The segments were termed Conscious, Active, Unwilling, Ignorant and Uncertain. A profile in terms of demographics, attitudinal and behavioral characteristics is developed for each segments, and conclusions with respect to opportunities for sustainable food choices are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sustainability of utility-scale solar energy: Critical environmental concepts
NASA Astrophysics Data System (ADS)
Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.
2017-12-01
Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.
Man as the main component of the closed ecological system of the spacecraft or planetary station.
Parin, V V; Adamovich, B A
1968-01-01
Current life-support systems of the spacecraft provide human requirements for food, water and oxygen only. Advanced life-support systems will involve man as their main component and will ensure completely his material and energy requirements. The design of individual components of such systems will assure their entire suitability and mutual control effects. Optimization of the performance of the crew and ecological system, on the basis of the information characterizing their function, demands efficient methods of collection and treatment of the information obtained through wireless recording of physiological parameters and their automatic treatment. Peculiarities of interplanetary missions and planetary stations make it necessary to conform the schedule of physiological recordings with the work-and-rest cycle of the space crew and inertness of components of the ecological system, especially of those responsible for oxygen regeneration. It is rational to model ecological systems and their components, taking into consideration the correction effect of the information on the health conditions and performance of the crewmen. Wide application of physiological data will allow the selection of optimal designs and sharply increase reliability of ecological systems.
The ecological - Societal underpinnings of Everglades restoration
Sklar, Fred H.; Chimney, M.J.; Newman, S.; McCormick, P.; Gawlik, D.; Miao, S.; McVoy, C.; Said, W.; Newman, J.; Coronado, C.; Crozier, G.; Korvela, M.; Rutchey, K.
2005-01-01
The biotic integrity of the Florida Everglades, a wetland of immense international importance, is threatened as a result of decades of human manipulation for drainage and development. Past management of the system only exacerbated the problems associated with nutrient enrichment and disruption of regional hydrology. The Comprehensive Everglades Restoration Plan (CERP) now being implemented by Federal and State governments is an attempt to strike a balance between the needs of the environment with the complex management of water and the seemingly unbridled economic growth of southern Florida. CERP is expected to reverse negative environmental trends by "getting the water right", but successful Everglades restoration will require both geochemical and hydrologic intervention on a massive scale. This will produce ecological trade-offs and will require new and innovative scientific measures to (1) reduce total phosphorus concentrations within the remaining marsh to 10 ??g/L or lower; (2) quantify and link ecological benefits to the restoration of depths, hydroperiods, and flow velocities; and (3) compensate for ecological, economic, and hydrologic uncertainties in the CERP through adaptive management. ?? The Ecological Society of America.
Population Genetics and Demography Unite Ecology and Evolution.
Lowe, Winsor H; Kovach, Ryan P; Allendorf, Fred W
2017-02-01
The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology-evolution (eco-evo) interactions requires explicitly addressing population-level processes - genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco-evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimating ecosystem service changes as a precursor to modeling
EPA's Future Midwestern Landscapes Study will project changes in ecosystem services (ES) for alternative future policy scenarios in the Midwestern U.S. Doing so for detailed landscapes over large spatial scales will require serial application of economic and ecological models. W...
ECOLOGICAL POLICY: DEFINING APPROPRIATE ROLES FOR SCIENCE AND SCIENTISTS
Effectively resolving the typical ecological, natural resource, or environmental policy issue requires an array of scientific information as part of the input provided to decision-makers. In my experience, the ability of scientists (and scientific information) to constructively ...
Meta-analysis in applied ecology.
Stewart, Gavin
2010-02-23
This overview examines research synthesis in applied ecology and conservation. Vote counting and pooling unweighted averages are widespread despite the superiority of syntheses based on weighted combination of effects. Such analyses allow exploration of methodological uncertainty in addition to consistency of effects across species, space and time, but exploring heterogeneity remains controversial. Meta-analyses are required to generalize in ecology, and to inform evidence-based decision-making, but the more sophisticated statistical techniques and registers of research used in other disciplines must be employed in ecology to fully realize their benefits.
LaDeau, Shannon L; Glass, Gregory E; Hobbs, N Thompson; Latimer, Andrew; Ostfeld, Richard S
2011-07-01
Ecologists worldwide are challenged to contribute solutions to urgent and pressing environmental problems by forecasting how populations, communities, and ecosystems will respond to global change. Rising to this challenge requires organizing ecological information derived from diverse sources and formally assimilating data with models of ecological processes. The study of infectious disease has depended on strategies for integrating patterns of observed disease incidence with mechanistic process models since John Snow first mapped cholera cases around a London water pump in 1854. Still, zoonotic and vector-borne diseases increasingly affect human populations, and methods used to successfully characterize directly transmitted diseases are often insufficient. We use four case studies to demonstrate that advances in disease forecasting require better understanding of zoonotic host and vector populations, as well of the dynamics that facilitate pathogen amplification and disease spillover into humans. In each case study, this goal is complicated by limited data, spatiotemporal variability in pathogen transmission and impact, and often, insufficient biological understanding. We present a conceptual framework for data-model fusion in infectious disease research that addresses these fundamental challenges using a hierarchical state-space structure to (1) integrate multiple data sources and spatial scales to inform latent parameters, (2) partition uncertainty in process and observation models, and (3) explicitly build upon existing ecological and epidemiological understanding. Given the constraints inherent in the study of infectious disease and the urgent need for progress, fusion of data and expertise via this type of conceptual framework should prove an indispensable tool.
Phytotechnology Technical and Regulatory Guidance and Decision Trees, Revised
2009-02-01
upon planting . In other cases, it may require several seasons before the plant can interact with a contaminated zone at depth. Furthermore, it may...potential ecological exposures posed by the species planted need to be considered. The level of detail required is site specific and varies with the...to be assessed as well. However, the ecological exposure may not be directly from the consumption of the plant . Specifically, the U.S. Environmental
Economic and ecological outcomes of flexible biodiversity offset systems.
Habib, Thomas J; Farr, Daniel R; Schneider, Richard R; Boutin, Stan
2013-12-01
The commonly expressed goal of biodiversity offsets is to achieve no net loss of specific biological features affected by development. However, strict equivalency requirements may complicate trading of offset credits, increase costs due to restricted offset placement options, and force offset activities to focus on features that may not represent regional conservation priorities. Using the oil sands industry of Alberta, Canada, as a case study, we evaluated the economic and ecological performance of alternative offset systems targeting either ecologically equivalent areas (vegetation types) or regional conservation priorities (caribou and the Dry Mixedwood natural subregion). Exchanging dissimilar biodiversity elements requires assessment via a generalized metric; we used an empirically derived index of biodiversity intactness to link offsets with losses incurred by development. We considered 2 offset activities: land protection, with costs estimated as the net present value of profits of petroleum and timber resources to be paid as compensation to resource tenure holders, and restoration of anthropogenic footprint, with costs estimated from existing restoration projects. We used the spatial optimization tool MARXAN to develop hypothetical offset networks that met either the equivalent-vegetation or conservation-priority targets. Networks that required offsetting equivalent vegetation cost 2-17 times more than priority-focused networks. This finding calls into question the prudence of equivalency-based systems, particularly in relatively undeveloped jurisdictions, where conservation focuses on limiting and directing future losses. Priority-focused offsets may offer benefits to industry and environmental stakeholders by allowing for lower-cost conservation of valued ecological features and may invite discussion on what land-use trade-offs are acceptable when trading biodiversity via offsets. Resultados Económicos y Ecológicos de Sistemas de Compensación de Biodiversidad Flexible Habib et al. © 2013 Society for Conservation Biology.
Bats and emerging zoonoses: henipaviruses and SARS.
Field, H E
2009-08-01
Nearly 75% of all emerging infectious diseases (EIDs) that impact or threaten human health are zoonotic. The majority have spilled from wildlife reservoirs, either directly to humans or via domestic animals. The emergence of many can be attributed to predisposing factors such as global travel, trade, agricultural expansion, deforestation/habitat fragmentation, and urbanization; such factors increase the interface and/or the rate of contact between human, domestic animal, and wildlife populations, thereby creating increased opportunities for spillover events to occur. Infectious disease emergence can be regarded as primarily an ecological process. The epidemiological investigation of EIDs associated with wildlife requires a trans-disciplinary approach that includes an understanding of the ecology of the wildlife species, and an understanding of human behaviours that increase risk of exposure. Investigations of the emergence of Nipah virus in Malaysia in 1999 and severe acute respiratory syndrome (SARS) in China in 2003 provide useful case studies. The emergence of Nipah virus was associated with the increased size and density of commercial pig farms and their encroachment into forested areas. The movement of pigs for sale and slaughter in turn led to the rapid spread of infection to southern peninsular Malaysia, where the high-density, largely urban pig populations facilitated transmission to humans. Identifying the factors associated with the emergence of SARS in southern China requires an understanding of the ecology of infection both in the natural reservoir and in secondary market reservoir species. A necessary extension of understanding the ecology of the reservoir is an understanding of the trade, and of the social and cultural context of wildlife consumption. Emerging infectious diseases originating from wildlife populations will continue to threaten public health. Mitigating and managing the risk requires an appreciation of the connectedness between human, livestock and wildlife health, and of the factors and processes that disrupt the balance.
Describing Strategies Used by Elite, Intermediate, and Novice Ice Hockey Referees
ERIC Educational Resources Information Center
Hancock, David J.; Ste-Marie, Diane M.
2014-01-01
Much is known about sport officials' decisions (e.g., anticipation, visual search, and prior experience). Comprehension of the entire decision process, however, requires an ecologically valid examination. To address this, we implemented a 2-part study using an expertise paradigm with ice hockey referees. Purpose: Study 1 explored the…
Assessment of sampling stability in ecological applications of discriminant analysis
Williams, B.K.; Titus, K.
1988-01-01
A simulation study was undertaken to assess the sampling stability of the variable loadings in linear discriminant function analysis. A factorial design was used for the factors of multivariate dimensionality, dispersion structure, configuration of group means, and sample size. A total of 32,400 discriminant analyses were conducted, based on data from simulated populations with appropriate underlying statistical distributions. A review of 60 published studies and 142 individual analyses indicated that sample sizes in ecological studies often have met that requirement. However, individual group sample sizes frequently were very unequal, and checks of assumptions usually were not reported. The authors recommend that ecologists obtain group sample sizes that are at least three times as large as the number of variables measured.
The Use of Virtual Reality in the Study of People's Responses to Violent Incidents.
Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel
2009-01-01
This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call 'plausibility' - including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents.
The Use of Virtual Reality in the Study of People's Responses to Violent Incidents
Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel
2009-01-01
This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call ‘plausibility’ – including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents. PMID:20076762
Bretagnolle, Vincent; Berthet, Elsa; Gross, Nicolas; Gauffre, Bertrand; Plumejeaud, Christine; Houte, Sylvie; Badenhausser, Isabelle; Monceau, Karine; Allier, Fabrice; Monestiez, Pascal; Gaba, Sabrina
2018-06-15
Agriculture is currently facing unprecedented challenges: ensuring food, fiber and energy production in the face of global change, maintaining the economic performance of farmers and preserving natural resources such as biodiversity and associated key ecosystem services for sustainable agriculture. Addressing these challenges requires innovative landscape scale farming systems that account for changing economic and environmental targets. These novel agricultural systems need to be recognized, accepted and promoted by all stakeholders, including local residents, and supported by public policies. Agroecosystems should be considered as socio-ecological systems and alternative farming systems should be based on ecological principles while taking societal needs into account. This requires an in-depth knowledge of the multiple interactions between sociological and ecological dynamics. Long Term Socio-Ecological Research platforms (LTSER) are ideal for acquiring this knowledge as they (i) are not constrained by traditional disciplinary boundaries, (ii) operate at a large spatial scale involving all stakeholders, and (iii) use systemic approaches to investigate biodiversity and ecosystem services. This study presents the socio-ecological research strategy from the LTSER "Zone Atelier Plaine & Val de Sèvre" (ZA PVS), a large study area where data has been sampled since 1994. Its global aim is to identify effective solutions for agricultural development and the conservation of biodiversity in farmlands. Three main objectives are targeted by the ZAPVS. The first objective is intensive monitoring of landscape features, the main taxa present and agricultural practices. The second objective is the experimental investigation, in real fields with local farmers, of important ecosystem functions and services, in relation to pesticide use, crop production and farming socio-economic value. The third aim is to involve stakeholders through participatory research, citizen science and the dissemination of scientific results. This paper underlines the relevance of LTSERs for addressing agricultural challenges, while acknowledging that there are some yet unsolved key challenges. Copyright © 2018 Elsevier B.V. All rights reserved.
Abdi, Reza; Yasi, Mehdi
2015-01-01
The assessment of environmental flows in rivers is of vital importance for preserving riverine ecosystem processes. This paper addresses the evaluation of environmental flow requirements in three reaches along a typical perennial river (the Zab transboundary river, in north-west Iran), using different hydraulic, hydrological and ecological methods. The main objective of this study came from the construction of three dams and inter-basin transfer of water from the Zab River to the Urmia Lake. Eight hydrological methods (i.e. Tennant, Tessman, flow duration curve analysis, range of variability approach, Smakhtin, flow duration curve shifting, desktop reserve and 7Q2&10 (7-day low flow with a 2- and 10-year return period)); two hydraulic methods (slope value and maximum curvature); and two habitat simulation methods (hydraulic-ecologic, and Q Equation based on water quality indices) were used. Ecological needs of the riverine key species (mainly Barbus capito fish), river geometries, natural flow regime and the environmental status of river management were the main indices for determining the minimum flow requirements. The results indicate that the order of 35%, 17% and 18% of the mean annual flow are to be maintained for the upper, middle and downstream river reaches, respectively. The allocated monthly flow rates in the three Dams steering program are not sufficient to preserve the Zab River life.
USGS research on Florida's isolated freshwater wetlands
Torres, Arturo E.; Haag, Kim H.; Lee, Terrie M.; Metz, Patricia A.
2011-01-01
The U.S. Geological Survey (USGS) has studied wetland hydrology and its effects on wetland health and ecology in Florida since the 1990s. USGS wetland studies in Florida and other parts of the Nation provide resource managers with tools to assess current conditions and regional trends in wetland resources. Wetland hydrologists in the USGS Florida Water Science Center (FLWSC) have completed a number of interdisciplinary studies assessing the hydrology, ecology, and water quality of wetlands. These studies have expanded the understanding of wetland hydrology, ecology, and related processes including: (1) the effects of cyclical changes in rainfall and the influence of evapotranspiration; (2) surface-water flow, infiltration, groundwater movement, and groundwater and surfacewater interactions; (3) the effects of water quality and soil type; (4) the unique biogeochemical components of wetlands required to maintain ecosystem functions; (5) the effects of land use and other human activities; (6) the influences of algae, plants, and invertebrates on environmental processes; and (7) the effects of seasonal variations in animal communities that inhabit or visit Florida wetlands and how wetland function responds to changes in the plant community.
Davies, T Jonathan; Urban, Mark C; Rayfield, Bronwyn; Cadotte, Marc W; Peres-Neto, Pedro R
2016-09-01
Recent studies have supported a link between phylogenetic diversity and various ecological properties including ecosystem function. However, such studies typically assume that phylogenetic branches of equivalent length are more or less interchangeable. Here we suggest that there is a need to consider not only branch lengths but also their placement on the phylogeny. We demonstrate how two common indices of network centrality can be used to describe the evolutionary distinctiveness of network elements (nodes and branches) on a phylogeny. If phylogenetic diversity enhances ecosystem function via complementarity and the representation of functional diversity, we would predict a correlation between evolutionary distinctiveness of network elements and their contribution to ecosystem process. In contrast, if one or a few evolutionary innovations play key roles in ecosystem function, the relationship between evolutionary distinctiveness and functional contribution may be weak or absent. We illustrate how network elements associated with high functional contribution can be identified from regressions between phylogenetic diversity and productivity using a well-known empirical data set on plant productivity from the Cedar Creek Long-Term Ecological Research. We find no association between evolutionary distinctiveness and ecosystem functioning, but we are able to identify phylogenetic elements associated with species of known high functional contribution within the Fabaceae. Our perspective provides a useful guide in the search for ecological traits linking diversity and ecosystem function, and suggests a more nuanced consideration of phylogenetic diversity is required in the conservation and biodiversity-ecosystem-function literature. © 2016 by the Ecological Society of America.
Nautiyal, Sunil; Kaechele, Harald; Umesh Babu, M S; Tikhile, Pavan; Baksi, Sangeeta
2017-04-01
This study was carried out to understand the ecological and economic sustainability of floriculture and other main crops in Indian agro-ecosystems. The cultivation practices of four major flower crops, namely Jasminum multiflorum, Crossandra infundibuliformis, Chrysanthemum and Tagetes erecta, were studied in detail. The production cost of flowers in terms of energy was calculated to be 99,622-135,996 compared to 27,681-69,133 MJ ha -1 for the main crops, namely Oryza sativa, Eleusine coracana, Zea mays and Sorghum bicolor. The highest-energy input amongst the crops was recorded for Z. mays (69,133 MJ ha -1 ) as this is a resource-demanding crop. However, flower cultivation requires approximately twice the energy required for the cultivation of Z. mays. In terms of both energy and monetary inputs, flower cultivation needs two to three times the requirements of the main crops cultivated in the region. The monetary inputs for main crop cultivation were calculated to be ₹ 27,349 to ₹ 46,930 as compared to flower crops (₹ 62,540 to ₹ 144,355). Floriculture was found to be more efficient in monetary terms when compared to the main crops cultivated in the region. However, the energy efficiency of flower crops is lower than that of the main crops, and the energy output from flower cultivation was found to be declining in tropical agro-ecosystems in India. Amongst the various inputs, farmyard manure accounts for the highest proportion, and for its preparation, most of the raw material comes from the surrounding ecosystems. Thus, flower cultivation has a direct impact on the ecosystem resource flow. Therefore, keeping the economic and environmental sustainability in view, this study indicates that a more field-based research is required to frame appropriate policies for flower cultivation to achieve sustainable socio-ecological development.
Island biology: looking towards the future
Kueffer, Christoph; Drake, Donald R.; Fernández-Palacios, José María
2014-01-01
Oceanic islands are renowned for the profound scientific insights that their fascinating biotas have provided to biologists during the past two centuries. Research presented at Island Biology 2014—an international conference, held in Honolulu, Hawaii (7–11 July 2014), which attracted 253 presenters and 430 participants from at least 35 countries1—demonstrated that islands are reclaiming a leading role in ecology and evolution, especially for synthetic studies at the intersections of macroecology, evolution, community ecology and applied ecology. New dynamics in island biology are stimulated by four major developments. We are experiencing the emergence of a truly global and comprehensive island research community incorporating previously neglected islands and taxa. Macroecology and big-data analyses yield a wealth of global-scale synthetic studies and detailed multi-island comparisons, while other modern research approaches such as genomics, phylogenetic and functional ecology, and palaeoecology, are also dispersing to islands. And, increasingly tight collaborations between basic research and conservation management make islands places where new conservation solutions for the twenty-first century are being tested. Islands are home to a disproportionate share of the world's rare (and extinct) species, and there is an urgent need to develop increasingly collaborative and innovative research to address their conservation requirements. PMID:25339655
EVALUATING MACROINVERTEBRATE COMMUNITY ...
Since 2010, new construction in California is required to include stormwater detention and infiltration that is designed to capture rainfall from the 85th percentile of storm events in the region, preferably through green infrastructure. This study used recent macroinvertebrate community monitoring data to determine the ecological threshold for percent impervious cover prior to large scale adoption of green infrastructure using Threshold Indicator Taxa Analysis (TITAN). TITAN uses an environmental gradient and biological community data to determine individual taxa change points with respect to changes in taxa abundance and frequency across that gradient. Individual taxa change points are then aggregated to calculate the ecological threshold. This study used impervious cover data from National Land Cover Datasets and macroinvertebrate community data from California Environmental Data Exchange Network and Southern California Coastal Water Research Project. Preliminary TITAN runs for California’s Chaparral region indicated that both increasing and decreasing taxa had ecological thresholds of <1% watershed impervious cover. Next, TITAN will be used to determine shifts in the ecological threshold after the implementation of green infrastructure on a large scale. This presentation for the Society for Freshwater Scientists will discuss initial evaluation of community and taxa-specific thresholds of impairment for macroinvertebrates in California streams along
MANAGING TROUBLED DATA: COASTAL DATA PARTNERSHIPS SMOOTH DATA INTEGRATION
Understanding the ecology, condition, and changes of coastal areas requires data from many sources. Broad-scale and long-term ecological questions, such as global climate change, biodiversity, and cumulative impacts of human activities, must be addressed with databases that integ...
FIFTH NHEERL SYMPOSIUM FLYER -- INDICATORS IN HEALTH AND ECOLOGICAL RISK ASSESSMENT
Announcement for NHEERL Fifth Symposium - Indicators in Health and Ecological Risk Assessment. The purpose of the symposium is to address assessment of risk to public health or environmental resources which requires competent characterization of stressors and corresponding effec...
FIFTH NHEERL SYMPOSIUM POSTER -- INDICATORS IN HEALTH AND ECOLOGICAL RISK ASSESSMENT
Poster for announcing NHEERL Fifth Symposium - Indicators in Health and Ecological Risk Assessment. The purpose of the symposium is to address assessment of risk to public health or environmental resources which requires competent characterization of stressors and corresponding ...
Spatially balanced survey designs for natural resources
Ecological resource monitoring programs typically require the use of a probability survey design to select locations or entities to be physically sampled in the field. The ecological resource of interest, the target population, occurs over a spatial domain and the sample selecte...
ECOLOGICAL POLICY: DEFINING APPROPRIATE ROLES FOR SCIENCE AND SCIENTISTS - 2007
Resolving typical ecological policy issues requires an array of scientific information as part of the input provided to decision-makers. The ability of scientists (and scientific information) to constructively inform policy deliberations diminishes when what is offered as "scienc...
ECOLOGICAL POLICY: DEFINING APPROPRIATE ROLES FOR SCIENCE AND SCIENTISTS - 8/2006
Resolving many ecological policy issues requires an array of scientific information. The ability of scientists (and scientific information) to constructively inform policy deliberations diminishes when what is offered as "science" is inculcated with personal policy preferences. S...
Application of a simplified ecological footprint at a regional scale
Ecological Footprint (EF) is a commonly used metric of environmental sustainability because it is straightforward in theory and easy to conceptualize. EF attempts to capture anthropogenic influence on resources by identifying the amount of biologically-productive land required t...
DISTURBANCE PATTERNS IN A SOCIO-ECOLOGICAL SYSTEM AT MULTIPLE SCALES
Ecological systems with hierarchical organization and non-equilibrium dynamics require multiple-scale analyses to comprehend how a system is structured and to formulate hypotheses about regulatory mechanisms. Characteristic scales in real landscapes are determined by, or at least...
Structural Equation Modeling: Applications in ecological and evolutionary biology research
Pugesek, Bruce H.; von Eye, Alexander; Tomer, Adrian
2003-01-01
This book presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems. Supplementary information can be found at the authors website, http://www.jamesbgrace.com/. Details why multivariate analyses should be used to study ecological systems Exposes unappreciated weakness in many current popular analyses Emphasizes the future methodological developments needed to advance our understanding of ecological systems.
[Ecological security of wastewater treatment processes: a review].
Yang, Sai; Hua, Tao
2013-05-01
Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.
Vegetation Demographics in Earth System Models: a review of progress and priorities
Fisher, Rosie A.; Koven, Charles D.; Anderegg, William R. L.; ...
2017-09-18
Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). Furthermore, these developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. We review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections butmore » also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We also argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.« less
Vegetation Demographics in Earth System Models: a review of progress and priorities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Rosie A.; Koven, Charles D.; Anderegg, William R. L.
Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). Furthermore, these developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. We review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections butmore » also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We also argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.« less
Hydrological modeling of upper Indus Basin and assessment of deltaic ecology
USDA-ARS?s Scientific Manuscript database
Managing water resources is mostly required at watershed scale where the complex hydrology processes and interactions linking land surface, climatic factors and human activities can be studied. Geographical Information System based watershed model; Soil and Water Assessment Tool (SWAT) is applied f...
The US Environmental Protection Agency has undertaken a national research effort (Ecological Research Program) involving approximately 200 scientists, nation-wide to develop the science breadth and depth required to incorporate ecosystem services into environmental policy decisio...
Range bagging: a new method for ecological niche modelling from presence-only data
Drake, John M.
2015-01-01
The ecological niche is the set of environments in which a population of a species can persist without introduction of individuals from other locations. A good mathematical or computational representation of the niche is a prerequisite to addressing many questions in ecology, biogeography, evolutionary biology and conservation. A particularly challenging question for ecological niche modelling is the problem of presence-only modelling. That is, can an ecological niche be identified from records drawn only from the set of niche environments without records from non-niche environments for comparison? Here, I introduce a new method for ecological niche modelling from presence-only data called range bagging. Range bagging draws on the concept of a species' environmental range, but was inspired by the empirical performance of ensemble learning algorithms in other areas of ecological research. This paper extends the concept of environmental range to multiple dimensions and shows that range bagging is computationally feasible even when the number of environmental dimensions is large. The target of the range bagging base learner is an environmental tolerance of the species in a projection of its niche and is therefore an ecologically interpretable property of a species' biological requirements. The computational complexity of range bagging is linear in the number of examples, which compares favourably with the main alternative, Qhull. In conclusion, range bagging appears to be a reasonable choice for niche modelling in applications in which a presence-only method is desired and may provide a solution to problems in other disciplines where one-class classification is required, such as outlier detection and concept learning. PMID:25948612
Range bagging: a new method for ecological niche modelling from presence-only data.
Drake, John M
2015-06-06
The ecological niche is the set of environments in which a population of a species can persist without introduction of individuals from other locations. A good mathematical or computational representation of the niche is a prerequisite to addressing many questions in ecology, biogeography, evolutionary biology and conservation. A particularly challenging question for ecological niche modelling is the problem of presence-only modelling. That is, can an ecological niche be identified from records drawn only from the set of niche environments without records from non-niche environments for comparison? Here, I introduce a new method for ecological niche modelling from presence-only data called range bagging. Range bagging draws on the concept of a species' environmental range, but was inspired by the empirical performance of ensemble learning algorithms in other areas of ecological research. This paper extends the concept of environmental range to multiple dimensions and shows that range bagging is computationally feasible even when the number of environmental dimensions is large. The target of the range bagging base learner is an environmental tolerance of the species in a projection of its niche and is therefore an ecologically interpretable property of a species' biological requirements. The computational complexity of range bagging is linear in the number of examples, which compares favourably with the main alternative, Qhull. In conclusion, range bagging appears to be a reasonable choice for niche modelling in applications in which a presence-only method is desired and may provide a solution to problems in other disciplines where one-class classification is required, such as outlier detection and concept learning.
Population genetics and demography unite ecology and evolution
Lowe, Winsor H.; Kovach, Ryan; Allendorf, Fred W.
2017-01-01
The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology–evolution (eco–evo) interactions requires explicitly addressing population-level processes – genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco–evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself.
Baqar, Mujtaba; Sadef, Yumna; Ahmad, Sajid Rashid; Mahmood, Adeel; Qadir, Abdul; Aslam, Iqra; Li, Jun; Zhang, Gan
2017-12-01
Ecological risk assessment, spatio-temporal variation, and source apportionment of polychlorinated biphenyls (PCBs) were studied in surface sediments and water from River Ravi and its three northern tributaries (Nullah Deg, Nullah Basantar, and Nullah Bein) in Pakistan. In total, 35 PCB congeners were analyzed along 27 sampling stations in pre-monsoon and post-monsoon seasons. The ∑ 35 PCB concentration ranged from 1.06 to 95.76 ng/g (dw) in sediments and 1.94 to 11.66 ng/L in water samples, with hexa-CBs and tetra-CBs as most dominant homologs in sediments and water matrixes, respectively. The ∑ 8 DL-PCB levels were 0.33-22.13 ng/g (dw) and 0.16-1.95 ng/L in sediments and water samples, respectively. The WHO-toxic equivalent values were ranged from 1.18 × 10 -6 to 0.012 ng/L and 1.8 × 10 -6 to 0.031 ng/g in water and sediments matrixes, respectively. The ecological risk assessment indicates considerable potential ecological risk during pre-monsoon season ([Formula: see text] = 95.17) and moderate potential ecological risk during post-monsoon season ([Formula: see text] = 49.11). The industrial and urban releases were recognized as key ongoing sources for high PCB levels in environment. Therefore, we recommend more freshwater ecological studies to be conducted in the study area and firm regulatory initiatives are required to be taken in debt to the Stockholm Convention, 2001 to cop up with PCB contamination on emergency basis.
Ecological niche modelling of bank voles in Western Europe.
Amirpour Haredasht, Sara; Barrios, Miguel; Farifteh, Jamshid; Maes, Piet; Clement, Jan; Verstraeten, Willem W; Tersago, Katrien; Van Ranst, Marc; Coppin, Pol; Berckmans, Daniel; Aerts, Jean-Marie
2013-01-28
The bank vole (Myodes glareolus) is the natural host of Puumala virus (PUUV) in vast areas of Europe. PUUV is one of the hantaviruses which are transmitted to humans by infected rodents. PUUV causes a general mild form of hemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE). Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover influences disease transmission by controlling both the spatial distribution of vectors or hosts, as well as by facilitating the human contact with them. In this study the use of ecological niche modelling (ENM) for predicting the geographical distribution of bank vole population on the basis of spatial climate information is tested. The Genetic Algorithm for Rule-set Prediction (GARP) is used to model the ecological niche of bank voles in Western Europe. The meteorological data, land cover types and geo-referenced points representing the locations of the bank voles (latitude/longitude) in the study area are used as the primary model input value. The predictive accuracy of the bank vole ecologic niche model was significant (training accuracy of 86%). The output of the GARP models based on the 50% subsets of points used for testing the model showed an accuracy of 75%. Compared with random models, the probability of such high predictivity was low (χ(2) tests, p < 10(-6)). As such, the GARP models were predictive and the used ecologic niche model indeed indicates the ecologic requirements of bank voles. This approach successfully identified the areas of infection risk across the study area. The result suggests that the niche modelling approach can be implemented in a next step towards the development of new tools for monitoring the bank vole's population.
Ecological Niche Modelling of Bank Voles in Western Europe
Amirpour Haredasht, Sara; Barrios, Miguel; Farifteh, Jamshid; Maes, Piet; Clement, Jan; Verstraeten, Willem W.; Tersago, Katrien; Van Ranst, Marc; Coppin, Pol; Berckmans, Daniel; Aerts, Jean-Marie
2013-01-01
The bank vole (Myodes glareolus) is the natural host of Puumala virus (PUUV) in vast areas of Europe. PUUV is one of the hantaviruses which are transmitted to humans by infected rodents. PUUV causes a general mild form of hemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE). Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover influences disease transmission by controlling both the spatial distribution of vectors or hosts, as well as by facilitating the human contact with them. In this study the use of ecological niche modelling (ENM) for predicting the geographical distribution of bank vole population on the basis of spatial climate information is tested. The Genetic Algorithm for Rule-set Prediction (GARP) is used to model the ecological niche of bank voles in Western Europe. The meteorological data, land cover types and geo-referenced points representing the locations of the bank voles (latitude/longitude) in the study area are used as the primary model input value. The predictive accuracy of the bank vole ecologic niche model was significant (training accuracy of 86%). The output of the GARP models based on the 50% subsets of points used for testing the model showed an accuracy of 75%. Compared with random models, the probability of such high predictivity was low (χ2 tests, p < 10−6). As such, the GARP models were predictive and the used ecologic niche model indeed indicates the ecologic requirements of bank voles. This approach successfully identified the areas of infection risk across the study area. The result suggests that the niche modelling approach can be implemented in a next step towards the development of new tools for monitoring the bank vole’s population. PMID:23358234
Nations, Marilyn; Gondim, Ana Paula Soares
2013-02-01
Situated in neo-democratic globalizing Northeast Brazil, this anthropological study probes the role of ecological context in framing, experiencing, and expressing human distress. Ethnographic interviews, narratives, and "contextualized semantic analysis" reveal the lived experience of childhood respiratory diseases among 22 urban mangrove dwellers. Informants speak an "eco-idiom of respiratory distress" based on a popular "eco-logic", reflecting the harsh reality of "living in dampness". "Higher-up" residents legitimize their feelings of superiority by stigmatizing "lowlanders" as taboo, diseased (with porcine cysticercosis, swine flu) "filthy pigs, stuck in the muck" (atolados na lama). Animalizing inhabitants' identities demotes them to nonpersons. Besides infections, children suffer social stigma, ostracism, and barriers for accessing care. Promoting a "favorable environment" requires reducing ecological risk, challenging class-based prejudice, and restoring human dignity.
