Sample records for ecological transfer models

  1. Should I use that model? Assessing the transferability of ecological models to new settings

    EPA Science Inventory

    Analysts and scientists frequently apply existing models that estimate ecological endpoints or simulate ecological processes to settings where the models have not been used previously, and where data to parameterize and validate the model may be sparse. Prior to transferring an ...

  2. Interval Optimization Model Considering Terrestrial Ecological Impacts for Water Rights Transfer from Agriculture to Industry in Ningxia, China.

    PubMed

    Sun, Lian; Li, Chunhui; Cai, Yanpeng; Wang, Xuan

    2017-06-14

    In this study, an interval optimization model is developed to maximize the benefits of a water rights transfer system that comprises industry and agriculture sectors in the Ningxia Hui Autonomous Region in China. The model is subjected to a number of constraints including water saving potential from agriculture and ecological groundwater levels. Ecological groundwater levels serve as performance indicators of terrestrial ecology. The interval method is applied to present the uncertainty of parameters in the model. Two scenarios regarding dual industrial development targets (planned and unplanned ones) are used to investigate the difference in potential benefits of water rights transfer. Runoff of the Yellow River as the source of water rights fluctuates significantly in different years. Thus, compensation fees for agriculture are calculated to reflect the influence of differences in the runoff. Results show that there are more available water rights to transfer for industrial development. The benefits are considerable but unbalanced between buyers and sellers. The government should establish a water market that is freer and promote the interest of agriculture and farmers. Though there has been some success of water rights transfer, the ecological impacts and the relationship between sellers and buyers require additional studies.

  3. Model application niche analysis: An approach for assessing the transferability and generalizability of ecological models

    EPA Science Inventory

    A 30-year review of predictive models used in regulatory decision-making, revealed that transferring models to contexts other than that for which the models were developed was one of the biggest vulnerabilities to their legal defensibility. The use and transfer of models by ecolo...

  4. Model application niche analysis: Assessing the transferability and generalizability of ecological models

    EPA Science Inventory

    The use of models by ecologist and environmental managers, to inform environmental management and decision-making, has grown exponentially in the past 50 years. Due to logistical, economical and theoretical benefits, model users are frequently transferring preexisting models to n...

  5. Ecological niche transferability using invasive species as a case study.

    PubMed

    Fernández, Miguel; Hamilton, Healy

    2015-01-01

    Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species' native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species' native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger's I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species' dynamics in the invaded range.

  6. Ecological Development through Service-Learning

    ERIC Educational Resources Information Center

    Baker, Daniel

    2006-01-01

    This article describes a successful model used in international service-learning projects that integrates economic development and ecological improvement. The principles of the model are discussed, including commitments to maintain partnerships over time, emphasize the transfer of knowledge from one generation of students to the next, start small,…

  7. A Model of Practice in Special Education: Dynamic Ecological Analysis

    ERIC Educational Resources Information Center

    Hannant, Barbara; Lim, Eng Leong; McAllum, Ruth

    2010-01-01

    Dynamic Ecological Analysis (DEA) is a model of practice which increases a teams' efficacy by enabling the development of more effective interventions through collaboration and collective reflection. This process has proved to be useful in: a) clarifying thinking and problem-solving, b) transferring knowledge and thinking to significant parties,…

  8. Teacher Migration: Extension and Application of the Population Ecology Model to Explore Teacher Transfers in a Reform Environment

    ERIC Educational Resources Information Center

    Hochbein, Craig; Carpenter, Bradley

    2017-01-01

    This article assesses the association between the Title I School Improvement Grant (SIG) program's personnel replacement policy and teacher employment patterns within an urban school district. Hannan and Freeman's population ecology model allowed the authors to consider schools within districts as individual organizations nested within a larger…

  9. Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies.

    PubMed

    Vanreusel, Wouter; Maes, Dirk; Van Dyck, Hans

    2007-02-01

    Numerous models for predicting species distribution have been developed for conservation purposes. Most of them make use of environmental data (e.g., climate, topography, land use) at a coarse grid resolution (often kilometres). Such approaches are useful for conservation policy issues including reserve-network selection. The efficiency of predictive models for species distribution is usually tested on the area for which they were developed. Although highly interesting from the point of view of conservation efficiency, transferability of such models to independent areas is still under debate. We tested the transferability of habitat-based predictive distribution models for two regionally threatened butterflies, the green hairstreak (Callophrys rubi) and the grayling (Hipparchia semele), within and among three nature reserves in northeastern Belgium. We built predictive models based on spatially detailed maps of area-wide distribution and density of ecological resources. We used resources directly related to ecological functions (host plants, nectar sources, shelter, microclimate) rather than environmental surrogate variables. We obtained models that performed well with few resource variables. All models were transferable--although to different degrees--among the independent areas within the same broad geographical region. We argue that habitat models based on essential functional resources could transfer better in space than models that use indirect environmental variables. Because functional variables can easily be interpreted and even be directly affected by terrain managers, these models can be useful tools to guide species-adapted reserve management.

  10. CAN A MODEL TRANSFERABILITY FRAMEWORK IMPROVE ECOSYSTEM SERVICE ESTIMATES? A CASE STUDY OF SOIL FOREST CARBON SEQUESTRATION IN TILLAMOOK BAY, OR, USA

    EPA Science Inventory

    Budget constraints and policies that limit primary data collection have fueled a practice of transferring estimates (or models to generate estimates) of ecological endpoints from sites where primary data exists to sites where little to no primary data were collected. Whereas bene...

  11. [Spatiotemporal variation of Populus euphratica's radial increment at lower reaches of Tarim River after ecological water transfer].

    PubMed

    An, Hong-Yan; Xu, Hai-Liang; Ye, Mao; Yu, Pu-Ji; Gong, Jun-Jun

    2011-01-01

    Taking the Populus euphratica at lower reaches of Tarim River as test object, and by the methods of tree dendrohydrology, this paper studied the spatiotemporal variation of P. euphratic' s branch radial increment after ecological water transfer. There was a significant difference in the mean radial increment before and after ecological water transfer. The radial increment after the eco-water transfer was increased by 125%, compared with that before the water transfer. During the period of ecological water transfer, the radial increment was increased with increasing water transfer quantity, and there was a positive correlation between the annual radial increment and the total water transfer quantity (R2 = 0.394), suggesting that the radial increment of P. euphratica could be taken as the performance indicator of ecological water transfer. After the ecological water transfer, the radial increment changed greatly with the distance to the River, i.e. , decreased significantly along with the increasing distance to the River (P = 0.007). The P. euphratic' s branch radial increment also differed with stream segment (P = 0.017 ), i.e. , the closer to the head-water point (Daxihaizi Reservoir), the greater the branch radial increment. It was considered that the limited effect of the current ecological water transfer could scarcely change the continually deteriorating situation of the lower reaches of Tarim River.

  12. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The coupled models have been applied to simulate the spatial variation trends of ecological condition under ecological water supplement as an example to reflect the application effect in lake restoration and management. The simulation results indicate that the models can provide a useful tool for lake restoration and management. The simulated spatial variation trends can provide a foundation for establishing permissible ranges for a selected set of water quality indices for a series of management measures such as watershed pollution load control and ecological water transfer. Meanwhile, the coupled models can help us to understand processes taking place and the relations of interaction between components in the lake ecosystem and external conditions. Taken together, the proposed models we established show some promising applications as middle-scale or large-scale lake management tools for pollution load control and ecological water transfer. These tools quantify the implications of proposed future water management decisions.

  13. Improvement of ecological characteristics of the hydrogen diesel engine

    NASA Astrophysics Data System (ADS)

    Natriashvili, T.; Kavtaradze, R.; Glonti, M.

    2018-02-01

    In the article are considered the questions of influence of a swirl intensity of the shot and injector design on the ecological indices of the hydrogen diesel, little-investigated till now. The necessity of solution of these problems arises at conversion of the serial diesel engine into the hydrogen diesel. The mathematical model consists of the three-dimensional non-stationary equations of transfer and also models of turbulence and combustion. The numerical experiments have been carried out with the use of program code FIRE. The optimal values of parameters of the working process, ensuring improvement of the effective and ecological indices of the hydrogen diesel are determined.

  14. Transfer Entropy as a Log-Likelihood Ratio

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Bossomaier, Terry

    2012-09-01

    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.

  15. Transfer entropy as a log-likelihood ratio.

    PubMed

    Barnett, Lionel; Bossomaier, Terry

    2012-09-28

    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.

  16. Eliciting and Representing High-Level Knowledge Requirements to Discover Ecological Knowledge in Flower-Visiting Data

    PubMed Central

    2016-01-01

    Observations of individual organisms (data) can be combined with expert ecological knowledge of species, especially causal knowledge, to model and extract from flower–visiting data useful information about behavioral interactions between insect and plant organisms, such as nectar foraging and pollen transfer. We describe and evaluate a method to elicit and represent such expert causal knowledge of behavioral ecology, and discuss the potential for wider application of this method to the design of knowledge-based systems for knowledge discovery in biodiversity and ecosystem informatics. PMID:27851814

  17. Workshop to transfer VELMA watershed model results to Washington state tribes and state agencies engaged in watershed restoration and salmon recovery planning

    EPA Science Inventory

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on strea...

  18. Integration of research infrastructures and ecosystem models toward development of predictive ecology

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.

    2017-12-01

    The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure facilities to model simulation, data assimilation, and ecological forecasting.

  19. Mechanistic models as a transferable framework for projecting effects of habitat change on production and delivery of ecosystem services

    EPA Science Inventory

    Drawing a link between habitat change and the production and delivery of ecosystem services is a priority in coastal estuarine ecosystems. Mechanistic modeling tools are highly functional for exploring this link because they allow for the synthesis of multiple ecological and beh...

  20. Does similarity in call structure or foraging ecology explain interspecific information transfer in wild Myotis bats?

    PubMed

    Hügel, Theresa; van Meir, Vincent; Muñoz-Meneses, Amanda; Clarin, B-Markus; Siemers, Björn M; Goerlitz, Holger R

    2017-01-01

    Animals can gain important information by attending to the signals and cues of other animals in their environment, with acoustic information playing a major role in many taxa. Echolocation call sequences of bats contain information about the identity and behaviour of the sender which is perceptible to close-by receivers. Increasing evidence supports the communicative function of echolocation within species, yet data about its role for interspecific information transfer is scarce. Here, we asked which information bats extract from heterospecific echolocation calls during foraging. In three linked playback experiments, we tested in the flight room and field if foraging Myotis bats approached the foraging call sequences of conspecifics and four heterospecifics that were similar in acoustic call structure only (acoustic similarity hypothesis), in foraging ecology only (foraging similarity hypothesis), both, or none. Compared to the natural prey capture rate of 1.3 buzzes per minute of bat activity, our playbacks of foraging sequences with 23-40 buzzes/min simulated foraging patches with significantly higher profitability. In the flight room, M. capaccinii only approached call sequences of conspecifics and of the heterospecific M. daubentonii with similar acoustics and foraging ecology. In the field, M. capaccinii and M. daubentonii only showed a weak positive response to those two species. Our results confirm information transfer across species boundaries and highlight the importance of context on the studied behaviour, but cannot resolve whether information transfer in trawling Myotis is based on acoustic similarity only or on a combination of similarity in acoustics and foraging ecology. Animals transfer information, both voluntarily and inadvertently, and within and across species boundaries. In echolocating bats, acoustic call structure and foraging ecology are linked, making echolocation calls a rich source of information about species identity, ecology and activity of the sender, which receivers might exploit to find profitable foraging grounds. We tested in three lab and field experiments if information transfer occurs between bat species and if bats obtain information about ecology from echolocation calls. Myotis capaccinii/daubentonii bats approached call playbacks, but only those from con- and heterospecifics with similar call structure and foraging ecology, confirming interspecific information transfer. Reactions differed between lab and field, emphasising situation-dependent differences in animal behaviour, the importance of field research, and the need for further studies on the underlying mechanism of information transfer and the relative contributions of acoustic and ecological similarity.

  1. CAN A MODEL TRANSFERABILITY FRAMEWORK IMPROVE ...

    EPA Pesticide Factsheets

    Budget constraints and policies that limit primary data collection have fueled a practice of transferring estimates (or models to generate estimates) of ecological endpoints from sites where primary data exists to sites where little to no primary data were collected. Whereas benefit transfer has been well studied; there is no comparable framework for evaluating whether model transfer between sites is justifiable. We developed and applied a transferability assessment framework to a case study involving forest carbon sequestration for soils in Tillamook Bay, Oregon. The carbon sequestration capacity of forested watersheds is an important ecosystem service in the effort to reduce atmospheric greenhouse gas emissions. We used our framework, incorporating three basic steps (model selection, defining context variables, assessing logistical constraints) for evaluating model transferability, to compare estimates of carbon storage capacity derived from two models, COMET-Farm and Yasso. We applied each model to Tillamook Bay and compared results to data extracted from the Soil Survey Geographic Database (SSURGO) using ArcGIS. Context variables considered were: geographic proximity to Tillamook, dominant tree species, climate and soil type. Preliminary analyses showed that estimates from COMET-Farm were more similar to SSURGO data, likely because model context variables (e.g. proximity to Tillamook and dominant tree species) were identical to those in Tillamook. In contras

  2. Water transfer projects and the role of fisheries biologists

    USGS Publications Warehouse

    Meador, M.R.

    1996-01-01

    Water transfer projects are commonly considered important mechanisms for meeting increasing water demands. However, the movement of water from one area to another may have broad ecosystem effects, including on fisheries. The Southern Division of the American Fisheries Society held a symposium in 1995 at Virginia Beach, Virginia, to discuss the ecological consequences of water transfer and identify the role of fisheries biologists in such projects. Presenters outlined several case studies, including the California State Water Project, Garrison Diversion Project (North Dakota), Lake Texoma Water Transfer Project (Oklahoma-Texas), Santee-Cooper Diversion and Re-diversion projects (South Carolina), and Tri-State Comprehensive Study (Alabama-Florida-Georgia). Results from these studies suggest that fisheries biologists have provided critical information regarding potential ecological consequences of water transfer. If these professionals continue to be called for information regarding the ecological consequences of water transfer projects, developing a broader understanding of the ecological processes that affect the fish species they manage may be necessary. Although the traditional role of fisheries biologists has focused on the fishing customer base, fisheries management issues are only one component of the broad spectrum of ecosystem issues resulting from water transfer.

  3. Life History Traits and Niche Instability Impact Accuracy and Temporal Transferability for Historically Calibrated Distribution Models of North American Birds

    PubMed Central

    Wogan, Guinevere O. U.

    2016-01-01

    A primary assumption of environmental niche models (ENMs) is that models are both accurate and transferable across geography or time; however, recent work has shown that models may be accurate but not highly transferable. While some of this is due to modeling technique, individual species ecologies may also underlie this phenomenon. Life history traits certainly influence the accuracy of predictive ENMs, but their impact on model transferability is less understood. This study investigated how life history traits influence the predictive accuracy and transferability of ENMs using historically calibrated models for birds. In this study I used historical occurrence and climate data (1950-1990s) to build models for a sample of birds, and then projected them forward to the ‘future’ (1960-1990s). The models were then validated against models generated from occurrence data at that ‘future’ time. Internal and external validation metrics, as well as metrics assessing transferability, and Generalized Linear Models were used to identify life history traits that were significant predictors of accuracy and transferability. This study found that the predictive ability of ENMs differs with regard to life history characteristics such as range, migration, and habitat, and that the rarity versus commonness of a species affects the predicted stability and overlap and hence the transferability of projected models. Projected ENMs with both high accuracy and transferability scores, still sometimes suffered from over- or under- predicted species ranges. Life history traits certainly influenced the accuracy of predictive ENMs for birds, but while aspects of geographic range impact model transferability, the mechanisms underlying this are less understood. PMID:26959979

  4. Linking multi-temporal satellite imagery to coastal wetland dynamics and bird distribution

    USGS Publications Warehouse

    Pickens, Bradley A.; King, Sammy L.

    2014-01-01

    Ecosystems are characterized by dynamic ecological processes, such as flooding and fires, but spatial models are often limited to a single measurement in time. The characterization of direct, fine-scale processes affecting animals is potentially valuable for management applications, but these are difficult to quantify over broad extents. Direct predictors are also expected to improve transferability of models beyond the area of study. Here, we investigated the ability of non-static and multi-temporal habitat characteristics to predict marsh bird distributions, while testing model generality and transferability between two coastal habitats. Distribution models were developed for king rail (Rallus elegans), common gallinule (Gallinula galeata), least bittern (Ixobrychus exilis), and purple gallinule (Porphyrio martinica) in fresh and intermediate marsh types in the northern Gulf Coast of Louisiana and Texas, USA. For model development, repeated point count surveys of marsh birds were conducted from 2009 to 2011. Landsat satellite imagery was used to quantify both annual conditions and cumulative, multi-temporal habitat characteristics. We used multivariate adaptive regression splines to quantify bird-habitat relationships for fresh, intermediate, and combined marsh habitats. Multi-temporal habitat characteristics ranked as more important than single-date characteristics, as temporary water was most influential in six of eight models. Predictive power was greater for marsh type-specific models compared to general models and model transferability was poor. Birds in fresh marsh selected for annual habitat characterizations, while birds in intermediate marsh selected for cumulative wetness and heterogeneity. Our findings emphasize that dynamic ecological processes can affect species distribution and species-habitat relationships may differ with dominant landscape characteristics.

  5. Environmental behaviors and potential ecological risks of heavy metals (Cd, Cr, Cu, Pb, and Zn) in multimedia in an oilfield in China.

    PubMed

    Hu, Yan; Wang, Dazhou; Li, Yu

    2016-07-01

    The environmental behaviors of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in a Chinese oilfield were investigated using a steady-state multimedia aquivalence (SMA) model. The modeling results showed good agreement with the actual measured values, with average residual errors of 0.69, 0.83, 0.35, 0.16, and 0.54 logarithmic units for air, water, soil, sediment, and vegetation compartments, respectively. Model results indicated that most heavy metals were buried in sediment, and that transfers between adjacent compartments were mainly deposition from the water to the sediment compartment (48.59 %) and from the air to the soil compartment (47.74 %) via atmospheric dry/wet deposition. Sediment and soil were the dominant sinks, accounting for 68.80 and 25.26 % of all the heavy metals in the multimedia system, respectively. The potential ecological risks from the five heavy metals in the sediment and soil compartments were assessed by the potential ecological risk index (PERI). The assessment results demonstrate that the heavy metals presented low levels of ecological risk in the sediment compartment, and that Cd was the most significant contributor to the integrated potential ecological risk in the oilfield. The SMA model provided useful simulations of the transport and fate of heavy metals and is a useful tool for ecological risk assessment and contaminated site management.

  6. Ecological modelling and toxicity data coupled to assess population recovery of marine amphipod Gammarus locusta: Application to disturbance by chronic exposure to aniline.

    PubMed

    de los Santos, Carmen B; Neuparth, Teresa; Torres, Tiago; Martins, Irene; Cunha, Isabel; Sheahan, Dave; McGowan, Tom; Santos, Miguel M

    2015-06-01

    A population agent-based model of marine amphipod Gammarus locusta was designed and implemented as a basis for ecological risk assessment of chemical pollutants impairing life-history traits at the individual level. We further used the model to assess the toxic effects of aniline (a priority hazardous and noxious substance, HNS) on amphipod populations using empirically-built dose-response functions derived from a chronic bioassay that we previously performed with this species. We observed a significant toxicant-induced mortality and adverse effects in reproductive performance (reduction of newborn production) in G. locusta at the individual level. Coupling the population model with the toxicological data from the chronic bioassay allowed the projection of the ecological costs associated with exposure to aniline that might occur in wild populations. Model simulations with different scenarios indicated that even low level prolonged exposure to the HNS aniline can have significant long-term impacts on G. locusta population abundance, until the impacted population returns to undisturbed levels. This approach may be a useful complement in ecotoxicological studies of chemical pollution to transfer individual-collected data to ecological-relevant levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change.

    PubMed

    Mitchell, Duncan; Snelling, Edward P; Hetem, Robyn S; Maloney, Shane K; Strauss, Willem Maartin; Fuller, Andrea

    2018-02-26

    The accuracy of predictive models (also known as mechanistic or causal models) of animal responses to climate change depends on properly incorporating the principles of heat transfer and thermoregulation into those models. Regrettably, proper incorporation of these principles is not always evident. We have revisited the relevant principles of thermal physiology and analysed how they have been applied in predictive models of large mammals, which are particularly vulnerable, to climate change. We considered dry heat exchange, evaporative heat transfer, the thermoneutral zone and homeothermy, and we examined the roles of size and shape in the thermal physiology of large mammals. We report on the following misconceptions in influential predictive models: underestimation of the role of radiant heat transfer, misassignment of the role and misunderstanding of the sustainability of evaporative cooling, misinterpretation of the thermoneutral zone as a zone of thermal tolerance or as a zone of sustainable energetics, confusion of upper critical temperature and critical thermal maximum, overestimation of the metabolic energy cost of evaporative cooling, failure to appreciate that the current advantages of size and shape will become disadvantageous as climate change advances, misassumptions about skin temperature and, lastly, misconceptions about the relationship between body core temperature and its variability with body mass in large mammals. Not all misconceptions invalidate the models, but we believe that preventing inappropriate assumptions from propagating will improve model accuracy, especially as models progress beyond their current typically static format to include genetic and epigenetic adaptation that can result in phenotypic plasticity. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  8. Vultures acquire information on carcass location from scavenging eagles

    PubMed Central

    Kane, Adam; Jackson, Andrew L.; Ogada, Darcy L.; Monadjem, Ara; McNally, Luke

    2014-01-01

    Vultures are recognized as the scroungers of the natural world, owing to their ecological role as obligate scavengers. While it is well known that vultures use intraspecific social information as they forage, the possibility of inter-guild social information transfer and the resulting multi-species social dilemmas has not been explored. Here, we use data on arrival times at carcasses to show that such social information transfer occurs, with raptors acting as producers of information and vultures acting as scroungers of information. We develop a game-theoretic model to show that competitive asymmetry, whereby vultures dominate raptors at carcasses, predicts this evolutionary outcome. We support this theoretical prediction using empirical data from competitive interactions at carcasses. Finally, we use an individual-based model to show that these producer–scrounger dynamics lead to vultures being vulnerable to declines in raptor populations. Our results show that social information transfer can lead to important non-trophic interactions among species and highlight important potential links among social evolution, community ecology and conservation biology. With vulture populations suffering global declines, our study underscores the importance of ecosystem-based management for these endangered keystone species. PMID:25209935

  9. Major challenges for correlational ecological niche model projections to future climate conditions.

    PubMed

    Peterson, A Townsend; Cobos, Marlon E; Jiménez-García, Daniel

    2018-06-20

    Species-level forecasts of distributional potential and likely distributional shifts, in the face of changing climates, have become popular in the literature in the past 20 years. Many refinements have been made to the methodology over the years, and the result has been an approach that considers multiple sources of variation in geographic predictions, and how that variation translates into both specific predictions and uncertainty in those predictions. Although numerous previous reviews and overviews of this field have pointed out a series of assumptions and caveats associated with the methodology, three aspects of the methodology have important impacts but have not been treated previously in detail. Here, we assess those three aspects: (1) effects of niche truncation on model transfers to future climate conditions, (2) effects of model selection procedures on future-climate transfers of ecological niche models, and (3) relative contributions of several factors (replicate samples of point data, general circulation models, representative concentration pathways, and alternative model parameterizations) to overall variance in model outcomes. Overall, the view is one of caution: although resulting predictions are fascinating and attractive, this paradigm has pitfalls that may bias and limit confidence in niche model outputs as regards the implications of climate change for species' geographic distributions. © 2018 New York Academy of Sciences.

  10. Placing biodiversity in ecosystem models without getting lost in translation

    NASA Astrophysics Data System (ADS)

    Queirós, Ana M.; Bruggeman, Jorn; Stephens, Nicholas; Artioli, Yuri; Butenschön, Momme; Blackford, Jeremy C.; Widdicombe, Stephen; Allen, J. Icarus; Somerfield, Paul J.

    2015-04-01

    A key challenge to progressing our understanding of biodiversity's role in the sustenance of ecosystem function is the extrapolation of the results of two decades of dedicated empirical research to regional, global and future landscapes. Ecosystem models provide a platform for this progression, potentially offering a holistic view of ecosystems where, guided by the mechanistic understanding of processes and their connection to the environment and biota, large-scale questions can be investigated. While the benefits of depicting biodiversity in such models are widely recognized, its application is limited by difficulties in the transfer of knowledge from small process oriented ecology into macro-scale modelling. Here, we build on previous work, breaking down key challenges of that knowledge transfer into a tangible framework, highlighting successful strategies that both modelling and ecology communities have developed to better interact with one another. We use a benthic and a pelagic case-study to illustrate how aspects of the links between biodiversity and ecosystem process have been depicted in marine ecosystem models (ERSEM and MIRO), from data, to conceptualisation and model development. We hope that this framework may help future interactions between biodiversity researchers and model developers by highlighting concrete solutions to common problems, and in this way contribute to the advance of the mechanistic understanding of the role of biodiversity in marine (and terrestrial) ecosystems.

  11. An Integrated Ecological Modeling System for Assessing ...

    EPA Pesticide Factsheets

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 – 2010 for the population of streams in the CRB and serves as a foundation for future model development. Published in the journal, Ecological Modeling. Highlights: • Demonstrate a spatially-explicit IEMS for multiple scales. • Design a flexible IEMS for

  12. Sensitivity of secondary production and export flux to choice of trophic transfer formulation in marine ecosystem models

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas R.; Hessen, Dag O.; Mitra, Aditee; Mayor, Daniel J.; Yool, Andrew

    2013-09-01

    The performance of four contemporary formulations describing trophic transfer, which have strongly contrasting assumptions as regards the way that consumer growth is calculated as a function of food C:N ratio and in the fate of non-limiting substrates, was compared in two settings: a simple steady-state ecosystem model and a 3D biogeochemical general circulation model. Considerable variation was seen in predictions for primary production, transfer to higher trophic levels and export to the ocean interior. The physiological basis of the various assumptions underpinning the chosen formulations is open to question. Assumptions include Liebig-style limitation of growth, strict homeostasis in zooplankton biomass, and whether excess C and N are released by voiding in faecal pellets or via respiration/excretion post-absorption by the gut. Deciding upon the most appropriate means of formulating trophic transfer is not straightforward because, despite advances in ecological stoichiometry, the physiological mechanisms underlying these phenomena remain incompletely understood. Nevertheless, worrying inconsistencies are evident in the way in which fundamental transfer processes are justified and parameterised in the current generation of marine ecosystem models, manifested in the resulting simulations of ocean biogeochemistry. Our work highlights the need for modellers to revisit and appraise the equations and parameter values used to describe trophic transfer in marine ecosystem models.

  13. Sustainability and economics: The Adirondack Park experience, a forest economic-ecological model, and solar energy policy

    NASA Astrophysics Data System (ADS)

    Erickson, Jon David

    The long-term sustainability of human communities will depend on our relationship with regional environments, our maintenance of renewable resources, and our successful disengagement from nonrenewable energy dependence. This dissertation investigates sustainability at these three levels, following a critical analysis of sustainability and economics. At the regional environment level, the Adirondack Park of New York State is analyzed as a potential model of sustainable development. A set of initial and ongoing conditions are presented that both emerge from and support a model of sustainability in the Adirondacks. From these conditions, a clearer picture emerges of the definition of regional sustainability, consequences of its adoption, and lessons from its application. Next, an economic-ecological model of the northern hardwood forest ecosystem is developed. The model integrates economic theory and intertemporal ecological concepts, linking current harvest decisions with future forest growth, financial value, and ecosystem stability. The results indicate very different economic and ecological outcomes by varying opportunity cost and ecosystem recovery assumptions, and suggest a positive benefit to ecological recovery in the forest rotation decision of the profit maximizing manager. The last section investigates the motives, economics, and international development implications of renewable energy (specifically photovoltaic technology) in rural electrification and technology transfer, drawing on research in the Dominican Republic. The implications of subsidizing a photovoltaic market versus investing in basic research are explored.

  14. Development of an Ecoliteracy Scale Intended for Adults and Testing an Alternative Model by Structural Equation Modelling

    ERIC Educational Resources Information Center

    Okur-Berberoglu, Emel

    2018-01-01

    Ecoliteracy is to understand and internalise sustainable ecological relationship in the nature and to transfer this sustainable lifestyle to daily life despite the fact that ecoliteracy does not have only one and unique definition. However, it is difficult to measure ecoliteracy due to it being a complex concept. There are many subsets of…

  15. Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior

    Treesearch

    Russell A. Parsons; William E. Mell; Peter McCauley

    2011-01-01

    Crownfire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (...

  16. Modeling the infection dynamics of bacteriophages in enteric Escherichia coli: estimating the contribution of transduction to antimicrobial gene spread.

    PubMed

    Volkova, Victoriya V; Lu, Zhao; Besser, Thomas; Gröhn, Yrjö T

    2014-07-01

    Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits ("worst-case scenario") of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 10(8) E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ~2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 10(3) times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Modeling the Infection Dynamics of Bacteriophages in Enteric Escherichia coli: Estimating the Contribution of Transduction to Antimicrobial Gene Spread

    PubMed Central

    Lu, Zhao; Besser, Thomas; Gröhn, Yrjö T.

    2014-01-01

    Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits (“worst-case scenario”) of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 108 E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ∼2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 103 times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli. PMID:24814786

  18. [Ecological risk assessment of Taihu Lake basin based on landscape pattern].

    PubMed

    Xie, Xiao Ping; Chen, Zhi Cong; Wang, Fang; Bai, Mao Wei; Xu, Wen Yang

    2017-10-01

    Taihu Lake basin was selected as the study site. Based on the landscape data of 2000, 2005, 2010 and 2015, the Markov and CLUE-S models were used to simulate the landscape types with different scenarios in 2030, and landscape ecological risk index was constructed. The shift of gravity center and spatial statistics were used to reveal landscape ecological risk of Taihu Lake basin with temporal and spatial characteristics. The results showed that the ecological risk mainly was at medium and low levels in Taihu Lake basin, and the higher ecological risk areas were mainly distributed at the Taihu Lake area during 2000 to 2015, and the low ecological risk was transferred from the southwest and south of Taihu Lake to the developed areas in the northern part of Taihu Lake area. Spatial analysis showed that landscape ecological risk had negative correlation with natural factors, which was weakened gradually, while the correlation with socioeconomic factors trended to become stronger, with human disturbance affecting the landscape ecological risk significantly. The impact of socioeconomic factors on landscape ecological risks differed in different urbanization stages. In the developing area, with the economic development, the landscape was increasingly fragmented and the ecological risk was correspondingly increased. While in the developed area, with the further development of the economy, the aggregation index was increased, and fragmentation and separation indexes were decreased, ecological construction was restored, and the landscape ecological risk began to decline. CLUE-S model simulation showed that the ecological risk of Taihu Lake basin would be reduced in future, mainly on the low and relatively low levels. Taihu Lake area, both in history and the future, is a high ecological risk zone, and its management and protection should be strengthened.

  19. IMPROVED VALUATION OF ECOLOGICAL BENEFITS ASSOCIATED WITH AQUATIC LIVING RESOURCES: DEVELOPMENT AND TESTING OF INDICATOR-BASED STATED PREFERENCE VALUATION AND TRANSFER

    EPA Science Inventory

    In addition to development and systematic qualitative/quantitative testing of indicator-based valuation for aquatic living resources, the proposed work will improve interdisciplinary mechanisms to model and communicate aquatic ecosystem change within SP valuation—an area...

  20. Heavy metal pollution status and ecological risks of sediments under the influence of water transfers in Taihu Lake, China.

    PubMed

    Liu, Jiajia; Wang, Peifang; Wang, Chao; Qian, Jin; Hou, Jun

    2017-01-01

    The effects of water transfer projects on water channels and the receiving water involved need to be understood. In this research, the compositions and particle size distributions of surface sediment and the Cd, Cr, Cu, Ni, Pb, and Zn contents and distributions in the sediment along a water transfer route from the Wangyu River to Taihu Lake, China, were studied. The correlative relationship between the grain size trend and heavy metal content distribution suggested that heavy metals in Wangyu River sediment have affected the heavy metal contents of Taihu Lake sediment through silt and clay migrating in the transferred water. Enrichment factors and potential ecological risk values were calculated. Low levels of potential ecological risks are posed at 20 sampling sites in Taihu Lake, but higher-to-serious risks (potential ecological risk values >275) are posed at all Wangyu River sites. Toxicity of heavy metals (Cd, Cu, Zn, and Ni) in the Wangyu River sediments is more serious than those in the Taihu Lake, but is similar to the entrance of Gonghu Bay. Multivariate statistical analyses (Pearson correlation, cluster, and factor analyses) suggested heavy metals in the study area have many sources, and the relationships between particle migration and heavy metal contents indicated transferring water are likely to lead to adverse ecological risks being posed in Taihu Lake.

  1. Linking ecosystem characteristics to final ecosystem services for public policy.

    PubMed

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  2. Comparative analysis of remotely-sensed data products via ecological niche modeling of avian influenza case occurrences in Middle Eastern poultry.

    PubMed

    Bodbyl-Roels, Sarah; Peterson, A Townsend; Xiao, Xiangming

    2011-03-28

    Ecological niche modeling integrates known sites of occurrence of species or phenomena with data on environmental variation across landscapes to infer environmental spaces potentially inhabited (i.e., the ecological niche) to generate predictive maps of potential distributions in geographic space. Key inputs to this process include raster data layers characterizing spatial variation in environmental parameters, such as vegetation indices from remotely sensed satellite imagery. The extent to which ecological niche models reflect real-world distributions depends on a number of factors, but an obvious concern is the quality and content of the environmental data layers. We assessed ecological niche model predictions of H5N1 avian flu presence quantitatively within and among four geographic regions, based on models incorporating two means of summarizing three vegetation indices derived from the MODIS satellite. We evaluated our models for predictive ability using partial ROC analysis and GLM ANOVA to compare performance among indices and regions. We found correlations between vegetation indices to be high, such that they contain information that overlaps broadly. Neither the type of vegetation index used nor method of summary affected model performance significantly. However, the degree to which model predictions had to be transferred (i.e., projected onto landscapes and conditions not represented on the landscape of training) impacted predictive strength greatly (within-region model predictions far out-performed models projected among regions). Our results provide the first quantitative tests of most appropriate uses of different remotely sensed data sets in ecological niche modeling applications. While our testing did not result in a decisive "best" index product or means of summarizing indices, it emphasizes the need for careful evaluation of products used in modeling (e.g. matching temporal dimensions and spatial resolution) for optimum performance, instead of simple reliance on large numbers of data layers.

  3. Colour spaces in ecology and evolutionary biology.

    PubMed

    Renoult, Julien P; Kelber, Almut; Schaefer, H Martin

    2017-02-01

    The recognition that animals sense the world in a different way than we do has unlocked important lines of research in ecology and evolutionary biology. In practice, the subjective study of natural stimuli has been permitted by perceptual spaces, which are graphical models of how stimuli are perceived by a given animal. Because colour vision is arguably the best-known sensory modality in most animals, a diversity of colour spaces are now available to visual ecologists, ranging from generalist and basic models allowing rough but robust predictions on colour perception, to species-specific, more complex models giving accurate but context-dependent predictions. Selecting among these models is most often influenced by historical contingencies that have associated models to specific questions and organisms; however, these associations are not always optimal. The aim of this review is to provide visual ecologists with a critical perspective on how models of colour space are built, how well they perform and where their main limitations are with regard to their most frequent uses in ecology and evolutionary biology. We propose a classification of models based on their complexity, defined as whether and how they model the mechanisms of chromatic adaptation and receptor opponency, the nonlinear association between the stimulus and its perception, and whether or not models have been fitted to experimental data. Then, we review the effect of modelling these mechanisms on predictions of colour detection and discrimination, colour conspicuousness, colour diversity and diversification, and for comparing the perception of colour traits between distinct perceivers. While a few rules emerge (e.g. opponent log-linear models should be preferred when analysing very distinct colours), in general model parameters still have poorly known effects. Colour spaces have nonetheless permitted significant advances in ecology and evolutionary biology, and more progress is expected if ecologists compare results between models and perform behavioural experiments more routinely. Such an approach would further contribute to a better understanding of colour vision and its links to the behavioural ecology of animals. While visual ecology is essentially a transfer of knowledge from visual sciences to evolutionary ecology, we hope that the discipline will benefit both fields more evenly in the future. © 2015 Cambridge Philosophical Society.

  4. The redoubtable ecological periodic table

    EPA Science Inventory

    Ecological periodic tables are repositories of reliable information on quantitative, predictably recurring (periodic) habitat–community patterns and their uncertainty, scaling and transferability. Their reliability derives from their grounding in sound ecological principle...

  5. Social Interface Model: Theorizing Ecological Post-Delivery Processes for Intervention Effects.

    PubMed

    Pettigrew, Jonathan; Segrott, Jeremy; Ray, Colter D; Littlecott, Hannah

    2018-01-03

    Successful prevention programs depend on a complex interplay among aspects of the intervention, the participant, the specific intervention setting, and the broader set of contexts with which a participant interacts. There is a need to theorize what happens as participants bring intervention ideas and behaviors into other life-contexts, and theory has not yet specified how social interactions about interventions may influence outcomes. To address this gap, we use an ecological perspective to develop the social interface model. This paper presents the key components of the model and its potential to aid the design and implementation of prevention interventions. The model is predicated on the idea that intervention message effectiveness depends not only on message aspects but also on the participants' adoption and adaptation of the message vis-à-vis their social ecology. The model depicts processes by which intervention messages are received and enacted by participants through social processes occurring within and between relevant microsystems. Mesosystem interfaces (negligible interface, transference, co-dependence, and interdependence) can facilitate or detract from intervention effects. The social interface model advances prevention science by theorizing that practitioners can create better quality interventions by planning for what occurs after interventions are delivered.

  6. Ecology of testate amoebae in an Amazonian peatland and development of a transfer function for palaeohydrological reconstruction.

    PubMed

    Swindles, Graeme T; Reczuga, Monika; Lamentowicz, Mariusz; Raby, Cassandra L; Turner, T Edward; Charman, Dan J; Gallego-Sala, Angela; Valderrama, Elvis; Williams, Christopher; Draper, Frederick; Honorio Coronado, Euridice N; Roucoux, Katherine H; Baker, Tim; Mullan, Donal J

    2014-08-01

    Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (r(2)(apparent)= 0.76, RMSE = 4.29; r(2)(jack)= 0.68, RMSEP =5.18). The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD.

  7. How Ebola impacts social dynamics in gorillas: a multistate modelling approach.

    PubMed

    Genton, Céline; Pierre, Amandine; Cristescu, Romane; Lévréro, Florence; Gatti, Sylvain; Pierre, Jean-Sébastien; Ménard, Nelly; Le Gouar, Pascaline

    2015-01-01

    Emerging infectious diseases can induce rapid changes in population dynamics and threaten population persistence. In socially structured populations, the transfers of individuals between social units, for example, from breeding groups to non-breeding groups, shape population dynamics. We suggest that diseases may affect these crucial transfers. We aimed to determine how disturbance by an emerging disease affects demographic rates of gorillas, especially transfer rates within populations and immigration rates into populations. We compared social dynamics and key demographic parameters in a gorilla population affected by Ebola using a long-term observation data set including pre-, during and post-outbreak periods. We also studied a population of undetermined epidemiological status in order to assess whether this population was affected by the disease. We developed a multistate model that can handle transition between social units while optimizing the number of states. During the Ebola outbreak, social dynamics displayed increased transfers from a breeding to a non-breeding status for both males and females. Six years after the outbreak, demographic and most of social dynamics parameters had returned to their initial rates, suggesting a certain resilience in the response to disruption. The formation of breeding groups increased just after Ebola, indicating that environmental conditions were still attractive. However, population recovery was likely delayed because compensatory immigration was probably impeded by the potential impact of Ebola in the surrounding areas. The population of undetermined epidemiological status behaved similarly to the other population before Ebola. Our results highlight the need to integrate social dynamics in host-population demographic models to better understand the role of social structure in the sensitivity and the response to disease disturbances. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  8. From ecological test site to geographic information system: lessons for the 1980's

    USGS Publications Warehouse

    Alexander, Robert H.

    1981-01-01

    Geographic information systems were common elements in two kinds of interdisciplinary regional demonstration projects in the 1970's. Ecological test sits attempted to provide for more efficient remote-sensing data delivery for regional environmental management. Regional environmental systems analysis attempted to formally describe and model the interacting regional social and environmental processes, including the resource-use decision making process. Lessons for the 1980's are drawn from recent evaluations and assessments of these programs, focusing on cost, rates of system development and technology transfer, program coordination, integrative analysis capability, and the involvement of system users and decision makers.

  9. Prediction of storm transfers and annual loads with data-based mechanistic models using high-frequency data

    NASA Astrophysics Data System (ADS)

    Ockenden, Mary C.; Tych, Wlodek; Beven, Keith J.; Collins, Adrian L.; Evans, Robert; Falloon, Peter D.; Forber, Kirsty J.; Hiscock, Kevin M.; Hollaway, Michael J.; Kahana, Ron; Macleod, Christopher J. A.; Villamizar, Martha L.; Wearing, Catherine; Withers, Paul J. A.; Zhou, Jian G.; Benskin, Clare McW. H.; Burke, Sean; Cooper, Richard J.; Freer, Jim E.; Haygarth, Philip M.

    2017-12-01

    Excess nutrients in surface waters, such as phosphorus (P) from agriculture, result in poor water quality, with adverse effects on ecological health and costs for remediation. However, understanding and prediction of P transfers in catchments have been limited by inadequate data and over-parameterised models with high uncertainty. We show that, with high temporal resolution data, we are able to identify simple dynamic models that capture the P load dynamics in three contrasting agricultural catchments in the UK. For a flashy catchment, a linear, second-order (two pathways) model for discharge gave high simulation efficiencies for short-term storm sequences and was useful in highlighting uncertainties in out-of-bank flows. A model with non-linear rainfall input was appropriate for predicting seasonal or annual cumulative P loads where antecedent conditions affected the catchment response. For second-order models, the time constant for the fast pathway varied between 2 and 15 h for all three catchments and for both discharge and P, confirming that high temporal resolution data are necessary to capture the dynamic responses in small catchments (10-50 km2). The models led to a better understanding of the dominant nutrient transfer modes, which will be helpful in determining phosphorus transfers following changes in precipitation patterns in the future.

  10. Review: biosafety assessment of Bt rice and other Bt crops using spiders as example for non-target arthropods in China.

    PubMed

    Yang, Huilin; Peng, Yuande; Tian, Jianxiang; Wang, Juan; Hu, Jilin; Song, Qisheng; Wang, Zhi

    2017-04-01

    Since the birth of transgenic crops expressing Bacillus thuringiensis (Bt) toxin for pest control, the public debate regarding ecological and environmental risks as well as benefits of Bt crops has continued unabated. The impact of Bt crops, especially on non-target invertebrates, has received particular attention. In this review, we summarize and analyze evidences for non-target effects of Bt rice on spiders, major predators in rice fields. Bt rice has been genetically modified to express the Bt protein, which has been shown to be transferred and accumulate in spiders as part of their food chain. Moreover, the Bt protein exhibits unintended effects on the physiology of spiders and spreads to higher trophic levels. Spiders possess unique physiological and ecological characteristics, revealing traits of surrogate species, and are thus considered to be excellent non-target arthropod model systems for study of Bt protein impacts. Due to the complexities of Bt protein transfer and accumulation mechanisms, as well as the apparent lack of information about resulting physiological, biochemical, and ecological effects on spiders, we raise questions and provide recommendations for promising further research.

  11. Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems.

    PubMed

    Szilágyi, András; Zachar, István; Scheuring, István; Kun, Ádám; Könnyű, Balázs; Czárán, Tamás

    2017-11-27

    As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future.

  12. Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems

    PubMed Central

    Szilágyi, András; Kun, Ádám; Könnyű, Balázs; Czárán, Tamás

    2017-01-01

    As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future. PMID:29186916

  13. Mathematical modeling of processes of heat and mass transfer in channels of water evaporating coolers

    NASA Astrophysics Data System (ADS)

    Gulevsky, V. A.; Ryazantsev, A. A.; Nikulichev, A. A.; Menzhulova, A. S.

    2018-05-01

    The variety of cooling systems is dictated by a wide range of demands placed on them. This is the price, operating costs, quality of work, ecological safety, etc. These requirements in a positive sense are put into correspondence by water evaporating plate coolers. Currently, their widespread use is limited by a lack of theoretical base. To solve this problem, the best method is mathematical modeling.

  14. Using Voice, Meaning, Mutual Construction of Knowledge, and Transfer of Learning to Apply an Ecological Perspective to Group Work Training

    ERIC Educational Resources Information Center

    Orr, Jonathan J.; Hulse-Killacky, Diana

    2006-01-01

    Concepts of voice, meaning, mutual construction of knowledge, and transfer of learning are presented in this paper as critical ingredients that support the teaching of group work from an ecological perspective. Examples of these concepts are given to illustrate their application in group work classes. (Contains 1 table.)

  15. Food-chain contamination evaluations in ecological risk assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linder, G.

    Food-chain models have become increasingly important within the ecological risk assessment process. This is the case particularly when acute effects are not readily apparent, or the contaminants of concern are not readily detoxified, have a high likelihood for partitioning into lipids, or have specific target organs or tissues that may increase their significance in evaluating their potential adverse effects. An overview of food-chain models -- conceptual, theoretical, and empirical -- will be considered through a series of papers that will focus on their application within the ecological risk assessment process. Whether a food-chain evaluation is being developed to address relativelymore » simple questions related to chronic effects of toxicants on target populations, or whether a more complex food-web model is being developed to address questions related to multiple-trophic level transfers of toxicants, the elements within the food chain contamination evaluation can be generalized to address the mechanisms of toxicant accumulation in individual organisms. This can then be incorporated into more elaborate models that consider these organismal-level processes within the context of a species life-history or community-level responses that may be associated with long-term exposures.« less

  16. On the reliability, uncertainty, scaling and transferability of ecological production functions in ecological periodic tables

    EPA Science Inventory

    Ecological periodic tables are an information organizing system. Their elements are categorical habitat types. Their attributes are quantitative, predictably recurring (periodic) properties of a target biotic community. Since they translate habitats as inputs into measures of ...

  17. Validating a method for transferring social values of ecosystem services between public lands in the Rocky Mountain region

    USGS Publications Warehouse

    Sherrouse, Benson C.; Semmens, Darius J.

    2014-01-01

    With growing pressures on ecosystem services, social values attributed to them are increasingly important to land management decisions. Social values, defined here as perceived values the public ascribes to ecosystem services, particularly cultural services, are generally not accounted for through economic markets or considered alongside economic and ecological values in ecosystem service assessments. Social-values data can be elicited through public value and preference surveys; however, limitations prevent them from being regularly collected. These limitations led to our three study objectives: (1) demonstrate an approach for applying benefit transfer, a nonmarket-valuation method, to spatially explicit social values; (2) validate the approach; and (3) identify potential improvements. We applied Social Values for Ecosystem Services (SolVES) to survey data for three national forests in Colorado and Wyoming. Social-value maps and models were generated, describing relationships between the maps and various combinations of environmental variables. Models from each forest were used to estimate social-value maps for the other forests via benefit transfer. Model performance was evaluated relative to the locally derived models. Performance varied with the number and type of environmental variables used, as well as differences in the forests' physical and social contexts. Enhanced metadata and better social-context matching could improve model transferability.

  18. Global redox cycle of biospheric carbon: Interaction of photosynthesis and earth crust processes.

    PubMed

    Ivlev, Alexander A

    2015-11-01

    A model of the natural global redox cycle of biospheric carbon is introduced. According to this model, carbon transfer between biosphere and geospheres is accompanied by a conversion of the oxidative forms, presented by CO2, bicarbonate and carbonate ions, into the reduced forms, produced in photosynthesis. The mechanism of carbon transfer is associated with two phases of movement of lithospheric plates. In the short-term orogenic phase, CO2 from the subduction (plates' collisions) zones fills the "atmosphere-hydrosphere" system, resulting in climate warming. In the long-term quiet (geosynclynal) phase, weathering and photosynthesis become dominant depleting the oxidative forms of carbon. The above asymmetric periodicity exerts an impact on climate, biodiversity, distribution of organic matter in sedimentary deposits, etc. Along with photosynthesis expansion, the redox carbon cycle undergoes its development until it reaches the ecological compensation point, at which CO2 is depleted to the level critical to support the growth and reproduction of plants. This occurred in the Permo-Carboniferous time and in the Neogene. Shorter-term perturbations of the global carbon cycle in the form of glacial-interglacial oscillations appear near the ecological compensation point. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes

    PubMed Central

    Hu, Yongfei; Yang, Xi; Li, Jing; Lv, Na; Liu, Fei; Wu, Jun; Lin, Ivan Y. C.; Wu, Na; Gao, George F.

    2016-01-01

    ABSTRACT Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria. The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. IMPORTANCE The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological constraints. We also found that dozens of ARGs are transferred between the human and animal gut and human pathogens. This work demonstrates the whole profile of mobile ARGs and their transfer network in bacteria and provides further insight into the evolution and spread of antibiotic resistance in nature. PMID:27613679

  20. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes.

    PubMed

    Hu, Yongfei; Yang, Xi; Li, Jing; Lv, Na; Liu, Fei; Wu, Jun; Lin, Ivan Y C; Wu, Na; Weimer, Bart C; Gao, George F; Liu, Yulan; Zhu, Baoli

    2016-11-15

    Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological constraints. We also found that dozens of ARGs are transferred between the human and animal gut and human pathogens. This work demonstrates the whole profile of mobile ARGs and their transfer network in bacteria and provides further insight into the evolution and spread of antibiotic resistance in nature. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. When parasites become prey: ecological and epidemiological significance of eating parasites

    USGS Publications Warehouse

    Johnson, Pieter T.J.; Dobson, Andrew P.; Lafferty, Kevin D.; Marcogliese, David J.; Memmott, Jane; Orlofske, Sarah A.; Poulin, Robert; Thieltges, David W.

    2010-01-01

    Recent efforts to include parasites in food webs have drawn attention to a previously ignored facet of foraging ecology: parasites commonly function as prey within ecosystems. Because of the high productivity of parasites, their unique nutritional composition and their pathogenicity in hosts, their consumption affects both food-web topology and disease risk in humans and wildlife. Here, we evaluate the ecological, evolutionary and epidemiological significance of feeding on parasites, including concomitant predation, grooming, predation on free-living stages and intraguild predation. Combining empirical data and theoretical models, we show that consumption of parasites is neither rare nor accidental, and that it can sharply affect parasite transmission and food web properties. Broader consideration of predation on parasites will enhance our understanding of disease control, food web structure and energy transfer, and the evolution of complex life cycles.

  2. Divergent drivers of the spatial and temporal variations of cropland carbon transfer in Liaoning province, China.

    PubMed

    Zhu, Xian-Jin; Zhang, Han-Qi; Zhao, Tian-Hong; Li, Jian-Dong; Yin, Hong

    2017-10-12

    Spatial and temporal variations are important points of focus in ecological research. Analysing their differences improves our understanding on the variations of ecological phenomena. Using data from the Liaoning Statistical Yearbook, we investigated the spatial and temporal variations of cropland carbon transfer (CCT), an important ecological phenomenon in quantifying the regional carbon budget, in particular, the influencing factors and difference. The results showed that, from 1992 to 2014, the average CCT in Liaoning province was 18.56 TgC yr -1 and decreased from northwest to southeast. CCT spatial variation was primarily affected by the ratio of planting area to regional area (RPR) via its effect on the magnitude of carbon transfer (MCT), which depended mainly on fertilizer usage per area (FUA). From 1992 to 2014, CCT exhibited a significantly increasing trend with a rate of 0.48 TgC yr -1 . The inter-annual variation of CCT was dominated by carbon transfer per planting area (CTP) through its effect on MCT, which significantly correlated with FUA but showed no significant correlation with climatic factors. Therefore, the factors affecting the spatial variation of CCT differed from those that affected its inter-annual variation, indicating that the spatial and temporal variations of ecological phenomena were affected by divergent factors.

  3. Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models

    USGS Publications Warehouse

    Saito, L.; Johnson, B.M.; Bartholow, J.; Hanna, R.B.

    2001-01-01

    We investigated the effects on the reservoir food web of a new temperature control device (TCD) on the dam at Shasta Lake, California. We followed a linked modeling approach that used a specialized reservoir water quality model to forecast operation-induced changes in phytoplankton production. A food web–energy transfer model was also applied to propagate predicted changes in phytoplankton up through the food web to the predators and sport fishes of interest. The food web–energy transfer model employed a 10% trophic transfer efficiency through a food web that was mapped using carbon and nitrogen stable isotope analysis. Stable isotope analysis provided an efficient and comprehensive means of estimating the structure of the reservoir's food web with minimal sampling and background data. We used an optimization procedure to estimate the diet proportions of all food web components simultaneously from their isotopic signatures. Some consumers were estimated to be much more sensitive than others to perturbations to phytoplankton supply. The linked modeling approach demonstrated that interdisciplinary efforts enhance the value of information obtained from studies of managed ecosystems. The approach exploited the strengths of engineering and ecological modeling methods to address concerns that neither of the models could have addressed alone: (a) the water quality model could not have addressed quantitatively the possible impacts to fish, and (b) the food web model could not have examined how phytoplankton availability might change due to reservoir operations.

  4. Analysis of urban metabolic processes based on input-output method: model development and a case study for Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Liu, Hong; Chen, Bin; Zheng, Hongmei; Li, Yating

    2014-06-01

    Discovering ways in which to increase the sustainability of the metabolic processes involved in urbanization has become an urgent task for urban design and management in China. As cities are analogous to living organisms, the disorders of their metabolic processes can be regarded as the cause of "urban disease". Therefore, identification of these causes through metabolic process analysis and ecological element distribution through the urban ecosystem's compartments will be helpful. By using Beijing as an example, we have compiled monetary input-output tables from 1997, 2000, 2002, 2005, and 2007 and calculated the intensities of the embodied ecological elements to compile the corresponding implied physical input-output tables. We then divided Beijing's economy into 32 compartments and analyzed the direct and indirect ecological intensities embodied in the flows of ecological elements through urban metabolic processes. Based on the combination of input-output tables and ecological network analysis, the description of multiple ecological elements transferred among Beijing's industrial compartments and their distribution has been refined. This hybrid approach can provide a more scientific basis for management of urban resource flows. In addition, the data obtained from distribution characteristics of ecological elements may provide a basic data platform for exploring the metabolic mechanism of Beijing.

  5. Validation of 131I ecological transfer models and thyroid dose assessments using Chernobyl fallout data from the Plavsk district, Russia

    PubMed Central

    Zvonova, I.; Krajewski, P.; Berkovsky, V.; Ammann, M.; Duffa, C.; Filistovic, V.; Homma, T.; Kanyar, B.; Nedveckaite, T.; Simon, S.L.; Vlasov, O.; Webbe-Wood, D.

    2009-01-01

    Within the project “Environmental Modelling for Radiation Safety” (EMRAS) organized by the IAEA in 2003 experimental data of 131I measurements following the Chernobyl accident in the Plavsk district of Tula region, Russia were used to validate the calculations of some radioecological transfer models. Nine models participated in the inter-comparison. Levels of 137Cs soil contamination in all the settlements and 131I/137Cs isotopic ratios in the depositions in some locations were used as the main input information. 370 measurements of 131I content in thyroid of townspeople and villagers, and 90 measurements of 131I concentration in milk were used for validation of the model predictions. A remarkable improvement in models performance comparing with previous inter-comparison exercise was demonstrated. Predictions of the various models were within a factor of three relative to the observations, discrepancies between the estimates of average doses to thyroid produced by most participant not exceeded a factor of ten. PMID:19783331

  6. Linking ecosystem characteristics to final ecosystem services for public policy

    PubMed Central

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. PMID:25394857

  7. Early tetrapod evolution and the progressive integration of Permo-Carboniferous terrestrial ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beerbower, J.R.; Olson, E.C.; Hotton, N. III

    1992-01-01

    Variation among Permo-Carboniferous tetrapod assemblages demonstrates major transformations in pathways and rates of energy and nutrient transfer, in integration of terrestrial ecosystems and in predominant ecologic modes. Early Carboniferous pathways were through plant detritus to aquatic and terrestrial detritivores and thence to arthropod and vertebrate meso-and macro-predators. Transfer rates (and efficiency) were low as was ecosystem integration; the principal ecologic mode was conservation. Late Carboniferous and Early Permian assemblages demonstrate an expansion in herbivory, primarily in utilization of low-fiber plant tissue by insects. But transfer rates, efficiency and integration were still limited because the larger portion of plant biomass, high-fibermore » tissues, still went into detrital pathways; high-fiber'' herbivores, i.e., tetrapods, were neither abundant or diverse, reflecting limited resources, intense predation and limited capabilities for processing fiber-rich food. The abundance and diversity of tetrapod herbivores in upper Permian assemblages suggests a considerable transfer of energy from high-fiber tissues through these animals to tetrapod predators and thus higher transfer rates and efficiencies. It also brought a shift in ecological mode toward acquisition and regulation and tightened ecosystem integration.« less

  8. The Ecology of Achievement among Students Diverse in Ethnicity and Ability

    ERIC Educational Resources Information Center

    McMahon, Susan D.; Keys, Christopher B.; Berardi, Luciano; Crouch, Ronald

    2011-01-01

    This longitudinal study uses an ecological framework to examine school and individual influences on academic achievement among African American and Latino students with and without disabilities who had recently transferred to more inclusive schools. The authors' ecological framework includes four domains: organizational policies and practices,…

  9. Simple processes drive unpredictable differences in estuarine fish assemblages: Baselines for understanding site-specific ecological and anthropogenic impacts

    NASA Astrophysics Data System (ADS)

    Sheaves, Marcus

    2016-03-01

    Predicting patterns of abundance and composition of biotic assemblages is essential to our understanding of key ecological processes, and our ability to monitor, evaluate and manage assemblages and ecosystems. Fish assemblages often vary from estuary to estuary in apparently unpredictable ways, making it challenging to develop a general understanding of the processes that determine assemblage composition. This makes it problematic to transfer understanding from one estuary situation to another and therefore difficult to assemble effective management plans or to assess the impacts of natural and anthropogenic disturbance. Although system-to-system variability is a common property of ecological systems, rather than being random it is the product of complex interactions of multiple causes and effects at a variety of spatial and temporal scales. I investigate the drivers of differences in estuary fish assemblages, to develop a simple model explaining the diversity and complexity of observed estuary-to-estuary differences, and explore its implications for management and conservation. The model attributes apparently unpredictable differences in fish assemblage composition from estuary to estuary to the interaction of species-specific, life history-specific and scale-specific processes. In explaining innate faunal differences among estuaries without the need to invoke complex ecological or anthropogenic drivers, the model provides a baseline against which the effects of additional natural and anthropogenic factors can be evaluated.

  10. Inferring the Ecological Niche of Toxoplasma gondii and Bartonella spp. in Wild Felids.

    PubMed

    Escobar, Luis E; Carver, Scott; Romero-Alvarez, Daniel; VandeWoude, Sue; Crooks, Kevin R; Lappin, Michael R; Craft, Meggan E

    2017-01-01

    Traditional epidemiological studies of disease in animal populations often focus on directly transmitted pathogens. One reason pathogens with complex lifecycles are understudied could be due to challenges associated with detection in vectors and the environment. Ecological niche modeling (ENM) is a methodological approach that overcomes some of the detection challenges often seen with vector or environmentally dependent pathogens. We test this approach using a unique dataset of two pathogens in wild felids across North America: Toxoplasma gondii and Bartonella spp. in bobcats ( Lynx rufus ) and puma ( Puma concolor ). We found three main patterns. First, T. gondii showed a broader use of environmental conditions than did Bartonella spp. Also, ecological niche models, and Normalized Difference Vegetation Index satellite imagery, were useful even when applied to wide-ranging hosts. Finally, ENM results from one region could be applied to other regions, thus transferring information across different landscapes. With this research, we detail the uncertainty of epidemiological risk models across novel environments, thereby advancing tools available for epidemiological decision-making. We propose that ENM could be a valuable tool for enabling understanding of transmission risk, contributing to more focused prevention and control options for infectious diseases.

