Reinforcing loose foundation stones in trait-based plant ecology.
Shipley, Bill; De Bello, Francesco; Cornelissen, J Hans C; Laliberté, Etienne; Laughlin, Daniel C; Reich, Peter B
2016-04-01
The promise of "trait-based" plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We identify three such assumptions and, where possible, suggest methods of improvement: (i) traits are functional to the degree that they determine individual fitness, (ii) intraspecific variation in functional traits can be largely ignored, and (iii) functional traits show general predictive relationships to measurable environmental gradients.
Consumer co-evolution as an important component of the eco-evolutionary feedback.
Hiltunen, Teppo; Becks, Lutz
2014-10-22
Rapid evolution in ecologically relevant traits has recently been recognized to significantly alter the interaction between consumers and their resources, a key interaction in all ecological communities. While these eco-evolutionary dynamics have been shown to occur when prey populations are evolving, little is known about the role of predator evolution and co-evolution between predator and prey in this context. Here, we investigate the role of consumer co-evolution for eco-evolutionary feedback in bacteria-ciliate microcosm experiments by manipulating the initial trait variation in the predator populations. With co-evolved predators, prey evolve anti-predatory defences faster, trait values are more variable, and predator and prey population sizes are larger at the end of the experiment compared with the non-co-evolved predators. Most importantly, differences in predator traits results in a shift from evolution driving ecology, to ecology driving evolution. Thus we demonstrate that predator co-evolution has important effects on eco-evolutionary dynamics.
The role of ecology in speciation by sexual selection: a systematic empirical review.
Scordato, Elizabeth S C; Symes, Laurel B; Mendelson, Tamra C; Safran, Rebecca J
2014-01-01
Theoretical and empirical research indicates that sexual selection interacts with the ecological context in which mate choice occurs, suggesting that sexual and natural selection act together during the evolution of premating reproductive isolation. However, the relative importance of natural and sexual selection to speciation remains poorly understood. Here, we applied a recent conceptual framework for examining interactions between mate choice divergence and ecological context to a review of the empirical literature on speciation by sexual selection. This framework defines two types of interactions between mate choice and ecology: internal interactions, wherein natural and sexual selection jointly influence divergence in sexual signal traits and preferences, and external interactions, wherein sexual selection alone acts on traits and preferences but ecological context shapes the transmission efficacy of sexual signals. The objectives of this synthesis were 3-fold: to summarize the traits, ecological factors, taxa, and geographic contexts involved in studies of mate choice divergence; to analyze patterns of association between these variables; and to identify the most common types of interactions between mate choice and ecological factors. Our analysis revealed that certain traits are consistently associated with certain ecological factors. Moreover, among studies that examined a divergent sexually selected trait and an ecological factor, internal interactions were more common than external interactions. Trait-preference associations may thus frequently be subject to both sexual and natural selection in cases of divergent mate choice. Our results highlight the importance of interactions between sexual selection and ecology in mate choice divergence and suggest areas for future research. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Economic and hydraulic divergences underpin ecological differentiation in the Bromeliaceae.
Males, Jamie; Griffiths, Howard
2018-01-01
Leaf economic and hydraulic theories have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations. The role of character trait divergences and network reorganization in the differentiation of the functional types in the megadiverse Neotropical Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species. Functional types, which are defined by combinations of C 3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non-specialized, tank-forming or atmospheric morphologies, segregated clearly in trait space. Most classical leaf economic relationships were supported, but they were weakened by the presence of succulence. Functional types differed in trait-network architecture, suggesting that rewiring of trait-networks caused by innovations in habit and photosynthetic pathway is an important aspect of ecological differentiation. The hydraulic data supported the coupling of leaf hydraulics and gas exchange, but not the hydraulic safety versus efficiency hypothesis, and hinted at an important role for the extra-xylary compartment in the control of bromeliad leaf hydraulics. Overall, our findings highlight the fundamental importance of structure-function relationships in the generation and maintenance of ecological diversity. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.