Metapopulation Tracking Juvenile Penguins Reveals an Ecosystem-wide Ecological Trap.
Sherley, Richard B; Ludynia, Katrin; Dyer, Bruce M; Lamont, Tarron; Makhado, Azwianewi B; Roux, Jean-Paul; Scales, Kylie L; Underhill, Les G; Votier, Stephen C
2017-02-20
Climate change and fisheries are transforming the oceans, but we lack a complete understanding of their ecological impact [1-3]. Environmental degradation can cause maladaptive habitat selection, inducing ecological traps with profound consequences for biodiversity [4-6]. However, whether ecological traps operate in marine systems is unclear [7]. Large marine vertebrates may be vulnerable to ecological traps [6], but their broad-scale movements and complex life histories obscure the population-level consequences of habitat selection [8, 9]. We satellite tracked postnatal dispersal in African penguins (Spheniscus demersus) from eight sites across their breeding range to test whether they have become ecologically trapped in the degraded Benguela ecosystem. Bayesian state-space and habitat models show that penguins traversed thousands of square kilometers to areas of low sea surface temperatures (14.5°C-17.5°C) and high chlorophyll-a (∼11 mg m -3 ). These were once reliable cues for prey-rich waters, but climate change and industrial fishing have depleted forage fish stocks in this system [10, 11]. Juvenile penguin survival is low in populations selecting degraded areas, and Bayesian projection models suggest that breeding numbers are ∼50% lower than if non-impacted habitats were used, revealing the extent and effect of a marine ecological trap for the first time. These cascading impacts of localized forage fish depletion-unobserved in studies on adults-were only elucidated via broad-scale movement and demographic data on juveniles. Our results support suspending fishing when prey biomass drops below critical thresholds [12, 13] and suggest that mitigation of marine ecological traps will require matching conservation action to the scale of ecological processes [14]. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of ecological indicator guilds for land management
Krzysik, A.J.; Balbach, H.E.; Duda, J.J.; Emlen, J.M.; Freeman, D.C.; Graham, J.H.; Kovacic, D.A.; Smith, L.M.; Zak, J.C.
2005-01-01
Agency land-use must be efficiently and cost-effectively monitored to assess conditions and trends in ecosystem processes and natural resources relevant to mission requirements and legal mandates. Ecological Indicators represent important land management tools for tracking ecological changes and preventing irreversible environmental damage in disturbed landscapes. The overall objective of the research was to develop both individual and integrated sets (i.e., statistically derived guilds) of Ecological Indicators to: quantify habitat conditions and trends, track and monitor ecological changes, provide early warning or threshold detection, and provide guidance for land managers. The derivation of Ecological Indicators was based on statistical criteria, ecosystem relevance, reliability and robustness, economy and ease of use for land managers, multi-scale performance, and stress response criteria. The basis for the development of statistically based Ecological Indicators was the identification of ecosystem metrics that analytically tracked a landscape disturbance gradient.
Palmer, Margaret; Bernhardt, Emily S.; Chornesky, Elizabeth A.; Collins, Scott L.; Dobson, Andrew; Duke, Clifford; Gold, Barry; Jacobson, Robert; Kingsland, Sharon E.; Kranz, Rhonda H.; Mappin, Michael J.; Martinez, M. Luisa; Micheli, Fiorenza; Morse, Jennifer L.; Pace, Michael L.; Pascual, Mercedes; Palumbi, Stephen S.; Reichman, O. J.; Simons, Ashley; Townsend, Alan R.; Turner, Monica
2004-01-01
Within the next 50 to 100 years, the support and maintenance of an extended human family of 8 to 11 billion people will be difficult at best. The authors of this Policy Forum describe changes that are required if we hope to meet the needs and aspirations of humans while improving the health of our planet's ecosystems. Problems as diverse as disease transmission and global climate change have benefited substantially from advances in ecology. Such advances have set the stage for emergence of a proactive ecological science in which social and political realities are acknowledged and attention is turned decisively toward the future. The ecological sciences must chart an understanding of how ecosystem services can persist given their extensive human use. Innovative research on the sciences of ecosystem services, ecological restoration, and ecological design must be massively accelerated and must be accompanied by more effective communication of ecological knowledge to society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durda, J.L.; Suit-Kowalski, L.; Preziosi, D.
1997-12-31
An ecological risk assessment was conducted to evaluate the potential for adverse environmental impacts associated with chemicals released to air as a result of a proposed expansion of a hazardous waste landfill in Ontario. The purpose of the risk assessment was to characterize ecological risks associated with the proposed expansion relative to those associated with the existing landfill and those that would exist if the current landfill was completely closed and background conditions prevailed. The ecological risk assessment was one part of a comprehensive environmental impact assessment of the proposed landfill continuation that was being performed under the requirements ofmore » Ontario`s Environmental Assessment Act. Air monitoring data from the facility were used to identify a list of 141 chemicals potentially released during landfill continuation, as well as to characterize current emissions and background chemical levels. An ecological risk-based chemical screening process that considered background concentration, source strength, environmental partitioning, bioaccumulation potential, and toxicity was used to select a group of 23 chemicals for detailed evaluation in the ecological risk assessment. Dispersion, deposition, partitioning and bioaccumulation modeling were used to predict potential exposures in ecological receptors. Receptors were selected for evaluation based on regional habitat characteristics, exposure potential, toxicant sensitivity, ecological significance, population status, and societal value. Livestock and agricultural crop and pasture species were key receptors for the assessment, given the highly agricultural nature of the study area. In addition, native wildlife species, including the endangered Henslow`s sparrow and the regionally vulnerable pugnose minnow, also were considered.« less
Reguera, Gemma; Kolter, Roberto
2005-01-01
The toxin-coregulated pilus (TCP) of Vibrio cholerae is required for intestinal colonization and cholera toxin acquisition. Here we report that TCP mediates bacterial interactions required for biofilm differentiation on chitinaceous surfaces. We also show that undifferentiated TCP− biofilms have reduced ecological fitness and, thus, that chitin colonization may represent an ecological setting outside the host in which selection for a host colonization factor may take place. PMID:15866944
NASA Astrophysics Data System (ADS)
Xian, W.; Chen, Y.; Chen, J.; Luo, X.; Shao, H.
2018-04-01
According to the overall requirements of ecological construction and environmental protection, rely on the national key ecological engineering, strengthen ecological environmental restoration and protection, improve forest cover, control soil erosion, construct important ecological security barrier in poor areas, inhibit poverty alleviation through ecological security in this area from environmental damage to the vicious cycle of poverty. Obviously, the dynamic monitoring of ecological security in contiguous destitute areas of Sichuan province has a policy sense of urgency and practical significance. This paper adopts RS technology and GIS technology to select the Luhe region of Jinchuan county and Ganzi prefecture as the research area, combined with the characteristics of ecological environment in poor areas, the impact factors of ecological environment are determined as land use type, terrain slope, vegetation cover, surface water, soil moisture and other factors. Using the ecological environmental safety assessment model, the ecological environment safety index is calculated. According to the index, the ecological environment safety of the research area is divided into four levels. The ecological environment safety classification map of 1990 in 2009 is obtained. It can be seen that with the human modern life and improve their economic level, the surrounding environment will be destroyed, because the research area ecological environment is now in good, the ecological environment generally tends to be stable. We should keep its ecological security good and improve local economic income. The relationship between ecological environmental security and economic coordinated development in poor areas has very important strategic significance.
State-and-transition models for heterogeneous landscapes: A strategy for development and application
USDA-ARS?s Scientific Manuscript database
Interpretation of assessment and monitoring data requires information about reference conditions and ecological resilience. Reference conditions used as benchmarks can be specified via potential-based land classifications (e.g., ecological sites) that describe the plant communities potentially obser...
Incorporating a social-ecological-technological systems (SETS) perspective to the adaptive management process requires that stakeholders and managers conceptualize restoration projects as part of coupled human and natural systems and assess underlying social drivers and accrued b...
Ecology and IPM of Insects at Grain Elevators
USDA-ARS?s Scientific Manuscript database
Cost-effectiveness of insect pest management depends upon its integration with other elevator operations. Successful integration may require consideration of insect ecology. Field infestation has not been observed for grain received at elevators. Grain may be infested during harvest by residual inse...
ECOLOGICAL AND SOCIALECONOMIC BENEFITS OF RESTORING AND-IMPAIRED STREAMS: EMERGY-BASED VALUATION
Sound environmental decisions require an integrated, systemic method of valuation that accurately accounts for environmental and social, as well as economic, costs and benefits. More inclusive methods are particularly needed for assessing ecological benefits because these are so...
76 FR 21703 - Marine Mammals; File No. 14326 and 14329
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... rates, foraging ecology, habitat requirements, and effects of natural and anthropogenic factors for... foraging ecology, demographics, behavior, and changes in body size. Research activities involve... issuance of the permit amendments would not have a significant adverse impact on the human environment...
USDA-ARS?s Scientific Manuscript database
Ecologists often engage in global-scale research through partnerships among scientists from many disciplines. Such research projects require collaboration, interdisciplinary thinking, and strong communication skills. We advocate including these three practices as an integral part of ecology educatio...
MEASURES OF GENETIC DIVERSITY ARE EFFECTIVE TOOLS FOR EVALUATING ENVIRONMENTAL CONDITION
At their core, ecological risk assessments aim to evaluate the biological integrity and long-term sustainability of natural ecosystems. These are difficult objectives that will ultimately require development of novel indicators of ecological condition that are more accurate and ...
Three-dimensional Modeling of Water Quality and Ecology in Narragansett Bay
This report presents the methodology to apply, calibrate, and validate the three-dimensional water quality and ecological model provided with the Environmental Fluid Dynamics Code (EFDC). The required advection and dispersion mechanisms are generated simultaneously by the EFDC h...
Impacts of human-induced environmental change in wetlands on aquatic animals.
Sievers, Michael; Hale, Robin; Parris, Kirsten M; Swearer, Stephen E
2018-02-01
Many wetlands harbour highly diverse biological communities and provide extensive ecosystem services; however, these important ecological features are being altered, degraded and destroyed around the world. Despite a wealth of research on how animals respond to anthropogenic changes to natural wetlands and how they use created wetlands, we lack a broad synthesis of these data. While some altered wetlands may provide vital habitat, others could pose a considerable risk to wildlife. This risk will be heightened if such wetlands are ecological traps - preferred habitats that confer lower fitness than another available habitat. Wetlands functioning as ecological traps could decrease both local and regional population persistence, and ultimately lead to extinctions. Most studies have examined how animals respond to changes in environmental conditions by measuring responses at the community and population levels, but studying ecological traps requires information on fitness and habitat preferences. Our current lack of knowledge of individual-level responses may therefore limit our capacity to manage wetland ecosystems effectively since ecological traps require different management practices to mitigate potential consequences. We conducted a global meta-analysis to characterise how animals respond to four key drivers of wetland alteration: agriculture, mining, restoration and urbanisation. Our overarching goal was to evaluate the ecological impacts of human alterations to wetland ecosystems, as well as identify current knowledge gaps that limit both the current understanding of these responses and effective wetland management. We extracted 1799 taxon-specific response ratios from 271 studies across 29 countries. Community- (e.g. richness) and population-level (e.g. density) measures within altered wetlands were largely comparable to those within reference wetlands. By contrast, individual fitness measures (e.g. survival) were often lower, highlighting the potential limitations of using only community- and population-level measures to assess habitat quality. Only four studies provided habitat-preference data, preventing investigation of the potential for altered wetlands to function as ecological traps. This is concerning because attempts to identify ecological traps may detect previously unidentified conservation risks. Although there was considerable variability amongst taxa, amphibians were typically the most sensitive taxon, and thus, may be a valuable bio-indicator of wetland quality. Despite suffering reduced survival and reproduction, measures such as time to and mass at metamorphosis were similar between altered and reference wetlands, suggesting that quantifying metamorphosis-related measures in isolation may not provide accurate information on habitat quality. Our review provides the most detailed evaluation to date of the ecological impacts of human alterations to wetland ecosystems. We emphasise that the role of wetlands in human-altered ecosystems can be complex, as they may represent important habitat but also pose potential risks to animals. Reduced availability of natural wetlands is increasing the importance of altered wetlands for aquatic animals. Consequently, we need to define what represents habitat quality from the perspective of animals, and gain a greater understanding of the underlying mechanisms of habitat selection and how these factors could be manipulated. Furthermore, strategies to enhance the quality of these wetlands should be implemented to maximise their conservation potential. © 2017 Cambridge Philosophical Society.
Russell, Bayden D.; Harley, Christopher D. G.; Wernberg, Thomas; Mieszkowska, Nova; Widdicombe, Stephen; Hall-Spencer, Jason M.; Connell, Sean D.
2012-01-01
Most studies that forecast the ecological consequences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple experiments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates. PMID:21900317
Optimizing protection efforts for amphibian conservation in Mediterranean landscapes
NASA Astrophysics Data System (ADS)
García-Muñoz, Enrique; Ceacero, Francisco; Carretero, Miguel A.; Pedrajas-Pulido, Luis; Parra, Gema; Guerrero, Francisco
2013-05-01
Amphibians epitomize the modern biodiversity crisis, and attract great attention from the scientific community since a complex puzzle of factors has influence on their disappearance. However, these factors are multiple and spatially variable, and declining in each locality is due to a particular combination of causes. This study shows a suitable statistical procedure to determine threats to amphibian species in medium size administrative areas. For our study case, ten biological and ecological variables feasible to affect the survival of 15 amphibian species were categorized and reduced through Principal Component Analysis. The principal components extracted were related to ecological plasticity, reproductive potential, and specificity of breeding habitats. Finally, the factor scores of species were joined in a presence-absence matrix that gives us information to identify where and why conservation management are requires. In summary, this methodology provides the necessary information to maximize benefits of conservation measures in small areas by identifying which ecological factors need management efforts and where should we focus them on.
Ecology of zoonotic infectious diseases in bats: current knowledge and future directions
Hayman, D.T.; Bowen, R.A.; Cryan, P.M.; McCracken, G.F.; O'Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L.
2013-01-01
Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.
Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions
Hayman, D T S; Bowen, R A; Cryan, P M; McCracken, G F; O’Shea, T J; Peel, A J; Gilbert, A; Webb, C T; Wood, J L N
2013-01-01
Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics. PMID:22958281
Can you sequence ecology? Metagenomics of adaptive diversification.
Marx, Christopher J
2013-01-01
Few areas of science have benefited more from the expansion in sequencing capability than the study of microbial communities. Can sequence data, besides providing hypotheses of the functions the members possess, detect the evolutionary and ecological processes that are occurring? For example, can we determine if a species is adapting to one niche, or if it is diversifying into multiple specialists that inhabit distinct niches? Fortunately, adaptation of populations in the laboratory can serve as a model to test our ability to make such inferences about evolution and ecology from sequencing. Even adaptation to a single niche can give rise to complex temporal dynamics due to the transient presence of multiple competing lineages. If there are multiple niches, this complexity is augmented by segmentation of the population into multiple specialists that can each continue to evolve within their own niche. For a known example of parallel diversification that occurred in the laboratory, sequencing data gave surprisingly few obvious, unambiguous signs of the ecological complexity present. Whereas experimental systems are open to direct experimentation to test hypotheses of selection or ecological interaction, the difficulty in "seeing ecology" from sequencing for even such a simple system suggests translation to communities like the human microbiome will be quite challenging. This will require both improved empirical methods to enhance the depth and time resolution for the relevant polymorphisms and novel statistical approaches to rigorously examine time-series data for signs of various evolutionary and ecological phenomena within and between species.
DeLonay, Aaron J.; Jacobson, Robert B.; Papoulias, Diana M.; Wildhaber, Mark L.; Chojnacki, Kimberly A.; Pherigo, Emily K.; Haas, Justin D.; Mestl, Gerald E.
2012-01-01
The Comprehensive Sturgeon Research Project is a multiyear, multiagency collaborative research framework developed to provide information to support pallid sturgeon recovery and Missouri River management decisions. The project strategy integrates field and laboratory studies of sturgeon reproductive ecology, early life history, habitat requirements, and physiology. The project scope of work is developed annually with cooperating research partners and in collaboration with the U.S. Army Corps of Engineers, Missouri River Recovery—Integrated Science Program. The research consists of several interdependent and complementary tasks that engage multiple disciplines. The research tasks in the 2010 scope of work primarily address spawning as a probable factor limiting pallid sturgeon survival and recovery, although limited pilot studies also have been initiated to examine the requirements of early life stages. The research is designed to inform management decisions affecting channel re-engineering, flow modification, and pallid sturgeon population augmentation on the Missouri River, and throughout the range of the species. Research and progress made through this project are reported to the U.S. Army Corps of Engineers annually. This annual report details the research effort and progress made by the Comprehensive Sturgeon Research Project during 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artmann, Martina, E-mail: m.artmann@ioer.de
Managing urban soil sealing is a difficult venture due to its spatial heterogeneity and embedding in a socio-ecological system. A systemic solution is needed to tackle its spatial, ecological and social sub-systems. This study develops a guideline for urban actors to find a systemic solution to soil sealing management based on two case studies in Germany: Munich and Leipzig. Legal-planning, informal-planning, economic-fiscal, co-operative and informational responses were evaluated by indicators to proof which strategy considers the spatial complexity of urban soil sealing (systemic spatial efficiency) and, while considering spatial complexity, to assess what the key management areas for action aremore » to reduce the ecological impacts by urban soil sealing (ecological impact efficiency) and to support an efficient implementation by urban actors (social implementation efficiency). Results suggest framing the systemic solution to soil sealing management through a cross-scale, legal-planning development strategy embedded in higher European policies. Within the socio-ecological system, the key management area for action should focus on the protection of green infrastructure being of high value for actors from the European to local scales. Further efforts are necessary to establish a systemic monitoring concept to optimize socio-ecological benefits and avoid trade-offs such as between urban infill development and urban green protection. This place-based study can be regarded as a stepping stone on how to develop systemic strategies by considering different spatial sub-targets and socio-ecological systems. - Highlights: • Urban soil sealing management is spatially complex. • The legal-planning strategy supports a systemic sealing management. • Urban green infrastructure protection should be in the management focus. • Soil protection requires policies from higher levels of government. • A systemic urban soil sealing monitoring concept is needed.« less
NASA Astrophysics Data System (ADS)
Cozzoli, Francesco; Smolders, Sven; Eelkema, Menno; Ysebaert, Tom; Escaravage, Vincent; Temmerman, Stijn; Meire, Patrick; Herman, Peter M. J.; Bouma, Tjeerd J.
2017-01-01
The natural coastal hydrodynamics and morphology worldwide is altered by human interventions such as embankments, shipping and dredging, which may have consequences for ecosystem functionality. To ensure long-term ecological sustainability, requires capability to predict long-term large-scale ecological effects of altered hydromorphology. As empirical data sets at relevant scales are missing, there is need for integrating ecological modeling with physical modeling. This paper presents a case study showing the long-term, large-scale macrozoobenthic community response to two contrasting human alterations of the hydromorphological habitat: deepening of estuarine channels to enhance navigability (Westerschelde) vs. realization of a storm surge barrier to enhance coastal safety (Oosterschelde). A multidisciplinary integration of empirical data and modeling of estuarine morphology, hydrodynamics and benthic ecology was used to reconstruct the hydrological evolution and resulting long-term (50 years) large-scale ecological trends for both estuaries over the last. Our model indicated that hydrodynamic alterations following the deepening of the Westerschelde had negative implications for benthic life, while the realization of the Oosterschelde storm surge barriers had mixed and habitat-dependent responses, that also include unexpected improvement of environmental quality. Our analysis illustrates long-term trends in the natural community caused by opposing management strategies. The divergent human pressures on the Oosterschelde and Westerschelde are examples of what could happen in a near future for many global coastal ecosystems. The comparative analysis of the two basins is a valuable source of information to understand (and communicate) the future ecological consequences of human coastal development.
NASA Technical Reports Server (NTRS)
Morgan, P. W.
1979-01-01
The use of higher plants in a closed ecological life support system for long duration space missions involving large numbers of people is considered. The approach to planning and developing both the habitat for a long term space mission and closed ecological life support systems are discussed with emphasis on environmental compatibility and integrated systems design. The requirements of photosynthetic processes are summarized and evaluated in terms of their availability within a closed ecological life support environment. Specific references are recommended as a data base for future research on this topic.
Using geophysical images of a watershed subsurface to predict soil textural properties
USDA-ARS?s Scientific Manuscript database
Subsurface architecture, in particular changes in soil type across the landscape, is an important control on the hydrological and ecological function of a watershed. Traditional methods of mapping soils involving subjective assignment of soil boundaries are inadequate for studies requiring a quantit...
[Ecology of vector systems: a tangle of complexity].
Rodhain, F
2008-06-01
The long co-evolutionary process between arthropods and microorganisms has resulted in a wide variety of relationships. One such relationship involves a wide range of infectious agents (virus, bacteria, protozoa, helminthes) that use blood-feeding arthropods (insects and mites) as vectors for transmission from one vertebrate to another. Transmission involves three components, i.e., microorganism, vector(s), and vertebrate host(s). Study under natural conditions has shown that the underlying mechanisms are extremely complex with circulation of the infectious agents depending on numerous conditions linked not only to bioecology but also to genetic factors in all three component populations. The role of arthropods sometimes goes beyond that of a transmitter of disease. In some cases they also serve as reservoirs or disseminators. In addition changes in the environment whether due to natural causes or human activities (e.g. pollution, agropastoralism, urbanization, transportation network development, and climate change) can have profound and rapid effects on the mechanisms underlying these vector systems. In short the ecology of vector systems closely reflects the extreme complexity of epidemiological studies on diseases caused by infectious agents depending on this type of transmission. As a result prediction of infectious risks and planning of preventive action are difficult. It appears obvious that a good understanding of vector systems in their natural context will require a truly ecological approach to the diseases that must be the focus of extremely close epidemiologic surveillance. Achieving this goal will necessitate more than the skills of physicians and veterinarians. It will require the contribution of specialists from a variety of fields such as microbiology, entomology, systematics, climatology, ecology, urbanism, social sciences, economic development, and many others.
Bączyk, Anna; Wagner, Maciej; Okruszko, Tomasz; Grygoruk, Mateusz
2018-06-15
Intensification of agriculture and ongoing urban sprawl exacerbate pressures on rivers. Small rivers in agricultural landscapes are especially exposed to excessive technical actions implemented in order to allow for harvesting river water for irrigation, draining agricultural water and receiving sewage. Regular dredging and macrophyte removal strongly interfere with the global need for preserving river biodiversity that allows agricultural lowland rivers to remain refuges for a variety of species, and-accordingly-to keep water bodies resilient for the benefit of society. In order to provide a comprehensive look at the influence of agricultural lowland river management on the ecological status of these water bodies, we conducted a literature review and a meta-analysis. For the structured literature review we selected 203 papers reflecting on the response of aquatic ecosystems to dredging and macrophyte management actions. The database of scientific contributions developed for our study consists of papers written by the authors from 33 countries (first authorship) addressing dredging, macrophyte removal, status of fish and macroinvertebrates as well as the general ecological status of lowland agricultural rivers. We revealed that 96% of the analyzed papers indicated unilateral, negative responses of aquatic ecosystems, particularly macroinvertebrates, ichthyofauna and macrophyte composition, to maintenance measures. We revealed that studies conducted in the European Union on the ecological status of rivers appeared to significantly increase in quantity after the implementation of the Water Framework Directive. Finally, we concluded that day-to-day management of lowland agricultural rivers requires revision in terms of compliance with environmental conservation requirements and the recurrent implementation of technical measures for river maintenance. Copyright © 2018 Elsevier B.V. All rights reserved.
Integrating network ecology with applied conservation: a synthesis and guide to implementation.
Kaiser-Bunbury, Christopher N; Blüthgen, Nico
2015-07-10
Ecological networks are a useful tool to study the complexity of biotic interactions at a community level. Advances in the understanding of network patterns encourage the application of a network approach in other disciplines than theoretical ecology, such as biodiversity conservation. So far, however, practical applications have been meagre. Here we present a framework for network analysis to be harnessed to advance conservation management by using plant-pollinator networks and islands as model systems. Conservation practitioners require indicators to monitor and assess management effectiveness and validate overall conservation goals. By distinguishing between two network attributes, the 'diversity' and 'distribution' of interactions, on three hierarchical levels (species, guild/group and network) we identify seven quantitative metrics to describe changes in network patterns that have implications for conservation. Diversity metrics are partner diversity, vulnerability/generality, interaction diversity and interaction evenness, and distribution metrics are the specialization indices d' and [Formula: see text] and modularity. Distribution metrics account for sampling bias and may therefore be suitable indicators to detect human-induced changes to plant-pollinator communities, thus indirectly assessing the structural and functional robustness and integrity of ecosystems. We propose an implementation pathway that outlines the stages that are required to successfully embed a network approach in biodiversity conservation. Most importantly, only if conservation action and study design are aligned by practitioners and ecologists through joint experiments, are the findings of a conservation network approach equally beneficial for advancing adaptive management and ecological network theory. We list potential obstacles to the framework, highlight the shortfall in empirical, mostly experimental, network data and discuss possible solutions. Published by Oxford University Press on behalf of the Annals of Botany Company.
NASA Astrophysics Data System (ADS)
Ren, Y.
2017-12-01
Context Land surface temperatures (LSTs) spatio-temporal distribution pattern of urban forests are influenced by many ecological factors; the identification of interaction between these factors can improve simulations and predictions of spatial patterns of urban cold islands. This quantitative research requires an integrated method that combines multiple sources data with spatial statistical analysis. Objectives The purpose of this study was to clarify urban forest LST influence interaction between anthropogenic activities and multiple ecological factors using cluster analysis of hot and cold spots and Geogdetector model. We introduced the hypothesis that anthropogenic activity interacts with certain ecological factors, and their combination influences urban forests LST. We also assumed that spatio-temporal distributions of urban forest LST should be similar to those of ecological factors and can be represented quantitatively. Methods We used Jinjiang as a representative city in China as a case study. Population density was employed to represent anthropogenic activity. We built up a multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) on a unified urban scale to support urban forest LST influence interaction research. Through a combination of spatial statistical analysis results, multi-source spatial data, and Geogdetector model, the interaction mechanisms of urban forest LST were revealed. Results Although different ecological factors have different influences on forest LST, in two periods with different hot spots and cold spots, the patch area and dominant tree species were the main factors contributing to LST clustering in urban forests. The interaction between anthropogenic activity and multiple ecological factors increased LST in urban forest stands, linearly and nonlinearly. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. Conclusions In conclusion, a combination of spatial statistics and GeogDetector models should be effective for quantitatively evaluating interactive relationships among ecological factors, anthropogenic activity and LST.
Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China
Li, Haifeng; Chen, Wenbo; He, Wei
2015-01-01
Green space plays an important role in sustainable urban development and ecology by virtue of multiple environmental, recreational, and economic benefits. Constructing an effective and harmonious urban ecological network and maintaining a sustainable living environment in response to rapid urbanization are the key issues required to be resolved by landscape planners. In this paper, Nanchang City, China was selected as a study area. Based on a series of landscape metrics, the landscape pattern analysis of the current (in 2005) and planned (in 2020) green space system were, respectively, conducted by using FRAGSTATS 3.3 software. Considering the actual situation of the Nanchang urban area, a “one river and two banks, north and south twin cities” ecological network was constructed by using network analysis. Moreover, the ecological network was assessed by using corridor structure analysis, and the improvement of an ecological network on the urban landscape was quantitatively assessed through a comparison between the ecological network and green space system planning. The results indicated that: (1) compared to the green space system in 2005, the planned green space system in 2020 of the Nanchang urban area will decline in both districts (Changnan and Changbei districts). Meanwhile, an increase in patch density and a decrease in mean patch size of green space patches at the landscape level implies the fragmentation of the urban green space landscape. In other words, the planned green space system does not necessarily improve the present green space system; (2) the ecological network of two districts has high corridor density, while Changnan’s ecological network has higher connectivity, but Changbei’s ecological network is more viable from an economic point of view, since it has relatively higher cost efficiency; (3) decrease in patch density, Euclidean nearest neighbor distance, and an increase in mean patch size and connectivity implied that the ecological network could improve landscape connectivity greatly, as compared with the planned green space system. That is to say, the planned ecological network would reduce landscape fragmentation, and increase the shape complexity of green space patches and landscape connectivity. As a result, the quality of the urban ecological environment would be improved. PMID:26501298
Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China.
Li, Haifeng; Chen, Wenbo; He, Wei
2015-10-15
Green space plays an important role in sustainable urban development and ecology by virtue of multiple environmental, recreational, and economic benefits. Constructing an effective and harmonious urban ecological network and maintaining a sustainable living environment in response to rapid urbanization are the key issues required to be resolved by landscape planners. In this paper, Nanchang City, China was selected as a study area. Based on a series of landscape metrics, the landscape pattern analysis of the current (in 2005) and planned (in 2020) green space system were, respectively, conducted by using FRAGSTATS 3.3 software. Considering the actual situation of the Nanchang urban area, a "one river and two banks, north and south twin cities" ecological network was constructed by using network analysis. Moreover, the ecological network was assessed by using corridor structure analysis, and the improvement of an ecological network on the urban landscape was quantitatively assessed through a comparison between the ecological network and green space system planning. The results indicated that: (1) compared to the green space system in 2005, the planned green space system in 2020 of the Nanchang urban area will decline in both districts (Changnan and Changbei districts). Meanwhile, an increase in patch density and a decrease in mean patch size of green space patches at the landscape level implies the fragmentation of the urban green space landscape. In other words, the planned green space system does not necessarily improve the present green space system; (2) the ecological network of two districts has high corridor density, while Changnan's ecological network has higher connectivity, but Changbei's ecological network is more viable from an economic point of view, since it has relatively higher cost efficiency; (3) decrease in patch density, Euclidean nearest neighbor distance, and an increase in mean patch size and connectivity implied that the ecological network could improve landscape connectivity greatly, as compared with the planned green space system. That is to say, the planned ecological network would reduce landscape fragmentation, and increase the shape complexity of green space patches and landscape connectivity. As a result, the quality of the urban ecological environment would be improved.
Vanderhaeghen, Wannes; Piepers, Sofie; Leroy, Frédéric; Van Coillie, Els; Haesebrouck, Freddy; De Vliegher, Sarne
2015-01-01
Since phenotypic methods to identify coagulase negative staphylococci (CNS) from the milk of ruminants often yield unreliable results, methods for molecular identification based on gene sequencing or fingerprinting techniques have been developed. In addition to culture-based detection of isolates, culture-independent methods may be of interest. On the basis of molecular studies, the five CNS species commonly causing intramammary infections (IMI) are Staphylococcus chromogenes, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus simulans and Staphylococcus xylosus. Current knowledge suggests that S. chromogenes is a bovine-adapted species, with most cases of IMI due to this bacterium being opportunistic. S. haemolyticus also appears to be an opportunistic pathogen, but this bacterium occupies a variety of habitats, the importance of which as a source of IMI remains to be elucidated. S. xylosus appears to be a versatile species, but little is known of its epidemiology. S. epidermidis is considered to be a human-adapted species and most cases of IMI appear to arise from human sources, but the organism is capable of residing in other habitats. S. simulans typically causes contagious IMI, but opportunistic cases also occur and the ecology of this bacterium requires further study. Further studies of the ecology and epidemiology of CNS as a cause of IMI in cattle are required, along with careful attention to classification of these bacteria and the diseases they cause. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ecological Forecasting Project Management with Examples
NASA Technical Reports Server (NTRS)
Skiles, J. W.; Schmidt, Cindy; Estes, Maury; Turner, Woody
2017-01-01
Once scientists publish results of their projects and studies, all too often they end up on the shelf and are not otherwise used. The NASA Earth Science Division established its Applied Sciences Program (ASP) to apply research findings to help solve and manage real-world problems and needs. ASP-funded projects generally produce decision support systems for operational applications which are expected to last beyond the end of the NASA funding. Because of NASAs unique perspective of looking down on the Earth from space, ASP studies involve the use of remotely sensed information consisting of satellite data and imagery as well as information from sub-orbital platforms. ASP regularly solicits Earth science proposals that address one or more focus areas; disasters mitigation, ecological forecasting, health and air quality, and water resources. Reporting requirements for ASP-funded projects are different from those typical for research grants from NASA and other granting agencies, requiring management approaches different from other programs. This presentation will address the foregoing in some detail and give examples of three ASP-funded ecological forecasting projects that include: 1) the detection and survey of chimpanzee habitat in Africa from space, 2) harmful algal blooms (HABs) in the California Current System affecting aquaculture facilities and marine mammal populations, and 3) a call for the public to identify North America wildlife in Wisconsin using trail camera photos. Contact information to propose to ASP solicitations for those PIs interested is also provided.