  11. A Tale of Two Morphs: Modeling Pollen Transfer, Magic Traits, and Reproductive Isolation in Parapatry

    PubMed Central

    Haller, Benjamin C.; de Vos, Jurriaan M.; Keller, Barbara; Hendry, Andrew P.; Conti, Elena

    2014-01-01

    The evolution of the flower is commonly thought to have spurred angiosperm diversification. Similarly, particular floral traits might have promoted diversification within specific angiosperm clades. We hypothesize that traits promoting the precise positional transfer of pollen between flowers might promote diversification. In particular, precise pollen transfer might produce partial reproductive isolation that facilitates adaptive divergence between parapatric populations differing in their reproductive-organ positions. We investigate this hypothesis with an individual-based model of pollen transfer dynamics associated with heterostyly, a floral syndrome that depends on precise pollen transfer. Our model shows that precise pollen transfer can cause sexual selection leading to divergence in reproductive-organ positions between populations served by different pollinators, pleiotropically causing an increase in reproductive isolation through a “magic trait” mechanism. Furthermore, this increased reproductive isolation facilitates adaptive divergence between the populations in an unlinked, ecologically selected trait. In a different pollination scenario, however, precise pollen transfer causes a decrease in adaptive divergence by promoting asymmetric gene flow. Our results highlight the idea that magic traits are not “magic” in isolation; in particular, the effect size of magic traits in speciation depends on the external environment, and also on other traits that modify the strength of the magic trait's influence on non-random mating. Overall, we show that the evolutionary consequences of pollen transfer dynamics can depend strongly on the available pollinator fauna and on the morphological fit between flowers and pollinators. Furthermore, our results illustrate the potential importance of even weak reproductive isolating barriers in facilitating adaptive divergence. PMID:25211280

  12. A tale of two morphs: modeling pollen transfer, magic traits, and reproductive isolation in parapatry.

    PubMed

    Haller, Benjamin C; de Vos, Jurriaan M; Keller, Barbara; Hendry, Andrew P; Conti, Elena

    2014-01-01

    The evolution of the flower is commonly thought to have spurred angiosperm diversification. Similarly, particular floral traits might have promoted diversification within specific angiosperm clades. We hypothesize that traits promoting the precise positional transfer of pollen between flowers might promote diversification. In particular, precise pollen transfer might produce partial reproductive isolation that facilitates adaptive divergence between parapatric populations differing in their reproductive-organ positions. We investigate this hypothesis with an individual-based model of pollen transfer dynamics associated with heterostyly, a floral syndrome that depends on precise pollen transfer. Our model shows that precise pollen transfer can cause sexual selection leading to divergence in reproductive-organ positions between populations served by different pollinators, pleiotropically causing an increase in reproductive isolation through a "magic trait" mechanism. Furthermore, this increased reproductive isolation facilitates adaptive divergence between the populations in an unlinked, ecologically selected trait. In a different pollination scenario, however, precise pollen transfer causes a decrease in adaptive divergence by promoting asymmetric gene flow. Our results highlight the idea that magic traits are not "magic" in isolation; in particular, the effect size of magic traits in speciation depends on the external environment, and also on other traits that modify the strength of the magic trait's influence on non-random mating. Overall, we show that the evolutionary consequences of pollen transfer dynamics can depend strongly on the available pollinator fauna and on the morphological fit between flowers and pollinators. Furthermore, our results illustrate the potential importance of even weak reproductive isolating barriers in facilitating adaptive divergence.

  13. Expertise facilitates the transfer of anticipation skill across domains.

    PubMed

    Rosalie, Simon M; Müller, Sean

    2014-02-01

    It is unclear whether perceptual-motor skill transfer is based upon similarity between the learning and transfer domains per identical elements theory, or facilitated by an understanding of underlying principles in accordance with general principle theory. Here, the predictions of identical elements theory, general principle theory, and aspects of a recently proposed model for the transfer of perceptual-motor skill with respect to expertise in the learning and transfer domains are examined. The capabilities of expert karate athletes, near-expert karate athletes, and novices to anticipate and respond to stimulus skills derived from taekwondo and Australian football were investigated in ecologically valid contexts using an in situ temporal occlusion paradigm and complex whole-body perceptual-motor skills. Results indicated that the karate experts and near-experts are as capable of using visual information to anticipate and guide motor skill responses as domain experts and near-experts in the taekwondo transfer domain, but only karate experts could perform like domain experts in the Australian football transfer domain. Findings suggest that transfer of anticipation skill is based upon expertise and an understanding of principles but may be supplemented by similarities that exist between the stimulus and response elements of the learning and transfer domains.

  14. The value of virtual conferencing for ecology and conservation.

    PubMed

    Fraser, Hannah; Soanes, Kylie; Jones, Stuart A; Jones, Chris S; Malishev, Matthew

    2017-06-01

    The objectives of conservation science and dissemination of its research create a paradox: Conservation is about preserving the environment, yet scientists spread this message at conferences with heavy carbon footprints. Ecology and conservation science depend on global knowledge exchange-getting the best science to the places it is most needed. However, conference attendance from developed countries typically outweighs that from developing countries that are biodiversity and conservation hotspots. If any branch of science should be trying to maximize participation while minimizing carbon emissions, it is conservation. Virtual conferencing is common in other disciplines, such as education and humanities, but it is surprisingly underused in ecology and conservation. Adopting virtual conferencing entails a number of challenges, including logistics and unified acceptance, which we argue can be overcome through planning and technology. We examined 4 conference models: a pure-virtual model and 3 hybrid hub-and-node models, where hubs stream content to local nodes. These models collectively aim to mitigate the logistical and administrative challenges of global knowledge transfer. Embracing virtual conferencing addresses 2 essential prerequisites of modern conferences: lowering carbon emissions and increasing accessibility for remote, time- and resource-poor researchers, particularly those from developing countries. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  15. [Radio-ecological and hygienic assessment of consequences of forest fires in the areas polluted during the Chernobyl accident].

    PubMed

    Kashparov, V A; Lundin, S M; Kadygrib, A M; Protsak, V P; Levchuk, S E; Ioshchenko, V I; Kashpur, V A; Talerko, N N

    2001-01-01

    Retransfer of radionuclides on the condensation trails of Chernobyl radioactive fallouts during forest fires has been experimentally evaluated and their mathematical transfer model verified. It has been shown that radionuclide retransfer will make no great impact on additional pollution of an area even under the most unfavourable conditions. The contribution of convective and non-convective components of transfer to the formation of a radioactive aerosol concentration field has been assessed. Time course of changes in the concentration of radioactive aerosol and its dispersive composition are shown in different phases of fire and at different distance from its source.

  16. Spatial transferring of ecosystem services and property rights allocation of ecological compensation

    NASA Astrophysics Data System (ADS)

    Wen, Wujun; Xu, Geng; Wang, Xingjie

    2011-09-01

    Ecological compensation is an important means to maintain the sustainability and stability of ecosystem services. The property rights analysis of ecosystem services is indispensable when we implement ecological compensation. In this paper, ecosystem services are evaluated via spatial transferring and property rights analysis. Take the Millennium Ecosystem Assessment (MA) as an example, we attempt to classify the spatial structure of 31 categories of ecosystem services into four dimensions, i.e., local, regional, national and global ones, and divide the property rights structure into three types, i.e., private property rights, common property rights and state-owned property rights. Through the case study of forestry, farming industry, drainage area, development of mineral resources, nature reserves, functional areas, agricultural land expropriation, and international cooperation on ecological compensation, the feasible ecological compensation mechanism is illustrated under the spatial structure and property rights structure of the concerned ecosystem services. For private property rights, the ecological compensation mode mainly depends on the market mechanism. If the initial common property rights are "hidden," the implementation of ecological compensation mainly relies on the quota market transactions and the state investment under the state-owned property rights, and the fairness of property rights is thereby guaranteed through central administration.

  17. Effect of Brazil's conditional cash transfer programme on tuberculosis incidence.

    PubMed

    Nery, J S; Rodrigues, L C; Rasella, D; Aquino, R; Barreira, D; Torrens, A W; Boccia, D; Penna, G O; Penna, M L F; Barreto, M L; Pereira, S M

    2017-07-01

    To evaluate the impact of the Brazilian cash transfer programme (Bolsa Família Programme, BFP) on tuberculosis (TB) incidence in Brazil from 2004 to 2012. We studied tuberculosis surveillance data using a combination of an ecological multiple-group and time-trend design covering 2458 Brazilian municipalities. The main independent variable was BFP coverage and the outcome was the TB incidence rate. All study variables were obtained from national databases. We used fixed-effects negative binomial models for panel data adjusted for selected covariates and a variable representing time. After controlling for covariates, TB incidence rates were significantly reduced in municipalities with high BFP coverage compared with those with low and intermediate coverage (in a model with a time variable incidence rate ratio = 0.96, 95%CI 0.93-0.99). This was the first evidence of a statistically significant association between the increase in cash transfer programme coverage and a reduction in TB incidence rate. Our findings provide support for social protection interventions for tackling TB worldwide.

  18. Workshop: Valuation for Environmental Policy: Ecological Benefits (2007)

    EPA Pesticide Factsheets

    Two-day workshop includes research examining There were presentations on the estimation of values for ecological goods and services such as water quality, wetlands, riparian habitat, and aquatic resources, improved methods for benefits transfer.

  19. [Spatial and temporal patterns of the ecological compensation criterion in Jiangxi Province, China based on carbon footprint.

    PubMed

    Hu, Xiao Fei; Zou, Yan; Fu, Chun

    2017-02-01

    Carbon footprint is a new method to measure carbon emissions, and the ecological compensation criterion can be determined according to the regional carbon footprint and carbon carrying capacity. The spatial and temporal patterns of ecological compensation criterion were studied among 11 cities in Jiangxi Province using carbon footprint, carbon capacity and carbon surplus/deficit models. Our results found that carbon footprint in Jiangxi Province showed a rapid growth trend from 2000 to 2013, with an average annual growth rate of 8.7%. The carbon carrying capacity always remained surplus, but the net carbon surplus amount decreased from 2000 to 2013. Among the 11 cities, Nanchang and Jiujiang made the biggest contribution to total carbon emission, and Ganzhou, Ji'an and Shangrao had provided the largest contribution to carbon total absorption. In 2013, the total carbon surplus amount was 2.273 billion yuan in Jiangxi Province. Ganzhou, Ji'an, Fuzhou and Shangrao should be given priority to ecological compensation money. These results could provide a scientific basis for the establishment of ecological compensation mechanism in Jiangxi Province and the transfer of CO 2 emission rights.

  20. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming

    NASA Astrophysics Data System (ADS)

    Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi

    2018-03-01

    The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.

  1. Modeling the risk of water pollution by pesticides from imbalanced data.

    PubMed

    Trajanov, Aneta; Kuzmanovski, Vladimir; Real, Benoit; Perreau, Jonathan Marks; Džeroski, Sašo; Debeljak, Marko

    2018-04-30

    The pollution of ground and surface waters with pesticides is a serious ecological issue that requires adequate treatment. Most of the existing water pollution models are mechanistic mathematical models. While they have made a significant contribution to understanding the transfer processes, they face the problem of validation because of their complexity, the user subjectivity in their parameterization, and the lack of empirical data for validation. In addition, the data describing water pollution with pesticides are, in most cases, very imbalanced. This is due to strict regulations for pesticide applications, which lead to only a few pollution events. In this study, we propose the use of data mining to build models for assessing the risk of water pollution by pesticides in field-drained outflow water. Unlike the mechanistic models, the models generated by data mining are based on easily obtainable empirical data, while the parameterization of the models is not influenced by the subjectivity of ecological modelers. We used empirical data from field trials at the La Jaillière experimental site in France and applied the random forests algorithm to build predictive models that predict "risky" and "not-risky" pesticide application events. To address the problems of the imbalanced classes in the data, cost-sensitive learning and different measures of predictive performance were used. Despite the high imbalance between risky and not-risky application events, we managed to build predictive models that make reliable predictions. The proposed modeling approach can be easily applied to other ecological modeling problems where we encounter empirical data with highly imbalanced classes.

  2. Horizontal Transfers and Gene Losses in the Phospholipid Pathway of Bartonella Reveal Clues about Early Ecological Niches

    PubMed Central

    Zhu, Qiyun; Kosoy, Michael; Olival, Kevin J.; Dittmar, Katharina

    2014-01-01

    Bartonellae are mammalian pathogens vectored by blood-feeding arthropods. Although of increasing medical importance, little is known about their ecological past, and host associations are underexplored. Previous studies suggest an influence of horizontal gene transfers in ecological niche colonization by acquisition of host pathogenicity genes. We here expand these analyses to metabolic pathways of 28 Bartonella genomes, and experimentally explore the distribution of bartonellae in 21 species of blood-feeding arthropods. Across genomes, repeated gene losses and horizontal gains in the phospholipid pathway were found. The evolutionary timing of these patterns suggests functional consequences likely leading to an early intracellular lifestyle for stem bartonellae. Comparative phylogenomic analyses discover three independent lineage-specific reacquisitions of a core metabolic gene—NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (gpsA)—from Gammaproteobacteria and Epsilonproteobacteria. Transferred genes are significantly closely related to invertebrate Arsenophonus-, and Serratia-like endosymbionts, and mammalian Helicobacter-like pathogens, supporting a cellular association with arthropods and mammals at the base of extant Bartonella spp. Our studies suggest that the horizontal reacquisitions had a key impact on bartonellae lineage specific ecological and functional evolution. PMID:25106622

  3. Sex and the shifting biodiversity dynamics of marine animals in deep time

    NASA Astrophysics Data System (ADS)

    Bush, Andrew M.; Hunt, Gene; Bambach, Richard K.

    2016-12-01

    The fossil record of marine animals suggests that diversity-dependent processes exerted strong control on biodiversification: after the Ordovician Radiation, genus richness did not trend for hundreds of millions of years. However, diversity subsequently rose dramatically in the Cretaceous and Cenozoic (145 million years ago-present), indicating that limits on diversification can be overcome by ecological or evolutionary change. Here, we show that the Cretaceous-Cenozoic radiation was driven by increased diversification in animals that transfer sperm between adults during fertilization, whereas animals that broadcast sperm into the water column have not changed significantly in richness since the Late Ordovician (˜450 million years ago). We argue that the former group radiated in part because directed sperm transfer permits smaller population sizes and additional modes of prezygotic isolation, as has been argued previously for the coincident radiation of angiosperms. Directed sperm transfer tends to co-occur with many ecological traits, such as a predatory lifestyle. Ecological specialization likely operated synergistically with mode of fertilization in driving the diversification that began during the Mesozoic marine revolution. Plausibly, the ultimate driver of diversification was an increase in food availability, but its effects on the fauna were regulated by fundamental reproductive and ecological traits.

  4. Sex and the shifting biodiversity dynamics of marine animals in deep time

    PubMed Central

    Bush, Andrew M.; Hunt, Gene; Bambach, Richard K.

    2016-01-01

    The fossil record of marine animals suggests that diversity-dependent processes exerted strong control on biodiversification: after the Ordovician Radiation, genus richness did not trend for hundreds of millions of years. However, diversity subsequently rose dramatically in the Cretaceous and Cenozoic (145 million years ago–present), indicating that limits on diversification can be overcome by ecological or evolutionary change. Here, we show that the Cretaceous–Cenozoic radiation was driven by increased diversification in animals that transfer sperm between adults during fertilization, whereas animals that broadcast sperm into the water column have not changed significantly in richness since the Late Ordovician (∼450 million years ago). We argue that the former group radiated in part because directed sperm transfer permits smaller population sizes and additional modes of prezygotic isolation, as has been argued previously for the coincident radiation of angiosperms. Directed sperm transfer tends to co-occur with many ecological traits, such as a predatory lifestyle. Ecological specialization likely operated synergistically with mode of fertilization in driving the diversification that began during the Mesozoic marine revolution. Plausibly, the ultimate driver of diversification was an increase in food availability, but its effects on the fauna were regulated by fundamental reproductive and ecological traits. PMID:27821755

  5. 75 FR 34792 - Westinghouse Electric Company, LLC; License Amendment Request, Opportunity To Provide Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... transfer decommissioning waste to U.S. Ecology Idaho, Inc., a Resource Conservation and Recovery Act (RCRA) Subtitle C disposal facility located near Grand View, Idaho. The U.S. Ecology Idaho facility is regulated... CFR 30.11 and 70.17, WEC's application also requests that U.S. Ecology be granted exemptions from the...

  6. Transfer Relations Between Landscape Functions - The Hydrological Point of View

    NASA Astrophysics Data System (ADS)

    Fohrer, N.; Lenhart, T.; Eckhardt, K.; Frede, H.-G.

    EC market policies and regional subsidy programs have an enormous impact on local land use. This has far reaching consequences on various landscape functions. In the joint research project SFB299 at the Giessen University the effect of land use options on economic, ecological and hydrological landscape functions are under investigation. The continuous time step model SWAT-G (Eckhardt et al., 2000; Arnold et al., 1998) is employed to characterize the influence of land use patterns on hydrological processes. The model was calibrated and validated employing a split sample approach. For two mesoscale watersheds (Aar, 60 km2; Dietzhölze, 81 km2) located in the Lahn-Dill- Bergland, Germany, different land use scenarios were analyzed with regard to their hydrological impact. Additionally the effect of land use change was analyzed with an ecological and an agro-economic model. The impact of the stepwise changing land use was expressed as trade off relations between different landscape functions.

  7. Thermodynamic and themoeconomic optimization of isothermal endoreversible chemical engine models

    NASA Astrophysics Data System (ADS)

    Ocampo-García, A.; Barranco-Jiménez, M. A.; Angulo-Brown, F.

    2017-12-01

    A branch of finite-time thermodynamics (FTT) is the thermoeconomical analysis of simplified power plant models. The most studied models are those of the Curzon-Ahlborn (CA) and Novikov-Chambadal types. In the decade of 90's of the past century, the FTT analysis of thermal engines was extended to chemical engines. In the present paper we made a thermoeconomical analysis of heat engines and chemical engines of the CA and Novikov types. This study is carried out for isothermal endoreversible chemical engine models with a linear mass transfer law and under three different modes of thermodynamic performance (maximum power, maximum ecological function and maximum efficient power).

  8. A simple, mass balance model of carbon flow in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1989-01-01

    Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability.

  9. An international model validation exercise on radionuclide transfer and doses to freshwater biota.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yankovich, T. L.; Vives i Batlle, J.; Vives-Lynch, S.

    2010-06-09

    Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) program, activity concentrations of {sup 60}Co, {sup 90}Sr, {sup 137}Cs and {sup 3}H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophicmore » level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies.« less

  10. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology

    NASA Astrophysics Data System (ADS)

    Amesbury, Matthew J.; Swindles, Graeme T.; Bobrov, Anatoly; Charman, Dan J.; Holden, Joseph; Lamentowicz, Mariusz; Mallon, Gunnar; Mazei, Yuri; Mitchell, Edward A. D.; Payne, Richard J.; Roland, Thomas P.; Turner, T. Edward; Warner, Barry G.

    2016-11-01

    In the decade since the first pan-European testate amoeba-based transfer function for peatland palaeohydrological reconstruction was published, a vast amount of additional data collection has been undertaken by the research community. Here, we expand the pan-European dataset from 128 to 1799 samples, spanning 35° of latitude and 55° of longitude. After the development of a new taxonomic scheme to permit compilation of data from a wide range of contributors and the removal of samples with high pH values, we developed ecological transfer functions using a range of model types and a dataset of ∼1300 samples. We rigorously tested the efficacy of these models using both statistical validation and independent test sets with associated instrumental data. Model performance measured by statistical indicators was comparable to other published models. Comparison to test sets showed that taxonomic resolution did not impair model performance and that the new pan-European model can therefore be used as an effective tool for palaeohydrological reconstruction. Our results question the efficacy of relying on statistical validation of transfer functions alone and support a multi-faceted approach to the assessment of new models. We substantiated recent advice that model outputs should be standardised and presented as residual values in order to focus interpretation on secure directional shifts, avoiding potentially inaccurate conclusions relating to specific water-table depths. The extent and diversity of the dataset highlighted that, at the taxonomic resolution applied, a majority of taxa had broad geographic distributions, though some morphotypes appeared to have restricted ranges.

  11. PUTTING THEORY INTO PRACTICE - CONCLUDING REMARKS

    EPA Science Inventory

    The science of Landscape Ecology has a rich theoretical basis that continues to expand. While application of this science is clearly taking place, transfer of science into practice is lagging. Furthermore, examples of active management based on basic landscape ecological princi...

  12. The high energy multicharged particle exposure of the microbial ecology evaluation device on board the Apollo 16 spacecraft

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.

    1973-01-01

    The high energy multicharged cosmic-ray-particle exposure of the Microbial Ecology Evaluation Device package on board the Apollo 16 spacecraft was monitored using cellulose nitrate, Lexan polycarbonate, nuclear emulsion, and silver chloride crystal nuclear-track detectors. The results of the analysis of these detectors include the measured particle fluences, the linear energy transfer spectra, and the integral atomic number spectrum of stopping particle density. The linear energy transfer spectrum is used to compute the fractional cell loss in human kidney (T1) cells caused by heavy particles. Because the Microbial Ecology Evaluation Device was better shielded, the high-energy multicharged particle exposure was less than that measured on the crew passive dosimeters.

  13. Bent Creek demonstration program

    Treesearch

    Erik C. Berg

    1997-01-01

    Bent Creek Research and Demonstration Forest scientists have transferred the results of research on the ecology and management of Southern Appalachian hardwoods since 1925. Since 1989, a full-time technology transfer specialist has led demonstration efforts. The demonstration program was designed to quickly transfer research results to interested users and to free...

  14. Bent Creek demonstration program

    Treesearch

    Erik C. Berg

    1997-01-01

    Bent Creek Research and Demonstration Forest scientists have transferred the results of research on the ecology and management of Southern Appalachian hardwoods since 1925. Since 1989, a full-time technology transfer specialist has led demonstration efforts. The demonstration program was designed to quickly transfer research results to interested users, and free-up...

  15. Accounting for "land-grabbing" from a biocapacity viewpoint.

    PubMed

    Coscieme, Luca; Pulselli, Federico M; Niccolucci, Valentina; Patrizi, Nicoletta; Sutton, Paul C

    2016-01-01

    The comparison of the Ecological Footprint and its counterpart (i.e. biocapacity) allow for a classification of the world's countries as ecological creditors (Ecological Footprint lower than biocapacity) or debtors (Ecological Footprint higher than biocapacity). This classification is a national scale assessment on an annual time scale that provides a view of the ecological assets appropriated by the local population versus the natural ecological endowment of a country. We show that GDP per capita over a certain threshold is related with the worsening of the footprint balance in countries classified as ecological debtors. On the other hand, this correlation is lost when ecological creditor nations are considered. There is evidence that governments and investors from high GDP countries are playing a crucial role in impacting the environment at the global scale which is significantly affecting the geography of sustainability and preventing equal opportunities for development. In particular, international market dynamics and the concentration of economic power facilitate the transfer of biocapacity related to “land grabbing”, i.e. large scale acquisition of agricultural land. This transfer mainly occurs from low to high GDP countries, regardless of the actual need of foreign biocapacity, as expressed by the national footprint balance. A first estimation of the amount of biocapacity involved in this phenomenon is provided in this paper in order to better understand its implications on global sustainability and national and international land use policy.

  16. Watershed characterization and analysis using the VELMA ...

    EPA Pesticide Factsheets

    We developed a broadly applicable watershed simulator – VELMA (Visualizing Ecosystem and Land Management Assessments) – to characterize hydrological and ecological processes essential to the healthy functioning of watersheds, and to identify best management practices (BMPs) for restoring ecosystem services such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. VELMA has been applied to agricultural, forest, rangeland and arctic watersheds across North America. Urban applications are under development. This seminar will discuss how VELMA is being used to help inform (1) salmon recovery planning in Puget Sound, and (2) water quality protection in Chesapeake Bay agricultural landscapes. These examples highlight the importance of model validation; how VELMA is being linked with additional models to aid BMP identification; and how the model is being transferred to community groups, tribes, and state and federal agencies engaged in environmental decision making. This invited seminar for the Washington State Department of Ecology will provide an overview of EPA’s VELMA watershed simulator and its applications for identifying best management practices for protecting and restoring vital ecosystem services, such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. After the seminar, the presenter will meet with Department of Ecology staff to discuss the feasibility of including VELMA in their Puget Sound

  17. Simultaneous Semi-Distributed Model Calibration Guided by ...

    EPA Pesticide Factsheets

    Modelling approaches to transfer hydrologically-relevant information from locations with streamflow measurements to locations without such measurements continues to be an active field of research for hydrologists. The Pacific Northwest Hydrologic Landscapes (PNW HL) provide a solid conceptual classification framework based on our understanding of dominant processes. A Hydrologic Landscape code (5 letter descriptor based on physical and climatic properties) describes each assessment unit area, and these units average area 60km2. The core function of these HL codes is to relate and transfer hydrologically meaningful information between watersheds without the need for streamflow time series. We present a novel approach based on the HL framework to answer the question “How can we calibrate models across separate watersheds simultaneously, guided by our understanding of dominant processes?“. We should be able to apply the same parameterizations to assessment units of common HL codes if 1) the Hydrologic Landscapes contain hydrologic information transferable between watersheds at a sub-watershed-scale and 2) we use a conceptual hydrologic model and parameters that reflect the hydrologic behavior of a watershed. In this study, This work specifically tests the ability or inability to use HL-codes to inform and share model parameters across watersheds in the Pacific Northwest. EPA’s Western Ecology Division has published and is refining a framework for defining la

  18. Cognitive-Motor Interference in an Ecologically Valid Street Crossing Scenario.

    PubMed

    Janouch, Christin; Drescher, Uwe; Wechsler, Konstantin; Haeger, Mathias; Bock, Otmar; Voelcker-Rehage, Claudia

    2018-01-01

    Laboratory-based research revealed that gait involves higher cognitive processes, leading to performance impairments when executed with a concurrent loading task. Deficits are especially pronounced in older adults. Theoretical approaches like the multiple resource model highlight the role of task similarity and associated attention distribution problems. It has been shown that in cases where these distribution problems are perceived relevant to participant's risk of falls, older adults prioritize gait and posture over the concurrent loading task. Here we investigate whether findings on task similarity and task prioritization can be transferred to an ecologically valid scenario. Sixty-three younger adults (20-30 years of age) and 61 older adults (65-75 years of age) participated in a virtual street crossing simulation. The participants' task was to identify suitable gaps that would allow them to cross a simulated two way street safely. Therefore, participants walked on a manual treadmill that transferred their forward motion to forward displacements in a virtual city. The task was presented as a single task (crossing only) and as a multitask. In the multitask condition participants were asked, among others, to type in three digit numbers that were presented either visually or auditorily. We found that for both age groups, street crossing as well as typing performance suffered under multitasking conditions. Impairments were especially pronounced for older adults (e.g., longer crossing initiation phase, more missed opportunities). However, younger and older adults did not differ in the speed and success rate of crossing. Further, deficits were stronger in the visual compared to the auditory task modality for most parameters. Our findings conform to earlier studies that found an age-related decline in multitasking performance in less realistic scenarios. However, task similarity effects were inconsistent and question the validity of the multiple resource model within ecologically valid scenarios.

  19. Power Transfer in Physical Systems.

    ERIC Educational Resources Information Center

    Kaeck, Jack A.

    1990-01-01

    Explores the power transfer using (1) a simple electric circuit consisting of a power source with internal resistance; (2) two different mechanical systems (gravity driven and constant force driven); (3) ecological examples; and (4) a linear motor. (YP)

  20. Development and assessment of a simple ecological model (TRIPS) for forests contaminated by radiocesium fallout.

    PubMed

    Thiry, Yves; Albrecht, Achim; Tanaka, Taku

    2018-10-01

    The management of vast forested zones contaminated by radiocesium (rCs) following the Chernobyl and Fukushima fallout is of great social and economic concern in affected areas and requires appropriate dynamic models as predictive or questioning tools. Generally, the existing radio-ecological models need less fragmented data and more ecological realism in their quantitative description of the rCs cycling processes. The model TRIPS ("Transfer of Radionuclide In Perennial vegetation Systems") developed in this study privileged an integrated approach which makes the best use of mass balance studies and available explicit experimental data for Scots pine stands. A main challenge was the differentiation and calibration of foliar absorption as well as root uptake in order to well represent the rCs biocycling. The general dynamics of rCs partitioning was simulated with a relatively good precision against an independent series of observed values. In our scenario the rCs biological cycling enters a steady-state about 15 years after the atmospheric deposits. At that time, the simulations showed an equivalent contribution of foliage and root uptake to the tree contamination. But the root uptake seems not sufficient to compensate the activity decline in the tree. The initial foliar uptake and subsequent internal transfers were confirmed to have a great possible impact on the phasing of tree contamination. An extra finding concerns the roots system acting as a buffer in the early period. The TRIPS model is particularly useful in cases where site-specific integrated datasets are available, but it could also be used with adequate caution to generic sites. This development paves the way for simplification or integration of new modules, as well as for a larger number of other applications for the Chernobyl or Fukushima forests once the appropriate data become available. According to the sensitivity analysis that involves in particular reliable estimates of net foliar uptake as well as root uptake not disconnected from rCs exchange reactions in soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. [Sustainability of ecological water transfer and rehabilitation project based on participatory survey].

    PubMed

    Wang, Yu; Feng, Qi; Chen, Li-Juan; Yu, Teng-Fei

    2014-01-01

    In the arid inland area of Northwest China, the ecological water transfer and rehabilitation project (EWTRP) is an important measure to restore the deteriorated ecosystem. However, the sustainability of the project is affected by many socio-economic factors. This research was based on results of the questionnaire from Ejina County's farmer households, which included the farmer households' attitude, livelihood and the efficiency of the water resource usage. The results showed that although the EWTRP had made great achievements in vegetation restoration, but the sustainability of the project was affected by the following factors: the ecologically-motivated relocated/resettled herdsmen mainly relied on the compensation from the project, causing them a hard living, and increasing the risk of maintaining the current achievement; the project didn't have a positive impact on water-saving agriculture, the efficiency of water usage was relatively low and had not yet reached the final goal; the compensation of the project only considered the loss of agriculture, but neglected the externality and publicity of eco-water. We suggest that developing education, offering job opportunity and training programs, improving the efficiency of water usage and establishing reasonable water resources compensation mechanisms are needed to be considered as main domain of environmental recovery as well as ecological water transfer and rehabilitation.

  2. A sensor fusion field experiment in forest ecosystem dynamics

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ranson, K. Jon; Williams, Darrel L.; Levine, Elissa R.; Goltz, Stewart M.

    1990-01-01

    The background of the Forest Ecosystem Dynamics field campaign is presented, a progress report on the analysis of the collected data and related modeling activities is provided, and plans for future experiments at different points in the phenological cycle are outlined. The ecological overview of the study site is presented, and attention is focused on forest stands, needles, and atmospheric measurements. Sensor deployment and thermal and microwave observations are discussed, along with two examples of the optical radiation measurements obtained during the experiment in support of radiative transfer modeling. Future activities pertaining to an archival system, synthetic aperture radar, carbon acquisition modeling, and upcoming field experiments are considered.

  3. Development of a relative risk model for evaluating ecological risk of water environment in the Haihe River Basin estuary area.

    PubMed

    Chen, Qiuying; Liu, Jingling; Ho, Kin Chung; Yang, Zhifeng

    2012-03-15

    Ecological risk assessment for water environment is significant to water resource management of basin. Effective environmental management and systems restoration such as the Haihe River Basin require holistic understanding of the relative importance of various stressor-related impacts throughout the basin. As an effective technical tool for evaluating the ecological risk, relative risk model (RRM) was applied in regional scale successfully. In this study, the risk transfer from upstream of basin was considered and the RRM was developed through introducing the source-stressor-habitat exposure filter (SSH), the endpoint-habitat exposure filter (EH) and the stressor-endpoint effect filter (SE) to reflect the meaning of exposure and effect more explicit. Water environment which includes water quality, water quantity and aquatic ecosystems was selected as the assessment endpoints. We created a conceptual model which depicting potential and effect pathways from source to stressor to habitat to endpoint. The Haihe River Basin estuary (HRBE) was selected as the model case. The results showed that there were two low risk regions, one medium risk region and two high risk regions in the HRBE. The results also indicated that urbanization was the biggest source, the second was shipping and the third was industry, their risk scores are 5.65, 4.71 and 3.68 respectively. Furthermore, habitat destruction was the largest stressor with the risk scores (2.66), the second was oxygen consuming organic pollutants (1.75) and the third was pathogens (1.75). So these three stressors were the main influencing factors of the ecological pressure in the study area. For habitats, open waters (9.59) and intertidal mudflat were enduring the bigger pressure and should be taken considerable attention. Ecological service values damaged (30.54) and biodiversity decreased were facing the biggest risk pressure. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. PROCESS TRANSFER FUNCTIONS TO RELATE STREAM ECOLOGICAL CONDITION METRICS TO NITRATE RETENTION

    EPA Science Inventory

    Ecologists have developed hydrological metrics to characterize the nutrient processing capability of streams. In most cases these are used qualitatively to draw inferences on ecological function. In this work, several of these metrics have been integrated in a nonsteady state adv...

  5. Drivers of nitrogen transfer in stream food webs across continents.

    PubMed

    Norman, Beth C; Whiles, Matt R; Collins, Sarah M; Flecker, Alexander S; Hamilton, Steve K; Johnson, Sherri L; Rosi, Emma J; Ashkenas, Linda R; Bowden, William B; Crenshaw, Chelsea L; Crowl, Todd; Dodds, Walter K; Hall, Robert O; El-Sabaawi, Rana; Griffiths, Natalie A; Marti, Eugènia; McDowell, William H; Peterson, Scot D; Rantala, Heidi M; Riis, Tenna; Simon, Kevin S; Tank, Jennifer L; Thomas, Steven A; von Schiller, Daniel; Webster, Jackson R

    2017-12-01

    Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen 15 N-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in headwater streams with varying physical, chemical, and biological features. N transfer efficiencies from primary uptake compartments (PUCs; heterotrophic microorganisms and primary producers) to primary consumers was lower (mean 11.5%, range <1% to 43%) than N transfer efficiencies from primary consumers to predators (mean 80%, range 5% to >100%). Total N transferred (as a rate) was greater in streams with open compared to closed canopies and overall N transfer efficiency generally followed a similar pattern, although was not statistically significant. We used principal component analysis to condense a suite of site characteristics into two environmental components. Total N uptake rates among trophic levels were best predicted by the component that was correlated with latitude, DIN:SRP, GPP:ER, and percent canopy cover. N transfer efficiency did not respond consistently to environmental variables. Our results suggest that canopy cover influences N movement through stream food webs because light availability and primary production facilitate N transfer to higher trophic levels. © 2017 by the Ecological Society of America.

  6. Biodiversity matters in feedbacks between climate change and air quality: a study using an individual-based model.

    PubMed

    Wang, Bin; Shuman, Jacquelyn; Shugart, Herman H; Lerdau, Manuel T

    2018-03-30

    Air quality is closely associated with climate change via the biosphere because plants release large quantities of volatile organic compounds (VOC) that mediate both gaseous pollutants and aerosol dynamics. Earlier studies, which considered only leaf physiology and simply scale up from leaf-level enhancements of emissions, suggest that climate warming enhances whole forest VOC emissions, and these increased VOC emissions aggravate ozone pollution and secondary organic aerosol formation. Using an individual-based forest VOC emissions model, UVAFME-VOC, that simulates system-level emissions by explicitly simulating forest community dynamics to the individual tree level, ecological competition among the individuals of differing size and age, and radiative transfer and leaf function through the canopy, we find that climate warming only sometimes stimulates isoprene emissions (the single largest source of non-methane hydrocarbon) in a southeastern U.S. forest. These complex patterns result from the combination of higher temperatures' stimulating emissions at the leaf level but decreasing the abundance of isoprene-emitting taxa at the community level by causing a decline in the abundance of isoprene-emitting species (Quercus spp.). This ecological effect eventually outweighs the physiological one, thus reducing overall emissions. Such reduced emissions have far-reaching implications for the climate-air-quality relationships that have been established on the paradigm of warming-enhancement VOC emissions from vegetation. This local scale modeling study suggests that community ecology rather than only individual physiology should be integrated into future studies of biosphere-climate-chemistry interactions. © 2018 by the Ecological Society of America.

  7. Horizontal gene transfer and mobile genetic elements in marine systems.

    PubMed

    Sobecky, Patricia A; Hazen, Tracy H

    2009-01-01

    The pool of mobile genetic elements (MGE) in microbial communities consists of viruses, plasmids, and associated elements (insertion sequences, transposons, and integrons) that are either self-transmissible or use mobile plasmids and viruses as vehicles for their dissemination. This mobilome facilitates the horizontal transfer of genes that promote the evolution and adaptation of microbial communities. Efforts to characterize MGEs from microbial populations resident in a variety of ecological habitats have revealed a surprisingly novel and seemingly untapped biodiversity. To better understand the impact of horizontal gene transfer (HGT), as well as the agents that promote HGT in marine ecosystems and to determine whether or not environmental parameters can effect the composition and structure of the mobilome in marine microbial communities, information on the distribution, diversity, and ecological traits of the marine mobilome is presented. In this chapter we discuss recent insights gained from different methodological approaches used to characterize the biodiversity and ecology of MGE in marine environments and their contributions to HGT. In addition, we present case studies that highlight specific HGT examples in coastal, open-ocean, and deep-sea marine ecosystems.

  8. Some Problems and Solutions in Transferring Ecosystem Simulation Codes to Supercomputers

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.; Schulbach, C. H.

    1994-01-01

    Many computer codes for the simulation of ecological systems have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Recent recognition of ecosystem science as a High Performance Computing and Communications Program Grand Challenge area emphasizes supercomputers (both parallel and distributed systems) as the next set of tools for ecological simulation. Transferring ecosystem simulation codes to such systems is not a matter of simply compiling and executing existing code on the supercomputer since there are significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers. To more appropriately match the application to the architecture (necessary to achieve reasonable performance), the parallelism (if it exists) of the original application must be exploited. We discuss our work in transferring a general grassland simulation model (developed on a VAX in the FORTRAN computer programming language) to a Cray Y-MP. We show the Cray shared-memory vector-architecture, and discuss our rationale for selecting the Cray. We describe porting the model to the Cray and executing and verifying a baseline version, and we discuss the changes we made to exploit the parallelism in the application and to improve code execution. As a result, the Cray executed the model 30 times faster than the VAX 11/785 and 10 times faster than a Sun 4 workstation. We achieved an additional speed-up of approximately 30 percent over the original Cray run by using the compiler's vectorizing capabilities and the machine's ability to put subroutines and functions "in-line" in the code. With the modifications, the code still runs at only about 5% of the Cray's peak speed because it makes ineffective use of the vector processing capabilities of the Cray. We conclude with a discussion and future plans.

  9. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hehemann, Jan -Hendrik; Arevalo, Philip; Datta, Manoshi S.

    Adaptive radiations are important drivers of niche filling, since they rapidly adapt a single clade of organisms to ecological opportunities. Although thought to be common for animals and plants, adaptive radiations have remained difficult to document for microbes in the wild. Here we describe a recent adaptive radiation leading to fine-scale ecophysiological differentiation in the degradation of an algal glycan in a clade of closely related marine bacteria. Horizontal gene transfer is the primary driver in the diversification of the pathway leading to several ecophysiologically differentiated Vibrionaceae populations adapted to different physical forms of alginate. Furthermore, pathway architecture is predictivemore » of function and ecology, underscoring that horizontal gene transfer without extensive regulatory changes can rapidly assemble fully functional pathways in microbes.« less

  10. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes

    DOE PAGES

    Hehemann, Jan -Hendrik; Arevalo, Philip; Datta, Manoshi S.; ...

    2016-09-22

    Adaptive radiations are important drivers of niche filling, since they rapidly adapt a single clade of organisms to ecological opportunities. Although thought to be common for animals and plants, adaptive radiations have remained difficult to document for microbes in the wild. Here we describe a recent adaptive radiation leading to fine-scale ecophysiological differentiation in the degradation of an algal glycan in a clade of closely related marine bacteria. Horizontal gene transfer is the primary driver in the diversification of the pathway leading to several ecophysiologically differentiated Vibrionaceae populations adapted to different physical forms of alginate. Furthermore, pathway architecture is predictivemore » of function and ecology, underscoring that horizontal gene transfer without extensive regulatory changes can rapidly assemble fully functional pathways in microbes.« less

  11. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes

    PubMed Central

    Hehemann, Jan-Hendrik; Arevalo, Philip; Datta, Manoshi S.; Yu, Xiaoqian; Corzett, Christopher H.; Henschel, Andreas; Preheim, Sarah P.; Timberlake, Sonia; Alm, Eric J.; Polz, Martin F.

    2016-01-01

    Adaptive radiations are important drivers of niche filling, since they rapidly adapt a single clade of organisms to ecological opportunities. Although thought to be common for animals and plants, adaptive radiations have remained difficult to document for microbes in the wild. Here we describe a recent adaptive radiation leading to fine-scale ecophysiological differentiation in the degradation of an algal glycan in a clade of closely related marine bacteria. Horizontal gene transfer is the primary driver in the diversification of the pathway leading to several ecophysiologically differentiated Vibrionaceae populations adapted to different physical forms of alginate. Pathway architecture is predictive of function and ecology, underscoring that horizontal gene transfer without extensive regulatory changes can rapidly assemble fully functional pathways in microbes. PMID:27653556

  12. The impact of ARM on climate modeling

    DOE PAGES

    Randall, David A.; Del Genio, Anthony D.; Donner, Lee J.; ...

    2016-07-15

    Climate models are among humanity’s most ambitious and elaborate creations. They are designed to simulate the interactions of the atmosphere, ocean, land surface, and cryosphere on time scales far beyond the limits of deterministic predictability and including the effects of time-dependent external forcings. The processes involved include radiative transfer, fluid dynamics, microphysics, and some aspects of geochemistry, biology, and ecology. The models explicitly simulate processes on spatial scales ranging from the circumference of Earth down to 100 km or smaller and implicitly include the effects of processes on even smaller scales down to a micron or so. In addition, themore » atmospheric component of a climate model can be called an atmospheric global circulation model (AGCM).« less

  13. Ecological networks to unravel the routes to horizontal transposon transfers.

    PubMed

    Venner, Samuel; Miele, Vincent; Terzian, Christophe; Biémont, Christian; Daubin, Vincent; Feschotte, Cédric; Pontier, Dominique

    2017-02-01

    Transposable elements (TEs) represent the single largest component of numerous eukaryotic genomes, and their activity and dispersal constitute an important force fostering evolutionary innovation. The horizontal transfer of TEs (HTT) between eukaryotic species is a common and widespread phenomenon that has had a profound impact on TE dynamics and, consequently, on the evolutionary trajectory of many species' lineages. However, the mechanisms promoting HTT remain largely unknown. In this article, we argue that network theory combined with functional ecology provides a robust conceptual framework and tools to delineate how complex interactions between diverse organisms may act in synergy to promote HTTs.

  14. Quantifying and Valuing Potential Climate Change Impacts on Coral Reefs in the United States

    NASA Astrophysics Data System (ADS)

    Wobus, C. W.; Lane, D.; Buddemeier, R. W.; Ready, R. C.; Shouse, K. C.; Martinich, J.

    2012-12-01

    Global climate change presents a two-pronged threat to coral reef ecosystems: increasing sea surface temperatures will increase the likelihood of episodic bleaching events, while increasing ocean carbon dioxide concentrations will change the carbonate chemistry that drives coral growth. Because coral reefs have important societal as well as ecological benefits, climate change mitigation policies that ameliorate these impacts may create substantial economic value. We present a model that evaluates both the ecological and the economic impacts of climate change on coral reefs in the United States. We use a coral reef mortality and bleaching model to project future coral reef declines under a range of climate change policy scenarios for south Florida, Puerto Rico and Hawaii. Using a benefits transfer approach, the outputs from the physical model are then used to quantify the economic impacts of these coral reef declines for each of these regions. We find that differing climate change trajectories create substantial changes in projected coral cover and value for Hawaii, but that the ecological and economic benefits of more stringent emissions scenarios are less clear for Florida and Puerto Rico. Overall, our results indicate that the effectiveness of climate change mitigation policies may be region-specific, but that these policies could result in a net increase of nearly $10 billion in economic value from coral reef-related recreational activities alone, over the 21st century.

  15. Improving spatio-temporal benefit transfers for pest control by generalist predators in cotton in the southwestern U.S.

    USGS Publications Warehouse

    Wiederholt, Ruscena; Bagstad, Kenneth J.; McCracken, Gary F.; Diffendorfer, Jay E.; Loomis, John B.; Semmens, Darius J.; Russell, Amy L.; Sansone, Chris; LaSharr, Kelsie; Cryan, Paul; Reynoso, Claudia; Medellin, Rodrigo A.; Lopez-Hoffman, Laura

    2017-01-01

    Given rapid changes in agricultural practice, it is critical to understand how alterations in ecological, technological, and economic conditions over time and space impact ecosystem services in agroecosystems. Here, we present a benefit transfer approach to quantify cotton pest-control services provided by a generalist predator, the Mexican free-tailed bat (Tadarida brasiliensis mexicana), in the southwestern United States. We show that pest-control estimates derived using (1) a compound spatial–temporal model – which incorporates spatial and temporal variability in crop pest-control service values – are likely to exhibit less error than those derived using (2) a simple-spatial model (i.e., a model that extrapolates values derived for one area directly, without adjustment, to other areas) or (3) a simple-temporal model (i.e., a model that extrapolates data from a few points in time over longer time periods). Using our compound spatial–temporal approach, the annualized pest-control value was \\$12.2 million, in contrast to an estimate of \\$70.1 million (5.7 times greater), obtained from the simple-spatial approach. Using estimates from one year (simple-temporal approach) revealed large value differences (0.4 times smaller to 2 times greater). Finally, we present a detailed protocol for valuing pest-control services, which can be used to develop robust pest-control transfer functions for generalist predators in agroecosystems.

  16. Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing

    PubMed Central

    Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K.; Utzinger, Jürg; Raso, Giovanna

    2015-01-01

    Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d’Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d’Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data. PMID:26587839

  17. Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing.

    PubMed

    Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K; Utzinger, Jürg; Raso, Giovanna

    2015-11-01

    Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d'Ivoire and validated against readily available survey data from school-aged children. Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d'Ivoire. A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data.

  18. Learning Ecosystem Complexity: A Study on Small-Scale Fishers' Ecological Knowledge Generation

    ERIC Educational Resources Information Center

    Garavito-Bermúdez, Diana

    2018-01-01

    Small-scale fisheries are learning contexts of importance for generating, transferring and updating ecological knowledge of natural environments through everyday work practices. The rich knowledge fishers have of local ecosystems is the result of the intimate relationship fishing communities have had with their natural environments across…

  19. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China.

    PubMed

    Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong

    2017-11-01

    This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Horizontal gene transfer between bacteria.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  1. [Progress in transgenic fish techniques and application].

    PubMed

    Ye, Xing; Tian, Yuan-Yuan; Gao, Feng-Ying

    2011-05-01

    Transgenic technique provides a new way for fish breeding. Stable lines of growth hormone gene transfer carps, salmon and tilapia, as well as fluorescence protein gene transfer zebra fish and white cloud mountain minnow have been produced. The fast growth characteristic of GH gene transgenic fish will be of great importance to promote aquaculture production and economic efficiency. This paper summarized the progress in transgenic fish research and ecological assessments. Microinjection is still the most common used method, but often resulted in multi-site and multi-copies integration. Co-injection of transposon or meganuclease will greatly improve the efficiency of gene transfer and integration. "All fish" gene or "auto gene" should be considered to produce transgenic fish in order to eliminate misgiving on food safety and to benefit expression of the transferred gene. Environmental risk is the biggest obstacle for transgenic fish to be commercially applied. Data indicates that transgenic fish have inferior fitness compared with the traditional domestic fish. However, be-cause of the genotype-by-environment effects, it is difficult to extrapolate simple phenotypes to the complex ecological interactions that occur in nature based on the ecological consequences of the transgenic fish determined in the laboratory. It is critical to establish highly naturalized environments for acquiring reliable data that can be used to evaluate the environ-mental risk. Efficacious physical and biological containment strategies remain to be crucial approaches to ensure the safe application of transgenic fish technology.

  2. Opportunity NYC-Family Rewards: An Embedded Child and Family Study of Conditional Cash Transfers

    ERIC Educational Resources Information Center

    Morris, Pamela; Aber, J. Lawrence; Wolf, Sharon; Berg, Juliette

    2011-01-01

    This study builds on and informs ecological theory (Bronfenbrenner & Morris, 2006) by focusing on the contextual processes by which individual developmental trajectories can be altered. Ecological theory posits that children are embedded in a nested and interactive set of interrelated contexts beginning with the micro-system (the most…

  3. Characterization of Retention and Transfer of Protein Labels in the Saltcedar Leaf Beetle for use in Ecological Studies

    USDA-ARS?s Scientific Manuscript database

    Understanding dispersal and predator-prey associations of biological control agents can lead to a better understanding of the ecological services that they provide. Marking arthropods with labels facilitates studies of their activity in nature, and thus provides new insight into biological traits r...

  4. Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models

    PubMed Central

    2012-01-01

    Background If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model. Results We first delimit a ca. 54,000 km2 area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii. Conclusion The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the introgressed mitochondrial DNA and the signal derived from ecological niche modeling, we do not favor the hypothesis that foreign mitochondrial DNA was pulled into the T. macedonicus range by natural selection. PMID:22935041

  5. Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models.

    PubMed

    Wielstra, Ben; Arntzen, Jan W

    2012-08-30

    If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model. We first delimit a ca. 54,000 km(2) area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii. The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the introgressed mitochondrial DNA and the signal derived from ecological niche modeling, we do not favor the hypothesis that foreign mitochondrial DNA was pulled into the T. macedonicus range by natural selection.

  6. Microbial loop contribution to exergy in the sediments of the Marsala lagoon (Italy)

    NASA Astrophysics Data System (ADS)

    Pusceddu, A.; Danovaro, R.

    2003-04-01

    Recent advances in ecological modelling have stressed the need for new descriptors of ecosystem health, able to consider the actual transfer of energy through food webs, including also the potential transfer/loss of (genetic) information. In ecological terms, exergy is defined as a goal function which, as sum of energy (biomass) and (genetic) information contained in a given system due to living organisms, acts as a quality indicator of ecosystems. Biopolymeric organic carbon (BPC) quantity and biochemical composition, bacteria, heterotrophic nanoflagellate and meiofauna abundance, biomass and exergy contents were investigated, on a seasonal basis, in the Marsala lagoon (Mediterranean Sea), at two stations characterized by contrasting hydrodynamic conditions. Carbohydrate (2.8 mg g-1), protein (1.6 mg g-1) and lipid (0.86 mg g-1) contents were extremely high, with values at the more exposed station about 3 times lower than those at the sheltered one. BPC (on average 2.5 mg C g-1), dominated by carbohydrates (50%), was mostly refractory and largely unaccounted for by primary organic matter (4% of BPC), indicating that the Marsala lagoon sediments act as a "detritus sink". At both stations, bacterial (on average 0.3 mg C g-1) and heterotrophic nanoflagellate (9.8 μgC g-1) biomass values were rather high, whereas meiofauna biomass was extremely low (on average 7.2 μg C cm-2). The exergy transfer along the benthic microbial loop components in the Marsala lagoon appeared largely bottlenecked by the refractory composition of organic detritus. In the more exposed station, the exergy transfer towards the higher trophic levels was more efficient than in the sheltered one. Although total exergy values were significantly higher in summer than in winter, at both stations the exergy transfer in winter was more efficient than in summer. Our results indicate that, in 'detritus sink' systems, auxiliary energy (e.g., wind-induced sediment resuspension) might be of paramount importance for increasing efficiency of organic detritus channeling to higher trophic levels.

  7. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation

    PubMed Central

    Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-01-01

    Thermal conductance measures the ease with which heat leaves or enters  an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915

  8. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation.

    PubMed

    Naya, Daniel E; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-09-22

    Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)-in such a way that a scale-invariant ratio between both variables is equal to one-as could be expected from the Scholander-Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs.

  9. From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality

    PubMed Central

    Kreft, Jan-Ulrich; Plugge, Caroline M.; Prats, Clara; Leveau, Johan H. J.; Zhang, Weiwen; Hellweger, Ferdi L.

    2017-01-01

    Models are important tools in microbial ecology. They can be used to advance understanding by helping to interpret observations and test hypotheses, and to predict the effects of ecosystem management actions or a different climate. Over the past decades, biological knowledge and ecosystem observations have advanced to the molecular and in particular gene level. However, microbial ecology models have changed less and a current challenge is to make them utilize the knowledge and observations at the genetic level. We review published models that explicitly consider genes and make predictions at the population or ecosystem level. The models can be grouped into three general approaches, i.e., metabolic flux, gene-centric and agent-based. We describe and contrast these approaches by applying them to a hypothetical ecosystem and discuss their strengths and weaknesses. An important distinguishing feature is how variation between individual cells (individuality) is handled. In microbial ecosystems, individual heterogeneity is generated by a number of mechanisms including stochastic interactions of molecules (e.g., gene expression), stochastic and deterministic cell division asymmetry, small-scale environmental heterogeneity, and differential transport in a heterogeneous environment. This heterogeneity can then be amplified and transferred to other cell properties by several mechanisms, including nutrient uptake, metabolism and growth, cell cycle asynchronicity and the effects of age and damage. For example, stochastic gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which in turn results in heterogeneity in intracellular nutrient levels. Individuality can have important ecological consequences, including division of labor, bet hedging, aging and sub-optimality. Understanding the importance of individuality and the mechanism(s) underlying it for the specific microbial system and question investigated is essential for selecting the optimal modeling strategy. PMID:29230200

  10. Cognitive—Motor Interference in an Ecologically Valid Street Crossing Scenario

    PubMed Central

    Janouch, Christin; Drescher, Uwe; Wechsler, Konstantin; Haeger, Mathias; Bock, Otmar; Voelcker-Rehage, Claudia

    2018-01-01

    Laboratory-based research revealed that gait involves higher cognitive processes, leading to performance impairments when executed with a concurrent loading task. Deficits are especially pronounced in older adults. Theoretical approaches like the multiple resource model highlight the role of task similarity and associated attention distribution problems. It has been shown that in cases where these distribution problems are perceived relevant to participant's risk of falls, older adults prioritize gait and posture over the concurrent loading task. Here we investigate whether findings on task similarity and task prioritization can be transferred to an ecologically valid scenario. Sixty-three younger adults (20–30 years of age) and 61 older adults (65–75 years of age) participated in a virtual street crossing simulation. The participants' task was to identify suitable gaps that would allow them to cross a simulated two way street safely. Therefore, participants walked on a manual treadmill that transferred their forward motion to forward displacements in a virtual city. The task was presented as a single task (crossing only) and as a multitask. In the multitask condition participants were asked, among others, to type in three digit numbers that were presented either visually or auditorily. We found that for both age groups, street crossing as well as typing performance suffered under multitasking conditions. Impairments were especially pronounced for older adults (e.g., longer crossing initiation phase, more missed opportunities). However, younger and older adults did not differ in the speed and success rate of crossing. Further, deficits were stronger in the visual compared to the auditory task modality for most parameters. Our findings conform to earlier studies that found an age-related decline in multitasking performance in less realistic scenarios. However, task similarity effects were inconsistent and question the validity of the multiple resource model within ecologically valid scenarios. PMID:29774001

  11. 76 FR 46678 - Tris carbamoyl triazine; Proposed Modification of Significant New Uses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    .... During the initial review of the PMN, EPA's preliminary Ecological Structural Activity Relationship (Eco... Executive Order 12866. I. National Technology Transfer and Advancement Act In addition, since this action does not involve any technical standards, section 12(d) of the National Technology Transfer and...

  12. Metagenomic insights into the ecology and physiology of microbes in bioelectrochemical systems.

    PubMed

    Kouzuma, Atsushi; Ishii, Shun'ichi; Watanabe, Kazuya

    2018-05-01

    In bioelectrochemical systems (BESs), electrons are transferred between electrochemically active microbes (EAMs) and conductive materials, such as electrodes, via extracellular electron transfer (EET) pathways, and electrons thus transferred stimulate intracellular catabolic reactions. Catabolic and EET pathways have extensively been studied for several model EAMs, such as Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA, whereas it is also important to understand the ecophysiology of EAMs in naturally occurring microbiomes, such as those in anode biofilms in microbial fuel cells treating wastewater. Recent studies have exploited metagenomics and metatranscriptomics (meta-omics) approaches to characterize EAMs in BES-associated microbiomes. Here we review recent BES studies that used meta-omics approaches and show that these studies have discovered unexpected features of EAMs and deepened our understanding of functions and behaviors of microbes in BESs. It is desired that more studies will employ meta-omics approaches for advancing our knowledge on microbes in BESs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Putting flow-ecology relationships into practice: A decision-support system to assess fish community response to water-management scenarios

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Caldwell, Casey; Nebiker, Steven; Knight, Rodney

    2017-01-01

    This paper presents a conceptual framework to operationalize flow–ecology relationships into decision-support systems of practical use to water-resource managers, who are commonly tasked with balancing multiple competing socioeconomic and environmental priorities. We illustrate this framework with a case study, whereby fish community responses to various water-management scenarios were predicted in a partially regulated river system at a local watershed scale. This case study simulates management scenarios based on interactive effects of dam operation protocols, withdrawals for municipal water supply, effluent discharges from wastewater treatment, and inter-basin water transfers. Modeled streamflow was integrated with flow–ecology relationships relating hydrologic departure from reference conditions to fish species richness, stratified by trophic, reproductive, and habitat characteristics. Adding a hypothetical new water-withdrawal site was predicted to increase the frequency of low-flow conditions with adverse effects for several fish groups. Imposition of new reservoir release requirements was predicted to enhance flow and fish species richness immediately downstream of the reservoir, but these effects were dissipated further downstream. The framework presented here can be used to translate flow–ecology relationships into evidence-based management by developing decision-support systems for conservation of riverine biodiversity while optimizing water availability for human use.

  14. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    PubMed

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  15. How Can We Identify and Communicate the Ecological Value of Deep-Sea Ecosystem Services?

    PubMed Central

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders. PMID:25055119

  16. Responsive Classroom Ecologies: Supporting Student Inquiry and Rhetorical Awareness in College Writing Courses

    ERIC Educational Resources Information Center

    Jankens, Adrienne

    2014-01-01

    This dissertation describes and analyzes the work of a semester-long teacher research study of inquiry-based and reflective teaching and learning strategies and their impact on students' preparation for future learning. I explore relevant scholarship on knowledge transfer, classroom ecologies, and student agency to set the stage for a discussion…

  17. Exploring Interconnections between Local Ecological Knowledge, Professional Identity and Sense of Place among Swedish Fishers

    ERIC Educational Resources Information Center

    Garavito-Bermúdez, Diana; Lundholm, Cecilia

    2017-01-01

    The ecological knowledge of those who interact with ecosystems in everyday-life is situated in social and cultural contexts, as well as accumulated, transferred and adjusted through work practices. For them, ecosystems represent not only places for living but also places for working and defining themselves. This paper explores psychological…

  18. Common challenges for ecological modelling: synthesis of facilitated discussions held at the symposia organized for the 2009 conference of the International Society for Ecological Modelling in Quebec City, Canada, (October 6-9, 2009)

    USGS Publications Warehouse

    Larocque, Guy R.; Mailly, D.; Yue, T.-X.; Anand, M.; Peng, C.; Kazanci, C.; Etterson, M.; Goethals, P.; Jorgensen, S.E.; Schramski, J.R.; McIntire, E.J.B.; Marceau, D.J.; Chen, B.; Chen, G.Q.; Yang, Z.F.; Novotna, B.; Luckai, N.; Bhatti, Jagtar S.; Liu, J.; Munson, A.; Gordon, Andrew M.; Ascough, J.C.