Chai, Yongfu; Yue, Ming; Wang, Mao; Xu, Jinshi; Liu, Xiao; Zhang, Ruichang; Wan, Pengcheng
2016-03-01
In forest succession, the ecological strategies of the dominant species that are based on functional traits are important in the determination of both the mechanisms and the potential directions of succession. Thirty-one plots were established in the Loess Plateau region of northern Shaanxi in China. Fifteen leaf traits were measured for the 31 dominant species that represented the six stages of succession, and the traits included four that were related to morphology, seven to stoichiometry and four to physiological ecology. The species from the different successional stages had different patterns of distribution of the traits, and different key traits predicted the turnover of the species during succession. The ash and the cellulose contents were key regulatory factors of species turnover in the early successional communities, and the trait niche forces in sugar and leaf dry mass content might become more important with the progression of succession. When only the three herb stages were considered, a progressive replacement of the ruderal by the competitive-ruderal species occurred in the intermediate stages of succession, which was followed by the stress-tolerant-competitive or the competitive-stress tolerant-ruderal strategists late in the succession. Thus, the different species that occurred in the different stages of succession shared different trait-based ecological strategies. Additionally, these differences occurred concomitantly with a shift toward competitive-stress tolerant-ruderal strategies.
Nesting and acoustic ecology, but not phylogeny, influence passerine urban tolerance.
Cardoso, Gonçalo C
2014-03-01
Urbanization is one of the most extensive and ecologically significant changes happening to terrestrial environments, as it strongly affects the distribution of biodiversity. It is well established that native species richness is reduced in urban and suburban areas, but the species traits that predict tolerance to urbanization are yet little understood. In birds, one of the most studied groups in this respect, evidence is appearing that acoustic traits influence urban living, but it remains unknown how this compares to the effects of more obvious ecological traits that facilitate urban living. Therefore, it remains unclear whether acoustic communication is an important predictor of urban tolerance among species. Here, with a comparative study across 140 European and North American passerines, I show that high song frequency, which is less masked by the low-frequency anthropogenic noise, is associated with urban tolerance, with an effect size over half that of the most important ecological trait studied: off-ground nesting. Other nesting and foraging traits accepted to facilitate urban living did not differ for species occurring in urban environments. Thus, the contribution of acoustic traits for passerine urban tolerance approximates that of more obvious ecological traits. Nonetheless, effect sizes of the biological predictors of urban tolerance were low and the phylogenetic signal for urban tolerance was null, both of which suggest that factors other than phenotypic traits have major effects on urban tolerance. A simple possibility is exposure to urbanization, as there was a higher proportion of urban-tolerant species in Europe, which is more urbanized than North America. © 2013 John Wiley & Sons Ltd.
Consumer trait variation influences tritrophic interactions in salt marsh communities.
Hughes, Anne Randall; Hanley, Torrance C; Orozco, Nohelia P; Zerebecki, Robyn A
2015-07-01
The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait divergence in subsequent consumer populations.
Trait-based approaches in the analysis of stream fish communities
Frimpong, Emmanuel; Angermeier, Paul
2010-01-01
Species traits are used to study the functional organization of fish communities for a range of reasons, from simply reducing data dimensionality to providing mechanistic explanations for observed variation in communities. Ecological and life history traits have been used to understand the basic ecology of fishes and predict (1) species and community responses to habitat and climate alteration, and (2) species extinction, species invasion, and community homogenization. Many approaches in this arena have been developed during the past three decades, but they often have not been integrated with related ecological concepts or subdisciplines, which has led to confusion in terminology. We review 102 studies of species traits and then summarize patterns in traits being used and questions being addressed with trait-based approaches. Overall, studies of fish–habitat relationships that apply habitat templates and hierarchical filters dominate our sample; the most frequently used traits are related to feeding. We define and show the relationships among key terms such as fundamental and realized niches; functional traits, performance, and fitness; tactic, trait-state, syndromes, and strategies; and guilds and functional groups. We propose accelerating research to (1) quantify trait plasticity, (2) identify traits useful for testing ecological hypotheses, (3) model habitat and biotic interactions in communities while explicitly accounting for phylogenetic relationships, (4) explore how traits control community assembly, and (5) document the importance of traits in fish– community responses to anthropogenic change and in delivering ecosystem services. Further synthesis of these topics is still needed to develop concepts, models, and principles that can unify the disparate approaches taken in trait-based analysis of fish communities, link fish community ecology to general community ecology, and inform sustainable management of ecosystems.
To boldly go: individual differences in boldness influence migratory tendency.