NASA Astrophysics Data System (ADS)
Chapin, F. S.; Power, M. E.; Pickett, S.; Jackson, R. B.; Carter, D.; Harden, J. W.
2010-12-01
Human actions are having large and accelerating effects on Earth’s climate, environment, and ecosystems, thereby degrading ecosystem services required by society. This unsustainable trajectory demands a dramatic change in the relationship of humans with the environment and life-support systems of the planet. Earth-system stewardship is an action-oriented framework intended to foster social-ecological sustainability of a rapidly changing world. This builds on problem-relevant research about the social-ecological interactions that drive earth-system change. These include spiraling consumption in developed nations and the broadening gap between the livelihoods of rich and poor people within and among countries. Science that contributes effectively to reversing these trends requires an ongoing dialogue between scientists and users at multiple scales, communicated with sensitivity to social and cultural norms. Such science must motivate behavioral change and deliver information that is perceived as objective, timely, and useful to problem-solving. Recent developments identify four strategies that use current understanding in an environment of inevitable uncertainty and abrupt change: (1) reducing the magnitude of, and exposure and sensitivity to, known stresses; (2) focusing on proactive policies that shape change; and (3) avoiding or escaping unsustainable social-ecological traps. All social-ecological systems are vulnerable to change but have sources of adaptive capacity and resilience that can sustain ecosystem services and human well-being. Discovering and nurturing these sources of adaptive capacity requires, and defines active ecosystem stewardship.
A Framework for Resilience-based Governance of Social-Ecological Systems
Panarchy provides a heuristic to characterize the cross-scale dynamics of social-ecological systems and a framework for how governance institutions should behave to be compatible with the ecosystems they manage. Managing for resilience will likely require reform of law to account...
Assessing the ecological importance of coastal habitats to Great Lakes ecosystems requires an understanding of the ecological linkages between coastal and offshore waters. . . . Our results suggest that otolith elemental fingerprints may be useful for quantifying the relative con...
Is the ecological belt zonation of the Swiss Alps relevant for moth diversity and turnover?
NASA Astrophysics Data System (ADS)
Beck, Jan; Rüdlinger, Cecil M.; McCain, Christy M.
2017-04-01
Mountain ecosystems are traditionally envisioned as elevational belts of homogenous vegetation, separated by intervening ecotones. Recent research has cast doubt on such predictable layering at least in animal communities. We test the link of two a priori defined ecological belt zonations to noctuid moth distributions in the Swiss Alps. Predictions, in particular, were a coincidence of proposed ecotones with increased range endpoint frequencies and with increased species turnover or species richness between equidistant elevational bands. Using >320,000 distributional records for >500 noctuid species, we found no support for these three predictions despite several contrasting analytical approaches. Concurrent with recently published vertebrate data, we conclude that simple ecological belt zonations are unrelated to the moth communities found along mountain slopes. Rather, species are distributed idiosyncratically following their specific niche requirements. Additional rigorous evidence, particularly comparing insect clades spanning a spectrum of host-plant relationships, may be required to support the relevance of the ecological belt concept in structuring mountain ecosystems beyond tree and plant communities.
Calculating LOAEL/NOAEL uncertainty factors for wildlife species in ecological risk assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suedel, B.C.; Clifford, P.A.; Ludwig, D.F.
1995-12-31
Terrestrial ecological risk assessments frequently require derivation of NOAELs or toxicity reference values (TRVS) against which to compare exposure estimates. However, much of the available information from the literature is LOAELS, not NOAELS. Lacking specific guidance, arbitrary factors of ten are sometimes employed for extrapolating NOAELs from LOAELs. In this study, the scientific literature was searched to obtain chronic and subchronic studies reporting NOAEL and LOAEL data for wildlife and laboratory species. Results to date indicate a mean conversion factor of 4.0 ({+-} 2.61 S.D.), with a minimum of 1. 6 and a maximum of 10 for 106 studies acrossmore » several classes of compounds (I.e., metals, pesticides, volatiles, etc.). These data suggest that an arbitrary factor of 10 conversion factor is unnecessarily restrictive for extrapolating NOAELs from LOAELs and that a factor of 4--5 would be more realistic for deriving toxicity reference values for wildlife species. Applying less arbitrary and more realistic conversion factors in ecological risk assessments will allow for a more accurate estimate of NOAEL values for assessing risk to wildlife populations.« less
Evolutionary ecology of virus emergence.
Dennehy, John J
2017-02-01
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.
An urban metabolism and ecological footprint assessment of Metro Vancouver.
Moore, Jennie; Kissinger, Meidad; Rees, William E
2013-07-30
As the world urbanizes, the role of cities in determining sustainability outcomes grows in importance. Cities are the dominant form of human habitat, and most of the world's resources are either directly or indirectly consumed in cities. Sustainable city analysis and management requires understanding the demands a city places on a wider geographical area and its ecological resource base. We present a detailed, integrated urban metabolism of residential consumption and ecological footprint analysis of the Vancouver metropolitan region for the year 2006. Our overall goal is to demonstrate the application of a bottom-up ecological footprint analysis using an urban metabolism framework at a metropolitan, regional scale. Our specific objectives are: a) to quantify energy and material consumption using locally generated data and b) to relate these data to global ecological carrying capacity. Although water is the largest material flow through Metro Vancouver (424,860,000 m(3)), it has the smallest ecological footprint (23,100 gha). Food (2,636,850 tonnes) contributes the largest component to the ecological footprint (4,514,400 gha) which includes crop and grazing land as well as carbon sinks required to sequester emissions from food production and distribution. Transportation fuels (3,339,000 m(3)) associated with motor vehicle operation and passenger air travel comprises the second largest material flow through the region and the largest source of carbon dioxide emissions (7,577,000 tonnes). Transportation also accounts for the second largest component of the EF (2,323,200 gha). Buildings account for the largest electricity flow (17,515,150 MWh) and constitute the third largest component of the EF (1,779,240 gha). Consumables (2,400,000 tonnes) comprise the fourth largest component of the EF (1,414,440 gha). Metro Vancouver's total Ecological Footprint in 2006 was 10,071,670 gha, an area approximately 36 times larger than the region itself. The EFA reveals that cropland and carbon sinks (forested land required to sequester carbon dioxide emissions) account for 90% of Metro Vancouver's overall demand for biocapacity. The per capita ecological footprint is 4.76 gha, nearly three times the per capita global supply of biocapacity. Note that this value excludes national government services that operate outside the region and could account for up to an additional 2 gha/ca. Copyright © 2013 Elsevier Ltd. All rights reserved.
Scaling up our understanding of non-consumptive effects in insect systems
Hermann, Sara L.; Landis, Douglas A.
2017-04-06
Here, non-consumptive effects (NCEs) of predators on prey is an important topic in insect ecology with potential applications for pest management. NCEs are changes in prey behavior and physiology that aid in predation avoidance. While NCEs can have positive outcomes for prey survival there may also be negative consequences including increased stress and reduced growth. These effects can cascade through trophic systems influencing ecosystem function. Most NCEs have been studied at small spatial and temporal scales. However, recent studies show promise for the potential to manipulate NCEs for pest management. We suggest the next frontier for NCE studies includes manipulatingmore » the landscape of fear to improve pest control, which requires scaling-up to field and landscape levels, over ecologically relevant time frames.« less
Scaling up our understanding of non-consumptive effects in insect systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, Sara L.; Landis, Douglas A.
Here, non-consumptive effects (NCEs) of predators on prey is an important topic in insect ecology with potential applications for pest management. NCEs are changes in prey behavior and physiology that aid in predation avoidance. While NCEs can have positive outcomes for prey survival there may also be negative consequences including increased stress and reduced growth. These effects can cascade through trophic systems influencing ecosystem function. Most NCEs have been studied at small spatial and temporal scales. However, recent studies show promise for the potential to manipulate NCEs for pest management. We suggest the next frontier for NCE studies includes manipulatingmore » the landscape of fear to improve pest control, which requires scaling-up to field and landscape levels, over ecologically relevant time frames.« less
Barriers to adaptive reasoning in community ecology.
McLachlan, Athol J; Ladle, Richard J
2011-08-01
Recent high-profile calls for a more trait-focused approach to community ecology have the potential to open up novel research areas, generate new insights and to transform community ecology into a more predictive science. However, a renewed emphasis on function and phenotype also requires a fundamental shift in approach and research philosophy within community ecology to more fully embrace evolutionary reasoning. Such a subject-wise transformation will be difficult due to at least four factors: (1) the historical development of the academic discipline of ecology and its roots as a descriptive science; (2) the dominating role of the ecosystem concept in the driving of contemporary ecological thought; (3) the practical difficulties associated with defining and identifying (phenotypic) adaptations, and; (4) scaling effects in ecology; the difficulty of teasing apart the overlapping and shifting hierarchical processes that generate the observed environment-trait correlations in nature. We argue that the ability to predict future ecological conditions through a sufficient understanding of ecological processes will not be achieved without the placement of the concept of adaptation at the centre of ecology, with influence radiating outwards through all the related (and rapidly specializing) sub-disciplines. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.
An integrated remote sensing approach for identifying ecological range sites. [parker mountain
NASA Technical Reports Server (NTRS)
Jaynes, R. A.
1983-01-01
A model approach for identifying ecological range sites was applied to high elevation sagebrush-dominated rangelands on Parker Mountain, in south-central Utah. The approach utilizes map information derived from both high altitude color infrared photography and LANDSAT digital data, integrated with soils, geological, and precipitation maps. Identification of the ecological range site for a given area requires an evaluation of all relevant environmental factors which combine to give that site the potential to produce characteristic types and amounts of vegetation. A table is presented which allows the user to determine ecological range site based upon an integrated use of the maps which were prepared. The advantages of identifying ecological range sites through an integrated photo interpretation/LANDSAT analysis are discussed.
The basis function approach for modeling autocorrelation in ecological data.
Hefley, Trevor J; Broms, Kristin M; Brost, Brian M; Buderman, Frances E; Kay, Shannon L; Scharf, Henry R; Tipton, John R; Williams, Perry J; Hooten, Mevin B
2017-03-01
Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data. © 2016 by the Ecological Society of America.
Franco, Antonio; Price, Oliver R; Marshall, Stuart; Jolliet, Olivier; Van den Brink, Paul J; Rico, Andreu; Focks, Andreas; De Laender, Frederik; Ashauer, Roman
2017-03-01
Current regulatory practice for chemical risk assessment suffers from the lack of realism in conventional frameworks. Despite significant advances in exposure and ecological effect modeling, the implementation of novel approaches as high-tier options for prospective regulatory risk assessment remains limited, particularly among general chemicals such as down-the-drain ingredients. While reviewing the current state of the art in environmental exposure and ecological effect modeling, we propose a scenario-based framework that enables a better integration of exposure and effect assessments in a tiered approach. Global- to catchment-scale spatially explicit exposure models can be used to identify areas of higher exposure and to generate ecologically relevant exposure information for input into effect models. Numerous examples of mechanistic ecological effect models demonstrate that it is technically feasible to extrapolate from individual-level effects to effects at higher levels of biological organization and from laboratory to environmental conditions. However, the data required to parameterize effect models that can embrace the complexity of ecosystems are large and require a targeted approach. Experimental efforts should, therefore, focus on vulnerable species and/or traits and ecological conditions of relevance. We outline key research needs to address the challenges that currently hinder the practical application of advanced model-based approaches to risk assessment of down-the-drain chemicals. Integr Environ Assess Manag 2017;13:233-248. © 2016 SETAC. © 2016 SETAC.
Communicating Ecological Indicators to Decision Makers and the Public
A. Schiller; Carolyn Hunsaker; M.A. Kane; A.K. Wolfe; V.H. Dale; G.W. Suter; C.S. Russell; G. Pion; N.H. Jensen; V.C. Konar
2001-01-01
Ecological assessments and monitoring programs often rely on indicators to evaluate environmental conditions. Such indicators are frequently developed by scientists, expressed in technical language, and target aspects of the environment that scientists consider useful. Yet setting environmental policy priorities and making environmental decisions requires both...
The concept of resilience is now frequently invoked by natural resource agencies in the United States. This reflects growing trends within ecology, conservation biology, and other disciplines acknowledging that social-ecological systems require management approaches recognizing ...
Ecological Effects of Weather Modification: A Problem Analysis.
ERIC Educational Resources Information Center
Cooper, Charles F.; Jolly, William C.
This publication reviews the potential hazards to the environment of weather modification techniques as they eventually become capable of producing large scale weather pattern modifications. Such weather modifications could result in ecological changes which would generally require several years to be fully evident, including the alteration of…
Code of Federal Regulations, 2011 CFR
2011-07-01
... will be reduced, so as to improve the public or private uses or the ecology of such water, or flood..., during every season of the year, will not vary in a way that adversely affects the ecology of any surface...
Code of Federal Regulations, 2010 CFR
2010-07-01
... will be reduced, so as to improve the public or private uses or the ecology of such water, or flood..., during every season of the year, will not vary in a way that adversely affects the ecology of any surface...
36 CFR 219.11 - Monitoring and evaluation for adaptive management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sustainability in the plan area (§§ 219.19 through 219.21). The strategy must require monitoring of appropriate plan decisions and characteristics of sustainability. (1) Monitoring and evaluation of ecological sustainability. The plan monitoring strategy for the monitoring and evaluation of ecological sustainability must...
DEVELOPING TOOLS TO ASSESS THE ECOLOGICAL CONDITION OF THE NATION'S AQUATIC SYSTEMS
The Aquatic Monitoring and Bioassement Branch (AMBB) at the Environmental Protection Agency's Western Ecology Division leads ORD's research on monitoring freshwater aquatic systems. This work is in response to the Clean Water Act (CWA, Section 305b) that requires EPA to report bi...
The Biological Side of Social Determinants: Neural Costs of Childhood Poverty
ERIC Educational Resources Information Center
Lipina, Sebastián J.
2016-01-01
Interdisciplinary efforts to foster the development and education of children living in poverty require a comprehensive concept of multiple dimensions, within a systemic approach involving ecological and transactional perspectives. Constructing a common interdisciplinary language dealing with child development in ecological terms is a necessary…
Code of Federal Regulations, 2014 CFR
2014-07-01
... will be reduced, so as to improve the public or private uses or the ecology of such water, or flood..., during every season of the year, will not vary in a way that adversely affects the ecology of any surface...
Code of Federal Regulations, 2012 CFR
2012-07-01
... will be reduced, so as to improve the public or private uses or the ecology of such water, or flood..., during every season of the year, will not vary in a way that adversely affects the ecology of any surface...
Code of Federal Regulations, 2013 CFR
2013-07-01
... will be reduced, so as to improve the public or private uses or the ecology of such water, or flood..., during every season of the year, will not vary in a way that adversely affects the ecology of any surface...
ECOLOGICAL EPIDEMIOLOGY: A MEANS TO SAFEGUARD SERVICES OF NATURE THAT SUSTAIN HUMAN WELFARE
The services provided by nature are required to sustain human life and enhance its quality. Hence, environmental security must come from protecting those services. Ecological risk assessment can predict and estimate effects of proposed actions, but it is insufficient alone for ...
Ecological Sites of the Walnut Gulch Experimental Watershed
USDA-ARS?s Scientific Manuscript database
Soil and water conservation efforts on rangelands require a marriage of hydrologic and range management concepts. One important range management concept is that of an ecological site, which is defined by its ability to produce a plant community consisting of certain kinds, amounts, and proportions o...
Work Separation Demands and Spouse Psychological Well-Being
ERIC Educational Resources Information Center
Orthner, Dennis K.; Rose, Roderick
2009-01-01
Using family resilience and ecological theories, we examine the relationship between partner work-required travel separations and spouse psychological well-being. The study examines the role of work-organization-provided supports for families and of informal support networks, including marital satisfaction, as factors that can reduce the risks for…
OPPTS requires information on the toxic effects of pesticide metabolites as well as the parent chemical. Currently, OPP receives metabolic maps with registrant study data submissions, but there is no efficient way to access previously submitted maps on similar chemicals to help w...
Environmental Science, Grade 9. Experimental Curriculum Bulletin.
ERIC Educational Resources Information Center
Bernstein, Leonard, Ed.
This is the teacher's guide for the required, interdisciplinary, ninth-year environmental science course for the New York City Schools. One hundred twenty lesson plans, divided into nine units, are presented. Areas of study include the living and non-living environment, ecosystems, population, urban ecology, energy and technology, pollution, and…
SURFACE WATER FLOW IN LANDSCAPE MODELS: 1. EVERGLADES CASE STUDY. (R824766)
Many landscape models require extensive computational effort using a large array of grid cells that represent the landscape. The number of spatial cells may be in the thousands and millions, while the ecological component run in each of the cells to account for landscape dynamics...
The Ecology of Role Play: Intentionality and Cultural Evolution
ERIC Educational Resources Information Center
Papadopoulou, Marianna
2012-01-01
This study examines the evolutionary function of children's pretence. The everyday, cultural environment that children engage with is of a highly complex structure. Human adaptation, thus, becomes, by analogy, an equally complex process that requires the development of life skills. Whilst in role play children engage in "mimesis" and…
Chen, Xun-Wen; Wong, James Tsz-Fung; Ng, Charles Wang-Wai; Wong, Ming-Hung
2016-04-01
Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.
Rodriguez, Alia; Sanders, Ian R
2015-01-01
The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner. PMID:25350159
Rodriguez, Alia; Sanders, Ian R
2015-05-01
The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner.
Predicting responses to climate change requires all life-history stages.
Zeigler, Sara
2013-01-01
In Focus: Radchuk, V., Turlure, C. & Schtickzelle, N. (2013) Each life stage matters: the importance of assessing response to climate change over the complete life cycle in butterflies. Journal of Animal Ecology, 82, 275-285. Population-level responses to climate change depend on many factors, including unexpected interactions among life history attributes; however, few studies examine climate change impacts over complete life cycles of focal species. Radchuk, Turlure & Schtickzelle () used experimental and modelling approaches to predict population dynamics for the bog fritillary butterfly under warming scenarios. Although they found that warming improved fertility and survival of all stages with one exception, populations were predicted to decline because overwintering larvae, whose survival declined with warming, were disproportionately important contributors to population growth. This underscores the importance of considering all life history stages in analyses of climate change's effects on population dynamics. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Korablev, M P; Korablev, N P; Korablev, P N
2013-01-01
Size sexual dimorphism was investigated on 695 skulls of four Mustelidae species. By extent of increasing of differences between sexes the species are placed in following order: European pine marten (Martes martes), European mink (Mustela lutreola), American mink (Neovison vison), and European polecat (Mustela putorius). Extent of the dimorphism characterizes ecological plasticity of the species and is population characteristic. It is shown that M. martes takes specific and relatively narrow ecological niche of forest ecosystems, entering into weak competitive relationships with smaller Mustelidae species. The level of sexual dimorphism of M. lutreola, N. vison and M. putorius reflects intensity of its interspecific relationships within study area. High level of sexual dimorphism of M. putorius is determined by further divergence of ecological niches of males and females, and also appears to be compensatory mechanism reducing consequences of hardened environmental requirements.
Ren, Yin; Deng, Lu-Ying; Zuo, Shu-Di; Song, Xiao-Dong; Liao, Yi-Lan; Xu, Cheng-Dong; Chen, Qi; Hua, Li-Zhong; Li, Zheng-Wei
2016-09-01
Identifying factors that influence the land surface temperature (LST) of urban forests can help improve simulations and predictions of spatial patterns of urban cool islands. This requires a quantitative analytical method that combines spatial statistical analysis with multi-source observational data. The purpose of this study was to reveal how human activities and ecological factors jointly influence LST in clustering regions (hot or cool spots) of urban forests. Using Xiamen City, China from 1996 to 2006 as a case study, we explored the interactions between human activities and ecological factors, as well as their influences on urban forest LST. Population density was selected as a proxy for human activity. We integrated multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) to develop a database on a unified urban scale. The driving mechanism of urban forest LST was revealed through a combination of multi-source spatial data and spatial statistical analysis of clustering regions. The results showed that the main factors contributing to urban forest LST were dominant tree species and elevation. The interactions between human activity and specific ecological factors linearly or nonlinearly increased LST in urban forests. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. In conclusion, quantitative studies based on spatial statistics and GeogDetector models should be conducted in urban areas to reveal interactions between human activities, ecological factors, and LST. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alahuhta, Janne; Virtala, Antti; Hjort, Jan; Ecke, Frauke; Johnson, Lucinda B; Sass, Laura; Heino, Jani
2017-05-01
Different species' niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.
TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
BURBANK, D.A.
This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as themore » basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.« less
The role of ecological monitoring in managing wilderness
Peter B. Landres
1995-01-01
Good management requires good information. Monitoring provides this information when it is structured into the process of management, well designed and executed. As federal and state agencies strive to implement a management paradigm based on sustaining ecosystems, ecological information becomes a vital part of managing natural resources. Inventory and monitoring...
Conducting an integrated analysis to evaluate the societal and ecological consequences of environmental management actions requires decisions about data collection, theory development, modeling and valuation. Approaching these decisions in coordinated fashion necessitates a syste...
Social/economic/cultural components
Patricia L. Winter; Jonathan W. Long; Susan Charnley
2014-01-01
Previous chapters of this synthesis rely on multiple ecological disciplines to frame core aspects of a sustainable, resilient ecosystem. Approaching forest management in the Sierra Nevada and southern Cascade Range in a manner that promotes socioecological resilience and sustains important forest values requires consideration of not only the ecological, but also the...
The paradox of forest fragmentation genetics
Andrea T. Kramer; Jennifer L. Ison; Mary V. Ashley; Henry F. Howe
2008-01-01
Theory predicts widespread loss of genetic diversity from drift and inbreeding in trees subjected to habitat fragmentation, yet empirical support of this theory is scarce. We argue that population genetics theory may be misapplied in light of ecological realities that, when recognized, require scrutiny of underlying evolutionary assumptions. One ecological reality is...
Landscape genetics: combining landscape ecology and population genetics
Stephanie Manel; Michael K. Schwartz; Gordon Luikart; Pierre Taberlet
2003-01-01
Understanding the processes and patterns of gene flow and local adaptation requires a detailed knowledge of how landscape characteristics structure populations. This understanding is crucial, not only for improving ecological knowledge, but also for managing properly the genetic diversity of threatened and endangered populations. For nearly 80 years, population...
Description of the microbial ecology evaluation device, flight equipment, and ground transporter
NASA Technical Reports Server (NTRS)
Chassay, C. E.; Taylor, G. R.
1973-01-01
Exposure of test systems in space required the fabrication of specialized hardware termed a Microbial Ecology Evaluation Device that had individual test chambers and a complex optical filter system. The characteristics of this device and the manner in which it was deployed in space are described.
An analysis framework to link ecological change to economic benefits for multiple stakeholders requires several key components. First, since we aim to support policy decisions, the framework should link a factor that can be controlled or influenced by policy (discharge limit, ca...
Ecosystem-based management (EBM) accounts for both direct and indirect drivers of ecological change for decision making. Just as with direct management of a resource, EBM requires a definition of management thresholds that define when change in function is sufficient to merit ma...
May-McNally, Shannan L; Quinn, Thomas P; Taylor, Eric B
2015-08-01
Understanding the extent of interspecific hybridization and how ecological segregation may influence hybridization requires comprehensively sampling different habitats over a range of life history stages. Arctic char (Salvelinus alpinus) and Dolly Varden (S. malma) are recently diverged salmonid fishes that come into contact in several areas of the North Pacific where they occasionally hybridize. To better quantify the degree of hybridization and ecological segregation between these taxa, we sampled over 700 fish from multiple lake (littoral and profundal) and stream sites in two large, interconnected southwestern Alaskan lakes. Individuals were genotyped at 12 microsatellite markers, and genetic admixture (Q) values generated through Bayesian-based clustering revealed hybridization levels generally lower than reported in a previous study (<0.6% to 5% of samples classified as late-generation hybrids). Dolly Varden and Arctic char tended to make different use of stream habitats with the latter apparently abandoning streams for lake habitats after 2-3 years of age. Our results support the distinct biological species status of Dolly Varden and Arctic char and suggest that ecological segregation may be an important factor limiting opportunities for hybridization and/or the ecological performance of hybrid char.
May-McNally, Shannan L; Quinn, Thomas P; Taylor, Eric B
2015-01-01
Understanding the extent of interspecific hybridization and how ecological segregation may influence hybridization requires comprehensively sampling different habitats over a range of life history stages. Arctic char (Salvelinus alpinus) and Dolly Varden (S. malma) are recently diverged salmonid fishes that come into contact in several areas of the North Pacific where they occasionally hybridize. To better quantify the degree of hybridization and ecological segregation between these taxa, we sampled over 700 fish from multiple lake (littoral and profundal) and stream sites in two large, interconnected southwestern Alaskan lakes. Individuals were genotyped at 12 microsatellite markers, and genetic admixture (Q) values generated through Bayesian-based clustering revealed hybridization levels generally lower than reported in a previous study (<0.6% to 5% of samples classified as late-generation hybrids). Dolly Varden and Arctic char tended to make different use of stream habitats with the latter apparently abandoning streams for lake habitats after 2–3 years of age. Our results support the distinct biological species status of Dolly Varden and Arctic char and suggest that ecological segregation may be an important factor limiting opportunities for hybridization and/or the ecological performance of hybrid char. PMID:26356310
Vive la résistance: reviving resistance for 21st century conservation.
Nimmo, D G; Mac Nally, R; Cunningham, S C; Haslem, A; Bennett, A F
2015-09-01
Confronted with increasing anthropogenic change, conservation in the 21st century requires a sound understanding of how ecological systems change during disturbance. We highlight the benefits of recognizing two distinct components of change in an ecological unit (i.e., ecosystem, community, population): 'resistance', the ability to withstand disturbance; and 'resilience', the capacity to recover following disturbance. By adopting a 'resistance-resilience' framework, important insights for conservation can be gained into: (i) the key role of resistance in response to persistent disturbance, (ii) the intrinsic attributes of an ecological unit associated with resistance and resilience, (iii) the extrinsic environmental factors that influence resistance and resilience, (iv) mechanisms that confer resistance and resilience, (v) the post-disturbance status of an ecological unit, (vi) the nature of long-term ecological changes, and (vii) policy-relevant ways of communicating the ecological impacts of disturbance processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microbes Should Be Central to Ecological Education and Outreach
Barberán, Albert; Hammer, Tobin J.; Madden, Anne A.; Fierer, Noah
2016-01-01
Our planet is changing rapidly, and responding to the ensuing environmental challenges will require an informed citizenry that can understand the inherent complexity of ecological systems. However, microorganisms are usually neglected in the narratives that we use to understand nature. Here, we advocate for the inclusion of microbial ecology across education levels and delineate the often neglected benefits of incorporating microbes into ecology curricula. We provide examples across education levels, from secondary school (by considering one’s self as a microbial ecosystem), to higher education (by incorporating our knowledge of the global ecological role and medical application of microbes), to the general public (by engagement through citizen-science projects). The greater inclusion of microbes in ecological education and outreach will not only help us appreciate the natural world we are part of, but will ultimately aid in building a citizenry better prepared to make informed decisions on health and environmental policies. PMID:27047584
Cartwright, Jennifer M.; Caldwell, Casey; Nebiker, Steven; Knight, Rodney
2017-01-01
This paper presents a conceptual framework to operationalize flow–ecology relationships into decision-support systems of practical use to water-resource managers, who are commonly tasked with balancing multiple competing socioeconomic and environmental priorities. We illustrate this framework with a case study, whereby fish community responses to various water-management scenarios were predicted in a partially regulated river system at a local watershed scale. This case study simulates management scenarios based on interactive effects of dam operation protocols, withdrawals for municipal water supply, effluent discharges from wastewater treatment, and inter-basin water transfers. Modeled streamflow was integrated with flow–ecology relationships relating hydrologic departure from reference conditions to fish species richness, stratified by trophic, reproductive, and habitat characteristics. Adding a hypothetical new water-withdrawal site was predicted to increase the frequency of low-flow conditions with adverse effects for several fish groups. Imposition of new reservoir release requirements was predicted to enhance flow and fish species richness immediately downstream of the reservoir, but these effects were dissipated further downstream. The framework presented here can be used to translate flow–ecology relationships into evidence-based management by developing decision-support systems for conservation of riverine biodiversity while optimizing water availability for human use.
Liu, Liang; Liu, An; Li, Yang; Zhang, Lixun; Zhang, Guijuan; Guan, Yuntao
2016-09-01
Reusing stormwater is becoming popular worldwide. However, urban road stormwater commonly contains toxic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), which could undermine reuse safety. This study investigated pollution level of PAHs and their composition build-up on urban roads in a typical megacity in South China. The potential ecological risk posed by PAHs associated with road deposited solid (RDS) was also assessed. Results showed that ecological risk levels varied based on different land use types, which could be significantly influenced by the composition of PAHs and characteristics of RDS. A higher percentage of high-ring PAHs, such as more than four rings, could pose higher ecological risk and are more likely to undermine stormwater reuse safety. Additionally, the degree of traffic congestion rather than traffic volume was found to exert a more significant influence on the generation of high-ring PAH generation. Therefore, stormwater from more congested roads might need proper treatment (particularly for removing high-ring PAHs) before reuse or could be suitable for purposes requiring low-water-quality. The findings of this study are expected to contribute to adequate stormwater reuse strategy development and to enhance the safety of urban road stormwater reuse. Copyright © 2016 Elsevier B.V. All rights reserved.
Abbastabar, Hedayat; Roustazadeh, Abazar; Alizadeh, Ali; Hamidifard, Parvin; Valipour, Mehrdad; Valipour, Ali Asghar
2015-01-01
Colorectal cancer (CRC) is the third most common cancer in Iranian women and fifth in men. The aims of this study were to investigate the relation of dietary factors and public health indicators to its development. The required information (2001-2006) about risk factors was obtained from the Non- Communicable Disease Surveillance Centre (NCDSC) of Iran. Risk factor data (RFD) from 89,404 individuals (15-64 years old) were gathered by questionnaire and laboratory examinations through a cross sectional study in all provinces by systematic clustering sampling method. CRC incidence segregated by age and gender was obtained from Cancer Registry Ministry of Health (CRMH) of Iran. First, correlation coefficients were used for data analysis and then multiple regression analysis was performed to control for confounding factors. Colorectal cancer incidence showed a positive relationship with diabetes mellitus, hypertension, lacking or low physical activity, high education, high intake of dairy products, and non-consumption of vegetables and fruits. We concluded that many dietary factors and public health indicators have positive relationships with CRC and might therefore be targets of preliminary prevention. However, since this is an ecological study limited by potential ecological fallacy the results must be interpreted with caution.
Hidayati, Siti N.; Walck, Jeffrey L.; Merritt, David J.; Turner, Shane R.; Turner, David W.; Dixon, Kingsley W.