    2011-01-01

    The eleven symposia organized for the 2009 conference of the International Society for Ecological Modelling (ISEM 2009) held in Quebec City, Canada, October 6–9, 2009, included facilitated discussion sessions following formal presentations. Each symposium focused on a specific subject, and all the subjects could be classified into three broad categories: theoretical development, population dynamics and ecosystem processes. Following discussions with the symposia organizers, which indicated that they all shared similar issues and concerns, the facilitated discussions were task-oriented around four basic questions: (1) key challenges in the research area, (2) generating and sharing new ideas, (3) improving collaboration and networking, and (4) increasing visibility to decision-makers, partners and clients. Common challenges that emerged from the symposia included the need for improved communication and collaboration among different academic disciplines, further progress in both theoretical and practical modelling approaches, and accentuation of technology transfer. Regarding the generation and sharing of new ideas, the main issue that emerged was the type of positive interactions that should be encouraged among potential collaborators. The usefulness of the Internet, particularly for the sharing of open-source software and conducting discussion forums, was highlighted for improving collaboration and networking. Several communication tools are available today, and it is important for modellers to use them more intensively. Visibility can be increased by publishing professional newsletters, maintaining informal contacts with the public, organizing educational sessions in primary and secondary schools, and developing simplified analytical frameworks and pilot studies. Specific issues raised in each symposium are also discussed.

  19. Assessing regional and interspecific variation in threshold responses of forest breeding birds through broad scale analyses.

    PubMed

    van der Hoek, Yntze; Renfrew, Rosalind; Manne, Lisa L

    2013-01-01

    Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold effects are similar across species and regions. We modeled local persistence and extinction dynamics of 25 forest-associated breeding birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data from adjacent New York State, which showed that most species support persistence and extinction threshold models (15 and 22 of 25 study species respectively). In addition, species that supported a threshold model in both states had associated average threshold estimates of 61.41% (SE = 6.11, persistence) and 66.45% (SE = 9.15, extinction) in New York, compared to 51.08% (SE = 10.60, persistence) and 73.67% (SE = 5.70, extinction) in Vermont. Across species, thresholds were found at 19.45-87.96% forest cover for persistence and 50.82-91.02% for extinction dynamics. Through an approach that allows for broad-scale comparisons of threshold responses, we show that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby regions can be pronounced. We present both ecological and methodological factors that may contribute to the different model results, but propose that regardless of the reasons behind these differences, our results merit a warning that threshold values cannot simply be transferred across regions or interpreted as clear-cut targets for ecosystem management and conservation.

  20. Informed herbivore movement and interplant communication determine the effects of induced resistance in an individual-based model.

    PubMed

    Rubin, Ilan N; Ellner, Stephen P; Kessler, André; Morrell, Kimberly A

    2015-09-01

    1. Plant induced resistance to herbivory affects the spatial distribution of herbivores, as well as their performance. In recent years, theories regarding the benefit to plants of induced resistance have shifted from ideas of optimal resource allocation towards a more eclectic set of theories that consider spatial and temporal plant variability and the spatial distribution of herbivores among plants. However, consensus is lacking on whether induced resistance causes increased herbivore aggregation or increased evenness, as both trends have been experimentally documented. 2. We created a spatial individual-based model that can describe many plant-herbivore systems with induced resistance, in order to analyse how different aspects of induced resistance might affect herbivore distribution, and the total damage to a plant population, during a growing season. 3. We analyse the specific effects on herbivore aggregation of informed herbivore movement (preferential movement to less-damaged plants) and of information transfer between plants about herbivore attacks, in order to identify mechanisms driving both aggregation and evenness. We also investigate how the resulting herbivore distributions affect the total damage to plants and aggregation of damage. 4. Even, random and aggregated herbivore distributions can all occur in our model with induced resistance. Highest levels of aggregation occurred in the models with informed herbivore movement, and the most even distributions occurred when the average number of herbivores per plant was low. With constitutive resistance, only random distributions occur. Damage to plants was spatially correlated, unless plants recover very quickly from damage; herbivore spatial autocorrelation was always weak. 5. Our model and results provide a simple explanation for the apparent conflict between experimental results, indicating that both increased aggregation and increased evenness of herbivores can result from induced resistance. We demonstrate that information transfer from plants to herbivores, and from plants to neighbouring plants, can both be major factors in determining non-random herbivore distributions. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  1. Point Estimate Transfers in Ecosystem Services Research: Applying Principles from Economics to Improve the Transfer of Ecological Production Estimates

    EPA Science Inventory

    There is increasing demand to describe and account for the benefits that humans derive from ecosystem functions in decision-making. Comprehensive descriptions of these benefits, referred to as ecosystem services (ES), and their production can be limited because there is limited ...

  2. Temporal modelling of ballast water discharge and ship-mediated invasion risk to Australia

    PubMed Central

    Cope, Robert C.; Prowse, Thomas A. A.; Ross, Joshua V.; Wittmann, Talia A.; Cassey, Phillip

    2015-01-01

    Biological invasions have the potential to cause extensive ecological and economic damage. Maritime trade facilitates biological invasions by transferring species in ballast water, and on ships' hulls. With volumes of maritime trade increasing globally, efforts to prevent these biological invasions are of significant importance. Both the International Maritime Organization and the Australian government have developed policy seeking to reduce the risk of these invasions. In this study, we constructed models for the transfer of ballast water into Australian waters, based on historic ballast survey data. We used these models to hindcast ballast water discharge over all vessels that arrived in Australian waters between 1999 and 2012. We used models for propagule survival to compare the risk of ballast-mediated propagule transport between ecoregions. We found that total annual ballast discharge volume into Australia more than doubled over the study period, with the vast majority of ballast water discharge and propagule pressure associated with bulk carrier traffic. As such, the ecoregions suffering the greatest risk are those associated with the export of mining commodities. As global marine trade continues to increase, effective monitoring and biosecurity policy will remain necessary to combat the risk of future marine invasion events. PMID:26064643

  3. Nurse plants transfer more nitrogen to distantly related species.

    PubMed

    Montesinos-Navarro, Alicia; Verdú, Miguel; Querejeta, José Ignacio; Valiente-Banuet, Alfonso

    2017-05-01

    Plant facilitative interactions enhance co-occurrence between distant relatives, partly due to limited overlap in resource requirements. We propose a different mechanism for the coexistence of distant relatives based on positive interactions of nutrient sharing. Nutrients move between plants following source-sink gradients driven by plant traits that allow these gradients to establish. Specifically, nitrogen (N) concentration gradients can arise from variation in leaf N content across plants species. As many ecologically relevant traits, we hypothesize that leaf N content is phylogenetically conserved and can result in N gradients promoting N transfer among distant relatives. In a Mexican desert community governed by facilitation, we labelled nurse plants (Mimosa luisana) with 15 N and measured its transfer to 14 other species in the community, spanning the range of phylogenetic distances to the nurse plant. Nurses established steeper N source-sink gradients with distant relatives, increasing 15 N transfer toward these species. Nutrient sharing may provide long-term benefits to facilitated plants and may be an overlooked mechanism maintaining coexistence and increasing the phylogenetic diversity of plant communities. © 2017 by the Ecological Society of America.

  4. Developing New Modelling Tools for Environmental Flow Assessment in Regulated Salmon Rivers

    NASA Astrophysics Data System (ADS)

    Geris, Josie; Soulsby, Chris; Tetzlaff, Doerthe

    2013-04-01

    There is a strong political drive in Scotland to meet all electricity demands from renewable sources by 2020. In Scotland, hydropower generation has a long history and is a key component of this strategy. However, many rivers sustain freshwater communities that have both high conservation status and support economically important Atlantic salmon fisheries. Both new and existing hydropower schemes must be managed in accordance with the European Union's Water Framework Directive (WFD), which requires that all surface water bodies achieve good ecological status or maintain good ecological potential. Unfortunately, long-term river flow monitoring is sparse in the Scottish Highlands and there are limited data for defining environmental flows. The River Tay is the most heavily regulated catchment in the UK. To support hydropower generation, it has an extensive network of inter- and intra- catchment transfers, in addition to a large number of regulating reservoirs for which abstraction legislation often only requires minimum compensation flows. The Tay is also considered as one of Scotland's most important rivers for Atlantic salmon (Salmo salar), and there is considerable uncertainty as to how best change reservoir operations to improve the ecological potential of the river system. It is now usually considered that environmental flows require more than a minimum compensation flow, and instead should cover a range of hydrological flow aspects that represent ecologically relevant streamflow attributes, including magnitude, timing, duration, frequency and rate of change. For salmon, these hydrological indices are of particular interest, with requirements varying at different stages of their life cycle. To meet the WFD requirements, rationally alter current abstraction licences and provide an evidence base for regulating new hydropower schemes, advanced definitions for abstraction limits and ecologically appropriate flow releases are desirable. However, a good understanding of the natural flow variability and the hydrological impacts of the regulation is unavailable, partly because pre-regulation data of existing hydropower schemes are lacking. Here we develop a novel modelling approach for characterising natural flow regimes and defining hydrological flow indices. This allows us to quantitatively assess the impacts of hydropower to better inform environmental flow requirements for the Atlantic salmon river ecosystem. Results are presented for the River Lyon (390 km2), a regulated headwater catchment of the River Tay. The HBV hydrological rainfall-runoff model is used to simulate flows, based on calibrated parameters from regulated flow data, with the current hydropower scheme active. For this, the HBV model is adapted to be able to incorporate water transfers and regulated flows. The natural hydrological indices are derived from the simulated pre-regulation data, and compared with those of the regulated data to investigate the impact of the regulation on these at different critical times for Atlantic salmon. The sensitivity of the system to change is also investigated to explore the extent to which flow variables can be modified without major degradation to the river's ecosystem, while still maintaining viable hydropower generation. The modelling approach presented will provide the basis for assessing impacts on hydrological flow indices and informing environmental flows in regions with similar heavily regulated mountain river ecosystems.

  5. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference.

    PubMed

    Escobar, Luis E; Lira-Noriega, Andrés; Medina-Vogel, Gonzalo; Townsend Peterson, A

    2014-11-01

    Emerging infectious diseases can present serious threats to wildlife, even to the point of causing extinction. Whitenose fungus (Pseudogymnoascus destructans) is causing an epizootic in bats that is expanding rapidly, both geographically and taxonomically. Little is known of the ecology and distributional potential of this intercontinental pathogen. We address this gap via ecological niche models that characterise coarse resolution niche differences between fungus populations on different continents, identifying areas potentially vulnerable to infection in South America. Here we explore a novel approach to identifying areas of potential distribution across novel geographic regions that avoids perilious extrapolation into novel environments. European and North American fungus populations show differential use of environmental space, but rather than niche differentiation, we find that changes are best attributed to climatic differences between the two continents. Suitable areas for spread of the pathogen were identified across southern South America; however caution should be taken to avoid underestimating the potential for spread of this pathogen in South America.

  6. Estuarine Salinity Mapping From Airborne Radiometry

    NASA Astrophysics Data System (ADS)

    Walker, J. P.; Gao, Y.; Cook, P. L. M.; Ye, N.

    2016-12-01

    Estuaries are critical ecosystems providing both ecological habitat and human amenity including boating and recreational fishing. Salinity gradients, caused by the mixing of fresh and salt water, exert an overwhelming control on estuarine ecology and biogeochemistry as well as being a key tracer for model calibration. At present, salinity monitoring within estuaries typically uses point measurements or underway boat-based methods, which makes sensing of localised phenomena such as upwelling of saline bottom water difficult. This study has pioneered the use of airborne radiometry (passive microwave) sensing as a new method to remotely quantify estuarine salinity, allowing rapid production of high resolution surface salinity maps. The airborne radiometry mapping was conducted for the Gippsland Lakes, the largest estuary in Australia, in February, July, October and November of 2015, using the Polarimetric L-band Microwave Radiometer (PLMR). Salinity was retrieved from the brightness temperature collected by PLMR with results validated against boat sampling conducted concurrently with each flight. Results showed that the retrieval accuracy of the radiative transfer model was better than 5 ppt for most flights. The spatial, temporal and seasonal variations of salinity observed in this study are also analysed and discussed.

  7. Comparison of hydromorphological assessment methods: Application to the Boise River, USA

    NASA Astrophysics Data System (ADS)

    Benjankar, Rohan; Koenig, Frauke; Tonina, Daniele

    2013-06-01

    Recent national and international legislation (e.g., the European Water Framework Directive) identified the need to quantify the ecological condition of river systems as a critical component for an integrated river management approach. An important defining driver of ecological condition is stream hydromorphology. Several methodologies have been proposed from simple table-based approaches to complex hydraulics-based models. In this paper, three different methods for river hydromorphological assessment are applied to the Boise River, United States of America (USA): (1) the German LAWA overview method (Bund/Laender Arbeitsgemeinschaft Wasser/German Working Group on water issues of the Federal States and the Federal Government represented by the Federal Environment Ministry), (2) a special approach for a hydromorphological assessment of urban rivers and (3) a hydraulic-based method. The hydraulic-based method assessed stream conditions from a statistical analysis of flow properties predicted with hydrodynamic modeling. The investigation focuses on comparing the three methods and defining the transferability of the methods among different contexts, Europe and West United States. It also provides comparison of the hydromorphological conditions of an urban and a rural reaches of the Boise River.

  8. The "Hamburger Connection" as Ecologically Unequal Exchange: A Cross-National Investigation of Beef Exports and Deforestation in Less-Developed Countries

    ERIC Educational Resources Information Center

    Austin, Kelly

    2010-01-01

    This study explores Norman Myers's concept of the "hamburger connection" as a form of ecologically unequal exchange, where more-developed nations are able to transfer the environmental costs of beef consumption to less-developed nations. I used ordinary least squares (OLS) regression to test whether deforestation in less-developed…

  9. Re-criticizing RNA-mediated cell evolution: a radical perspective

    NASA Astrophysics Data System (ADS)

    Kotakis, Christos

    2016-01-01

    Genetic inter-communication of the nucleic-organellar dual in eukaryotes is dominated by DNA-directed phenomena. RNA regulatory circuits have also been observed in artificial laboratory prototypes where gene transfer events are reconstructed, but they are excluded from the primary norm due to their rarity. Recent technical advances in organellar biotechnology, genome engineering and single-molecule tracking give novel experimental insights on RNA metabolism not only at cellular level, but also on organismal survival. Here, I put forward a hypothesis for RNA's involvement in gene piece transfer, taken together the current knowledge on the primitive RNA character as a biochemical modulator with model organisms from peculiar natural habitats. It is proposed that RNA molecules of special structural signature and functional identity can drive evolution, integrating the ecological pressure of environmental oscillations into genome imprinting by buffering-out epigenetic aberrancies.

  10. The South Florida Ecosystem Portfolio Model - A Map-Based Multicriteria Ecological, Economic, and Community Land-Use Planning Tool

    USGS Publications Warehouse

    Labiosa, William B.; Bernknopf, Richard; Hearn, Paul; Hogan, Dianna; Strong, David; Pearlstine, Leonard; Mathie, Amy M.; Wein, Anne M.; Gillen, Kevin; Wachter, Susan

    2009-01-01

    The South Florida Ecosystem Portfolio Model (EPM) prototype is a regional land-use planning Web tool that integrates ecological, economic, and social information and values of relevance to decision-makers and stakeholders. The EPM uses a multicriteria evaluation framework that builds on geographic information system-based (GIS) analysis and spatially-explicit models that characterize important ecological, economic, and societal endpoints and consequences that are sensitive to regional land-use/land-cover (LULC) change. The EPM uses both economics (monetized) and multiattribute utility (nonmonetized) approaches to valuing these endpoints and consequences. This hybrid approach represents a methodological middle ground between rigorous economic and ecological/ environmental scientific approaches. The EPM sacrifices some degree of economic- and ecological-forecasting precision to gain methodological transparency, spatial explicitness, and transferability, while maintaining credibility. After all, even small steps in the direction of including ecosystem services evaluation are an improvement over current land-use planning practice (Boyd and Wainger, 2003). There are many participants involved in land-use decision-making in South Florida, including local, regional, State, and Federal agencies, developers, environmental groups, agricultural groups, and other stakeholders (South Florida Regional Planning Council, 2003, 2004). The EPM's multicriteria evaluation framework is designed to cut across the objectives and knowledge bases of all of these participants. This approach places fundamental importance on social equity and stakeholder participation in land-use decision-making, but makes no attempt to determine normative socially 'optimal' land-use plans. The EPM is thus a map-based set of evaluation tools for planners and stakeholders to use in their deliberations of what is 'best', considering a balancing of disparate interests within a regional perspective. Although issues of regional ecological sustainability can be explored with the EPM (for example, changes in biodiversity potential and regional habitat fragmentation), it does not attempt to define or evaluate long-term ecological sustainability as such. Instead, the EPM is intended to provide transparent first-order indications of the direction of ecological, economic, and community change, not to make detailed predictions of ecological, economic, and social outcomes. In short, the EPM is an attempt to widen the perspectives of its users by integrating natural and social scientific information in a framework that recognizes the diversity of values at stake in South Florida land-use planning. For terrestrial ecosystems, land-cover change is one of the most important direct drivers of changes in ecosystem services (Hassan and others, 2005). More specifically, the fragmentation of habitat from expanding low-density development across landscapes appears to be a major driver of terrestrial species decline and the impairment of terrestrial ecosystem integrity, in some cases causing irreversible impairment from a land-use planning perspective (Brody, 2008; Peck, 1998). Many resource managers and land-use planners have come to realize that evaluating land-use conversions on a parcel-by-parcel basis leads to a fragmented and narrow view of the regional effects of natural land-cover loss to development (Marsh and Lallas, 1995). The EPM is an attempt to integrate important aspects of the coupled natural-system/human-system view from a regional planning perspective. The EPM evaluates proposed land-use changes, both conversion and intensification, in terms of relevant ecological, economic, and social criteria that combine information about probable land-use outcomes, based on ecological and environmental models, as well as value judgments, as expressed in user-modifiable preference models. Based on on-going meetings and interviews with stakeholders and potential tool users we foc

  11. A social-ecological model of readiness for transition to adult-oriented care for adolescents and young adults with chronic health conditions.

    PubMed

    Schwartz, L A; Tuchman, L K; Hobbie, W L; Ginsberg, J P

    2011-11-01

    Policy and research related to transition to adult care for adolescents and young adults (AYAs) has focused primarily on patient age, disease skills and knowledge. In an effort to broaden conceptualization of transition and move beyond isolated patient variables, a new social-ecological model of AYA readiness for transition (SMART) was developed. SMART development was informed by related theories, literature, expert opinion and pilot data collection using a questionnaire developed to assess provider report of SMART components with 100 consecutive patients in a childhood cancer survivorship clinic. The literature, expert opinion and pilot data collection support the relevance of SMART components and a social-ecological conceptualization of transition. Provider report revealed that many components, representing more than age, disease knowledge and skills, related to provider plans for transferring patients. SMART consists of inter-related constructs of patients, parents and providers with emphasis on variables amenable to intervention. Results support SMART's broadened conceptualization of transition readiness and need for assessment of multiple stakeholders' perspectives of patient transition readiness. A companion measure of SMART, which will be able to be completed by patients, parents and providers, will be developed to target areas of intervention to facilitate optimal transition readiness. Similar research programmes to establish evidence-based transition measures and interventions are needed. © 2011 Blackwell Publishing Ltd.

  12. Workshop to transfer VELMA watershed model results to ...

    EPA Pesticide Factsheets

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on streamflow, stream temperature, and other habitat characteristics affecting threatened salmon populations in the 100 square mile Tolt River watershed in Washington state. To date, the WED group has fully calibrated the watershed model to simulate Tolt River flows with a high degree of accuracy under current and historical conditions and practices, and is in the process of simulating long-term responses to specific watershed restoration practices conducted by the Snoqualmie Tribe and partners. On July 20-21 WED Researchers Bob McKane, Allen Brookes and ORISE Fellow Jonathan Halama will be attending a workshop at the Tolt River site in Carnation, WA, to present and discuss modeling results with the Snoqualmie Tribe and other Tolt River watershed stakeholders and land managers, including the Washington Departments of Ecology and Natural Resources, U.S. Forest Service, City of Seattle, King County, and representatives of the Northwest Indian Fisheries Commission. The workshop is being co-organized by the Snoqualmie Tribe, EPA Region 10 and WED. The purpose of this 2-day workshop is two-fold. First, on Day 1, the modeling team will perform its second site visit to the watershed, this time focus

  13. Heat transfer in fish: are short excursions between habitats a thermoregulatory behaviour to exploit resources in an unfavourable thermal environment?

    PubMed

    Pépino, Marc; Goyer, Katerine; Magnan, Pierre

    2015-11-01

    Temperature is the primary environmental factor affecting physiological processes in ectotherms. Heat-transfer models describe how the fish's internal temperature responds to a fluctuating thermal environment. Specifically, the rate coefficient (k), defined as the instantaneous rate of change in body temperature in relation to the difference between ambient and body temperature, summarizes the combined effects of direct thermal conduction through body mass, passive convection (intracellular and intercellular fluids) and forced convective heat transfer (cardiovascular system). The k-coefficient is widely used in fish ecology to understand how body temperature responds to changes in water temperature. The main objective of this study was to estimate the k-coefficient of brook charr equipped with internal temperature-sensitive transmitters in controlled laboratory experiments. Fish were first transferred from acclimation tanks (10°C) to tanks at 14, 19 or 23°C (warming experiments) and were then returned to the acclimation tanks (10°C; cooling experiments), thus producing six step changes in ambient temperature. We used non-linear mixed models to estimate the k-coefficient. Model comparisons indicated that the model incorporating the k-coefficient as a function of absolute temperature difference (dT: 4, 9 and 13°C) best described body temperature change. By simulating body temperature in a heterogeneous thermal environment, we provide theoretical predictions of maximum excursion duration between feeding and resting areas. Our simulations suggest that short (i.e. <60 min) excursions could be a common thermoregulatory behaviour adopted by cold freshwater fish species to sustain body temperature below a critical temperature threshold, enabling them to exploit resources in an unfavourable thermal environment. © 2015. Published by The Company of Biologists Ltd.

  14. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

    PubMed

    Bosire, Erick M; Blank, Lars M; Rosenbaum, Miriam A

    2016-08-15

    Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial community to access a solid electrode as an alternative electron acceptor. To better understand the ecological relationships between mediator producers and mediator utilizers, we here present a comparison of the phenazine-dependent electroactivities of three Pseudomonas strains. This work forms the foundation for more complex coculture investigations of mediated electron transfer in microbial fuel cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa

    PubMed Central

    Bosire, Erick M.; Blank, Lars M.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa. We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm−2 with ∼150 μg ml−1 phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. IMPORTANCE Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial community to access a solid electrode as an alternative electron acceptor. To better understand the ecological relationships between mediator producers and mediator utilizers, we here present a comparison of the phenazine-dependent electroactivities of three Pseudomonas strains. This work forms the foundation for more complex coculture investigations of mediated electron transfer in microbial fuel cells. PMID:27287325

  16. Reconstruction of forest geometries from terrestrial laser scanning point clouds for canopy radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Bremer, Magnus; Schmidtner, Korbinian; Rutzinger, Martin

    2015-04-01

    The architecture of forest canopies is a key parameter for forest ecological issues helping to model the variability of wood biomass and foliage in space and time. In order to understand the nature of subpixel effects of optical space-borne sensors with coarse spatial resolution, hypothetical 3D canopy models are widely used for the simulation of radiative transfer in forests. Thereby, radiation is traced through the atmosphere and canopy geometries until it reaches the optical sensor. For a realistic simulation scene we decompose terrestrial laser scanning point cloud data of leaf-off larch forest plots in the Austrian Alps and reconstruct detailed model ready input data for radiative transfer simulations. The point clouds are pre-classified into primitive classes using Principle Component Analysis (PCA) using scale adapted radius neighbourhoods. Elongated point structures are extracted as tree trunks. The tree trunks are used as seeds for a Dijkstra-growing procedure, in order to obtain single tree segmentation in the interlinked canopies. For the optimized reconstruction of branching architectures as vector models, point cloud skeletonisation is used in combination with an iterative Dijkstra-growing and by applying distance constraints. This allows conducting a hierarchical reconstruction preferring the tree trunk and higher order branches and avoiding over-skeletonization effects. Based on the reconstructed branching architectures, larch needles are modelled based on the hierarchical level of branches and the geometrical openness of the canopy. For radiative transfer simulations, branch architectures are used as mesh geometries representing branches as cylindrical pipes. Needles are either used as meshes or as voxel-turbids. The presented workflow allows an automatic classification and single tree segmentation in interlinked canopies. The iterative Dijkstra-growing using distance constraints generated realistic reconstruction results. As the mesh representation of branches proved to be sufficient for the simulation approach, the modelling of huge amounts of needles is much more efficient in voxel-turbid representation.

  17. Influences of Altered River Geomorphology on Channel-Floodplain Mass and Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Byrne, C. F.; Stone, M. C.

    2017-12-01

    River management strategies, including both river engineering and restoration, have altered river geomorphology and associated lateral channel-floodplain connectivity throughout the world. This altered connectivity is known to drive changes in ecologic and geomorphic processes during floods, however, quantification of altered connectivity is difficult due to the highly dynamic spatial and temporal nature of flood wave conditions. The objective of this research was to quantify the physical processes of lateral mass and momentum transfer at the channel-floodplain interface. The objective was achieved with the implementation of novel scripting and high-resolution, two-dimensional hydrodynamic modeling techniques under unsteady flow conditions. The process-based analysis focused on three geomorphic feature types within the Middle Rio Grande, New Mexico, USA: (1) historical floodplain surfaces, (2) inset floodplain surfaces formed as a result of channel training and hydrologic alteration, and (3) mechanically restored floodplain surfaces. Results suggest that inset floodplain feature types are not only subject to greater mass and momentum transfer magnitudes, but those connections are also more heterogeneous in nature compared with historical feature types. While restored floodplain feature types exhibit transfer magnitudes and heterogeneity comparable to inset feature types, the surfaces are not of great enough spatial extent to substantially influence total channel-floodplain mass and momentum transfer. Mass and momentum transfer also displayed differing characteristic changes as a result of increased flood magnitude, indicating that linked hydrodynamic processes can be altered differently as a result of geomorphic and hydrologic change. The results display the potential of high-resolution modeling strategies in capturing the spatial and temporal complexities of river processes. In addition, the results have implications for other fields of river science including biogeochemical exchange at the channel-floodplain interface and quantification of process associated with environmental flow and river restoration strategies.

  18. Stochiometry, Microbial community composition and decomposition, a modelling analysis

    NASA Astrophysics Data System (ADS)

    Berninger, Frank; Zhou, Xuan; Aaltonen, Heidi; Köster, Kajar; Heinonsalo, Jussi; Pumpanen, Jukka

    2017-04-01

    Enzyme activity based litter decomposition models describe the decomposition of soil organic matter as a function of microbial biomass and its activity. In these models, decomposition depends largely on microbial and litter stoïchiometry. We, used the model of Schimel and Weintraub (Soil Biology & Biochemistry 35 (2003) 549-563 largely relying on the modification of Waring B et al. Ecology Letters, (2013) 16: 887-894) and we modified the model to include bacteria, fungi and mycorrizal fungi as decomposer groups assuming different stochiometries. The model was tested against previously published data from a fire chronosequence from northern Finland. The model reconstructed well the development of soil organic matter, microbial biomasses, enzyme actitivies with time after fire. In a theoretical model analysis we tried to understand how the exchange of carbon and nitrogen between mycorrhiza and the plant as different litter stoïchiometries interact. The results indicate that if a high percentage of fungal N uptake is transferred to the plant mycorrhizal biomass will decrease drastically and does decrease, due to low mycorrhizal biomasses, the N uptake of plants. If a lower proportion of the fungal N uptake is transferred to the plant the N uptake of the plants is reasonable stable while the proportion of mycorrhiza of the total fungal biomass varies. The model is also able to simulate priming of soil organic matter decomposition.

  19. A factorial assessment of the sensitivity of the BATS land-surface parameterization scheme. [BATS (Biosphere-Atmosphere Transfer Scheme)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson-Sellers, A.

    Land-surface schemes developed for incorporation into global climate models include parameterizations that are not yet fully validated and depend upon the specification of a large (20-50) number of ecological and soil parameters, the values of which are not yet well known. There are two methods of investigating the sensitivity of a land-surface scheme to prescribed values: simple one-at-a-time changes or factorial experiments. Factorial experiments offer information about interactions between parameters and are thus a more powerful tool. Here the results of a suite of factorial experiments are reported. These are designed (i) to illustrate the usefulness of this methodology andmore » (ii) to identify factors important to the performance of complex land-surface schemes. The Biosphere-Atmosphere Transfer Scheme (BATS) is used and its sensitivity is considered (a) to prescribed ecological and soil parameters and (b) to atmospheric forcing used in the off-line tests undertaken. Results indicate that the most important atmospheric forcings are mean monthly temperature and the interaction between mean monthly temperature and total monthly precipitation, although fractional cloudiness and other parameters are also important. The most important ecological parameters are vegetation roughness length, soil porosity, and a factor describing the sensitivity of the stomatal resistance of vegetation to the amount of photosynthetically active solar radiation and, to a lesser extent, soil and vegetation albedos. Two-factor interactions including vegetation roughness length are more important than many of the 23 specified single factors. The results of factorial sensitivity experiments such as these could form the basis for intercomparison of land-surface parameterization schemes and for field experiments and satellite-based observation programs aimed at improving evaluation of important parameters.« less

  20. What Is "Known" in Community Music in Higher Education? Engagement, Emotional Learning and an Ecology of Ideas from the Student Perspective

    ERIC Educational Resources Information Center

    Mellor, Liz

    2011-01-01

    This article aims to make explicit the evolving ecology of ideas in the field of community music and higher education that are particular to a context yet transferable across respective fields of enquiry--music education, community music, music therapy and community music therapy. This is contextualized in two ways: (1) through a consideration of…

  1. Ecological Indication, Bioaccumulation, and Phytoremediation as Tools for Environmental Quality Management

    DTIC Science & Technology

    2004-12-01

    ECOLOGICAL INDICATION, BIOACCUMULATION, AND PHYTOREMEDIATION AS TOOLS FOR ENVIRONMENTAL QUALITY MANAGEMENT ELLY P. H. BEST1, HENRY E. TATEM1...subsequent transport to shoots, and degradation, or prevent contaminants from leaving the site in whatever form, such as leachate , runoff, trophic...transfer ( phytoremediation ). We use risk assessment to evaluate the toxicity and need for cleanup. Cleanup costs are expected to greatly exceed the cost

  2. Legacy effects of wildfire on stream thermal regimes and rainbow trout ecology: an integrated analysis of observation and individual-based models

    USGS Publications Warehouse

    Rosenberger, Amanda E.; Dunham, Jason B.; Neuswanger, Jason R.; Railsback, Steven F.

    2015-01-01

    Management of aquatic resources in fire-prone areas requires understanding of fish species’ responses to wildfire and of the intermediate- and long-term consequences of these disturbances. We examined Rainbow Trout populations in 9 headwater streams 10 y after a major wildfire: 3 with no history of severe wildfire in the watershed (unburned), 3 in severely burned watersheds (burned), and 3 in severely burned watersheds subjected to immediate events that scoured the stream channel and eliminated streamside vegetation (burned and reorganized). Results of a previous study of this system suggested the primary lasting effects of this wildfire history on headwater stream habitat were differences in canopy cover and solar radiation, which led to higher summer stream temperatures. Nevertheless, trout were present throughout streams in burned watersheds. Older age classes were least abundant in streams draining watersheds with a burned and reorganized history, and individuals >1 y old were most abundant in streams draining watersheds with an unburned history. Burned history corresponded with fast growth, low lipid content, and early maturity of Rainbow Trout. We used an individual-based model of Rainbow Trout growth and demographic patterns to determine if temperature interactions with bioenergetics and competition among individuals could lead to observed phenotypic and ecological differences among populations in the absence of other plausible mechanisms. Modeling suggested that moderate warming associated with wildfire and channel disturbance history leads to faster individual growth, which exacerbates competition for limited food, leading to decreases in population densities. The inferred mechanisms from this modeling exercise suggest the transferability of ecological patterns to a variety of temperature-warming scenarios.

  3. Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis

    PubMed Central

    Giometto, Andrea; Altermatt, Florian; Maritan, Amos; Stocker, Roman; Rinaldo, Andrea

    2015-01-01

    Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds important applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. Despite its ecological and technological relevance, an experimentally tested, general theoretical model of phototaxis seems unavailable to date. Here, we present accurate measurements of the behavior of the alga Euglena gracilis when exposed to controlled light fields. Analysis of E. gracilis’ phototactic accumulation dynamics over a broad range of light intensities proves that the classic Keller–Segel mathematical framework for taxis provides an accurate description of both positive and negative phototaxis only when phototactic sensitivity is modeled by a generalized “receptor law,” a specific nonlinear response function to light intensity that drives algae toward beneficial light conditions and away from harmful ones. The proposed phototactic model captures the temporal dynamics of both cells’ accumulation toward light sources and their dispersion upon light cessation. The model could thus be of use in integrating models of vertical phytoplankton migrations in marine and freshwater ecosystems, and in the design of bioreactors. PMID:25964338

  4. Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis.

    PubMed

    Giometto, Andrea; Altermatt, Florian; Maritan, Amos; Stocker, Roman; Rinaldo, Andrea

    2015-06-02

    Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds important applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. Despite its ecological and technological relevance, an experimentally tested, general theoretical model of phototaxis seems unavailable to date. Here, we present accurate measurements of the behavior of the alga Euglena gracilis when exposed to controlled light fields. Analysis of E. gracilis' phototactic accumulation dynamics over a broad range of light intensities proves that the classic Keller-Segel mathematical framework for taxis provides an accurate description of both positive and negative phototaxis only when phototactic sensitivity is modeled by a generalized "receptor law," a specific nonlinear response function to light intensity that drives algae toward beneficial light conditions and away from harmful ones. The proposed phototactic model captures the temporal dynamics of both cells' accumulation toward light sources and their dispersion upon light cessation. The model could thus be of use in integrating models of vertical phytoplankton migrations in marine and freshwater ecosystems, and in the design of bioreactors.

  5. Cultivation of bacteria with ecological capsules in space

    NASA Astrophysics Data System (ADS)

    Sugiura, K.; Hashimoto, H.; Ishikawa, Y.; Kawasaki, Y.; Kobayashi, K.; Seki, K.; Koike, J.; Saito, T.

    1999-01-01

    A hermetically materially-closed aquatic microcosm containing bacteria, algae, and invertebrates was developed as a tool for determining the changes of ecological systems in space. The species composition was maintained for more than 365 days. The microcosm could be readily replicated. The results obtained from the simulation models indicated that there is a self-regulation homeostasis in coupling of production and consumption, which make the microcosm remarkably stable, and that the transfer of metabolites by diffusion is one of the important factors determining the behavior of the system. The microcosms were continuously irradiated using a 60 Co source. After 80 days, no elimination of organisms was found at any of the three irradiation levels (0.015, 0.55 and 3.0 mGy/day). The number of radio-resistance bacteria mutants was not increased in the microcosm at three irradiation levels. We proposed to research whether this microcosm is self-sustainable in space. When an aquatic ecosystem comes under stress due to the micro-gravity and enhanced radiation environment in space, whether the ecosystem is self-sustainable is not known. An aquatic ecosystem shows what happens as a result of the self-organizational processes of selection and adaptation. A microcosm is a useful tool for understanding such processes. We have proposed researching whether a microcosm is self-sustainable in space. The benefits of this project will be: (1) To acquire data for design of a Controlled Ecological Life Support System, (2) Possibility of microbial mutation in a space station. We report that a hermetically materially-closed microcosm, which could be a useful tool for determining changes of ecological processes in space, was developed, and that the effects of microgravity and enhanced radiation on the hermetically materially-closed microcosm were estimated through measurements on the Earth and simulation models.

  6. Data Storage and sharing for the long tail of science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Pouchard, L.; Smith, P. M.

    Research data infrastructure such as storage must now accommodate new requirements resulting from trends in research data management that require researchers to store their data for the long term and make it available to other researchers. We propose Data Depot, a system and service that provides capabilities for shared space within a group, shared applications, flexible access patterns and ease of transfer at Purdue University. We evaluate Depot as a solution for storing and sharing multiterabytes of data produced in the long tail of science with a use case in soundscape ecology studies from the Human- Environment Modeling and Analysismore » Laboratory. We observe that with the capabilities enabled by Data Depot, researchers can easily deploy fine-grained data access control, manage data transfer and sharing, as well as integrate their workflows into a High Performance Computing environment.« less

  7. Beyond positivist ecology: toward an integrated ecological ethics.

    PubMed

    Norton, Bryan G

    2008-12-01

    A post-positivist understanding of ecological science and the call for an "ecological ethic" indicate the need for a radically new approach to evaluating environmental change. The positivist view of science cannot capture the essence of environmental sciences because the recent work of "reflexive" ecological modelers shows that this requires a reconceptualization of the way in which values and ecological models interact in scientific process. Reflexive modelers are ecological modelers who believe it is appropriate for ecologists to examine the motives for their choices in developing models; this self-reflexive approach opens the door to a new way of integrating values into public discourse and to a more comprehensive approach to evaluating ecological change. This reflexive building of ecological models is introduced through the transformative simile of Aldo Leopold, which shows that learning to "think like a mountain" involves a shift in both ecological modeling and in values and responsibility. An adequate, interdisciplinary approach to ecological valuation, requires a re-framing of the evaluation questions in entirely new ways, i.e., a review of the current status of interdisciplinary value theory with respect to ecological values reveals that neither of the widely accepted theories of environmental value-neither economic utilitarianism nor intrinsic value theory (environmental ethics)-provides a foundation for an ecologically sensitive evaluation process. Thus, a new, ecologically sensitive, and more comprehensive approach to evaluating ecological change would include an examination of the metaphors that motivate the models used to describe environmental change.

  8. Lateral gene transfer in a heavy metal-contaminated-groundwater microbial community

    DOE PAGES

    Hemme, Christopher L.; Green, Stefan J.; Rishishwar, Lavanya; ...

    2016-04-05

    Here, unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive.

  9. Fermentation and oxygen transfer in microgravity

    NASA Technical Reports Server (NTRS)

    Dunlop, Eric H.

    1989-01-01

    The need for high rate oxygen transfer in microgravity for a Controlled Ecological Life Support System (CELSS) environment offers a number of difficulties and challenges. The use of a phase separated bioreactor appears to provide a way of overcoming these problems resulting in a system capable of providing high cell densities with rapid fermentation rates. Some of the key design elements are discussed.

  10. Competing values: a case study of Pennsylvania's elk herd as a tourism attraction

    Treesearch

    Jeffrey A. Walsh; Leonard K. Long

    2002-01-01

    This paper qualitatively investigates the Pennsylvania Game Commission's (POC) "Elk Trap and Transfer Project" as a tourism development initiative. Beginning in 1998, a three-year trap and transfer project was initiated by the POC to relocate 33 elk from Elk County to Clinton County. The ecological goals of this project included re-establishing an elk...

  11. Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation

    PubMed Central

    Bliskovsky, Valery V.; Malagon, Francisco; Baker, James D.; Prince, Jeffrey S.; Klaus, James S.; Adhya, Sankar L.

    2017-01-01

    ABSTRACT Bacteriophages infect an estimated 1023 to 1025 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub “superspreaders,” releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. PMID:28096488

  12. Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model

    ERIC Educational Resources Information Center

    Li, Weidong; Rukavina, Paul

    2012-01-01

    In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…

  13. Stoichiometric modelling of assimilatory and dissimilatory biomass utilisation in a microbial community

    PubMed Central

    Hunt, Kristopher A.; Jennings, Ryan deM.; Inskeep, William P.; Carlson, Ross P.

    2017-01-01

    Summary Assimilatory and dissimilatory utilisation of autotroph biomass by heterotrophs is a fundamental mechanism for the transfer of nutrients and energy across trophic levels. Metagenome data from a tractable, thermoacidophilic microbial community in Yellowstone National Park was used to build an in silico model to study heterotrophic utilisation of autotroph biomass using elementary flux mode analysis and flux balance analysis. Assimilatory and dissimilatory biomass utilisation was investigated using 29 forms of biomass-derived dissolved organic carbon (DOC) including individual monomer pools, individual macromolecular pools and aggregate biomass. The simulations identified ecologically competitive strategies for utilizing DOC under conditions of varying electron donor, electron acceptor or enzyme limitation. The simulated growth environment affected which form of DOC was the most competitive use of nutrients; for instance, oxygen limitation favoured utilisation of less reduced and fermentable DOC while carbon-limited environments favoured more reduced DOC. Additionally, metabolism was studied considering two encompassing metabolic strategies: simultaneous versus sequential use of DOC. Results of this study bound the transfer of nutrients and energy through microbial food webs, providing a quantitative foundation relevant to most microbial ecosystems. PMID:27387069

  14. A 3D radiative transfer model based on lidar data and its application on hydrological and ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Li, W.; Su, Y.; Harmon, T. C.; Guo, Q.

    2013-12-01

    Light Detection and Ranging (lidar) is an optical remote sensing technology that measures properties of scattered light to find range and/or other information of a distant object. Due to its ability to generate 3-dimensional data with high spatial resolution and accuracy, lidar technology is being increasingly used in ecology, geography, geology, geomorphology, seismology, remote sensing, and atmospheric physics. In this study we construct a 3-dimentional (3D) radiative transfer model (RTM) using lidar data to simulate the spatial distribution of solar radiation (direct and diffuse) on the surface of water and mountain forests. The model includes three sub-models: a light model simulating the light source, a sensor model simulating the camera, and a scene model simulating the landscape. We use ground-based and airborne lidar data to characterize the 3D structure of the study area, and generate a detailed 3D scene model. The interactions between light and object are simulated using the Monte Carlo Ray Tracing (MCRT) method. A large number of rays are generated from the light source. For each individual ray, the full traveling path is traced until it is absorbed or escapes from the scene boundary. By locating the sensor at different positions and directions, we can simulate the spatial distribution of solar energy at the ground, vegetation and water surfaces. These outputs can then be incorporated into meteorological drivers for hydrologic and energy balance models to improve our understanding of hydrologic processes and ecosystem functions.

  15. Eco-Evolutionary Dynamics of Episomes among Ecologically Cohesive Bacterial Populations

    DOE PAGES

    Xue, Hong; Cordero, Otto X.; Camas, Francisco M.; ...

    2015-05-05

    Although plasmids and other episomes are recognized as key players in horizontal gene transfer among microbes, their diversity and dynamics among ecologically structured host populations in the wild remain poorly understood. Here, we show that natural populations of marine Vibrionaceae bacteria host large numbers of families of episomes, consisting of plasmids and a surprisingly high fraction of plasmid-like temperate phages. Episomes are unevenly distributed among host populations, and contrary to the notion that high-density communities in biofilms act as hot spots of gene transfer, we identified a strong bias for episomes to occur in free-living as opposed to particle-attached cells.more » Mapping of episomal families onto host phylogeny shows that, with the exception of all phage and a few plasmid families, most are of recent evolutionary origin and appear to have spread rapidly by horizontal transfer. Such high eco-evolutionary turnover is particularly surprising for plasmids that are, based on previously suggested categorization, putatively nontransmissible, indicating that this type of plasmid is indeed frequently transferred by currently unknown mechanisms. Finally, analysis of recent gene transfer among plasmids reveals a network of extensive exchange connecting nearly all episomes. Genes functioning in plasmid transfer and maintenance are frequently exchanged, suggesting that plasmids can be rapidly transformed from one category to another. The broad distribution of episomes among distantly related hosts and the observed promiscuous recombination patterns show how episomes can offer their hosts rapid assembly and dissemination of novel functions.« less

  16. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment.

    PubMed

    Shao, Sicheng; Hu, Yongyou; Cheng, Jianhua; Chen, Yuancai

    2018-05-28

    Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.

  17. Clues to Coral Reef Health: Integrating Radiative Transfer Modeling and Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Guild, Liane; Ganapol, Barry; Kramer, Philip; Armstrong, Roy; Gleason, Art; Torres, Juan; Johnson, Lee; Garfield, Toby; Peterson, David L. (Technical Monitor)

    2002-01-01

    An important contribution to coral reef research is to improve spectral distinction between various health states of coral species in areas subject to harmful anthropogenic activity and climate change. New insights into radiative transfer properties of corals under healthy and stressed conditions can advance understandings of ecological processes on reefs and allow better assessments of the impacts of large-scale bleaching and disease events, Our objective was to examine the spectral and spatial properties of hyperspectral sensors that may be used to remotely sense changes in reef community health. We compare in situ reef environment spectra (healthy coral, stressed coral, dead coral, algae, and sand) with airborne hyperspectral data to identify important spectral characteristics and indices. Additionally, spectral measurements over a range of water depths, relief, and bottom types are compared to help quantify bottom-water column influences. In situ spectra were collected in July and August 2002 at the Long Rock site in the Andros Island, Bahamas coastal zone coral reef. Our primary emphasis was on Acropora palmata (or elkhorn coral), a major reef building coral, which is prevalent in the study area, but is suffering from white band disease. A. palmata is currently being, proposed as an endangered species because its populations have severely declined in many areas of the Caribbean. In addition to the A. palmata biotope, we have collected spectra of at least seven other coral biotopes that exist within the study area, each with different coral community composition, density of corals, relief, and size of corals. Coral spectral reflectance was then input into a radiative transfer model, CORALMOD (CM1), which is based on a leaf radiative transfer model. In CM1, input coral reflectance measurements produce modeled reflectance through an inversion at each visible wavelength to provide the absorption spectrum. Initially, we imposed a scattering baseline that is the same regardless of the coral condition and that coral is optically thick and no light is transmitted through coral. Here we will focus on methodology, experimental design, and initial findings of the in situ spectral measurements and preliminary output from the radiative transfer model.

  18. Molecular musings in microbial ecology and evolution

    PubMed Central

    2011-01-01

    A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology. The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology. The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology). The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough resolution to uncover what lies below the species level. The answers of the evolutionary microbiologist and microbial ecologist to these three questions illustrate differences in their theoretical frameworks. These differences mean that both fields can react quite distinctly to the same discovery, incorporating it with more or less difficulty in their scientific practice. Reviewers This article was reviewed by W. Ford Doolittle, Eugene V. Koonin and Maureen A. O'Malley. PMID:22074255

  19. Molecular musings in microbial ecology and evolution.

    PubMed

    Case, Rebecca J; Boucher, Yan

    2011-11-10

    A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology.The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology.The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology).The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough resolution to uncover what lies below the species level.The answers of the evolutionary microbiologist and microbial ecologist to these three questions illustrate differences in their theoretical frameworks. These differences mean that both fields can react quite distinctly to the same discovery, incorporating it with more or less difficulty in their scientific practice.

  20. Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel).

    PubMed

    Makler-Pick, Vardit; Hipsey, Matthew R; Zohary, Tamar; Carmel, Yohay; Gal, Gideon

    2017-03-29

    The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10-20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions.

  1. Rapid evolution of introduced tree pathogens via episodic selection and horizontal gene transfer

    Treesearch

    Clive Brasier

    2012-01-01

    Routine selection is simply defined as “the ecological constraints experienced by an endemic organism that favor a relatively stable but fluctuating population structure over time.” Its antithesis is episodic selection, defined as “any sudden ecological disturbance likely to lead to a significant alteration in a species’ population structure” (Brasier 1986, 1995). In...

  2. Climate and streamflow trends in the Columbia River Basin: evidence for ecological and engineering resilience to climate change

    Treesearch

    K.L. Hatcher; J.A. Jones

    2013-01-01

    Large river basins transfer the water signal from the atmosphere to the ocean. Climate change is widely expected to alter streamflow and potentially disrupt water management systems. We tested the ecological resilience—capacity of headwater ecosystems to sustain streamflow under climate change—and the engineering resilience—capacity of dam and reservoir management to...

  3. Uncertainty of Monetary Valued Ecosystem Services – Value Transfer Functions for Global Mapping

    PubMed Central

    Schmidt, Stefan; Manceur, Ameur M.; Seppelt, Ralf

    2016-01-01

    Growing demand of resources increases pressure on ecosystem services (ES) and biodiversity. Monetary valuation of ES is frequently seen as a decision-support tool by providing explicit values for unconsidered, non-market goods and services. Here we present global value transfer functions by using a meta-analytic framework for the synthesis of 194 case studies capturing 839 monetary values of ES. For 12 ES the variance of monetary values could be explained with a subset of 93 study- and site-specific variables by utilizing boosted regression trees. This provides the first global quantification of uncertainties and transferability of monetary valuations. Models explain from 18% (water provision) to 44% (food provision) of variance and provide statistically reliable extrapolations for 70% (water provision) to 91% (food provision) of the terrestrial earth surface. Although the application of different valuation methods is a source of uncertainty, we found evidence that assuming homogeneity of ecosystems is a major error in value transfer function models. Food provision is positively correlated with better life domains and variables indicating positive conditions for human well-being. Water provision and recreation service show that weak ownerships affect valuation of other common goods negatively (e.g. non-privately owned forests). Furthermore, we found support for the shifting baseline hypothesis in valuing climate regulation. Ecological conditions and societal vulnerability determine valuation of extreme event prevention. Valuation of habitat services is negatively correlated with indicators characterizing less favorable areas. Our analysis represents a stepping stone to establish a standardized integration of and reporting on uncertainties for reliable and valid benefit transfer as an important component for decision support. PMID:26938447

  4. A Conceptual Framework for Evaluating the Domains of Applicability of Ecological Models and its Implementation in the Ecological Production Function Library - International Society for Ecological Modelling Conference

    EPA Science Inventory

    The use of computational ecological models to inform environmental management and policy has proliferated in the past 25 years. These models have become essential tools as linkages and feedbacks between human actions and ecological responses can be complex, and as funds for sampl...

  5. GIS tools, courses, and learning pathways offered by The National Interagency Fuels, Fire, and Vegetation Technology Transfer (NIFTT)

    Treesearch

    Heather Heward; Kathy H. Schon

    2009-01-01

    As technology continues to evolve in the area of fuel and wildland fire management so does the need to have effective tools and training on these technologies. The National Interagency Fuels Coordination Group has chartered a team of professionals to coordinate, develop, and transfer consistent, efficient, science-based fuel and fire ecology assessment GIS tools and...

  6. Data Assimilation at FLUXNET to Improve Models towards Ecological Forecasting (Invited)

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2009-12-01

    Dramatically increased volumes of data from observational and experimental networks such as FLUXNET call for transformation of ecological research to increase its emphasis on quantitative forecasting. Ecological forecasting will also meet the societal need to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-based models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, today’s ecological models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting is data assimilation, which uses data to inform initial conditions and to help constrain a model during simulation to yield results that approximate reality as closely as possible. In an era with dramatically increased availability of data from observational and experimental networks, data assimilation is a key technique that helps convert the raw data into ecologically meaningful products so as to accelerate our understanding of ecological processes, test ecological theory, forecast changes in ecological services, and better serve the society. This talk will use examples to illustrate how data from FLUXNET have been assimilated with process-based models to improve estimates of model parameters and state variables; to quantify uncertainties in ecological forecasting arising from observations, models and their interactions; and to evaluate information contributions of data and model toward short- and long-term forecasting of ecosystem responses to global change.

  7. Phenemenological vs. biophysical models of thermal stress in aquatic eggs

    NASA Astrophysics Data System (ADS)

    Martin, B.

    2016-12-01

    Predicting species responses to climate change is a central challenge in ecology, with most efforts relying on lab derived phenomenological relationships between temperature and fitness metrics. We tested one of these models using the embryonic stage of a Chinook salmon population. We parameterized the model with laboratory data, applied it to predict survival in the field, and found that it significantly underestimated field-derived estimates of thermal mortality. We used a biophysical model based on mass-transfer theory to show that the discrepancy was due to the differences in water flow velocities between the lab and the field. This mechanistic approach provides testable predictions for how the thermal tolerance of embryos depends on egg size and flow velocity of the surrounding water. We found support for these predictions across more than 180 fish species, suggesting that flow and temperature mediated oxygen limitation is a general mechanism underlying the thermal tolerance of embryos.

  8. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  9. A methodology for ecosystem-scale modeling of selenium

    USGS Publications Warehouse

    Presser, T.S.; Luoma, S.N.

    2010-01-01

    The main route of exposure for selenium (Se) is dietary, yet regulations lack biologically based protocols for evaluations of risk. We propose here an ecosystem-scale model that conceptualizes and quantifies the variables that determinehow Se is processed from water through diet to predators. This approach uses biogeochemical and physiological factors from laboratory and field studies and considers loading, speciation, transformation to particulate material, bioavailability, bioaccumulation in invertebrates, and trophic transfer to predators. Validation of the model is through data sets from 29 historic and recent field case studies of Se-exposed sites. The model links Se concentrations across media (water, particulate, tissue of different food web species). It can be used to forecast toxicity under different management or regulatory proposals or as a methodology for translating a fish-tissue (or other predator tissue) Se concentration guideline to a dissolved Se concentration. The model illustrates some critical aspects of implementing a tissue criterion: 1) the choice of fish species determines the food web through which Se should be modeled, 2) the choice of food web is critical because the particulate material to prey kinetics of bioaccumulation differs widely among invertebrates, 3) the characterization of the type and phase of particulate material is important to quantifying Se exposure to prey through the base of the food web, and 4) the metric describing partitioning between particulate material and dissolved Se concentrations allows determination of a site-specific dissolved Se concentration that would be responsible for that fish body burden in the specific environment. The linked approach illustrates that environmentally safe dissolved Se concentrations will differ among ecosystems depending on the ecological pathways and biogeochemical conditions in that system. Uncertainties and model sensitivities can be directly illustrated by varying exposure scenarios based on site-specific knowledge. The model can also be used to facilitate site-specific regulation and to present generic comparisons to illustrate limitations imposed by ecosystem setting and inhabitants. Used optimally, the model provides a tool for framing a site-specific ecological problem or occurrence of Se exposure, quantify exposure within that ecosystem, and narrow uncertainties abouthowto protect it by understanding the specifics of the underlying system ecology, biogeochemistry, and hydrology.?? 2010 SETAC.

  10. A methodology for ecosystem-scale modeling of selenium.

    PubMed

    Presser, Theresa S; Luoma, Samuel N

    2010-10-01

    The main route of exposure for selenium (Se) is dietary, yet regulations lack biologically based protocols for evaluations of risk. We propose here an ecosystem-scale model that conceptualizes and quantifies the variables that determine how Se is processed from water through diet to predators. This approach uses biogeochemical and physiological factors from laboratory and field studies and considers loading, speciation, transformation to particulate material, bioavailability, bioaccumulation in invertebrates, and trophic transfer to predators. Validation of the model is through data sets from 29 historic and recent field case studies of Se-exposed sites. The model links Se concentrations across media (water, particulate, tissue of different food web species). It can be used to forecast toxicity under different management or regulatory proposals or as a methodology for translating a fish-tissue (or other predator tissue) Se concentration guideline to a dissolved Se concentration. The model illustrates some critical aspects of implementing a tissue criterion: 1) the choice of fish species determines the food web through which Se should be modeled, 2) the choice of food web is critical because the particulate material to prey kinetics of bioaccumulation differs widely among invertebrates, 3) the characterization of the type and phase of particulate material is important to quantifying Se exposure to prey through the base of the food web, and 4) the metric describing partitioning between particulate material and dissolved Se concentrations allows determination of a site-specific dissolved Se concentration that would be responsible for that fish body burden in the specific environment. The linked approach illustrates that environmentally safe dissolved Se concentrations will differ among ecosystems depending on the ecological pathways and biogeochemical conditions in that system. Uncertainties and model sensitivities can be directly illustrated by varying exposure scenarios based on site-specific knowledge. The model can also be used to facilitate site-specific regulation and to present generic comparisons to illustrate limitations imposed by ecosystem setting and inhabitants. Used optimally, the model provides a tool for framing a site-specific ecological problem or occurrence of Se exposure, quantify exposure within that ecosystem, and narrow uncertainties about how to protect it by understanding the specifics of the underlying system ecology, biogeochemistry, and hydrology. © 2010 SETAC.

  11. Assessing Regional and Interspecific Variation in Threshold Responses of Forest Breeding Birds through Broad Scale Analyses

    PubMed Central

    van der Hoek, Yntze; Renfrew, Rosalind; Manne, Lisa L.

    2013-01-01

    Background Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold effects are similar across species and regions. Methodology/Principal Findings We modeled local persistence and extinction dynamics of 25 forest-associated breeding birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data from adjacent New York State, which showed that most species support persistence and extinction threshold models (15 and 22 of 25 study species respectively). In addition, species that supported a threshold model in both states had associated average threshold estimates of 61.41% (SE = 6.11, persistence) and 66.45% (SE = 9.15, extinction) in New York, compared to 51.08% (SE = 10.60, persistence) and 73.67% (SE = 5.70, extinction) in Vermont. Across species, thresholds were found at 19.45–87.96% forest cover for persistence and 50.82–91.02% for extinction dynamics. Conclusions/Significance Through an approach that allows for broad-scale comparisons of threshold responses, we show that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby regions can be pronounced. We present both ecological and methodological factors that may contribute to the different model results, but propose that regardless of the reasons behind these differences, our results merit a warning that threshold values cannot simply be transferred across regions or interpreted as clear-cut targets for ecosystem management and conservation. PMID:23409106

  12. Biomechanics meets the ecological niche: the importance of temporal data resolution.

    PubMed

    Kearney, Michael R; Matzelle, Allison; Helmuth, Brian

    2012-03-15

    The emerging field of mechanistic niche modelling aims to link the functional traits of organisms to their environments to predict survival, reproduction, distribution and abundance. This approach has great potential to increase our understanding of the impacts of environmental change on individuals, populations and communities by providing functional connections between physiological and ecological response to increasingly available spatial environmental data. By their nature, such mechanistic models are more data intensive in comparison with the more widely applied correlative approaches but can potentially provide more spatially and temporally explicit predictions, which are often needed by decision makers. A poorly explored issue in this context is the appropriate level of temporal resolution of input data required for these models, and specifically the error in predictions that can be incurred through the use of temporally averaged data. Here, we review how biomechanical principles from heat-transfer and metabolic theory are currently being used as foundations for mechanistic niche models and consider the consequences of different temporal resolutions of environmental data for modelling the niche of a behaviourally thermoregulating terrestrial lizard. We show that fine-scale temporal resolution (daily) data can be crucial for unbiased inference of climatic impacts on survival, growth and reproduction. This is especially so for species with little capacity for behavioural buffering, because of behavioural or habitat constraints, and for detecting temporal trends. However, coarser-resolution data (long-term monthly averages) can be appropriate for mechanistic studies of climatic constraints on distribution and abundance limits in thermoregulating species at broad spatial scales.