Chapman, Ben B; Hulthén, Kaj; Blomqvist, David R; Hansson, Lars-Anders; Nilsson, Jan-Åke; Brodersen, Jakob; Anders Nilsson, P; Skov, Christian; Brönmark, Christer
2011-09-01
Partial migration, whereby only a fraction of the population migrates, is thought to be the most common type of migration in the animal kingdom, and can have important ecological and evolutionary consequences. Despite this, the factors that influence which individuals migrate and which remain resident are poorly understood. Recent work has shown that consistent individual differences in personality traits in animals can be ecologically important, but field studies integrating personality traits with migratory behaviour are extremely rare. In this study, we investigate the influence of individual boldness, an important personality trait, upon the migratory propensity of roach, a freshwater fish, over two consecutive migration seasons. We assay and individually tag 460 roach and show that boldness influences migratory propensity, with bold individuals being more likely to migrate than shy fish. Our data suggest that an extremely widespread personality trait in animals can have significant ecological consequences via influencing individual-level migratory behaviour. © 2011 Blackwell Publishing Ltd/CNRS.
Ellner, Stephen P; Geber, Monica A; Hairston, Nelson G
2011-06-01
Rapid contemporary evolution due to natural selection is common in the wild, but it remains uncertain whether its effects are an essential component of community and ecosystem structure and function. Previously we showed how to partition change in a population, community or ecosystem property into contributions from environmental and trait change, when trait change is entirely caused by evolution (Hairston et al. 2005). However, when substantial non-heritable trait change occurs (e.g. due to phenotypic plasticity or change in population structure) that approach can mis-estimate both contributions. Here, we demonstrate how to disentangle ecological impacts of evolution vs. non-heritable trait change by combining our previous approach with the Price Equation. This yields a three-way partitioning into effects of evolution, non-heritable phenotypic change and environment. We extend the approach to cases where ecological consequences of trait change are mediated through interspecific interactions. We analyse empirical examples involving fish, birds and zooplankton, finding that the proportional contribution of rapid evolution varies widely (even among different ecological properties affected by the same trait), and that rapid evolution can be important when it acts to oppose and mitigate phenotypic effects of environmental change. Paradoxically, rapid evolution may be most important when it is least evident. © 2011 Blackwell Publishing Ltd/CNRS.
Pigot, Alex L; Trisos, Christopher H; Tobias, Joseph A
2016-01-13
Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. © 2016 The Author(s).
Pigot, Alex L.; Trisos, Christopher H.; Tobias, Joseph A.
2016-01-01
Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. PMID:26740616
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology
Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer; ...
2017-02-28
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.
Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille
2017-07-01
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
Intraspecific variability in functional traits matters: case study of Scots pine.
Laforest-Lapointe, Isabelle; Martínez-Vilalta, Jordi; Retana, Javier
2014-08-01
Although intraspecific trait variability is an important component of species ecological plasticity and niche breadth, its implications for community and functional ecology have not been thoroughly explored. We characterized the intraspecific functional trait variability of Scots pine (Pinus sylvestris) in Catalonia (NE Spain) in order to (1) compare it to the interspecific trait variability of trees in the same region, (2) explore the relationships among functional traits and the relationships between them and stand and climatic variables, and (3) study the role of functional trait variability as a determinant of radial growth. We considered five traits: wood density (WD), maximum tree height (H max), leaf nitrogen content (Nmass), specific leaf area (SLA), and leaf biomass-to-sapwood area ratio (B L:A S). A unique dataset was obtained from the Ecological and Forest Inventory of Catalonia (IEFC), including data from 406 plots. Intraspecific trait variation was substantial for all traits, with coefficients of variation ranging between 8% for WD and 24% for B L:A S. In some cases, correlations among functional traits differed from those reported across species (e.g., H max and WD were positively related, whereas SLA and Nmass were uncorrelated). Overall, our model accounted for 47% of the spatial variability in Scots pine radial growth. Our study emphasizes the hierarchy of factors that determine intraspecific variations in functional traits in Scots pine and their strong association with spatial variability in radial growth. We claim that intraspecific trait variation is an important determinant of responses of plants to changes in climate and other environmental factors, and should be included in predictive models of vegetation dynamics.