2012-01-01
Background and Aims Several ecologically important plant families in Mediterranean biomes have seeds with morphophysiological dormancy (MPD) but have been poorly studied. The aim of this study was to understand the seed ecology of these species by focusing on the prominent, yet intractably dormant Australian genus Hibbertia. It was hypothesized that the slow germination in species of this genus is caused by a requirement for embryo growth inside the seed before germination, and that initiation of embryo growth is reliant upon a complex sequence of environmental cues including seasonal fluctuations in temperature and moisture, and an interplay with light and smoke. Using the results, the classification of the MPD level in species of Hibbertia is considered. Methods Four species of Hibbertia in winter rainfall south-western Australia were selected. These species, whilst differing in geographic distributions, are variously sympatric, and all are important understorey components of plant communities. The following aspects related to dormancy break, embryo growth and germination were investigated: temperature and moisture requirements; effects of karrikinolide, gibberellic acid and aerosol smoke; and phenology. Key Results Following exposure to wet/dry cycles at low or high temperatures, embryo growth and germination occurred, albeit slowly in all species at low temperatures when moisture was unlimited, corresponding to winter in south-west Australia. Photo regime influenced germination only in H. racemosa. Aerosol smoke triggered substantial germination during the 1st germination season in H. huegelii and H. hypericoides. Conclusions Although the study species are con-generic, sympatric and produce seeds of identical morphology, they possessed different dormancy-break and germination requirements. The physiological component of MPD was non-deep in H. racemosa but varied in the other three species where more deeply dormant seeds required >1 summer to overcome dormancy and, thus, germination was spread over time. Embryos grew during winter, but future studies need to resolve the role of cold versus warm stratification by using constant temperature regimes. To include Mediterranean species with MPD, some modifications to the current seed-dormancy classification system may need consideration: (a) wet/dry conditions for warm stratification and (b) a relatively long period for warm stratification. These outcomes have important implications for improving experimental approaches to resolve the effective use of broadcast seed for ecological restoration. PMID:22362661
An advanced concept that promises ecological and economic viability
NASA Technical Reports Server (NTRS)
Wright, B. R.; Sedgwick, T. A.; Urie, D. M.
1976-01-01
The actuality of supersonic commercial service being provided by Concorde is demonstrating to the world the advantages offered by supersonic travel for both business and recreation. Public acceptance will gradually and persistently stimulate interest to proceed with a second generation design that meets updated economic and ecological standards. It is estimated that this concept could operate profitably on world-wide routes with a revenue structure based upon economy fares. Airplanes will meet all present day ecological requirements regarding noise and emissions.
Controlled Ecological Life Support System: Research and Development Guidelines
NASA Technical Reports Server (NTRS)
Mason, R. M. (Editor); Carden, J. L. (Editor)
1982-01-01
Results of a workshop designed to provide a base for initiating a program of research and development of controlled ecological life support systems (CELSS) are summarized. Included are an evaluation of a ground based manned demonstration as a milestone in CELSS development, and a discussion of development requirements for a successful ground based CELSS demonstration. Research recommendations are presented concerning the following topics: nutrition and food processing, food production, waste processing, systems engineering and modelling, and ecology-systems safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, Lisa E.; Woollett, Jim S.
2014-01-01
The Lawrence Livermore National Laboratory’s (LLNL’s) Environmental Restoration Department (ERD) is required to conduct an ecological review at least every five years to ensure that biological and contaminant conditions in areas undergoing remediation have not changed such that existing conditions pose an ecological hazard (Dibley et al. 2009a). This biological review is being prepared by the Natural Resources Team within LLNL’s Environmental Functional Area (EFA) to support the 2013 five-year ecological review.
Why Finance Should Care about Ecology.
Scholtens, Bert
2017-07-01
Finance ignores ecosystems, which has resulted in a growing list of environmental and social problems. In this article, the importance of ecology for finance is assessed. We suggest The piece also suggests that the financial intermediation perspective can align finance and ecology for the benefit of society. This requires that financial institutions account for information about the impact of finance on the environment and vice versa, and that they are held accountable by their supervisors in this domain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Justification of system of assessment of ecological safety degree of housing construction objects
NASA Astrophysics Data System (ADS)
Kankhva, Vadim
2017-10-01
In article characteristics and properties of competitiveness of housing construction objects are investigated, criteria and points of national systems of ecological building’s standardization are structured, the compliance assessment form on stages of life cycle of a capital construction project is developed. The main indicators of level of ecological safety considering requirements of the international ISO standards 9000 and ISO 14000 and which are based on the basic principles of general quality management (TQM) are presented.
Ecological Footprint in relation to Climate Change Strategy in Cities
NASA Astrophysics Data System (ADS)
Belčáková, Ingrid; Diviaková, Andrea; Belaňová, Eliška
2017-10-01
Ecological footprint determines how much natural resources are consumed by an individual, city, region, state or all inhabitants of our planet in order to ensure their requirements and needs. It includes all activities, from food consumption, housing, transport to waste produced and allows us to compare particular activities and their impacts on the environment and natural resources. Ecological footprint is important issue for making sustainable development concept more popular using simplifications, which provide the public with basic information on situation on our planet. Today we know calculations of global (worldwide), national and local ecological footprints. During our research in cities, we were concentrated on calculation of city’s ecological footprint. The article tries to outline theoretical and assumptions and practical results of climate change consequences in cities of Bratislava and Nitra (Slovakia), to describe potential of mitigating adverse impacts of climate change and to provide information for general and professional public on theoretical assumptions in calculating ecological footprint. The intention is to present innovation of ecological footprint calculation, taking into consideration ecological stability of a city (with a specific focus on micro-climate functions of green areas). Present possibilities to reduce ecological footprint are presented.
US EPA's Ecological Risk Assessment Support Center ...
BackgroundThe ERASC provides technical information and addresses scientific questions of concern or interest on topics relevant to ecological risk assessment at hazardous waste sites for EPA's Office of Solid Waste and Emergency Response (OSWER) personnel and the Office of Resource Conservation and Recovery (ORCR) staff. Requests are channeled to ERASC through the Ecological Risk Assessment Forum (ERAF). To assess emerging and complex scientific issues that require expert judgment, the ERASC relies on the expertise of scientists and engineers located throughout EPA's Office of Research and Development (ORD) labs and centers.ResponseERASC develops responses that reflect the state of the science for ecological risk assessment and also provides a communication point for the distribution of the responses to other interested parties. For further information, contact Ecology_ERASC@epa.gov or call 513-569-7940.
NASA Astrophysics Data System (ADS)
Yakovlev, Aleksandr
2016-04-01
Sustainable development of the territory is possible only under certain environmental requirements. These requirements are based on the implementation of the concept, conventionally called "zero land degradation", which cannot be reached in the process of real land use. "Zero degradation" is the establishment of acceptable ecological state of the environment and permissible anthropogenic impact on it, wherein self-healing of nature quality is possible and there is no accumulation of irreversible environmental damage. The values of parameters that characterize the relationship between the ecological state of the environment, in particular, land degradation, and the socio-economic development of the Russian Federation are represented in the materials of recent issues of the Russian State environmental report (2012 - 2014). Environmental problems in Russia are actively discussed in relation to issues of environmental and socio-economic development of the neighboring countries of the Eurasian region. So the Law "On Soil Protection", which was developed and adopted by the Union: Russia, Belarus, Kazakhstan, is dedicated to the protection of soil and soil degradation control. Ecological Doctrine of Russia (2012) and the State Environmental Program (2012-2020) identify the main strategic steps to combat land degradation in our country. In the first place, it has been tasked to identify and eliminate past environmental damage followed by the organization of nature "from scratch", in accordance with environmental regulations. Currently the Ministry of natural resources of Russia started implementation of the Federal program on environmental-economic assessment and the elimination of past environmental damage. The main steps of this program are: the works related to the inventory of degraded and contaminated lands and their subsequent reclamation and return to the appropriate land use system. The territory must comply with officially approved environmental requirements. The list of requirements can be divided into two areas: - the standards and norms of environmental assessment for all components of environment, - requirements to the level of environmental stress on the land when designing the system of nature management. Environmental requirements for components of the environment are based primarily on stringent environmental and health standards (maximum permissible concentration, permissible residual oil content in the soil, etc.), compliance of which involves the maintenance of the ecological state of nature in close to background rates. The assessment of environmental stress in planning and land management is not provided with official regulations and is based primarily on expert opinions. However, projects and land use programs must pass the corresponding procedure of environmental expertise. Rating, ranking and regulation of soil and land quality allow to establish the level of its disturbance and the ability to heal itself, according to the methodological approach developed and adopted by several Russian Agencies (Environmental, Agricultural and Land use Agencies). The basis for assessing the ecological status of soils was based on the five-level evaluation scale according to which a fairly conventional boundary of reversibility is considered to be the third (threshold) level, and irreversible accumulation of environmental damage occurs when reaching . fourth and fifth level of loss of environmental quality of soils. According to a separate study in the field of environmental regulation irreversible changes occur in the loss of more than a quarter of Bioorganic capacity of soils. The main condition for sustainable development is the development, which does not cause irreversible damage to nature and society, based on compliance with environmental quality requirements for components of the environment, particularly soils and lands and secure planning and safe placement of the productive forces. Acknowledgments: This study was supported by the Russian Science Foundation, project no. 143800023.
Ben-David, Merav; Shochat, Einav; Adams, Layne G.
2001-01-01
Recently, researchers emphasized that patterns of stable isotope ratios observed at the individual level are a result of an interaction between ecological, physiological, and biochemical processes. Isotopic models for herbivores provide additional complications because those mammals consume foods that have high variability in nitrogen concentrations. In addition, distribution of amino acids in plants may differ greatly from that required by a herbivore. At northern latitudes, where the growing season of vegetation is short, isotope ratios in herbivore tissues are expected to differ between seasons. Summer ratios likely reflect diet composition, whereas winter ratios would reflect diet and nutrient recycling by the animals. We tested this hypothesis using data collected from blood samples of caribou (Rangifer tarandus) and moose (Alces alces) in Denali National Park and Preserve, Alaska, USA. Stable isotope ratios of moose and caribou were significantly different from each other in late summer-autumn and winter. Also, late summer-autumn and winter ratios differed significantly between seasons in both species. Nonetheless, we were unable to evaluate whether differences in seasonal isotopic ratios were a result of diet selection or a response to nutrient recycling. We believe that additional studies on plant isotopic ratios as related to ecological factors in conjunction with investigations of diet selection by the herbivores will enhance our understanding of those interactions. Also, controlled studies investigating the relation between diet and physiological responses in herbivores will increase the utility of isotopic analysis in studying foraging ecology of herbivores.
Borzilov, V A
1993-11-01
Development of requirements for a data bank for natural media as a system of intercorrelated parameters to estimate system states are determined. The problems of functional agreement between experimental and calculation methods are analysed when organizing the ecological monitoring. The methods of forming the environmental specimen bank to estimate and forecast radioactive contamination and exposure dose are considered to be exemplified by the peculiarities of the spatial distribution of radioactive contamination in fields. Analysed is the temporal dynamics of contamination for atmospheric air, soil and water.
Evaluating landscape health: Integrating societal goals and biophysical process
Rapport, D.J.; Gaudet, C.; Karr, J.R.; Baron, Jill S.; Bohlen, C.; Jackson, W.; Jones, Bruce; Naiman, R.J.; Norton, B.; Pollock, M. M.
1998-01-01
Evaluating landscape change requires the integration of the social and natural sciences. The social sciences contribute to articulating societal values that govern landscape change, while the natural sciences contribute to understanding the biophysical processes that are influenced by human activity and result in ecological change. Building upon Aldo Leopold's criteria for landscape health, the roles of societal values and biophysical processes in shaping the landscape are explored. A framework is developed for indicators of landscape health and integrity. Indicators of integrity are useful in measuring biological condition relative to the condition in landscapes largely unaffected by human activity, while indicators of health are useful in evaluating changes in highly modified landscapes. Integrating societal goals and biophysical processes requires identification of ecological services to be sustained within a given landscape. It also requires the proper choice of temporal and spatial scales. Societal values are based upon inter-generational concerns at regional scales (e.g. soil and ground water quality). Assessing the health and integrity of the environment at the landscape scale over a period of decades best integrates societal values with underlying biophysical processes. These principles are illustrated in two contrasting case studies: (1) the South Platte River study demonstrates the role of complex biophysical processes acting at a distance; and (2) the Kissimmee River study illustrates the critical importance of social, cultural and economic concerns in the design of remedial action plans. In both studies, however, interactions between the social and the biophysical governed the landscape outcomes. The legacy of evolution and the legacy of culture requires integration for the purpose of effectively coping with environmental change.
Wood decomposition as influenced by invertebrates
Michael D. Ulyshen
2014-01-01
The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial...
ERIC Educational Resources Information Center
Trapp, Georgina S. A.; Giles-Corti, Billie; Christian, Hayley E.; Bulsara, Max; Timperio, Anna F.; McCormack, Gavin R.; Villaneuva, Karen P.
2012-01-01
Background. Efforts to increase the prevalence of children's active school transport require evidence to inform the development of comprehensive interventions. This study used a multilevel ecological framework to investigate individual, social, and environmental factors associated with walking to and from school among elementary school-aged…
Reproductive ecology of Astragalus filipes, a Great Basin restoration legume
Kristal M. Watrous
2010-01-01
Astragalus filipes Torrey ex. A. Gray (Fabaceae) is being studied and propagated for use in rangeland restoration projects throughout the Great Basin. Restoration forbs often require sufficient pollination services for seed production and persistence in restoration sites. Knowledge of a plant's breeding biology is important in providing pollination for maximal...
ERIC Educational Resources Information Center
Ibrahim, Joseph Elias; Davis, Marie-Claire
2013-01-01
Individuals with dementia carry an additional health burden of multiple comorbid conditions. Effectively assessing and treating these comorbid conditions requires the medical specialist to be aware of, understand, and manage the effects of dementia on their clinical subspecialty practice. This ecological study describes the dementia-related…
Impact of Wellness Legislation on Comprehensive School Health Programs
ERIC Educational Resources Information Center
Graber, Kim C.; Woods, Amelia Mays; O'Connor, Jamie A.
2012-01-01
In 2004, Congress passed the Child Nutrition and WIC Reauthorization Act that requires schools to implement a wellness plan. Grounded in Ecological Systems Theory (EST) (Bronfenbrenner, 1977, 1979), the purpose of this study was to explore the impact of the legislation, discover what measures have been taken to enact the legislation, gauge how the…
The American chestnut and fire: 6-year research results
Stacy L. Clark; Callie J. Schweitzer; Mike R. Saunders; Ethan P. Belair; Scott J. Torreano; Scott E. Schlarbaum
2014-01-01
American chestnut [Castanea dentata Marsh. (Borkh.)] is an iconic species with important ecological and utilitarian values, but was decimated by the mid-20th century by exotic fungal species fromAsia. Successful restoration will require sustainable silvicultural methods to maximize survival and afford chestnut a competitive advantage over natural vegetation. The study...
Chapter 17. Information needs: Great gray owls
Gregory D. Hayward
1994-01-01
Current understanding of great gray owl biology and ecology is based on studies of less than five populations. In an ideal world, a strong conservation strategy would require significant new information. However, current knowledge suggests that conservation of this forest owl should involve fewer conflicts than either the boreal or flammulated owl. The mix of forest...
Integrated watershed analysis: adapting to changing times
Gordon H. Reeves
2013-01-01
Resource managers are increasingly required to conduct integrated analyses of aquatic and terrestrial ecosystems before undertaking any activities. Th ere are a number of research studies on the impacts of management actions on these ecosystems, as well as a growing body of knowledge about ecological processes that aff ect them, particularly aquatic ecosystems, which...
Delineation of climate regions in the Northeastern United States
Arthur T. DeGaetano
1996-01-01
Climate is a primary criterion for the development, description and validation of subregional levels of the National Hierarchical Framework of Ecological Units. However, climate information is not currently available in the form or level of detail required for integration with other biophysical factors at the section or subsection levels. In this study, historical...
Theology in Ecological Perspective: An Interdisciplinary, Inquiry-Based Experiment
ERIC Educational Resources Information Center
Butkus, Russell A.; Kolmes, Steven A.
2008-01-01
As the result of an extensive self-study for the purpose of reaccreditation, the Department of Theology at The University of Portland began offering a new series of courses called Theological Perspective Courses (THEP). THEP courses are upper division and offered by theology faculty in conjunction with another department that has required core…
International Co-ordinating Council of the Programme on Man and the Biosphere (MAB). Final Report.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France).
Man and the Biosphere Program is an interdisciplinary program of research which emphasizes an ecological approach to the study of interrelationships between man and the environment. It is concerned with subjects of global or major regional significance which require international cooperation. This final report discusses areas in which…
Seasonal habitat associations of the wolverine in central Idaho
Jeffrey P. Copeland; James M. Peek; Craig R. Groves; Wayne E. Melquist; Kevin S. Mckelvey; Gregory W. McDaniel; Clinton D. Long; Charles E. Harris
2007-01-01
Although understanding habitat relationships remains fundamental to guiding wildlife management, these basic prerequisites remain vague and largely unstudied for the wolverine. Currently, a study of wolverine ecology conducted in Montana, USA, in the 1970s is the sole source of information on habitat requirements of wolverines in the conterminous United States. The...
The micro and macro of nutrients across biological scales.
Warne, Robin W
2014-11-01
During the past decade, we have gained new insights into the profound effects that essential micronutrients and macronutrients have on biological processes ranging from cellular function, to whole-organism performance, to dynamics in ecological communities, as well as to the structure and function of ecosystems. For example, disparities between intake and organismal requirements for specific nutrients are known to strongly affect animal physiological performance and impose trade-offs in the allocations of resources. However, recent findings have demonstrated that life-history allocation trade-offs and even microevolutionary dynamics may often be a result of molecular-level constraints on nutrient and metabolic processing, in which limiting reactants are routed among competing biochemical pathways. In addition, recent work has shown that complex ecological interactions between organismal physiological states such as exposure to environmental stressors and infectious pathogens can alter organismal requirements for, and, processing of, nutrients, and even alter subsequent nutrient cycling in ecosystems. Furthermore, new research is showing that such interactions, coupled with evolutionary and biogeographical constraints on the biosynthesis and availability of essential nutrients and micronutrients play an important, but still under-studied role in the structuring and functioning of ecosystems. The purpose of this introduction to the symposium "The Micro and Macro of Nutrient Effects in Animal Physiology and Ecology" is to briefly review and highlight recent research that has dramatically advanced our understanding of how nutrients in their varied forms profoundly affect and shape ecological and evolutionary processes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
A comparison of approaches for estimating relative impacts of nonnative fishes
Lapointe, N.W.R.; Pendleton, R. M.; Angermeier, Paul
2012-01-01
Lack of standard methods for quantifying impact has hindered risk assessments of high-impact invaders. To understand methodological strengths and weaknesses, we compared five approaches (in parentheses) for quantifying impact of nonnative fishes: reviewing documented impacts in a large-scale database (review); surveying fish biologists regarding three categories of impact (socioeconomic, ecological, abundance); and estimating frequency of occurrence from existing collection records (collection). In addition, we compared game and nongame biologists’ ratings of game and nongame species. Although mean species ratings were generally correlated among approaches, we documented important discrepancies. The review approach required little effort but often inaccurately estimated impact in our study region (Mid-Atlantic United States). Game fishes received lower ratings from the socioeconomic approach, which yielded the greatest consistency among respondents. The ecological approach exhibited lower respondent bias but was sensitive to pre-existing perceptions of high-impact invaders. The abundance approach provided the least-biased assessment of region-specific impact but did not account for differences in per-capita effects among species. The collection approach required the most effort and did not provide reliable estimates of impact. Multiple approaches to assessing a species’ impact are instructive, but impact ratings must be interpreted in the context of methodological strengths and weaknesses and key management issues. A combination of our ecological and abundance approaches may be most appropriate for assessing ecological impact, whereas our socioeconomic approach is more useful for understanding social dimensions. These approaches are readily transferrable to other regions and taxa; if refined, they can help standardize the assessment of impacts of nonnative species.
Growing evening primroses (Oenothera)
Greiner, Stephan; Köhl, Karin
2014-01-01
The model plant Oenothera has contributed significantly to the biological sciences and it dominated the early development of plant genetics, cytogenetics, and evolutionary biology. The great advantage of using Oenothera as a model system is a large body of genetic, cytological, morphological, and ecological information collected over more than a century. The Oenothera system offers a well-studied taxonomy, population structure, and ecology. Cytogenetics and formal genetics at the population level are extensively developed, providing an excellent basis to study evolutionary questions. Further, Oenothera is grown as an oil seed crop for the production of essential fatty acids (gamma-linoleic acid) and is considered to be a medicinal plant due to its many pharmaceutically active secondary metabolites, such as ellagitannins. Although Oenothera has been cultivated as a laboratory organism since the end of the 19th century, there is a substantial lack of literature dealing with modern greenhouse techniques for the genus. This review compiles an overview about the growth requirements for the genus Oenothera, with a special focus on its genetically best-studied subsections Oenothera and Munzia. Requirements for greenhouse, field, and agronomic cultures are presented, together with information on substrate types, pest control, as well as vegetative and seed propagation, cross pollination, harvest, and seed storage. Particular aspects like germination, bolting, and flowering induction in taxonomically diverse material are reviewed. Methods recommended are supported by ecological and experimental data. An overview of the possibilities for wide hybridization and polyploidy induction in the genus is given. Germplasm resources are referenced. In summary, a comprehensive guideline for successful laboratory cultivation of Oenothera species is provided. PMID:24592268
Growing evening primroses (Oenothera).
Greiner, Stephan; Köhl, Karin
2014-01-01
The model plant Oenothera has contributed significantly to the biological sciences and it dominated the early development of plant genetics, cytogenetics, and evolutionary biology. The great advantage of using Oenothera as a model system is a large body of genetic, cytological, morphological, and ecological information collected over more than a century. The Oenothera system offers a well-studied taxonomy, population structure, and ecology. Cytogenetics and formal genetics at the population level are extensively developed, providing an excellent basis to study evolutionary questions. Further, Oenothera is grown as an oil seed crop for the production of essential fatty acids (gamma-linoleic acid) and is considered to be a medicinal plant due to its many pharmaceutically active secondary metabolites, such as ellagitannins. Although Oenothera has been cultivated as a laboratory organism since the end of the 19th century, there is a substantial lack of literature dealing with modern greenhouse techniques for the genus. This review compiles an overview about the growth requirements for the genus Oenothera, with a special focus on its genetically best-studied subsections Oenothera and Munzia. Requirements for greenhouse, field, and agronomic cultures are presented, together with information on substrate types, pest control, as well as vegetative and seed propagation, cross pollination, harvest, and seed storage. Particular aspects like germination, bolting, and flowering induction in taxonomically diverse material are reviewed. Methods recommended are supported by ecological and experimental data. An overview of the possibilities for wide hybridization and polyploidy induction in the genus is given. Germplasm resources are referenced. In summary, a comprehensive guideline for successful laboratory cultivation of Oenothera species is provided.
NASA Astrophysics Data System (ADS)
Enquist, C.; Jackson, S. T.; Garfin, G. M.
2017-12-01
Translational ecology is an approach by which ecologists, stakeholders, and decision-makers work collaboratively to develop and deliver ecological research that, ideally, results in actionable science that leads to improved environmental decision-making. We analyzed a diverse array of real-world case studies and distilled six principles that characterize the practice of translational ecology: communication, commitment, collaboration, engagement, process, and decision-framing. In this talk, we highlight a subset of the case studies that illustrate these principles. Notably, we found that translational ecology is distinct from both basic and applied ecological research. As a practice, the approach deliberately extends research beyond theory or opportunistic applications, motivated by a search for outcomes that directly serve the needs of natural resource managers and decision-makers. Translational ecology is also distinct from knowledge co-production in that it does not require deep engagement between collaborators, although incorporating differing modes of co-production relative to the decision context, associated time frame, and available financial resources can greatly enhance the translational approach. Although there is a need for incentives to pursue in this type of work, we found that the creativity and context-specific knowledge of resource managers, practitioners, and decision-makers informs and enriches the scientific process, helping shape actionable science. Moreover, the process of addressing research questions arising from on-the-ground management issues, rather than from the top-down or expert-oriented perspectives of traditional science, can foster the long-term trust and commitment that is critical for long-term, sustained engagement between partners. Now, perhaps more than ever, the climate and environmental issues facing society are complex, often politicized, and value-laden. We argue that ecological science should play a key role in informing these problems and ecologists can engage as important partners committed to finding solutions. More broadly, scientists that embrace translational approaches are poised to make science-informed decision-making a reality in the face of a rapidly changing global environment.
Onono, Maricianah; Kwena, Zachary; Turan, Janet; Bukusi, Elizabeth A; Cohen, Craig R; Gray, Glenda E
2015-01-01
Objective Throughout most of sub-Saharan Africa (SSA), prevention of mother-to-child transmission (PMTCT) services are readily available. However, PMTCT programs in SSA have had suboptimal performance compared to other regions of the world. The main objective of this study is to explore the socio-ecological and individual factors influencing the utilization of PMTCT services among HIV-positive pregnant women in western Kenya using a social ecological model as our analytical lens. Methods Data were collected using in-depth interviews with 33 HIV-infected women attending government health facilities in rural western Kenya. Women with HIV-infected infants aged between 6 weeks to 6 months with a definitive diagnosis of HIV in the infant, as well as those with an HIV-negative test result in the infant were interviewed between November 2012 and June 2013. Coding and analysis of the transcripts followed grounded theory tenets. Coding reports were discussed in a series of meetings held among the authors. We then employed constant comparative analysis to discover dominant individual, family, society and structural determinants of PMTCT use. Results Barriers to women’s utilization of PMTCT services fell within the broad constructs of the socio-ecological model of individual, family, society and structural determinants. Several themes cut across the different steps of PMTCT cascade and relate to different constructs of the socio-ecological model. These themes include: self-motivation, confidence and resilience, family support, absence or reduced stigma, right provider attitude and quality of health services provided. We also found out that these factors ensured enhanced maternal health and HIV negative children. Conclusion The findings of this study suggest that a woman’s social environment is an important determinant of MTCT. PMTCT Interventions must comprehensively address multiple factors across the different ecological levels. More research is however required for the development of multi-component interventions that combine strategies at different ecological levels. PMID:26457229
Exploring Tree Age & Diameter to Illustrate Sample Design & Inference in Observational Ecology
ERIC Educational Resources Information Center
Casady, Grant M.
2015-01-01
Undergraduate biology labs often explore the techniques of data collection but neglect the statistical framework necessary to express findings. Students can be confused about how to use their statistical knowledge to address specific biological questions. Growth in the area of observational ecology requires that students gain experience in…
Stable isotopes of water and organic material can be very useful in monitoring programs because stable isotopes integrate information about ecological processes and record this information. Most ecological processes of interest for water quality (i.e. denitrification) require si...
A simple stochastic weather generator for ecological modeling
A.G. Birt; M.R. Valdez-Vivas; R.M. Feldman; C.W. Lafon; D. Cairns; R.N. Coulson; M. Tchakerian; W. Xi; Jim Guldin
2010-01-01
Stochastic weather generators are useful tools for exploring the relationship between organisms and their environment. This paper describes a simple weather generator that can be used in ecological modeling projects. We provide a detailed description of methodology, and links to full C++ source code (http://weathergen.sourceforge.net) required to implement or modify...
Kofi Akamani
2014-01-01
There is growing recognition that the sustainable governance of water resources requires building social-ecological resilience against future surprises. Adaptive comanagement, a distinct institutional mechanism that combines the learning focus of adaptive management with the multilevel linkages of comanagement, has recently emerged as a promising mechanism for building...
DOT National Transportation Integrated Search
1997-04-01
This implementation agreement was adopted by the Washington State Department of Ecology and the Washington State Department of Transportation. It requires that the agencies work together in dealing with short term modifications of water quality requi...
Disturbance patterns in a socio-ecological system at multiple scales
G. Zurlini; Kurt H. Riitters; N. Zaccarelli; I. Petrosillo; K.B. Jones; L. Rossi
2006-01-01
Ecological systems with hierarchical organization and non-equilibrium dynamics require multiple-scale analyses to comprehend how a system is structured and to formulate hypotheses about regulatory mechanisms. Characteristic scales in real landscapes are determined by, or at least reflect, the spatial patterns and scales of constraining human interactions with the...
Where the Wild Things Are: Informal Experience and Ecological Reasoning
ERIC Educational Resources Information Center
Coley, John D.
2012-01-01
Category-based induction requires selective use of different relations to guide inferences; this article examines the development of inferences based on ecological relations among living things. Three hundred and forty-six 6-, 8-, and 10-year-old children from rural, suburban, and urban communities projected novel "diseases" or "insides" from one…
Diets of aquatic birds reflect changes in the Lake Huron ecosystem
Hebert, Craig E.; Weseloh, D.V. Chip; Idrissi, Abode; Arts, Michael T.; Roseman, Edward F.
2009-01-01
Human activities have affected the Lake Huron ecosystem, in part, through alterations in the structure and function of its food webs. Insights into the nature of food web change and its ecological ramifications can be obtained through the monitoring of high trophic level predators such as aquatic birds. Often, food web change involves alterations in the relative abundance of constituent species and/or the introduction of new species (exotic invaders). Diet composition of aquatic birds is influenced, in part, by relative prey availability and therefore is a sensitive measure of food web structure. Using bird diet data to make inferences regarding food web change requires consistent measures of diet composition through time. This can be accomplished by measuring stable chemical and/or biochemical “ecological tracers” in archived avian samples. Such tracers provide insights into pathways of energy and nutrient transfer.In this study, we examine the utility of two groups of naturally-occurring intrinsic tracers (stable isotopes and fatty acids) to provide such information in a predatory seabird, the herring gull (Larus argentatus). Retrospective stable nitrogen and carbon isotope analysis of archived herring gull eggs identified declines in gull trophic position and shifts in food sources in Lake Huron over the last 25 years and changes in gull diet composition were inferred from egg fatty acid patterns. These independent groups of ecological tracers provided corroborating evidence of dietary change in this high trophic level predator. Gull dietary shifts were related to declines in prey fish abundance which suggests large-scale alterations to the Lake Huron ecosystem. Dietary shifts in herring gulls may be contributing to reductions in resources available for egg formation. Further research is required to evaluate how changes in resource availability may affect population sustainability in herring gulls and other waterbird species. Long-term biological monitoring programs are required to identify ecosystem change and evaluate its ecological significance.
Sahin, Sükran; Kurum, Ekrem
2009-09-01
Ecological monitoring is a complementary component of the overall environmental management and monitoring program of any Environmental Impact Assessment (EIA) report. The monitoring method should be developed for each project phase and allow for periodic reporting and assessment of compliance with the environmental conditions and requirements of the EIA. Also, this method should incorporate a variance request program since site-specific conditions can affect construction on a daily basis and require time-critical application of alternative construction scenarios or environmental management methods integrated with alternative mitigation measures. Finally, taking full advantage of the latest information and communication technologies can enhance the quality of, and public involvement in, the environmental management program. In this paper, a landscape-scale ecological monitoring method for major construction projects is described using, as a basis, 20 months of experience on the Baku-Tbilisi-Ceyhan (BTC) Crude Oil Pipeline Project, covering Turkish Sections Lot B and Lot C. This analysis presents suggestions for improving ecological monitoring for major construction activities.
Land Ecological on Public Transport Infrastructure Development In Indonesia
NASA Astrophysics Data System (ADS)
Sari, N.
2017-10-01
The development of public transport infrastructure in Indonesia has been growing rapidly since the last five years. The utilization of area as public transport infrastructure, for example bus depot, bus Station and terminal requires wide area and influences many elements, such as land ecological quality, water supplies, power supplies, and environmental balance. However the development of public transport infrastructure now days is less considering on environmental approach, especially for green and catchment area for water conservation (water balance).This paper aims to propose the concept of Public Transport Infrastructure using green concept. The green design concept is using GBCI (Green Building Council Indonesia) standard, which contains seven categories: land ecological enhancement, movement and connectivity, water management and conservation, solid waste and material, community wellbeing strategy, building and energy, and also innovation and future development. The result is, by using the GBCI standard for the green design of Public Transport Infrastructure, the land ecological impact could be decreased. The effective areas that required are at least 5000 m2, from which the green areas for public increase 36% and 76% of areas could be used as catchment area for water conservation.
Iterative near-term ecological forecasting: Needs, opportunities, and challenges
Dietze, Michael C.; Fox, Andrew; Beck-Johnson, Lindsay; Betancourt, Julio L.; Hooten, Mevin B.; Jarnevich, Catherine S.; Keitt, Timothy H.; Kenney, Melissa A.; Laney, Christine M.; Larsen, Laurel G.; Loescher, Henry W.; Lunch, Claire K.; Pijanowski, Bryan; Randerson, James T.; Read, Emily; Tredennick, Andrew T.; Vargas, Rodrigo; Weathers, Kathleen C.; White, Ethan P.