  13. The impact of the Brazilian family health on selected primary care sensitive conditions: A systematic review

    PubMed Central

    Menzies, Dick; Hone, Thomas; Dehghani, Kianoush; Trajman, Anete

    2017-01-01

    Background Brazil has the largest public health-system in the world, with 120 million people covered by its free primary care services. The Family Health Strategy (FHS) is the main primary care model, but there is no consensus on its impact on health outcomes. We systematically reviewed published evidence regarding the impact of the Brazilian FHS on selective primary care sensitive conditions (PCSC). Methods We searched Medline, Web of Science and Lilacs in May 2016 using key words in Portuguese and English, without language restriction. We included studies if intervention was the FHS; comparison was either different levels of FHS coverage or other primary health care service models; outcomes were the selected PCSC; and results were adjusted for relevant sanitary and socioeconomic variables, including the national conditional cash transfer program (Bolsa Familia). Due to differences in methods and outcomes reported, pooling of results was not possible. Results Of 1831 records found, 31 met our inclusion criteria. Of these, 25 were ecological studies. Twenty-one employed longitudinal quasi-experimental methods, 27 compared different levels the FHS coverage, whilst four compared the FHS versus other models of primary care. Fourteen studies found an association between higher FHS coverage and lower post-neonatal and child mortality. When the effect of Bolsa Familia was accounted for, the effect of the FHS on child mortality was greater. In 13 studies about hospitalizations due to PCSC, no clear pattern of association was found. In four studies, there was no effect on child and elderly vaccination or low-birth weight. No included studies addressed breast-feeding, dengue, HIV/AIDS and other neglected infectious diseases. Conclusions Among these ecological studies with limited quality evidence, increasing coverage by the FHS was consistently associated with improvements in child mortality. Scarce evidence on other health outcomes, hospitalization and synergies with cash transfer was found. PMID:28786997

  14. [Principles and methodology for ecological rehabilitation and security pattern design in key project construction].

    PubMed

    Chen, Li-Ding; Lu, Yi-He; Tian, Hui-Ying; Shi, Qian

    2007-03-01

    Global ecological security becomes increasingly important with the intensive human activities. The function of ecological security is influenced by human activities, and in return, the efficiency of human activities will also be affected by the patterns of regional ecological security. Since the 1990s, China has initiated the construction of key projects "Yangtze Three Gorges Dam", "Qinghai-Tibet Railway", "West-to-East Gas Pipeline", "West-to-East Electricity Transmission" and "South-to-North Water Transfer" , etc. The interaction between these projects and regional ecological security has particularly attracted the attention of Chinese government. It is not only important for the regional environmental protection, but also of significance for the smoothly implementation of various projects aimed to develop an ecological rehabilitation system and to design a regional ecological security pattern. This paper made a systematic analysis on the types and characteristics of key project construction and their effects on the environment, and on the basis of this, brought forward the basic principles and methodology for ecological rehabilitation and security pattern design in this construction. It was considered that the following issues should be addressed in the implementation of a key project: 1) analysis and evaluation of current regional ecological environment, 2) evaluation of anthropogenic disturbances and their ecological risk, 3) regional ecological rehabilitation and security pattern design, 4) scenario analysis of environmental benefits of regional ecological security pattern, 5) re-optimization of regional ecological system framework, and 6) establishment of regional ecosystem management plan.

  15. Tri-Service Procedural Guidelines for Ecological Risk Assessments. Volume 1.

    DTIC Science & Technology

    1996-05-01

    appearance of product changes pH and a pH sensitive dye is present in the medium), by change in turbidity, or by the production of a precipitate or chemical...project has been the development of procedural guidelines for ecological risk assessment. The product of this effort will maximize the transfer of...constitute an official endorsement of any commercial products . This report may not be cited for the purpose of advertisement. This report has been

  16. General Properties for an Agrawal Thermal Engine

    NASA Astrophysics Data System (ADS)

    Paéz-Hernández, Ricardo T.; Chimal-Eguía, Juan Carlos; Sánchez-Salas, Norma; Ladino-Luna, Delfino

    2018-04-01

    This paper presents a general property of endoreversible thermal engines known as the Semisum property previously studied in a finite-time thermodynamics context for a Curzon-Ahlborn (CA) engine but now extended to a simplified version of the CA engine studied by Agrawal in 2009 (A simplified version of the Curzon-Ahlborn engine, European Journal of Physics 30 (2009), 1173). By building the Ecological function, proposed by Angulo-Brown (An ecological optimization criterion for finite-time heat engines, Journal of Applied Physics 69 (1991), 7465-7469) in 1991, and considering two heat transfer laws an analytical expression is obtained for efficiency and power output which depends only on the heat reservoirs' temperature. When comparing the existing efficiency values of real power plants and the theoretical efficiencies obtained in this work, it is observed that the Semisum property is satisfied. Moreover, for the Newton and the Dulong-Petit heat transfer laws the existence of the g function is demonstrated and we confirm that in a Carnot-type thermal engine there is a general property independent of the heat transfer law used between the thermal reservoirs and the working substance.

  17. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    PubMed

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  18. Ecosystems and People: Qualitative Insights

    EPA Science Inventory

    Both qualitative and quantitative techniques are crucial in researching human impacts from ecological changes. This matches the importance of ?mixed methods? approaches in other disciplines. Qualitative research helps explore the relevancy and transferability of the foundational ...

  19. Component modeling in ecological risk assessment: Disturbance in interspecific interactions caused by air toxics introduced into terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Swider, Jan Zenon

    The human health risk assessment (HRA), initiated by the onset of nuclear industry, has been a well established methodology for assessing the impacts of human created contamination on an individual human being and entire population. The wide spread of applications and tools grown upon this methodology allows one not only to identify the hazards, but also to manage the risks. Recently, there has existed an increased awareness of the need to conduct ecological risk assessments (ERA) in addition to HRAs. The ERAs are, by and large, more complex than typical HRAs and involve not only different species but whole ecological systems. Such complex analyses require a thorough understanding of the processes underway in the ecosystem, including the contaminant transport through the food web, population dynamics as well as intra- and inter-specific relationships. The exposure pathways change radically depending on the consumer tier. Plants produce their nutriment from the sunlight and raw inorganic compounds. Animals and other living forms obtain energy by eating plants, other animals and detritus. Their double role as food consumers and food producers causes a trophic structure of the ecological system, where nutrients and energy are transferred from one trophic level to another. This is a dynamic process of energy flow, mostly in the form of food, varying with time and space. In order to conduct an efficient ERA, a multidisciplinary framework is needed. This framework can be enhanced by analyzing predator-prey interactions during the environmental disturbances caused by a pollutant emission, and by assessing the consequences of such disturbances. It is necessary to develop a way to describe how human industrial activity affects the ecosystems. Existing ecological studies have mostly been focused either on pure ecological interdependencies or on limited perspectives of human activities. In this study, we discuss the issues of air pollution and its ecological impacts from the Ecological Risk Assessment standpoint and examine the impact of air toxics emissions on an ecosystem, with particular emphasis on predator-prey interactions. Such analysis may help to identify the most likely conditions leading to the ecosystem instability and possibility of its recuperation.

  20. Advancing Ecological Models to Compare Scale in Multi-Level Educational Change

    ERIC Educational Resources Information Center

    Woo, David James

    2016-01-01

    Education systems as units of analysis have been metaphorically likened to ecologies to model change. However, ecological models to date have been ineffective in modelling educational change that is multi-scale and occurs across multiple levels of an education system. Thus, this paper advances two innovative, ecological frameworks that improve on…

  1. Determining spatially discretized surface flow and baseflow in the context of climate change and water quality management

    NASA Astrophysics Data System (ADS)

    Raimonet, M.; Oudin, L.; Rabouille, C.; Garnier, J.; Silvestre, M.; Vautard, R.; Thieu, V.

    2016-12-01

    Water quality management of fresh and marine aquatic systems requires modelling tools along the land-ocean continuum in order to evaluate the effect of climate change on nutrient transfer and on potential ecosystem dysfonctioning (e.g. eutrophication, anoxia). In addition to direct effects of climate change on water temperature, it is essential to consider indirect effects of precipitation and temperature changes on hydrology since nutrient transfers are particularly sensitive to the partition of streamflow between surface flow and baseflow. Yet, the determination of surface flow and baseflow, their spatial repartition on drainage basins, and their relative potential evolution under climate change remains challenging. In this study, we developed a generic approach to determine 10-day surface flow and baseflow using a regionalized hydrological model applied at a high spatial resolution (unitary catchments of area circa 10km²). Streamflow data at gauged basins were used to calibrate hydrological model parameters that were then applied on neighbor ungauged basins to estimate streamflow at the scale of the French territory. The proposed methodology allowed representing spatialized surface flow and baseflow that are consistent with climatic and geomorphological settings. The methodology was then used to determine the effect of climate change on the spatial repartition of surface flow and baseflow on the Seine drainage bassin. Results showed large discrepancies of both the amount and the spatial repartition of changes of surface flow and baseflow according to the several GCM and RCM used to derive projected climatic forcing. Consequently, it is expected that the impact of climate change on nutrient transfer might also be quite heterogeneous for the Seine River. This methodology could be applied in any drainage basin where at least several gauged hydrometric stations are available. The estimated surface flow and baseflow can then be used in hydro-ecological models in order to evaluate direct and indirect impacts of climate change on nutrient transfers and potential ecosystem dysfunctioning along the land-ocean continuum.

  2. Measurement of tree canopy architecture

    NASA Technical Reports Server (NTRS)

    Martens, S. N.; Ustin, S. L.; Norman, J. M.

    1991-01-01

    The lack of accurate extensive geometric data on tree canopies has retarded development and validation of radiative transfer models. A stratified sampling method was devised to measure the three-dimensional geometry of 16 walnut trees which had received irrigation treatments of either 100 or 33 per cent of evapotranspirational (ET) demand for the previous two years. Graphic reconstructions of the three-dimensional geometry were verified by 58 independent measurements. The distributions of stem- and leaf-size classes, lengths, and angle classes were determined and used to calculate leaf area index (LAI), stem area, and biomass. Reduced irrigation trees have lower biomass of stems, leaves and fruit, lower LAI, steeper leaf angles and altered biomass allocation to large stems. These data can be used in ecological models that link canopy processes with remotely sensed measurements.

  3. Statistical ecology comes of age.

    PubMed

    Gimenez, Olivier; Buckland, Stephen T; Morgan, Byron J T; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-12-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.

  4. Statistical ecology comes of age

    PubMed Central

    Gimenez, Olivier; Buckland, Stephen T.; Morgan, Byron J. T.; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M.; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M.; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-01-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1–4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data. PMID:25540151

  5. Modeling Flight Attendants’ Exposures to Pesticide in Disinsected Aircraft Cabins

    PubMed Central

    Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford

    2014-01-01

    Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means±standard devitions) of daily total exposures intakes were 0.24 (3.8±10.0), 1.4 (4.2±5.7) and 0.15 (2.1±3.2) μg/(day kg BW) for scenarios of Residual Application, Preflight and Top-of-Descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than Top-of-Descent spray and Residual Application, respectively. PMID:24251734

  6. Far transfer to language and math of a short software-based gaming intervention.

    PubMed

    Goldin, Andrea Paula; Hermida, María Julia; Shalom, Diego E; Elias Costa, Martín; Lopez-Rosenfeld, Matías; Segretin, María Soledad; Fernández-Slezak, Diego; Lipina, Sebastián J; Sigman, Mariano

    2014-04-29

    Executive functions (EF) in children can be trained, but it remains unknown whether training-related benefits elicit far transfer to real-life situations. Here, we investigate whether a set of computerized games might yield near and far transfer on an experimental and an active control group of low-SES otherwise typically developing 6-y-olds in a 3-mo pretest-training-posttest design that was ecologically deployed (at school). The intervention elicits transfer to some (but not all) facets of executive function. These changes cascade to real-world measures of school performance. The intervention equalizes academic outcomes across children who regularly attend school and those who do not because of social and familiar circumstances.

  7. Integrating models with data in ecology and palaeoecology: advances towards a model-data fusion approach.

    PubMed

    Peng, Changhui; Guiot, Joel; Wu, Haibin; Jiang, Hong; Luo, Yiqi

    2011-05-01

    It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process-based ecological models and data in cohesive, systematic ways. Model-data fusion (MDF) is an emerging area of research in ecology and palaeoecology. It provides a new quantitative approach that offers a high level of empirical constraint over model predictions based on observations using inverse modelling and data assimilation (DA) techniques. Increasing demands to integrate model and data methods in the past decade has led to MDF utilization in palaeoecology, ecology and earth system sciences. This paper reviews key features and principles of MDF and highlights different approaches with regards to DA. After providing a critical evaluation of the numerous benefits of MDF and its current applications in palaeoecology (i.e., palaeoclimatic reconstruction, palaeovegetation and palaeocarbon storage) and ecology (i.e. parameter and uncertainty estimation, model error identification, remote sensing and ecological forecasting), the paper discusses method limitations, current challenges and future research direction. In the ongoing data-rich era of today's world, MDF could become an important diagnostic and prognostic tool in which to improve our understanding of ecological processes while testing ecological theory and hypotheses and forecasting changes in ecosystem structure, function and services. © 2011 Blackwell Publishing Ltd/CNRS.

  8. [An early warning method of cucumber downy mildew in solar greenhouse based on canopy temperature and humidity modeling].

    PubMed

    Wang, Hui; Li, Mei-lan; Xu, Jian-ping; Chen, Mei-xiang; Li, Wen-yong; Li, Ming

    2015-10-01

    The greenhouse environmental parameters can be used to establish greenhouse nirco-climate model, which can combine with disease model for early warning, with aim of ecological controlling diseases to reduce pesticide usage, and protecting greenhouse ecological environment to ensure the agricultural product quality safety. Greenhouse canopy leaf temperature and air relative humidity, models were established using energy balance and moisture balance principle inside the greenhouse. The leaf temperature model considered radiation heat transfer between the greenhouse crops, wall, soil and cover, plus the heat exchange caused by indoor net radiation and crop transpiration. Furthermore, the water dynamic balance in the greenhouse including leaf transpiration, soil evaporation, cover and leaf water vapor condensation, was considered to develop a relative humidity model. The primary infection and latent period warning models for cucumber downy mildew (Pseudoperonospora cubensis) were validated using the results of the leaf temperature and relative humidity model, and then the estimated disease occurrence date of cucumber downy mildew was compared with actual disease occurrence date of field observation. Finally, the results were verified by the measured temperature and humidity data of September and October, 2014. The results showed that the root mean square deviations (RMSDs) of the measured and estimated leaf temperature were 0.016 and 0.024 °C, and the RMSDs of the measured and estimated air relative humidity were 0.15% and 0.13%, respectively. Combining the result of estimated temperature and humidity models, a cucumber disease early warning system was established to forecast the date of disease occurrence, which met with the real date. Thus, this work could provide the micro-environment data for the early warning system of cucumber diseases in solar greenhouses.

  9. Agent-Based Phytoplankton Models of Cellular and Population Processes: Fostering Individual-Based Learning in Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Berges, J. A.; Raphael, T.; Rafa Todd, C. S.; Bate, T. C.; Hellweger, F. L.

    2016-02-01

    Engaging undergraduate students in research projects that require expertise in multiple disciplines (e.g. cell biology, population ecology, and mathematical modeling) can be challenging because they have often not developed the expertise that allows them to participate at a satisfying level. Use of agent-based modeling can allow exploration of concepts at more intuitive levels, and encourage experimentation that emphasizes processes over computational skills. Over the past several years, we have involved undergraduate students in projects examining both ecological and cell biological aspects of aquatic microbial biology, using the freely-downloadable, agent-based modeling environment NetLogo (https://ccl.northwestern.edu/netlogo/). In Netlogo, actions of large numbers of individuals can be simulated, leading to complex systems with emergent behavior. The interface features appealing graphics, monitors, and control structures. In one example, a group of sophomores in a BioMathematics program developed an agent-based model of phytoplankton population dynamics in a pond ecosystem, motivated by observed macroscopic changes in cell numbers (due to growth and death), and driven by responses to irradiance, temperature and a limiting nutrient. In a second example, junior and senior undergraduates conducting Independent Studies created a model of the intracellular processes governing stress and cell death for individual phytoplankton cells (based on parameters derived from experiments using single-cell culturing and flow cytometry), and then this model was embedded in the agents in the pond ecosystem model. In our experience, students with a range of mathematical abilities learned to code quickly and could use the software with varying degrees of sophistication, for example, creation of spatially-explicit two and three-dimensional models. Skills developed quickly and transferred readily to other platforms (e.g. Matlab).

  10. Improving Ecological Response Monitoring of Environmental Flows

    NASA Astrophysics Data System (ADS)

    King, Alison J.; Gawne, Ben; Beesley, Leah; Koehn, John D.; Nielsen, Daryl L.; Price, Amina

    2015-05-01

    Environmental flows are now an important restoration technique in flow-degraded rivers, and with the increasing public scrutiny of their effectiveness and value, the importance of undertaking scientifically robust monitoring is now even more critical. Many existing environmental flow monitoring programs have poorly defined objectives, nonjustified indicator choices, weak experimental designs, poor statistical strength, and often focus on outcomes from a single event. These negative attributes make them difficult to learn from. We provide practical recommendations that aim to improve the performance, scientific robustness, and defensibility of environmental flow monitoring programs. We draw on the literature and knowledge gained from working with stakeholders and managers to design, implement, and monitor a range of environmental flow types. We recommend that (1) environmental flow monitoring programs should be implemented within an adaptive management framework; (2) objectives of environmental flow programs should be well defined, attainable, and based on an agreed conceptual understanding of the system; (3) program and intervention targets should be attainable, measurable, and inform program objectives; (4) intervention monitoring programs should improve our understanding of flow-ecological responses and related conceptual models; (5) indicator selection should be based on conceptual models, objectives, and prioritization approaches; (6) appropriate monitoring designs and statistical tools should be used to measure and determine ecological response; (7) responses should be measured within timeframes that are relevant to the indicator(s); (8) watering events should be treated as replicates of a larger experiment; (9) environmental flow outcomes should be reported using a standard suite of metadata. Incorporating these attributes into future monitoring programs should ensure their outcomes are transferable and measured with high scientific credibility.

  11. A new framework for assessing river ecosystem health with consideration of human service demand.

    PubMed

    Luo, Zengliang; Zuo, Qiting; Shao, Quanxi

    2018-06-01

    In order to study river health status from harmonic relationship between human and natural environment, a river health evaluation method was proposed from the aspects of ecosystem integrity and human service demand, and the understanding of river health connotation. The proposed method is based on the harmony theory and two types of river health assessment methods (the forecasting model and index evaluation). A new framework for assessing river water health was then formed from the perspective of harmony and dynamic evolution between human service demand and river ecosystem integrity. As a case study, the method and framework were applied to the Shaying River Basin, a tributary of the most polluted Huaihe River Basin in China. The health status of the river's ecosystem and its effect on the mainstream of Huaihe River were evaluated based on water ecological experiment. The results indicated that: (1) the water ecological environment in Shaying River was generally poor and showed a gradual changing pattern along the river. The river health levels were generally "medium" in the upstream but mostly "sub-disease" in the midstream and downstream, indicating that the water pollution in Shaying River were mainly concentrated in the midstream and downstream; (2) the water pollution of Shaying River had great influence on the ecosystem of Huaihe River, and the main influencing factors were TN, followed by TP and COD Mn ; (3) the natural attribute of river was transferring toward to the direction of socialization due to the increasing human activities. The stronger the human activity intervention is, the faster the transfer will be and the more river's attributes will match with human service demand. The proposed framework contributes to the research in water ecology and environment management, and the research results can serve as an important reference for basin management in Shaying River and Huaihe River. Copyright © 2018. Published by Elsevier B.V.

  12. A Tale of Four Stories: Soil Ecology, Theory, Evolution and the Publication System

    PubMed Central

    Barot, Sébastien; Blouin, Manuel; Fontaine, Sébastien; Jouquet, Pascal; Lata, Jean-Christophe; Mathieu, Jérôme

    2007-01-01

    Background Soil ecology has produced a huge corpus of results on relations between soil organisms, ecosystem processes controlled by these organisms and links between belowground and aboveground processes. However, some soil scientists think that soil ecology is short of modelling and evolutionary approaches and has developed too independently from general ecology. We have tested quantitatively these hypotheses through a bibliographic study (about 23000 articles) comparing soil ecology journals, generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Findings We have shown that soil ecology is not well represented in generalist ecology journals and that soil ecologists poorly use modelling and evolutionary approaches. Moreover, the articles published by a typical soil ecology journal (Soil Biology and Biochemistry) are cited by and cite low percentages of articles published in generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Conclusion This confirms our hypotheses and suggests that soil ecology would benefit from an effort towards modelling and evolutionary approaches. This effort should promote the building of a general conceptual framework for soil ecology and bridges between soil ecology and general ecology. We give some historical reasons for the parsimonious use of modelling and evolutionary approaches by soil ecologists. We finally suggest that a publication system that classifies journals according to their Impact Factors and their level of generality is probably inadequate to integrate “particularity” (empirical observations) and “generality” (general theories), which is the goal of all natural sciences. Such a system might also be particularly detrimental to the development of a science such as ecology that is intrinsically multidisciplinary. PMID:18043755

  13. Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes

    USGS Publications Warehouse

    Dugan, Hilary; Woolway, R. Iestyn; Santoso, Arianto; Corman, Jessica; Jaimes, Aline; Nodine, Emily; Patil, Vijay; Zwart, Jacob A.; Brentrup, Jennifer A.; Hetherington, Amy; Oliver, Samantha K.; Read, Jordan S.; Winters, Kirsten; Hanson, Paul; Read, Emily; Winslow, Luke; Weathers, Kathleen

    2016-01-01

    Ecosystem metabolism and the contribution of carbon dioxide from lakes to the atmosphere can be estimated from free-water gas measurements through the use of mass balance models, which rely on a gas transfer coefficient (k) to model gas exchange with the atmosphere. Theoretical and empirically based models of krange in complexity from wind-driven power functions to complex surface renewal models; however, model choice is rarely considered in most studies of lake metabolism. This study used high-frequency data from 15 lakes provided by the Global Lake Ecological Observatory Network (GLEON) to study how model choice of kinfluenced estimates of lake metabolism and gas exchange with the atmosphere. We tested 6 models of k on lakes chosen to span broad gradients in surface area and trophic states; a metabolism model was then fit to all 6 outputs of k data. We found that hourly values for k were substantially different between models and, at an annual scale, resulted in significantly different estimates of lake metabolism and gas exchange with the atmosphere.

  14. Smartphones in ecology and evolution: a guide for the app-rehensive.

    PubMed

    Teacher, Amber G F; Griffiths, David J; Hodgson, David J; Inger, Richard

    2013-12-01

    Smartphones and their apps (application software) are now used by millions of people worldwide and represent a powerful combination of sensors, information transfer, and computing power that deserves better exploitation by ecological and evolutionary researchers. We outline the development process for research apps, provide contrasting case studies for two new research apps, and scan the research horizon to suggest how apps can contribute to the rapid collection, interpretation, and dissemination of data in ecology and evolutionary biology. We emphasize that the usefulness of an app relies heavily on the development process, recommend that app developers are engaged with the process at the earliest possible stage, and commend efforts to create open-source software scaffolds on which customized apps can be built by nonexperts. We conclude that smartphones and their apps could replace many traditional handheld sensors, calculators, and data storage devices in ecological and evolutionary research. We identify their potential use in the high-throughput collection, analysis, and storage of complex ecological information.

  15. Signal Correlations in Ecological Niches Can Shape the Organization and Evolution of Bacterial Gene Regulatory Networks

    PubMed Central

    Dufour, Yann S.; Donohue, Timothy J.

    2015-01-01

    Transcriptional regulation plays a significant role in the biological response of bacteria to changing environmental conditions. Therefore, mapping transcriptional regulatory networks is an important step not only in understanding how bacteria sense and interpret their environment but also to identify the functions involved in biological responses to specific conditions. Recent experimental and computational developments have facilitated the characterization of regulatory networks on a genome-wide scale in model organisms. In addition, the multiplication of complete genome sequences has encouraged comparative analyses to detect conserved regulatory elements and infer regulatory networks in other less well-studied organisms. However, transcription regulation appears to evolve rapidly, thus, creating challenges for the transfer of knowledge to nonmodel organisms. Nevertheless, the mechanisms and constraints driving the evolution of regulatory networks have been the subjects of numerous analyses, and several models have been proposed. Overall, the contributions of mutations, recombination, and horizontal gene transfer are complex. Finally, the rapid evolution of regulatory networks plays a significant role in the remarkable capacity of bacteria to adapt to new or changing environments. Conversely, the characteristics of environmental niches determine the selective pressures and can shape the structure of regulatory network accordingly. PMID:23046950

  16. Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel)

    PubMed Central

    Makler-Pick, Vardit; Hipsey, Matthew R.; Zohary, Tamar; Carmel, Yohay; Gal, Gideon

    2017-01-01

    The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10–20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions. PMID:28353646

  17. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1986

    1986-01-01

    Describes 26 different activities, experiments, demonstrations, and computer simulations in various topics in science. Includes instructional activities dealing with mural ecology, surface area/volume ratios, energy transfer in ecosystems, electrochemical simulations, alternating and direct current, terminal velocity, measuring the size of the…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sather, Nichole K.; Storch, Adam; Johnson, Gary E.

    The study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL), the Oregon Department of Fish and Wildlife (ODFW), the University of Washington (UW), and the National Marine Fisheries Service (NMFS) for the U.S. Army Corps of Engineers, Portland District (USACE). This research project was initiated in 2007 by the Bonneville Power Administration to investigate critical uncertainties regarding juvenile salmon ecology in shallow tidal freshwater habitats of the lower Columbia River. However, as part of the Washington Memorandum of Agreement, the project was transferred to the USACE in 2010. In transferring from BPA to the USACE, themore » focus of the tidal freshwater research project shifted from fundamental ecology toward the effectiveness of restoration in the Lower Columbia River and estuary (LCRE). The research is conducted within the Action Agencies Columbia Estuary Ecosystem Restoration Program (CEERP). Data reported herein spans the time period May 2010 to September 2011.« less

  19. Central-place foraging and ecological effects of an invasive predator across multiple habitats.

    PubMed

    Benkwitt, Cassandra E

    2016-10-01

    Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish foraging are likely due to different constraints faced by invasive predators compared to native predators, namely that lionfish do not face increased predation risk with increased movement away from shelter sites. By foraging at greater distances from patch reefs than native predators, lionfish eliminated a spatial refuge from predation used by juveniles of many commercially and ecologically important reef fishes. © 2016 by the Ecological Society of America.

  20. Analytically tractable model for community ecology with many species

    NASA Astrophysics Data System (ADS)

    Dickens, Benjamin; Fisher, Charles K.; Mehta, Pankaj

    2016-08-01

    A fundamental problem in community ecology is understanding how ecological processes such as selection, drift, and immigration give rise to observed patterns in species composition and diversity. Here, we analyze a recently introduced, analytically tractable, presence-absence (PA) model for community assembly, and we use it to ask how ecological traits such as the strength of competition, the amount of diversity, and demographic and environmental stochasticity affect species composition in a community. In the PA model, species are treated as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Building upon previous work, we show that, despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent studies of large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special ("critical") point corresponding to Hubbell's neutral theory of biodiversity. These results suggest that the concepts of ecological "phases" and phase diagrams can provide a powerful framework for thinking about community ecology, and that the PA model captures the essential ecological dynamics of community assembly.

  1. A new quantitative model of ecological compensation based on ecosystem capital in Zhejiang Province, China*

    PubMed Central

    Jin, Yan; Huang, Jing-feng; Peng, Dai-liang

    2009-01-01

    Ecological compensation is becoming one of key and multidiscipline issues in the field of resources and environmental management. Considering the change relation between gross domestic product (GDP) and ecological capital (EC) based on remote sensing estimation, we construct a new quantitative estimate model for ecological compensation, using county as study unit, and determine standard value so as to evaluate ecological compensation from 2001 to 2004 in Zhejiang Province, China. Spatial differences of the ecological compensation were significant among all the counties or districts. This model fills up the gap in the field of quantitative evaluation of regional ecological compensation and provides a feasible way to reconcile the conflicts among benefits in the economic, social, and ecological sectors. PMID:19353749

  2. A new quantitative model of ecological compensation based on ecosystem capital in Zhejiang Province, China.

    PubMed

    Jin, Yan; Huang, Jing-feng; Peng, Dai-liang

    2009-04-01

    Ecological compensation is becoming one of key and multidiscipline issues in the field of resources and environmental management. Considering the change relation between gross domestic product (GDP) and ecological capital (EC) based on remote sensing estimation, we construct a new quantitative estimate model for ecological compensation, using county as study unit, and determine standard value so as to evaluate ecological compensation from 2001 to 2004 in Zhejiang Province, China. Spatial differences of the ecological compensation were significant among all the counties or districts. This model fills up the gap in the field of quantitative evaluation of regional ecological compensation and provides a feasible way to reconcile the conflicts among benefits in the economic, social, and ecological sectors.

  3. Making ecological models adequate

    USGS Publications Warehouse

    Getz, Wayne M.; Marshall, Charles R.; Carlson, Colin J.; Giuggioli, Luca; Ryan, Sadie J.; Romañach, Stephanie; Boettiger, Carl; Chamberlain, Samuel D.; Larsen, Laurel; D'Odorico, Paolo; O'Sullivan, David

    2018-01-01

    Critical evaluation of the adequacy of ecological models is urgently needed to enhance their utility in developing theory and enabling environmental managers and policymakers to make informed decisions. Poorly supported management can have detrimental, costly or irreversible impacts on the environment and society. Here, we examine common issues in ecological modelling and suggest criteria for improving modelling frameworks. An appropriate level of process description is crucial to constructing the best possible model, given the available data and understanding of ecological structures. Model details unsupported by data typically lead to over parameterisation and poor model performance. Conversely, a lack of mechanistic details may limit a model's ability to predict ecological systems’ responses to management. Ecological studies that employ models should follow a set of model adequacy assessment protocols that include: asking a series of critical questions regarding state and control variable selection, the determinacy of data, and the sensitivity and validity of analyses. We also need to improve model elaboration, refinement and coarse graining procedures to better understand the relevancy and adequacy of our models and the role they play in advancing theory, improving hind and forecasting, and enabling problem solving and management.

  4. [Ecological security early-warning in Zhoushan Islands based on variable weight model].

    PubMed

    Zhou, Bin; Zhong, Lin-sheng; Chen, Tian; Zhou, Rui

    2015-06-01

    Ecological security early warning, as an important content of ecological security research, is of indicating significance in maintaining regional ecological security. Based on driving force, pressure, state, impact and response (D-P-S-I-R) framework model, this paper took Zhoushan Islands in Zhejiang Province as an example to construct the ecological security early warning index system, test degrees of ecological security early warning of Zhoushan Islands from 2000 to 2012 by using the method of variable weight model, and forecast ecological security state of 2013-2018 by Markov prediction method. The results showed that the variable weight model could meet the study needs of ecological security early warning of Zhoushan Islands. There was a fluctuant rising ecological security early warning index from 0.286 to 0.484 in Zhoushan Islands between year 2000 and 2012, in which the security grade turned from "serious alert" into " medium alert" and the indicator light turned from "orange" to "yellow". The degree of ecological security warning was "medium alert" with the light of "yellow" for Zhoushan Islands from 2013 to 2018. These findings could provide a reference for ecological security maintenance of Zhoushan Islands.

  5. [Calculation model of urban water resources ecological footprint and its application: a case study in Shenyang City of Northeast China].

    PubMed

    Wang, Jian; Zhang, Chao-Xing; Yu, Ying-Tan; Li, Fa-Yun; Ma, Fang

    2012-08-01

    Water resources ecological footprint can directly reflect the pressure of human social and economic activities to water resources, and provide important reference for the rational utilization of water resources. Based on the existing ecological footprint models and giving full consideration of the water resources need of urban ecological system, this paper established a new calculation model of urban water resources ecological footprint, including domestic water account, process water account, public service water account, and ecological water requirement account. According to the actual situation of Shenyang City, the key parameters of the model were determined, and the water resources ecological footprint and ecological carrying capacity of the City were calculated and analyzed. From 2000 to 2009, the water resources ecological footprint per capita of the City presented an overall decreasing trend, but still had an annual ecological deficit. As compared to that in 2000, the water resources ecological footprint per capita was decreased to 0.31 hm2 in 2005, increased slightly in 2006 and 2007, and remained stable in 2008 and 2009, which suggested that the sustainable utilization of water resources in Shenyang City had definite improvement, but was still in an unsustainable development situation.

  6. Social-Ecological Changes in a Quilombola Community in the Atlantic Forest of Southeastern Brazil.

    PubMed

    Thorkildsen, Kjersti

    2014-01-01

    Through a combined adaptive cycle and political ecology approach, this article explores how the Afro-Brazilian Quilombolas of Bombas, living inside the protected area of PETAR, respond to and shape social-ecological changes in the Atlantic Forest. Field data reveal that both environmental restrictions and social policies of state transfer payments and food packages have contributed to decreased engagement in agricultural practices, loss of traditional knowledge, and reduced agro-biodiversity. The claim to land rights based on a Quilombola identity and recent negotiations with forest authorities insinuate a shift of this trend. Contrary to dominant conservation narratives, the findings indicate that small-scale shifting cultivation practices by the Quilombolas have the potential to increase structural ecological complexity of the Atlantic Forest. The article therefore argues that legalization of settlement and subsistence activities is important not only for livelihood security and social cohesion of Bombas inhabitants, but also possibly for biodiversity conservation.

  7. Integrated ray tracing simulation of annual variation of spectral bio-signatures from cloud free 3D optical Earth model

    NASA Astrophysics Data System (ADS)

    Ryu, Dongok; Kim, Sug-Whan; Kim, Dae Wook; Lee, Jae-Min; Lee, Hanshin; Park, Won Hyun; Seong, Sehyun; Ham, Sun-Jeong

    2010-09-01

    Understanding the Earth spectral bio-signatures provides an important reference datum for accurate de-convolution of collapsed spectral signals from potential earth-like planets of other star systems. This study presents a new ray tracing computation method including an improved 3D optical earth model constructed with the coastal line and vegetation distribution data from the Global Ecological Zone (GEZ) map. Using non-Lambertian bidirectional scattering distribution function (BSDF) models, the input earth surface model is characterized with three different scattering properties and their annual variations depending on monthly changes in vegetation distribution, sea ice coverage and illumination angle. The input atmosphere model consists of one layer with Rayleigh scattering model from the sea level to 100 km in altitude and its radiative transfer characteristics is computed for four seasons using the SMART codes. The ocean scattering model is a combination of sun-glint scattering and Lambertian scattering models. The land surface scattering is defined with the semi empirical parametric kernel method used for MODIS and POLDER missions. These three component models were integrated into the final Earth model that was then incorporated into the in-house built integrated ray tracing (IRT) model capable of computing both spectral imaging and radiative transfer performance of a hypothetical space instrument as it observes the Earth from its designated orbit. The IRT model simulation inputs include variation in earth orientation, illuminated phases, and seasonal sea ice and vegetation distribution. The trial simulation runs result in the annual variations in phase dependent disk averaged spectra (DAS) and its associated bio-signatures such as NDVI. The full computational details are presented together with the resulting annual variation in DAS and its associated bio-signatures.

  8. A Conceptual Framework for Evaluating the Domains of Applicability of Ecological Models and its Implementation in the Ecological Production Function Library

    EPA Science Inventory

    The use of computational ecological models to inform environmental management and policy has proliferated in the past 25 years. These models have become essential tools as linkages and feedbacks between human actions and ecological responses can be complex, and as funds for sampl...

  9. Far transfer to language and math of a short software-based gaming intervention

    PubMed Central

    Goldin, Andrea Paula; Hermida, María Julia; Shalom, Diego E.; Elias Costa, Martín; Lopez-Rosenfeld, Matías; Segretin, María Soledad; Fernández-Slezak, Diego; Lipina, Sebastián J.; Sigman, Mariano

    2014-01-01

    Executive functions (EF) in children can be trained, but it remains unknown whether training-related benefits elicit far transfer to real-life situations. Here, we investigate whether a set of computerized games might yield near and far transfer on an experimental and an active control group of low-SES otherwise typically developing 6-y-olds in a 3-mo pretest–training–posttest design that was ecologically deployed (at school). The intervention elicits transfer to some (but not all) facets of executive function. These changes cascade to real-world measures of school performance. The intervention equalizes academic outcomes across children who regularly attend school and those who do not because of social and familiar circumstances. PMID:24711403

  10. Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation

    PubMed Central

    Davies, Helena S.; Cox, Filipa; Robinson, Clare H.; Pittman, Jon K.

    2015-01-01

    Phytoaccumulation of radionuclides is of significant interest with regards to monitoring radionuclide build-up in food chains, developing methods for environmental bioremediation and for ecological management. There are many gaps in our understanding of the characteristics and mechanisms of plant radionuclide accumulation, including the importance of symbiotically-associated arbuscular mycorrhizal (AM) fungi. We first briefly review the evidence that demonstrates the ability of AM fungi to enhance the translocation of 238U into plant root tissues, and how fungal association may prevent further mobilization into shoot tissues. We then focus on approaches that should further advance our knowledge of AM fungi–plant radionuclide accumulation. Current research has mostly used artificial cultivation methods and we consider how more ecologically-relevant analysis might be performed. The use of synchrotron-based X-ray fluorescence imaging and absorption spectroscopy techniques to understand the mechanisms of radionuclide transfer from soil to plant via AM fungi is evaluated. Without such further knowledge, the behavior and mobilization of radionuclides cannot be accurately modeled and the potential risks cannot be accurately predicted. PMID:26284096

  11. Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation.

    PubMed

    Davies, Helena S; Cox, Filipa; Robinson, Clare H; Pittman, Jon K

    2015-01-01

    Phytoaccumulation of radionuclides is of significant interest with regards to monitoring radionuclide build-up in food chains, developing methods for environmental bioremediation and for ecological management. There are many gaps in our understanding of the characteristics and mechanisms of plant radionuclide accumulation, including the importance of symbiotically-associated arbuscular mycorrhizal (AM) fungi. We first briefly review the evidence that demonstrates the ability of AM fungi to enhance the translocation of (238)U into plant root tissues, and how fungal association may prevent further mobilization into shoot tissues. We then focus on approaches that should further advance our knowledge of AM fungi-plant radionuclide accumulation. Current research has mostly used artificial cultivation methods and we consider how more ecologically-relevant analysis might be performed. The use of synchrotron-based X-ray fluorescence imaging and absorption spectroscopy techniques to understand the mechanisms of radionuclide transfer from soil to plant via AM fungi is evaluated. Without such further knowledge, the behavior and mobilization of radionuclides cannot be accurately modeled and the potential risks cannot be accurately predicted.

  12. A Study of the Impact of Thirteen Celebrity Suicides on Subsequent Suicide Rates in South Korea from 2005 to 2009

    PubMed Central

    Fu, King-wa; Chan, C. H.

    2013-01-01

    A number of ecological studies have found a pattern of increasing suicide rates after suicides of several Asian entertainment celebrities. However, the finding may be subject to positive outcome bias where cases with no perceived impact may be routinely excluded. In this study, we deploy interrupted time-series analysis using ARIMA transfer function models to investigate systematically the impact of thirteen celebrity suicides on subsequent suicide rates in South Korea. We find that three out of eleven cases were found to be followed by a significant increase in suicide rate, while controlling for seasonality, secular trends, and unemployment rates. Such significant increases could last for nine weeks. Non-significance cases may be attributable to the small amount of media coverage, the “displacement” effect of preceding case, and the negative connotation of celebrity deaths. We therefore conclude that whether or not the impacts were detected may be largely conditioned by various contextual factors. Current evidence based on ecological studies is insufficient to draw a firm conclusion. Further studies using multiple approaches should be developed. PMID:23342026

  13. Detection of Gene Flow from Sexual to Asexual Lineages in Thrips tabaci (Thysanoptera: Thripidae)

    PubMed Central

    Li, Xiao-Wei; Wang, Ping; Fail, Jozsef; Shelton, Anthony M.

    2015-01-01

    Populations of Thrips tabaci are known to have two sympatric but genetically isolated reproductive modes, arrhenotoky (sexual reproduction) and thelytoky (asexual reproduction). Herein, we report behavioral, ecological and genetic studies to determine whether there is gene flow between arrhenotokous and thelytokous T. tabaci. We did not detect significant preference by arrhenotokous males to mate with females of a particular reproductive mode, nor did we detect significant behavioral differences between arrhenotokous males mated with arrhenotokous or thelytokous females in their pre-copulation, copulation duration and mating frequency. Productive gene transfer resulting from the mating between the two modes was experimentally confirmed. Gene transfer from arrhenotokous T. tabaci to thelytokous T. tabaci was further validated by confirmation of the passage of the arrhenotokous male-originated nuclear gene (histone H3 gene) allele to the F2 generation. These behavioral, ecological and genetic studies confirmed gene transfer from the sexual arrhenotokous mode to the asexual thelytokous mode of T. tabaci in the laboratory. These results demonstrate that asexual T. tabaci populations may acquire genetic variability from sexual populations, which could offset the long-term disadvantage of asexual reproduction. PMID:26375283

  14. Designing ecological climate change impact assessments to reflect key climatic drivers

    USGS Publications Warehouse

    Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.

    2017-01-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

  15. Designing ecological climate change impact assessments to reflect key climatic drivers.

    PubMed

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  16. An overview of challenges in modeling heat and mass transfer for living on Mars.

    PubMed

    Yamashita, Masamichi; Ishikawa, Yoji; Kitaya, Yoshiaki; Goto, Eiji; Arai, Mayumi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Hirafuji, Masayuki; Omori, Katsunori; Shiraishi, Atsushi; Tani, Akira; Toki, Kyoichiro; Yokota, Hiroki; Fujita, Osamu

    2006-09-01

    Engineering a life-support system for living on Mars requires the modeling of heat and mass transfer. This report describes the analysis of heat and mass transfer phenomena in a greenhouse dome, which is being designed as a pressurized life-support system for agricultural production on Mars. In this Martian greenhouse, solar energy will be converted into chemical energy in plant biomass. Agricultural products will be harvested for food and plant cultivation, and waste materials will be processed in a composting microbial ecosystem. Transpired water from plants will be condensed and recycled. In our thermal design and analysis for the Martian greenhouse, we addressed the question of whether temperature and pressure would be maintained in the appropriate range for humans as well as plants. Energy flow and material circulation should be controlled to provide an artificial ecological system on Mars. In our analysis, we assumed that the greenhouse would be maintained at a subatmospheric pressure under 1/3-G gravitational force with 1/2 solar light intensity on Earth. Convection of atmospheric gases will be induced inside the greenhouse, primarily by heating from sunlight. Microclimate (thermal and gas species structure) could be generated locally around plant bodies, which would affect gas transport. Potential effects of those environmental factors are discussed on the phenomena including plant growth and plant physiology and focusing on transport processes. Fire safety is a crucial issue and we evaluate its impact on the total gas pressure in the greenhouse dome.

  17. Early establishment response of different Pinus nigra ssp. salzmanii seed sources on contrasting environments: Implications for future reforestation programs and assisted population migration.

    PubMed

    Taïbi, K; del Campo, A D; Aguado, A; Mulet, J M

    2016-04-15

    Forest restoration constitutes an important issue within adaptive environmental management for climate change at global scale. However, effective implementation of these programs can only be achieved by revising current seed transfer guidelines, as they lack inherent spatial and temporal dynamics associated with climate change. In this sense, provenance trials may provide key information on the relative performance of different populations and/or genotypes under changing ecological conditions. This study addresses a methodological approach to evaluate early plantation performance and the consequent phenotypic plasticity and the pattern of the adaptation of different seed sources in contrasting environments. To this end, six seed sources of Salzmann pine were tested at three contrasting trial sites testing a hypothetical assisted population migration. Adaptation at each site was assessed through Joint Regression and Additive Main effect and Multiplication Interaction (AMMI) models. Most of the observed variation was attributed to the environment (above 90% for all traits), even so genotype and genotype by environment interaction (GxE) were significant. Seedlings out-planted under better site conditions did not differ in survival but in height growth. However, on sites with higher constraints, survival differed among seed sources and diameter growth was high. The adaptation analyses (AMMI) indicated that the cold-continental seed source 'Soria' performed as a generalist seed source, whereas 'Cordilleras Béticas', the southernmost seed source, was more adapted to harsh environments (frost and drought) in terms of survival. The results supported partially the hypothesis that assisted migration of seed sources makes sense within limited transfer distances, and this was reinforced by the GxE results. The present study could be valuable to address adaptive transfer of seedings in ecological restoration and to determine the suitable seed sources for reforestation programs and assisted population migration under climatic changes. The reported results are based on 3 years' data and need to be considered in this context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enhanced interplanetary panspermia in the TRAPPIST-1 system.

    PubMed

    Lingam, Manasvi; Loeb, Abraham

    2017-06-27

    We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.

  19. Enhanced interplanetary panspermia in the TRAPPIST-1 system

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2017-06-01

    We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.

  20. Meteorological and ecological monitoring of the stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Newell, R. E.; Gray, C. R.

    1972-01-01

    A concept for determining the constituent densities of ozone, atomic oxygen, aerosols, and neutral density in the 20 to 1000 km region of the atmosphere from a satellite was developed. The concept includes the daytime measurement of solar scattering at the earth's limb in selected narrow spectral bands of the ultraviolet and visible regions, and the measurement of selected (dayglow) emissions. Nighttime measurements of the atmospheric extinction of stellar energy in selected bands are also considered as are simultaneous measurements of the 5577 airglow and molecular oxygen emission in the Herzberg band. Radiative-transfer models and recursive inversion algorithms are developed for the measurements, and the accuracy of the concept is assessed.

  1. [Applications of habitat equivalency analysis in ecological damage assessment of oil spill incident].

    PubMed

    Yang, Yin; Han, Da-xiong; Wang, Hai-yan

    2011-08-01

    Habitat equivalency analysis (HEA) is one of the methods commonly used by U.S. National Oceanic and Atmospheric Administration in natural resources damage assessment, but rarely applied in China. Based on the theory of HEA and the assessment practices of domestic oil spill incidents, a modification on the HEA was made in this paper, and applied to calculate the habitat value in oil spill incidents. According to the data collected from an oil spill incident in China, the modified HEA was applied in a case study to scale the compensatory-restoration. By introducing the ecological service equivalent factor to transfer various habitats, it was achieved to value of the injured habitats in ecological damage assessment of oil spill incident.

  2. U.S. Geological Survey Methodology Development for Ecological Carbon Assessment and Monitoring

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Stackpoole, S.M.

    2009-01-01

    Ecological carbon sequestration refers to transfer and storage of atmospheric carbon in vegetation, soils, and aquatic environments to help offset the net increase from carbon emissions. Understanding capacities, associated opportunities, and risks of vegetated ecosystems to sequester carbon provides science information to support formulation of policies governing climate change mitigation, adaptation, and land-management strategies. Section 712 of the Energy Independence and Security Act (EISA) of 2007 mandates the Department of the Interior to develop a methodology and assess the capacity of our nation's ecosystems for ecological carbon sequestration and greenhouse gas (GHG) flux mitigation. The U.S. Geological Survey (USGS) LandCarbon Project is responding to the Department of Interior's request to develop a methodology that meets specific EISA requirements.

  3. Ecological data in support of an analysis of Guinea-Bissau׳s medicinal flora.

    PubMed

    Catarino, Luís; Havik, Philip J; Indjai, Bucar; Romeiras, Maria M

    2016-06-01

    This dataset presents an annotated list of medicinal plants used by local communities in Guinea-Bissau (West Africa), in a total of 218 species. Data was gathered by means of herbarium and bibliographic research, as well as fieldwork. Biological and ecological information is provided for each species, including in-country distribution, geographical range, growth form and main vegetation types. The dataset was used to prepare a paper on the medicinal plants of Guinea-Bissau "Medicinal plants of Guinea-Bissau: therapeutic applications, ethnic diversity and knowledge transfer" (Catarino et al., 2016) [1]. The table and figures provide a unique database for Guinea-Bissau in support of ethno-medical and ethno-pharmacological research, and their ecological dimensions.

  4. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  5. Intraspecific variation buffers projected climate change impacts on Pinus contorta

    PubMed Central

    Oney, Brian; Reineking, Björn; O'Neill, Gregory; Kreyling, Juergen

    2013-01-01

    Species distribution modeling (SDM) is an important tool to assess the impact of global environmental change. Many species exhibit ecologically relevant intraspecific variation, and few studies have analyzed its relevance for SDM. Here, we compared three SDM techniques for the highly variable species Pinus contorta. First, applying a conventional SDM approach, we used MaxEnt to model the subject as a single species (species model), based on presence–absence observations. Second, we used MaxEnt to model each of the three most prevalent subspecies independently and combined their projected distributions (subspecies model). Finally, we used a universal growth transfer function (UTF), an approach to incorporate intraspecific variation utilizing provenance trial tree growth data. Different model approaches performed similarly when predicting current distributions. MaxEnt model discrimination was greater (AUC – species model: 0.94, subspecies model: 0.95, UTF: 0.89), but the UTF was better calibrated (slope and bias – species model: 1.31 and −0.58, subspecies model: 1.44 and −0.43, UTF: 1.01 and 0.04, respectively). Contrastingly, for future climatic conditions, projections of lodgepole pine habitat suitability diverged. In particular, when the species' intraspecific variability was acknowledged, the species was projected to better tolerate climatic change as related to suitable habitat without migration (subspecies model: 26% habitat loss or UTF: 24% habitat loss vs. species model: 60% habitat loss), and given unlimited migration may increase amount of suitable habitat (subspecies model: 8% habitat gain or UTF: 12% habitat gain vs. species model: 51% habitat loss) in the climatic period 2070–2100 (SRES A2 scenario, HADCM3). We conclude that models derived from within-species data produce different and better projections, and coincide with ecological theory. Furthermore, we conclude that intraspecific variation may buffer against adverse effects of climate change. A key future research challenge lies in assessing the extent to which species can utilize intraspecific variation under rapid environmental change. PMID:23467191

  6. An empirical model of the Baltic Sea reveals the importance of social dynamics for ecological regime shifts.

    PubMed

    Lade, Steven J; Niiranen, Susa; Hentati-Sundberg, Jonas; Blenckner, Thorsten; Boonstra, Wiebren J; Orach, Kirill; Quaas, Martin F; Österblom, Henrik; Schlüter, Maja

    2015-09-01

    Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social-ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social-ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social-ecological models.

  7. An empirical model of the Baltic Sea reveals the importance of social dynamics for ecological regime shifts

    PubMed Central

    Lade, Steven J.; Niiranen, Susa; Hentati-Sundberg, Jonas; Blenckner, Thorsten; Boonstra, Wiebren J.; Orach, Kirill; Quaas, Martin F.; Österblom, Henrik; Schlüter, Maja

    2015-01-01

    Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social–ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social–ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social–ecological models. PMID:26283344

  8. The basis function approach for modeling autocorrelation in ecological data.

    PubMed

    Hefley, Trevor J; Broms, Kristin M; Brost, Brian M; Buderman, Frances E; Kay, Shannon L; Scharf, Henry R; Tipton, John R; Williams, Perry J; Hooten, Mevin B

    2017-03-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data. © 2016 by the Ecological Society of America.

  9. Geospatial Technology Applications and Infrastructure in the Biological Resources Division.

    DTIC Science & Technology

    1998-09-01

    Forestry/forest ecology Geography Geology GIS/mapping technologies GPS technology HTML/World Wide Web Information management/transfer JAVA Land...tech- nologies are being used to understand diet selection, habitat use, hibernation behavior, and social interactions of desert tortoises

  10. Sexual selection and conflict as engines of ecological diversification.

    PubMed

    Bonduriansky, Russell

    2011-12-01

    Ecological diversification presents an enduring puzzle: how do novel ecological strategies evolve in organisms that are already adapted to their ecological niche? Most attempts to answer this question posit a primary role for genetic drift, which could carry populations through or around fitness "valleys" representing maladaptive intermediate phenotypes between alternative niches. Sexual selection and conflict are thought to play an ancillary role by initiating reproductive isolation and thereby facilitating divergence in ecological traits through genetic drift or local adaptation. Here, I synthesize theory and evidence suggesting that sexual selection and conflict could play a more central role in the evolution and diversification of ecological strategies through the co-optation of sexual traits for viability-related functions. This hypothesis rests on three main premises, all of which are supported by theory and consistent with the available evidence. First, sexual selection and conflict often act at cross-purposes to viability selection, thereby displacing populations from the local viability optimum. Second, sexual traits can serve as preadaptations for novel viability-related functions. Third, ancestrally sex-limited sexual traits can be transferred between sexes. Consequently, by allowing populations to explore a broad phenotypic space around the current viability optimum, sexual selection and conflict could act as powerful drivers of ecological adaptation and diversification.

  11. Benthic foraminifera as indicators of habitat in a Mediterranean delta: implications for ecological and palaeoenvironmental studies

    NASA Astrophysics Data System (ADS)

    Benito, Xavier; Trobajo, Rosa; Cearreta, Alejandro; Ibáñez, Carles

    2016-10-01

    The ecology and modern distribution of benthic foraminiferal assemblages were analysed in the Ebro Delta (NW Mediterranean Sea). Foraminiferal distributions were from 191 sediment surface samples covering a wide range of deltaic habitats and adjacent open sea areas. According to similarity in species composition, cluster analysis identified four habitat types: (1) offshore habitat, (2) nearshore and outer bays, (3) salt and brackish marshes and (4) coastal lagoons and inner bays. Canonical Correspondence Analysis identified water depth, salinity and sand content as the main environmental factors structuring living foraminiferal assemblages. Partial Canonical Correspondence Analysis revealed water depth as the most statistically significant associated with the distribution of modern foraminifera in the Ebro Delta. Thus, a transfer function for water depth using Weighted Average Partial Least Squares regression was successfully developed. Although depth per se is unlikely to affect the foraminifera directly but will exert its effects via various environmental variables that co-vary with depth in the deltaic habitats (e.g. hydrodynamics, oxygen, food availability, etc), the resulting model (r2 = 0.89; RMSEP = 0.32 log10 m) suggested a strong correlation between observed and foraminifera-predicted water depths, and therefore provided a potentially useful tool for water-depth reconstructions in the Ebro Delta. This work indicated the potential role of modern foraminifera as quantitative indicators of water depth and habitat types in the Ebro Delta. This complementary approach (transfer function and indicator species) will allow reconstruction of the palaeoenvironmental changes that have occurred in the Ebro Delta based on the benthic foraminiferal record.

  12. Enhanced understanding of ectoparasite: host trophic linkages on coral reefs through stable isotope analysis

    USGS Publications Warehouse

    Demopoulos, Amanda W. J.; Sikkel, Paul C.

    2015-01-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  13. Remote sensing research on fragile ecological environment in continental river basin

    NASA Astrophysics Data System (ADS)

    Wang, Ranghui; Peng, Ruyan; Zhang, Huizhi

    2003-07-01

    Based on some remote sensing data and software platform of image processing and analysis, the standard image for ecological thematic mapping is decided. Moreover, the vegetation type maps and land sandy desertification type maps are made. Relaying on differences of natural resources and ecological environment in Tarim River Basin, the assessment indicator system and ecological fragility index (EFI) of ecological environment are built up. The assessment results are very severely. That is, EFI is only 0.08 in Akesu River Basin, it belongs to slight fragility area. EFI of Yarkant River Basin and upper reaches of Tarim River Basin are 0.23 and 0.25 respectively, both of them belong to general fragility areas. Meanwhile, EFI of Hotan River Basin and middle reaches of Tarim River Basin are 0.32 and 0.49 respectively; they all belong to middle fragility areas. However, the fragility of the lower reaches of Tarim River Basin belongs to severe fragility area that the EFI is 0.87.The maladjustment among water with hot and land as well as salt are hindrance of energy transfer and material circulation and information transmission. It is also the main reason that caused ecological environment fragility.

  14. On the dangers of model complexity without ecological justification in species distribution modeling

    Treesearch

    David M. Bell; Daniel R. Schlaepfer

    2016-01-01

    Although biogeographic patterns are the product of complex ecological processes, the increasing com-plexity of correlative species distribution models (SDMs) is not always motivated by ecological theory,but by model fit. The validity of model projections, such as shifts in a species’ climatic niche, becomesquestionable particularly during extrapolations, such as for...

  15. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer.

    PubMed

    Teste, François P; Simard, Suzanne W; Durall, Daniel M; Guy, Robert D; Jones, Melanie D; Schoonmaker, Amanda L

    2009-10-01

    Mycorrhizal networks (MNs) are fungal hyphae that connect roots of at least two plants. It has been suggested that these networks are ecologically relevant because they may facilitate interplant resource transfer and improve regeneration dynamics. This study investigated the effects of MNs on seedling survival, growth and physiological responses, interplant resource (carbon and nitrogen) transfer, and ectomycorrhizal (EM) fungal colonization of seedlings by trees in dry interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests. On a large, recently harvested site that retained some older trees, we established 160 isolated plots containing pairs of older Douglas-fir "donor" trees and either manually sown seed or planted Douglas-fir "receiver" seedlings. Seed- and greenhouse-grown seedlings were sown and planted into four mesh treatments that served to restrict MN access (i.e., planted into mesh bags with 0.5-, 35-, 250-microm pores, or without mesh). Older trees were pulse labeled with carbon (13CO2) and nitrogen (15NH4(15)NO3) to quantify resource transfer. After two years, seedlings grown from seed in the field had the greatest survival and received the greatest amounts of transferred carbon (0.0063% of donor photo-assimilates) and nitrogen (0.0018%) where they were grown without mesh; however, planted seedlings were not affected by access to tree roots and hyphae. Size of "donor" trees was inversely related to the amount of carbon transferred to seedlings. The potential for MNs to form was high (based on high similarity of EM communities between hosts), and MN-mediated colonization appeared only to be important for seedlings grown from seed in the field. These results demonstrate that MNs and mycorrhizal roots of trees may be ecologically important for natural regeneration in dry forests, but it is still uncertain whether resource transfer is an important mechanism underlying seedling establishment.

  16. Foraminifera Models to Interrogate Ostensible Proxy-Model Discrepancies During Late Pliocene

    NASA Astrophysics Data System (ADS)

    Jacobs, P.; Dowsett, H. J.; de Mutsert, K.

    2017-12-01

    Planktic foraminifera faunal assemblages have been used in the reconstruction of past oceanic states (e.g. the Last Glacial Maximum, the mid-Piacenzian Warm Period). However these reconstruction efforts have typically relied on inverse modeling using transfer functions or the modern analog technique, which by design seek to translate foraminifera into one or two target oceanic variables, primarily sea surface temperature (SST). These reconstructed SST data have then been used to test the performance of climate models, and discrepancies have been attributed to shortcomings in climate model processes and/or boundary conditions. More recently forward proxy models or proxy system models have been used to leverage the multivariate nature of proxy relationships to their environment, and to "bring models into proxy space". Here we construct ecological models of key planktic foraminifera taxa, calibrated and validated with World Ocean Atlas (WO13) oceanographic data. Multiple modeling methods (e.g. multilayer perceptron neural networks, Mahalanobis distance, logistic regression, and maximum entropy) are investigated to ensure robust results. The resulting models are then driven by a Late Pliocene climate model simulation with biogeochemical as well as temperature variables. Similarities and differences with previous model-proxy comparisons (e.g. PlioMIP) are discussed.