2018-01-01
Two foundational questions about sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect these trajectories?” Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.
Iterative near-term ecological forecasting: Needs, opportunities, and challenges.
Dietze, Michael C; Fox, Andrew; Beck-Johnson, Lindsay M; Betancourt, Julio L; Hooten, Mevin B; Jarnevich, Catherine S; Keitt, Timothy H; Kenney, Melissa A; Laney, Christine M; Larsen, Laurel G; Loescher, Henry W; Lunch, Claire K; Pijanowski, Bryan C; Randerson, James T; Read, Emily K; Tredennick, Andrew T; Vargas, Rodrigo; Weathers, Kathleen C; White, Ethan P
2018-02-13
Two foundational questions about sustainability are "How are ecosystems and the services they provide going to change in the future?" and "How do human decisions affect these trajectories?" Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.
NASA Technical Reports Server (NTRS)
1991-01-01
Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-11-01
Construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site (SRS) began during FY-1984. The Savannah River Ecology Laboratory (SREL) has completed 15 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Through the long-term census taking of biota at the DWPF site and Rainbow Bay, SREL has been evaluating the impact of construction on the biota and the effectiveness of mitigation efforts. similarly, the effects of erosion from the DWPF site on the water quality ofmore » S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).« less
Validating spatial structure in canopy water content using geostatistics
NASA Technical Reports Server (NTRS)
Sanderson, E. W.; Zhang, M. H.; Ustin, S. L.; Rejmankova, E.; Haxo, R. S.
1995-01-01
Heterogeneity in ecological phenomena are scale dependent and affect the hierarchical structure of image data. AVIRIS pixels average reflectance produced by complex absorption and scattering interactions between biogeochemical composition, canopy architecture, view and illumination angles, species distributions, and plant cover as well as other factors. These scales affect validation of pixel reflectance, typically performed by relating pixel spectra to ground measurements acquired at scales of 1m(exp 2) or less (e.g., field spectra, foilage and soil samples, etc.). As image analysis becomes more sophisticated, such as those for detection of canopy chemistry, better validation becomes a critical problem. This paper presents a methodology for bridging between point measurements and pixels using geostatistics. Geostatistics have been extensively used in geological or hydrogeolocial studies but have received little application in ecological studies. The key criteria for kriging estimation is that the phenomena varies in space and that an underlying controlling process produces spatial correlation between the measured data points. Ecological variation meets this requirement because communities vary along environmental gradients like soil moisture, nutrient availability, or topography.
The basis function approach for modeling autocorrelation in ecological data
Hefley, Trevor J.; Broms, Kristin M.; Brost, Brian M.; Buderman, Frances E.; Kay, Shannon L.; Scharf, Henry; Tipton, John; Williams, Perry J.; Hooten, Mevin B.
2017-01-01
Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.
Ecoinformatics: supporting ecology as a data-intensive science.
Michener, William K; Jones, Matthew B
2012-02-01
Ecology is evolving rapidly and increasingly changing into a more open, accountable, interdisciplinary, collaborative and data-intensive science. Discovering, integrating and analyzing massive amounts of heterogeneous data are central to ecology as researchers address complex questions at scales from the gene to the biosphere. Ecoinformatics offers tools and approaches for managing ecological data and transforming the data into information and knowledge. Here, we review the state-of-the-art and recent advances in ecoinformatics that can benefit ecologists and environmental scientists as they tackle increasingly challenging questions that require voluminous amounts of data across disciplines and scales of space and time. We also highlight the challenges and opportunities that remain. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fan, Juntao; Semenzin, Elena; Meng, Wei; Giubilato, Elisa; Zhang, Yuan; Critto, Andrea; Zabeo, Alex; Zhou, Yun; Ding, Sen; Wan, Jun; He, Mengchang; Lin, Chunye
2015-10-01
Integrated risk assessment approaches allow to achieve a sound evaluation of ecological status of river basins and to gain knowledge about the likely causes of impairment, useful for informing and supporting the decision-making process. In this paper, the integrated risk assessment (IRA) methodology developed in the EU MODELKEY project (and implemented in the MODELKEY Decision Support System) is applied to the Taizi River (China), in order to assess its Ecological and Chemical Status according to EU Water Framework Directive (WFD) requirements. The available dataset is derived by an extensive survey carried out in 2009 and 2010 across the Taizi River catchment, including the monitoring of physico-chemical (i.e. DO, EC, NH3-_N, chemical oxygen demand (COD), biological oxygen demand in 5 days (BOD5) and TP), chemical (i.e. polycyclic aromatic hydrocarbons (PAHs) and metals), biological (i.e. macroinvertebrates, fish, and algae), and hydromorphological parameters (i.e. water quantity, channel change and morphology diversity). The results show a negative trend in the ecological status from the highland to the lowland of the Taizi River Basin. Organic pollution from agriculture and domestic sources (i.e. COD and BOD5), unstable hydrological regime (i.e. water quantity shortage) and chemical pollutants from industry (i.e. PAHs and metals) are found to be the main stressors impacting the ecological status of the Taizi River Basin. The comparison between the results of the IRA methodology and those of a previous study (Leigh et al. 2012) indicates that the selection of indicators and integrating methodologies can have a relevant impact on the classification of the ecological status. The IRA methodology, which integrates information from five lines of evidence (i.e., biology, physico-chemistry, chemistry, ecotoxicology and hydromorphology) required by WFD, allows to better identify the biological communities that are potentially at risk and the stressors that are most likely responsible for the observed alterations. This knowledge can be beneficial for a more effective restoration and management of the river basin ecosystem.
Baseline Q-values for streams in intensive agricultural catchments in Ireland
NASA Astrophysics Data System (ADS)
Melland, Alice; Jordan, Phil; Wall, David; Mellander, Per-Erik; Mechan, Sarah; Shortle, Ger
2010-05-01
The effectiveness of regulations introduced in Ireland in 2006 in response to the European Union Nitrates Directives for minimising nutrient loss to waterways from farms is being studied by Teagasc, the Irish Agriculture and Food Development Authority as part of an Agricultural Catchments Programme from 2008 - 2011. The regulations in Ireland require that during winter, green cover is established and maintained on arable farms, manure is stored and not spread, ploughing is not conducted and that chemical fertiliser is not spread. The regulations also require buffer zones between fields and water courses when applying organic or chemical fertilisers and that nutrient application rates and timing match crop requirements. An upper limit for livestock manure loading of 170 kg ha-1 organic N each year is also set. The biophysical research component of the Agricultural Catchments Programme is focussed on quantifying nutrient source availability, surface and subsurface transport pathways and stream chemical water quality. A baseline description of stream ecological quality was also sought. Stream ecology was measured in autumn 2009 at 3-5 locations within four surface water catchments and at the spring emergence of a catchment underlain by karst limestone. Landuse in each catchment is dominated by medium to high intensity grassland or cereal farming and annual average rainfall ranges from 900 - 1200 mm. Surveys were conducted in 1st to 3rd order streams throughout each catchment at locations which had minimal observed point source inputs for 100m upstream, incomplete shade, a hard streambed substrate and riffle conditions suitable for the sampling methods. Benthic macroinvertebrates were identified and quantified and used to calculate the biological indices Small Stream Risk Score, Q-value, Biological Monitoring Working Party (BMWP), Average Score Per Taxa (ASPT) and EQR (Observed Q-value/Reference Q-value). Diatom community assemblages were identified from samples collected by scraping submerged cobbles and a Trophic Diatom Index and EQR were calculated. Hydromorphology of each sample location was assessed using the River Hydromorphology Assessment Technique (RHAT). Stream water chemistry (nitrate-N, total N, total phosphorus, reactive phosphorus, electrical conductivity, suspended sediments, major cations, pH) was measured at monthly intervals near each ecological survey location. The ecology measurements will be repeated in summer and autumn 2010 to provide a baseline indication of Q-values in the catchments. A fish survey will also be conducted in 2010. The ecological surveys were conducted by the Aquatic Services Unit at University College Cork, Ireland. This paper describes the major farming and stream chemical characteristics of the five catchments and reports on results of the 2009 ecological surveys.
Land Ecological Security Evaluation of Guangzhou, China
Xu, Linyu; Yin, Hao; Li, Zhaoxue; Li, Shun
2014-01-01
As the land ecosystem provides the necessary basic material resources for human development, land ecological security (LES) plays an increasingly important role in sustainable development. Given the degradation of land ecological security under rapid urbanization and the urgent LES requirements of urban populations, a comprehensive evaluation method, named Double Land Ecological Security (DLES), has been introduced with the city of Guangzhou, China, as a case study, which evaluates the LES in regional and unit scales for reasonable and specific urban planning. In the evaluation process with this method, we have combined the material security with the spiritual security that is inevitably associated with LES. Some new coefficients of land-security supply/demand distribution and technology contribution for LES evaluation have also been introduced for different spatial scales, including the regional and the unit scales. The results for Guangzhou indicated that, temporally, the LES supply indices were 0.77, 0.84 and 0.77 in 2000, 2006 and 2009 respectively, while LES demand indices for the city increased in 2000, 2006 and 2009 from 0.57 to 0.95, which made the LES level decreased slowly in this period. Spatially, at the regional scale, the urban land ecological security (ULES) level decreased from 0.2 (marginal security) to −0.18 (marginal insecurity) as a whole; in unit scale, areas in the north and in parts of the east were relatively secure and the security area was shrinking with time, but the central and southern areas turned to be marginal insecurity, especially in 2006 and 2009. This study proposes that DLES evaluation should be conducted for targeted and efficient urban planning and management, which can reflect the LES level of study area in general and in detail. PMID:25321873
Land ecological security evaluation of Guangzhou, China.
Xu, Linyu; Yin, Hao; Li, Zhaoxue; Li, Shun
2014-10-15
As the land ecosystem provides the necessary basic material resources for human development, land ecological security (LES) plays an increasingly important role in sustainable development. Given the degradation of land ecological security under rapid urbanization and the urgent LES requirements of urban populations, a comprehensive evaluation method, named Double Land Ecological Security (DLES), has been introduced with the city of Guangzhou, China, as a case study, which evaluates the LES in regional and unit scales for reasonable and specific urban planning. In the evaluation process with this method, we have combined the material security with the spiritual security that is inevitably associated with LES. Some new coefficients of land-security supply/demand distribution and technology contribution for LES evaluation have also been introduced for different spatial scales, including the regional and the unit scales. The results for Guangzhou indicated that, temporally, the LES supply indices were 0.77, 0.84 and 0.77 in 2000, 2006 and 2009 respectively, while LES demand indices for the city increased in 2000, 2006 and 2009 from 0.57 to 0.95, which made the LES level decreased slowly in this period. Spatially, at the regional scale, the urban land ecological security (ULES) level decreased from 0.2 (marginal security) to -0.18 (marginal insecurity) as a whole; in unit scale, areas in the north and in parts of the east were relatively secure and the security area was shrinking with time, but the central and southern areas turned to be marginal insecurity, especially in 2006 and 2009. This study proposes that DLES evaluation should be conducted for targeted and efficient urban planning and management, which can reflect the LES level of study area in general and in detail.
Ecological units: definitions and application.
Jax, Kurt
2006-09-01
Concepts of ecological units, such as population, community, and ecosystem, are at the basis of ecological theory and research and have increasingly become the focus of conservation strategies. Concepts of these units still suffer from inconsistencies and confusions over terminology. The different concepts are treated here together as a common "conceptual cluster," with similar ecological functions (roles) and similar problems in their definition and use. An analysis of the multitude of existing terms and concepts that have been developed for these units reveals that they differ with respect to at least four basic criteria: (i) the questions as to whether they are defined statistically or via a network of interactions; (ii) if their boundaries are drawn by topographical or process-related criteria; (iii) how high the required internal relationships are; and (iv) if they are perceived as "real" entities or abstractions by an observer The various definitions cannot be easily sorted into just a few types, but they can be characterized by several independent criteria. I argue that serious problems arise if the different possibilities of defining ecological units are not recognized and if the concepts are perceived as self-evident. The different concepts of ecological units should be defined and used in a philosophically informed manner I propose a dual approach to the use of ecological units. Generic meanings of the main concepts (especially population, community, and ecosystem) should be retained only as heuristically useful perspectives, while specific and "operational" definitions of the concepts as units should be developed, depending on specific purposes of their use. Some thoughts on the basic requirements for such definitions and the domains of their uses are briefly explained.
Lucas, Christine M; Sheikh, Pervaze; Gagnon, Paul R; Mcgrath, David G
2016-01-01
The contribution of working forests to tropical conservation and development depends upon the maintenance of ecological integrity under ongoing land use. Assessment of ecological integrity requires an understanding of the structure, composition, and function and major drivers that govern their variability. Working forests in tropical river floodplains provide many goods and services, yet the data on the ecological processes that sustain these services is scant. In flooded forests of riverside Amazonian communities, we established 46 0.1-ha plots varying in flood duration, use by cattle and water buffalo, and time since agricultural abandonment (30-90 yr). We monitored three aspects of ecological integrity (stand structure, species composition, and dynamics of trees and seedlings) to evaluate the impacts of different trajectories of livestock activity (alleviation, stasis, and intensification) over nine years. Negative effects of livestock intensification were solely evident in the forest understory, and plots alleviated from past heavy disturbance increased in seedling density but had higher abundance of thorny species than plots maintaining low activity. Stand structure, dynamics, and tree species composition were strongly influenced by the natural pulse of seasonal floods, such that the defining characteristics of integrity were dependent upon flood duration (3-200 d). Forests with prolonged floods ≥ 140 d had not only lower species richness but also lower rates of recruitment and species turnover relative to forests with short floods <70 d. Overall, the combined effects of livestock intensification and prolonged flooding hindered forest regeneration, but overall forest integrity was largely related to the hydrological regime and age. Given this disjunction between factors mediating canopy and understory integrity, we present a subset of metrics for regeneration and recruitment to distinguish forest condition by livestock trajectory. Although our study design includes confounded factors that preclude a definitive assessment of the major drivers of ecological change, we provide much-needed data on the regrowth of a critical but poorly studied ecosystem. In addition to its emphasis on the dynamics of tropical wetland forests undergoing anthropogenic and environmental change, our case study is an important example for how to assess of ecological integrity in working forests of tropical ecosystems.
Li, Bo; Han, Zeng-Lin; Tong, Lian-Jun
2009-05-01
By the methods of in situ investigation and regional ecological planning, the present ecological environment, ecosystem vulnerability, and ecological environment sensitivity in "Ji Triangle" Region were analyzed, and the ecological network of the study area was constructed. According to the ecological resources abundance degree, ecological recovery, farmland windbreak system, environmental carrying capacity, forestry foundation, and ecosystem integrity, the study area was classified into three regional ecological function ecosystems, i. e., east low hill ecosystem, middle plain ecosystem, and west plain wetland ecosystem. On the basis of marking regional ecological nodes, the regional ecological corridor (Haerbin-Dalian regional axis, Changchun-Jilin, Changchun-Songyuan, Jilin-Songyuan, Jilin-Siping, and Songyuan-Siping transportation corridor) and regional ecological network (one ring, three links, and three belts) were constructed. Taking the requests of regional ecological security into consideration, the ecological environment security system of "Ji Triangle" Region, including regional ecological conservation district, regional ecological restored district, and regional ecological management district, was built.
Why the leopard got its spots: relating pattern development to ecology in felids
Allen, William L.; Cuthill, Innes C.; Scott-Samuel, Nicholas E.; Baddeley, Roland
2011-01-01
A complete explanation of the diversity of animal colour patterns requires an understanding of both the developmental mechanisms generating them and their adaptive value. However, only two previous studies, which involved computer-generated evolving prey, have attempted to make this link. This study examines variation in the camouflage patterns displayed on the flanks of many felids. After controlling for the effects of shared ancestry using a fully resolved molecular phylogeny, this study shows how phenotypes from plausible felid coat pattern generation mechanisms relate to ecology. We found that likelihood of patterning and pattern attributes, such as complexity and irregularity, were related to felids' habitats, arboreality and nocturnality. Our analysis also indicates that disruptive selection is a likely explanation for the prevalence of melanistic forms in Felidae. Furthermore, we show that there is little phylogenetic signal in the visual appearance of felid patterning, indicating that camouflage adapts to ecology over relatively short time scales. Our method could be applied to any taxon with colour patterns that can reasonably be matched to reaction–diffusion and similar models, where the kinetics of the reaction between two or more initially randomly dispersed morphogens determines the outcome of pattern development. PMID:20961899
Marine ecological risk assessment methods for radiation accidents.
Ye, Sufen; Zhang, Luoping; Feng, Huan
2017-12-01
Ecological risk assessment (ERA) is a powerful technical tool that can be used to analyze potential and extreme adverse environmental impacts. With the rapid development of nuclear power plants in coastal areas around the world, the establishment of approaches and methodologies for marine ERA with a focus on radiation accidents is an urgent requirement for marine environmental management. In this study, the approaches and methodologies for ERA pertaining to marine radiation accidents (MRA) are discussed and summarized with applications in case studies, such as the nuclear accident in Fukushima, Japan, and a hypothetical accident in Daya Bay, China. The concepts of ERA and Risk Degree of ERA on MRA are defined for the first time to optimize the ERA system. The results of case studies show that the ERA approach and methodology for MRA are scientifically sound and effective in both the early and late stage of MRAs along with classic ERA Approach and the ERICA Integrated Approach. The results can be useful in the decision-making processes and the risk management at the beginning of accident as well as the ecological restoration after the accident. Copyright © 2017 Elsevier Ltd. All rights reserved.
Does human perception of wetland aesthetics and healthiness relate to ecological functioning?
Cottet, Marylise; Piégay, Hervé; Bornette, Gudrun
2013-10-15
Wetland management usually aims at preserving or restoring desirable ecological characteristics or functions. It is now well-recognized that some social criteria should also be included. Involving lay-people in wetland preservation or restoration projects may mean broadening project objectives to fit various and potentially competing requirements that relate to ecology, aesthetics, recreation, etc. In addition, perceived value depends both upon expertise and objectives, both of which vary from one stakeholder population to another. Perceived value and ecological functioning have to be reconciled in order to make a project successful. Understanding the perceptions of lay-people as well as their opinions about ecological value is a critical part of the development of sustainable management plans. Characterizing the environment in a way that adequately describes ecological function while also being consistent with lay perception may help reach such objectives. This goal has been addressed in a case study relating to wetlands of the Ain River (France). A photo-questionnaire presenting a sample of photographs of riverine wetlands distributed along the Ain River was submitted to 403 lay-people and self-identified experts. Two objectives were defined: (1) to identify the different parameters, whether visual or ecological, influencing the perception regarding the value of these ecosystems; (2) to compare the perceptions of self-identified experts and lay-people. Four criteria appear to strongly influence peoples' perceptions of ecological and aesthetical values: water transparency and colour, the presence and appearance of aquatic vegetation, the presence of sediments, and finally, trophic status. In our study, we observed only a few differences in perception. The differences primarily related to the value assigned to oligotrophic wetlands but even here, the differences between lay and expert populations were minimal. These results support the idea that it is possible to implement an integrated and participative management program for ecosystems. Our approach can provide a shared view of environmental value facilitating the work of managers in defining comprehensive goals for wetland preservation or restoration projects. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Swider, Jan Zenon
The human health risk assessment (HRA), initiated by the onset of nuclear industry, has been a well established methodology for assessing the impacts of human created contamination on an individual human being and entire population. The wide spread of applications and tools grown upon this methodology allows one not only to identify the hazards, but also to manage the risks. Recently, there has existed an increased awareness of the need to conduct ecological risk assessments (ERA) in addition to HRAs. The ERAs are, by and large, more complex than typical HRAs and involve not only different species but whole ecological systems. Such complex analyses require a thorough understanding of the processes underway in the ecosystem, including the contaminant transport through the food web, population dynamics as well as intra- and inter-specific relationships. The exposure pathways change radically depending on the consumer tier. Plants produce their nutriment from the sunlight and raw inorganic compounds. Animals and other living forms obtain energy by eating plants, other animals and detritus. Their double role as food consumers and food producers causes a trophic structure of the ecological system, where nutrients and energy are transferred from one trophic level to another. This is a dynamic process of energy flow, mostly in the form of food, varying with time and space. In order to conduct an efficient ERA, a multidisciplinary framework is needed. This framework can be enhanced by analyzing predator-prey interactions during the environmental disturbances caused by a pollutant emission, and by assessing the consequences of such disturbances. It is necessary to develop a way to describe how human industrial activity affects the ecosystems. Existing ecological studies have mostly been focused either on pure ecological interdependencies or on limited perspectives of human activities. In this study, we discuss the issues of air pollution and its ecological impacts from the Ecological Risk Assessment standpoint and examine the impact of air toxics emissions on an ecosystem, with particular emphasis on predator-prey interactions. Such analysis may help to identify the most likely conditions leading to the ecosystem instability and possibility of its recuperation.
Gerrodette, Tim; Olson, Robert; Reilly, Stephen; Watters, George; Perrin, William
2012-04-01
An ecosystem approach to fisheries management is a widely recognized goal, but describing and measuring the effects of a fishery on an ecosystem is difficult. Ecological information on the entire catch (all animals removed, whether retained or discarded) of both species targeted by the fishery and nontarget species (i.e., bycatch) is required. We used data from the well-documented purse-seine fishery for tunas (Thunnus albacares, T. obesus, and Katsuwonus pelamis) in the eastern tropical Pacific Ocean to examine the fishery's ecological effects. Purse-seine fishing in the eastern tropical Pacific is conducted in 3 ways that differ in the amount and composition of target species and bycatch. The choice of method depends on whether the tunas are swimming alone (unassociated sets), associated with dolphins (dolphin sets), or associated with floating objects (floating-object sets). Among the fishing methods, we compared catch on the basis of weight, number of individuals, trophic level, replacement time, and diversity. Floating-object sets removed 2-3 times as much biomass as the other 2 methods, depending on how removal was measured. Results of previous studies suggest the ecological effects of floating-object sets are thousands of times greater than the effects of other methods, but these results were derived from only numbers of discarded animals. Management of the fishery has been driven to a substantial extent by a focus on reducing bycatch, although discards are currently 4.8% of total catch by weight, compared with global averages of 7.5% for tuna longline fishing and 30.0% for midwater trawling. An ecosystem approach to fisheries management requires that ecological effects of fishing on all animals removed by a fishery, not just bycatch or discarded catch, be measured with a variety of metrics. ©2012 Society for Conservation Biology.
2016-01-01
Observations of individual organisms (data) can be combined with expert ecological knowledge of species, especially causal knowledge, to model and extract from flower–visiting data useful information about behavioral interactions between insect and plant organisms, such as nectar foraging and pollen transfer. We describe and evaluate a method to elicit and represent such expert causal knowledge of behavioral ecology, and discuss the potential for wider application of this method to the design of knowledge-based systems for knowledge discovery in biodiversity and ecosystem informatics. PMID:27851814
Holguin-Gonzalez, Javier E; Boets, Pieter; Everaert, Gert; Pauwels, Ine S; Lock, Koen; Gobeyn, Sacha; Benedetti, Lorenzo; Amerlinck, Youri; Nopens, Ingmar; Goethals, Peter L M
2014-01-01
Worldwide, large investments in wastewater treatment are made to improve water quality. However, the impacts of these investments on river water quality are often not quantified. To assess water quality, the European Water Framework Directive (WFD) requires an integrated approach. The aim of this study was to develop an integrated ecological modelling framework for the River Drava (Croatia) that includes physical-chemical and hydromorphological characteristics as well as the ecological river water quality status. The developed submodels and the integrated model showed accurate predictions when comparing the modelled results to the observations. Dissolved oxygen and nitrogen concentrations (ammonium and organic nitrogen) were the most important variables in determining the ecological water quality (EWQ). The result of three potential investment scenarios of the wastewater treatment infrastructure in the city of Varaždin on the EWQ of the River Drava was assessed. From this scenario-based analysis, it was concluded that upgrading the existing wastewater treatment plant with nitrogen and phosphorus removal will be insufficient to reach a good EWQ. Therefore, other point and diffuse pollution sources in the area should also be monitored and remediated to meet the European WFD standards.
Parkyn, Stephanie M; Smith, Brian J
2011-09-01
Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.
NASA Astrophysics Data System (ADS)
Parkyn, Stephanie M.; Smith, Brian J.
2011-09-01
Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.
Predicting diet and consumption rate differences between and within species using gut ecomorphology.
Griffen, Blaine D; Mosblack, Hallie
2011-07-01
1. Rapid environmental changes and pressing human needs to forecast the consequences of environmental change are increasingly driving ecology to become a predictive science. The need for effective prediction requires both the development of new tools and the refocusing of existing tools that may have previously been used primarily for purposes other than prediction. One such tool that historically has been more descriptive in nature is ecomorphology (the study of relationships between ecological roles and morphological adaptations of species and individuals). 2. Here, we examine relationships between diet and gut morphology for 15 species of brachyuran crabs, a group of pervasive and highly successful consumers for which trophic predictions would be highly valuable. 3. We show that patterns in crab stomach volume closely match some predictions of metabolic theory and demonstrate that individual diet differences and associated morphological variation reflect, at least in some instances, individual choice or diet specialization. 4. We then present examples of how stomach volume can be used to predict both the per cent herbivory of brachyuran crabs and the relative consumption rates of individual crabs. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Peng, Changhui; Guiot, Joel; Wu, Haibin; Jiang, Hong; Luo, Yiqi
2011-05-01
It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process-based ecological models and data in cohesive, systematic ways. Model-data fusion (MDF) is an emerging area of research in ecology and palaeoecology. It provides a new quantitative approach that offers a high level of empirical constraint over model predictions based on observations using inverse modelling and data assimilation (DA) techniques. Increasing demands to integrate model and data methods in the past decade has led to MDF utilization in palaeoecology, ecology and earth system sciences. This paper reviews key features and principles of MDF and highlights different approaches with regards to DA. After providing a critical evaluation of the numerous benefits of MDF and its current applications in palaeoecology (i.e., palaeoclimatic reconstruction, palaeovegetation and palaeocarbon storage) and ecology (i.e. parameter and uncertainty estimation, model error identification, remote sensing and ecological forecasting), the paper discusses method limitations, current challenges and future research direction. In the ongoing data-rich era of today's world, MDF could become an important diagnostic and prognostic tool in which to improve our understanding of ecological processes while testing ecological theory and hypotheses and forecasting changes in ecosystem structure, function and services. © 2011 Blackwell Publishing Ltd/CNRS.
Next steps in the development of ecological soil clean-up values for metals.
Wentsel, Randall; Fairbrother, Anne
2014-07-01
This special series in Integrated Environmental Assessment Management presents the results from 6 workgroups that were formed at the workshop on Ecological Soil Levels-Next Steps in the Development of Metal Clean-Up Values (17-21 September 2012, Sundance, Utah). This introductory article presents an overview of the issues assessors face when conducting risk assessments for metals in soils, key US Environmental Protection Agency (USEPA) documents on metals risk assessment, and discusses the importance of leveraging from recent major terrestrial research projects, primarily to address Registration, Evaluation, Authorization and Restriction of Chemical Substances (REACH) requirements in Europe, that have significantly advanced our understanding of the behavior and toxicity of metals in soils. These projects developed large data sets that are useful for the risk assessment of metals in soil environments. The workshop attendees met to work toward developing a process for establishing ecological soil clean-up values (Eco-SCVs). The goal of the workshop was to progress from ecological soil screening values (Eco-SSLs) to final clean-up values by providing regulators with the methods and processes to incorporate bioavailability, normalize toxicity thresholds, address food-web issues, and incorporate background concentrations. The REACH data sets were used by workshop participants as case studies in the development of the ecological standards for soils. The workshop attendees discussed scientific advancements in bioavailability, soil biota and wildlife case studies, soil processes, and food-chain modeling. In addition, one of the workgroups discussed the processes needed to frame the topics to gain regulatory acceptance as a directive or guidance by Canada, the USEPA, or the United States. © 2013 SETAC.
NASA Astrophysics Data System (ADS)
Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.
2015-11-01
Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.
Ecological and population genetics of locally rare plants: A review
Simon A. Lei
2001-01-01
Plant species with limited dispersal ability, narrow geographical and physiological tolerance ranges, as well as with specific habitat and ecological requirements are likely to be rare. Small and isolated populations and species contain low levels of within-population genetic variation in many plant species. The gene pool of plants is a product of phenotype-environment...
Responding to the Ecological Crisis: Transformative Pathways for Social Work Education
ERIC Educational Resources Information Center
Jones, Peter
2010-01-01
The nature and extent of the current ecological crisis raises the question: Does social work have a contribution to make in addressing the social and environmental changes required if we are to move toward a sustainable future? Given the links between the traditional concerns of social work and the emerging concerns of environmental and ecological…
ERIC Educational Resources Information Center
Chang, David
2017-01-01
An efficacious response to the ecological crisis requires a thorough examination of our material entitlements and a willingness to reduce our ecological impact by diminishing current levels of consumption. Drawing on the example of air pollution in China, I present a case for the reduction of consumption and impact as a worthy outcome of…
Hartwell H. Welsh Jr.
2011-01-01
Successfully addressing the multitude of stresses influencing forest catchments, their native biota, and the vital ecological services they provide humanity will require adapting an integrated view that incorporates the full range of natural and anthropogenic disturbances acting on these landscapes and their embedded fluvial networks. The concepts of dendritic networks...
Process-based models are required to manage ecological systems in a changing world
K. Cuddington; M.-J. Fortin; L.R. Gerber; A. Hastings; A. Liebhold; M. OConnor; C. Ray
2013-01-01
Several modeling approaches can be used to guide management decisions. However, some approaches are better fitted than others to address the problem of prediction under global change. Process-based models, which are based on a theoretical understanding of relevant ecological processes, provide a useful framework to incorporate specific responses to altered...
Julianna M. A. Jenkins; Frank R. Thompson; John Faaborg; Andrew J. Kroll
2017-01-01
Habitat selection is a fundamental component of community ecology, population ecology, and evolutionary biology and can be especially important to species with complex annual habitat requirements, such as migratory birds. Resource preferences on the breeding grounds may change during the postfledging period for migrant songbirds, however, the degree to which selection...
USDA-ARS?s Scientific Manuscript database
Understanding the basic ecological patterns of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is required for implementing a successful integrated pest management program. As the primary pest of cotton in Mississippi and across the mid-south, L. lineolaris is a highly polyphagous m...
The ecological dimension of psychoanalysis and the concept of inner sustainability.
Ley, Wolfgang
2008-12-01
An "ecological-cum-psychoanalytic" perspective elucidates the innate kinship between modern, critical ecological thinking and the assumptions on the nature of the human animal underlying Freudian psychoanalysis. "Critical ecology" engages with the issues posed by a meaningful, "sustainable" design for the relationship between nature and culture; psychoanalysis investigates and engages therapeutically with human self-relations in the field of tension existing between the culture-imprinted and culture-productive "ego," on the one hand, and the independent, naturally established motivational sides of the psyche subsumed by Freud under the term "id" on the other. Against an ecological-cum-psychoanalytic backdrop, modern developments in object relations theory and self psychology can be understood in a way that places them in a conceptual framework corresponding to Freud's central concern with the balance or integration-successful or unsuccessful-of the motivational (interactional) strivings of "internal nature" and the requirements posed by human "self-production" via culture. Psychoanalysis and critical ecology, it is argued, stand to profit from one another.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kszos, L.A.
1994-03-01
On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, andmore » protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.« less
Dietrich, Muriel; Gómez-Díaz, Elena; McCoy, Karen D
2011-05-01
The ubiquity of ticks and their importance in the transmission of pathogens involved in human and livestock diseases are reflected by the growing number of studies focusing on tick ecology and the epidemiology of tick-borne pathogens. Likewise, the involvement of wild birds in dispersing pathogens and their role as reservoir hosts are now well established. However, studies on tick-bird systems have mainly focused on land birds, and the role of seabirds in the ecology and epidemiology of tick-borne pathogens is rarely considered. Seabirds typically have large population sizes, wide geographic distributions, and high mobility, which make them significant potential players in the maintenance and dispersal of disease agents at large spatial scales. They are parasitized by at least 29 tick species found across all biogeographical regions of the world. We know that these seabird-tick systems can harbor a large diversity of pathogens, although detailed studies of this diversity remain scarce. In this article, we review current knowledge on the diversity and global distribution of ticks and tick-borne pathogens associated with seabirds. We discuss the relationship between seabirds, ticks, and their pathogens and examine the interesting characteristics of these relationships from ecological and epidemiological points of view. We also highlight some future research directions required to better understand the evolution of these systems and to assess the potential role of seabirds in the epidemiology of tick-borne pathogens.
Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages.
Liu, Xiaobo; Li, Meng; Castelle, Cindy J; Probst, Alexander J; Zhou, Zhichao; Pan, Jie; Liu, Yang; Banfield, Jillian F; Gu, Ji-Dong
2018-06-08
As a recently discovered member of the DPANN superphylum, Woesearchaeota account for a wide diversity of 16S rRNA gene sequences, but their ecology, evolution, and metabolism remain largely unknown. Here, we assembled 133 global clone libraries/studies and 19 publicly available genomes to profile these patterns for Woesearchaeota. Phylogenetic analysis shows a high diversity with 26 proposed subgroups for this recently discovered archaeal phylum, which are widely distributed in different biotopes but primarily in inland anoxic environments. Ecological patterns analysis and ancestor state reconstruction for specific subgroups reveal that oxic status of the environments is the key factor driving the distribution and evolutionary diversity of Woesearchaeota. A selective distribution to different biotopes and an adaptive colonization from anoxic to oxic environments can be proposed and supported by evidence of the presence of ferredoxin-dependent pathways in the genomes only from anoxic biotopes but not from oxic biotopes. Metabolic reconstructions support an anaerobic heterotrophic lifestyle with conspicuous metabolic deficiencies, suggesting the requirement for metabolic complementarity with other microbes. Both lineage abundance distribution and co-occurrence network analyses across diverse biotopes confirmed metabolic complementation and revealed a potential syntrophic relationship between Woesearchaeota and methanogens, which is supported by metabolic modeling. If correct, Woesearchaeota may impact methanogenesis in inland ecosystems. The findings provide an ecological and evolutionary framework for Woesearchaeota at a global scale and indicate their potential ecological roles, especially in methanogenesis.
Thermoregulation in endotherms: physiological principles and ecological consequences.
Rezende, Enrico L; Bacigalupe, Leonardo D
2015-10-01
In a seminal study published nearly 70 years ago, Scholander et al. (Biol Bull 99:259-271, 1950) employed Newton's law of cooling to describe how metabolic rates (MR) in birds and mammals vary predictably with ambient temperature (T a). Here, we explore the theoretical consequences of Newton's law of cooling and show that a thermoregulatory polygon provides an intuitively simple and yet useful description of thermoregulatory responses in endothermic organisms. This polygon encapsulates the region in which heat production and dissipation are in equilibrium and, therefore, the range of conditions in which thermoregulation is possible. Whereas the typical U-shaped curve describes the relationship between T a and MR at rest, thermoregulatory polygons expand this framework to incorporate the impact of activity, other behaviors and environmental conditions on thermoregulation and energy balance. We discuss how this framework can be employed to study the limits to effective thermoregulation and their ecological repercussions, allometric effects and residual variation in MR and thermal insulation, and how thermoregulatory requirements might constrain locomotor or reproductive performance (as proposed, for instance, by the heat dissipation limit theory). In many systems the limited empirical knowledge on how organismal traits may respond to environmental changes prevents physiological ecology from becoming a fully developed predictive science. In endotherms, however, we contend that the lack of theoretical developments that translate current physiological understanding into formal mechanistic models remains the main impediment to study the ecological and evolutionary repercussions of thermoregulation. In spite of the inherent limitations of Newton's law of cooling as an oversimplified description of the mechanics of heat transfer, we argue that understanding how systems that obey this approximation work can be enlightening on conceptual grounds and relevant as an analytical and predictive tool to study ecological phenomena. As such, the proposed approach may constitute a powerful tool to study the impact of thermoregulatory constraints on variables related to fitness, such as survival and reproductive output, and help elucidating how species will be affected by ongoing climate change.
Seasonal food habits of the coyote in the South Carolina coastal plain
Joshua D. Schrecengost; John C. Kilgo; David Mallard; H. Scott Ray; Karl V. Miller
2008-01-01
Spatial and temporal plasticity in Canis latrans (coyote) diets require regional studies to understand the ecological role of this omnivorous canid. Because coyotes have recently become established in South Carolina, we investigated their food habits by collecting 415 coyote scats on the Savannah River Site in western South Carolina from May 2005?...
Students as Web Site Authors: Effects on Motivation and Achievement
ERIC Educational Resources Information Center
Jones, Brett D.
2003-01-01
This study examined the effects of a Web site design project on students' motivation and achievement. Tenth-grade biology students worked together in teams on an ecology project that required them to locate relevant information on the Internet, decide which information should be included on their Web site, organize the information into Web pages,…
Environmental and Ecology Branch Progress Report, 1974 through 1976 Volume 2
1978-06-01
nitrogen wastes generated by manufacture of Army explosives have been studied with reqard to aeration rates, residence times, nutrient requirements...STATES ...... ....... .......................... .. 18 vii BIOLOGICAL TREATMENT OF EXPLOSIVE WASTES ..... ............. ... 19 BIOLOGICAL AEROSOLS...1976, and the information was forwarded to Chemical Systems Laboratory for inclusion in the final report to ERDA. 13 BIOLOGICAL TREATMENT OF EXPLOSIVE
Ecology and management of the spotted owl in the Pacific Northwest.
Ralph J. Gutierrez; Andrew B. tech. eds. Carey
1985-01-01
The spotted owl (Strix occidentalis caurina) has been listed as a sensitive species by the Pacific Southwest Region USDA Forest Service. Past and present-studies-and surveys have led to the development of a region-wide network of owl territories to comply with the maintenance of viable populations as required by the National Forest Management Act....
System for high throughput water extraction from soil material for stable isotope analysis of water
USDA-ARS?s Scientific Manuscript database
A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process m...
Evaluating management risks using landscape trajectory analysis: a case study of California fisher
Craig M. Thompson; William J. Zielinski; Kathryn L. Purcell
2011-01-01
Ecosystem management requires an understanding of how landscapes vary in space and time, how this variation can be affected by management decisions or stochastic events, and the potential consequences for species. Landscape trajectory analysis, coupled with a basic knowledge of species habitat selection, offers a straightforward approach to ecological risk analysis and...
Effectiveness of Mobile Apps in Teaching Field-Based Identification Skills
ERIC Educational Resources Information Center
Thomas, Rebecca L.; Fellowes, Mark D. E.
2017-01-01
It has been suggested that few students graduate with the skills required for many ecological careers, as field-based learning is said to be in decline in academic institutions. Here, we asked if mobile technology could improve field-based learning, using ability to identify birds as the study metric. We divided a class of ninety-one undergraduate…
Maria Vergara; Samuel A. Cushman; Fermin Urra; Aritz Ruiz-Gonzalez
2016-01-01
Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements. Objectives This study explores the multiscale relationships of habitat suitability for the pine (Martes...
Environmental philosophy: response to critics.
Sarkar, Sahotra
2014-03-01
The following piece is a response to the critiques from Frank, Garson, and Odenbaugh. The issues at stake are: the definition of biodiversity and its normativity, historical fidelity in ecological restoration, naturalism in environmental ethics, and the role of decision theory. The normativity of the concept of biodiversity in conservation biology is defended. Historical fidelity is criticized as an operative goal for ecological restoration. It is pointed out that the analysis requires only minimal assumptions about ethics. Decision theory is presented as a tool, not a domain-limiting necessary requirement for environmental philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sustainability, arid grasslands and grazing: New applications for technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pregenzer, A.L.; Parmenter, R.; Passell, H.D.
1999-12-08
The study of ecology is taking on increasing global importance as the value of well-functioning ecosystems to human well-being becomes better understood. However, the use of technological systems for the study of ecology lags behind the use of technologies in the study of other disciplines important to human well-being, such as medicine, chemistry and physics. The authors outline four different kinds of large-scale data needs required by land managers for the development of sustainable land use strategies, and which can be obtained with current or future technological systems. They then outline a hypothetical resource management scenario in which data onmore » all those needs are collected using remote and in situ technologies, transmitted to a central location, analyzed, and then disseminated for regional use in maintaining sustainable grazing systems. They conclude by highlighting various data-collection systems and data-sharing networks already in operation.« less
Peterson, Elizabeth K.; Buchwalter, David B.; Kerby, Jacob L.; LeFauve, Matthew K.; Varian-Ramos, Claire W.
2017-01-01
Abstract The fields of behavioral ecology, conservation science, and environmental toxicology individually aim to protect and manage the conservation of wildlife in response to anthropogenic stressors, including widespread anthropogenic pollution. Although great emphasis in the field of toxicology has been placed on understanding how single pollutants affect survival, a comprehensive, interdisciplinary approach that includes behavioral ecology is essential to address how anthropogenic compounds are a risk for the survival of species and populations in an increasingly polluted world. We provide an integrative framework for behavioral ecotoxicology using Tinbergen’s four postulates (causation and mechanism, development and ontogeny, function and fitness, and evolutionary history and phylogenetic patterns). The aims of this review are: 1) to promote an integrative view and re-define the field of integrative behavioral ecotoxicology; 2) to demonstrate how studying ecotoxicology can promote behavior research; and 3) to identify areas of behavioral ecotoxicology that require further attention to promote the integration and growth of the field. PMID:29491976
Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta
NASA Astrophysics Data System (ADS)
Zeng, Y.
2017-09-01
Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.
Sampling and analyses plan for tank 103 at the 219-S waste handling facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
FOWLER, K.D.
1999-06-23
This document describes the sampling and analysis activities associated with taking a Resource Conservation and Recovery Act (RCRA) protocol sample of the waste from Tank 103 at the 21 9-S Waste Handling Facility treatment storage, andlor disposal (TSD) unit at the 2224 Laboratory complex. This sampling and analyses is required based on negotiations between the State of Washington Department of Ecology (Ecology) and the Department of Energy, Richland Operations, (RL) in letters concerning the TPA Change Form M-32-98-01. In a letter from George H. Sanders, RL to Moses N. Jaraysi, Ecology, dated January 28,1999, it was noted that ''Prior tomore » the Tank 103 waste inventory transfer, a RCRA protocol sample of the waste will be obtained and tested for the constituents contained on the Part A, Form 3 Permit Application for the 219-S Waste Handling Facility.'' In the April 2, 1999 letter, from Brenda L. Becher-Khaleel, Ecology to James, E. Rasmussen, RL, and William O. Adair, FDH, Ecology states that the purpose of these analyses is to provide information and justification for leaving Tank 103 in an isolated condition in the 2194 TSD unit until facility closure. The data may also be used at some future date in making decisions regarding closure methodology for Tank 103. Ecology also notes that As Low As Reasonably Achievable (ALARA) concerns may force deviations from some SW-846 protocol. Every effort will be made to accommodate requirements as specified. Deviations from SW-846 will be documented in accordance with HASQARD.« less
NASA Astrophysics Data System (ADS)
Cobourn, K. M.; Peckham, S. D.
2011-12-01
The vulnerability of agri-environmental systems to ecological threshold events depends on the combined influence of economic factors and natural drivers, such as climate and disturbance. This analysis builds an integrated ecologic-economic model to evaluate the behavioral response of agricultural producers to changing and uncertain natural conditions. The model explicitly reflects the effect of producer behavior on the likelihood of a threshold event that threatens the ecological and/or economic sustainability of the agri-environmental system. The foundation of the analysis is a threshold indicator that incorporates the population dynamics of a species that supports economic production and an episodic disturbance regime-in this case rangeland grass that is grazed by livestock and is subject to wildfire. This ecological indicator is integrated into an economic model in which producers choose grazing intensity given the state of the grass population and a set of economic parameters. We examine two model variants that characterize differing economic circumstances. The first characterizes the optimal grazing regime assuming that the system is managed by a single planner whose objective is to maximize the aggregate long-run returns of producers in the system. The second examines the case in which individual producers choose their own stocking rates in order to maximize their private economic benefit. The results from the first model variant illustrate the difference between an ecologic and an economic threshold. Failure to cross an ecological threshold does not necessarily ensure that the system remains economically viable: Economic sustainability, defined as the ability of the system to support optimal production into the infinite future, requires that the net growth rate of the supporting population exceeds the level required for ecological sustainability by an amount that depends on the market price of livestock and grazing efficiency. The results from the second model variant define the circumstances under which a system that is otherwise ecologically sustainable is driven over a threshold by the actions of economic agents. The difference between the two model solutions identifies bounds between which the viability of livestock production over the long-run is uncertain and depends upon the policy setting in which the agri-environmental system operates.
Ecological Forecasting in the Applied Sciences Program and Input to the Decadal Survey
NASA Technical Reports Server (NTRS)
Skiles, Joseph
2015-01-01
Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecosystems will change in the future in response to environmental factors. Further, Ecological Forecasting employs observations and models to predict the effects of environmental change on ecosystems. In doing so, it applies information from the physical, biological, and social sciences and promotes a scientific synthesis across the domains of physics, geology, chemistry, biology, and psychology. The goal is reliable forecasts that allow decision makers access to science-based tools in order to project changes in living systems. The next decadal survey will direct the development Earth Observation sensors and satellites for the next ten years. It is important that these new sensors and satellites address the requirements for ecosystem models, imagery, and other data for resource management. This presentation will give examples of these model inputs and some resources needed for NASA to continue effective Ecological Forecasting.
Long-Term Ecological Monitoring Field Sampling Plan for 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Haney
2007-07-31
This field sampling plan describes the field investigations planned for the Long-Term Ecological Monitoring Project at the Idaho National Laboratory Site in 2007. This plan and the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions constitute the sampling and analysis plan supporting long-term ecological monitoring sampling in 2007. The data collected under this plan will become part of the long-term ecological monitoring data set that is being collected annually. The data will be used t determine the requirements for the subsequent long-term ecological monitoring. This plan guides the 2007more » investigations, including sampling, quality assurance, quality control, analytical procedures, and data management. As such, this plan will help to ensure that the resulting monitoring data will be scientifically valid, defensible, and of known and acceptable quality.« less
Where the wild things are: informal experience and ecological reasoning.
Coley, John D
2012-01-01
Category-based induction requires selective use of different relations to guide inferences; this article examines the development of inferences based on ecological relations among living things. Three hundred and forty-six 6-, 8-, and 10-year-old children from rural, suburban, and urban communities projected novel diseases or insides from one species to an ecologically or taxonomically related species; they were also surveyed about hobbies and activities. Frequency of ecological inferences increased with age and with reports of informal exploration of nature, and decreased with population density. By age 10, children preferred taxonomic inferences for insides and ecological inferences for disease, but this pattern emerged earlier among rural children. These results underscore the importance of context by demonstrating effects of both domain-relevant experience and environment on biological reasoning. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.
NASA Astrophysics Data System (ADS)
Kutsch, Werner Leo
2016-04-01
Nowadays,technical possibilities in Earth Observation provide enormous amounts of data that open great possibilities to review existing ecological theories and develop new ones. Several examples for that are shown in the presentation in order to discuss potentials and limitations of the underlying concepts and provide feedback to large infrastructures carrying out ecological observations or experiments. Since different ecological questions or theoretical approaches require different methods, data interoperability and co-location are practical challenges. Nevertheless, we also have to learn that not every method is applicable in all ecosystems and that data have to be critically scrutinized before being sure that we can really draw ecological conclusions. This is time consuming and very often frustrating since we may learn that we have sometimes invested lots of work and money for building infrastructure at a site that is not suitable for the method.
From Darwin's Origin of Species toward a theory of natural history
2015-01-01
Darwin is the father of evolutionary theory because he identified evolutionary patterns and, with Natural Selection, he ascertained the exquisitely ecological ultimate processes that lead to evolution. The proximate processes of evolution he proposed, however, predated the discovery of genetics, the backbone of modern evolutionary theory. The later discovery of the laws of inheritance by Mendel and the rediscovery of Mendel in the early 20th century led to two reforms of Darwinism: Neo-Darwinism and the Modern Synthesis (and subsequent refinements). If Darwin's evolutionary thought required much refinement, his ecological insight is still very modern. In the first edition of The Origin of Species, Darwin did not use either the word “evolution” or the word “ecology”. “Ecology” was not coined until after the publication of the Origin. Evolution, for him, was the origin of varieties, then species, which he referred to as well-marked varieties, whereas, instead of using ecology, he used “the economy of nature”. The Origin contains a high proportion of currently accepted ecological principles. Darwin labelled himself a naturalist. His discipline (natural history) was a blend of ecology and evolution in which he investigated both the patterns and the processes that determine the organization of life. Reductionist approaches, however, often keep the two disciplines separated from each other, undermining a full understanding of natural phenomena that might be favored by blending ecology and evolution through the development of a modern Theory of Natural History based on Darwin's vision of the study of life. PMID:26097722
NASA Astrophysics Data System (ADS)
Dempster, William; Allen, John P.
Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosys-tems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.
High evolutionary potential of marine zooplankton
Peijnenburg, Katja T C A; Goetze, Erica
2013-01-01
Abstract Open ocean zooplankton often have been viewed as slowly evolving species that have limited capacity to respond adaptively to changing ocean conditions. Hence, attention has focused on the ecological responses of zooplankton to current global change, including range shifts and changing phenology. Here, we argue that zooplankton also are well poised for evolutionary responses to global change. We present theoretical arguments that suggest plankton species may respond rapidly to selection on mildly beneficial mutations due to exceptionally large population size, and consider the circumstantial evidence that supports our inference that selection may be particularly important for these species. We also review all primary population genetic studies of open ocean zooplankton and show that genetic isolation can be achieved at the scale of gyre systems in open ocean habitats (100s to 1000s of km). Furthermore, population genetic structure often varies across planktonic taxa, and appears to be linked to the particular ecological requirements of the organism. In combination, these characteristics should facilitate adaptive evolution to distinct oceanographic habitats in the plankton. We conclude that marine zooplankton may be capable of rapid evolutionary as well as ecological responses to changing ocean conditions, and discuss the implications of this view. We further suggest two priority areas for future research to test our hypothesis of high evolutionary potential in open ocean zooplankton, which will require (1) assessing how pervasive selection is in driving population divergence and (2) rigorously quantifying the spatial and temporal scales of population differentiation in the open ocean. Recent attention has focused on the ecological responses of open ocean zooplankton to current global change, including range shifts and changing phenology. Here, we argue that marine zooplankton also are well poised for evolutionary responses to global change. PMID:24567838
Guo, Shu Hai; Wu, Bo
2017-12-01
Aquatic ecological regionalization and aquatic ecological function regionalization are the basis of water environmental management of a river basin and rational utilization of an aquatic ecosystem, and have been studied in China for more than ten years. Regarding the common problems in this field, the relationship between aquatic ecological regionalization and aquatic ecological function regionalization was discussed in this study by systematic analysis of the aquatic ecological zoning and the types of aquatic ecological function. Based on the dual tree structure, we put forward the RFCH process and the diamond conceptual model. Taking Liaohe River basin as an example and referring to the results of existing regionalization studies, we classified the aquatic ecological function regions based on three-class aquatic ecological regionalization. This study provided a process framework for aquatic ecological function regionalization of a river basin.
Calculating e-flow using UAV and ground monitoring
NASA Astrophysics Data System (ADS)
Zhao, C. S.; Zhang, C. B.; Yang, S. T.; Liu, C. M.; Xiang, H.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Shao, N. F.; Yu, Q.
2017-09-01
Intense human activity has led to serious degradation of basin water ecosystems and severe reduction in the river flow available for aquatic biota. As an important water ecosystem index, environmental flows (e-flows) are crucial for maintaining sustainability. However, most e-flow measurement methods involve long cycles, low efficiency, and transdisciplinary expertise. This makes it impossible to rapidly assess river e-flows at basin or larger scales. This study presents a new method to rapidly assessing e-flows coupling UAV and ground monitorings. UAV was firstly used to calculate river-course cross-sections with high-resolution stereoscopic images. A dominance index was then used to identify key fish species. Afterwards a habitat suitability index, along with biodiversity and integrity indices, was used to determine an appropriate flow velocity with full consideration of the fish spawning period. The cross-sections and flow velocity values were then combined into AEHRA, an e-flow assessment method for studying e-flows and supplying-rate. To verify the results from this new method, the widely used Tennant method was employed. The root-mean-square errors of river cross-sections determined by UAV are less than 0.25 m, which constitutes 3-5% water-depth of the river cross-sections. In the study area of Jinan city, the ecological flow velocity (VE) is equal to or greater than 0.11 m/s, and the ecological water depth (HE) is greater than 0.8 m. The river ecosystem is healthy with the minimum e-flow requirements being always met when it is close to large rivers, which is beneficial for the sustainable development of the water ecosystem. In the south river channel of Jinan, the upstream flow mostly meets the minimum e-flow requirements, and the downstream flow always meets the minimum e-flow requirements. The north of Jinan consists predominantly of artificial river channels used for irrigation. Rainfall rarely meets the minimum e-flow and irrigation water requirements. We suggest that the water shortage problem can be partly solved by diversion of the Yellow River. These results can provide useful information for ecological operations and restoration. The method used in this study for calculating e-flow based on a combination of UAV and ground monitoring can effectively promote research progress into basin e-flow, and provide an important reference for e-flow monitoring around the world.
Warming and Chilling: Assessing Aspects of Changing Plant Ecology with Continental-scale Phenology
NASA Astrophysics Data System (ADS)
Schwartz, M. D.; Hanes, J. M.
2009-12-01
Many recent ecological studies have concentrated on the direct impacts of climate warming, such as modifications to seasonal plant and animal life cycle events (phenology). There are many examples, with most indicating earlier onset of spring plant growth and delayed onset of autumn senescence. However, the implication of continued warming for plant species’ chilling requirements has received comparatively less attention. Temperate zone woody plants often require a certain level of cool season "chilling" (accumulated time at temperatures below a specific threshold) to break dormancy and prepare to respond to springtime warming. Thus, the potential impacts of insufficient chilling must be included in a comprehensive assessment of plant species' responses to climate warming. Vegetation phenological data, when collected for specific plant species at continental-scale, can be used to extract information relating to the combined impacts of reduced chilling and warming on plant species physiology. In a recent study, we demonstrated that common lilac first leaf and first bloom phenology (collected from multiple locations in the western United States and matched with air temperature records) can estimate the species' chilling requirement (in this case 1748 chilling hours, below a base temperature of 7.2°C) and highlight the changing impact of warming on the plant's phenological response in light of that requirement. Specifically, when chilling is above the requirement, lilac first leaf dates advance at a rate of -5.0 days per 100 hour chilling accumulation reduction, and lilac first bloom dates advance at a rate of -4.2 days per 100 hour chilling accumulation reduction. In contrast, when chilling is below the requirement, the lilac event dates advance at a much reduced rate of -1.6 days per 100 hour reduction for first leaf date and -2.2 days per 100 hour reduction for first bloom date. Overall, these encouraging results for common lilac suggest that similar continental-scale phenological measurements could facilitate a better understanding of relationships among phenological response, springtime warming, and chilling requirements for other species. Further, it should be possible to address more detailed follow-up plant ecology questions in future studies using similar methodology. Example questions would include: 1) Are the chilling requirements for a species the same across its entire range? 2) Do species adapt to warming conditions by changing their chilling requirements? and 3) How much variation is there among species chilling requirements within the same community? Continental-scale phenological data sets are being developed by the USA National Phenology Network (http://www.usanpn.org), that will facilitate such investigations, and in turn be essential for understanding of (and eventually consideration of possible adaptations to) the coming impacts of climate warming on temperate plant communities. Additionally, these phenological data, because they provide plants species’ responses across large portions of species geographic ranges, will facilitate deeper understanding of the full range of plant-environment responses and consequently foster development of more robust phenological models.
Etges, William J
2014-01-01
Revealing the genetic basis of traits that cause reproductive isolation, particularly premating or sexual isolation, usually involves the same challenges as most attempts at genotype-phenotype mapping and so requires knowledge of how these traits are expressed in different individuals, populations, and environments, particularly under natural conditions. Genetic dissection of speciation phenotypes thus requires understanding of the internal and external contexts in which underlying genetic elements are expressed. Gene expression is a product of complex interacting factors internal and external to the organism including developmental programs, the genetic background including nuclear-cytotype interactions, epistatic relationships, interactions among individuals or social effects, stochasticity, and prevailing variation in ecological conditions. Understanding of genomic divergence associated with reproductive isolation will be facilitated by functional expression analysis of annotated genomes in organisms with well-studied evolutionary histories, phylogenetic affinities, and known patterns of ecological variation throughout their life cycles. I review progress and prospects for understanding the pervasive role of host plant use on genetic and phenotypic expression of reproductive isolating mechanisms in cactophilic Drosophila mojavensis and suggest how this system can be used as a model for revealing the genetic basis for species formation in organisms where speciation phenotypes are under the joint influences of genetic and environmental factors. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
O'Hara, Mark; Huber, Ludwig; Gajdon, Gyula Kopanny
2015-01-01
Studies investigating the same paradigm but employing different methods are often directly compared in the literature. One such paradigm used to assess behavioural flexibility in animals is reversal learning. Commonly, these studies require individuals to learn the reward contingency of either solid objects presented on the ground or images presented on a touchscreen. Once learned, these contingencies are swapped. Researchers often refer to trials required to reach learning criteria from different studies, to compare the flexibility of different species, but rarely take methodological differences into account. A direct evaluation of the validity of such comparisons is lacking. To address this latent question, we confronted kea, an alpine parrot species of New Zealand and known for its behavioural flexibility, with a standard reversal learning paradigm on the touchscreen and a standard reversal learning paradigm with solid objects. The kea required significantly more trials to reach criterion in the acquisition and the reversal on the touchscreen. Also, the absolute increase in the number of trials required for the reversal was significantly greater on the touchscreen. This indicates that it is not valid to compare learning speed across studies that do not correspond in the addressed methodology. Taking into account the kea's ecology and explorative nature we discuss stimulus abstraction (limited depth cues and tactile stimulus feedback) and the spatial relation between reward and stimulus on the touchscreen as possible causes for decreased inhibition in this condition. Contrary to the absolute increase in number of trials required for the reversal, the increase in relation to the acquisition was greater with solid objects. This highlights the need for further research on the mechanisms involved causing methodology-dependent differences, some of which we discuss, in order to increase the validity of interpretations across studies and in respect to the subject's ecology. PMID:25745190
Regina K. Vance; Carleton B. Edminster; W. Wallace Covington; Julie A. Blake
2000-01-01
This volume is divided into three sections: (1) Ecological, Biological, and Physical Science; (2) Social and Cultural; and (3) Economics and Utilization. Effective ecological restoration requires a combination of science and management. The authors of the first section exemplified this integration in the course of addressing a broad range of topics, from detailed...
Brian F. Jacobs
2008-01-01
Juniper savanna and pinon-juniper woodland communities collectively represent a widespread and diverse vegetation type that occupies foothill and mesa landforms at middle elevations in semi-arid portions of the American Southwest. Ecological understanding and proper management of these juniper and pinon types requires local knowledge of component species, site history...
Karl Malcolm; Matthew Thompson; Dave Calkin; Mark Finney; Alan Ager
2012-01-01
Evaluating the risks of wildfire relative to the valuable resources found in any managed landscape requires an interdisciplinary approach. Researchers at the Rocky Mountain Research Station and Western Wildland Threat Assessment Center developed such a process, using a combination of techniques rooted in fire modeling and ecology, economics, decision sciences, and the...
ERIC Educational Resources Information Center
Davidson, J.
Uneven economic growth, rapid population increases, and high costs of fossil fuels have caused much of the human race to experience an energy crisis. For the world's poor people the energy requirements consist mainly of firewood. This crisis will be aggravated further as population trends begin to overwhelm natural resources. Future demands for…
Lodgepole pine bole wood density 1 and 11 years after felling in central Montana
Duncan C. Lutes; Colin C. Hardy
2013-01-01
Estimates of large dead and down woody material biomass are used for evaluating ecological processes and making ecological assessments, such as for nutrient cycling, wildlife habitat, fire effects, and climate change science. Many methods are used to assess the abundance (volume) of woody material, which ultimately require an estimate of wood density to convert volume...
Thomas A. Spies; Thomas W. Giesen; Frederick J. Swanson; Jerry F. Franklin; Denise Lach; K. Norman Johnson
2010-01-01
Conserving biological diversity in a changing climate poses major challenges for land managers and society. Effective adaptive strategies for dealing with climate change require a socioecological systems perspective. We highlight some of the projected ecological responses to climate change in the Pacific Northwest, U.S.A and identify possible adaptive actions that...
Drovetski, Sergei V.; Raković, Marko; Semenov, Georgy; Fadeev, Igor V.; Red’kin, Yaroslav A.
2014-01-01
Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early - Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck's lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species. PMID:24498139
Planning and setting objectives in field studies: Chapter 2
Fisher, Robert N.; Dodd, C. Kenneth
2016-01-01
This chapter enumerates the steps required in designing and planning field studies on the ecology and conservation of reptiles, as these involve a high level of uncertainty and risk. To this end, the chapter differentiates between goals (descriptions of what one intends to accomplish) and objectives (the measurable steps required to achieve the established goals). Thus, meeting a specific goal may require many objectives. It may not be possible to define some of them until certain experiments have been conducted; often evaluations of sampling protocols are needed to increase certainty in the biological results. And if sampling locations are fixed and sampling events are repeated over time, then both study-specific covariates and sampling-specific covariates should exist. Additionally, other critical design considerations for field study include obtaining permits, as well as researching ethics and biosecurity issues.
Bonebrake, Timothy C; Brown, Christopher J; Bell, Johann D; Blanchard, Julia L; Chauvenet, Alienor; Champion, Curtis; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Dell, Anthony I; Donelson, Jennifer M; Evengård, Birgitta; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Jarzyna, Marta A; Lee, Emma; Lenoir, Jonathan; Linnetved, Hlif; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; McDonald-Madden, Eve; Mitchell, Nicola; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Possingham, Hugh; Pulsifer, Peter; Reynolds, Mark; Scheffers, Brett R; Sorte, Cascade J B; Strugnell, Jan M; Tuanmu, Mao-Ning; Twiname, Samantha; Vergés, Adriana; Villanueva, Cecilia; Wapstra, Erik; Wernberg, Thomas; Pecl, Gretta T
2018-02-01
Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions. © 2017 Cambridge Philosophical Society.
Remote Sensing and Wetland Ecology: a South African Case Study.
De Roeck, Els R; Verhoest, Niko E C; Miya, Mtemi H; Lievens, Hans; Batelaan, Okke; Thomas, Abraham; Brendonck, Luc
2008-05-26
Remote sensing offers a cost efficient means for identifying and monitoring wetlands over a large area and at different moments in time. In this study, we aim at providing ecologically relevant information on characteristics of temporary and permanent isolated open water wetlands, obtained by standard techniques and relatively cheap imagery. The number, surface area, nearest distance, and dynamics of isolated temporary and permanent wetlands were determined for the Western Cape, South Africa. Open water bodies (wetlands) were mapped from seven Landsat images (acquired during 1987 - 2002) using supervised maximum likelihood classification. The number of wetlands fluctuated over time. Most wetlands were detected in the winter of 2000 and 2002, probably related to road constructions. Imagery acquired in summer contained fewer wetlands than in winter. Most wetlands identified from Landsat images were smaller than one hectare. The average distance to the nearest wetland was larger in summer. In comparison to temporary wetlands, fewer, but larger permanent wetlands were detected. In addition, classification of non-vegetated wetlands on an Envisat ASAR radar image (acquired in June 2005) was evaluated. The number of detected small wetlands was lower for radar imagery than optical imagery (acquired in June 2002), probably because of deterioration of the spatial information content due the extensive pre-processing requirements of the radar image. Both optical and radar classifications allow to assess wetland characteristics that potentially influence plant and animal metacommunity structure. Envisat imagery, however, was less suitable than Landsat imagery for the extraction of detailed ecological information, as only large wetlands can be detected. This study has indicated that ecologically relevant data can be generated for the larger wetlands through relatively cheap imagery and standard techniques, despite the relatively low resolution of Landsat and Envisat imagery. For the characterisation of very small wetlands, high spatial resolution optical or radar images are needed. This study exemplifies the benefits of integrating remote sensing and ecology and hence stimulates interdisciplinary research of isolated wetlands.