  17. Environmental cost and pollution risk caused by the industrial transfer in Qinghai Province

    NASA Astrophysics Data System (ADS)

    Jiang, Qun'ou; Tang, Chengcai; Zhan, Jinyan; Zhang, Wei; Wu, Feng

    2014-09-01

    With the rising pressure due to energy consumption and costs of environmental protection and recovery, industrial transfer from the eastern to central and western areas has surged in China. However, extremely fragile ecological conditions and severe water shortage are significant hurdles for industry development in Western China. Whether the vulnerable environment can bear the pollution caused by the transferred industry from Eastern China becomes a significant issue. This study firstly estimates energy and environmental costs in different areas of China, and assesses the necessity to upgrade the industrial structure of Qinghai Province. Then the emissions of waste water, waste gas, and smoke caused by transferred industries are calculated by Input-Output Model. On the basis of the effect analysis of waste emission on environment, pollution risks of Qinghai province are assessed. The results illustrate that the costs of environmental protection and recovery in China have a gradient distribution, of which the energy efficiency is lower while environmental costs are higher in Western China. Industrial structure adjustment has different impacts on the pollution of different sectors. Although the development of machinery and equipment, hotels and catering services, and real estate, leasing, and business services has increased the emission of pollutants, it is offset by the decreasing emissions caused by other industries such as construction and metal products. Therefore, although economic development will increase environmental pollution, industrial adjustments can effectively decrease waste water and waste gas emissions to reduce the pollution risk. It should be noted that there are still tremendous challenges for industrial transfer in Qinghai Province to coordinate the environment and industry development.

  18. [Dynamic evolution of landscape spatial pattern in Taihu Lake basin, China].

    PubMed

    Wang, Fang; Xie, Xiao Ping; Chen, Zhi Cong

    2017-11-01

    Based on the land-use satellite image datasets of 2000, 2010 and 2015, the landscape index, dynamic change model, landscape transfer matrix and CLUE-S model were integrated to analyze the dynamic evolution of the landscape spatial pattern of Taihu Lake basin. The results showed that the landscape type of the basin was dominated by cultivated land and construction land, and the degree of landscape fragmentation was strengthened from 2000 to 2015, and the distribution showed a uniform trend. From the point of transfer dynamic change, the cultivated land and construction land changed significantly, which was reduced by 6761 km 2 (2.1%) and increased by 6615.33 km 2 (8.4%), respectively. From the landscape transfer, it could be seen that the main change direction of the cultivated land reduction was the construction land, and the cultivated land with 7866.30 km 2 was converted into construction land, accounting for 91.6% of the cultivated land change, and the contribution to the construction land was 96.5%. The trend of dynamic changes of cultivated and construction land in the counties and cities was the same as that of the whole Taihu Lake basin. For Shanghai Central Urban, as well as Pudong District, Lin'an City, Baoshan District, Minhang District, Jiading District and Changzhou City, the area of the cultivated land and construction land changed more prominently. However, compared with the CLUE-S model for the landscape pattern change in 2030, the change of cultivated and construction lands would be the largest in the natural development scenario. Under the ecological protection scenario, the area of grassland would increase and the dynamic degree would reach 54.5%. Under the situation of cultivated land protection, the conversion of cultivated land to construction land would be decreased.

  19. Contributions of Ecological School Mental Health Services to Students' Academic Success

    ERIC Educational Resources Information Center

    Doll, Beth; Spies, Rob; Champion, Allison

    2012-01-01

    This article describes an ecological framework for school mental health services that differs in important ways from existing service delivery models. The model is based on research describing ecological frameworks underlying students' school success. Ecological characteristics of schools and classrooms that promote academic success are described…

  20. On Problem of Mathematical Modelling of Thermo-Physical Processes in Regenerative Water-Evaporating Coolers

    NASA Astrophysics Data System (ADS)

    Gulevsky, V. A.; Shatsky, V. P.; Osipov, E. I.; Menzhulova, A. S.

    2018-03-01

    For cooling the air environment of industrial premises water-evaporating air, conditioners are being increasingly applied. The simplicity of their construction, ecological safety and low power consumption distinguish them from the coolers of other types. Cooling the processed air is due to the loss of energy for the evaporation of moisture from the surface of the water-wetted plates that form air channels. As a result of this process, cooled air is often saturated with moisture, which limits the possibilities for the operation of the coolers of this type. In these cases, more complex coolers of indirect principle without such drawback should be applied. The most effective modification of indirect cooling is the installation of recuperative principle units. The paper presents a mathematical model of heat-mass transfer in such water-evaporating coolers. The scheme of realization of this model based on an iterative algorithm of solution of the system of finite–difference linear equations that takes into account longitudinal and transverse thermal conductivity of the heat transfer plates is suggested. The possibility of obtaining the optimal values of the redistribution of the main and auxiliary air flows through the substantiation of the aerodynamic resistance of the output grid is proved. This allows refusing the inclusion in the additional system cooling fan unit for discharging an auxiliary stream of air.

  1. Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: how transferable are the water quality algorithms?

    PubMed

    Deutsch, Eliza S; Alameddine, Ibrahim; El-Fadel, Mutasem

    2018-02-15

    The launch of the Landsat 8 in February 2013 extended the life of the Landsat program to over 40 years, increasing the value of using Landsat to monitor long-term changes in the water quality of small lakes and reservoirs, particularly in poorly monitored freshwater systems. Landsat-based water quality hindcasting often incorporate several Landsat sensors in an effort to increase the temporal range of observations; yet the transferability of water quality algorithms across sensors remains poorly examined. In this study, several empirical algorithms were developed to quantify chlorophyll-a, total suspended matter (TSM), and Secchi disk depth (SDD) from surface reflectance measured by Landsat 7 ETM+ and Landsat 8 OLI sensors. Sensor-specific multiple linear regression models were developed by correlating in situ water quality measurements collected from a semi-arid eutrophic reservoir with band ratios from Landsat ETM+ and OLI sensors, along with ancillary data (water temperature and seasonality) representing ecological patterns in algae growth. Overall, ETM+-based models outperformed (adjusted R 2 chlorophyll-a = 0.70, TSM = 0.81, SDD = 0.81) their OLI counterparts (adjusted R 2 chlorophyll-a = 0.50, TSM = 0.58, SDD = 0.63). Inter-sensor differences were most apparent for algorithms utilizing the Blue spectral band. The inclusion of water temperature and seasonality improved the power of TSM and SDD models.

  2. THE NATIONAL COAST ASSESSMENT : EPA TECHNOLOGY TRANSFER TO STRATEGIC PARTNERS

    EPA Science Inventory

    The National Coastal Assessment (NCA) is a large-scale, comprehensive environmental monitoring program designed to characterize the ecological condition of the Nation's coastal resources (estuaries and near shore waters). A key to the success of the program is the development of ...

  3. Epigenetic Inheritance and the Intergenerational Transfer of Experience

    ERIC Educational Resources Information Center

    Harper, Lawrence

    2005-01-01

    Currently, behavioral development is thought to result from the interplay among genetic inheritance, congenital characteristics, cultural contexts, and parental practices as they directly impact the individual. Evolutionary ecology points to another contributor, epigenetic inheritance, the transmission to offspring of parental phenotypic responses…

  4. BOTULISM E IN LAKE ERIE: ECOLOGY AND LOWER FOOD WEB TRANSFER

    EPA Science Inventory

    This project will determine the environmental conditions that favor botulism Type E bacteria in Lake Erie and explore whether quagga mussels are altering bottom sediment conditions to favor C. botulinum growth. Analysis of environmental parameters, including water chemistry, alg...

  5. Final Technical Report: Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lattanzi, Aaron; Hrenya, Christine

    In today’s industrial economy, energy consumption has never been higher. Over the last 15 years the US alone has consumed an average of nearly 100 quadrillion BTUs per year [21]. A need for clean and renewable energy sources has become quite apparent. The SunShot Initiative is an ambitious effort taken on by the United States Department of Energy that targets the development of solar energy that is cost-competitive with other methods for generating electricity. Specifically, this work is concerned with the development of concentrating solar power plants (CSPs) with granular media as the heat transfer fluid (HTF) from the solarmore » receiver. Unfortunately, the prediction of heat transfer in multiphase flows is not well understood. For this reason, our aim is to fundamentally advance the understanding of multiphase heat transfer, particularly in gas-solid flows, while providing quantitative input for the design of a near black body receiver (NBB) that uses solid grains (like sand) as the HTF. Over the course of this three-year project, a wide variety of contributions have been made to advance the state-of-the art description for non-radiative heat transfer in dense, gas-solid systems. Comparisons between a state-of-the-art continuum heat transfer model and discrete element method (DEM) simulations have been drawn. The results of these comparisons brought to light the limitations of the continuum model due to inherent assumptions in its derivation. A new continuum model was then developed for heat transfer at a solid boundary by rigorously accounting for the most dominant non-radiative heat transfer mechanism (particle-fluid-wall conduction). The new model is shown to be in excellent agreement with DEM data and captures the dependence of heat transfer on particle size, a dependency that previous continuum models were not capable of. DEM and the new continuum model were then employed to model heat transfer in a variety of receiver geometries. The results provided crucial feedback on the efficiency and feasibility of various designs. Namely, a prototype design consisting of an array of heated hexagonal tubes was later supplanted by a vertical conduit with internal baffles. Due to low solids heat transfer on the bottom faces of the hexagonal tubes in the prototype, the predicted wall temperature gradients exceeded the design limitations. By contrast, the vertical conduit can be constructed to continually force particle-wall contacts, and thus, result in more desirable solids heat transfer and wall temperature gradients. Finally, a new heat flux boundary condition was developed for DEM simulations to assess the aforementioned wall temperature gradients. The new boundary condition advances current state-of-the-art techniques by allowing the heat fluxes to each phase to vary with space and time while the total flux remains constant. Simulations with the new boundary condition show that the total boundary heat flux is in good agreement with the imposed total boundary heat flux. While the methods we have utilized here are primarily numerical and fundamental by nature, they offer some key advantages of: (i) being robust and valid over a large range of conditions, (ii) able to quickly explore large parameter spaces, and (iii) aid in the construction of experiments. We have ultimately leveraged our computational capabilities to provide feedback on the design of a CSP which possesses great potential to become a cost effective source of clean and renewable electricity. Overall, ensuring that future energy demands are met in a responsible and efficient manner has far reaching impacts that span both ecologic and economic concerns. Regarding logistics, the project was successfully re-negotiated after the go/no-decisions of Years 1 and 2. All milestones were successfully completed.« less

  6. [An emergy-ecological footprint model based evaluation of ecological security at the old industrial area in Northeast China: A case study of Liaoning Province.

    PubMed

    Yang, Qing; Lu, Cheng Peng; Zhou, Feng; Geng, Yong; Jing, Hong Shuang; Ren, Wan Xia; Xue, Bing

    2016-05-01

    Based on the integrated model of emergy-ecological footprint approaches, the ecological security of Liaoning Province, a typical case for the old industrial area, was quantitatively evaluated from 2003 to 2012, followed by a scenario analysis on the development trend of the ecological secu-rity by employing the gray kinetic model. The results showed that, from 2003 to 2012, the value of emergy ecological-capacity per capita in Liaoning Province decreased from 3.13 hm 2 to 3.07 hm 2 , while the emergy-ecological footprint increased from 13.88 hm 2 to 21.96 hm 2 , which indicated that the ecological deficit existed in Liaoning Province and the situation was getting worse. The ecological pressure index increased from 4.43 to 7.16 during the studied period, and the alert level of ecological security changed from light to middle level. According to the development trend, the emergy ecological capacity per capita during 2013-2022 would correspondingly decrease from 3.04 hm 2 to 2.98 hm 2 , while the emergy ecological footprint would increase from 22.72 hm 2 to 35.87 hm 2 , the ecological pressure index would increase from 7.46 to 12.04, and the ecological deficit would keep increasing and the ecological security level would slide into slightly unsafe condition. The alert level of ecological security would turn to be middle or serious, suggesting the problems in ecological safety needed to be solved urgently.

  7. An analytically tractable model for community ecology with many species

    NASA Astrophysics Data System (ADS)

    Dickens, Benjamin; Fisher, Charles; Mehta, Pankaj; Pankaj Mehta Biophysics Theory Group Team

    A fundamental problem in community ecology is to understand how ecological processes such as selection, drift, and immigration yield observed patterns in species composition and diversity. Here, we present an analytically tractable, presence-absence (PA) model for community assembly and use it to ask how ecological traits such as the strength of competition, diversity in competition, and stochasticity affect species composition in a community. In our PA model, we treat species as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent work on large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special (``critical'') point corresponding to Hubbell's neutral theory of biodiversity. Our results suggest that the concepts of ``phases'' and phase diagrams can provide a powerful framework for thinking about community ecology and that the PA model captures the essential ecological dynamics of community assembly. Pm was supported by a Simons Investigator in the Mathematical Modeling of Living Systems and a Sloan Research Fellowship.

  8. Modeling marine exposure to polychlorinated biphenyls from sunken ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, C.; Larcom, B.; Shelley, M.

    1995-12-31

    On December 6, 1994, the US Environmental Protection Agency proposed a revision of the PCB ruling under Toxic Substances Control Act which would significantly impact Navy O and M costs and limit options for disposal of ships and submarines. If the proposed rule changes regarding exportation were to be accepted, the Navy would no longer be allowed to sink ships for artificial reefs or use ships for target exercises. PCBs are found in open systems such as heat resistant pint, hull insulation, wool felt ventilation gasket, and electronic cable insulation on ships and submarines. Prior to sinking ships any transformersmore » and bulk material containing PCBs have been removed, however some materials have remained as a potential source for environmental exposure. There is a concern of potential ecological impact due to persistence, bioaccumulation in the food web and biomagnification of PCBs. An ecological risk assessment model was developed for sunken contaminated ships and the impact on marine environment. This fate and transport model was developed to address the impact on shallow water ecosystems. Parameters that were considered included: relevant species, rate of transfer between groups, system boundary, and anaerobic biodegradation. The level of risk is hypothesized to be determined by the remaining PCBs, which are capable of leaching from the felt material. Deep sea sampling is planned to validate the proposal that sinking in waters 6,000 ft. or greater shows little chance of physical or biological transport to surface waters.« less

  9. [Study on ecological risk assessment technology of fluoride pollution from arid oasis soil].

    PubMed

    Xue, Su-Yin; Li, Ping; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    According to translocation regulation of fluoride in the typical oasis soil-plant system under field, an ecological risk assessment model of fluoride was established, and this model was used to assess ecological risk to fluoride pollution from suburban oasis soils in Baiyin City, which was specifically expressed with the potential ecological risk of bioavailability (ER(bc)) model to assess ecological risk of fluoride pollution in oasis regions. Results showed that the ecological risk indices of fluoride pollution from this region were 1.37-24.81, the level of risk at most sites was high to very high, the average ecological risk index was 11.28, belonged to very high risk. This indicated that in the suburb soil of Baiyin City needs to be concerned about the remediation of fluoride pollution.

  10. Goal Management Training and Mindfulness Meditation improve executive functions and transfer to ecological tasks of daily life in polysubstance users enrolled in therapeutic community treatment.

    PubMed

    Valls-Serrano, Carlos; Caracuel, Alfonso; Verdejo-Garcia, Antonio

    2016-08-01

    We have previously shown that Goal Management Training+Mindfulness Meditation (GMT+MM) improves executive functions in polysubstance users enrolled in outpatient treatment. The aim of this study was to establish if GMT+MM has similar positive effects on executive functions in polysubstance users in residential treatment, and if executive functions' gains transfer to more ecologically valid goal-oriented tasks. Thirty-two polysbustance users were randomly allocated to eight weeks of GMT+MM (n=16) or control, i.e., no-intervention (n=16); both groups received treatment as usual. Outcome measures included performance in laboratory tasks of basic and complex executive functions (i.e., basic: working memory and inhibition; complex: planning and self-regulation) and in an ecological task of goal-directed behavior (the Multiple Errands Test - contextualized version, MET-CV) measured post-interventions. Results showed that GMT+MM was superior to control in improving basic measures of working memory (Letter-number sequencing; F=4.516, p=0.049) and reflection impulsivity (Information Sampling Test; F=6.217, p=0.018), along with initial thinking times during planning (Zoo Map Test; F=8.143, p=0.008). In addition, GMT+MM was superior to control in improving performance in the MET-CV (task failures; F=8.485, p=0.007). Our findings demonstrate that GMT+MM increases reflective processes and the achievement of goals in daily activities, furthermore ecological test can detects changes easily than laboratory tasks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Simulation of rapid ecological change in Lake Ontario

    USGS Publications Warehouse

    McKenna, James E.; Chalupnicki, Marc; Dittman, Dawn E.; Watkins, James M.

    2017-01-01

    Lower trophic level processes are integral to proper functioning of large aquatic ecosystems and have been disturbed in Lake Ontario by various stressors including exotic species. The invasion of benthic habitats by dreissenid mussels has led to systemic changes and native faunal declines. Size-dependent physiological rates, spatial differences and connectivity, competition, and differential population dynamics among invertebrate groups contributed to the change and system complexity. We developed a spatially explicit, individual-based mechanistic model of the benthic ecosystem in Lake Ontario, with coupling to the pelagic system, to examine ecosystem dynamics and effects of dreissenid mussel invasion and native fauna losses. Benthic organisms were represented by functional groups; filter-feeders (i.e., dreissenid mussels), surface deposit-feeders (e.g., native amphipod Diporeia spp.), and deposit-feeders (e.g., oligochaetes and other burrowers). The model was stable, represented ecological structure and function effectively, and reproduced observed effects of the mussel invasion. Two hypotheses for causes of Diporeia loss, competition or disease-like mortality, were tested. Simple competition for food did not explain observed declines in native surface deposit-feeders during the filter-feeder invasion. However, the elevated mortality scenario supports a disease-like cause for loss of the native amphipod, with population changes in various lake areas and altered benthic biomass transfers. Stabilization of mussel populations and possible recovery of the native, surface-deposit feeding amphipod were predicted. Although further research is required on forcing functions, model parameters, and natural conditions, the model provides a valuable tool to help managers understand the benthic system and plan for response to future disruptions.

  12. [Some comments on ecological field].

    PubMed

    Wang, D

    2000-06-01

    Based on the data of plant ecological field studies, this paper reviewed the conception of ecological field, field eigenfunctions, graphs of ecological field and its application of ecological field theory in explaining plant interactions. It is suggested that the basic character of ecological field is material, and based on the current research level, it is not sure whether ecological field is a kind of specific field different from general physical field. The author gave some comments on the formula and estimation of parameters of basic field function-ecological potential model on ecological field. Both models have their own characteristics and advantages in specific conditions. The author emphasized that ecological field had even more meaning of ecological methodology, and applying ecological field theory in describing the types and processes of plant interactions had three characteristics: quantitative, synthetic and intuitionistic. Field graphing might provide a new way to ecological studies, especially applying the ecological field theory might give an appropriate quantitative explanation for the dynamic process of plant populations (coexistence and interference competition).

  13. Wetland biogeochemistry and ecological risk assessment

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Huang, Laibin; Gao, Haifeng; Zhang, Guangliang

    2017-02-01

    Wetlands are an important ecotone between terrestrial and aquatic ecosystems and can provide great ecological service functions. Soils/sediments are one of the important components of wetland ecosystems, which support wetland plants and microorganisms and influence wetland productivity. Moreover, wetland soils/sediments serve as sources, sinks and transfers of carbon, nitrogen, phosphorus and chemical contaminants such as heavy metals. In natural wetland ecosystems, wetland soils/sediments play a great role in improving water quality as these chemical elements can be retained in wetland soils/sediments for a long time. Moreover, the biogeochemical processes of the abovementioned elements in wetland soils/sediments can drive wetland evolution and development, and their changes will considerably affect wetland ecosystem health. Therefore, a better understanding of wetland soil biogeochemistry will contribute to improving wetland ecological service functions.

  14. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology

    EPA Science Inventory

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, e...

  15. Ecosystem resilience and threshold response in the Galápagos coastal zone.

    PubMed

    Seddon, Alistair W R; Froyd, Cynthia A; Leng, Melanie J; Milne, Glenn A; Willis, Katherine J

    2011-01-01

    The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr(-1) at the end of the 21(st) century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the 'fast and slow' processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ(13)C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to 'fast' and 'slow' environmental change between alternative stable states. This study highlights the need to incorporate a long-term ecological perspective when designing strategies for maximizing coastal resilience.

  16. Thermoregulation in endotherms: physiological principles and ecological consequences.

    PubMed

    Rezende, Enrico L; Bacigalupe, Leonardo D

    2015-10-01

    In a seminal study published nearly 70 years ago, Scholander et al. (Biol Bull 99:259-271, 1950) employed Newton's law of cooling to describe how metabolic rates (MR) in birds and mammals vary predictably with ambient temperature (T a). Here, we explore the theoretical consequences of Newton's law of cooling and show that a thermoregulatory polygon provides an intuitively simple and yet useful description of thermoregulatory responses in endothermic organisms. This polygon encapsulates the region in which heat production and dissipation are in equilibrium and, therefore, the range of conditions in which thermoregulation is possible. Whereas the typical U-shaped curve describes the relationship between T a and MR at rest, thermoregulatory polygons expand this framework to incorporate the impact of activity, other behaviors and environmental conditions on thermoregulation and energy balance. We discuss how this framework can be employed to study the limits to effective thermoregulation and their ecological repercussions, allometric effects and residual variation in MR and thermal insulation, and how thermoregulatory requirements might constrain locomotor or reproductive performance (as proposed, for instance, by the heat dissipation limit theory). In many systems the limited empirical knowledge on how organismal traits may respond to environmental changes prevents physiological ecology from becoming a fully developed predictive science. In endotherms, however, we contend that the lack of theoretical developments that translate current physiological understanding into formal mechanistic models remains the main impediment to study the ecological and evolutionary repercussions of thermoregulation. In spite of the inherent limitations of Newton's law of cooling as an oversimplified description of the mechanics of heat transfer, we argue that understanding how systems that obey this approximation work can be enlightening on conceptual grounds and relevant as an analytical and predictive tool to study ecological phenomena. As such, the proposed approach may constitute a powerful tool to study the impact of thermoregulatory constraints on variables related to fitness, such as survival and reproductive output, and help elucidating how species will be affected by ongoing climate change.

  17. Ecosystem Resilience and Threshold Response in the Galápagos Coastal Zone

    PubMed Central

    Seddon, Alistair W. R.; Froyd, Cynthia A.; Leng, Melanie J.; Milne, Glenn A.; Willis, Katherine J.

    2011-01-01

    Background The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr−1 at the end of the 21st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the ‘fast and slow’ processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? Methodology/Principal Findings Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ13C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. Conclusions/Significance Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to ‘fast’ and ‘slow’ environmental change between alternative stable states. This study highlights the need to incorporate a long-term ecological perspective when designing strategies for maximizing coastal resilience. PMID:21811594

  18. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory.

    PubMed

    Welti, Nina; Striebel, Maren; Ulseth, Amber J; Cross, Wyatt F; DeVilbiss, Stephen; Glibert, Patricia M; Guo, Laodong; Hirst, Andrew G; Hood, Jim; Kominoski, John S; MacNeill, Keeley L; Mehring, Andrew S; Welter, Jill R; Hillebrand, Helmut

    2017-01-01

    Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment.

  19. Future Proofing Water Policy and Catchment Management for a Changing Climate: A Case Study of Competing Demands and Water Scarcity in the River Thames and Catchment

    NASA Astrophysics Data System (ADS)

    Whitehead, P. G.; Crossman, J.; Jin, L.

    2011-12-01

    The River Thames Catchment is the major water supply system in Southern England and supplies all of London's water supply from either the River Lee (a tributary of the Thames) or the main river abstraction site at Teddington (see Figure 1) or from groundwater sources in London. There has been a measurable change in rainfall patterns over the past 250 years with reducing summer rainfall and, hence flows, over the past 40 years. In 1976, following 3 dry winters, the London Reservoirs were more or less empty and the river flow direction was reversed to ensure a supply of water for London. Recent climate change studies in the Thames catchments suggest an increasing threat to water supply and also damage to river water quality and ecology. In addition to a changing climate, population levels in London have risen in recent years and the catchment is increasingly vulnerable to land use change. Since the 1920s changes in land use have increased the levels of nitrogen and phosphorus in the catchment and this trend is predicted to be exacerbated as climate change reduces freshwater dilution. Also land use is predicted to change as agriculture becomes more intensive as farmers react to higher grain and food prices. At the same time rising water temperatures has exposed the river to the potential for toxic algal blooms, such as cyanobacteria. This doom and gloom story is being managed however using a range of policy instruments, led by central government and public and private organisations such as Thames Water and the Environment Agency. Measures such as new reservoirs, a water transfer scheme from Wales and water metering to reduce demand are all being actively pursued, as are land management measures to control diffuse pollution. In order to assess the effects of climate change on the Thames catchment a major modelling study has been undertaken. The Integrated Catchment Model (INCA) has been set up for the Thames to model flow, nitrogen, phosphorus and ecology. Climate Change simulations predict reduced flow regimes in the river system and changes to the nitrogen patterns. Nitrate is predicted to reduce in summer, due to the lower flows which generate longer water residence times and hence allow more time for denitrification processes to occur. Phosphorus levels increase, however, due to the reduced dilution of effluents with subsequent detrimental effects on ecology. The model has been used to evaluate alternative water management policies such as a new reservoir for London, the transfer of water from the River Severn into the Thames, the reduction in P discharges from Sewage Treatment Works and the control of diffuse runoff by improved land management. Thus using the models to evaluate alternative strategies is very positive contribution to policy and planning.

  20. Global Patterns in Ecological Indicators of Marine Food Webs: A Modelling Approach

    PubMed Central

    Heymans, Johanna Jacomina; Coll, Marta; Libralato, Simone; Morissette, Lyne; Christensen, Villy

    2014-01-01

    Background Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing. Methodology In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors. Principal findings Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae, and invertebrates). Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management. Conclusion/significance Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc.) and not benchmarked against all other ecosystems. PMID:24763610

  1. Global patterns in ecological indicators of marine food webs: a modelling approach.

    PubMed

    Heymans, Johanna Jacomina; Coll, Marta; Libralato, Simone; Morissette, Lyne; Christensen, Villy

    2014-01-01

    Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing. In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors. Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae, and invertebrates). Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management. Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc.) and not benchmarked against all other ecosystems.

  2. Recurrent seascape units identify key ecological processes along the western Antarctic Peninsula.

    PubMed

    Bowman, Jeff S; Kavanaugh, Maria T; Doney, Scott C; Ducklow, Hugh W

    2018-04-10

    The western Antarctic Peninsula (WAP) is a bellwether of global climate change and natural laboratory for identifying interactions between climate and ecosystems. The Palmer Long-Term Ecological Research (LTER) project has collected data on key ecological and environmental processes along the WAP since 1993. To better understand how key ecological parameters are changing across space and time, we developed a novel seascape classification approach based on in situ temperature, salinity, chlorophyll a, nitrate + nitrite, phosphate, and silicate. We anticipate that this approach will be broadly applicable to other geographical areas. Through the application of self-organizing maps (SOMs), we identified eight recurrent seascape units (SUs) in these data. These SUs have strong fidelity to known regional water masses but with an additional layer of biogeochemical detail, allowing us to identify multiple distinct nutrient profiles in several water masses. To identify the temporal and spatial distribution of these SUs, we mapped them across the Palmer LTER sampling grid via objective mapping of the original parameters. Analysis of the abundance and distribution of SUs since 1993 suggests two year types characterized by the partitioning of chlorophyll a into SUs with different spatial characteristics. By developing generalized linear models for correlated, time-lagged external drivers, we conclude that early spring sea ice conditions exert a strong influence on the distribution of chlorophyll a and nutrients along the WAP, but not necessarily the total chlorophyll a inventory. Because the distribution and density of phytoplankton biomass can have an impact on biomass transfer to the upper trophic levels, these results highlight anticipated links between the WAP marine ecosystem and climate. © 2018 John Wiley & Sons Ltd.

  3. Working memory training and transfer in older adults.

    PubMed

    Richmond, Lauren L; Morrison, Alexandra B; Chein, Jason M; Olson, Ingrid R

    2011-12-01

    There has been a great deal of interest, both privately and commercially, in using working memory training exercises to improve general cognitive function. However, many of the laboratory findings for older adults, a group in which this training is of utmost interest, are discouraging due to the lack of transfer to other tasks and skills. Importantly, improvements in everyday functioning remain largely unexamined in relation to WM training. We trained working memory in older adults using a task that encourages transfer in young adults (Chein & Morrison, 2010). We tested transfer to measures of working memory (e.g., Reading Span), everyday cognitive functioning [the Test of Everyday Attention (TEA) and the California Verbal Learning Test (CVLT)], and other tasks of interest. Relative to controls, trained participants showed transfer improvements in Reading Span and the number of repetitions on the CVLT. Training group participants were also significantly more likely to self-report improvements in everyday attention. Our findings support the use of ecological tasks as a measure of transfer in an older adult population.

  4. A bottom-up perspective on ecosystem change in Mesozoic oceans

    PubMed Central

    Follows, Michael J.

    2016-01-01

    Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals. PMID:27798303

  5. Enhanced interplanetary panspermia in the TRAPPIST-1 system

    PubMed Central

    Lingam, Manasvi; Loeb, Abraham

    2017-01-01

    We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems. PMID:28611223

  6. A bottom-up perspective on ecosystem change in Mesozoic oceans.

    PubMed

    Knoll, Andrew H; Follows, Michael J

    2016-10-26

    Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals. © 2016 The Authors.

  7. Evidence of intercontinental transfer of North American lineage avian influenza virus into Korea.

    PubMed

    Lee, Dong-Hun; Lee, Hyun-Jeong; Lee, Yu-Na; Park, Jae-Keun; Lim, Tae-Hyun; Kim, Myeong-Seob; Youn, Ha-Na; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2011-01-01

    Avian influenza viruses (AIV) can be genetically distinguished by geographical origin. The present study found evidence of intercontinental transfer of North American lineage AIV into Asia via migratory bird populations. The North American lineage genes were detected in live animal markets during avian influenza surveillance, seemed to have reassorted with Eurasian AIV in wild bird habitats, and had transmitted to live animal markets. Enhanced AIV surveillance is required to understand the influence of newly transferred North American lineage AIV genes on AIV evolution in Asia and to investigate AIV ecology in various transcontinental migrant species. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  8. [A process of aquatic ecological function regionalization: The dual tree framework and conceptual model].

    PubMed

    Guo, Shu Hai; Wu, Bo

    2017-12-01

    Aquatic ecological regionalization and aquatic ecological function regionalization are the basis of water environmental management of a river basin and rational utilization of an aquatic ecosystem, and have been studied in China for more than ten years. Regarding the common problems in this field, the relationship between aquatic ecological regionalization and aquatic ecological function regionalization was discussed in this study by systematic analysis of the aquatic ecological zoning and the types of aquatic ecological function. Based on the dual tree structure, we put forward the RFCH process and the diamond conceptual model. Taking Liaohe River basin as an example and referring to the results of existing regionalization studies, we classified the aquatic ecological function regions based on three-class aquatic ecological regionalization. This study provided a process framework for aquatic ecological function regionalization of a river basin.

  9. Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach-A Case Study for the City of Wuhan in China.

    PubMed

    Gao, Yuan; Zhang, Chuanrong; He, Qingsong; Liu, Yaolin

    2017-06-15

    Ecological security is an important research topic, especially urban ecological security. As highly populated eco-systems, cities always have more fragile ecological environments. However, most of the research on urban ecological security in literature has focused on evaluating current or past status of the ecological environment. Very little literature has carried out simulation or prediction of future ecological security. In addition, there is even less literature exploring the urban ecological environment at a fine scale. To fill-in the literature gap, in this study we simulated and predicted urban ecological security at a fine scale (district level) using an improved Cellular Automata (CA) approach. First we used the pressure-state-response (PSR) method based on grid-scale data to evaluate urban ecological security. Then, based on the evaluation results, we imported the geographically weighted regression (GWR) concept into the CA model to simulate and predict urban ecological security. We applied the improved CA approach in a case study-simulating and predicting urban ecological security for the city of Wuhan in Central China. By comparing the simulated ecological security values from 2010 using the improved CA model to the actual ecological security values of 2010, we got a relatively high value of the kappa coefficient, which indicates that this CA model can simulate or predict well future development of ecological security in Wuhan. Based on the prediction results for 2020, we made some policy recommendations for each district in Wuhan.

  10. Environmental determinants of radiolarian assemblages in the western Pacific since the last deglaciation

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, I.; Cortese, G.; Yu, P.-S.; Chen, M.-T.; Kucera, M.

    2017-08-01

    Radiolarians are a very diverse microzooplanktonic group, often distributed in regionally restricted assemblages and responding to specific environmental factors. These properties of radiolarian assemblages make the group more conducive for the development and application of basin-wide ecological models. Here we use a new surface sediment data set from the western Pacific to demonstrate that ecological patterns derived from basin-wide open-ocean data sets cannot be transferred on semirestricted marginal seas. The data set consists of 160 surface sediment samples from three tropical-subtropical regions (East China Sea, South China Sea, and western Pacific), combining 54 new assemblage counts with taxonomically harmonized data from previous studies. Multivariate statistical analyses indicate that winter sea surface temperature at 10 m depth (SSTw) was the most significant environmental variable affecting the composition of radiolarian assemblages, allowing the development of an optimal calibration model (Locally Weighted-Weighted Averaging regression inverse deshrinking, R2cv = 0.88, root-mean-square error of prediction = 1.6°C). The dominant effect of SSTw on radiolarian assemblage composition in the western Pacific is attributed to the East Asian Winter Monsoon (EAWM), which is particularly strong in the marginal seas. To test the applicability of the calibration model on fossil radiolarian assemblages from the marginal seas, the calibration model was applied to two downcore records from the Okinawa Trough, covering the last 18 ka. We observe that these assemblages find most appropriate analogs among modern samples from the marginal basins (East China Sea and South China Sea). Downcore temperature reconstructions at both sites show similarities to known regional SST reconstructions, providing proof of concept for the new radiolarian-based SSTw calibration model.

  11. Modeling small-scale and large-scale flood wave processes as indicators of channel-floodplain connectivity

    NASA Astrophysics Data System (ADS)

    Byrne, C. F.; Stone, M. C.

    2016-12-01

    Anthropogenic alterations to rivers and floodplains, either in the context of river engineering or river restoration efforts, have no doubt impacted channel-floodplain connectivity in the majority of developed river systems. River management strategies now often strive to retain or improve ecological integrity of floodplains. Therefore, there is a need to quantify the hydrodynamic processes that have implications for river geomorphology and ecology within the channel-floodplain interface. Because field quantification of these processes is extremely difficult, new methods in hydrodynamic modeling can help to inform river science. This research focused on the assessment of channel-floodplain flow dynamics using two-dimensional hydrodynamic modeling and presents various methods of hydrodynamic process quantification in unsteady flow scenarios. The objectives of this research were to: (1) quantify the small-scale processes of mass and momentum transfer from the main channel to the floodplain; and (2) assess how these processes accrue to meaningful levels to affect the large-scale process of flood wave attenuation. This was achieved by modeling the heavily manipulated Albuquerque Reach of the Rio Grande in New Mexico. Results are presented as mass and momentum fluxes along the channel-floodplain boundaries with a focus on the application of these methods to unsteady flood wave modeling. In addition, quantification of downstream flood wave attenuation is presented as attenuation ratios of discharge and stage, as well as wave celerity. Mass and momentum fluxes during flood waves are shown to be highly variable over spatial and temporal scales and demonstrate the implications of lateral surface connectivity. Results from this research and further application of the methods presented here can help river scientists better understand the dynamics of flood processes especially in the context of process-based river restoration.

  12. Distribution of phytoplankton functional types in high-nitrate, low-chlorophyll waters in a new diagnostic ecological indicator model

    NASA Astrophysics Data System (ADS)

    Palacz, A. P.; St. John, M. A.; Brewin, R. J. W.; Hirata, T.; Gregg, W. W.

    2013-11-01

    Modeling and monitoring plankton functional types (PFTs) is challenged by the insufficient amount of field measurements of ground truths in both plankton models and bio-optical algorithms. In this study, we combine remote sensing data and a dynamic plankton model to simulate an ecologically sound spatial and temporal distribution of phyto-PFTs. We apply an innovative ecological indicator approach to modeling PFTs and focus on resolving the question of diatom-coccolithophore coexistence in the subpolar high-nitrate and low-chlorophyll regions. We choose an artificial neural network as our modeling framework because it has the potential to interpret complex nonlinear interactions governing complex adaptive systems, of which marine ecosystems are a prime example. Using ecological indicators that fulfill the criteria of measurability, sensitivity and specificity, we demonstrate that our diagnostic model correctly interprets some basic ecological rules similar to ones emerging from dynamic models. Our time series highlight a dynamic phyto-PFT community composition in all high-latitude areas and indicate seasonal coexistence of diatoms and coccolithophores. This observation, though consistent with in situ and remote sensing measurements, has so far not been captured by state-of-the-art dynamic models, which struggle to resolve this "paradox of the plankton". We conclude that an ecological indicator approach is useful for ecological modeling of phytoplankton and potentially higher trophic levels. Finally, we speculate that it could serve as a powerful tool in advancing ecosystem-based management of marine resources.

  13. Distribution of phytoplankton functional types in high-nitrate low-chlorophyll waters in a new diagnostic ecological indicator model

    NASA Astrophysics Data System (ADS)

    Palacz, A. P.; St. John, M. A.; Brewin, R. J. W.; Hirata, T.; Gregg, W. W.

    2013-05-01

    Modeling and monitoring plankton functional types (PFTs) is challenged by insufficient amount of field measurements to ground-truth both plankton models and bio-optical algorithms. In this study, we combine remote sensing data and a dynamic plankton model to simulate an ecologically-sound spatial and temporal distribution of phyto-PFTs. We apply an innovative ecological indicator approach to modeling PFTs, and focus on resolving the question of diatom-coccolithophore co-existence in the subpolar high-nitrate and low-chlorophyll regions. We choose an artificial neural network as our modeling framework because it has the potential to interpret complex nonlinear interactions governing complex adaptive systems, of which marine ecosystems are a prime example. Using ecological indicators that fulfill the criteria of measurability, sensitivity and specificity, we demonstrate that our diagnostic model correctly interprets some basic ecological rules similar to ones emerging from dynamic models. Our time series highlight a dynamic phyto-PFT community composition in all high latitude areas, and indicate seasonal co-existence of diatoms and coccolithophores. This observation, though consistent with in situ and remote sensing measurements, was so far not captured by state-of-the-art dynamic models which struggle to resolve this "paradox of the plankton". We conclude that an ecological indicator approach is useful for ecological modeling of phytoplankton and potentially higher trophic levels. Finally, we speculate that it could serve as a powerful tool in advancing ecosystem-based management of marine resources.

  14. Forest economics, natural disturbances and the new ecology

    Treesearch

    Thomas P. Holmes; Robert J. Huggett; John M. Pye

    2008-01-01

    The major thesis of this chapter is that the economic analysis of forest disturbances will be enhanced by linking economic and ecologic models. Although we only review a limited number of concepts drawn generally from mathematical and empirical ecology, the overarching theme we present is that ecological models of forest disturbance processes are complex and not...

  15. The Ecosystem Concept and Linking Models of Physical-Chemical Processes to Ecological Responses: Introduction and Annotated Bibliography

    DTIC Science & Technology

    2007-07-01

    Schneider, D. C. 1994. Quantitative ecology. Spatial and temporal scaling. Academic Press. Shugart, H. H. 1990. Ecological models and the ecotone . In: The...ecology and management of aquatic-terrestrial ecotones . Man and the biosphere series, Vol. 4. ed. R. J. Naiman and H. Decamps, 23-36. Paris, France

  16. What ecologists can tell virologists.

    PubMed

    Dennehy, John J

    2014-01-01

    I pictured myself as a virus…and tried to sense what it would be like. --Jonas Salk. Ecology as a science evolved from natural history, the observational study of the interactions of plants and animals with each other and their environments. As natural history matured, it became increasingly quantitative, experimental, and taxonomically broad. Focus diversified beyond the Eukarya to include the hidden world of microbial life. Microbes, particularly viruses, were shown to exist in unfathomable numbers, affecting every living organism. Slowly viruses came to be viewed in an ecological context rather than as abstract, disease-causing agents. This shift is exemplified by an increasing tendency to refer to viruses as living organisms instead of inert particles. In recent years, researchers have recognized the critical contributions of viruses to fundamental ecological processes such as biogeochemical cycling, competition, community structuring, and horizontal gene transfer. This review describes virus ecology from a virus's perspective. If we are, like Jonas Salk, to imagine ourselves as a virus, what kind of world would we experience?

  17. Using a neural network approach and time series data from an international monitoring station in the Yellow Sea for modeling marine ecosystems.

    PubMed

    Zhang, Yingying; Wang, Juncheng; Vorontsov, A M; Hou, Guangli; Nikanorova, M N; Wang, Hongliang

    2014-01-01

    The international marine ecological safety monitoring demonstration station in the Yellow Sea was developed as a collaborative project between China and Russia. It is a nonprofit technical workstation designed as a facility for marine scientific research for public welfare. By undertaking long-term monitoring of the marine environment and automatic data collection, this station will provide valuable information for marine ecological protection and disaster prevention and reduction. The results of some initial research by scientists at the research station into predictive modeling of marine ecological environments and early warning are described in this paper. Marine ecological processes are influenced by many factors including hydrological and meteorological conditions, biological factors, and human activities. Consequently, it is very difficult to incorporate all these influences and their interactions in a deterministic or analysis model. A prediction model integrating a time series prediction approach with neural network nonlinear modeling is proposed for marine ecological parameters. The model explores the natural fluctuations in marine ecological parameters by learning from the latest observed data automatically, and then predicting future values of the parameter. The model is updated in a "rolling" fashion with new observed data from the monitoring station. Prediction experiments results showed that the neural network prediction model based on time series data is effective for marine ecological prediction and can be used for the development of early warning systems.

  18. Ecologically-focused Calibration of Hydrological Models for Environmental Flow Applications

    NASA Astrophysics Data System (ADS)

    Adams, S. K.; Bledsoe, B. P.

    2015-12-01

    Hydrologic alteration resulting from watershed urbanization is a common cause of aquatic ecosystem degradation. Developing environmental flow criteria for urbanizing watersheds requires quantitative flow-ecology relationships that describe biological responses to streamflow alteration. Ideally, gaged flow data are used to develop flow-ecology relationships; however, biological monitoring sites are frequently ungaged. For these ungaged locations, hydrologic models must be used to predict streamflow characteristics through calibration and testing at gaged sites, followed by extrapolation to ungaged sites. Physically-based modeling of rainfall-runoff response has frequently utilized "best overall fit" calibration criteria, such as the Nash-Sutcliffe Efficiency (NSE), that do not necessarily focus on specific aspects of the flow regime relevant to biota of interest. This study investigates the utility of employing flow characteristics known a priori to influence regional biological endpoints as "ecologically-focused" calibration criteria compared to traditional, "best overall fit" criteria. For this study, 19 continuous HEC-HMS 4.0 models were created in coastal southern California and calibrated to hourly USGS streamflow gages with nearby biological monitoring sites using one "best overall fit" and three "ecologically-focused" criteria: NSE, Richards-Baker Flashiness Index (RBI), percent of time when the flow is < 1 cfs (%<1), and a Combined Calibration (RBI and %<1). Calibrated models were compared using calibration accuracy, environmental flow metric reproducibility, and the strength of flow-ecology relationships. Results indicate that "ecologically-focused" criteria can be calibrated with high accuracy and may provide stronger flow-ecology relationships than "best overall fit" criteria, especially when multiple "ecologically-focused" criteria are used in concert, despite inabilities to accurately reproduce additional types of ecological flow metrics to which the models are not explicitly calibrated.

  19. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and duck-rice cultivation interacted ecology are not significant determinants for Bangladesh. These findings will refine current understanding of the HPAI-H5N1 epidemiology in Bangladesh. PMID:22470496

  20. [Ecological management model of agriculture-pasture ecotone based on the theory of energy and material flow--a case study in Houshan dryland area of Inner Mongolia].

    PubMed

    Fan, Jinlong; Pan, Zhihua; Zhao, Ju; Zheng, Dawei; Tuo, Debao; Zhao, Peiyi

    2004-04-01

    The degradation of ecological environment in the agriculture-pasture ecotone in northern China has been paid more attentions. Based on our many years' research and under the guide of energy and material flow theory, this paper put forward an ecological management model, with a hill as the basic cell and according to the natural, social and economic characters of Houshan dryland farming area inside the north agriculture-pasture ecotone. The input and output of three models, i.e., the traditional along-slope-tillage model, the artificial grassland model and the ecological management model, were observed and recorded in detail in 1999. Energy and material flow analysis based on field test showed that compared with traditional model, ecological management model could increase solar use efficiency by 8.3%, energy output by 8.7%, energy conversion efficiency by 19.4%, N output by 26.5%, N conversion efficiency by 57.1%, P output by 12.1%, P conversion efficiency by 45.0%, and water use efficiency by 17.7%. Among the models, artificial grassland model had the lowest solar use efficiency, energy output and energy conversion efficiency; while the ecological management model had the most outputs and benefits, was the best model with high economic effect, and increased economic benefits by 16.1%, compared with the traditional model.

  1. Changing the academic culture: Valuing patents and commercialization toward tenure and career advancement

    PubMed Central

    Sanberg, Paul R.; Gharib, Morteza; Harker, Patrick T.; Kaler, Eric W.; Marchase, Richard B.; Sands, Timothy D.; Arshadi, Nasser; Sarkar, Sudeep

    2014-01-01

    There is national and international recognition of the importance of innovation, technology transfer, and entrepreneurship for sustained economic revival. With the decline of industrial research laboratories in the United States, research universities are being asked to play a central role in our knowledge-centered economy by the technology transfer of their discoveries, innovations, and inventions. In response to this challenge, innovation ecologies at and around universities are starting to change. However, the change has been slow and limited. The authors believe this can be attributed partially to a lack of change in incentives for the central stakeholder, the faculty member. The authors have taken the position that universities should expand their criteria to treat patents, licensing, and commercialization activity by faculty as an important consideration for merit, tenure, and career advancement, along with publishing, teaching, and service. This position is placed in a historical context with a look at the history of tenure in the United States, patents, and licensing at universities, the current status of university tenure and career advancement processes, and models for the future. PMID:24778248

  2. Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado front range

    USGS Publications Warehouse

    Miller, Matthew P.; McKnight, Diane M.; Cory, R.M.; Williams, Mark W.; Runkel, Robert L.

    2006-01-01

    The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange between the stream and hyporheic zone were rapid (?? ??? 10-3 s -1). Parallel factor analysis of fluorescence spectra was used to quantify the redox state of dissolved fulvic acids. The rate coefficient for oxidation of reduced fulvic acids (?? = 6.5 ?? 10-3 s -1) in the stream indicates that electron-transfer reactions occur over short time scales. The rate coefficients for decay of ammonium (?? = 1.2 ?? 10-3 s-1) and production of nitrate (?? = -1.0 ?? 10-3 s-1) were opposite in sign but almost equal in magnitude. Our results suggest that fulvic acids are involved in rapid electron-transfer processes in and near the stream channel and may be important in determining ecological energy flow at the catchment scale. ?? 2006 American Chemical Society.

  3. Changing the academic culture: valuing patents and commercialization toward tenure and career advancement.

    PubMed

    Sanberg, Paul R; Gharib, Morteza; Harker, Patrick T; Kaler, Eric W; Marchase, Richard B; Sands, Timothy D; Arshadi, Nasser; Sarkar, Sudeep

    2014-05-06

    There is national and international recognition of the importance of innovation, technology transfer, and entrepreneurship for sustained economic revival. With the decline of industrial research laboratories in the United States, research universities are being asked to play a central role in our knowledge-centered economy by the technology transfer of their discoveries, innovations, and inventions. In response to this challenge, innovation ecologies at and around universities are starting to change. However, the change has been slow and limited. The authors believe this can be attributed partially to a lack of change in incentives for the central stakeholder, the faculty member. The authors have taken the position that universities should expand their criteria to treat patents, licensing, and commercialization activity by faculty as an important consideration for merit, tenure, and career advancement, along with publishing, teaching, and service. This position is placed in a historical context with a look at the history of tenure in the United States, patents, and licensing at universities, the current status of university tenure and career advancement processes, and models for the future.

  4. Least-cost transportation networks predict spatial interaction of invasion vectors.

    PubMed

    Drake, D Andrew R; Mandrak, Nicholas E

    2010-12-01

    Human-mediated dispersal among aquatic ecosystems often results in biotic transfer between drainage basins. Such activities may circumvent biogeographic factors, with considerable ecological, evolutionary, and economic implications. However, the efficacy of predictions concerning community changes following inter-basin movements are limited, often because the dispersal mechanism is poorly understood (e.g., quantified only partially). To date, spatial-interaction models that predict the movement of humans as vectors of biotic transfer have not incorporated patterns of human movement through transportation networks. As a necessary first step to determine the role of anglers as invasion vectors across a land-lake ecosystem, we investigate their movement potential within Ontario, Canada. To determine possible model improvements resulting from inclusion of network travel, spatial-interaction models were constructed using standard Euclidean (e.g., straight-line) distance measures and also with distances derived from least-cost routing of human transportation networks. Model comparisons determined that least-cost routing both provided the most parsimonious model and also excelled at forecasting spatial interactions, with a proportion of 0.477 total movement deviance explained. The distribution of movements was characterized by many relatively short to medium travel distances (median = 292.6 km) with fewer lengthier distances (75th percentile = 484.6 km, 95th percentile = 775.2 km); however, even the shortest movements were sufficient to overcome drainage-basin boundaries. Ranking of variables in order of their contribution within the most parsimonious model determined that distance traveled, origin outflow, lake attractiveness, and sportfish richness significantly influence movement patterns. Model improvements associated with least-cost routing of human transportation networks imply that patterns of human-mediated invasion are fundamentally linked to the spatial configuration and relative impedance of human transportation networks, placing increased importance on understanding their contribution to the invasion process.

  5. IMPROVING ESTUARINE EVALUATION THROUGH OUTREACH AND TECHNOLOGY TRANSFER TO STATES, TRIBES AND OTHER PARTNERS: EPA'S NATIONAL COASTAL ASSESSMENT

    EPA Science Inventory

    The Environmental Protection Agency's (EPA's) National Coastal Assessment (NCA) is a large-scale, comprehensive environmental monitoring program designed to characterize the ecological condition of the Nation's coastal resources. A key to this successful program is the developmen...

  6. Soft Technologies, Hard Choices. Worldwatch Paper 21.

    ERIC Educational Resources Information Center

    Norman, Colin

    The infusion of technology into society has created social and environmental problems as well as benefits. Four concerns linked with technology are discussed in this paper: rising unemployment, growing social inequalities, dwindling oil and gas reserves, and potential long-term ecological problems. Indiscriminate transfer of modern labor-saving…

  7. The basis function approach for modeling autocorrelation in ecological data

    USGS Publications Warehouse

    Hefley, Trevor J.; Broms, Kristin M.; Brost, Brian M.; Buderman, Frances E.; Kay, Shannon L.; Scharf, Henry; Tipton, John; Williams, Perry J.; Hooten, Mevin B.

    2017-01-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.

  8. Special Issue: Ecological Modelling Global Conference 2016: 20th Biennial ISEM Conference, 8 - 12 May 2016, Towson, Maryland, USA.

    EPA Science Inventory

    This Special Issue contains a collection of papers presented at The Ecological Modelling Global Conference 2016: 20th Biennial International Society of Ecological Modelling (ISEM) Conference which was held at Towson University, Maryland, United States. Over the past 40+ years, E...

  9. Increasing the reliability of ecological models using modern software engineering techniques

    Treesearch

    Robert M. Scheller; Brian R. Sturtevant; Eric J. Gustafson; Brendan C. Ward; David J. Mladenoff

    2009-01-01

    Modern software development techniques are largely unknown to ecologists. Typically, ecological models and other software tools are developed for limited research purposes, and additional capabilities are added later, usually in an ad hoc manner. Modern software engineering techniques can substantially increase scientific rigor and confidence in ecological models and...

  10. Abstracts and program proceedings of the 1994 meeting of the International Society for Ecological Modelling North American Chapter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kercher, J.R.

    1994-06-01

    This document contains information about the 1994 meeting of the International Society for Ecological Modelling North American Chapter. The topics discussed include: extinction risk assessment modelling, ecological risk analysis of uranium mining, impacts of pesticides, demography, habitats, atmospheric deposition, and climate change.

  11. Activity-specific ecological niche models for planning reintroductions of California condors (Gymnogyps californianus)

    Treesearch

    Jesse D’Elia; Susan M. Haig; Matthew Johnson; Richard Young; Bruce G. Marcot

    2015-01-01

    Ecological niche models can be a useful tool to identify candidate reintroduction sites for endangered species but have been infrequently used for this purpose. In this paper, we (1) develop activity-specific ecological niche models (nesting, roosting, and feeding) for the critically endangered California condor (Gymnogyps californianus) to aid in...

  12. Simulation modeling of forest landscape disturbances: An overview

    Treesearch

    Ajith H. Perera; Brian R. Sturtevant; Lisa J. Buse

    2015-01-01

    Quantification of ecological processes and formulation of the mathematical expressions that describe those processes in computer models has been a cornerstone of landscape ecology research and its application. Consequently, the body of publications on simulation models in landscape ecology has grown rapidly in recent decades. This trend is also evident in the subfield...

  13. Activity-specific ecological niche models for planning reintroductions of California condors (Gymnogyps californianus)

    USGS Publications Warehouse

    D'Elia, Jesse; Haig, Susan M.; Johnson, Matthew J.; Marcot, Bruce G.; Young, Richard

    2015-01-01

    Ecological niche models can be a useful tool to identify candidate reintroduction sites for endangered species but have been infrequently used for this purpose. In this paper, we (1) develop activity-specific ecological niche models (nesting, roosting, and feeding) for the critically endangered California condor (Gymnogyps californianus) to aid in reintroduction planning in California, Oregon, and Washington, USA, (2) test the accuracy of these models using empirical data withheld from model development, and (3) integrate model results with information on condor movement ecology and biology to produce predictive maps of reintroduction site suitability. Our approach, which disentangles niche models into activity-specific components, has applications for other species where it is routinely assumed (often incorrectly) that individuals fulfill all requirements for life within a single environmental space. Ecological niche models conformed to our understanding of California condor ecology, had good predictive performance when tested with data withheld from model development, and aided in the identification of several candidate reintroduction areas outside of the current distribution of the species. Our results suggest there are large unoccupied regions of the California condor’s historical range that have retained ecological features similar to currently occupied habitats, and thus could be considered for future reintroduction efforts. Combining our activity-specific ENMs with ground reconnaissance and information on other threat factors that could not be directly incorporated into empirical ENMs will ultimately improve our ability to select successful reintroduction sites for the California condor.

  14. The big data-big model (BDBM) challenges in ecological research

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2015-12-01

    The field of ecology has become a big-data science in the past decades due to development of new sensors used in numerous studies in the ecological community. Many sensor networks have been established to collect data. For example, satellites, such as Terra and OCO-2 among others, have collected data relevant on global carbon cycle. Thousands of field manipulative experiments have been conducted to examine feedback of terrestrial carbon cycle to global changes. Networks of observations, such as FLUXNET, have measured land processes. In particular, the implementation of the National Ecological Observatory Network (NEON), which is designed to network different kinds of sensors at many locations over the nation, will generate large volumes of ecological data every day. The raw data from sensors from those networks offer an unprecedented opportunity for accelerating advances in our knowledge of ecological processes, educating teachers and students, supporting decision-making, testing ecological theory, and forecasting changes in ecosystem services. Currently, ecologists do not have the infrastructure in place to synthesize massive yet heterogeneous data into resources for decision support. It is urgent to develop an ecological forecasting system that can make the best use of multiple sources of data to assess long-term biosphere change and anticipate future states of ecosystem services at regional and continental scales. Forecasting relies on big models that describe major processes that underlie complex system dynamics. Ecological system models, despite great simplification of the real systems, are still complex in order to address real-world problems. For example, Community Land Model (CLM) incorporates thousands of processes related to energy balance, hydrology, and biogeochemistry. Integration of massive data from multiple big data sources with complex models has to tackle Big Data-Big Model (BDBM) challenges. Those challenges include interoperability of multiple, heterogeneous data sets; intractability of structural complexity of big models; equifinality of model structure selection and parameter estimation; and computational demand of global optimization with Big Models.

  15. Exploring the Mechanisms of Ecological Land Change Based on the Spatial Autoregressive Model: A Case Study of the Poyang Lake Eco-Economic Zone, China

    PubMed Central

    Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai

    2013-01-01

    Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant positive spatial correlation (p < 0.05). The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model. PMID:24384778

  16. [Ecological risk assessment of dam construction for terrestrial plant species in middle reach of Lancangjiang River, Southwest China].

    PubMed

    Li, Xiao-Yan; Dong, Shi-Kui; Liu, Shi-Liang; Peng, Ming-Chun; Li, Jin-Peng; Zhao, Qing-He; Zhang, Zhao-Ling

    2012-08-01

    Taking the surrounding areas of Xiaowan Reservoir in the middle reach of Lancangjiang River as study area, and based on the vegetation investigation at three sites including electricity transmission area (site 1), electricity-transfer substation and roadsides to the substation (site 2), and emigration area (site 3) in 1997 (before dam construction), another investigation was conducted on the vegetation composition, plant coverage, and dominant species at the same sites in 2010 (after dam construction), aimed to evaluate the ecological risk of the dam construction for the terrestrial plant species in middle reach of Lancangjiang River. There was an obvious difference in the summed dominance ratio of dominant species at the three sites before and after the dam construction. According the types of species (dominant and non-dominant species) and the changes of plant dominance, the ecological risk (ER) for the plant species was categorized into 0 to IV, i.e., no or extremely low ecological risk (0), low ecological risk (I), medium ecological risk (II), high ecological risk (III), and extremely high ecological risk (IV). As affected by the dam construction, the majority of the species were at ER III, and a few species were at ER IV. The percentage of the plant species at ER III and ER IV at site 3 was higher than that at sites 1 and 2. The decrease or loss of native plants and the increase of alien or invasive plants were the major ecological risks caused by the dam construction. Effective protection strategies should be adopted to mitigate the ecological risk of the dam construction for the terrestrial plants at species level.

  17. Integrating human and natural systems in community psychology: an ecological model of stewardship behavior.

    PubMed

    Moskell, Christine; Allred, Shorna Broussard

    2013-03-01

    Community psychology (CP) research on the natural environment lacks a theoretical framework for analyzing the complex relationship between human systems and the natural world. We introduce other academic fields concerned with the interactions between humans and the natural environment, including environmental sociology and coupled human and natural systems. To demonstrate how the natural environment can be included within CP's ecological framework, we propose an ecological model of urban forest stewardship action. Although ecological models of behavior in CP have previously modeled health behaviors, we argue that these frameworks are also applicable to actions that positively influence the natural environment. We chose the environmental action of urban forest stewardship because cities across the United States are planting millions of trees and increased citizen participation in urban tree planting and stewardship will be needed to sustain the benefits provided by urban trees. We used the framework of an ecological model of behavior to illustrate multiple levels of factors that may promote or hinder involvement in urban forest stewardship actions. The implications of our model for the development of multi-level ecological interventions to foster stewardship actions are discussed, as well as directions for future research to further test and refine the model.

  18. The Evaluation of Land Ecological Safety of Chengchao Iron Mine Based on PSR and MEM

    NASA Astrophysics Data System (ADS)

    Jin, Xiangdong; Chen, Yong

    2018-01-01

    Land ecological security is of vital importance to local security and sustainable development of mining activities. The study has analyzed the potential causal chains between the land ecological security of Iron Mine mining environment, mine resource and the social-economic background. On the base of Pressure-State-Response model, the paper set up a matter element evaluation model of land ecological security, and applies it in Chengchao iron mine. The evaluation result proves to be effective in land ecological evaluation.

  19. Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach—A Case Study for the City of Wuhan in China

    PubMed Central

    Gao, Yuan; Zhang, Chuanrong; He, Qingsong; Liu, Yaolin

    2017-01-01

    Ecological security is an important research topic, especially urban ecological security. As highly populated eco-systems, cities always have more fragile ecological environments. However, most of the research on urban ecological security in literature has focused on evaluating current or past status of the ecological environment. Very little literature has carried out simulation or prediction of future ecological security. In addition, there is even less literature exploring the urban ecological environment at a fine scale. To fill-in the literature gap, in this study we simulated and predicted urban ecological security at a fine scale (district level) using an improved Cellular Automata (CA) approach. First we used the pressure-state-response (PSR) method based on grid-scale data to evaluate urban ecological security. Then, based on the evaluation results, we imported the geographically weighted regression (GWR) concept into the CA model to simulate and predict urban ecological security. We applied the improved CA approach in a case study—simulating and predicting urban ecological security for the city of Wuhan in Central China. By comparing the simulated ecological security values from 2010 using the improved CA model to the actual ecological security values of 2010, we got a relatively high value of the kappa coefficient, which indicates that this CA model can simulate or predict well future development of ecological security in Wuhan. Based on the prediction results for 2020, we made some policy recommendations for each district in Wuhan. PMID:28617348

  20. A Global Lake Ecological Observatory Network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models

    USGS Publications Warehouse

    David, Hamilton P; Carey, Cayelan C.; Arvola, Lauri; Arzberger, Peter; Brewer, Carol A.; Cole, Jon J; Gaiser, Evelyn; Hanson, Paul C.; Ibelings, Bas W; Jennings, Eleanor; Kratz, Tim K; Lin, Fang-Pang; McBride, Christopher G.; de Motta Marques, David; Muraoka, Kohji; Nishri, Ami; Qin, Boqiang; Read, Jordan S.; Rose, Kevin C.; Ryder, Elizabeth; Weathers, Kathleen C.; Zhu, Guangwei; Trolle, Dennis; Brookes, Justin D

    2014-01-01

    A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated response to the need for scientific understanding of lake processes, utilising technological advances available from autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process- based ecological models because model simulation time steps are better aligned with sensor measurements than with lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. The case studies demonstrate some of the difficulties of mapping sensor measurements directly to model state variable outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest.

  1. The use of mechanistic descriptions of algal growth and zooplankton grazing in an estuarine eutrophication model

    NASA Astrophysics Data System (ADS)

    Baird, M. E.; Walker, S. J.; Wallace, B. B.; Webster, I. T.; Parslow, J. S.

    2003-03-01

    A simple model of estuarine eutrophication is built on biomechanical (or mechanistic) descriptions of a number of the key ecological processes in estuaries. Mechanistically described processes include the nutrient uptake and light capture of planktonic and benthic autotrophs, and the encounter rates of planktonic predators and prey. Other more complex processes, such as sediment biogeochemistry, detrital processes and phosphate dynamics, are modelled using empirical descriptions from the Port Phillip Bay Environmental Study (PPBES) ecological model. A comparison is made between the mechanistically determined rates of ecological processes and the analogous empirically determined rates in the PPBES ecological model. The rates generally agree, with a few significant exceptions. Model simulations were run at a range of estuarine depths and nutrient loads, with outputs presented as the annually averaged biomass of autotrophs. The simulations followed a simple conceptual model of eutrophication, suggesting a simple biomechanical understanding of estuarine processes can provide a predictive tool for ecological processes in a wide range of estuarine ecosystems.

  2. Assimilation of Leaf and Canopy Spectroscopic Data to Improve the Representation of Vegetation Dynamics in Terrestrial Ecosystem Models

    NASA Astrophysics Data System (ADS)

    Serbin, S. P.; Dietze, M.; Desai, A. R.; LeBauer, D.; Viskari, T.; Kooper, R.; McHenry, K. G.; Townsend, P. A.

    2013-12-01

    The ability to seamlessly integrate information on vegetation structure and function across a continuum of scales, from field to satellite observations, greatly enhances our ability to understand how terrestrial vegetation-atmosphere interactions change over time and in response to disturbances. In particular, terrestrial ecosystem models require detailed information on ecosystem states and canopy properties in order to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere as well as address the vulnerability of ecosystems to environmental and other perturbations. Over the last several decades the amount of available data to constrain ecological predictions has increased substantially, resulting in a progressively data-rich era for global change research. In particular remote sensing data, specifically optical data (leaf and canopy), offers the potential for an important and direct data constraint on ecosystem model projections of C and energy fluxes. Here we highlight the utility of coupling information provided through the Ecosystem Spectral Information System (EcoSIS) with complex process models through the Predictive Ecosystem Analyzer (PEcAn; http://www.pecanproject.org/) eco-informatics framework as a means to improve the description of canopy optical properties, vegetation composition, and modeled radiation balance. We also present this an efficient approach for understanding and correcting implicit assumptions and model structural deficiencies. We first illustrate the challenges and issues in adequately characterizing ecosystem fluxes with the Ecosystem Demography model (ED2, Medvigy et al., 2009) due to improper parameterization of leaf and canopy properties, as well as assumptions describing radiative transfer within the canopy. ED2 is especially relevant to these efforts because it contains a sophisticated structure for scaling ecological processes across a range of spatial scales: from the tree-level (demography, physiology) to the distribution of stands across a landscape, which allows for the direct use of remotely sensed data at the appropriate spatial scale. A sensitivity analysis is employed within PEcAn to illustrate the influence of ED2 parameterizations on modeled C and energy fluxes for a northern temperate forest ecosystem as an example of the need for more detailed information on leaf and canopy optical properties. We then demonstrate a data assimilation approach to synthesize spectral data contained within EcoSIS in order to update model parameterizations across key vegetation plant functional types, as well as a means to update vegetation state information (i.e. composition, LAI) and improve the description of radiation transfer through model structural updates. A better understanding of the radiation balance of ecosystems will improve regional and global scale C and energy balance projections.

  3. Niche similarities among introduced and native mountain ungulates.

    PubMed

    Lowrey, B; Garrott, R A; McWhirter, D E; White, P J; DeCesare, N J; Stewart, S T

    2018-03-24

    The niche concept provides a strong foundation for theoretical and applied research among a broad range of disciplines. When two ecologically similar species are sympatric, theory predicts they will occupy distinct ecological niches to reduce competition. Capitalizing on the increasing availability of spatial data, we built from single species habitat suitability models to a multispecies evaluation of the niche partitioning hypothesis with sympatric mountain ungulates: native bighorn sheep (BHS; Ovis canadensis) and introduced mountain goats (MTG; Oreamnos americanus) in the northeast Greater Yellowstone Area. We characterized seasonal niches using two-stage resource selection functions with a used-available design and descriptive summaries of the niche attributes associated with used GPS locations. We evaluated seasonal similarity in niche space according to confidence interval overlap of model coefficients and similarity in geographic space by comparing model predicted values with Schoener's D metric. Our sample contained 37,962 summer locations from 53 individuals (BHS = 31, MTG = 22), and 79,984 winter locations from 57 individuals (BHS = 35, MTG = 22). Slope was the most influential niche component for both species and seasons, and showed the strongest evidence of niche partitioning. Bighorn sheep occurred on steeper slopes than mountain goats in summer and mountain goats occurred on steeper slopes in winter. The pattern of differential selection among species was less prevalent for the remaining covariates, indicating similarity in niche space. Model predictions in geographic space showed broad seasonal similarity (summer D = 0.88, winter D = 0.87), as did niche characterizations from used GPS locations. The striking similarities in seasonal niches suggest that introduced mountain goats will continue to increase their spatial overlap with native bighorn. Our results suggest that reducing densities of mountain goats in hunted areas where they are sympatric with bighorn sheep and impeding their expansion may reduce the possibility of competition and disease transfer. Additional studies that specifically investigate partitioning at finer scales and along dietary or temporal niche axes will help to inform an adaptive management approach. © 2018 by the Ecological Society of America.

  4. Restoration ecology: longterm evaluation as an essential feature of rehabilitation

    USGS Publications Warehouse

    Gannon, John E.

    1993-01-01

    In its brief existence as a recognized scientific discipline, restoration ecology has focused almost exclusively on terrestrial and wetland habitat. As a consequence, aquatic restoration and rehabilitation, an important component of restoration ecology is a relatively new discipline. This article examines the ecosystem approach to rehabilitation of the Great Lakes Basin and proposes that waterfront redevlopment and terrestrial and wetland habitat restoration should be accompanied by aquatic habitat restoration. Furthermore, aquatic habitat restoration must include rehabilitation of hard-bottom substrates and structures as well as pollution cleanup and management of soft sediments. Lastly, the article suggests that longterm evaluation is indispensable for aquatic habitat restoration and rehabiliation to be truly successful in the Great Lakes region. Only through longterm evaluation can we determine whether habitat restoration goals have been met at specific sites and transfer successful lessons learned at other locations.

  5. Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research

    PubMed Central

    Osterstock, Jason B.; Pinchak, William E.; Ishii, Shun’ichi; Nelson, Karen E.

    2009-01-01

    Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research. PMID:20024685

  6. Environmental factors influencing the development and spread of antibiotic resistance

    PubMed Central

    Kristiansson, Erik; Larsson, D G Joakim

    2017-01-01

    Abstract Antibiotic resistance and its wider implications present us with a growing healthcare crisis. Recent research points to the environment as an important component for the transmission of resistant bacteria and in the emergence of resistant pathogens. However, a deeper understanding of the evolutionary and ecological processes that lead to clinical appearance of resistance genes is still lacking, as is knowledge of environmental dispersal barriers. This calls for better models of how resistance genes evolve, are mobilized, transferred and disseminated in the environment. Here, we attempt to define the ecological and evolutionary environmental factors that contribute to resistance development and transmission. Although mobilization of resistance genes likely occurs continuously, the great majority of such genetic events do not lead to the establishment of novel resistance factors in bacterial populations, unless there is a selection pressure for maintaining them or their fitness costs are negligible. To enable preventative measures it is therefore critical to investigate under what conditions and to what extent environmental selection for resistance takes place. In addition, understanding dispersal barriers is not only key to evaluate risks, but also to prevent resistant pathogens, as well as novel resistance genes, from reaching humans. PMID:29069382

  7. The bee, the flower, and the electric field: electric ecology and aerial electroreception.

    PubMed

    Clarke, Dominic; Morley, Erica; Robert, Daniel

    2017-09-01

    Bees and flowering plants have a long-standing and remarkable co-evolutionary history. Flowers and bees evolved traits that enable pollination, a process that is as important to plants as it is for pollinating insects. From the sensory ecological viewpoint, bee-flower interactions rely on senses such as vision, olfaction, humidity sensing, and touch. Recently, another sensory modality has been unveiled; the detection of the weak electrostatic field that arises between a flower and a bee. Here, we present our latest understanding of how these electric interactions arise and how they contribute to pollination and electroreception. Finite-element modelling and experimental evidence offer new insights into how these interactions are organised and how they can be further studied. Focussing on pollen transfer, we deconstruct some of the salient features of the three ingredients that enable electrostatic interactions, namely the atmospheric electric field, the capacity of bees to accumulate positive charge, and the propensity of plants to be relatively negatively charged. This article also aims at highlighting areas in need of further investigation, where more research is required to better understand the mechanisms of electrostatic interactions and aerial electroreception.

  8. System dynamic modelling of industrial growth and landscape ecology in China.

    PubMed

    Xu, Jian; Kang, Jian; Shao, Long; Zhao, Tianyu

    2015-09-15

    With the rapid development of large industrial corridors in China, the landscape ecology of the country is currently being affected. Therefore, in this study, a system dynamic model with multi-dimensional nonlinear dynamic prediction function that considers industrial growth and landscape ecology is developed and verified to allow for more sustainable development. Firstly, relationships between industrial development and landscape ecology in China are examined, and five subsystems are then established: industry, population, urban economy, environment and landscape ecology. The main influencing factors are then examined for each subsystem to establish flow charts connecting those factors. Consequently, by connecting the subsystems, an overall industry growth and landscape ecology model is established. Using actual data and landscape index calculated based on GIS of the Ha-Da-Qi industrial corridor, a typical industrial corridor in China, over the period 2005-2009, the model is validated in terms of historical behaviour, logical structure and future prediction, where for 84.8% of the factors, the error rate of the model is less than 5%, the mean error rate of all factors is 2.96% and the error of the simulation test for the landscape ecology subsystem is less than 2%. Moreover, a model application has been made to consider the changes in landscape indices under four industrial development modes, and the optimal industrial growth plan has been examined for landscape ecological protection through the simulation prediction results over 2015-2020. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A Sense of Place: Integrating Environmental Psychology into Marine Socio-Ecological Models

    NASA Astrophysics Data System (ADS)

    van Putten, I. E.; Fleming, A.; Fulton, E.; Plaganyi-Lloyd, E.

    2016-02-01

    Sense of place is a concept that is increasingly applied in different social research contexts where it can act as a bridge between disciplines that might otherwise work in parallel. A sense of place is a well established and flexible concept that has been empirically measured using different survey methods. The psychological principals and theories that underpin sense of place have been inextricably linked to the quality of ecological systems and the impact on development of the system, and vice versa. Ecological models and scenario analyses play an important role in characterising, assessing and predicting the potential impacts of alternative developments and other changes affecting ecological systems. To improve the predictive accuracy of ecological models, human drivers, interactions, and uses have been dynamically incorporated, for instance, through management strategy evaluation applied to marine ecosystem models. However, to date no socio-ecological models (whether terrestrial or marine) have been developed that incorporate a dynamic feedback between ecosystem characteristics and peoples' sense of place. These models thus essentially ignore the influence of environmental psychology on the way people use and interact with ecosystems. We develop a proof of concept and provide a mathematical basis for a Sense of Place Index (SoPI) that allows the quantitative integration of environmental psychology into socio-ecological models. Incorporating dynamic feedback between the SoPI for different resource user groups and the ecological system improves the accuracy and precision of predictions regarding future resource use as well as, ultimately, the potential state of the resource to be developed.

  10. Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts

    NASA Astrophysics Data System (ADS)

    Chen, Maosi

    Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result from an improved cloud screening algorithm that utilizes an iterative rejection of cloudy points based on a decreasing tolerance of unstable optical depth behavior when calibration information is unknown. A MODTRAN radiative transfer model simulation showed the new cloud screening algorithm was capable of screening cloudy points while retaining clear-sky points. The comparison results showed that the cloud-free points determined by the new cloud screening algorithm generated significantly (56%) more and unbiased Langley offset voltages (VLOs) for both partly cloudy days and sunny days at two testing sites, Hawaii and Florida. The V¬LOs are proportional to the radiometric sensitivity. The stability of the calibration is also improved by the development of a two-stage reference channel calibration method for collocated UV-MFRSR and MFRSR instruments. Special channels where aerosol is the only contributor to total optical depth (TOD) variation (e.g. 368-nm channel) were selected and the radiative transfer model (MODTRAN) used to calculate direct normal and diffuse horizontal ratios which were used to evaluate the stability of TOD in cloud-free points. The spectral dependence of atmospheric constituents' optical properties and previously calibrated channels were used to find stable TOD points and perform Langley calibration at spectrally adjacent channels. The test of this method on the UV-B program site at Homestead, Florida (FL02) showed that the new method generated more clustered and abundant VLOs at all (UV-) MFRSR channels and potentially improved the accuracy by 2-4% at most channels and over 10% at 300-nm and 305-nm channels. In the second major part of this work, I calibrated the DayCent-UV model with ecosystem variables (e.g. soil water, live biomass), allowed maximum photodecay rate to vary with litter's initial lignin fraction in the model, and validated the optimized model with LIDET observation of remaining carbon and nitrogen at three semi-arid sites. I also explored the ecological impacts of UV decomposition with the optimized DayCent-UV model. The DayCent-UV model showed significant better performance compared to models without UV decomposition in simulating the observed linear carbon loss pattern and the persistent net nitrogen mineralization in the 10-year LIDET experiment at the three sites. The DayCent-UV equilibrium model runs showed that UV decomposition increased aboveground and belowground plant production, surface net nitrogen mineralization, and surface litter nitrogen pool, while decreased surface litter carbon, soil net nitrogen mineralization and mineral soil carbon and nitrogen. In addition, UV decomposition showed minimal impacts (i.e. less than 1% change) on trace gases emission and biotic decomposition rates. Overall, my dissertation provided a comprehensive solution to improve the calibration accuracy and reliability of MFRSR and therefore the quality of radiation products. My dissertation also improved the understanding of UV decomposition and its long-term ecological impacts.

  11. Ecology in a connected world: a vision for a "network of networks"

    USDA-ARS?s Scientific Manuscript database

    This special issue addresses the importance of connectivity in driving ecosystem dynamics. Connectivity is defined as the transfer of materials by wind, water, humans, and animals. Although it is well-recognized that we live in a connected world, it is less well-appreciated that these interconnectio...

  12. Applying principles from economics to improve the transfer of ecological production estimates in fisheries ecosystem services research

    EPA Science Inventory

    Ecosystem services (ES) represent a way to represent and quantify multiple uses, values as well as connectivity between ecosystem processes and human well-being. Ecosystem-based fisheries management approaches may seek to quantify expected trade-offs in ecosystem services due to ...

  13. Urban forestry research needs: a participatory assessment process

    Treesearch

    Kathleen L. Wolf; Linda E. Kruger

    2010-01-01

    New research initiatives focusing on urban ecology and natural resources are underway. Such programs coincide with increased local government action in urban forest planning and management, activities that are enhanced by scientific knowledge. This project used a participatory stakeholder process to explore and understand urban forestry research and technology transfer...

  14. 77 FR 75085 - Proposed Significant New Use Rule on Ethoxylated, Propoxylated Diamine Diaryl Substituted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... applications. Based on ecological structure activity relationship (EcoSAR) analysis of test data on analogous... significant regulatory action under Executive Order 12866. I. National Technology Transfer and Advancement Act Since this action does not involve any technical standards, section 12(d) of the National Technology...

  15. Salinity-induced changes in gene expression from anterior and posterior gills of Callinectes sapidus (Crustacea: Portunidae) with implications for crustacean ecological genomics

    PubMed Central

    Havird, Justin C.; Mitchell, Reed T.; Henry, Raymond P.; Santos, Scott R.

    2016-01-01

    Decapods represent one of the most ecologically diverse taxonomic groups within crustaceans, making them ideal to study physiological processes like osmoregulation. However, prior studies have failed to consider the entire transcriptomic response of the gill – the primary organ responsible for ion transport – to changing salinity. Moreover, the molecular genetic differences between non-osmoregulatory and osmoregulatory gill types, as well as the hormonal basis of osmoregulation, remain underexplored. Here, we identified and characterized differentially expressed genes (DEGs) via RNA-Seq in anterior (non-osmoregulatory) and posterior (osmoregulatory) gills during high to low salinity transfer in the blue crab Callinectes sapidus, a well-studied model for crustacean osmoregulation. Overall, we confirmed previous expression patterns for individual ion transport genes and identified novel ones with salinity-mediated expression. Notable, novel DEGs among salinities and gill types for C. sapidus included anterior gills having higher expression of structural genes such as actin and cuticle proteins while posterior gills exhibit elevated expression of ion transport and energy-related genes, with the latter likely linked to ion transport. Potential targets among recovered DEGs for hormonal regulation of ion transport between salinities and gill types included neuropeptide Y and a KCTD16-like protein. Using publically available sequence data, constituents for a “core” gill transcriptome among decapods are presented, comprising genes involved in ion transport and energy conversion and consistent with salinity transfer experiments. Lastly, rarefication analyses lead us to recommend a modest number of sequence reads (~10–15 M), but with increased biological replication, be utilized in future DEG analyses of crustaceans. PMID:27337176

  16. Estimating the ecology of extinct species with paleoecological data assimilation

    NASA Astrophysics Data System (ADS)

    Raiho, A.; McLachlan, J. S.; Dietze, M.

    2017-12-01

    In order to understand long term, unobservable ecosystem processes, ecologists must use both paleoecoloigcal data and ecosystem models. Models parameterize species competitive interactions using modern data. But, modern ecological or physiological observations are not available for extinct species, making it difficult for models to conceptualize their ecology. For instance, American chestnut (Castanea dentata), who played a large role in forests of northeastern US, was decimated by disease to virtual extinction. Since chestnut's demise, defining its ecology has been controversial. Models typically assume that chestnut's ecology was very similar to oak; They parameterize chestnut like oak species. These assumptions are drawn from paleoecological data, but these data are often reported without uncertainty. Since the paleoecological data are often reported without uncertainty, paleoecological data has never been directly incorporated with ecosystem models. We developed a Bayesian statistical model to estimate fractional composition from paleoecological data with uncertainty. Then, we assimilated this data product into an ecosystem model for long term forest succession using a generalized ensemble adjustment filter to determine which species demographic parameters lead to changes in species composition over the last 2,000 years at Harvard Forest. We found that chestnut was strongly negatively correlated with white pine (Pinus strobus) and red oak (Quercus rubra) in the process covariance matrix, suggesting a strong competitive interaction that is not currently understood by models for forest succession. These findings provide support for utilizing a data assimilation framework to ecologically interpret paleoecological data or data products to learn about the ecology of extinct species.

  17. Novel insights into methane cycling, lateral gene transfer, and the rare biosphere within carbonate chimneys of the Lost City Hydrothermal Field (Invited)

    NASA Astrophysics Data System (ADS)

    Brazelton, W. J.; Ludwig, K. A.; Schrenk, M. O.; Kelley, D. S.; Sogin, M. L.; Baross, J. A.

    2010-12-01

    The Lost City Hydrothermal Field, an ultramafic-hosted system located 15 km west of the Mid-Atlantic Ridge, has experienced at least 30,000 years of hydrothermal activity. Previous studies have shown that its carbonate chimneys form by mixing of ~90°C, pH 9-11 hydrothermal fluids and cold seawater. Flow of methane and hydrogen-rich hydrothermal fluids through the carbonate chimneys supports dense microbial biofilm communities. This presentation will describe recent studies using new techniques that have provided greater insight into the microbial ecology and biogeochemistry of Lost City chimneys. We have investigated the archaeal and bacterial communities of Lost City carbonate chimneys that vary in age between ~30 and ~1200 years, as determined by U-Th isotope systematics. Using next-generation pyrosequencing technology, we collected >200,000 sequences of the V6 region of 16S rRNA genes. This extremely deep sequencing effort enabled detection of very rare organisms as well as abundant organisms detected by previous studies. The taxonomic composition of the archaeal and bacterial communities clearly differed in chimneys of different ages, and many of the rare sequences in young chimneys were more abundant in older chimneys, indicating that members of the rare biosphere can become dominant members of the ecosystem when environmental conditions change. These results suggest that a long history of selection over many cycles of chimney growth has resulted in numerous closely related species at Lost City, each of which is pre-adapted to a particular set of re-occurring environmental conditions. In this model, the rare biosphere can be considered a repository for genes that are not currently advantageous but have been in the past and may be again in the future. Interestingly, metagenomic sequencing at Lost City has indicated the potential for frequent lateral gene transfer among organisms inhabiting the chimney biofilms. Specifically, the Lost City metagenomic dataset contains the highest proportion of genes encoding transposases (the enzymes required for lateral gene transfer) of any metagenome yet reported. Therefore, we intend to test the hypothesis that the rare biosphere can serve as a source of genes that can be laterally transferred to and benefit organisms of ecological importance. The metagenomic dataset also provides clues regarding the physiology of the dominant organisms. For example, bacterial genes associated with sulfide and sulfur oxidation are present. We have also detected archaeal genes associated with nitrogen fixation and conversion of acetate to methane. Laboratory incubation experiments have shown that anaerobic methane oxidation also occurs in Lost City chimney biofilms. We will present a conceptual model of biogeochemical reactions expected to occur in Lost City biofilms.

  18. Ecological connectivity networks in rapidly expanding cities.

    PubMed

    Nor, Amal Najihah M; Corstanje, Ron; Harris, Jim A; Grafius, Darren R; Siriwardena, Gavin M

    2017-06-01

    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow ( Passer montanus ) and Yellow-vented bulbul ( Pycnonotus goiavier ) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for biodiversity conservation and urban planning.

  19. Benefits of using a Social-Ecological Systems Approach to Conceptualize and Model Wetlands Restoration

    EPA Science Inventory

    Using a social-ecological systems (SES) perspective to examine wetland restoration helps decision-makers recognize interdependencies and relations between ecological and social components of coupled systems. Conceptual models are an invaluable tool to capture, visualize, and orga...

  20. A CONCEPTUAL MODEL FOR MULTI-SCALAR ASSESSMENTS OF ESTUARINE ECOLOGICAL INTEGRITY

    EPA Science Inventory

    A conceptual model was developed that relates an estuarine system's anthropogenic inputs to it's ecological integrity. Ecological integrity is operationally defined as an emergent property of an ecosystem that exists when the structural components are complete and the functional ...

  1. DYNAMIC LANDSCAPES, STABILITY AND ECOLOGICAL MODELING

    EPA Science Inventory

    The image of a ball rolling along a series of hills and valleys is an effective heuristic by which to communicate stability concepts in ecology. However, the dynamics of this landscape model have little to do with ecological systems. Other landscape representations, however, are ...

  2. Progress and challenges in coupled hydrodynamic-ecological estuarine modeling.

    PubMed

    Ganju, Neil K; Brush, Mark J; Rashleigh, Brenda; Aretxabaleta, Alfredo L; Del Barrio, Pilar; Grear, Jason S; Harris, Lora A; Lake, Samuel J; McCardell, Grant; O'Donnell, James; Ralston, David K; Signell, Richard P; Testa, Jeremy M; Vaudrey, Jamie M P

    2016-03-01

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a "theory of everything" for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.

  3. Progress and challenges in coupled hydrodynamic-ecological estuarine modeling

    USGS Publications Warehouse

    Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O'Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy; Vaudrey, Jamie M. P.

    2016-01-01

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.

  4. Progress and challenges in coupled hydrodynamic-ecological estuarine modeling

    PubMed Central

    Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O’Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy M.; Vaudrey, Jamie M.P.

    2016-01-01

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy. PMID:27721675

  5. [Estimation of vegetation canopy water content using Hyperion hyperspectral data].

    PubMed

    Song, Xiao-Ning; Ma, Jian-Wei; Li, Xiao-Tao; Leng, Pei; Zhou, Fang-Cheng; Li, Shuang

    2013-10-01

    Vegetation canopy water content (VCWC) has widespread utility in agriculture, ecology and hydrology. Based on the PROSAIL model, a novel model for quantitative inversion of vegetation canopy water content using Hyperion hyperspectral data was explored. Firstly, characteristics of vegetation canopy reflection were investigated with the PROSAIL radiative transfer model, and it was showed that the first derivative at the right slope (980 - 1 070 nm) of the 970 nm water absorption feature (D98-1 070) was closely related to VCWC, and determination coefficient reached to 0.96. Then, bands 983, 993, 1 003, 1 013, 1 023, 1 033, 1 043, 1 053 and 1 063 nm of Hyperion data were selected to calculate D980-1 070, and VCWC was estimated using the proposed method. Finally, the retrieval result was verified using field measured data in Yingke oasis of the Heihe basin. It indicated that the mean relative error was 12.5%, RMSE was within 0.1 kg x m(-2) and the proposed model was practical and reliable. This study provides a more efficient way for obtaining VCWC of large area.

  6. Fractional Snow Cover Mapping by Artificial Neural Networks and Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Çiftçi, B. B.; Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2017-11-01

    Snow is an important land cover whose distribution over space and time plays a significant role in various environmental processes. Hence, snow cover mapping with high accuracy is necessary to have a real understanding for present and future climate, water cycle, and ecological changes. This study aims to investigate and compare the design and use of artificial neural networks (ANNs) and support vector machines (SVMs) algorithms for fractional snow cover (FSC) mapping from satellite data. ANN and SVM models with different model building settings are trained by using Moderate Resolution Imaging Spectroradiometer surface reflectance values of bands 1-7, normalized difference snow index and normalized difference vegetation index as predictor variables. Reference FSC maps are generated from higher spatial resolution Landsat ETM+ binary snow cover maps. Results on the independent test data set indicate that the developed ANN model with hyperbolic tangent transfer function in the output layer and the SVM model with radial basis function kernel produce high FSC mapping accuracies with the corresponding values of R = 0.93 and R = 0.92, respectively.

  7. An ecological systems approach to bullying behaviors among middle school students in the United States.

    PubMed

    Lee, Chang-Hun

    2011-05-01

    The aim of this study is to identify an ecological prediction model of bullying behaviors. Based on an ecological systems theory, this study identifies significant factors influencing bullying behaviors at different levels of middle and high school. These levels include the microsystem, mesosystem, exosystem, and macrosystem. More specifically, the ecological factors investigated in this multilevel analysis are individual traits, family experiences, parental involvement, school climate, and community characteristics. Using data collected in 2008 from 485 randomly selected students in a school district, this study identifies a best-fitting structural model of bullying behavior. Findings suggest that the ecological model accounted for a high portion of variance in bullying behaviors. All of the ecological systems as well as individual traits were found to be significant influences on bullying behaviors either directly or indirectly.

  8. Common Challenges for Ecological Modelling: Synthesis of Facilitated Discussions Held at the Symposia Organized for the Conference of the International Society for Ecological Modelling in Quebec City, Canada (October 6-9, 2009)

    EPA Science Inventory

    The symposia organized for the conference of the International Society for Ecological Modelling (ISEM 2009) included facilitated discussion sessions following formal presentations. Each symposium focused on a specific subject, and all the subjects could be classified into three b...

  9. Framework for analyzing ecological trait-based models in multidimensional niche spaces

    NASA Astrophysics Data System (ADS)

    Biancalani, Tommaso; DeVille, Lee; Goldenfeld, Nigel

    2015-05-01

    We develop a theoretical framework for analyzing ecological models with a multidimensional niche space. Our approach relies on the fact that ecological niches are described by sequences of symbols, which allows us to include multiple phenotypic traits. Ecological drivers, such as competitive exclusion, are modeled by introducing the Hamming distance between two sequences. We show that a suitable transform diagonalizes the community interaction matrix of these models, making it possible to predict the conditions for niche differentiation and, close to the instability onset, the asymptotically long time population distributions of niches. We exemplify our method using the Lotka-Volterra equations with an exponential competition kernel.

  10. Using circuit theory to model connectivity in ecology, evolution, and conservation.

    PubMed

    McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B

    2008-10-01

    Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.

  11. Ecological Assets and Academic Procrastination among Adolescents: The Mediating Role of Commitment to Learning.

    PubMed

    Chen, Bin-Bin; Han, Wen

    2017-01-01

    Academic procrastination is defined as a purposive delay of academic tasks that must be completed. Within the framework of the ecological model of resiliency, this study examined how ecological assets were related to academic procrastination among adolescents. Participants in the study were 577 adolescents (53.5% boys) from Shanghai, China. They completed measures of ecological assets, commitment to learning, and academic procrastination. Structural equation modeling revealed that, as predicted, ecological assets were negatively associated with academic procrastination. In addition, commitment to learning fully mediated the association between ecological assets and academic procrastination. Implications of the present findings are discussed.

  12. Ecological Assets and Academic Procrastination among Adolescents: The Mediating Role of Commitment to Learning

    PubMed Central

    Chen, Bin-Bin; Han, Wen

    2017-01-01

    Academic procrastination is defined as a purposive delay of academic tasks that must be completed. Within the framework of the ecological model of resiliency, this study examined how ecological assets were related to academic procrastination among adolescents. Participants in the study were 577 adolescents (53.5% boys) from Shanghai, China. They completed measures of ecological assets, commitment to learning, and academic procrastination. Structural equation modeling revealed that, as predicted, ecological assets were negatively associated with academic procrastination. In addition, commitment to learning fully mediated the association between ecological assets and academic procrastination. Implications of the present findings are discussed. PMID:29379451

  13. Land-use change in oil palm dominated tropical landscapes-An agent-based model to explore ecological and socio-economic trade-offs.

    PubMed

    Dislich, Claudia; Hettig, Elisabeth; Salecker, Jan; Heinonen, Johannes; Lay, Jann; Meyer, Katrin M; Wiegand, Kerstin; Tarigan, Suria

    2018-01-01

    Land-use changes have dramatically transformed tropical landscapes. We describe an ecological-economic land-use change model as an integrated, exploratory tool used to analyze how tropical land-use change affects ecological and socio-economic functions. The model analysis seeks to determine what kind of landscape mosaic can improve the ensemble of ecosystem functioning, biodiversity, and economic benefit based on the synergies and trade-offs that we have to account for. More specifically, (1) how do specific ecosystem functions, such as carbon storage, and economic functions, such as household consumption, relate to each other? (2) How do external factors, such as the output prices of crops, affect these relationships? (3) How do these relationships change when production inefficiency differs between smallholder farmers and learning is incorporated? We initialize the ecological-economic model with artificially generated land-use maps parameterized to our study region. The economic sub-model simulates smallholder land-use management decisions based on a profit maximization assumption. Each household determines factor inputs for all household fields and decides on land-use change based on available wealth. The ecological sub-model includes a simple account of carbon sequestration in above-ground and below-ground vegetation. We demonstrate model capabilities with results on household consumption and carbon sequestration from different output price and farming efficiency scenarios. The overall results reveal complex interactions between the economic and ecological spheres. For instance, model scenarios with heterogeneous crop-specific household productivity reveal a comparatively high inertia of land-use change. Our model analysis even shows such an increased temporal stability in landscape composition and carbon stocks of the agricultural area under dynamic price trends. These findings underline the utility of ecological-economic models, such as ours, to act as exploratory tools which can advance our understanding of the mechanisms underlying the trade-offs and synergies of ecological and economic functions in tropical landscapes.

  14. Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs

    PubMed Central

    Dislich, Claudia; Hettig, Elisabeth; Heinonen, Johannes; Lay, Jann; Meyer, Katrin M.; Wiegand, Kerstin; Tarigan, Suria

    2018-01-01

    Land-use changes have dramatically transformed tropical landscapes. We describe an ecological-economic land-use change model as an integrated, exploratory tool used to analyze how tropical land-use change affects ecological and socio-economic functions. The model analysis seeks to determine what kind of landscape mosaic can improve the ensemble of ecosystem functioning, biodiversity, and economic benefit based on the synergies and trade-offs that we have to account for. More specifically, (1) how do specific ecosystem functions, such as carbon storage, and economic functions, such as household consumption, relate to each other? (2) How do external factors, such as the output prices of crops, affect these relationships? (3) How do these relationships change when production inefficiency differs between smallholder farmers and learning is incorporated? We initialize the ecological-economic model with artificially generated land-use maps parameterized to our study region. The economic sub-model simulates smallholder land-use management decisions based on a profit maximization assumption. Each household determines factor inputs for all household fields and decides on land-use change based on available wealth. The ecological sub-model includes a simple account of carbon sequestration in above-ground and below-ground vegetation. We demonstrate model capabilities with results on household consumption and carbon sequestration from different output price and farming efficiency scenarios. The overall results reveal complex interactions between the economic and ecological spheres. For instance, model scenarios with heterogeneous crop-specific household productivity reveal a comparatively high inertia of land-use change. Our model analysis even shows such an increased temporal stability in landscape composition and carbon stocks of the agricultural area under dynamic price trends. These findings underline the utility of ecological-economic models, such as ours, to act as exploratory tools which can advance our understanding of the mechanisms underlying the trade-offs and synergies of ecological and economic functions in tropical landscapes. PMID:29351290

  15. Integrative modeling of gene and genome evolution roots the archaeal tree of life

    PubMed Central

    Szöllősi, Gergely J.; Spang, Anja; Foster, Peter G.; Heaps, Sarah E.; Boussau, Bastien; Ettema, Thijs J. G.; Embley, T. Martin

    2017-01-01

    A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree. Our analyses support the monophyly of DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea), a recently discovered cosmopolitan and genetically diverse lineage, and, in contrast to previous work, place the tree root between DPANN and all other Archaea. The sister group to DPANN comprises the Euryarchaeota and the TACK Archaea, including Lokiarchaeum, which our analyses suggest are monophyletic sister lineages. Metabolic reconstructions on the rooted tree suggest that early Archaea were anaerobes that may have had the ability to reduce CO2 to acetate via the Wood–Ljungdahl pathway. In contrast to proposals suggesting that genome reduction has been the predominant mode of archaeal evolution, our analyses infer a relatively small-genomed archaeal ancestor that subsequently increased in complexity via gene duplication and horizontal gene transfer. PMID:28533395

  16. Integrative modeling of gene and genome evolution roots the archaeal tree of life.

    PubMed

    Williams, Tom A; Szöllősi, Gergely J; Spang, Anja; Foster, Peter G; Heaps, Sarah E; Boussau, Bastien; Ettema, Thijs J G; Embley, T Martin

    2017-06-06

    A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree. Our analyses support the monophyly of DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea), a recently discovered cosmopolitan and genetically diverse lineage, and, in contrast to previous work, place the tree root between DPANN and all other Archaea. The sister group to DPANN comprises the Euryarchaeota and the TACK Archaea, including Lokiarchaeum , which our analyses suggest are monophyletic sister lineages. Metabolic reconstructions on the rooted tree suggest that early Archaea were anaerobes that may have had the ability to reduce CO 2 to acetate via the Wood-Ljungdahl pathway. In contrast to proposals suggesting that genome reduction has been the predominant mode of archaeal evolution, our analyses infer a relatively small-genomed archaeal ancestor that subsequently increased in complexity via gene duplication and horizontal gene transfer.

  17. [Crop-soil nitrogen cycling and soil organic carbon balance in black soil zone of Jilin Province based on DSSAT model].

    PubMed

    Yang, Jing-min; Dou, Sen; Yang, Jing-yi; Hoogenboom, Gerrit; Jiang, Xu; Zhang, Zhong-qing; Jiang, Hong-wei; Jia, Li-hui

    2011-08-01

    By using the CERES-Maize crop model and Century soil model in Decision Support System of Agrotechnology Transfer (DSSAT) model, this paper studied the effects of crop management parameters, fertilizer N application rate, soil initial N supply, and crop residue application on the maize growth, crop-soil N cycling, and soil organic C and N ecological balance in black soil (Mollisol) zone of Jilin Province, Northeast China. Taking 12,000-15,000 kg x hm(-2) as the target yield of maize, the optimum N application rate was 200-240 kg N x hm(-2). Under this fertilization, the aboveground part N uptake was 250-290 kg N x hm(-2), among which, 120-140 kg N x hm(-2) came from soil, and 130-150 kg N x hm(-2) came from fertilizer. Increasing the N application rate (250-420 kg N x hm(-2)) induced an obvious increase of soil residual N (63-183 kg x hm(-2)); delaying the N topdressing date also induced the increase of the residual N. When the crop residue application exceeded 6000 kg x hm(-2), the soil active organic C and N could maintain the supply/demand balance during maize growth season. To achieve the target maize yield and maintain the ecological balance of soil organic C and N in black soil zone of Jilin Province, the chemical N application rate would be controlled in the range of 200-240 kg N x hm(-2), topdressing N should be at proper date, and the application amount of crop residue would be up to 6000 kg x hm(-2).

  18. Preliminary analysis of the Jimo coastal ecosystem with the ecopath model

    NASA Astrophysics Data System (ADS)

    Su, Meng

    2016-12-01

    The Jimo coast encompasses an area of 2157 km2, and the ecosystem is valuable both socially and economically with regional fisheries substantially contributing to the value. A mass-balanced trophic model consisting of 15 functional ecological groups was developed for the coastal ecosystem using the Ecopath model in Ecopath with Ecosim (EwE) software (version 6.4.3). The results of the model simulations indicated that the trophic levels of the functional groups varied between 1.0 and 3.76, and the total production of the system was estimated to be 5112.733 t km-2 yr-1 with a total energy transfer efficiency of 17.6%. The proportion of the total flow originating from detritus was estimated to be 48%, whereas that from primary producers was 52%, indicating that the grazing food chain dominated the energy flow. The ratio of total primary productivity to total respiration in the system was 3.78, and the connectivity index was 0.4. The fin cycling index and the mean path length of the energy flow were 4.92% and 2.57%, respectively, which indicated that the ecosystem exhibits relatively low maturity and stability. The mixed trophic impact (MTI) procedure suggested that the ecological groups at lower trophic levels dominated the feeding dynamics in the Jimo coastal ecosystem. Overfishing is thought to be the primary reason for the degeneration of the Jimo coastal ecosystem, resulting in a decline in the abundance of pelagic and demersal fish species and a subsequent shift to the predominance of lower-trophic-level functional groups. Finally, we offered some recommendations for improving current fishery management practices.

  19. An Earth's Future Special Collection: Impacts of the coastal dynamics of sea level rise on low-gradient coastal landscapes

    NASA Astrophysics Data System (ADS)

    Kidwell, David M.; Dietrich, J. Casey; Hagen, Scott C.; Medeiros, Stephen C.

    2017-01-01

    Rising sea level represents a significant threat to coastal communities and ecosystems, including altered habitats and increased vulnerability to coastal storms and recurrent inundation. This threat is exemplified in the northern Gulf of Mexico, where low topography, marshes, and a prevalence of tropical storms have resulted in extensive coastal impacts. The ability to facilitate adaptation and mitigation measures relies, in part, on the development of robust predictive capabilities that incorporate complex biological processes with physical dynamics. Initiated in 2010, the 6-year Ecological Effects of Sea Level Rise—Northern Gulf of Mexico project applied a transdisciplinary science approach to develop a suite of integrated modeling platforms informed by empirical data that are capable of evaluating a range of climate change scenarios. This special issue highlights resultant integrated models focused on tidal hydrodynamics, shoreline morphology, oyster ecology, coastal wetland vulnerability, and storm surges that demonstrate the need for dynamic models to incorporate feedbacks among physical and biological processes in assessments of sea level rise effects on coastal systems. Effects are projected to be significant, spatially variable and nonlinear relative to sea level rise rates. Scenarios of higher sea level rise rates are projected to exceed thresholds of wetland sustainability, and many regions will experience enhanced storm surges. Influenced by an extensive collaborative stakeholder engagement process, these assessments on the coastal dynamics of sea level rise provide a strong foundation for resilience measures in the northern Gulf of Mexico and a transferable approach for application to other coastal regions throughout the world.

  20. The community ecology of pathogens: coinfection, coexistence and community composition.

    PubMed

    Seabloom, Eric W; Borer, Elizabeth T; Gross, Kevin; Kendig, Amy E; Lacroix, Christelle; Mitchell, Charles E; Mordecai, Erin A; Power, Alison G

    2015-04-01

    Disease and community ecology share conceptual and theoretical lineages, and there has been a resurgence of interest in strengthening links between these fields. Building on recent syntheses focused on the effects of host community composition on single pathogen systems, we examine pathogen (microparasite) communities using a stochastic metacommunity model as a starting point to bridge community and disease ecology perspectives. Such models incorporate the effects of core community processes, such as ecological drift, selection and dispersal, but have not been extended to incorporate host-pathogen interactions, such as immunosuppression or synergistic mortality, that are central to disease ecology. We use a two-pathogen susceptible-infected (SI) model to fill these gaps in the metacommunity approach; however, SI models can be intractable for examining species-diverse, spatially structured systems. By placing disease into a framework developed for community ecology, our synthesis highlights areas ripe for progress, including a theoretical framework that incorporates host dynamics, spatial structuring and evolutionary processes, as well as the data needed to test the predictions of such a model. Our synthesis points the way for this framework and demonstrates that a deeper understanding of pathogen community dynamics will emerge from approaches working at the interface of disease and community ecology. © 2015 John Wiley & Sons Ltd/CNRS.

  1. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  2. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, S.T.; Betancourt, J.L.; Booth, R.K.; Gray, S.T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and morefundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  3. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    PubMed Central

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics. PMID:19805104

  4. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling

    PubMed Central

    Escobar, Luis E.; Craft, Meggan E.

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks. PMID:27547199

  5. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling.

    PubMed

    Escobar, Luis E; Craft, Meggan E

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks.

  6. The portrayal of natural environment in the evolution of the ecological public health paradigm.

    PubMed

    Coutts, Christopher; Forkink, Annet; Weiner, Jocelyn

    2014-01-10

    This paper explores the conceptualization of the natural environment in an evolving ecological public health paradigm. The natural environment has long been recognized as essential to supporting life, health, and wellbeing. Our understanding of the relationship between the natural environment and health has steadily evolved from one of an undynamic environment to a more sophisticated understanding of ecological interactions.  This evolution is reflected in a number of ecological public health models which demonstrate the many external and overlapping determinants of human health. Six models are presented here to demonstrate this evolution, each model reflecting an increasingly ecological appreciation for the fundamental role of the natural environment in supporting human health. We conclude that after decades of public health's acceptance of the ecological paradigm, we are only now beginning to assemble knowledge of sophisticated ecological interdependencies and apply this knowledge to the conceptualization and study of the relationship between the natural environment and the determinants of human health.

  7. The Portrayal of Natural Environment in the Evolution of the Ecological Public Health Paradigm

    PubMed Central

    Coutts, Christopher; Forkink, Annet; Weiner, Jocelyn

    2014-01-01

    This paper explores the conceptualization of the natural environment in an evolving ecological public health paradigm. The natural environment has long been recognized as essential to supporting life, health, and wellbeing. Our understanding of the relationship between the natural environment and health has steadily evolved from one of an undynamic environment to a more sophisticated understanding of ecological interactions. This evolution is reflected in a number of ecological public health models which demonstrate the many external and overlapping determinants of human health. Six models are presented here to demonstrate this evolution, each model reflecting an increasingly ecological appreciation for the fundamental role of the natural environment in supporting human health. We conclude that after decades of public health’s acceptance of the ecological paradigm, we are only now beginning to assemble knowledge of sophisticated ecological interdependencies and apply this knowledge to the conceptualization and study of the relationship between the natural environment and the determinants of human health. PMID:24434596

  8. The Socio-ecological Fit of Human Responses to Environmental Degradation: An Integrated Assessment Methodology.

    PubMed

    Briassoulis, Helen

    2015-12-01

    The scientific and policy interest in the human responses to environmental degradation usually focuses on responses sensu stricto and 'best practices' that potentially abate degradation in affected areas. The transfer of individual, discrete instruments and 'best practices' to different contexts is challenging, however, because socio-ecological systems are complex and environmental degradation is contextual and contingent. To sensibly assess the effectiveness of formal and informal interventions to combat environmental degradation, the paper proposes an integrative, non-reductionist analytic, the 'response assemblage', for the study of 'responses-in-context,' i.e., products of human decisions to utilize environmental resources to satisfy human needs in socio-ecological systems. Response assemblages are defined as geographically and historically unique, provisional, open, territorial wholes, complex compositions emerging from processes of assembling biophysical and human components, including responses sensu stricto, from affected focal and other socio-ecological systems, to serve human goals, one of which may be combatting environmental degradation. The degree of match among the components, called the socio-ecological fit of the response assemblage, indicates how effectively their contextual and contingent interactions maintain the socio-ecological resilience, promote sustainable development, and secure the continuous provision of ecosystem services in a focal socio-ecological system. The paper presents a conceptual approach to the analysis of the socio-ecological fit of response assemblages and details an integrated assessment methodology synthesizing the resilience, assemblage, and 'problem of fit' literature. Lastly, it summarizes the novelty, value, and policy relevance of conceptualizing human responses as response assemblages and of the integrated assessment methodology, reconsiders 'best practices' and suggests selected future research directions.

  9. The Socio-ecological Fit of Human Responses to Environmental Degradation: An Integrated Assessment Methodology

    NASA Astrophysics Data System (ADS)

    Briassoulis, Helen

    2015-12-01

    The scientific and policy interest in the human responses to environmental degradation usually focuses on responses sensu stricto and `best practices' that potentially abate degradation in affected areas. The transfer of individual, discrete instruments and `best practices' to different contexts is challenging, however, because socio-ecological systems are complex and environmental degradation is contextual and contingent. To sensibly assess the effectiveness of formal and informal interventions to combat environmental degradation, the paper proposes an integrative, non-reductionist analytic, the `response assemblage', for the study of `responses-in-context,' i.e., products of human decisions to utilize environmental resources to satisfy human needs in socio-ecological systems. Response assemblages are defined as geographically and historically unique, provisional, open, territorial wholes, complex compositions emerging from processes of assembling biophysical and human components, including responses sensu stricto, from affected focal and other socio-ecological systems, to serve human goals, one of which may be combatting environmental degradation. The degree of match among the components, called the socio- ecological fit of the response assemblage, indicates how effectively their contextual and contingent interactions maintain the socio-ecological resilience, promote sustainable development, and secure the continuous provision of ecosystem services in a focal socio-ecological system. The paper presents a conceptual approach to the analysis of the socio-ecological fit of response assemblages and details an integrated assessment methodology synthesizing the resilience, assemblage, and `problem of fit' literature. Lastly, it summarizes the novelty, value, and policy relevance of conceptualizing human responses as response assemblages and of the integrated assessment methodology, reconsiders `best practices' and suggests selected future research directions.

  10. 75 FR 22790 - Science Advisory Board Staff Office; Request for Nominations of Candidates for EPA's Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... modeling; atmospheric science and engineering; ecology and ecological risk assessment; epidemiology... assessment; environmental modeling; industrial ecology; environmental engineering; environmental medicine... ``Ethics Requirements for Advisors'' link on the blue navigational bar on the SAB Web site at http://www...

  11. Study on the Progress of Ecological Fragility Assessment in China

    NASA Astrophysics Data System (ADS)

    Chen, Pei; Hou, Kang; Chang, Yue; Li, Xuxiang; Zhang, Yunwei

    2018-02-01

    The basic elements of human survival are based on the ecological environment. The development of social economic and the security of the ecological environment are closely linked and interact with each other. The fragility of the environment directly affects the stability of the regional ecosystem and the sustainable development of the ecological environment. As part of the division of the national ecological security, the assessment of ecological fragility has become a hot and difficult issue in environmental research, and researchers at home and abroad have systematically studied the causes and states of ecological fragility. The assessment of regional ecological fragility is a qualitative and quantitative analysis of the unbalanced distribution of ecological environment factors caused by human socio-economic activities or changes in ecosystems. At present, researches on ecological fragility has not formed a complete and unified index assessment system, and the unity of the assessment model has a direct impact on the accuracy of the index weights. Therefore, the discussion on selection of ecological fragility indexes and the improvement of ecological fragility assessment model is necessary, which is good for the improvement of ecological fragility assessment system in China.

  12. Significance testing testate amoeba water table reconstructions

    NASA Astrophysics Data System (ADS)

    Payne, Richard J.; Babeshko, Kirill V.; van Bellen, Simon; Blackford, Jeffrey J.; Booth, Robert K.; Charman, Dan J.; Ellershaw, Megan R.; Gilbert, Daniel; Hughes, Paul D. M.; Jassey, Vincent E. J.; Lamentowicz, Łukasz; Lamentowicz, Mariusz; Malysheva, Elena A.; Mauquoy, Dmitri; Mazei, Yuri; Mitchell, Edward A. D.; Swindles, Graeme T.; Tsyganov, Andrey N.; Turner, T. Edward; Telford, Richard J.

    2016-04-01

    Transfer functions are valuable tools in palaeoecology, but their output may not always be meaningful. A recently-developed statistical test ('randomTF') offers the potential to distinguish among reconstructions which are more likely to be useful, and those less so. We applied this test to a large number of reconstructions of peatland water table depth based on testate amoebae. Contrary to our expectations, a substantial majority (25 of 30) of these reconstructions gave non-significant results (P > 0.05). The underlying reasons for this outcome are unclear. We found no significant correlation between randomTF P-value and transfer function performance, the properties of the training set and reconstruction, or measures of transfer function fit. These results give cause for concern but we believe it would be extremely premature to discount the results of non-significant reconstructions. We stress the need for more critical assessment of transfer function output, replication of results and ecologically-informed interpretation of palaeoecological data.

  13. Multi-criteria GIS-based siting of transfer station for municipal solid waste: The case of Kumasi Metropolitan Area, Ghana.

    PubMed

    Bosompem, Christian; Stemn, Eric; Fei-Baffoe, Bernard

    2016-10-01

    The increase in the quantity of municipal solid waste generated as a result of population growth in most urban areas has resulted in the difficulty of locating suitable land areas to be used as landfills. To curb this, waste transfer stations are used. The Kumasi Metropolitan Area, even though it has an engineered landfill, is faced with the problem of waste collection from the generation centres to the final disposal site. Thus in this study, multi-criteria decision analysis incorporated into a geographic information system was used to determine potential waste transfer station sites. The key result established 11 sites located within six different sub-metros. This result can be used by decision makers for site selection of the waste transfer stations after taking into account other relevant ecological and economic factors. © The Author(s) 2016.

  14. An indicator-based evaluation of Black Sea food web dynamics during 1960-2000

    NASA Astrophysics Data System (ADS)

    Akoglu, Ekin; Salihoglu, Baris; Libralato, Simone; Oguz, Temel; Solidoro, Cosimo

    2014-06-01

    Four Ecopath mass-balance models were implemented for evaluating the structure and function of the Black Sea ecosystem using several ecological indicators during four distinctive periods (1960s, 1980-1987, 1988-1994 and 1995-2000). The results exemplify how the Black Sea ecosystem structure started to change after the 1960s as a result of a series of trophic transformations, i.e., shifts in the energy flow pathways through the food web. These transformations were initiated by anthropogenic factors, such as eutrophication and overfishing, that led to the transfer of large quantities of energy to the trophic dead-end species, which had no natural predators in the ecosystem, i.e., jellyfish whose biomass increased from 0.03 g C m- 2 in 1960-1969 to 0.933 g C m- 2 in 1988-1994. Concurrently, an alternative short pathway for energy transfer was formed that converted significant amounts of system production back to detritus. This decreased the transfer efficiency of energy flow from the primary producers to the higher trophic levels from 9% in the 1960s to 3% between 1980 and 1987. We conclude that the anchovy stock collapse and successful establishment of the alien comb-jelly Mnemiopsis in 1989 were rooted in the trophic interactions in the food web, all of which were exacerbated because of the long-term establishment of a combination of anthropogenic stressors.

  15. Developing a framework for integrating turbulence measurements and modeling of ecosystem-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.

    2017-12-01

    Aquatic ecosystems are integrators of nutrient and carbon from their watersheds. The effects of climate change in many cases will enhance the rate of these inputs and change the thermodynamics within aquatic environments. It is unclear the extent these changes will have on water quality and carbon assimilation, but the drivers of these processes will be determined by the complex interactions at the land-water and air-water interfaces. For example, flow over and beneath wind-driven surface waves generate turbulence that plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the atmosphere promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the atmosphere by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We have developed capabilities to conduct field and laboratory experiments using eddy covariance on tall-towers and rafts, UAS platforms integrated with remote sensing, and detailed wind-wave measurements with time-resolved PIV in a new boundary layer wind-wave tunnel. We will show measurements of the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field. Results will help interpret remote sensing, energy budget measurements, and turbulence transport models for sheltered lakes influenced by terrain and tall trees.

  16. A caveat regarding diatom-inferred nitrogen concentrations in oligotrophic lakes

    USGS Publications Warehouse

    Arnett, Heather A.; Saros, Jasmine E.; Mast, M. Alisa

    2012-01-01

    Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (<1 to 3.2 kg Nr ha−1 year−1 in wet deposition). Out of the fourteen measured environmental variables for these 46 lakes, ordination analysis identified that nitrate, specific conductance, total phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These constraints suggest that quantitative inferences of nitrate from diatom assemblages will likely require experimental approaches.

  17. Stochastic ecological network occupancy (SENO) models: a new tool for modeling ecological networks across spatial scales

    USGS Publications Warehouse

    Lafferty, Kevin D.; Dunne, Jennifer A.

    2010-01-01

    Stochastic ecological network occupancy (SENO) models predict the probability that species will occur in a sample of an ecological network. In this review, we introduce SENO models as a means to fill a gap in the theoretical toolkit of ecologists. As input, SENO models use a topological interaction network and rates of colonization and extinction (including consumer effects) for each species. A SENO model then simulates the ecological network over time, resulting in a series of sub-networks that can be used to identify commonly encountered community modules. The proportion of time a species is present in a patch gives its expected probability of occurrence, whose sum across species gives expected species richness. To illustrate their utility, we provide simple examples of how SENO models can be used to investigate how topological complexity, species interactions, species traits, and spatial scale affect communities in space and time. They can categorize species as biodiversity facilitators, contributors, or inhibitors, making this approach promising for ecosystem-based management of invasive, threatened, or exploited species.

  18. Developing ecological site and state-and-transition models for grazed riparian pastures at Tejon Ranch, California

    Treesearch

    Felix P. Ratcliff; James Bartolome; Michele Hammond; Sheri Spiegal; Michael White

    2015-01-01

    Ecological site descriptions and associated state-and-transition models are useful tools for understanding the variable effects of management and environment on range resources. Models for woody riparian sites have yet to be fully developed. At Tejon Ranch, in the southern San Joaquin Valley of California, we are using ecological site theory to investigate the role of...

  19. Common challenges for ecological modelling: Synthesis of facilitated discussions held at the symposia organized for the 2009 conference of the International Society for Ecological Modelling in Quebec City, Canada

    USDA-ARS?s Scientific Manuscript database

    The eleven symposia organized for the 2009 conference of the International Society for Ecological Modelling (ISEM 2009) held in Quebec City, Canada, October 6-9, 2009, included facilitated discussion sessions following formal presentations. Each symposium focused on a specific subject, and all the s...

  20. System dynamic modelling to assess economic viability and risk trade-offs for ecological restoration in South Africa.

    PubMed

    Crookes, D J; Blignaut, J N; de Wit, M P; Esler, K J; Le Maitre, D C; Milton, S J; Mitchell, S A; Cloete, J; de Abreu, P; Fourie nee Vlok, H; Gull, K; Marx, D; Mugido, W; Ndhlovu, T; Nowell, M; Pauw, M; Rebelo, A

    2013-05-15

    Can markets assist by providing support for ecological restoration, and if so, under what conditions? The first step in addressing this question is to develop a consistent methodology for economic evaluation of ecological restoration projects. A risk analysis process was followed in which a system dynamics model was constructed for eight diverse case study sites where ecological restoration is currently being pursued. Restoration costs vary across each of these sites, as do the benefits associated with restored ecosystem functioning. The system dynamics model simulates the ecological, hydrological and economic benefits of ecological restoration and informs a portfolio mapping exercise where payoffs are matched against the likelihood of success of a project, as well as a number of other factors (such as project costs and risk measures). This is the first known application that couples ecological restoration with system dynamics and portfolio mapping. The results suggest an approach that is able to move beyond traditional indicators of project success, since the effect of discounting is virtually eliminated. We conclude that systems dynamic modelling with portfolio mapping can guide decisions on when markets for restoration activities may be feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. An ecological assessment of pasturelands in the Balkhash area of Kazakhstan with remote sensing and models

    NASA Astrophysics Data System (ADS)

    Lebed, L.; Qi, J.; Heilman, P.

    2012-06-01

    The 187 million hectares of pasturelands in Kazakhstan play a key role in the nation’s economy, as livestock production accounted for 54% of total agricultural production in 2010. However, more than half of these lands have been degraded as a result of unregulated grazing practices. Therefore, effective long term ecological monitoring of pasturelands in Kazakhstan is imperative to ensure sustainable pastureland management. As a case study in this research, we demonstrated how the ecological conditions could be assessed with remote sensing technologies and pastureland models. The example focuses on the southern Balkhash area with study sites on a foothill plain with Artemisia-ephemeral plants and a sandy plain with psammophilic vegetation in the Turan Desert. The assessment was based on remotely sensed imagery and meteorological data, a geobotanical archive and periodic ground sampling. The Pasture agrometeorological model was used to calculate biological, ecological and economic indicators to assess pastureland condition. The results showed that field surveys, meteorological observations, remote sensing and ecological models, such as Pasture, could be combined to effectively assess the ecological conditions of pasturelands and provide information about forage production that is critically important for balancing grazing and ecological conservation.

  2. Empirically-based modeling and mapping to consider the co-occurrence of ecological receptors and stressors

    EPA Science Inventory

    Part of the ecological risk assessment process involves examining the potential for environmental stressors and ecological receptors to co-occur across a landscape. In this study, we introduce a Bayesian joint modeling framework for use in evaluating and mapping the co-occurrence...