NASA Astrophysics Data System (ADS)
Bao, Jun
2018-01-01
With the rapid development of China's economy, air pollution, environmental degradation and other ecological problems emerge in an endless stream, a great threat to human health. In this context, the ecological civilization, sustainable development, economic transformation and upgrading and other green ideas emerge as the times require, and are highly concerned by the government, enterprises, academia and the public. From the perspective of tourism enterprises, through empirical research, this paper analyzes the influencing factors of green technologies and skills in tourism enterprises, and constructs the impact mechanism model of green technologies and skills. Put forward to promote enterprises to implement green management intention, suggestions to promote the practice of green technologies and skills.
Toward a scientifically rigorous basis for developing mapped ecological regions.
McMahon, G.; Wiken, E.B.; Gauthier, D.A.
2004-01-01
Despite the wide use of ecological regions in conservation and resource-management evaluations and assessments, a commonly accepted theoretical basis for ecological regionalization does not exist. This fact, along with the paucity of focus on ecological regionalization by professional associations, journals, and faculties, has inhibited the advancement of a broadly acceptable scientific basis for the development, use, and verification of ecological regions. The central contention of this article is that ecological regions should improve our understanding of geographic and ecological phenomena associated with biotic and abiotic processes occurring in individual regions and also of processes characteristic of interactions and dependencies among multiple regions. Research associated with any ecoregional framework should facilitate development of hypotheses about ecological phenomena and dominant landscape elements associated with these phenomena, how these phenomena are structured in space, and how they function in a hierarchy. Success in addressing the research recommendations outlined in this article cannot occur within an ad hoc, largely uncoordinated research environment. Successful implementation of this plan will require activities--coordination, funding, and education--that are both scientific and administrative in nature. Perhaps the most important element of an infrastructure to support the scientific work of ecoregionalization would be a national or international authority similar to the Water and Science Technology Board of the National Academy of Sciences.
Lade, Steven J; Niiranen, Susa; Hentati-Sundberg, Jonas; Blenckner, Thorsten; Boonstra, Wiebren J; Orach, Kirill; Quaas, Martin F; Österblom, Henrik; Schlüter, Maja
2015-09-01
Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social-ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social-ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social-ecological models.
Lade, Steven J.; Niiranen, Susa; Hentati-Sundberg, Jonas; Blenckner, Thorsten; Boonstra, Wiebren J.; Orach, Kirill; Quaas, Martin F.; Österblom, Henrik; Schlüter, Maja
2015-01-01
Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social–ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social–ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social–ecological models. PMID:26283344
Toward a Scientifically Rigorous Basis for Developing Mapped Ecological Regions
NASA Astrophysics Data System (ADS)
McMahon, Gerard; Wiken, Ed B.; Gauthier, David A.
2004-04-01
Despite the wide use of ecological regions in conservation and resource-management evaluations and assessments, a commonly accepted theoretical basis for ecological regionalization does not exist. This fact, along with the paucity of focus on ecological regionalization by professional associations, journals, and faculties, has inhibited the advancement of a broadly acceptable scientific basis for the development, use, and verification of ecological regions. The central contention of this article is that ecological regions should improve our understanding of geographic and ecological phenomena associated with biotic and abiotic processes occurring in individual regions and also of processes characteristic of interactions and dependencies among multiple regions. Research associated with any ecoregional framework should facilitate development of hypotheses about ecological phenomena and dominant landscape elements associated with these phenomena, how these phenomena are structured in space, and how they function in a hierarchy. Success in addressing the research recommendations outlined in this article cannot occur within an ad hoc, largely uncoordinated research environment. Successful implementation of this plan will require activities—coordination, funding, and education—that are both scientific and administrative in nature. Perhaps the most important element of an infrastructure to support the scientific work of ecoregionalization would be a national or international authority similar to the Water and Science Technology Board of the National Academy of Sciences.
Going beyond Green: The "Why and How" of Integrating Sustainability into the Marketing Curriculum
ERIC Educational Resources Information Center
Bridges, Claudia M.; Wilhelm, Wendy Bryce
2008-01-01
Teaching sustainable marketing practices requires that curricula advocate a "triple bottom line" approach to personal and marketing decision making, emphasizing requirements for a sustainable lifestyle, company, economy, and society. These requirements include environmental/ecological stewardship (maintenance and renewal of "natural capital"),…
S.T.A. Pickett; M.L. Cadenasso; M.J. Grove; C.H. Nilon; R.V. Pouyat; W.C. Zipperer
2001-01-01
Ecological studies of terrestrial urban systems have been approached along several kinds of contrasts: ecology in as opposed to ecology of cities; biogeochemical compared to organismal perspectives, land use planning versus biological, and disciplinary versus interdisciplinary. In order to point out how urban ecological studies are poised for significant integration,...
NASA Technical Reports Server (NTRS)
Polhemus, J. T.
1980-01-01
Five troublesome insect pest groups were chosen for study. These represent a broad spectrum of life cycles, ecological indicators, pest management strategies, and remote sensing requirements. Background data, and field study results for each of these subjects is discussed for each insect group. Specific groups studied include tsetse flies, locusts, western rangeland grasshoppers, range caterpillars, and mosquitoes. It is concluded that remote sensing methods are aplicable to the pest management of the insect groups studied.
Spash, Clive L; Aslaksen, Iulie
2015-08-15
In this paper we explore the discourses of ecology, environmental economics, new environmental pragmatism and social ecological economics as they relate to the value of ecosystems and biodiversity. Conceptualizing biodiversity and ecosystems as goods and services that can be represented by monetary values in policy processes is an economic discourse being increasingly championed by ecologists and conservation biologists. The latter promote a new environmental pragmatism internationally as hardwiring biodiversity and ecosystems services into finance. The approach adopts a narrow instrumentalism, denies value pluralism and incommensurability, and downplays the role of scientific knowledge. Re-establishing an ecological discourse in biodiversity policy implies a crucial role for biophysical indicators as independent policy targets, exemplified in this paper by the Nature Index for Norway. Yet, there is a recognisable need to go beyond a traditional ecological approach to one recognising the interconnections of social, ecological and economic problems. This requires reviving and relating to a range of alternative ecologically informed discourses, including an ecofeminist perspective, in order to transform the increasingly dominant and destructive relationship of humans separated from and domineering over Nature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ecological restoration of farmland: progress and prospects.
Wade, Mark R; Gurr, Geoff M; Wratten, Steve D
2008-02-27
Sustainable agricultural practices in conjunction with ecological restoration methods can reduce the detrimental effects of agriculture. The Society for Ecological Restoration International has produced generic guidelines for conceiving, organizing, conducting and assessing ecological restoration projects. Additionally, there are now good conceptual frameworks, guidelines and practical methods for developing ecological restoration programmes that are based on sound ecological principles and supported by empirical evidence and modelling approaches. Restoration methods must also be technically achievable and socially acceptable and spread over a range of locations. It is important to reconcile differences between methods that favour conservation and those that favour economic returns, to ensure that conservation efforts are beneficial for both landowners and biodiversity. One option for this type of mutual benefit is the use of agri-environmental schemes to provide financial incentives to landholders in exchange for providing conservation services and other benefits. However, further work is required to define and measure the effectiveness of agri-environmental schemes. The broader potential for ecological restoration to improve the sustainability of agricultural production while conserving biodiversity in farmscapes and reducing external costs is high, but there is still much to learn, particularly for the most efficient use of agri-environmental schemes to change land use practice.
Verification of watershed vegetation restoration policies, arid China
Zhang, Chengqi; Li, Yu
2016-01-01
Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000–2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies. PMID:27470948
Cosens, Barbara; Gunderson, Lance; Allen, Craig R.; Benson, Melinda H.
2014-01-01
Current governance of regional scale water management systems in the United States has not placed them on a path toward sustainability, as conflict and gridlock characterize the social arena and ecosystem services continue to erode. Changing climate may continue this trajectory, but it also provides a catalyst for renewal of ecosystems and a window of opportunity for change in institutions. Resilience provides a bridging concept that predicts that change in ecological and social systems is often dramatic, abrupt, and surprising. Adapting to the uncertainty of climate driven change must be done in a manner perceived as legitimate by the participants in a democratic society. Adaptation must begin with the current hierarchical and fragmented social-ecological system as a baseline from which new approaches must be applied. Achieving a level of integration between ecological concepts and governance requires a dialogue across multiple disciplines, including ecologists with expertise in ecological resilience, hydrologists and climate experts, with social scientists and legal scholars. Criteria and models that link ecological dynamics with policies in complex, multi-jurisdictional water basins with adaptive management and governance frameworks may move these social-ecological systems toward greater sustainability.
Verification of watershed vegetation restoration policies, arid China
NASA Astrophysics Data System (ADS)
Zhang, Chengqi; Li, Yu
2016-07-01
Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000-2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies.
[Ecological design of ditches in agricultural land consolidation: a review].
Ye, Yan-mei; Wu, Ci-fang; Yu, Jing
2011-07-01
Agricultural land consolidation is a strong disturbance to farmland ecosystem. In traditional agricultural land consolidation, the main technical and economic indices for the design of ditches include the convenience for production and transportation, the allocation of water resources, and the improvement of water utilization, but short of ecological consideration, which has already affected the spread of agricultural species, caused the degradation of bio-habitat, and given obvious negative effects on the bio-competition mechanism, buffering and compensation capacity, and insect pests-resistance of farmland ecosystem. This paper summarized the functions of ecological ditches, and introduced the recent progress on the formations and construction designs of ecological ditches, tests of ecological engineering methods, and technologies and methods of choosing correct ecological materials. It was suggested that the future research should focus on the different functional requirements and specifications for different roads and ditches, and the characteristics and habitats of all the organisms and animals should be considered by the designers and constructors. Moreover, a comprehensive design which meets the ecological demands for the ditches' formations, structures, and regulatory sizes should be taken into account to solve the most of the problems listed above.
Wood decomposition as influenced by invertebrates
Michael D. Ulyshen
2016-01-01
The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial...
Suzanne M. Joy; R. M. Reich; Richard T. Reynolds
2003-01-01
Traditional land classification techniques for large areas that use Landsat Thematic Mapper (TM) imagery are typically limited to the fixed spatial resolution of the sensors (30m). However, the study of some ecological processes requires land cover classifications at finer spatial resolutions. We model forest vegetation types on the Kaibab National Forest (KNF) in...
Paul B. Hamel
2005-01-01
Conservation of species with high Partners in Flight concern scores may require active habitat management. Cerulean Warbler (Dendroica cerulea) occurs at low numbers in the Lower Mississippi Alluvial Valley in the western part of its breeding range. A study of the breeding ecology of the species was initiated in 1992 on three sites there....
NASA Technical Reports Server (NTRS)
Montgomery, Edward E.
1991-01-01
The primary issues studied were how the transition from a physical/chemical (P/C) to hybrid to a Closed Ecological Life Support System (CELSS) could be achieved, what sensors and monitors are needed for a P/C -CELSS hybrid system, and how a CELSS could be automated and what controls would be needed to do so.
The effects of seed dispersal on the simulation of long-term forest landscape change
Hong S. He; David J. Mladenoff
1999-01-01
The study of forest landscape change requires an understanding of the complex interactions of both spatial and temporal factors. Traditionally, forest gap models have been used to simulate change on small and independent plots. While gap models are useful in examining forest ecological dynamics across temporal scales, large, spatial processes, such as seed dispersal,...
Bat species using water sources in pinyon-juniper woodlands
Alice Chung-MacCoubrey
1996-01-01
Much is yet to be learned about the importance of bats in Southwestern ecosystems, their ecological requirements, and how habitats should be managed to sustain these important species. A first step towards these goals is to determine what species exist in different habitats and across what geographic ranges. The objective of this study was to identify the bat species...
USDA-ARS?s Scientific Manuscript database
The crop coefficient (Kc) method is widely used for operational estimation of actual evapotranspiration (ETa) and crop water requirements. The standard method for obtaining Kc is via a lookup table from FAO-56 (Food and Agriculture Organization of the United Nations Irrigation and Drainage Paper No....
ERIC Educational Resources Information Center
Cavanagh, Robert F.
2015-01-01
This study employed the capabilities-expectations model of engagement in classroom learning based on bio-ecological frameworks of intellectual development and flow theory. According to the capabilities-expectations model, engagement requires a balance between the capabilities of a student for learning in a particular situation and what is expected…
2012-01-01
Background The snail Neotricula aperta transmits Mekong schistosomiasis in southern Laos and Cambodia, with about 1.5 million people at risk of infection. Plans are under consideration for at least 12 hydroelectric power dams on the lower Mekong river and much controversy surrounds predictions of their environmental impacts. Unfortunately, there are almost no ecological data (such as long term population trend studies) available for N. aperta which could be used in impact assessment. Predictions currently assume that the impacts will be the same as those observed in Africa (i.e., a worsening of the schistosomiasis problem); however, marked ecological differences between the snails involved suggest that region specific models are required. The present study was performed as an initial step in providing data, which could be useful in the planning of water resource development in the Mekong. Snail population density records were analyzed for populations close to, and far downstream of, the Nam Theun 2 (NT2) project in Laos in order to detect any changes that might be attributable to impoundment. Results The population immediately downstream of NT2 and that sampled 400 km downstream in Thailand both showed a long term trend of slow growth from 1992 to 2005; however, both populations showed a marked decline in density between 2005 and 2011. The decline in Thailand was to a value significantly lower than that predicted by a linear mixed model for the data, whilst the population density close to NT2 fell to undetectable levels in 2011 from densities of over 5000 m-2 in 2005. The NT2 dam began operation in 2010. Conclusions The impact of the NT2 dam on N. aperta population density could be more complex than first thought and may reflect the strict ecological requirements of this snail. There was no indication that responses of N. aperta populations to dam construction are similar to those observed with Bulinus and Schistosoma haematobium in Africa, for example. In view of the present findings, more ecological data (in particular population density monitoring and surveillance for new habitats) are urgently required in order to understand properly the likely impacts of water resource development on Mekong schistosomiasis. PMID:22720904
Comparative biology of zebra mussels in Europe and North America: an overview
Mackie, Gerald L.; Schloesser, Don W.
1996-01-01
SYNOPSIS. Since the discovery of the zebra mussel, Dreissena polymorpha, in the Great Lakes in 1988 comparisons have been made with mussel populations in Europe and the former Soviet Union. These comparisons include: Population dynamics, growth and mortality rates, ecological tolerances and requirements, dispersal rates and patterns, and ecological impacts. North American studies, mostly on the zebra mussel and a few on a second introduced species, the quagga mussel, Dreissena bugensis, have revealed some similarities and some differences. To date it appears that North American populations of zebra mussels are similar to European populations in their basic biological characteristics, population growth and mortality rates, and dispersal mechanisms and rates. Relative to European populations differences have been demonstrated for: (1) individual growth rates; (2) life spans; (3) calcium and pH tolerances and requirements; (4) potential distribution limits; and (5) population densities of veligers and adults. In addition, studies on the occurrence of the two dreissenid species in the Great Lakes are showing differences in their modes of life, depth distributions, and growth rates. As both species spread throughout North America, comparisons between species and waterbodies will enhance our ability to more effectively control these troublesome species.
Hu, Zhujun; Anderson, Nicholas John; Yang, Xiangdong; McGowan, Suzanne
2014-05-01
The south-east margin of Tibet is highly sensitive to global environmental change pressures, in particular, high contemporary reactive nitrogen (Nr) deposition rates (ca. 40 kg ha(-1) yr(-1) ), but the extent and timescale of recent ecological change is not well prescribed. Multiproxy analyses (diatoms, pigments and geochemistry) of (210) Pb-dated sediment cores from two alpine lakes in Sichuan were used to assess whether they have undergone ecological change comparable to those in Europe and North America over the last two centuries. The study lakes have contrasting catchment-to-lake ratios and vegetation cover: Shade Co has a relatively larger catchment and denser alpine shrub than Moon Lake. Both lakes exhibited unambiguous increasing production since the late 19th to early 20th. Principle component analysis was used to summarize the trends of diatom and pigment data after the little ice age (LIA). There was strong linear change in biological proxies at both lakes, which were not consistent with regional temperature, suggesting that climate is not the primary driver of ecological change. The multiproxy analysis indicated an indirect ecological response to Nr deposition at Shade Co mediated through catchment processes since ca. 1930, while ecological change at Moon Lake started earlier (ca. 1880) and was more directly related to Nr deposition (depleted δ(15) N). The only pronounced climate effect was evidenced by changes during the LIA when photoautotrophic groups shifted dramatically at Shade Co (a 4-fold increase in lutein concentration) and planktonic diatom abundance declined at both sites because of longer ice cover. The substantial increases in aquatic production over the last ca. 100 years required a substantial nutrient subsidy and the geochemical data point to a major role for Nr deposition although dust cannot be excluded. The study also highlights the importance of lake and catchment morphology for determining the response of alpine lakes to recent global environmental forcing. © 2013 John Wiley & Sons Ltd.
Madani, Nima; Kimball, John S.; Nazeri, Mona; Kumar, Lalit; Affleck, David L. R.
2016-01-01
Species distribution modeling has been widely used in studying habitat relationships and for conservation purposes. However, neglecting ecological knowledge about species, e.g. their seasonal movements, and ignoring the proper environmental factors that can explain key elements for species survival (shelter, food and water) increase model uncertainty. This study exemplifies how these ecological gaps in species distribution modeling can be addressed by modeling the distribution of the emu (Dromaius novaehollandiae) in Australia. Emus cover a large area during the austral winter. However, their habitat shrinks during the summer months. We show evidence of emu summer habitat shrinkage due to higher fire frequency, and low water and food availability in northern regions. Our findings indicate that emus prefer areas with higher vegetation productivity and low fire recurrence, while their distribution is linked to an optimal intermediate (~0.12 m3 m-3) soil moisture range. We propose that the application of three geospatial data products derived from satellite remote sensing, namely fire frequency, ecosystem productivity, and soil water content, provides an effective representation of emu general habitat requirements, and substantially improves species distribution modeling and representation of the species’ ecological habitat niche across Australia. PMID:26799732
Madani, Nima; Kimball, John S; Nazeri, Mona; Kumar, Lalit; Affleck, David L R
2016-01-01
Species distribution modeling has been widely used in studying habitat relationships and for conservation purposes. However, neglecting ecological knowledge about species, e.g. their seasonal movements, and ignoring the proper environmental factors that can explain key elements for species survival (shelter, food and water) increase model uncertainty. This study exemplifies how these ecological gaps in species distribution modeling can be addressed by modeling the distribution of the emu (Dromaius novaehollandiae) in Australia. Emus cover a large area during the austral winter. However, their habitat shrinks during the summer months. We show evidence of emu summer habitat shrinkage due to higher fire frequency, and low water and food availability in northern regions. Our findings indicate that emus prefer areas with higher vegetation productivity and low fire recurrence, while their distribution is linked to an optimal intermediate (~0.12 m3 m(-3)) soil moisture range. We propose that the application of three geospatial data products derived from satellite remote sensing, namely fire frequency, ecosystem productivity, and soil water content, provides an effective representation of emu general habitat requirements, and substantially improves species distribution modeling and representation of the species' ecological habitat niche across Australia.
Enemy at the gates: Rapid defensive trait diversification in an adaptive radiation of lizards.
Broeckhoven, Chris; Diedericks, Genevieve; Hui, Cang; Makhubo, Buyisile G; Mouton, P le Fras N
2016-11-01
Adaptive radiation (AR), the product of rapid diversification of an ancestral species into novel adaptive zones, has become pivotal in our understanding of biodiversity. Although it has widely been accepted that predators may drive the process of AR by creating ecological opportunity (e.g., enemy-free space), the role of predators as selective agents in defensive trait diversification remains controversial. Using phylogenetic comparative methods, we provide evidence for an "early burst" in the diversification of antipredator phenotypes in Cordylinae, a relatively small AR of morphologically diverse southern African lizards. The evolution of body armor appears to have been initially rapid, but slowed down over time, consistent with the ecological niche-filling model. We suggest that the observed "early burst" pattern could be attributed to shifts in vulnerability to different types of predators (i.e., aerial versus terrestrial) associated with thermal habitat partitioning. These results provide empirical evidence supporting the hypothesis that predators or the interaction therewith might be key components of ecological opportunity, although the way in which predators influence morphological diversification requires further study. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Ecology-driven stereotypes override race stereotypes.
Williams, Keelah E G; Sng, Oliver; Neuberg, Steven L
2016-01-12
Why do race stereotypes take the forms they do? Life history theory posits that features of the ecology shape individuals' behavior. Harsh and unpredictable ("desperate") ecologies induce fast strategy behaviors such as impulsivity, whereas resource-sufficient and predictable ("hopeful") ecologies induce slow strategy behaviors such as future focus. We suggest that individuals possess a lay understanding of ecology's influence on behavior, resulting in ecology-driven stereotypes. Importantly, because race is confounded with ecology in the United States, we propose that Americans' stereotypes about racial groups actually reflect stereotypes about these groups' presumed home ecologies. Study 1 demonstrates that individuals hold ecology stereotypes, stereotyping people from desperate ecologies as possessing faster life history strategies than people from hopeful ecologies. Studies 2-4 rule out alternative explanations for those findings. Study 5, which independently manipulates race and ecology information, demonstrates that when provided with information about a person's race (but not ecology), individuals' inferences about blacks track stereotypes of people from desperate ecologies, and individuals' inferences about whites track stereotypes of people from hopeful ecologies. However, when provided with information about both the race and ecology of others, individuals' inferences reflect the targets' ecology rather than their race: black and white targets from desperate ecologies are stereotyped as equally fast life history strategists, whereas black and white targets from hopeful ecologies are stereotyped as equally slow life history strategists. These findings suggest that the content of several predominant race stereotypes may not reflect race, per se, but rather inferences about how one's ecology influences behavior.
How long can global ecological overshoot last?
NASA Astrophysics Data System (ADS)
McBain, Bonnie; Lenzen, Manfred; Wackernagel, Mathis; Albrecht, Glenn
2017-08-01
The ability of the Ecological Footprint to communicate complex environmental information in a clear and accessible way is well known; however, with growing environmental complexity, we will require increasingly sophisticated environmental indicators to inform our decisions. We have developed an integrated and dynamic global model to investigate future trajectories of the Ecological Footprint. Under a range of futures and without the mitigation of human resource demand, we find that the discrepancy between global demand and renewable supply of resources is likely to increase. Continued overshoot, although possible in the short term, means the global community is increasingly exposed to risks of environmental collapse due to the approach of at least two planetary boundaries relating to land use expansion and climate change. We show that, the Ecological Footprint trajectory and the time between the commencement of ecological overshoot and ecological collapse is sensitive to global technological, economic and population policy decisions. Importantly, this work presents a tool which can be used to support transdisciplinary decision-maker collaborations examining the risk associated with alternative policy options in the face of uncertainty at multiple scales.
An ecological dynamics rationale to explain home advantage in professional football
NASA Astrophysics Data System (ADS)
Gama, José; Dias, Gonçalo; Couceiro, Micael; Passos, Pedro; Davids, Keith; Ribeiro, João
2016-03-01
Despite clear findings, research on home advantage in team sports lacks a comprehensive theoretical rationale for understanding why this phenomenon is so compelling. The aim of this study was to provide an explanatory theoretical rationale in ecological dynamics for the influence of home advantage observed in research on professional football. We recorded 30 competitive matches and analyzed 13958 passes, from one highly successful team in the Portuguese Premier League, during season 2010/2011. Performance data were analyzed using the Match Analysis Software—Amisco® (version 3.3.7.25), allowing us to characterize team activity profiles. Results were interpreted from an ecological dynamics perspective, explaining how task and environmental constraints of a competitive football setting required performers to continuously co-adapt to teammate behaviors. Despite slight differences in percentage of ball possession when playing home or away, the number of passes achieved by the team, while in possession of the ball, was quite different between home or away venues. When playing at home, the number of passes performed by the team was considerably higher than when playing away. The explanation proposed in this study for a home advantage effect can be understood from studying interpersonal coordination tendencies of team sports players as agents in a complex adaptive system.
Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions.
Hussey, N E; MacNeil, M A; Olin, J A; McMeans, B C; Kinney, M J; Chapman, D D; Fisk, A T
2012-04-01
Stable-isotope analysis (SIA) can act as a powerful ecological tracer with which to examine diet, trophic position and movement, as well as more complex questions pertaining to community dynamics and feeding strategies or behaviour among aquatic organisms. With major advances in the understanding of the methodological approaches and assumptions of SIA through dedicated experimental work in the broader literature coupled with the inherent difficulty of studying typically large, highly mobile marine predators, SIA is increasingly being used to investigate the ecology of elasmobranchs (sharks, skates and rays). Here, the current state of SIA in elasmobranchs is reviewed, focusing on available tissues for analysis, methodological issues relating to the effects of lipid extraction and urea, the experimental dynamics of isotopic incorporation, diet-tissue discrimination factors, estimating trophic position, diet and mixing models and individual specialization and niche-width analyses. These areas are discussed in terms of assumptions made when applying SIA to the study of elasmobranch ecology and the requirement that investigators standardize analytical approaches. Recommendations are made for future SIA experimental work that would improve understanding of stable-isotope dynamics and advance their application in the study of sharks, skates and rays. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Controlled Ecological Life Support System Breadboard Project - 1988
NASA Technical Reports Server (NTRS)
Knott, W. M.
1989-01-01
The Controlled Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989-1993 are listed. The biomass production chamber to be used by the project is described.
Ecology-centered experiences among children and adolescents: A qualitative and quantitative analysis
NASA Astrophysics Data System (ADS)
Orton, Judy
The present research involved two studies that considered ecology-centered experiences (i.e., experiences with living things) as a factor in children's environmental attitudes and behaviors and adolescents' ecological understanding. The first study (Study 1) examined how a community garden provides children in an urban setting the opportunity to learn about ecology through ecology-centered experiences. To do this, I carried out a yearlong ethnographic study at an urban community garden located in a large city in the Southeastern United States. Through participant observations and informal interviews of community garden staff and participants, I found children had opportunities to learn about ecology through ecology-centered experiences (e.g., interaction with animals) along with other experiences (e.g., playing games, reading books). In light of previous research that shows urban children have diminished ecological thought---a pattern of thought that privileges the relationship between living things---because of their lack of ecology-centered experiences (Coley, 2012), the present study may have implications for urban children to learn about ecology. As an extension of Study 1, I carried out a second study (Study 2) to investigate how ecology-centered experiences contribute to adolescents' environmental attitudes and behaviors in light of other contextual factors, namely environmental responsibility support, ecological thought, age and gender. Study 2 addressed three research questions. First, does ecological thought---a pattern of thought that privileges the relationship between living things---predict environmental attitudes and behaviors (EAB)? Results showed ecological thought did not predict EAB, an important finding considering the latent assumptions of previous research about the relationship between these two factors (e.g., Brugger, Kaiser, & Roczen, 2011). Second, do two types of contextual support, ecology-centered experiences (i.e., experiences with living things) and environmental responsibility support (i.e., support through the availability of environmentally responsible models) predict EAB? As predicted, results showed that ecology-centered experiences predicted EAB; yet, when environmental responsibility support was taken into consideration, ecology-centered experiences no longer predicted EAB. These findings suggested environmental responsibility support was a stronger predictor than ecology-centered experiences. Finally, do age and gender predict EAB? Consistent with previous research (e.g., Alp, Ertepiner, Tekkaya, & Yilmaz, 2006), age and gender significantly predicted EAB.
Ecological shift and resilience in China's lake systems during the last two centuries
NASA Astrophysics Data System (ADS)
Zhang, Ke; Dong, Xuhui; Yang, Xiangdong; Kattel, Giri; Zhao, Yanjie; Wang, Rong
2018-06-01
The worldwide decline of wetland ecosystems calls for an urgent reassessment of their current status from a resilience perspective. Understanding the trajectories of changes that have produced the current situation is fundamental for assessing system resilience. Here, we examine long-term dynamics of wetland ecosystem change by reviewing paleoecological records from 11 representative lakes in China. We identify unprecedented change in alga communities in the context of last two centuries. Striking ecological shifts have occurred in all lakes, yet with spatial and temporal differences. The long-term trajectories of change in diatom species composition and structure indicate gradually eroded system resilience. These ecological shifts were shaped by socio-economic activities as China transformed from a rural agricultural to an industrialized society within the last several decades, during which multiple drivers have accumulated and acted synergistically. The balance between ecosystem and society, which appeared to exist for thousands of years, was broken by increasing population, new technology, and urbanization since the 1980s. The consequences are the emergence of new positive feedbacks with the potential to drive the coupled systems into undesirable states. By linking long-term social and ecological change at a regional scale, our study provides a novel contribution to the understanding of lake ecosystems resilience in present-day China. We argue that sustaining wetland ecosystems requires integrated approaches that incorporate a deeper understanding of social-ecological dynamics over decadal-centennial timescales to address the complex underlying mechanisms leading to the current degradation.
Developing smartphone apps for behavioural studies: The AlcoRisk app case study.
Smith, Anthony; de Salas, Kristy; Lewis, Ian; Schüz, Benjamin
2017-08-01
Smartphone apps have emerged as valuable research tools to sample human behaviours at their time of occurrence within natural environments. Human behaviour sampling methods, such as Ecological Momentary Assessment (EMA), aim to facilitate research that is situated in ecologically valid real world environments rather than laboratory environments. Researchers have trialled a range of EMA smartphone apps to sample human behaviours such as dieting, physical activity and smoking. Software development processes for EMA smartphones apps, however, are not widely documented with little guidance provided for the integration of complex multidisciplinary behavioural and technical fields. In this paper, the AlcoRisk app for studying alcohol consumption and risk taking tendencies is presented alongside a software development process that integrates these multidisciplinary fields. The software development process consists of three stages including requirements analysis, feature and interface design followed by app implementation. Results from a preliminary feasibility study support the efficacy of the AlcoRisk app's software development process. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Demiguel, Daniel
2016-07-01
Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil data, rigorous attempts to identify this phenomenon in the fossil record are largely uncommon. Here I focus on direct evidence of the diet (through tooth-wear patterns) and ecologically-relevant traits of one of the most renowned fossil vertebrates-the Miocene ruminant Hoplitomeryx from the island of Gargano-to deepen our understanding of the most likely causal forces under which adaptive radiations emerge on islands. Results show how accelerated accumulation of species and early-bursts of ecological diversification occur after invading an island, and provide insights on the interplay between diet and demographic (population-density), ecological (competition/food requirements) and abiotic (climate-instability) factors, identified as drivers of adaptive diversification. A pronounced event of overpopulation and a phase of aridity determined most of the rate and magnitude of radiation, and pushed species to expand diets from soft-leafy foods to tougher-harder items. Unexpectedly, results show that herbivorous mammals are restricted to browsing habits on small-islands, even if bursts of ecological diversification and dietary divergence occur. This study deepens our understanding of the mechanisms promoting adaptive radiations, and forces us to reevaluate the role of diet in the origins and evolution of islands mammals.
A scale-based approach to interdisciplinary research and expertise in sports.
Ibáñez-Gijón, Jorge; Buekers, Martinus; Morice, Antoine; Rao, Guillaume; Mascret, Nicolas; Laurin, Jérome; Montagne, Gilles
2017-02-01
After more than 20 years since the introduction of ecological and dynamical approaches in sports research, their promising opportunity for interdisciplinary research has not been fulfilled yet. The complexity of the research process and the theoretical and empirical difficulties associated with an integrated ecological-dynamical approach have been the major factors hindering the generalisation of interdisciplinary projects in sports sciences. To facilitate this generalisation, we integrate the major concepts from the ecological and dynamical approaches to study behaviour as a multi-scale process. Our integration gravitates around the distinction between functional (ecological) and execution (organic) scales, and their reciprocal intra- and inter-scale constraints. We propose an (epistemological) scale-based definition of constraints that accounts for the concept of synergies as emergent coordinative structures. To illustrate how we can operationalise the notion of multi-scale synergies we use an interdisciplinary model of locomotor pointing. To conclude, we show the value of this approach for interdisciplinary research in sport sciences, as we discuss two examples of task-specific dimensionality reduction techniques in the context of an ongoing project that aims to unveil the determinants of expertise in basketball free throw shooting. These techniques provide relevant empirical evidence to help bootstrap the challenging modelling efforts required in sport sciences.