  3. Gradient modeling of conifer species using random forests

    Treesearch

    Jeffrey S. Evans; Samuel A. Cushman

    2009-01-01

    Landscape ecology often adopts a patch mosaic model of ecological patterns. However, many ecological attributes are inherently continuous and classification of species composition into vegetation communities and discrete patches provides an overly simplistic view of the landscape. If one adopts a nichebased, individualistic concept of biotic communities then it may...

  4. Spatial Autocorrelation And Autoregressive Models In Ecology

    Treesearch

    Jeremy W. Lichstein; Theodore R. Simons; Susan A. Shriner; Kathleen E. Franzreb

    2003-01-01

    Abstract. Recognition and analysis of spatial autocorrelation has defined a new paradigm in ecology. Attention to spatial pattern can lead to insights that would have been otherwise overlooked, while ignoring space may lead to false conclusions about ecological relationships. We used Gaussian spatial autoregressive models, fit with widely available...

  5. Violent Victimization and Perpetration during Adolescence: Developmental Stage Dependent Ecological Models

    ERIC Educational Resources Information Center

    Matjasko, Jennifer L.; Needham, Belinda L.; Grunden, Leslie N.; Farb, Amy Feldman

    2010-01-01

    Using a variant of the ecological-transactional model and developmental theories of delinquency on a nationally representative sample of adolescents, the current study explored the ecological predictors of violent victimization, perpetration, and both for three different developmental stages during adolescence. We examined the relative influence…

  6. A perspective on modern pesticides, pelagic fish declines, and unknown ecological resilience in highly managed ecosystems

    USGS Publications Warehouse

    Scholz, Nathaniel L.; Fleishman, Erica; Brown, Larry; Werner, Inge; Johnson, Michael L.; Brooks, Marjorie L.; Mitchelmore, Carys L.; Schlenk, Daniel

    2012-01-01

    Pesticides applied on land are commonly transported by runoff or spray drift to aquatic ecosystems, where they are potentially toxic to fishes and other nontarget organisms. Pesticides add to and interact with other stressors of ecosystem processes, including surface-water diversions, losses of spawning and rearing habitats, nonnative species, and harmful algal blooms. Assessing the cumulative effects of pesticides on species or ecological functions has been difficult for historical, legal, conceptual, and practical reasons. To explore these challenges, we examine current-use (modern) pesticides and their potential connections to the abundances of fishes in the San Francisco Estuary (California). Declines in delta smelt (Hypomesus transpacificus), Chinook salmon (Oncorhynchus tshawytscha), and other species have triggered mandatory and expensive management actions in the urbanizing estuary and agriculturally productive Central Valley. Our inferences are transferable to other situations in which toxics may drive changes in ecological status and trends.

  7. The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective.

    PubMed

    Gilbert, Gregory S; Parker, Ingrid M

    2016-08-04

    An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems.

  8. Evaluating the Transferability of a U.S. Human Well-being Index (HWBI) Framework to Native Americans Populations

    EPA Science Inventory

    A Human Well-Being Index (HWBI) has been developed for the U.S. to help inform and empower decision makers to equitably weigh and integrate human health, socio-economic, environmental and ecological factors to foster sustainability. The integrity of the index structure is designe...

  9. Perspectives and methods of scaling

    Treesearch

    Jianguo Wu; Harbin Li

    2006-01-01

    Transferring information between or across scales or organizational levels is inevitable in both basic research and its applications, a process generally known as "scaling" (Wu and Li, Chapter 1). Scaling is the essence of prediction and understanding both of which require cross-scale translation of information, and is at the core of ecological theory and...

  10. Morphology, ecology and biogeography of Stauroneis pachycephala P.T. Cleve (Bacillariophyta) and its transfer to the genus Envekadea

    USGS Publications Warehouse

    Atazadeh, Islam; Edlund, Mark B.; van de Vijver, Bart; Mills, Keely; Spaulding, Sarah A.; Gell, Peter A.; Crawford, Simon; Barton, Andrew F.; Lee, Sylvia S.; Smith, Kathryn E.L.; Newall, Peter; Potapova, Marina

    2014-01-01

    Stauroneis pachycephala was described in 1881 from the Baakens River, Port Elizabeth, South Africa. Recently, it was found during surveys of the MacKenzie River (Victoria, Australia), the Florida Everglades (USA) and coastal marshes of Louisiana (USA). The morphology, ecology and geographic distribution of this species are described in this article. This naviculoid species is characterised by lanceolate valves with a gibbous centre, a sigmoid raphe, an axial area narrowing toward the valve ends, and capitate valve apices. The central area is a distinct stauros that is slightly widened near the valve margin. The raphe is straight and filiform, and the terminal raphe fissures are strongly deflected in opposite directions. Striae are fine and radiate in the middle of the valve, becoming parallel and eventually convergent toward the valve ends. The external surface of the valves and copulae is smooth and lacks ornamentation. We also examined the type material of S. pachycephala. Our observations show this species has morphological characteristics that fit within the genus Envekadea. Therefore, the transfer of S. pachycephala to Envekadea is proposed and a lectotype is designated.

  11. Disturbed island ecology.

    PubMed

    Whittaker, R J

    1995-10-01

    The natural occurrence of significant disturbances to the operation of insular ecosystems has tended to be downplayed in the development of island ecological theory. Despite the importance of events such as Hurricane Hugo, which in 1989 affected islands in the Caribbean, islands that are disturbed tend to be viewed as deviants from the `true path' described by equilibrium models. However, particularly with organisms of long generation times, it is questionable whether such models are applicable. This may be as important for wildlife managers to take account of as for theorists. Disturbance regime should be incorporated into island ecological models alongside other ecological factors structuring colonization patterns and turnover.

  12. Individual-based models in ecology after four decades

    PubMed Central

    Grimm, Volker

    2014-01-01

    Individual-based models simulate populations and communities by following individuals and their properties. They have been used in ecology for more than four decades, with their use and ubiquity in ecology growing rapidly in the last two decades. Individual-based models have been used for many applied or “pragmatic” issues, such as informing the protection and management of particular populations in specific locations, but their use in addressing theoretical questions has also grown rapidly, recently helping us to understand how the sets of traits of individual organisms influence the assembly of communities and food webs. Individual-based models will play an increasingly important role in questions posed by complex ecological systems. PMID:24991416

  13. Effects of trophic ecology and habitat use on maternal transfer of contaminants in four species of young of the year lamniform sharks.

    PubMed

    Lyons, Kady; Carlisle, Aaron; Preti, Antonella; Mull, Christopher; Blasius, Mary; O'Sullivan, John; Winkler, Chuck; Lowe, Christopher G

    2013-09-01

    Organic contaminant and total mercury concentrations were compared in four species of lamniform sharks over several age classes to examine bioaccumulation patterns and gain insights into trophic ecology. Contaminants found in young of the year (YOY) sharks were assumed to be derived from maternal sources and used as a proxy to investigate factors that influence maternal offloading processes. YOY white (Carcharodon carcharias) and mako (Isurus oxyrinchus) sharks had comparable and significantly higher concentrations of PCBs, DDTs, pesticides, and mercury than YOY thresher (Alopias vulpinus) or salmon (Lamna ditropis) sharks. A significant positive relationship was found between YOY contaminant loads and maternal trophic position, suggesting that trophic ecology is one factor that plays an important role in maternal offloading. Differences in organic contaminant signatures and contaminant concentration magnitudes among species corroborated what is known about species habitat use and may be used to provide insights into the feeding ecology of these animals. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. [Construction and evaluation of ecological network in Poyang Lake Eco-economic Zone, China.

    PubMed

    Chen, Xiao Ping; Chen, Wen Bo

    2016-05-01

    Large-scale ecological patches play an important role in regional biodiversity conservation. However, with the rapid progress of China's urbanization, human disturbance on the environment is becoming stronger. Large-scale ecological patches will degrade not only in quantity, but also in quality, threatening the connections among them due to isolation and seriously affecting the biodiversity protection. Taking Poyang Lake Eco-economic Zone as a case, this paper established the potential ecological corridors by minimum cost model and GIS technique taking the impacts of landscape types, slope and human disturbance into consideration. Then, based on gravity quantitative model, we analyzed the intensity of ecological interactions between patches, and the potential ecological corridors were divided into two classes for sake of protection. Finally, the important ecological nodes and breaking points were identified, and the structure of the potential ecological network was analyzed. The results showed that forest and cropland were the main landscape types of ecological corridor composition, interaction between ecological patches differed obviously and the structure of the composed regional ecological network was complex with high connectivity and closure. It might provide a scientific basis for the protection of biodiversity and ecological network optimization in Poyang Lake Eco-economic Zone.

  15. Asymmetric ecological conditions favor Red-Queen type of continued evolution over stasis.

    PubMed

    Nordbotten, Jan Martin; Stenseth, Nils C

    2016-02-16

    Four decades ago, Leigh Van Valen presented the Red Queen's hypothesis to account for evolution of species within a multispecies ecological community [Van Valen L (1973) Evol Theory 1(1):1-30]. The overall conclusion of Van Valen's analysis was that evolution would continue even in the absence of abiotic perturbations. Stenseth and Maynard Smith presented in 1984 [Stenseth NC, Maynard Smith J (1984) Evolution 38(4):870-880] a model for the Red Queen's hypothesis showing that both Red-Queen type of continuous evolution and stasis could result from a model with biotically driven evolution. However, although that contribution demonstrated that both evolutionary outcomes were possible, it did not identify which ecological conditions would lead to each of these evolutionary outcomes. Here, we provide, using a simple, yet general population-biologically founded eco-evolutionary model, such analytically derived conditions: Stasis will predominantly emerge whenever the ecological system contains only symmetric ecological interactions, whereas both Red-Queen and stasis type of evolution may result if the ecological interactions are asymmetrical, and more likely so with increasing degree of asymmetry in the ecological system (i.e., the more trophic interactions, host-pathogen interactions, and the like there are [i.e., +/- type of ecological interactions as well as asymmetric competitive (-/-) and mutualistic (+/+) ecological interactions]). In the special case of no between-generational genetic variance, our results also predict dynamics within these types of purely ecological systems.

  16. Land Ecological Security Evaluation of Underground Iron Mine Based on PSR Model

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Chen, Yong; Ruan, Jinghua; Hong, Qiang; Gan, Yong

    2018-01-01

    Iron ore mine provides an important strategic resource to the national economy while it also causes many serious ecological problems to the environment. The study summed up the characteristics of ecological environment problems of underground iron mine. Considering the mining process of underground iron mine, we analysis connections between mining production, resource, environment and economical background. The paper proposed a land ecological security evaluation system and method of underground iron mine based on Pressure-State-Response model. Our application in Chengchao iron mine proves its efficiency and promising guide on land ecological security evaluation.

  17. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network.

    PubMed

    Couture, Raoul-Marie; Moe, S Jannicke; Lin, Yan; Kaste, Øyvind; Haande, Sigrid; Lyche Solheim, Anne

    2018-04-15

    Excess nutrient inputs and climate change are two of multiple stressors affecting many lakes worldwide. Lake Vansjø in southern Norway is one such eutrophic lake impacted by blooms of toxic blue-green algae (cyanobacteria), and classified as moderate ecological status under the EU Water Framework Directive. Future climate change may exacerbate the situation. Here we use a set of chained models (global climate model, hydrological model, catchment phosphorus (P) model, lake model, Bayesian Network) to assess the possible future ecological status of the lake, given the set of climate scenarios and storylines common to the EU project MARS (Managing Aquatic Ecosystems and Water Resources under Multiple Stress). The model simulations indicate that climate change alone will increase precipitation and runoff, and give higher P fluxes to the lake, but cause little increase in phytoplankton biomass or changes in ecological status. For the storylines of future management and land-use, however, the model results indicate that both the phytoplankton biomass and the lake ecological status can be positively or negatively affected. Our results also show the value in predicting a biological indicator of lake ecological status, in this case, cyanobacteria biomass with a BN model. For all scenarios, cyanobacteria contribute to worsening the status assessed by phytoplankton, compared to using chlorophyll-a alone. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Plasmid Capture by the Bacillus thuringiensis Conjugative Plasmid pXO16▿

    PubMed Central

    Timmery, Sophie; Modrie, Pauline; Minet, Olivier; Mahillon, Jacques

    2009-01-01

    Conjugation, mobilization, and retromobilization are three related mechanisms of horizontal gene transfer in bacteria. They have been extensively studied in gram-negative species, where retromobilization, the capture of DNA from a recipient by a donor cell, was shown to result from two successive steps: the transfer of the conjugative plasmid from the donor to the recipient followed by the retrotransfer of the mobilizable plasmid to the donor. This successive model was established for gram-negative bacteria but was lacking experimental data from the gram-positive counterparts. In the present work, the mobilization and retromobilization abilities of the conjugative plasmid pXO16 from Bacillus thuringiensis subsp. israelensis were studied using the mobilizable plasmids pUB110 and pE194 and the “nonmobilizable” element pC194 lacking the mob and oriT features (all from Staphylococcus aureus). Experimental data suggested a successive model, since different retromobilization frequencies were observed between the small plasmids. More importantly, retromobilization was shown to be delayed by 50 and 150 min for pUB110 and pE194, respectively, compared to pXO16 conjugation. Natural liquid foods (cow milk, soy milk, and rice milk) were used to evaluate the putative ecological impact of these transfers. In cow and soy milk, conjugation, mobilization, and retromobilization were shown to occur at frequencies of 8.0 × 10−1, 1.0 × 10−2, and 1.2 × 10−4 transconjugants per recipient, respectively. These data are comparable to those obtained with LB medium and about 10-fold lower than in the case of rice milk. Taken together, these results emphasize the potential role of plasmid capture played by B. thuringiensis in natural environments. PMID:19181805

  19. Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.

    PubMed

    Lion, Sébastien

    2018-01-01

    Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.

  20. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities

    Treesearch

    Lars A. Brudvig; John L. Orrock; Ellen I. Damschen; Cathy D. Collins; Philip G. Hahn; W. Brett Mattingly; Joseph W. Veldman; Joan L. Walker

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions...

  1. Ecology of Mind: A Batesonian Systems Thinking Approach to Curriculum Enactment

    ERIC Educational Resources Information Center

    Bloom, Jeffrey W.

    2012-01-01

    This article proposes a Batesonian systems thinking and ecology of mind approach to enacting curriculum. The key ideas for the model include ecology of mind, relationships, systems, systems thinking, pattern thinking, abductive thinking, and context. These ideas provide a basis for a recursive, three-part model involving developing (a) depth of…

  2. Modeling species distribution and change using random forest [Chapter 8

    Treesearch

    Jeffrey S. Evans; Melanie A. Murphy; Zachary A. Holden; Samuel A. Cushman

    2011-01-01

    Although inference is a critical component in ecological modeling, the balance between accurate predictions and inference is the ultimate goal in ecological studies (Peters 1991; De’ath 2007). Practical applications of ecology in conservation planning, ecosystem assessment, and bio-diversity are highly dependent on very accurate spatial predictions of...

  3. Evolving Approaches and Technologies to Enhance the Role of Ecological Modeling in Decision Making

    Treesearch

    Eric Gustafson; John Nestler; Louis Gross; Keith M. Reynolds; Daniel Yaussy; Thomas P. Maxwell; Virginia H. Dale

    2002-01-01

    Understanding the effects of management activities is difficult for natural resource managers and decision makers because ecological systems are highly complex and their behavior is difficult to predict. Furthermore, the empirical studies necessary to illuminate all management questions quickly become logistically complicated and cost prohibitive. Ecological models...

  4. Ecological planning of urbanized areas in the south of the Far East (Birobidzhan city as an example)

    NASA Astrophysics Data System (ADS)

    Kalmanova, V. B.

    2018-01-01

    Ecological planning of urbanized areas is an urgent demand of the time, because more than 70% of Russia’s population lives in cities. The article describes that the city’s ecological planning is an important part of the area’s organization in its development strategy. The principles and features of the urban area’s ecological organization are proposed. The basis for environmental planning is the ecological and functional zoning of urban areas. The algorithm of ecological-functional zoning is developed to optimize the quality of the urban environment. Based on it, it is possible to identify the planning structure’s features, justify anthropogenic pressure on the natural components of the urban environment, etc. The article briefly presents the possibility of using the main conditions of the ecological framework in the planning of urban areas. Considering the perspective trends of the formation and development of cities in the south of the Far East, the ecological problems caused by regional natural and anthropogenic causes (features of relief, climate, functional-planning structure) are considered. The need for environmental planning of cities in the south of the Far East is shown. The results of the ecological framework’s formation of Birobidzhan city based on its ecological and functional zoning are described. The total area of open unreformed spaces in the city is calculated to be 60.8%, which can serve as the main elements of the ecological framework and perspective reserve areas for ecological planning. The cartographic model of Birobidzhan’s ecological framework is presented, which is the result and model of this type of planning. The practical use of the proposed model will facilitate the adoption of effective management decisions aimed at stabilized development of the city.

  5. An Interdisciplinary Model for Teaching Evolutionary Ecology.

    ERIC Educational Resources Information Center

    Coletta, John

    1992-01-01

    Describes a general systems evolutionary model and demonstrates how a previously established ecological model is a function of its past development based on the evolution of the rock, nutrient, and water cycles. Discusses the applications of the model in environmental education. (MDH)

  6. The Operation Method of Smarter City Based on Ecological Theory

    NASA Astrophysics Data System (ADS)

    Fan, C.; Fan, H. Y.

    2017-10-01

    As the city and urbanization’s accelerated pace has caused galloping population, the urban framework is extending with increasingly complex social problems. The urban management tends to become complicated and the governance seems more difficult to pursue. exploring the urban management’s new model has attracted local governments’ urgent attention. tcombines the guiding ideology and that management’s practices based on ecological theory, explains the Smarter city Ecology Managementmodel’s formation, makes modern urban management’s comparative analysis and further defines the aforesaid management mode’s conceptual model. Based on the smarter city system theory’s ecological carrying capacity, the author uses mathematical model to prove the coordination relationship between the smarter city Ecology Managementmode’s subsystems, demonstrates that it can improve the urban management’s overall level, emphasizes smarter city management integrity, believing that urban system’s optimization is based on each subsystem being optimized, attaching the importance to elements, structure, and balance between each subsystem and between internal elements. Through the establishment of the smarter city Ecology Managementmodel’s conceptual model and theoretical argumentation, it provides a theoretical basis and technical guidance to that model’s innovation.

  7. GIS Analysis of Changes in Ecological Vulnerability Using a SPCA Model in the Loess Plateau of Northern Shaanxi, China

    PubMed Central

    Kang, Hou; Xuxiang, Li; Jing, Zhang

    2015-01-01

    Changes in ecological vulnerability were analyzed for Northern Shaanxi, China using a geographic information system (GIS). An evaluation model was developed using a spatial principal component analysis (SPCA) model containing land use, soil erosion, topography, climate, vegetation and social economy variables. Using this model, an ecological vulnerability index was computed for the research region. Using natural breaks classification (NBC), the evaluation results were divided into five types: potential, slight, light, medium and heavy. The results indicate that there is greater than average optimism about the conditions of the study region, and the ecological vulnerability index (EVI) of the southern eight counties is lower than that of the northern twelve counties. From 1997 to 2011, the ecological vulnerability index gradually decreased, which means that environmental security was gradually enhanced, although there are still some places that have gradually deteriorated over the past 15 years. In the study area, government and economic factors and precipitation are the main reasons for the changes in ecological vulnerability. PMID:25898407

  8. Tracing shifts of oceanic fronts using the cryptic diversity of the planktonic foraminifera Globorotalia inflata

    NASA Astrophysics Data System (ADS)

    Morard, Raphaël.; Reinelt, Melanie; Chiessi, Cristiano M.; Groeneveld, Jeroen; Kucera, Michal

    2016-09-01

    The use of planktonic foraminifera in paleoceanographic studies relies on the assumption that morphospecies represent biological species with ecological preferences that are stable through time and space. However, genetic surveys unveiled a considerable level of diversity in most morphospecies of planktonic foraminifera. This diversity is significant for paleoceanographic applications because cryptic species were shown to display distinct ecological preferences that could potentially help refine paleoceanographic proxies. Subtle morphological differences between cryptic species of planktonic foraminifera have been reported, but so far, their applicability within paleoceanographic studies remains largely unexplored. Here we show how information on genetic diversity can be transferred to paleoceanography using Globorotalia inflata as a case study. The two cryptic species of G. inflata are separated by the Brazil-Malvinas Confluence (BMC), a major oceanographic feature in the South Atlantic. Based on this observation, we developed a morphological model of cryptic species detection in core top material. The application of the cryptic species detection model to Holocene samples implies latitudinal oscillations in the position of the confluence that are largely consistent with reconstructions obtained from stable isotope data. We show that the occurrence of cryptic species in G. inflata can be detected in the fossil record and used to trace the migration of the BMC. Since a similar degree of morphological separation as in G. inflata has been reported from other species of planktonic foraminifera, the approach presented in this study can potentially yield a wealth of new paleoceanographical proxies.

  9. Toward refined environmental scenarios for ecological risk assessment of down-the-drain chemicals in freshwater environments.

    PubMed

    Franco, Antonio; Price, Oliver R; Marshall, Stuart; Jolliet, Olivier; Van den Brink, Paul J; Rico, Andreu; Focks, Andreas; De Laender, Frederik; Ashauer, Roman

    2017-03-01

    Current regulatory practice for chemical risk assessment suffers from the lack of realism in conventional frameworks. Despite significant advances in exposure and ecological effect modeling, the implementation of novel approaches as high-tier options for prospective regulatory risk assessment remains limited, particularly among general chemicals such as down-the-drain ingredients. While reviewing the current state of the art in environmental exposure and ecological effect modeling, we propose a scenario-based framework that enables a better integration of exposure and effect assessments in a tiered approach. Global- to catchment-scale spatially explicit exposure models can be used to identify areas of higher exposure and to generate ecologically relevant exposure information for input into effect models. Numerous examples of mechanistic ecological effect models demonstrate that it is technically feasible to extrapolate from individual-level effects to effects at higher levels of biological organization and from laboratory to environmental conditions. However, the data required to parameterize effect models that can embrace the complexity of ecosystems are large and require a targeted approach. Experimental efforts should, therefore, focus on vulnerable species and/or traits and ecological conditions of relevance. We outline key research needs to address the challenges that currently hinder the practical application of advanced model-based approaches to risk assessment of down-the-drain chemicals. Integr Environ Assess Manag 2017;13:233-248. © 2016 SETAC. © 2016 SETAC.

  10. Drivers of nitrogen transfer in stream food webs across continents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, Beth C.; Whiles, Matt R.; Collins, Sarah M.

    Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen 15N-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in headwater streams with varying physical, chemical, and biological features. N transfer efficiencies from primary uptake compartments (PUCs; heterotrophic microorganisms and primary producers) to primary consumers was lower (mean: 11.5%, range: <1%-43%) than N transfer efficiencies from primary consumers to predators (mean:more » 80%, range: 5%- >100%). Total N transferred (as a rate) was greater in streams with open compared to closed canopies and overall N transfer efficiency generally followed a similar pattern, although was not statistically significant. We used principal component analysis to condense a suite of site characteristics into two environmental components. Total N uptake rates among trophic levels were best predicted by the component that was correlated with latitude, DIN:SRP, GPP:ER, and % canopy cover. N transfer efficiency did not respond consistently to environmental variables. Here, our results suggest that canopy cover influences N movement through stream food webs because light availability and primary production facilitate N transfer to higher trophic levels.« less

  11. Drivers of nitrogen transfer in stream food webs across continents

    DOE PAGES

    Norman, Beth C.; Whiles, Matt R.; Collins, Sarah M.; ...

    2017-10-25

    Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen 15N-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in headwater streams with varying physical, chemical, and biological features. N transfer efficiencies from primary uptake compartments (PUCs; heterotrophic microorganisms and primary producers) to primary consumers was lower (mean: 11.5%, range: <1%-43%) than N transfer efficiencies from primary consumers to predators (mean:more » 80%, range: 5%- >100%). Total N transferred (as a rate) was greater in streams with open compared to closed canopies and overall N transfer efficiency generally followed a similar pattern, although was not statistically significant. We used principal component analysis to condense a suite of site characteristics into two environmental components. Total N uptake rates among trophic levels were best predicted by the component that was correlated with latitude, DIN:SRP, GPP:ER, and % canopy cover. N transfer efficiency did not respond consistently to environmental variables. Here, our results suggest that canopy cover influences N movement through stream food webs because light availability and primary production facilitate N transfer to higher trophic levels.« less

  12. Ecological behavior and effects of energy related pollutants. Progress report, June 1976--August 1977. [SO2 impact on survival and stability of plant species; fallout /sup 137/Cs transfer processes in Southeastern Coastal Plain ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platt, R.B.; Ragsdale, H.L.; Murdy, W.H.

    1977-10-25

    The impact of SO/sub 2/ on the survival and stability of plant populations and communities was studied. The results to date have an important bearing on the adequacy of current permissible ambient air levels for SO/sub 2/. Atmospheric SO/sub 2/ concentrations at near permissible levels had a significant adverse effect on sexual reproduction processes, which results in a reduced number of viable seeds, in all 8 populations tested. Implications for both natural and agricultural plant species and possible significant losses of fruit production are discussed. An ecological implication of the invisible effect of fruit and seed mortality is postulated sincemore » the life cycle of many insects and the trophic relations of numerous animals depend, at least in part, on fruit production by trees and shrubs. Hence, there is a potential for disruptive effects on ecosystem level processes. Results are also reported from four systems-oriented studies within the Lower Three Runs Creek Watershed, Savannah River Plant, to examine fallout /sup 137/Cs transfer processes in ecological systems characteristic of the Southeastern Coastal Plain. These studies were carried out within the stream and its floodplains, within floodplains along the stream gradient, in upland aquatic systems (Carolina Bays), and in the upland scrub-oak forest system. Results are discussed.« less

  13. Range bagging: a new method for ecological niche modelling from presence-only data

    PubMed Central

    Drake, John M.

    2015-01-01

    The ecological niche is the set of environments in which a population of a species can persist without introduction of individuals from other locations. A good mathematical or computational representation of the niche is a prerequisite to addressing many questions in ecology, biogeography, evolutionary biology and conservation. A particularly challenging question for ecological niche modelling is the problem of presence-only modelling. That is, can an ecological niche be identified from records drawn only from the set of niche environments without records from non-niche environments for comparison? Here, I introduce a new method for ecological niche modelling from presence-only data called range bagging. Range bagging draws on the concept of a species' environmental range, but was inspired by the empirical performance of ensemble learning algorithms in other areas of ecological research. This paper extends the concept of environmental range to multiple dimensions and shows that range bagging is computationally feasible even when the number of environmental dimensions is large. The target of the range bagging base learner is an environmental tolerance of the species in a projection of its niche and is therefore an ecologically interpretable property of a species' biological requirements. The computational complexity of range bagging is linear in the number of examples, which compares favourably with the main alternative, Qhull. In conclusion, range bagging appears to be a reasonable choice for niche modelling in applications in which a presence-only method is desired and may provide a solution to problems in other disciplines where one-class classification is required, such as outlier detection and concept learning. PMID:25948612

  14. Range bagging: a new method for ecological niche modelling from presence-only data.

    PubMed

    Drake, John M

    2015-06-06

    The ecological niche is the set of environments in which a population of a species can persist without introduction of individuals from other locations. A good mathematical or computational representation of the niche is a prerequisite to addressing many questions in ecology, biogeography, evolutionary biology and conservation. A particularly challenging question for ecological niche modelling is the problem of presence-only modelling. That is, can an ecological niche be identified from records drawn only from the set of niche environments without records from non-niche environments for comparison? Here, I introduce a new method for ecological niche modelling from presence-only data called range bagging. Range bagging draws on the concept of a species' environmental range, but was inspired by the empirical performance of ensemble learning algorithms in other areas of ecological research. This paper extends the concept of environmental range to multiple dimensions and shows that range bagging is computationally feasible even when the number of environmental dimensions is large. The target of the range bagging base learner is an environmental tolerance of the species in a projection of its niche and is therefore an ecologically interpretable property of a species' biological requirements. The computational complexity of range bagging is linear in the number of examples, which compares favourably with the main alternative, Qhull. In conclusion, range bagging appears to be a reasonable choice for niche modelling in applications in which a presence-only method is desired and may provide a solution to problems in other disciplines where one-class classification is required, such as outlier detection and concept learning.

  15. Evolutionary History of the Plant Pathogenic Bacterium Xanthomonas axonopodis

    PubMed Central

    Mhedbi-Hajri, Nadia; Hajri, Ahmed; Boureau, Tristan; Darrasse, Armelle; Durand, Karine; Brin, Chrystelle; Saux, Marion Fischer-Le; Manceau, Charles; Poussier, Stéphane; Pruvost, Olivier

    2013-01-01

    Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar. PMID:23505513

  16. Ecological knowledge, leadership, and the evolution of menopause in killer whales.

    PubMed

    Brent, Lauren J N; Franks, Daniel W; Foster, Emma A; Balcomb, Kenneth C; Cant, Michael A; Croft, Darren P

    2015-03-16

    Classic life-history theory predicts that menopause should not occur because there should be no selection for survival after the cessation of reproduction [1]. Yet, human females routinely live 30 years after they have stopped reproducing [2]. Only two other species-killer whales (Orcinus orca) and short-finned pilot whales (Globicephala macrorhynchus) [3, 4]-have comparable postreproductive lifespans. In theory, menopause can evolve via inclusive fitness benefits [5, 6], but the mechanisms by which postreproductive females help their kin remain enigmatic. One hypothesis is that postreproductive females act as repositories of ecological knowledge and thereby buffer kin against environmental hardships [7, 8]. We provide the first test of this hypothesis using a unique long-term dataset on wild resident killer whales. We show three key results. First, postreproductively aged females lead groups during collective movement in salmon foraging grounds. Second, leadership by postreproductively aged females is especially prominent in difficult years when salmon abundance is low. This finding is critical because salmon abundance drives both mortality and reproductive success in resident killer whales [9, 10]. Third, females are more likely to lead their sons than they are to lead their daughters, supporting predictions of recent models [5] of the evolution of menopause based on kinship dynamics. Our results show that postreproductive females may boost the fitness of kin through the transfer of ecological knowledge. The value gained from the wisdom of elders can help explain why female resident killer whales and humans continue to live long after they have stopped reproducing. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Science and ecological literacy in undergraduate field studies education

    NASA Astrophysics Data System (ADS)

    Mapp, Kim J.

    There is an ever-increasing number of issues that face our world today; from climate change, water and food scarcity, to pollution and resource extraction. Science and ecology play fundamental roles in these problems, and yet the understanding of these fields is limited in our society (Miller, 2002; McBride, Brewer, Berkowitz, and Borrie, 2013). Across the nation students are finishing their undergraduate degrees and are expected to enter the workforce and society with the skills needed to succeed. The deficit of science and ecological literacy in these students has been recognized and a call for reform begun (D'Avanzo, 2003 and NRC, 2009). This mixed-methods study looked at how a field studies course could fill the gap of science and ecological literacy in undergraduates. Using grounded theory, five key themes were data-derived; definitions, systems thinking, human's role in the environment, impetus for change and transference. These themes where then triangulated for validity and reliability through qualitative and quantitative assessments. A sixth theme was also identified, the learning environment. Due to limited data to support this themes' development and reliability it is discussed in Chapter 5 to provide recommendations for further research. Key findings show that this field studies program influenced students' science and ecological literacy through educational theory and practice.

  18. Noise pollution alters ecological services: enhanced pollination and disrupted seed dispersal

    PubMed Central

    Francis, Clinton D.; Kleist, Nathan J.; Ortega, Catherine P.; Cruz, Alexander

    2012-01-01

    Noise pollution is a novel, widespread environmental force that has recently been shown to alter the behaviour and distribution of birds and other vertebrates, yet whether noise has cumulative, community-level consequences by changing critical ecological services is unknown. Herein, we examined the effects of noise pollution on pollination and seed dispersal and seedling establishment within a study system that isolated the effects of noise from confounding stimuli common to human-altered landscapes. Using observations, vegetation surveys and pollen transfer and seed removal experiments, we found that effects of noise pollution can reverberate through communities by disrupting or enhancing these ecological services. Specifically, noise pollution indirectly increased artificial flower pollination by hummingbirds, but altered the community of animals that prey upon and disperse Pinus edulis seeds, potentially explaining reduced P. edulis seedling recruitment in noisy areas. Despite evidence that some ecological services, such as pollination, may benefit indirectly owing to noise, declines in seedling recruitment for key-dominant species such as P. edulis may have dramatic long-term effects on ecosystem structure and diversity. Because the extent of noise pollution is growing, this study emphasizes that investigators should evaluate the ecological consequences of noise alongside other human-induced environmental changes that are reshaping human-altered landscapes worldwide. PMID:22438504

  19. Noise pollution alters ecological services: enhanced pollination and disrupted seed dispersal.

    PubMed

    Francis, Clinton D; Kleist, Nathan J; Ortega, Catherine P; Cruz, Alexander

    2012-07-22

    Noise pollution is a novel, widespread environmental force that has recently been shown to alter the behaviour and distribution of birds and other vertebrates, yet whether noise has cumulative, community-level consequences by changing critical ecological services is unknown. Herein, we examined the effects of noise pollution on pollination and seed dispersal and seedling establishment within a study system that isolated the effects of noise from confounding stimuli common to human-altered landscapes. Using observations, vegetation surveys and pollen transfer and seed removal experiments, we found that effects of noise pollution can reverberate through communities by disrupting or enhancing these ecological services. Specifically, noise pollution indirectly increased artificial flower pollination by hummingbirds, but altered the community of animals that prey upon and disperse Pinus edulis seeds, potentially explaining reduced P. edulis seedling recruitment in noisy areas. Despite evidence that some ecological services, such as pollination, may benefit indirectly owing to noise, declines in seedling recruitment for key-dominant species such as P. edulis may have dramatic long-term effects on ecosystem structure and diversity. Because the extent of noise pollution is growing, this study emphasizes that investigators should evaluate the ecological consequences of noise alongside other human-induced environmental changes that are reshaping human-altered landscapes worldwide.

  20. Social ecological determinants of youth violence among ethnically diverse Asian and Pacific Islander students.

    PubMed

    Goebert, Deborah; Chang, Janice Y; Chung-Do, Jane; Else, 'Iwalani R N; Hamagami, Fumiaki; Helm, Susana; Kinkade, Katie; Sugimoto-Matsuda, Jeanelle J

    2012-01-01

    This study assesses the relative fit of risk/protective and social ecological models of youth violence among predominantly Asian and Pacific Islander students. Data from a 2007 survey of two multi-ethnic high schools in Hawai'i were used. The survey assessed interpersonal youth violence, suicidality and risk and protective factors. Two models of youth violence (risk/protective and social ecological) were tested using structural equation modeling. We found good fits for the risk/protective model (χ(2) = 369.42, df = 77, P < .0001; CFI = .580; RMSEA = .066) and the ecological model (χ(2) = 1763.65, df = 292, P < .0001; CFI = .636; RMSEA = .076). The risk/protective model showed the importance of coping skills. However, the ecological model allowed examination of the interconnectivity among factors. Peer exposure to violence had no direct influence on individuals and peer influence was fully mediated by school climate. Furthermore, family factors directly contributed to peer exposure, community, and individual risk/protection. These findings have significant implications for intervention and prevention efforts and for the promotion of positive, competent, and healthy youth development. While few family and school-based programs have been developed and evaluated for adolescents, they have the greatest potential for success.

  1. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory

    PubMed Central

    Welti, Nina; Striebel, Maren; Ulseth, Amber J.; Cross, Wyatt F.; DeVilbiss, Stephen; Glibert, Patricia M.; Guo, Laodong; Hirst, Andrew G.; Hood, Jim; Kominoski, John S.; MacNeill, Keeley L.; Mehring, Andrew S.; Welter, Jill R.; Hillebrand, Helmut

    2017-01-01

    Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment. PMID:28747904

  2. Climate change impairs processes of soil and plant N cycling in European beech forests on marginal soil

    NASA Astrophysics Data System (ADS)

    Tejedor, Javier; Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Pole, Andrea; Schloter, Michael; Rennenberg, Heinz; Simon, Judy; Hanewinkel, Marc; Baltensweiler, Andri; Bilela, Silvija; Dannenmann, Michael

    2014-05-01

    Beech forests of Central Europe are covering large areas with marginal calcareous soils, but provide important ecological services and represent a significant economical value. The vulnerability of these ecosystems to projected climate conditions (higher temperatures, increase of extreme drought and precipitation events) is currently unclear. Here we present comprehensive data on the influence of climate change conditions on ecosystem performance, considering soil nitrogen biogeochemistry, soil microbiology, mycorrhiza ecology and plant physiology. We simultaneously quantified major plant and soil gross N turnover processes by homogenous triple 15N isotope labeling of intact beech natural regeneration-soil-microbe systems. This isotope approach was combined with a space for time climate change experiment, i.e. we transferred intact beech seedling-soil-microbe mesocosms from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Transfers within N slope served as controls. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed. Reduced soil water content resulted in a persistent decline of ammonia oxidizing bacteria in soil (AOB). Consequently, we found a massive five-fold reduction of gross nitrification in the climate change treatment and a subsequent strong decline in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech. Because nitrate was the major nutrient for beech in this forest type with little importance of ammonium and amino acids, this resulted in a strongly reduced performance of beech natural regeneration with reduced N content, N metabolite concentrations and plant biomass. These findings provided an explanation for a large-scale decline of distribution of beech forests on calcareous soils in Europe by almost 80% until 2080 predicted by statistical modeling. Hence, we question the sustainability of such forests under projected climate change conditions, but also discuss potential mitigation and adaptation options. Important comment: The topic of this abstract is subject to a press embargo, because it is in review at a Nature Journal

  3. Changing characteristics of land use and ecological service value in the water source region of the Middle Route of South-to-North Water Transfer Project

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Zhai, Wenliang; Cao, Huiqun

    2017-08-01

    Research on changing characteristics of land use and ecological service value (ESV) can guide the regional land use planning and promote the rational use of environmental resources. On the basis of four phases of land-use data (2000, 2005, 2010 and 2015), this research analysed the changing characteristics of land use and ESV in the water source region of the Middle Route of South-to-North Water Transfer Project (SRMRP). The results showed that forest, grassland and cultivated land were the major land-use types in the SRMRP. During 2000∼2015, forest, grassland, farmland and wetland decreased. Construction land and bare land had increased, and the annual increase rates reached 3.6% and 8%, respectively. After the implementation of the water transfer project in 2003, water area was also increasing. The total ESV in the SRMRP is about 196 billion CNY, and mainly comes from the contributions of forest, grassland and farmland. During 2000∼2015, farmland shrinks leaded to the declines in value from supply service. With increasing in water and construction land, value from entertainment and cultural service increased. During the early stage of the water transfer project, value from regulation and support services increased due to the increase in water. With the decreasing in wetland and the increasing in construction land, the negative effects on the regulation and support services were increasing, and value from regulation and support services were therefore decreasing. During the process of resource exploitation and management, more attentions should be paid to the total control of construction land and wetland protection in the SRMRP.

  4. Study of the technology of heat pipe on prevention wildfire of coal gangue hill

    NASA Astrophysics Data System (ADS)

    Deng, Jun; Li, Bei; Ding, Ximei; Ma, Li

    2017-04-01

    Self-ignitable coal gangue hill (CGH) is one kind of special combustion system, which has the characteristics of low self-ignite point, large heat storage, and easy reignition. The currently industrial fire extinguishing methods, such as inhibiting tendency of coal self-ignition, loessial overburden, and cement grouting, had unsatisfied effects for dispersing the heat out in time. Correspondingly, the CGH will lead reignition more frequently with the passage of time. The high underground temperature of CGH threatens the process of ecological and vegetation construction. Therefore, the elimination of high temperature is a vital issue to be solved urgently for habitat restoration. To achieve the ultimately ecological management goal of self-ignitable CGH - extinguishing the fire completely and never reignited, it is crucial to break the heat accumulation. Heat-pipe (HP) has a character of high efficient heat transfer capacity for eliminating the continuously high temperature in CGH. An experimental system was designed to test the heat transfer performance of HP for preventing and extinguishing the spontaneous combustion of coal gangue. Based on the heat transfer theory, the resistance network of the coal-HP heat removal system was analyzed for studying the cooling effect of HP. The experimental results show that the HP can accelerate the heat release in coal gangue pile. The coal temperature could be controlled at 59.6 ˚ C with HP in 7 h and the highest cooling value is 39.4 % with HP in 150 h, which can effectively cool the temperatures of high temperature zones. As a powerful heat transfer components, as soon as HPs were inserted into the CGH with a reasonable distance, it can completely play a vital role in inhibiting the coal self-ignition process.

  5. Trans-generational parasite protection associated with paternal diet.

    PubMed

    Sternberg, Eleanore D; de Roode, Jacobus C; Hunter, Mark D

    2015-01-01

    Multiple generations of hosts are often exposed to the same pathogens, favouring the evolution of trans-generational defences. Because females have more opportunities to transfer protective molecules to offspring, many studies have focused on maternally derived protection. However, males of many species can transfer compounds along with sperm, including chemicals that could provide protection. Here, we assess maternally and paternally derived protection in a monarch butterfly-protozoan parasite system where parasite resistance is heavily influenced by secondary plant chemicals, known as cardenolides, present in the larval diet of milkweed plants. We reared monarch butterflies on medicinal and non-medicinal milkweed species and then measured resistance of their offspring to infection. We also measured cardenolide content in adult monarchs reared on the two species, and in the eggs that they produced. We found that offspring were more resistant to infection when their fathers were reared on medicinal milkweed, while maternal diet had less of an effect. We also found that eggs contained the highest levels of cardenolides when both parents were reared on the medicinal species. Moreover, females reared on non-medicinal milkweed produced eggs with significantly higher levels of cardenolides if they mated with males reared on the medicinal milkweed species. However, we found an equivocal relationship between the cardenolides present in eggs and parasite resistance in the offspring. Our results demonstrate that males reared on medicinal plants can transfer protection to their offspring, but the exact mechanism remains unresolved. This suggests that paternal protection from parasitism might be important, particularly when there are environmental sources of parasite resistance and when males transfer spermatophores during mating. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  6. Development of a landscape integrity model framework to support regional conservation planning.

    PubMed

    Walston, Leroy J; Hartmann, Heidi M

    2018-01-01

    Land managers increasingly rely upon landscape assessments to understand the status of natural resources and identify conservation priorities. Many of these landscape planning efforts rely on geospatial models that characterize the ecological integrity of the landscape. These general models utilize measures of habitat disturbance and human activity to map indices of ecological integrity. We built upon these modeling frameworks by developing a Landscape Integrity Index (LII) model using geospatial datasets of the human footprint, as well as incorporation of other indicators of ecological integrity such as biodiversity and vegetation departure. Our LII model serves as a general indicator of ecological integrity in a regional context of human activity, biodiversity, and change in habitat composition. We also discuss the application of the LII framework in two related coarse-filter landscape conservation approaches to expand the size and connectedness of protected areas as regional mitigation for anticipated land-use changes.

  7. Development of a landscape integrity model framework to support regional conservation planning

    PubMed Central

    Hartmann, Heidi M.

    2018-01-01

    Land managers increasingly rely upon landscape assessments to understand the status of natural resources and identify conservation priorities. Many of these landscape planning efforts rely on geospatial models that characterize the ecological integrity of the landscape. These general models utilize measures of habitat disturbance and human activity to map indices of ecological integrity. We built upon these modeling frameworks by developing a Landscape Integrity Index (LII) model using geospatial datasets of the human footprint, as well as incorporation of other indicators of ecological integrity such as biodiversity and vegetation departure. Our LII model serves as a general indicator of ecological integrity in a regional context of human activity, biodiversity, and change in habitat composition. We also discuss the application of the LII framework in two related coarse-filter landscape conservation approaches to expand the size and connectedness of protected areas as regional mitigation for anticipated land-use changes. PMID:29614093

  8. A National Disturbance Modeling System to Support Ecological Carbon Sequestration Assessments

    NASA Astrophysics Data System (ADS)

    Hawbaker, T. J.; Rollins, M. G.; Volegmann, J. E.; Shi, H.; Sohl, T. L.

    2009-12-01

    The U.S. Geological Survey (USGS) is prototyping a methodology to fulfill requirements of Section 712 of the Energy Independence and Security Act (EISA) of 2007. At the core of the EISA requirements is the development of a methodology to complete a two-year assessment of current carbon stocks and other greenhouse gas (GHG) fluxes, and potential increases for ecological carbon sequestration under a range of future climate changes, land-use / land-cover configurations, and policy, economic and management scenarios. Disturbances, especially fire, affect vegetation dynamics and ecosystem processes, and can also introduce substantial uncertainty and risk to the efficacy of long-term carbon sequestration strategies. Thus, the potential impacts of disturbances need to be considered under different scenarios. As part of USGS efforts to meet EISA requirements, we developed the National Disturbance Modeling System (NDMS) using a series of statistical and process-based simulation models. NDMS produces spatially-explicit forecasts of future disturbance locations and severity, and the resulting effects on vegetation dynamics. NDMS is embedded within the Forecasting Scenarios of Future Land Cover (FORE-SCE) model and informs the General Ensemble Biogeochemical Modeling System (GEMS) for quantifying carbon stocks and GHG fluxes. For fires, NDMS relies on existing disturbance histories, such as the Landsat derived Monitoring Trends in Burn Severity (MTBS) and Vegetation Change Tracker (VCT) data being used to update LANDFIRE fuels data. The MTBS and VCT data are used to parameterize models predicting the number and size of fires in relation to climate, land-use/land-cover change, and socioeconomic variables. The locations of individual fire ignitions are determined by an ignition probability surface and then FARSITE is used to simulate fire spread in response to weather, fuels, and topography. Following the fire spread simulations, a burn severity model is used to determine annual changes in biomass pools. Vegetation succession among LANDFIRE vegetation types is initiated using burn perimeter and severity data at the end of each annual simulation. Results from NDMS are used to update land-use/land-cover layers used by FORE-SCE and also transferred to GEMS for quantifying and updating carbon stocks and greenhouse gas fluxes. In this presentation, we present: 1) an overview of NDMS and its role in USGS's national ecological carbon sequestration assessment; 2) validation of NDMS using historic data; and 3) initial forecasts of disturbances for the southeastern United States and their impacts on greenhouse gas emissions, and post-fire carbon stocks and fluxes.

  9. Combining social policy and scientific knowledge with stakeholder participation can benefit on salted grassland production in Northeast China

    NASA Astrophysics Data System (ADS)

    Wang, Deli; Yang, Zhiming; Wang, Ling; Sun, Wei

    2015-04-01

    Soil salinization is a serious environmental problem across the Eurasian steppes, where millions people have been living for at least five thousand years and will still depend on it in the near future. During the last several decades, ecologists and grassland scientists have done much research on rational grassland utilization avoiding land degradation and reduction in ecological services. Meanwhile, the central and local governments took some attempts of agricultural policy and ecological subsidy to mitigate large scale land salinization in Northeast China. Fortunately, more and more farmers and stakeholders begin to adopt rational grassland management with the guidance of scientists and the help of local governments. However, up to date, there is still a gap between farmers, scientists and governments, which often negatively affect grassland production and remission of soil salinization in these areas. We conducted a case study on sustainable grassland production adapted to steppe salinization funded by EC project from 2011 to 2013. Our goal is trying to establish a mode of adaptive grassland management integrating previous scientific knowledge (grazing and seeding), current agricultural policies (ecological subsidy) and stakeholders' participation or performance. The study showed that: A. Despite of some grassland utilization techniques available for stakeholders (regulating stocking rate and seeding in pastures, or planting high quality forages), they tended to take the simplest action to enhance animal production and prevent grassland salinization; B. Compared to educating or training stakeholders, demonstration of grazing management is the most effective mean for knowledge dissemination or technology transfer; C. Ecological subsidy is absolutely welcome to the local people, and technology transfer became easier when combined with ecological subsidy; D. There was a contrasting effect in grassland production and land degradation mitigation for experimental farm that integrated social policy and scientific knowledge with stakeholder participation; that is, the stakeholder had higher animal production without accelerating grassland salinization during the three experimental years. Furthermore, this case study suggested that the perception and participation of stakeholders play an important role in grassland management adapted to environmental changes, and it is possible for grassland management to effectively integrate society and science.

  10. Ecological Dynamics as a Theoretical Framework for Development of Sustainable Behaviours towards the Environment

    ERIC Educational Resources Information Center

    Brymer, Eric; Davids, Keith

    2013-01-01

    This paper proposes how the theoretical framework of ecological dynamics can provide an influential model of the learner and the learning process to pre-empt effective behaviour changes. Here we argue that ecological dynamics supports a well-established model of the learner ideally suited to the environmental education context because of its…

  11. Improving the effectiveness of ecological site descriptions: General state-and-transition models and the Ecosystem Dynamics Interpretive Tool (EDIT)

    USDA-ARS?s Scientific Manuscript database

    State-and-transition models (STMs) were conceived as a means to organize and communicate information about ecosystem changes and how to manage them. Information within STMs applies to ecological land classes, such as ecological sites, that possess similar vegetation states. The value of STMs for ran...

  12. Asymmetric ecological conditions favor Red-Queen type of continued evolution over stasis

    PubMed Central

    Nordbotten, Jan Martin; Stenseth, Nils C.

    2016-01-01

    Four decades ago, Leigh Van Valen presented the Red Queen’s hypothesis to account for evolution of species within a multispecies ecological community [Van Valen L (1973) Evol Theory 1(1):1–30]. The overall conclusion of Van Valen’s analysis was that evolution would continue even in the absence of abiotic perturbations. Stenseth and Maynard Smith presented in 1984 [Stenseth NC, Maynard Smith J (1984) Evolution 38(4):870–880] a model for the Red Queen’s hypothesis showing that both Red-Queen type of continuous evolution and stasis could result from a model with biotically driven evolution. However, although that contribution demonstrated that both evolutionary outcomes were possible, it did not identify which ecological conditions would lead to each of these evolutionary outcomes. Here, we provide, using a simple, yet general population-biologically founded eco-evolutionary model, such analytically derived conditions: Stasis will predominantly emerge whenever the ecological system contains only symmetric ecological interactions, whereas both Red-Queen and stasis type of evolution may result if the ecological interactions are asymmetrical, and more likely so with increasing degree of asymmetry in the ecological system (i.e., the more trophic interactions, host–pathogen interactions, and the like there are [i.e., +/− type of ecological interactions as well as asymmetric competitive (−/−) and mutualistic (+/+) ecological interactions]). In the special case of no between-generational genetic variance, our results also predict dynamics within these types of purely ecological systems. PMID:26831108

  13. Analysis Of The IJCNN 2011 UTL Challenge

    DTIC Science & Technology

    2012-01-13

    large datasets from various application domains: handwriting recognition, image recognition, video processing, text processing, and ecology. The goal...validation and final evaluation sets consist of 4096 examples each. Dataset Domain Features Sparsity Devel. Transf. AVICENNA Handwriting 120 0% 150205...documents [3]. Transfer learning methods could accelerate the application of handwriting recognizers to historical manuscript by reducing the need for

  14. Polycross populations of the native grass Festuca roemeri as pre-varietal germplasm: their derivation, release, increase, and use

    Treesearch

    Dale C. Darris; Barbara L. Wilson; Rob Fiegener; Matthew E. Horning

    2008-01-01

    Results of a recent common-garden study provide evidence needed to delineate appropriate seed transfer zones for the native grass Festuca roemeri (Pavlick) E. B. Alexeev (Poaceae). That information has been used to develop pre-variety germplasm releases to provide ecologically and genetically appropriate seeds for habitat restoration, erosion...

  15. Bacterial and fungal midgut community dynamics and transfer between mother and brood in the Aisan longhorned beetle (Anoplophora glabipennis), an invasive xylophage

    USDA-ARS?s Scientific Manuscript database

    Microbial symbionts play pivotal roles in the ecology and physiology of insects feeding in woody plants. Both eukaryotic and bacterial members occur in these systems where they facilitate digestive and nutrition provisioning. The larval gut of the Asian longhorned beetle (Anoplophora glabripennis) i...

  16. Special Forest Products: A Southern Strategy for Research & Technology Transfer

    Treesearch

    Rod Sallee; Wayne Owen; Karen Kenna; Gary Kauffman; Marla Emery; Tony Johnson; Phil Araman; Dan Stratton; Ray Sheffield; Vic Rudis; Susan Loeb; David White; Jim Chamberlain

    2004-01-01

    Increasing levels of collection of special forest products (SFPs) have tirggered concerns about the long-term social, ecological, and economic sustainability of the resources from which these products orginate. At this time, there is too little information to assess the current situation and to make informed decisions about managing the forest resources for these...

  17. Land of the Rising Pulse: A Social Ecological Perspective of Physical Activity Opportunities for Schoolchildren in Japan

    ERIC Educational Resources Information Center

    Webster, Collin Andrew; Suzuki, Naoki

    2014-01-01

    The uptake of policies and recommendations to promote physical activity (PA) in American schools has been slow. It can be useful to investigate international contexts where school-based PA promotion has had more success and consider whether facilitative factors have transferability to American schools. This study employed a social ecological…

  18. Conceptual Change and Killer Whales: Constructing Ecological Values for Animals at the Vancouver Aquarium.

    ERIC Educational Resources Information Center

    Kelsey, Elin

    1991-01-01

    Examines how the aquarium has attempted to move from a transfer view of knowledge to a constructivist approach in its most popular general public program--the killer whale presentation. The process of change that staff underwent is similar to conceptual change processes among learners of science. Describes constructivist strategies of conceptual…

  19. EPA-developed, patented technologies related to miscellaneous areas of environmental experties and invention that are available for licensing

    EPA Pesticide Factsheets

    Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be licensed to businesses or individuals for further development and sale in the marketplace. These technologies relate to ecological research, human health, and manufacturing.

  20. Spatial and temporal structure of a mesocarnivore guild in midwestern north America

    Treesearch

    Damon B. Lesmeister; Clayton K. Nielsen; Eric M. Schauber; Eric C. Hellgren

    2015-01-01

    Carnivore guilds play a vital role in ecological communities by cascading trophic effects, energy and nutrient transfer, and stabilizing or destabilizing food webs. Consequently, the structure of carnivore guilds can be critical to ecosystem patterns. Body size is a crucial influence on intraguild interactions, because it affects access to prey resources, effectiveness...

  1. When does ecological sustainability ensure economic sustainability? An integrated analysis of thresholds in semi-arid western rangelands

    NASA Astrophysics Data System (ADS)

    Cobourn, K. M.; Peckham, S. D.

    2011-12-01

    The vulnerability of agri-environmental systems to ecological threshold events depends on the combined influence of economic factors and natural drivers, such as climate and disturbance. This analysis builds an integrated ecologic-economic model to evaluate the behavioral response of agricultural producers to changing and uncertain natural conditions. The model explicitly reflects the effect of producer behavior on the likelihood of a threshold event that threatens the ecological and/or economic sustainability of the agri-environmental system. The foundation of the analysis is a threshold indicator that incorporates the population dynamics of a species that supports economic production and an episodic disturbance regime-in this case rangeland grass that is grazed by livestock and is subject to wildfire. This ecological indicator is integrated into an economic model in which producers choose grazing intensity given the state of the grass population and a set of economic parameters. We examine two model variants that characterize differing economic circumstances. The first characterizes the optimal grazing regime assuming that the system is managed by a single planner whose objective is to maximize the aggregate long-run returns of producers in the system. The second examines the case in which individual producers choose their own stocking rates in order to maximize their private economic benefit. The results from the first model variant illustrate the difference between an ecologic and an economic threshold. Failure to cross an ecological threshold does not necessarily ensure that the system remains economically viable: Economic sustainability, defined as the ability of the system to support optimal production into the infinite future, requires that the net growth rate of the supporting population exceeds the level required for ecological sustainability by an amount that depends on the market price of livestock and grazing efficiency. The results from the second model variant define the circumstances under which a system that is otherwise ecologically sustainable is driven over a threshold by the actions of economic agents. The difference between the two model solutions identifies bounds between which the viability of livestock production over the long-run is uncertain and depends upon the policy setting in which the agri-environmental system operates.

  2. Ecological niche modelling of bank voles in Western Europe.

    PubMed

    Amirpour Haredasht, Sara; Barrios, Miguel; Farifteh, Jamshid; Maes, Piet; Clement, Jan; Verstraeten, Willem W; Tersago, Katrien; Van Ranst, Marc; Coppin, Pol; Berckmans, Daniel; Aerts, Jean-Marie

    2013-01-28

    The bank vole (Myodes glareolus) is the natural host of Puumala virus (PUUV) in vast areas of Europe. PUUV is one of the hantaviruses which are transmitted to humans by infected rodents. PUUV causes a general mild form of hemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE). Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover influences disease transmission by controlling both the spatial distribution of vectors or hosts, as well as by facilitating the human contact with them. In this study the use of ecological niche modelling (ENM) for predicting the geographical distribution of bank vole population on the basis of spatial climate information is tested. The Genetic Algorithm for Rule-set Prediction (GARP) is used to model the ecological niche of bank voles in Western Europe. The meteorological data, land cover types and geo-referenced points representing the locations of the bank voles (latitude/longitude) in the study area are used as the primary model input value. The predictive accuracy of the bank vole ecologic niche model was significant (training accuracy of 86%). The output of the GARP models based on the 50% subsets of points used for testing the model showed an accuracy of 75%. Compared with random models, the probability of such high predictivity was low (χ(2) tests, p < 10(-6)). As such, the GARP models were predictive and the used ecologic niche model indeed indicates the ecologic requirements of bank voles. This approach successfully identified the areas of infection risk across the study area. The result suggests that the niche modelling approach can be implemented in a next step towards the development of new tools for monitoring the bank vole's population.

  3. Ecological Niche Modelling of Bank Voles in Western Europe

    PubMed Central

    Amirpour Haredasht, Sara; Barrios, Miguel; Farifteh, Jamshid; Maes, Piet; Clement, Jan; Verstraeten, Willem W.; Tersago, Katrien; Van Ranst, Marc; Coppin, Pol; Berckmans, Daniel; Aerts, Jean-Marie

    2013-01-01

    The bank vole (Myodes glareolus) is the natural host of Puumala virus (PUUV) in vast areas of Europe. PUUV is one of the hantaviruses which are transmitted to humans by infected rodents. PUUV causes a general mild form of hemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE). Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover influences disease transmission by controlling both the spatial distribution of vectors or hosts, as well as by facilitating the human contact with them. In this study the use of ecological niche modelling (ENM) for predicting the geographical distribution of bank vole population on the basis of spatial climate information is tested. The Genetic Algorithm for Rule-set Prediction (GARP) is used to model the ecological niche of bank voles in Western Europe. The meteorological data, land cover types and geo-referenced points representing the locations of the bank voles (latitude/longitude) in the study area are used as the primary model input value. The predictive accuracy of the bank vole ecologic niche model was significant (training accuracy of 86%). The output of the GARP models based on the 50% subsets of points used for testing the model showed an accuracy of 75%. Compared with random models, the probability of such high predictivity was low (χ2 tests, p < 10−6). As such, the GARP models were predictive and the used ecologic niche model indeed indicates the ecologic requirements of bank voles. This approach successfully identified the areas of infection risk across the study area. The result suggests that the niche modelling approach can be implemented in a next step towards the development of new tools for monitoring the bank vole’s population. PMID:23358234

  4. What is microbial community ecology?

    PubMed

    Konopka, Allan

    2009-11-01

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.

  5. Novel Methods in Disease Biogeography: A Case Study with Heterosporosis

    PubMed Central

    Escobar, Luis E.; Qiao, Huijie; Lee, Christine; Phelps, Nicholas B. D.