DeMiguel, Daniel
2016-01-01
Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil data, rigorous attempts to identify this phenomenon in the fossil record are largely uncommon. Here I focus on direct evidence of the diet (through tooth-wear patterns) and ecologically-relevant traits of one of the most renowned fossil vertebrates-the Miocene ruminant Hoplitomeryx from the island of Gargano-to deepen our understanding of the most likely causal forces under which adaptive radiations emerge on islands. Results show how accelerated accumulation of species and early-bursts of ecological diversification occur after invading an island, and provide insights on the interplay between diet and demographic (population-density), ecological (competition/food requirements) and abiotic (climate-instability) factors, identified as drivers of adaptive diversification. A pronounced event of overpopulation and a phase of aridity determined most of the rate and magnitude of radiation, and pushed species to expand diets from soft-leafy foods to tougher-harder items. Unexpectedly, results show that herbivorous mammals are restricted to browsing habits on small-islands, even if bursts of ecological diversification and dietary divergence occur. This study deepens our understanding of the mechanisms promoting adaptive radiations, and forces us to reevaluate the role of diet in the origins and evolution of islands mammals. PMID:27405690
Hong, Wuyang; Yang, Chengyun; Chen, Liuxin; Zhang, Fangfang; Shen, Shaoqing; Guo, Renzhong
2017-04-15
Ecological control line is a system innovation in the field of ecological environment protection in China and it has become as an important strategy of national ecological protection. Ten years have passed since the first ecological control line in Shenzhen was delimited in 2005. This study examines the connotations of ecological control line and the current study status in China and abroad, and then takes a brief description about the delimitation background and existing problems of the ecological control line in Shenzhen. The problem-solving strategy is gradually transforming from extensive management to refined management. This study proposes a differential ecological space management model that merges the space system, management system, and support system. The implementation paths include the following five aspects: delimiting ecological bottom lines to protect core ecological resources; formulating access systems for new construction projects to strictly control new construction; implementing construction land inventory reclamation assisted by market means; regulating boundary adjusting procedures and processes; and constructing ecological equity products by using multiple means to implement rights relief. Finally, this study illustrates the progress of the implementation and discusses the rigorousness and flexibility problems of ecological control line and calls for the promotion of the legislation. The management model and implementation paths proposed in this study have referential significance for developing countries and megacities to achieve ecological protection and sustainable development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aguirre, A Alonso
2017-12-15
The fundamental human threats to biodiversity including habitat destruction, globalization, and species loss have led to ecosystem disruptions altering infectious disease transmission patterns, the accumulation of toxic pollutants, and the invasion of alien species and pathogens. To top it all, the profound role of climate change on many ecological processes has affected the inability of many species to adapt to these relatively rapid changes. This special issue, "Zoonotic Disease Ecology: Effects on Humans, Domestic Animals and Wildlife," explores the complex interactions of emerging infectious diseases across taxa linked to many of these anthropogenic and environmental drivers. Selected emerging zoonoses including RNA viruses, Rift Valley fever, trypanosomiasis, Hanta virus infection, and other vector-borne diseases are discussed in detail. Also, coprophagous beetles are proposed as important vectors in the transmission and maintenance of infectious pathogens. An overview of the impacts of climate change in emerging disease ecology within the context of Brazil as a case study is provided. Animal Care and Use Committee requirements were investigated, concluding that ecology journals have low rates of explicit statements regarding the welfare and wellbing of wildlife during experimental studies. Most of the solutions to protect biodiversity and predicting and preventing the next epidemic in humans originating from wildlife are oriented towards the developed world and are less useful for biodiverse, low-income economies. We need the development of regional policies to address these issues at the local level.
Integrating evo-devo with ecology for a better understanding of phenotypic evolution
Emília Santos, M.; Berger, Chloé S.; Refki, Peter N.
2015-01-01
Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. PMID:25750411
Effects of Best Management Practice on Ecological Condition: Does Location Matter?
NASA Astrophysics Data System (ADS)
Holmes, Roger; Armanini, David G.; Yates, Adam G.
2016-05-01
Best management practices (BMPs) are increasingly being promoted as a solution to the potentially adverse effects agriculture can have on aquatic systems. However, the ability of BMPs to improve riverine systems continues to be questioned due to equivocal empirical evidence linking BMP use with improved stream conditions, particularly in regard to ecological conditions. Explicitly viewing BMP location in relation to hydrological pathways may, however, assist in establishing stronger ecological linkages. The goal of this study was to assess the association between water chemistry, benthic macroinvertebrate community structure, and the number and location of agricultural BMPs in a catchment. Macroinvertebrate and water samples were collected in 30 small (<12 km2) catchments exhibiting gradients of BMP use and location in the Grand River Watershed, Southern Ontario, Canada. Stepwise regression analysis revealed that concentrations of most stream nutrients declined in association with greater numbers of BMPs and particularly when BMPs were located in hydrologically connected areas. However, BMPs were significantly associated with only one metric (%EPT) describing macroinvertebrate community structure. Furthermore, variance partitioning analysis indicated that less than 5 % of the among site variation in the macroinvertebrate community could be attributed to BMPs. Overall, the implemented BMPs appear to be achieving water quality improvement goals but spatial targeting of specific BMP types may allow management agencies to attain further water quality improvements more efficiently. Mitigation and rehabilitation measures beyond the BMPs assessed in this study may be required to meet goals of enhanced ecological condition.
Integrating evo-devo with ecology for a better understanding of phenotypic evolution.
Santos, M Emília; Berger, Chloé S; Refki, Peter N; Khila, Abderrahman
2015-11-01
Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. © The Author 2015. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Tellman, B.; Schwarz, B.
2014-12-01
This talk describes the development of a web application to predict and communicate vulnerability to floods given publicly available data, disaster science, and geotech cloud capabilities. The proof of concept in Google Earth Engine API with initial testing on case studies in New York and Utterakhand India demonstrates the potential of highly parallelized cloud computing to model socio-ecological disaster vulnerability at high spatial and temporal resolution and in near real time. Cloud computing facilitates statistical modeling with variables derived from large public social and ecological data sets, including census data, nighttime lights (NTL), and World Pop to derive social parameters together with elevation, satellite imagery, rainfall, and observed flood data from Dartmouth Flood Observatory to derive biophysical parameters. While more traditional, physically based hydrological models that rely on flow algorithms and numerical methods are currently unavailable in parallelized computing platforms like Google Earth Engine, there is high potential to explore "data driven" modeling that trades physics for statistics in a parallelized environment. A data driven approach to flood modeling with geographically weighted logistic regression has been initially tested on Hurricane Irene in southeastern New York. Comparison of model results with observed flood data reveals a 97% accuracy of the model to predict flooded pixels. Testing on multiple storms is required to further validate this initial promising approach. A statistical social-ecological flood model that could produce rapid vulnerability assessments to predict who might require immediate evacuation and where could serve as an early warning. This type of early warning system would be especially relevant in data poor places lacking the computing power, high resolution data such as LiDar and stream gauges, or hydrologic expertise to run physically based models in real time. As the data-driven model presented relies on globally available data, the only real time data input required would be typical data from a weather service, e.g. precipitation or coarse resolution flood prediction. However, model uncertainty will vary locally depending upon the resolution and frequency of observed flood and socio-economic damage impact data.
Cognitive evaluation by tasks in a virtual reality environment in multiple sclerosis.
Lamargue-Hamel, Delphine; Deloire, Mathilde; Saubusse, Aurore; Ruet, Aurélie; Taillard, Jacques; Philip, Pierre; Brochet, Bruno
2015-12-15
The assessment of cognitive impairment in multiple sclerosis (MS) requires large neuropsychological batteries that assess numerous domains. The relevance of these assessments to daily cognitive functioning is not well established. Cognitive ecological evaluation has not been frequently studied in MS. The aim of this study was to determine the interest of cognitive evaluation in a virtual reality environment in a sample of persons with MS with cognitive deficits. Thirty persons with MS with at least moderate cognitive impairment were assessed with two ecological evaluations, an in-house developed task in a virtual reality environment (Urban DailyCog®) and a divided attention task in a driving simulator. Classical neuropsychological testing was also used. Fifty-two percent of the persons with MS failed the driving simulator task and 80% failed the Urban DailyCog®. Virtual reality assessments are promising in identifying cognitive impairment in MS. Copyright © 2015 Elsevier B.V. All rights reserved.
Nest predation research: Recent findings and future perspectives
Chalfoun, Anna D.; Ibanez-Alamo, J. D.; Magrath, R. D.; Schmidt, Kenneth A.; Thomson, R. L.; Oteyza, Juan C.; Haff, T. M.; Martin, T.E.
2016-01-01
Nest predation is a key source of selection for birds that has attracted increasing attention from ornithologists. The inclusion of new concepts applicable to nest predation that stem from social information, eavesdropping or physiology has expanded our knowledge considerably. Recent methodological advancements now allow focus on all three players within nest predation interactions: adults, offspring and predators. Indeed, the study of nest predation now forms a vital part of avian research in several fields, including animal behaviour, population ecology, evolution and conservation biology. However, within nest predation research there are important aspects that require further development, such as the comparison between ecological and evolutionary antipredator responses, and the role of anthropogenic change. We hope this review of recent findings and the presentation of new research avenues will encourage researchers to study this important and interesting selective pressure, and ultimately will help us to better understand the biology of birds.
Molecular ecology of hydrothermal vent microbial communities.
Jeanthon, C
2000-02-01
The study of the structure and diversity of hydrothermal vent microbial communities has long been restricted to the morphological description of microorganisms and the use of enrichment culture-based techniques. Until recently the identification of the culturable fraction required the isolation of pure cultures followed by testing for multiple physiological and biochemical traits. However, peculiar inhabitants of the hydrothermal ecosystem such as the invertebrate endosymbionts and the dense microbial mat filaments have eluded laboratory cultivation. Substantial progress has been achieved in recent years in techniques for the identification of microorganisms in natural environments. Application of molecular approaches has revealed the existence of unique and previously unrecognized microorganisms. These have provided fresh insight into the ecology, diversity and evolution of mesophilic and thermophilic microbial communities from the deep-sea hydrothermal ecosystem. This review reports the main discoveries made through the introduction of these powerful techniques in the study of deep-sea hydrothermal vent microbiology.
Habitat suitability and ecological niche profile of major malaria vectors in Cameroon
2009-01-01
Background Suitability of environmental conditions determines a species distribution in space and time. Understanding and modelling the ecological niche of mosquito disease vectors can, therefore, be a powerful predictor of the risk of exposure to the pathogens they transmit. In Africa, five anophelines are responsible for over 95% of total malaria transmission. However, detailed knowledge of the geographic distribution and ecological requirements of these species is to date still inadequate. Methods Indoor-resting mosquitoes were sampled from 386 villages covering the full range of ecological settings available in Cameroon, Central Africa. Using a predictive species distribution modeling approach based only on presence records, habitat suitability maps were constructed for the five major malaria vectors Anopheles gambiae, Anopheles funestus, Anopheles arabiensis, Anopheles nili and Anopheles moucheti. The influence of 17 climatic, topographic, and land use variables on mosquito geographic distribution was assessed by multivariate regression and ordination techniques. Results Twenty-four anopheline species were collected, of which 17 are known to transmit malaria in Africa. Ecological Niche Factor Analysis, Habitat Suitability modeling and Canonical Correspondence Analysis revealed marked differences among the five major malaria vector species, both in terms of ecological requirements and niche breadth. Eco-geographical variables (EGVs) related to human activity had the highest impact on habitat suitability for the five major malaria vectors, with areas of low population density being of marginal or unsuitable habitat quality. Sunlight exposure, rainfall, evapo-transpiration, relative humidity, and wind speed were among the most discriminative EGVs separating "forest" from "savanna" species. Conclusions The distribution of major malaria vectors in Cameroon is strongly affected by the impact of humans on the environment, with variables related to proximity to human settings being among the best predictors of habitat suitability. The ecologically more tolerant species An. gambiae and An. funestus were recorded in a wide range of eco-climatic settings. The other three major vectors, An. arabiensis, An. moucheti, and An. nili, were more specialized. Ecological niche and species distribution modelling should help improve malaria vector control interventions by targeting places and times where the impact on vector populations and disease transmission can be optimized. PMID:20028559
Habitat suitability and ecological niche profile of major malaria vectors in Cameroon.
Ayala, Diego; Costantini, Carlo; Ose, Kenji; Kamdem, Guy C; Antonio-Nkondjio, Christophe; Agbor, Jean-Pierre; Awono-Ambene, Parfait; Fontenille, Didier; Simard, Frédéric
2009-12-23
Suitability of environmental conditions determines a species distribution in space and time. Understanding and modelling the ecological niche of mosquito disease vectors can, therefore, be a powerful predictor of the risk of exposure to the pathogens they transmit. In Africa, five anophelines are responsible for over 95% of total malaria transmission. However, detailed knowledge of the geographic distribution and ecological requirements of these species is to date still inadequate. Indoor-resting mosquitoes were sampled from 386 villages covering the full range of ecological settings available in Cameroon, Central Africa. Using a predictive species distribution modeling approach based only on presence records, habitat suitability maps were constructed for the five major malaria vectors Anopheles gambiae, Anopheles funestus, Anopheles arabiensis, Anopheles nili and Anopheles moucheti. The influence of 17 climatic, topographic, and land use variables on mosquito geographic distribution was assessed by multivariate regression and ordination techniques. Twenty-four anopheline species were collected, of which 17 are known to transmit malaria in Africa. Ecological Niche Factor Analysis, Habitat Suitability modeling and Canonical Correspondence Analysis revealed marked differences among the five major malaria vector species, both in terms of ecological requirements and niche breadth. Eco-geographical variables (EGVs) related to human activity had the highest impact on habitat suitability for the five major malaria vectors, with areas of low population density being of marginal or unsuitable habitat quality. Sunlight exposure, rainfall, evapo-transpiration, relative humidity, and wind speed were among the most discriminative EGVs separating "forest" from "savanna" species. The distribution of major malaria vectors in Cameroon is strongly affected by the impact of humans on the environment, with variables related to proximity to human settings being among the best predictors of habitat suitability. The ecologically more tolerant species An. gambiae and An. funestus were recorded in a wide range of eco-climatic settings. The other three major vectors, An. arabiensis, An. moucheti, and An. nili, were more specialized. Ecological niche and species distribution modelling should help improve malaria vector control interventions by targeting places and times where the impact on vector populations and disease transmission can be optimized.
NASA Technical Reports Server (NTRS)
Mannino, Antonio
2015-01-01
NASA's GEOstationary Coastal and Air Pollution Events (GEOCAPE) mission concept recommended by the U.S. National Research Council (2007) focuses on measurements of atmospheric trace gases and aerosols and aquatic coastal ecology and biogeochemistry from geostationary orbit (35,786 km altitude). GEO-CAPE is currently in pre-formulation (pre- Phase) A with no established launch date. NASA continues to support science and engineering studies to reduce mission risk. Instrument design lab (IDL) studies were commissioned in 2014 to design and cost two implementations for geostationary ocean color instruments (1) Wide-Angle Spectrometer (WAS) and (2) Filter Radiometer (FR) and (3) a cost scaling study to compare the costs for implementing different science performance requirements.
Ecological niche of Legionella pneumophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fliermans, C.B.
1983-01-01
This paper discusses the ecological niches, relationships and controls of Legionella derived from environmental sources. Only as clinical cases and studies relate directly to the ecological understanding of the bacterium will they be discussed. This review seeks to separate the ecological parameters associated with Legionella that are often incorporated into the medical literature as well as to highlight specific ecological studies. A series of ecological studies demonstrates the niches of Legionella, the ecological parameters that allow the bacterium to survive, grow and to be disseminated. Relationships among given habitats are explored along with biological relationships within a given habitat.
NASA Astrophysics Data System (ADS)
Beller, E.; Robinson, A.; Grossinger, R.; Grenier, L.; Davenport, A.
2015-12-01
Adaptation to climate change requires redesigning our landscapes and watersheds to maximize ecological resilience at large scales and integrated across urban areas, wildlands, and a diversity of ecosystem types. However, it can be difficult for environmental managers and designers to access, interpret, and apply resilience concepts at meaningful scales and across a range of settings. To address this gap, we produced a Landscape Resilience Framework that synthesizes the latest science on the qualitative mechanisms that drive resilience of ecological functions to climate change and other large-scale stressors. The framework is designed to help translate resilience science into actionable ecosystem conservation and restoration recommendations and adaptation strategies by providing a concise but comprehensive list of considerations that will help integrate resilience concepts into urban design, conservation planning, and natural resource management. The framework is composed of seven principles that represent core attributes which determine the resilience of ecological functions within a landscape. These principles are: setting, process, connectivity, redundancy, diversity/complexity, scale, and people. For each principle we identify several key operationalizable components that help illuminate specific recommendations and actions that are likely to contribute to landscape resilience for locally appropriate species, habitats, and biological processes. We are currently using the framework to develop landscape-scale recommendations for ecological resilience in the heavily urbanized Silicon Valley, California, in collaboration with local agencies, companies, and regional experts. The resilience framework is being applied across the valley, including urban, suburban, and wildland areas and terrestrial and aquatic ecosystems. Ultimately, the framework will underpin the development of strategies that can be implemented to bolster ecological resilience from a site to landscape scale.
The welfare implications of using exotic tortoises as ecological replacements.
Griffiths, Christine J; Zuël, Nicolas; Tatayah, Vikash; Jones, Carl G; Griffiths, Owen; Harris, Stephen
2012-01-01
Ecological replacement involves the introduction of non-native species to habitats beyond their historical range, a factor identified as increasing the risk of failure for translocations. Yet the effectiveness and success of ecological replacement rely in part on the ability of translocatees to adapt, survive and potentially reproduce in a novel environment. We discuss the welfare aspects of translocating captive-reared non-native tortoises, Aldabrachelys gigantea and Astrochelys radiata, to two offshore Mauritian islands, and the costs and success of the projects to date. Because tortoises are long-lived, late-maturing reptiles, we assessed the progress of the translocation by monitoring the survival, health, growth, and breeding by the founders. Between 2000 and 2011, a total of 26 A. gigantea were introduced to Ile aux Aigrettes, and in 2007 twelve sexually immature A. gigantea and twelve male A. radiata were introduced to Round Island, Mauritius. Annual mortality rates were low, with most animals either maintaining or gaining weight. A minimum of 529 hatchlings were produced on Ile aux Aigrettes in 11 years; there was no potential for breeding on Round Island. Project costs were low. We attribute the success of these introductions to the tortoises' generalist diet, habitat requirements, and innate behaviour. Feasibility analyses for ecological replacement and assisted colonisation projects should consider the candidate species' welfare during translocation and in its recipient environment. Our study provides a useful model for how this should be done. In addition to serving as ecological replacements for extinct Mauritian tortoises, we found that releasing small numbers of captive-reared A. gigantea and A. radiata is cost-effective and successful in the short term. The ability to release small numbers of animals is a particularly important attribute for ecological replacement projects since it reduces the potential risk and controversy associated with introducing non-native species.
Griffith, Oliver W; Blackburn, Daniel G; Brandley, Matthew C; Van Dyke, James U; Whittington, Camilla M; Thompson, Michael B
2015-09-01
To understand evolutionary transformations it is necessary to identify the character states of extinct ancestors. Ancestral character state reconstruction is inherently difficult because it requires an accurate phylogeny, character state data, and a statistical model of transition rates and is fundamentally constrained by missing data such as extinct taxa. We argue that model based ancestral character state reconstruction should be used to generate hypotheses but should not be considered an analytical endpoint. Using the evolution of viviparity and reversals to oviparity in squamates as a case study, we show how anatomical, physiological, and ecological data can be used to evaluate hypotheses about evolutionary transitions. The evolution of squamate viviparity requires changes to the timing of reproductive events and the successive loss of features responsible for building an eggshell. A reversal to oviparity requires that those lost traits re-evolve. We argue that the re-evolution of oviparity is inherently more difficult than the reverse. We outline how the inviability of intermediate phenotypes might present physiological barriers to reversals from viviparity to oviparity. Finally, we show that ecological data supports an oviparous ancestral state for squamates and multiple transitions to viviparity. In summary, we conclude that the first squamates were oviparous, that frequent transitions to viviparity have occurred, and that reversals to oviparity in viviparous lineages either have not occurred or are exceedingly rare. As this evidence supports conclusions that differ from previous ancestral state reconstructions, our paper highlights the importance of incorporating biological evidence to evaluate model-generated hypotheses. © 2015 Wiley Periodicals, Inc.
Intelligent Planning and Scheduling for Controlled Life Support Systems
NASA Technical Reports Server (NTRS)
Leon, V. Jorge
1996-01-01
Planning in Controlled Ecological Life Support Systems (CELSS) requires special look ahead capabilities due to the complex and long-term dynamic behavior of biological systems. This project characterizes the behavior of CELSS, identifies the requirements of intelligent planning systems for CELSS, proposes the decomposition of the planning task into short-term and long-term planning, and studies the crop scheduling problem as an initial approach to long-term planning. CELSS is studied in the realm of Chaos. The amount of biomass in the system is modeled using a bounded quadratic iterator. The results suggests that closed ecological systems can exhibit periodic behavior when imposed external or artificial control. The main characteristics of CELSS from the planning and scheduling perspective are discussed and requirements for planning systems are given. Crop scheduling problem is identified as an important component of the required long-term lookahead capabilities of a CELSS planner. The main characteristics of crop scheduling are described and a model is proposed to represent the problem. A surrogate measure of the probability of survival is developed. The measure reflects the absolute deviation of the vital reservoir levels from their nominal values. The solution space is generated using a probability distribution which captures both knowledge about the system and the current state of affairs at each decision epoch. This probability distribution is used in the context of an evolution paradigm. The concepts developed serve as the basis for the development of a simple crop scheduling tool which is used to demonstrate its usefulness in the design and operation of CELSS.
Vadell, María Victoria; García Erize, Francisco; Gómez Villafañe, Isabel Elisa
2017-01-01
Hantavirus pulmonary syndrome is a severe cardio pulmonary disease transmitted to humans by sylvan rodents found in natural and rural environments. Disease transmission is closely linked to the ecology of animal reservoirs and abiotic factors such as habitat characteristics, season or climatic conditions. The main goals of this research were: to determine the biotic and abiotic factors affecting richness and abundance of rodent species at different spatial scales, to evaluate different methodologies for studying population of small rodents, and to describe and analyze an ecologically-based rodent management experience in a highly touristic area. A 4-year study of small rodent ecology was conducted between April 2007 and August 2011 in the most relevant habitats of El Palmar National Park, Argentina. Management involved a wide range of control and prevention measures, including poisoning, culling and habitat modification. A total of 172 individuals of 5 species were captured with a trapping effort of 13 860 traps-nights (1.24 individuals/100 traps-nights). Five rodent species were captured, including 2 hantavirus-host species, Oligoryzomys nigripes and Akodon azarae. Oligoryzomys nigripes, host of a hantavirus that is pathogenic in humans, was the most abundant species and the only one found in all the studied habitats. Our results are inconsistent with the dilution effect hypothesis. The present study demonstrates that sylvan rodent species, including the hantavirus-host species, have distinct local habitat selection and temporal variation patterns in abundance, which may influence the risk of human exposure to hantavirus and may have practical implications for disease transmission as well as for reservoir management. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
USDA-ARS?s Scientific Manuscript database
Science-based grassland management requires an understanding of the current status of the land relative to its potential. Rangeland health assessments help increase the cost-effectiveness of management by identifying where a change in management may be required, and the types of ecological processes...
The ecology of primate material culture.
Koops, Kathelijne; Visalberghi, Elisabetta; van Schaik, Carel P
2014-11-01
Tool use in extant primates may inform our understanding of the conditions that favoured the expansion of hominin technology and material culture. The 'method of exclusion' has, arguably, confirmed the presence of culture in wild animal populations by excluding ecological and genetic explanations for geographical variation in behaviour. However, this method neglects ecological influences on culture, which, ironically, may be critical for understanding technology and thus material culture. We review all the current evidence for the role of ecology in shaping material culture in three habitual tool-using non-human primates: chimpanzees, orangutans and capuchin monkeys. We show that environmental opportunity, rather than necessity, is the main driver. We argue that a better understanding of primate technology requires explicit investigation of the role of ecological conditions. We propose a model in which three sets of factors, namely environment, sociality and cognition, influence invention, transmission and retention of material culture. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, William
The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uraniummore » processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.« less
Applying the Policy Ecology Framework to Philadelphia’s Behavioral Health Transformation Efforts
Powell, Byron J.; Beidas, Rinad S.; Rubin, Ronnie M.; Stewart, Rebecca E.; Wolk, Courtney Benjamin; Matlin, Samantha L.; Weaver, Shawna; Hurford, Matthew O.; Evans, Arthur C.; Hadley, Trevor R.; Mandell, David S.
2016-01-01
Raghavan et al. (2008) proposed that effective implementation of evidence-based practices requires implementation strategies deployed at multiple levels of the “policy ecology,” including the organizational, regulatory or purchaser agency, political, and social levels. However, much of implementation research and practice targets providers without accounting for contextual factors that may influence provider behavior. This paper examines Philadelphia’s efforts to work toward an evidence-based and recovery-oriented behavioral health system, and uses the policy ecology framework to illustrate how multifaceted, multilevel implementation strategies can facilitate the widespread implementation of evidence-based practices. Ongoing challenges and implications for research and practice are discussed. PMID:27032411
Study on Spatio-Temporal Change of Ecological Land in Yellow River Delta Based on RS&GIS
NASA Astrophysics Data System (ADS)
An, GuoQiang
2018-06-01
The temporal and spatial variation of ecological land use and its current distribution were studied to provide reference for the protection of original ecological land and ecological environment in the Yellow River Delta. Using RS colour synthesis, supervised classification, unsupervised classification, vegetation index and other methods to monitor the impact of human activities on the original ecological land in the past 30 years; using GIS technology to analyse the statistical data and construct the model of original ecological land area index to study the ecological land distribution status. The results show that the boundary of original ecological land in the Yellow River Delta had been pushed toward the coastline at an average speed of 0.8km per year due to human activities. In the past 20 years, a large amount of original ecological land gradually transformed into artificial ecological land. In view of the evolution and status of ecological land in the Yellow River Delta, related local departments should adopt differentiated and focused protection measures to protect the ecological land of the Yellow River Delta.
Ecology-driven stereotypes override race stereotypes
Williams, Keelah E. G.; Sng, Oliver; Neuberg, Steven L.
2016-01-01
Why do race stereotypes take the forms they do? Life history theory posits that features of the ecology shape individuals’ behavior. Harsh and unpredictable (“desperate”) ecologies induce fast strategy behaviors such as impulsivity, whereas resource-sufficient and predictable (“hopeful”) ecologies induce slow strategy behaviors such as future focus. We suggest that individuals possess a lay understanding of ecology’s influence on behavior, resulting in ecology-driven stereotypes. Importantly, because race is confounded with ecology in the United States, we propose that Americans’ stereotypes about racial groups actually reflect stereotypes about these groups’ presumed home ecologies. Study 1 demonstrates that individuals hold ecology stereotypes, stereotyping people from desperate ecologies as possessing faster life history strategies than people from hopeful ecologies. Studies 2–4 rule out alternative explanations for those findings. Study 5, which independently manipulates race and ecology information, demonstrates that when provided with information about a person’s race (but not ecology), individuals’ inferences about blacks track stereotypes of people from desperate ecologies, and individuals’ inferences about whites track stereotypes of people from hopeful ecologies. However, when provided with information about both the race and ecology of others, individuals’ inferences reflect the targets’ ecology rather than their race: black and white targets from desperate ecologies are stereotyped as equally fast life history strategists, whereas black and white targets from hopeful ecologies are stereotyped as equally slow life history strategists. These findings suggest that the content of several predominant race stereotypes may not reflect race, per se, but rather inferences about how one’s ecology influences behavior. PMID:26712013
Vasselon, Valentin; Ballorain, Katia; Carpentier, Alice; Wetzel, Carlos E.; Ector, Luc; Bouchez, Agnès; Rimet, Frédéric
2018-01-01
Sea turtles are distributed in tropical and subtropical seas worldwide. They play several ecological roles and are considered important indicators of the health of marine ecosystems. Studying epibiotic diatoms living on turtle shells suggestively has great potential in the study of turtle behavior because diatoms are always there. However, diatom identification at the species level is time consuming, requires well-trained specialists, and there is a high probability of finding new taxa growing on turtle shells, which makes identification tricky. An alternative approach based on DNA barcoding and high throughput sequencing (HTS), metabarcoding, has been developed in recent years to identify species at the community level by using a DNA reference library. The suitabilities of morphological and molecular approaches were compared. Diatom assemblages were sampled from seven juvenile green turtles (Chelonia mydas) from Mayotte Island, France. The structures of the epibiotic diatom assemblages differed between both approaches. This resulted in different clustering of the turtles based on their diatom communities. Metabarcoding allowed better discrimination between turtles based on their epibiotic diatom assemblages and put into evidence the presence of a cryptic diatom diversity. Microscopy, for its part, provided more ecological information of sea turtles based on historical bibliographical data and the abundances of ecological guilds of the diatom species present in the samples. This study shows the complementary nature of these two methods for studying turtle behavior. PMID:29659610
Rivera, Sinziana F; Vasselon, Valentin; Ballorain, Katia; Carpentier, Alice; Wetzel, Carlos E; Ector, Luc; Bouchez, Agnès; Rimet, Frédéric
2018-01-01
Sea turtles are distributed in tropical and subtropical seas worldwide. They play several ecological roles and are considered important indicators of the health of marine ecosystems. Studying epibiotic diatoms living on turtle shells suggestively has great potential in the study of turtle behavior because diatoms are always there. However, diatom identification at the species level is time consuming, requires well-trained specialists, and there is a high probability of finding new taxa growing on turtle shells, which makes identification tricky. An alternative approach based on DNA barcoding and high throughput sequencing (HTS), metabarcoding, has been developed in recent years to identify species at the community level by using a DNA reference library. The suitabilities of morphological and molecular approaches were compared. Diatom assemblages were sampled from seven juvenile green turtles (Chelonia mydas) from Mayotte Island, France. The structures of the epibiotic diatom assemblages differed between both approaches. This resulted in different clustering of the turtles based on their diatom communities. Metabarcoding allowed better discrimination between turtles based on their epibiotic diatom assemblages and put into evidence the presence of a cryptic diatom diversity. Microscopy, for its part, provided more ecological information of sea turtles based on historical bibliographical data and the abundances of ecological guilds of the diatom species present in the samples. This study shows the complementary nature of these two methods for studying turtle behavior.
[Some comments on ecological field].
Wang, D
2000-06-01
Based on the data of plant ecological field studies, this paper reviewed the conception of ecological field, field eigenfunctions, graphs of ecological field and its application of ecological field theory in explaining plant interactions. It is suggested that the basic character of ecological field is material, and based on the current research level, it is not sure whether ecological field is a kind of specific field different from general physical field. The author gave some comments on the formula and estimation of parameters of basic field function-ecological potential model on ecological field. Both models have their own characteristics and advantages in specific conditions. The author emphasized that ecological field had even more meaning of ecological methodology, and applying ecological field theory in describing the types and processes of plant interactions had three characteristics: quantitative, synthetic and intuitionistic. Field graphing might provide a new way to ecological studies, especially applying the ecological field theory might give an appropriate quantitative explanation for the dynamic process of plant populations (coexistence and interference competition).
Approaches, field considerations and problems associated with radio tracking carnivores
Sargeant, A.B.; Amlaner, C. J.; MacDonald, D.W.
1979-01-01
The adaptation of radio tracking to ecological studies was a major technological advance affecting field investigations of animal movements and behavior. Carnivores have been the recipients of much attention with this new technology and study approaches have varied from simple to complex. Equipment performance has much improved over the years, but users still face many difficulties. The beginning of all radio tracking studies should be a precise definition of objectives. Study objectives dictate type of gear required and field procedures. Field conditions affect equipment performance and investigator ability to gather data. Radio tracking carnivores is demanding and generally requires greater time than anticipated. Problems should be expected and planned for in study design. Radio tracking can be an asset in carnivore studies but caution is needed in its application.