    2017-01-01

    Disease biogeography is currently a promising field to complement epidemiology, and ecological niche modeling theory and methods are a key component. Therefore, applying the concepts and tools from ecological niche modeling to disease biogeography and epidemiology will provide biologically sound and analytically robust descriptive and predictive analyses of disease distributions. As a case study, we explored the ecologically important fish disease Heterosporosis, a relatively poorly understood disease caused by the intracellular microsporidian parasite Heterosporis sutherlandae. We explored two novel ecological niche modeling methods, the minimum-volume ellipsoid (MVE) and the Marble algorithm, which were used to reconstruct the fundamental and the realized ecological niche of H. sutherlandae, respectively. Additionally, we assessed how the management of occurrence reports can impact the output of the models. Ecological niche models were able to reconstruct a proxy of the fundamental and realized niche for this aquatic parasite, identifying specific areas suitable for Heterosporosis. We found that the conceptual and methodological advances in ecological niche modeling provide accessible tools to update the current practices of spatial epidemiology. However, careful data curation and a detailed understanding of the algorithm employed are critical for a clear definition of the assumptions implicit in the modeling process and to ensure biologically sound forecasts. In this paper, we show how sensitive MVE is to the input data, while Marble algorithm may provide detailed forecasts with a minimum of parameters. We showed that exploring algorithms of different natures such as environmental clusters, climatic envelopes, and logistic regressions (e.g., Marble, MVE, and Maxent) provide different scenarios of potential distribution. Thus, no single algorithm should be used for disease mapping. Instead, different algorithms should be employed for a more informed and complete understanding of the pathogen or parasite in question. PMID:28770215

  6. Computational modeling for eco engineering: Making the connections between engineering and ecology (Invited)

    NASA Astrophysics Data System (ADS)

    Bowles, C.

    2013-12-01

    Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of the Sacramento River Valley.

  7. Towards a catchment-scale macro-ecological model to support integrated catchment management in Europe

    NASA Astrophysics Data System (ADS)

    Lerner, R. N.; Lerner, D. N.; Surridge, B.; Paetzold, A.; Harris, B.; Anderson, C. W.

    2005-12-01

    In Europe, the Water Framework Directive (WFD) is providing a powerful regulatory driver to adopt integrated catchment management, and so pressurizing researchers to build suitable supporting tools. The WFD requires agencies to drive towards `good ecological quality' by 2015. After the initial step of characterising water bodies and the pressures on them, the next substantive step is the preparation of river basin management plans and proposed programmes of measures by 2009. Ecological quality is a complex concept and poorly defined, unless it is taken as a simple measure such as the abundance of a particular species of organism. There is clearly substantial work to do to build a practical but sound definition of ecological quality; practical in the sense of being easy to measure and explain to stakeholders, and sound in the sense that it reflects ecological complexity within catchments, the variability between catchments, and the conflicts demands for goods and services that human society places upon the ecological system. However ecological quality is defined, it will be driven by four interacting groups of factors. These represent the physical, chemical, ecological and socio-economic environments within and encompassing the catchment. Some of these groupings are better understood than others, for example hydrological processes and the transport of solutes are reasonably understood, even though they remain research areas in their own right. There are much larger gaps in our understanding at the interfaces, i.e. predicting how, for example, hydrological processes such as flow and river morphology influence ecological quality. Overall, it is clear we are not yet in a position to build deterministic models of the overall ecological behaviour of catchment. But we need predictive tools to support catchment management agencies in preparing robust plans. This poster describes our current exploration of soft modelling options to build a comprehensive macro-ecological model of UK catchments. This is taking place within the Catchment Science Centre, a joint venture between the University of Sheffield and the Environment Agency.

  8. Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    EPA Science Inventory

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...

  9. Sensitivity analysis as an aid in modelling and control of (poorly-defined) ecological systems. [closed ecological systems

    NASA Technical Reports Server (NTRS)

    Hornberger, G. M.; Rastetter, E. B.

    1982-01-01

    A literature review of the use of sensitivity analyses in modelling nonlinear, ill-defined systems, such as ecological interactions is presented. Discussions of previous work, and a proposed scheme for generalized sensitivity analysis applicable to ill-defined systems are included. This scheme considers classes of mathematical models, problem-defining behavior, analysis procedures (especially the use of Monte-Carlo methods), sensitivity ranking of parameters, and extension to control system design.

  10. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology

    USGS Publications Warehouse

    Bowker, Matthew A.; Maestre, Fernando T.; Eldridge, David; Belnap, Jayne; Castillo-Monroy, Andrea; Escolar, Cristina; Soliveres, Santiago

    2014-01-01

    Model systems have had a profound influence on the development of ecological theory and general principles. Compared to alternatives, the most effective models share some combination of the following characteristics: simpler, smaller, faster, general, idiosyncratic or manipulable. We argue that biological soil crusts (biocrusts) have unique combinations of these features that should be more widely exploited in community, landscape and ecosystem ecology. In community ecology, biocrusts are elucidating the importance of biodiversity and spatial pattern for maintaining ecosystem multifunctionality due to their manipulability in experiments. Due to idiosyncrasies in their modes of facilitation and competition, biocrusts have led to new models on the interplay between environmental stress and biotic interactions and on the maintenance of biodiversity by competitive processes. Biocrusts are perhaps one of the best examples of micro-landscapes—real landscapes that are small in size. Although they exhibit varying patch heterogeneity, aggregation, connectivity and fragmentation, like macro-landscapes, they are also compatible with well-replicated experiments (unlike macro-landscapes). In ecosystem ecology, a number of studies are imposing small-scale, low cost manipulations of global change or state factors in biocrust micro-landscapes. The versatility of biocrusts to inform such disparate lines of inquiry suggests that they are an especially useful model system that can enable researchers to see ecological principles more clearly and quickly.

  11. Integrating ecological risk assessments across levels of organization using the Franklin-Noss model of biodiversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brugger, K.E.; Tiebout, H.M. III

    1994-12-31

    Wildlife toxicologists pioneered methodologies for assessing ecological risk to nontarget species. Historically, ecological risk assessments (ERAS) focused on a limited array of species and were based on a relatively few population-level endpoints (mortality, reproduction). Currently, risk assessment models are becoming increasingly complex that factor in multi-species interactions (across trophic levels) and utilize an increasingly diverse number of ecologically significant endpoints. This trend suggests the increasing importance of safeguarding not only populations of individual species, but also the overall integrity of the larger biotic systems that support them. In this sense, ERAs are in alignment with Conservation Biology, an applied sciencemore » of ecological knowledge used to conserve biodiversity. A theoretical conservation biology model could be incorporated in ERAs to quantify impacts to biodiversity (structure, function or composition across levels of biological organization). The authors suggest that the Franklin-Noss model for evaluating biodiversity, with its nested, hierarchical approach, may provide a suitable paradigm for assessing and integrating the ecological risk that chemical contaminants pose to biological systems from the simplest levels (genotypes, individual organisms) to the most complex levels of organization (communities and ecosystems). The Franklin-Noss model can accommodate the existing ecotoxicological database and, perhaps more importantly, indicate new areas in which critical endpoints should be identified and investigated.« less

  12. Computational ecology as an emerging science

    PubMed Central

    Petrovskii, Sergei; Petrovskaya, Natalia

    2012-01-01

    It has long been recognized that numerical modelling and computer simulations can be used as a powerful research tool to understand, and sometimes to predict, the tendencies and peculiarities in the dynamics of populations and ecosystems. It has been, however, much less appreciated that the context of modelling and simulations in ecology is essentially different from those that normally exist in other natural sciences. In our paper, we review the computational challenges arising in modern ecology in the spirit of computational mathematics, i.e. with our main focus on the choice and use of adequate numerical methods. Somewhat paradoxically, the complexity of ecological problems does not always require the use of complex computational methods. This paradox, however, can be easily resolved if we recall that application of sophisticated computational methods usually requires clear and unambiguous mathematical problem statement as well as clearly defined benchmark information for model validation. At the same time, many ecological problems still do not have mathematically accurate and unambiguous description, and available field data are often very noisy, and hence it can be hard to understand how the results of computations should be interpreted from the ecological viewpoint. In this scientific context, computational ecology has to deal with a new paradigm: conventional issues of numerical modelling such as convergence and stability become less important than the qualitative analysis that can be provided with the help of computational techniques. We discuss this paradigm by considering computational challenges arising in several specific ecological applications. PMID:23565336

  13. Predicting ecological roles in the rhizosphere using metabolome and transportome modeling

    DOE PAGES

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; ...

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter ofmore » plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less

  14. Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad's ecological role in the rhizosphere: a biofilm, biocontrol agent, promotermore » of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism's transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less

  15. The Drosophila flavopilosa species group (Diptera, Drosophilidae)

    PubMed Central

    Robe, Lizandra J.; De Ré, Francine Cenzi; Ludwig, Adriana; Loreto, Elgion L.S.

    2013-01-01

    The D. flavopilosa group encompasses an ecologically restricted set of species strictly adapted to hosting flowers of Cestrum (Solanaceae). This group presents potential to be used as a model to the study of different questions regarding ecologically restricted species macro and microevolutionary responses, geographical vs. ecological speciation and intra and interspecific competition. This review aims to revisit and reanalyze the patterns and processes that are subjacent to the interesting ecological and evolutionary properties of these species. Biotic and abiotic niche properties of some species were reanalyzed in face of ecological niche modeling approaches in order to get some insights into their ecological evolution. A test of the potential of DNA-Barcoding provided evidences that this technology may be a way of overcoming difficulties related to cryptic species differentiation. The new focus replenishes the scenario with new questions, presenting a case where neither geographical nor ecological speciation may be as yet suggested. PMID:23459119

  16. Supervision in School Psychology: The Developmental/Ecological/Problem-Solving Model

    ERIC Educational Resources Information Center

    Simon, Dennis J.; Cruise, Tracy K.; Huber, Brenda J.; Swerdlik, Mark E.; Newman, Daniel S.

    2014-01-01

    Effective supervision models guide the supervisory relationship and supervisory tasks leading to reflective and purposeful practice. The Developmental/Ecological/Problem-Solving (DEP) Model provides a contemporary framework for supervision specific to school psychology. Designed for the school psychology internship, the DEP Model is also…

  17. Pathogen survival trajectories: an eco-environmental approach to the modeling of human campylobacteriosis ecology.

    PubMed Central

    Skelly, Chris; Weinstein, Phil

    2003-01-01

    Campylobacteriosis, like many human diseases, has its own ecology in which the propagation of human infection and disease depends on pathogen survival and finding new hosts in order to replicate and sustain the pathogen population. The complexity of this process, a process common to other enteric pathogens, has hampered control efforts. Many unknowns remain, resulting in a poorly understood disease ecology. To provide structure to these unknowns and help direct further research and intervention, we propose an eco-environmental modeling approach for campylobacteriosis. This modeling approach follows the pathogen population as it moves through the environments that define the physical structure of its ecology. In this paper, we term the ecologic processes and environments through which these populations move "pathogen survival trajectories." Although such a modeling approach could have veterinary applications, our emphasis is on human campylobacteriosis and focuses on human exposures to Campylobacter through feces, food, and aquatic environments. The pathogen survival trajectories that lead to human exposure include ecologic filters that limit population size, e.g., cooking food to kill Campylobacter. Environmental factors that influence the size of the pathogen reservoirs include temperature, nutrient availability, and moisture availability during the period of time the pathogen population is moving through the environment between infected and susceptible hosts. We anticipate that the modeling approach proposed here will work symbiotically with traditional epidemiologic and microbiologic research to help guide and evaluate the acquisition of new knowledge about the ecology, eventual intervention, and control of campylobacteriosis. PMID:12515674

  18. Predictive ecology: systems approaches

    PubMed Central

    Evans, Matthew R.; Norris, Ken J.; Benton, Tim G.

    2012-01-01

    The world is experiencing significant, largely anthropogenically induced, environmental change. This will impact on the biological world and we need to be able to forecast its effects. In order to produce such forecasts, ecology needs to become more predictive—to develop the ability to understand how ecological systems will behave in future, changed, conditions. Further development of process-based models is required to allow such predictions to be made. Critical to the development of such models will be achieving a balance between the brute-force approach that naively attempts to include everything, and over simplification that throws out important heterogeneities at various levels. Central to this will be the recognition that individuals are the elementary particles of all ecological systems. As such it will be necessary to understand the effect of evolution on ecological systems, particularly when exposed to environmental change. However, insights from evolutionary biology will help the development of models even when data may be sparse. Process-based models are more common, and are used for forecasting, in other disciplines, e.g. climatology and molecular systems biology. Tools and techniques developed in these endeavours can be appropriated into ecological modelling, but it will also be necessary to develop the science of ecoinformatics along with approaches specific to ecological problems. The impetus for this effort should come from the demand coming from society to understand the effects of environmental change on the world and what might be performed to mitigate or adapt to them. PMID:22144379

  19. Transdisciplinary application of the cross-scale resilience model

    USGS Publications Warehouse

    Sundstrom, Shana M.; Angeler, David G.; Garmestani, Ahjond S.; Garcia, Jorge H.; Allen, Craig R.

    2014-01-01

    The cross-scale resilience model was developed in ecology to explain the emergence of resilience from the distribution of ecological functions within and across scales, and as a tool to assess resilience. We propose that the model and the underlying discontinuity hypothesis are relevant to other complex adaptive systems, and can be used to identify and track changes in system parameters related to resilience. We explain the theory behind the cross-scale resilience model, review the cases where it has been applied to non-ecological systems, and discuss some examples of social-ecological, archaeological/ anthropological, and economic systems where a cross-scale resilience analysis could add a quantitative dimension to our current understanding of system dynamics and resilience. We argue that the scaling and diversity parameters suitable for a resilience analysis of ecological systems are appropriate for a broad suite of systems where non-normative quantitative assessments of resilience are desired. Our planet is currently characterized by fast environmental and social change, and the cross-scale resilience model has the potential to quantify resilience across many types of complex adaptive systems.

  20. Towards the use of Structural Loop Analysis to Study System Behaviour of Socio-Ecological Systems.

    NASA Astrophysics Data System (ADS)

    Abram, Joseph; Dyke, James

    2016-04-01

    Maintaining socio-ecological systems in desirable states is key to developing a growing economy, alleviating poverty and achieving a sustainable future. While the driving forces of an environmental system are often well known, the dynamics impacting these drivers can be hidden within a tangled structure of causal chains and feedback loops. A lack of understanding of a system's dynamic structure and its influence on a system's behaviour can cause unforeseen side-effects during model scenario testing and policy implementation. Structural Loop analysis of socio-ecological system models identifies dominant feedback structures during times of behavioural shift, allowing the user to monitor key influential drivers during model simulation. This work carries out Loop Eigenvalue Elasticity Analysis (LEEA) on three system dynamic models, exploring tipping points in lake systems undergoing eutrophication. The purpose is to explore the potential benefits and limitations of the technique in the field of socio-ecology. The LEEA technique shows promise for socio-ecological systems which undergo regime shifts or express oscillatory trends, but shows limited usefulness with large models. The results of this work highlight changes in feedback loop dominance, years prior to eutrophic tipping events in lake systems. LEEA could be used as an early warning signal to impending system changes, complementary to other known early warning signals. This approach could improve our understanding during critical times of a system's behaviour, changing how we approach model analysis and the way scenario testing and policy implementation are addressed in socio-ecological system models.

  1. Experience with environmental issues in GM crop production and the likely future scenarios.

    PubMed

    Gaugitsch, Helmut

    2002-02-28

    In the Cartagena Protocol on Biosafety, standards for risk assessment of genetically modified organisms (GMOs) have been set. The criteria and information basis for the risk assessment of GMOs have been modified by the EU Directive 2001/18/EC. Various approaches to further improve the criteria for environmental risk assessment of GMOs are described in this study. Reports on the ecological impacts of the cultivation of certain non-transgenic crop plants with novel or improved traits as analogy models to transgenic plants showed that the effects of agricultural practice can be at least equally important as the effects of gene transfer and invasiveness, although the latter currently play a major role in risk assessment of transgenic crops. Based on these results the applicability of the methodology of 'Life Cycle Analysis (LCA)' for genetically modified plants in comparison with conventionally bred and organically grown crop plants was evaluated. The methodology was regarded as applicable with some necessary future improvements. In current projects, the assessment of toxicology and allergenicity of GM crops are analysed, and suggestions for standardization are developed. Based on results and recommendations from these efforts there are still the challenges of how to operationalize the precautionary principle and how to take into account ecologically sensitive ecosystems, including centres of origin and centres of genetic diversity.

  2. Ecological models supporting environmental decision making: a strategy for the future

    USGS Publications Warehouse

    Schmolke, Amelie; Thorbek, Pernille; DeAngelis, Donald L.; Grimm, Volker

    2010-01-01

    Ecological models are important for environmental decision support because they allow the consequences of alternative policies and management scenarios to be explored. However, current modeling practice is unsatisfactory. A literature review shows that the elements of good modeling practice have long been identified but are widely ignored. The reasons for this might include lack of involvement of decision makers, lack of incentives for modelers to follow good practice, and the use of inconsistent terminologies. As a strategy for the future, we propose a standard format for documenting models and their analyses: transparent and comprehensive ecological modeling (TRACE) documentation. This standard format will disclose all parts of the modeling process to scrutiny and make modeling itself more efficient and coherent.

  3. Long-term records of global radiation, carbon and water fluxes derived from multi-satellite data and a process-based model

    NASA Astrophysics Data System (ADS)

    Ryu, Youngryel; Jiang, Chongya

    2016-04-01

    To gain insights about the underlying impacts of global climate change on terrestrial ecosystem fluxes, we present a long-term (1982-2015) global radiation, carbon and water fluxes products by integrating multi-satellite data with a process-based model, the Breathing Earth System Simulator (BESS). BESS is a coupled processed model that integrates radiative transfer in the atmosphere and canopy, photosynthesis (GPP), and evapotranspiration (ET). BESS was designed most sensitive to the variables that can be quantified reliably, fully taking advantages of remote sensing atmospheric and land products. Originally, BESS entirely relied on MODIS as input variables to produce global GPP and ET during the MODIS era. This study extends the work to provide a series of long-term products from 1982 to 2015 by incorporating AVHRR data. In addition to GPP and ET, more land surface processes related datasets are mapped to facilitate the discovery of the ecological variations and changes. The CLARA-A1 cloud property datasets, the TOMS aerosol datasets, along with the GLASS land surface albedo datasets, were input to a look-up table derived from an atmospheric radiative transfer model to produce direct and diffuse components of visible and near infrared radiation datasets. Theses radiation components together with the LAI3g datasets and the GLASS land surface albedo datasets, were used to calculate absorbed radiation through a clumping corrected two-stream canopy radiative transfer model. ECMWF ERA interim air temperature data were downscaled by using ALP-II land surface temperature dataset and a region-dependent regression model. The spatial and seasonal variations of CO2 concentration were accounted by OCO-2 datasets, whereas NOAA's global CO2 growth rates data were used to describe interannual variations. All these remote sensing based datasets are used to run the BESS. Daily fluxes in 1/12 degree were computed and then aggregated to half-month interval to match with the spatial-temporal resolution of LAI3g dataset. The BESS GPP and ET products were compared to other independent datasets including MPI-BGC and CLM. Overall, the BESS products show good agreement with the other two datasets, indicating a compelling potential for bridging remote sensing and land surface models.

  4. The exploration of trophic structure modeling using mass balance Ecopath model of Tangerang coastal waters

    NASA Astrophysics Data System (ADS)

    Dewi, N. N.; Kamal, M.; Wardiatno, Y.; Rozi

    2018-04-01

    Ecopath model approach was used to describe trophic interaction, energy flows and ecosystem condition of Tangerang coastal waters. This model consists of 42 ecological groups, of which 41 are living groups and one is a detritus group. Trophic levels of these groups vary between 1.0 (for primary producers and detritus) to 4.03 (for tetraodontidae). Groups with trophic levels 2≤TL<3 and 3≤TL<4 have a range of ecotropic efficiency from 0 to 0.9719 and 0 to 0.7520 respectively.The Mean transfer efficiency is 9.43% for phytoplankton and 3.39% for detritus. The Mixed trophic impact analysis indicates that phytoplankton havea positive impact on the majority of pelagic fish, while detritus has a positive impact on the majority of demersal fish. Leiognathidae havea negative impact on phytoplankton, zooplankton and several other groups. System omnivory index for this ecosystem is 0.151. System primary production/respiration (P/R) ratio of Tangerang coastal waters is 1.505. This coastal ecosystem is an immatureecosystem because it hasdegraded. Pedigree index for this model is 0.57. This model describes ecosystem condition affected by overfishing and antropogenic activities. Therefore, through Ecopath model we provide some suggestions about the ecosystem-based fisheries management.

  5. Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling.

    PubMed

    Iglesias, Virginia; Yospin, Gabriel I; Whitlock, Cathy

    2014-01-01

    Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity.

  6. Model of continual metabolism species for estimating stability of CELSS and natural ecosystems

    NASA Astrophysics Data System (ADS)

    Bartsev, S. I.

    Estimation of stability range of natural and man-made ecosystems is necessary for effective control of them However traditional ecological models usually underestimate stability of real ecosystems It takes place due to the usage of fixed stoichiometry model of metabolism The objective is in creating theoretical and mathematical models for adequate description of both man-made and natural ecological systems A concept of genetically fixed but metabolically flexible species is considered in the paper According to the concept the total flow of matter through ecological system is supported at almost constant level depending on energy income by flexibility of metabolic organization of genetic species It is shown introducing continual metabolism species extends the range of stability making its estimation more adequate to real ecological systems

  7. Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling

    PubMed Central

    Iglesias, Virginia; Yospin, Gabriel I.; Whitlock, Cathy

    2015-01-01

    Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity. PMID:25657652

  8. The Model Construction of English Ecological Class in the High School in China

    ERIC Educational Resources Information Center

    Zhou, Zhen

    2017-01-01

    The Ecological class is a kind of class in which the system of class teaching is in a state of dynamic balance and it can enhance the efficiency of class teaching. The article analyzes the feature of English ecological class, illustrates the non-ecological class teaching problems and explores the ways to establish English ecological class from the…

  9. Taking a systems approach to ecological systems

    USGS Publications Warehouse

    Grace, James B.

    2015-01-01

    Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.

  10. Template for Conceptual Model Construction: Model Components and Application of the Template

    DTIC Science & Technology

    2007-09-01

    stressors, focused through EECs, result in endpoints (Lubinski and Barko 2003). Endpoints are quantifiable, ecologically significant, and important to...Monitoring Plan (Thomas et al. 2001) Lake Okeechobee (Havens 1999) EPA Ecological Risk Assessment on Terrestrial Ecosystem (Suter 1996) Grassland...endpoints (Havens 1999) are examples of Hydrologic Resources: Water Quality, and Terrestrial Resources: Biota. The EPA Ecological Risk Assessment (Suter

  11. Developing ecological scenarios for the prospective aquatic risk assessment of pesticides.

    PubMed

    Rico, Andreu; Van den Brink, Paul J; Gylstra, Ronald; Focks, Andreas; Brock, Theo Cm

    2016-07-01

    The prospective aquatic environmental risk assessment (ERA) of pesticides is generally based on the comparison of predicted environmental concentrations in edge-of-field surface waters with regulatory acceptable concentrations derived from laboratory and/or model ecosystem experiments with aquatic organisms. New improvements in mechanistic effect modeling have allowed a better characterization of the ecological risks of pesticides through the incorporation of biological trait information and landscape parameters to assess individual, population and/or community-level effects and recovery. Similarly to exposure models, ecological models require scenarios that describe the environmental context in which they are applied. In this article, we propose a conceptual framework for the development of ecological scenarios that, when merged with exposure scenarios, will constitute environmental scenarios for prospective aquatic ERA. These "unified" environmental scenarios are defined as the combination of the biotic and abiotic parameters that are required to characterize exposure, (direct and indirect) effects, and recovery of aquatic nontarget species under realistic worst-case conditions. Ideally, environmental scenarios aim to avoid a potential mismatch between the parameter values and the spatial-temporal scales currently used in aquatic exposure and effect modeling. This requires a deeper understanding of the ecological entities we intend to protect, which can be preliminarily addressed by the formulation of ecological scenarios. In this article we present a methodological approach for the development of ecological scenarios and illustrate this approach by a case-study for Dutch agricultural ditches and the example focal species Sialis lutaria. Finally, we discuss the applicability of ecological scenarios in ERA and propose research needs and recommendations for their development and integration with exposure scenarios. Integr Environ Assess Manag 2016;12:510-521. © 2015 SETAC. © 2015 SETAC.

  12. Ecological niche modeling of rabies in the changing Arctic of Alaska.

    PubMed

    Huettmann, Falk; Magnuson, Emily Elizabeth; Hueffer, Karsten

    2017-03-20

    Rabies is a disease of global significance including in the circumpolar Arctic. In Alaska enzootic rabies persist in northern and western coastal areas. Only sporadic cases have occurred in areas outside of the regions considered enzootic for the virus, such as the interior of the state and urbanized regions. Here we examine the distribution of diagnosed rabies cases in Alaska, explicit in space and time. We use a geographic information system (GIS), 20 environmental data layers and provide a quantitative non-parsimonious estimate of the predicted ecological niche, based on data mining, machine learning and open access data. We identify ecological correlates and possible drivers that determine the ecological niche of rabies virus in Alaska. More specifically, our models show that rabies cases are closely associated with human infrastructure, and reveal an ecological niche in remote northern wilderness areas. Furthermore a model utilizing climate modeling suggests a reduction of the current ecological niche for detection of rabies virus in Alaska, a state that is disproportionately affected by a changing climate. Our results may help to better inform public health decisions in the future and guide further studies on individual drivers of rabies distribution in the Arctic.

  13. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic.

    PubMed

    Assis, Jorge; Araújo, Miguel B; Serrão, Ester A

    2018-01-01

    Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial-interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid-Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross-validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm-temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum-Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing. © 2017 John Wiley & Sons Ltd.

  14. Determination of biologically significant hydrologic condition metrics in urbanizing watersheds: an empirical analysis over a range of environmental settings

    USGS Publications Warehouse

    Steuer, Jeffrey J.; Stensvold, Krista A.; Gregory, Mark B.

    2010-01-01

    We investigated the relations among 83 hydrologic condition metrics (HCMs) and changes in algal, invertebrate, and fish communities in five metropolitan areas across the continental United States. We used a statistical approach that employed Spearman correlation and regression tree analysis to identify five HCMs that are strongly associated with observed biological variation along a gradient of urbanization. The HCMs related to average flow magnitude, high-flow magnitude, high-flow event frequency, high-flow duration, and rate of change of stream cross-sectional area were most consistently associated with changes in aquatic communities. Although our investigation used an urban gradient design with short hydrologic periods of record (≤1 year) of hourly cross-sectional area time series, these five HCMs were consistent with previous investigations using long-term daily-flow records. The ecological sampling day often was included in the hydrologic period. Regression tree models explained up to 73, 92, and 79% of variance for specific algal, invertebrate, and fish community metrics, respectively. National models generally were not as statistically significant as models for individual metropolitan areas. High-flow event frequency, a hydrologic metric found to be transferable across stream type and useful for classifying habitat by previous research, was found to be the most ecologically relevant HCM; transformation by precipitation increased national-scale applicability. We also investigated the relation between measures of stream flashiness and land-cover indicators of urbanization and found that land-cover characteristic and pattern variables, such as road density, percent wetland, and proximity of developed land, were strongly related to HCMs at both a metropolitan and national scale and, therefore, may be effective land-use management options in addition to wholesale impervious-area reduction.

  15. Assesing Geographic Isolation of the Galapagos Islands

    NASA Astrophysics Data System (ADS)

    Orellana, D.; Smith, F.

    2016-06-01

    The Galapagos Archipelago is one of the most important ecological spots in the planet due its unique biodiversity, active geology, and relatively well-preserved ecosystems. These characteristics are strongly based on the geographical isolation of the islands. On the one hand this isolation allowed the evolution processes that gave the islands their international fame and on the other hand it kept them from major human impacts that affected the vast majority of the Earth's surface. Galapagos' geographical isolation is therefore of mayor value, but it is rapidly diminishing due to the increase of marine and air transportation among islands and with the rest of the world. This increased accessibility implies enhanced risks for the ecological dynamics on the archipelago (e.g. increased risk of biological invasions, uncontrolled tourism growth, more water and energy consumption). Here, we introduce a general accessibility model to assess geographical isolation of the Galapagos Islands. The model aims to characterize accessibility in terms of human mobility by evaluating travel time to each point of the archipelago using all available transportation modalities. Using a multi criteria cost surface for marine and land areas, we estimated travel time for each surface unit using the fastest route and mode of transportation available while considering several friction factors such as surface type, slope, infrastructure, transfer points, legal restrictions, and physical barriers. We created maps to evaluate the isolation of different islands and places, highlighting the potential risks for several habitats and ecosystems. The model can be used for research and decision-making regarding island conservation, such as estimating spreading paths for invasive species, informing decisions on tourism management, and monitoring isolation changes of sensitive ecosystems.

  16. Exploring dust emission responses to land cover change using an ecological land classification

    NASA Astrophysics Data System (ADS)

    Galloza, Magda S.; Webb, Nicholas P.; Bleiweiss, Max P.; Winters, Craig; Herrick, Jeffrey E.; Ayers, Eldon

    2018-06-01

    Despite efforts to quantify the impacts of land cover change on wind erosion, assessment uncertainty remains large. We address this uncertainty by evaluating the application of ecological site concepts and state-and-transition models (STMs) for detecting and quantitatively describing the impacts of land cover change on wind erosion. We apply a dust emission model over a rangeland study area in the northern Chihuahuan Desert, New Mexico, USA, and evaluate spatiotemporal patterns of modelled horizontal sediment mass flux and dust emission in the context of ecological sites and their vegetation states; representing a diversity of land cover types. Our results demonstrate how the impacts of land cover change on dust emission can be quantified, compared across land cover classes, and interpreted in the context of an ecological model that encapsulates land management intensity and change. Results also reveal the importance of established weaknesses in the dust model soil characterisation and drag partition scheme, which appeared generally insensitive to the impacts of land cover change. New models that address these weaknesses, coupled with ecological site concepts and field measurements across land cover types, could significantly reduce assessment uncertainties and provide opportunities for identifying land management options.

  17. Agent-based modeling in ecological economics.

    PubMed

    Heckbert, Scott; Baynes, Tim; Reeson, Andrew

    2010-01-01

    Interconnected social and environmental systems are the domain of ecological economics, and models can be used to explore feedbacks and adaptations inherent in these systems. Agent-based modeling (ABM) represents autonomous entities, each with dynamic behavior and heterogeneous characteristics. Agents interact with each other and their environment, resulting in emergent outcomes at the macroscale that can be used to quantitatively analyze complex systems. ABM is contributing to research questions in ecological economics in the areas of natural resource management and land-use change, urban systems modeling, market dynamics, changes in consumer attitudes, innovation, and diffusion of technology and management practices, commons dilemmas and self-governance, and psychological aspects to human decision making and behavior change. Frontiers for ABM research in ecological economics involve advancing the empirical calibration and validation of models through mixed methods, including surveys, interviews, participatory modeling, and, notably, experimental economics to test specific decision-making hypotheses. Linking ABM with other modeling techniques at the level of emergent properties will further advance efforts to understand dynamics of social-environmental systems.

  18. Organism and population-level ecological models for chemical risk assessment

    EPA Science Inventory

    Ecological risk assessment typically focuses on animal populations as endpoints for regulatory ecotoxicology. Scientists at USEPA are developing models for animal populations exposed to a wide range of chemicals from pesticides to emerging contaminants. Modeled taxa include aquat...

  19. Compositional clustering in task structure learning

    PubMed Central

    Frank, Michael J.

    2018-01-01

    Humans are remarkably adept at generalizing knowledge between experiences in a way that can be difficult for computers. Often, this entails generalizing constituent pieces of experiences that do not fully overlap, but nonetheless share useful similarities with, previously acquired knowledge. However, it is often unclear how knowledge gained in one context should generalize to another. Previous computational models and data suggest that rather than learning about each individual context, humans build latent abstract structures and learn to link these structures to arbitrary contexts, facilitating generalization. In these models, task structures that are more popular across contexts are more likely to be revisited in new contexts. However, these models can only re-use policies as a whole and are unable to transfer knowledge about the transition structure of the environment even if only the goal has changed (or vice-versa). This contrasts with ecological settings, where some aspects of task structure, such as the transition function, will be shared between context separately from other aspects, such as the reward function. Here, we develop a novel non-parametric Bayesian agent that forms independent latent clusters for transition and reward functions, affording separable transfer of their constituent parts across contexts. We show that the relative performance of this agent compared to an agent that jointly clusters reward and transition functions depends environmental task statistics: the mutual information between transition and reward functions and the stochasticity of the observations. We formalize our analysis through an information theoretic account of the priors, and propose a meta learning agent that dynamically arbitrates between strategies across task domains to optimize a statistical tradeoff. PMID:29672581

  20. Ecological control line: A decade of exploration and an innovative path of ecological land management for megacities in China.

    PubMed

    Hong, Wuyang; Yang, Chengyun; Chen, Liuxin; Zhang, Fangfang; Shen, Shaoqing; Guo, Renzhong

    2017-04-15

    Ecological control line is a system innovation in the field of ecological environment protection in China and it has become as an important strategy of national ecological protection. Ten years have passed since the first ecological control line in Shenzhen was delimited in 2005. This study examines the connotations of ecological control line and the current study status in China and abroad, and then takes a brief description about the delimitation background and existing problems of the ecological control line in Shenzhen. The problem-solving strategy is gradually transforming from extensive management to refined management. This study proposes a differential ecological space management model that merges the space system, management system, and support system. The implementation paths include the following five aspects: delimiting ecological bottom lines to protect core ecological resources; formulating access systems for new construction projects to strictly control new construction; implementing construction land inventory reclamation assisted by market means; regulating boundary adjusting procedures and processes; and constructing ecological equity products by using multiple means to implement rights relief. Finally, this study illustrates the progress of the implementation and discusses the rigorousness and flexibility problems of ecological control line and calls for the promotion of the legislation. The management model and implementation paths proposed in this study have referential significance for developing countries and megacities to achieve ecological protection and sustainable development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Teaching Population Ecology Modeling by Means of the Hewlett-Packard 9100A.

    ERIC Educational Resources Information Center

    Tuinstra, Kenneth E.

    The incorporation of mathematical modeling experiences into an undergraduate biology course is described. Detailed expositions of three models used to teach concepts of population ecology are presented, including introductions to major concepts, user instructions, trial data and problem sets. The models described are: 1) an exponential/logistic…

  2. The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics.

    PubMed

    Raisuddin, Sheikh; Kwok, Kevin W H; Leung, Kenneth M Y; Schlenk, Daniel; Lee, Jae-Seong

    2007-07-20

    There is an increasing body of evidence to support the significant role of invertebrates in assessing impacts of environmental contaminants on marine ecosystems. Therefore, in recent years massive efforts have been directed to identify viable and ecologically relevant invertebrate toxicity testing models. Tigriopus, a harpacticoid copepod has a number of promising characteristics which make it a candidate worth consideration in such efforts. Tigriopus and other copepods are widely distributed and ecologically important organisms. Their position in marine food chains is very prominent, especially with regard to the transfer of energy. Copepods also play an important role in the transportation of aquatic pollutants across the food chains. In recent years there has been a phenomenal increase in the knowledge base of Tigriopus spp., particularly in the areas of their ecology, geophylogeny, genomics and their behavioural, biochemical and molecular responses following exposure to environmental stressors and chemicals. Sequences of a number of important marker genes have been studied in various Tigriopus spp., notably T. californicus and T. japonicus. These genes belong to normal biophysiological functions (e.g. electron transport system enzymes) as well as stress and toxic chemical exposure responses (heat shock protein 20, glutathione reductase, glutathione S-transferase). Recently, 40,740 expressed sequenced tags (ESTs) from T. japonicus, have been sequenced and of them, 5,673 ESTs showed significant hits (E-value, >1.0E-05) to the red flour beetle Tribolium genome database. Metals and organic pollutants such as antifouling agents, pesticides, polycyclic aromatic hydrocarbons (PAH) and polychrlorinated biphenyls (PCB) have shown reproducible biological responses when tested in Tigriopus spp. Promising results have been obtained when Tigriopus was used for assessment of risk associated with exposure to endocrine-disrupting chemicals (EDCs). Application of environmental gene expression techniques has allowed evaluation of transcriptional changes in T. japonicus with the ultimate aim of understanding the mechanisms of action of environmental stressors. Through a better understanding of toxicological mechanisms, ecotoxicologists may use this ecologically relevant species in risk assessment studies in marine systems. The combination of uses as a whole-animal bioassay and gene expression studies indicate that Tigriopus may serve as an excellent tool to evaluate the impacts of marine pollution throughout the coastal region. The purpose of this review is to illustrate the potential of using Tigriopus to fulfill the niche as an important invertebrate marine model organism for ecotoxicology and environmental genomics. In addition, the knowledge gaps and areas for further studies have also been discussed.

  3. Crisis on campus: Eating disorder intervention from a developmental-ecological perspective.

    PubMed

    Taylor, Julia V; Gibson, Donna M

    2016-01-01

    The purpose of this article is to review a crisis intervention using the developmental-ecological protocol (Collins and Collins, 2005) with a college student presenting with symptomatology of an active eating disorder. Participants included University Wellness Center employees responding to the crisis. Methods include an informal review of the crisis intervention response and application of the ABCDE developmental-ecological crisis model. Results reported include insight into crisis intervention when university counseling and health center is not available as resources. ABCDE Developmental-ecological model recommendations for university faculty and staff are included.

  4. Characterization and transferability of microsatellite markers developed for Carpinus betulus (Betulaceae)1

    PubMed Central

    Prinz, Kathleen; Finkeldey, Reiner

    2015-01-01

    Premise of the study: Carpinus betulus (Betulaceae) is an octoploid, ecologically important, common tree species in European woodlands. We established 11 nuclear microsatellite loci allowing for detailed analyses of genetic diversity and structure. Methods and Results: A microsatellite-enriched library was used to develop primers for 11 microsatellite loci that revealed high allele numbers and genetic diversity in a preliminary study. Conclusions: All of the loci developed here are informative for C. betulus. In addition, the loci are transferable to several species within the genus, and almost all loci cross-amplified in species of different genera of the Betulaceae. PMID:26504678

  5. An ecological compensation standard based on emergy theory for the Xiao Honghe River Basin.

    PubMed

    Guan, Xinjian; Chen, Moyu; Hu, Caihong

    2015-01-01

    The calculation of an ecological compensation standard is an important, but also difficult aspect of current ecological compensation research. In this paper, the factors affecting the ecological-economic system in the Xiao Honghe River Basin, China, including the flow of energy, materials, and money, were calculated using the emergy analysis method. A consideration of the relationships between the ecological-economic value of water resources and ecological compensation allowed the ecological-economic value to be calculated. On this basis, the amount of water needed for dilution was used to develop a calculation model for the ecological compensation standard of the basin. Using the Xiao Honghe River Basin as an example, the value of water resources and the ecological compensation standard were calculated using this model according to the emission levels of the main pollutant in the basin, chemical oxygen demand. The compensation standards calculated for the research areas in Xipin, Shangcai, Pingyu, and Xincai were 34.91 yuan/m3, 32.97 yuan/m3, 35.99 yuan/m3, and 34.70 yuan/m3, respectively, and such research output would help to generate and support new approaches to the long-term ecological protection of the basin and improvement of the ecological compensation system.

  6. [Analysis on sustainable development of marine economy in Jiangsu Province based on marine ecological footprint correction model].

    PubMed

    Yang, Shan; Wang, Yu-ting

    2011-03-01

    Based on the theories and methods of ecological footprint, the concept of marine ecological footprint was proposed. According to the characteristics of marine environment in Jiangsu Province, five sub-models of marine ecological footprints, including fishery, transporation, marine engineering construction, marine energy, and tidal flat, were constructed. The equilibrium factors of the five marine types were determined by using improved entropy method, and the marine footprints and capacities in Jiangsu Province from 2000 to 2008 were calculated and analyzed. In 2000-2008, the marine ecology footprint per capita in Jiangsu Province increased nearly seven times, from 36.90 hm2 to 252.94 hm2, and the ecological capacity per capita grew steadily, from 105.01 hm2 to 185.49 hm2. In 2000, the marine environment in the Province was in a state of ecological surplus, and the marine economy was in a weak sustainable development state. Since 2004, the marine ecological environment deteriorated sharply, with ecological deficit up to 109660.5 hm2, and the sustainability of marine economy declined. The high ecological footprint of fishery was the main reason for the ecological deficit. Tidal flat was the important reserve resource for the sustainable development of marine economy in Jiangsu Province.

  7. 75 years of dryland science: Trends and gaps in arid ecology literature.

    PubMed

    Greenville, Aaron C; Dickman, Chris R; Wardle, Glenda M

    2017-01-01

    Growth in the publication of scientific articles is occurring at an exponential rate, prompting a growing need to synthesise information in a timely manner to combat urgent environmental problems and guide future research. Here, we undertake a topic analysis of dryland literature over the last 75 years (8218 articles) to identify areas in arid ecology that are well studied and topics that are emerging. Four topics-wetlands, mammal ecology, litter decomposition and spatial modelling, were identified as 'hot topics' that showed higher than average growth in publications from 1940 to 2015. Five topics-remote sensing, climate, habitat and spatial, agriculture and soils-microbes, were identified as 'cold topics', with lower than average growth over the survey period, but higher than average numbers of publications. Topics in arid ecology clustered into seven broad groups on word-based similarity. These groups ranged from mammal ecology and population genetics, broad-scale management and ecosystem modelling, plant ecology, agriculture and ecophysiology, to populations and paleoclimate. These patterns may reflect trends in the field of ecology more broadly. We also identified two broad research gaps in arid ecology: population genetics, and habitat and spatial research. Collaborations between population genetics and ecologists and investigations of ecological processes across spatial scales would contribute profitably to the advancement of arid ecology and to ecology more broadly.

  8. Simulating ecological changes caused by marine energy devices

    NASA Astrophysics Data System (ADS)

    Schuchert, Pia; Elsaesser, Bjoern; Pritchard, Daniel; Kregting, Louise

    2015-04-01

    Marine renewable energy from wave and tidal technology has the potential to contribute significantly globally to energy security for future generations. However common to both tidal and wave energy extraction systems is concern regarding the potential environmental consequences of the deployment of the technology as environmental and ecological effects are so far poorly understood. Ecological surveys and studies to investigate the environmental impacts are time consuming and costly and are generally reactive; a more efficient approach is to develop 2 and 3D linked hydrodynamic-ecological modelling which has the potential to be proactive and to allow forecasting of the effects of array installation. The objective of the study was to explore tools which can help model and evaluate possible far- and near field changes in the environment and ecosystem caused by the introduction of arrays of marine energy devices. Using the commercial software, MIKE by DHI, we can predict and model possible changes in the ecosystem. MIKE21 and ECOLab modelling software provide the opportunity to couple high level hydrodynamic models with process based ecological models and/or agent based models (ABM). The flow solutions of the model were determined in an idealised tidal basin with the dimensions similar to that of Strangford Lough, Northern Ireland, a body of water renowned for the location of the first grid-connected tidal turbine, SeaGen. In the first instance a simple process oriented ecological NPZD model was developed which are used to model marine and freshwater systems describing four state variables, Nutrient, Phytoplankton, Zooplankton and Detritus. The ecological model was run and evaluated under two hydrodynamic scenarios of the idealised basin. This included no tidal turbines (control) and an array of 55 turbines, an extreme scenario. Whilst an array of turbines has an effect on the hydrodynamics of the Lough, it is unlikely to see an extreme effect on the NPZD model. Further assessment on primary productivity and filter feeders is currently being implemented to assess impacts on these biological systems. Using MIKE software opens up many further possibilities to allow insights into the impacts of marine energy devices on the ecosystem.

  9. Developing predictive systems models to address complexity and relevance for ecological risk assessment.

    PubMed

    Forbes, Valery E; Calow, Peter

    2013-07-01

    Ecological risk assessments (ERAs) are not used as well as they could be in risk management. Part of the problem is that they often lack ecological relevance; that is, they fail to grasp necessary ecological complexities. Adding realism and complexity can be difficult and costly. We argue that predictive systems models (PSMs) can provide a way of capturing complexity and ecological relevance cost-effectively. However, addressing complexity and ecological relevance is only part of the problem. Ecological risk assessments often fail to meet the needs of risk managers by not providing assessments that relate to protection goals and by expressing risk in ratios that cannot be weighed against the costs of interventions. Once more, PSMs can be designed to provide outputs in terms of value-relevant effects that are modulated against exposure and that can provide a better basis for decision making than arbitrary ratios or threshold values. Recent developments in the modeling and its potential for implementation by risk assessors and risk managers are beginning to demonstrate how PSMs can be practically applied in risk assessment and the advantages that doing so could have. Copyright © 2013 SETAC.

  10. Interdependence of geomorphic and ecologic resilience properties in a geographic context

    NASA Astrophysics Data System (ADS)

    Anthony Stallins, J.; Corenblit, Dov

    2018-03-01

    Ecology and geomorphology recognize the dynamic aspects of resistance and resilience. However, formal resilience theory in ecology has tended to deemphasize the geomorphic habitat template. Conversely, landscape sensitivity and state-and-transition models in geomorphology downweight mechanisms of biotic adaptation operative in fluctuating, spatially explicit environments. Adding to the interdisciplinary challenge of understanding complex biogeomorphic systems is that environmental heterogeneity and overlapping gradients of disturbance complicate inference of the geographic patterns of resistance and resilience. We develop a conceptual model for comparing the resilience properties among barrier dunes. The model illustrates how adaptive cycles and panarchies, the formal building blocks of resilience recognized in ecology, can be expressed as a set of hierarchically nested geomorphic and ecological metrics. The variance structure of these data is proposed as a means to delineate different kinds and levels of resilience. Specifically, it is the dimensionality of these data and how geomorphic and ecological variables load on the first and succeeding axes that facilitates the delineation of resistance and resilience. The construction of dune topographic state space from observations among different barrier islands is proposed as a way to measure the interdependence of geomorphic and ecological resilience properties.

  11. Introducing mixotrophy into a biogeochemical model describing an eutrophied coastal ecosystem: The Southern North Sea

    NASA Astrophysics Data System (ADS)

    Ghyoot, Caroline; Lancelot, Christiane; Flynn, Kevin J.; Mitra, Aditee; Gypens, Nathalie

    2017-04-01

    Most biogeochemical/ecological models divide planktonic protists between phototrophs (phytoplankton) and heterotrophs (zooplankton). However, a large number of planktonic protists are able to combine several mechanisms of carbon and nutrient acquisition. Not representing these multiple mechanisms in biogeochemical/ecological models describing eutrophied coastal ecosystems can potentially lead to different conclusions regarding ecosystem functioning, especially regarding the success of harmful algae, which are often reported as mixotrophic. This modelling study investigates, for the first time, the implications for trophic dynamics of including 3 contrasting forms of mixotrophy, namely osmotrophy (using alkaline phosphatase activity, APA), non-constitutive mixotrophy (acquired phototrophy by microzooplankton) and also constitutive mixotrophy. The application is in the Southern North Sea, an ecosystem that faced, between 1985 and 2005, a significant increase in the nutrient supply N:P ratio (from 31 to 81 mole N:P). The comparison with a traditional model shows that, when the winter N:P ratio in the Southern North Sea is above 22 molN molP-1 (as occurred from mid-1990s), APA allows a 3 to 32% increase of annual gross primary production (GPP). In result of the higher GPP, the annual sedimentation increases as well as the bacterial production. By contrast, APA does not affect the export of matter to higher trophic levels because the increased GPP is mainly due to Phaeocystis colonies, which are not grazed by copepods. The effect of non-constitutive mixotrophy depends on light and affects the ecosystem functioning in terms of annual GPP, transfer to higher trophic levels, sedimentation, and nutrient remineralisation. Constitutive mixotrophy in nanoflagellates appears to have little influence on this ecosystem functioning. An important conclusion from this work is that different forms of mixotrophy have different impacts on system dynamics and it is thus important to describe such differences in an appropriate fashion.

  12. Introducing mixotrophy into a biogeochemical model describing an eutrophied coastal ecosystem: The Southern North Sea

    NASA Astrophysics Data System (ADS)

    Ghyoot, Caroline; Lancelot, Christiane; Flynn, Kevin J.; Mitra, Aditee; Gypens, Nathalie

    2017-09-01

    Most biogeochemical/ecological models divide planktonic protists between phototrophs (phytoplankton) and heterotrophs (zooplankton). However, a large number of planktonic protists are able to combine several mechanisms of carbon and nutrient acquisition. Not representing these multiple mechanisms in biogeochemical/ecological models describing eutrophied coastal ecosystems can potentially lead to different conclusions regarding ecosystem functioning, especially regarding the success of harmful algae, which are often reported as mixotrophic. This modelling study investigates the implications for trophic dynamics of including 3 contrasting forms of mixotrophy, namely osmotrophy (using alkaline phosphatase activity, APA), non-constitutive mixotrophy (acquired phototrophy by microzooplankton) and also constitutive mixotrophy. The application is in the Southern North Sea, an ecosystem that faced, between 1985 and 2005, a significant increase in the nutrient supply N:P ratio (from 31 to 81 mol N:P). The comparison with a traditional model shows that, when the winter N:P ratio in the Southern North Sea is above 22 molN molP-1 (as occurred from mid-1990s), APA allows a 3-32% increase of annual gross primary production (GPP). In result of the higher GPP, the annual sedimentation increases as well as the bacterial production. By contrast, APA does not affect the export of matter to higher trophic levels because the increased GPP is mainly due to Phaeocystis colonies, which are not grazed by copepods. Under high irradiance, non-constitutive mixotrophy appreciably increases annual GPP, transfer to higher trophic levels, sedimentation, and nutrient remineralisation. In this ecosystem, non-constitutive mixotrophy is also observed to have an indirect stimulating effect on diatoms. Constitutive mixotrophy in nanoflagellates appears to have little influence on this ecosystem functioning. An important conclusion from this work is that contrasting forms of mixotrophy have different impacts on system dynamics and, due to the complex interactions in the ecosystem, their combined effect is not exactly the addition of the effects individually observed. It is thus important to describe such contrasting forms in an appropriate fashion.

  13. [Ecology suitability study of Ephedra intermedia].

    PubMed

    Ma, Xiao-Hui; Lu, You-Yuan; Huang, De-Dong; Zhu, Tian-Tian; Lv, Pei-Lin; Jin, Ling

    2017-06-01

    The study aims at predicting ecological suitability of Ephedra intermedia in China by using maximum entropy Maxent model combined with GIS, and finding the main ecological factors affecting the distribution of E. intermedia suitability in appropriate growth area. Thirty-eight collected samples of E. intermedia and E. intermedia and 116 distribution information from CVH information using ArcGIS technology were analyzed. MaxEnt model was applied to forecast the E. intermedia in our country's ecology. E. intermedia MaxEnt ROC curve model training data and testing data sets the AUC value was 0.986 and 0.958, respectively, which were greater than 0.9, tending to be 1.The calculated E. intermedia habitat suitability by the model showed a high accuracy and credibility, which indicated that MaxEnt model could well predict the potential distribution area of E. intermedia in China. Copyright© by the Chinese Pharmaceutical Association.

  14. Accumulation of heavy metals in soil and their transfer to leafy vegetables in the region of Dhaka Aricha Highway, Savar, Bangladesh.

    PubMed

    Aktaruzzaman, M; Fakhruddin, A N M; Chowdhury, M A Z; Fardous, Z; Alam, M K

    2013-04-01

    Accumulation of heavy metals in environmental matrices is a potential risk to living system due to their uptake by plants and subsequent introduction into the food chain. A study was conducted to investigate the heavy metals concentration in soils and leafy vegetables samples along the Dhaka Aricha Road to assess their potential ecological risk. Heavy metals concentration was analyzed by Atomic Absorption Spectroscopy. Concentrations ofallthetestedheavy metals except Cd in soil samples were below the permissible level. The mean concentration of Cd was found 3.99 +/- 1.85 mg kg(-1). Concentrations of all the tested heavy metals except Cd and Cr in vegetables samples were lower than recommended level. Mean concentration of Cd and Cr were found 1.00 +/- 0.68 mg kg(-1) and 2.32 +/- 0.84 mg kg(-1), respectively. Based on the Potential Ecological Risk Index, Cd posed very high risk to the local ecosystem due to its higher Risk Factor, > 320 and based on Transfer Factor of Pb and Cd were found higher accumulator among the tested metals. The results of present study revealed that the bioconcentration of heavy metals along the Dhaka Aricha Road posed high risk to the ecosystem. Considering the Transfer Factor of Cd and Pb it can be suggested that plants and leafy vegetables grow in the soil near Dhaka Aricha Road should not be used as food or feed.

  15. [Discussion on agricultural product quality and safety problem from ecological view].

    PubMed

    Xiao, Ming; Dong, Nan; Lyu, Xin

    2015-08-01

    There are many different perspectives about the sustainable agriculture, which had been proposed since the last three decades in the world. While China's ecologists and agronomists proposed a similar concept named 'ecological agriculture'. Although ecological agriculture in China has achieved substantial progress, including theory, models and supporting technologies nearly several decades of practice and development, its application guidance still is not yet clear. The organic agriculture model proposed by European Union is popular, but it is limited in the beneficiary groups and the social and ecological responsibility. In this context, the article based on an ecological point of view, analyzed the shortcomings of ecological imbalance caused by a single mode of agricultural production and the negative impact on the quality of agricultural products, and discussed the core values of ecological agriculture. On this basis, we put forward the concept of sustainable security of agricultural products. Based on this concept, an agricultural platform was established under the healthy ecosysphere environment, and from this agricultural platform, agricultural products could be safely and sustainably obtained. Around the central value of the concept, we designed the agricultural sustainable and security production model. Finally, we compared the responsibility, benefiting groups, agronomic practices selection and other aspects of sustainable agriculture with organic agriculture, and proved the advancement of sustainable agricultural model in agricultural production quality and safety.

  16. Socio-ecological factors and hand, foot and mouth disease in dry climate regions: a Bayesian spatial approach in Gansu, China

    NASA Astrophysics Data System (ADS)

    Gou, Faxiang; Liu, Xinfeng; Ren, Xiaowei; Liu, Dongpeng; Liu, Haixia; Wei, Kongfu; Yang, Xiaoting; Cheng, Yao; Zheng, Yunhe; Jiang, Xiaojuan; Li, Juansheng; Meng, Lei; Hu, Wenbiao

    2017-01-01

    The influence of socio-ecological factors on hand, foot and mouth disease (HFMD) were explored in this study using Bayesian spatial modeling and spatial patterns identified in dry regions of Gansu, China. Notified HFMD cases and socio-ecological data were obtained from the China Information System for Disease Control and Prevention, Gansu Yearbook and Gansu Meteorological Bureau. A Bayesian spatial conditional autoregressive model was used to quantify the effects of socio-ecological factors on the HFMD and explore spatial patterns, with the consideration of its socio-ecological effects. Our non-spatial model suggests temperature (relative risk (RR) 1.15, 95 % CI 1.01-1.31), GDP per capita (RR 1.19, 95 % CI 1.01-1.39) and population density (RR 1.98, 95 % CI 1.19-3.17) to have a significant effect on HFMD transmission. However, after controlling for spatial random effects, only temperature (RR 1.25, 95 % CI 1.04-1.53) showed significant association with HFMD. The spatial model demonstrates temperature to play a major role in the transmission of HFMD in dry regions. Estimated residual variation after taking into account the socio-ecological variables indicated that high incidences of HFMD were mainly clustered in the northwest of Gansu. And, spatial structure showed a unique distribution after taking account of socio-ecological effects.

  17. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.

    PubMed

    Deutzmann, Jörg S; Sahin, Merve; Spormann, Alfred M

    2015-04-21

    Direct, mediator-free transfer of electrons between a microbial cell and a solid phase in its surrounding environment has been suggested to be a widespread and ecologically significant process. The high rates of microbial electron uptake observed during microbially influenced corrosion of iron [Fe(0)] and during microbial electrosynthesis have been considered support for a direct electron uptake in these microbial processes. However, the underlying molecular mechanisms of direct electron uptake are unknown. We investigated the electron uptake characteristics of the Fe(0)-corroding and electromethanogenic archaeon Methanococcus maripaludis and discovered that free, surface-associated redox enzymes, such as hydrogenases and presumably formate dehydrogenases, are sufficient to mediate an apparent direct electron uptake. In genetic and biochemical experiments, we showed that these enzymes, which are released from cells during routine culturing, catalyze the formation of H2 or formate when sorbed to an appropriate redox-active surface. These low-molecular-weight products are rapidly consumed by M. maripaludis cells when present, thereby preventing their accumulation to any appreciable or even detectable level. Rates of H2 and formate formation by cell-free spent culture medium were sufficient to explain the observed rates of methane formation from Fe(0) and cathode-derived electrons by wild-type M. maripaludis as well as by a mutant strain carrying deletions in all catabolic hydrogenases. Our data collectively show that cell-derived free enzymes can mimic direct extracellular electron transfer during Fe(0) corrosion and microbial electrosynthesis and may represent an ecologically important but so far overlooked mechanism in biological electron transfer. The intriguing trait of some microbial organisms to engage in direct electron transfer is thought to be widespread in nature. Consequently, direct uptake of electrons into microbial cells from solid surfaces is assumed to have a significant impact not only on fundamental microbial and biogeochemical processes but also on applied bioelectrochemical systems, such as microbial electrosynthesis and biocorrosion. This study provides a simple mechanistic explanation for frequently observed fast electron uptake kinetics in microbiological systems without a direct transfer: free, cell-derived enzymes can interact with cathodic surfaces and catalyze the formation of intermediates that are rapidly consumed by microbial cells. This electron transfer mechanism likely plays a significant role in various microbial electron transfer reactions in the environment. Copyright © 2015 Deutzmann et al.

  18. Ecological Forecasting in the Applied Sciences Program and Input to the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Skiles, Joseph

    2015-01-01

    Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecosystems will change in the future in response to environmental factors. Further, Ecological Forecasting employs observations and models to predict the effects of environmental change on ecosystems. In doing so, it applies information from the physical, biological, and social sciences and promotes a scientific synthesis across the domains of physics, geology, chemistry, biology, and psychology. The goal is reliable forecasts that allow decision makers access to science-based tools in order to project changes in living systems. The next decadal survey will direct the development Earth Observation sensors and satellites for the next ten years. It is important that these new sensors and satellites address the requirements for ecosystem models, imagery, and other data for resource management. This presentation will give examples of these model inputs and some resources needed for NASA to continue effective Ecological Forecasting.

  19. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    USGS Publications Warehouse

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  20. Residual effect of storage in an elevated carbon dioxide atmosphere on the microbial flora of rock cod (Sebastes spp. )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.Y.; Ogrydziak, D.M.

    1986-10-01

    A residual inhibitory effect on microbial growth due to modified-atmosphere (MA) storage (MA, 80% CO/sub 2/-20% air) was demonstrated for rock cod fillets stored in MA and transferred to air at 4/sup 0/C. Results of measurements of CO/sub 2/ concentrations of the fillets suggested that the residual effect after transfer from MA to air was not due to retention of CO/sup 2/ at the surface of the fillets but was probably due to the microbial ecology of the system. Lactobacillus spp. and tan Alteromonas spp. (TAN) predominated after 7 and 14 days of storage in MA. During storage in MA,more » Pseudomonas spp. were inhibited or killed. Following transfer from MA to air, the percentage of the total flora represented by Lactobacillus spp. and TAN bacteria decreased, and 6 days after transfer Pseudomonas spp. were again dominant.« less

Top