Liu, Jun; Shikano, Takahito; Leinonen, Tuomas; Cano, José Manuel; Li, Meng-Hua; Merilä, Juha
2014-04-16
Quantitative trait locus (QTL) mapping studies of Pacific three-spined sticklebacks (Gasterosteus aculeatus) have uncovered several genomic regions controlling variability in different morphological traits, but QTL studies of Atlantic sticklebacks are lacking. We mapped QTL for 40 morphological traits, including body size, body shape, and body armor, in a F2 full-sib cross between northern European marine and freshwater three-spined sticklebacks. A total of 52 significant QTL were identified at the 5% genome-wide level. One major QTL explaining 74.4% of the total variance in lateral plate number was detected on LG4, whereas several major QTL for centroid size (a proxy for body size), and the lengths of two dorsal spines, pelvic spine, and pelvic girdle were mapped on LG21 with the explained variance ranging from 27.9% to 57.6%. Major QTL for landmark coordinates defining body shape variation also were identified on LG21, with each explaining ≥15% of variance in body shape. Multiple QTL for different traits mapped on LG21 overlapped each other, implying pleiotropy and/or tight linkage. Thus, apart from providing confirmatory data to support conclusions born out of earlier QTL studies of Pacific sticklebacks, this study also describes several novel QTL of both major and smaller effect for ecologically important traits. The finding that many major QTL mapped on LG21 suggests that this linkage group might be a hotspot for genetic determinants of ecologically important morphological traits in three-spined sticklebacks.
Sexual imprinting on ecologically divergent traits leads to sexual isolation in sticklebacks.
Kozak, Genevieve M; Head, Megan L; Boughman, Janette W
2011-09-07
During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such 'magic traits' easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity.
Niche conservatism as an emerging principle in ecology and conservation biology.
Wiens, John J; Ackerly, David D; Allen, Andrew P; Anacker, Brian L; Buckley, Lauren B; Cornell, Howard V; Damschen, Ellen I; Jonathan Davies, T; Grytnes, John-Arvid; Harrison, Susan P; Hawkins, Bradford A; Holt, Robert D; McCain, Christy M; Stephens, Patrick R
2010-10-01
The diversity of life is ultimately generated by evolution, and much attention has focused on the rapid evolution of ecological traits. Yet, the tendency for many ecological traits to instead remain similar over time [niche conservatism (NC)] has many consequences for the fundamental patterns and processes studied in ecology and conservation biology. Here, we describe the mounting evidence for the importance of NC to major topics in ecology (e.g. species richness, ecosystem function) and conservation (e.g. climate change, invasive species). We also review other areas where it may be important but has generally been overlooked, in both ecology (e.g. food webs, disease ecology, mutualistic interactions) and conservation (e.g. habitat modification). We summarize methods for testing for NC, and suggest that a commonly used and advocated method (involving a test for phylogenetic signal) is potentially problematic, and describe alternative approaches. We suggest that considering NC: (1) focuses attention on the within-species processes that cause traits to be conserved over time, (2) emphasizes connections between questions and research areas that are not obviously related (e.g. invasives, global warming, tropical richness), and (3) suggests new areas for research (e.g. why are some clades largely nocturnal? why do related species share diseases?). 2010 Blackwell Publishing Ltd/CNRS.
Disruptive ecological selection on a mating cue.
Merrill, Richard M; Wallbank, Richard W R; Bull, Vanessa; Salazar, Patricio C A; Mallet, James; Stevens, Martin; Jiggins, Chris D
2012-12-22
Adaptation to divergent ecological niches can result in speciation. Traits subject to disruptive selection that also contribute to non-random mating will facilitate speciation with gene flow. Such 'magic' or 'multiple-effect' traits may be widespread and important for generating biodiversity, but strong empirical evidence is still lacking. Although there is evidence that putative ecological traits are indeed involved in assortative mating, evidence that these same traits are under divergent selection is considerably weaker. Heliconius butterfly wing patterns are subject to positive frequency-dependent selection by predators, owing to aposematism and Müllerian mimicry, and divergent colour patterns are used by closely related species to recognize potential mates. The amenability of colour patterns to experimental manipulation, independent of other traits, presents an excellent opportunity to test their role during speciation. We conducted field experiments with artificial butterflies, designed to match natural butterflies with respect to avian vision. These were complemented with enclosure trials with live birds and real butterflies. Our experiments showed that hybrid colour-pattern phenotypes are attacked more frequently than parental forms. For the first time, we demonstrate disruptive ecological selection on a trait that also acts as a mating cue.
Divergent sexual selection via male competition: ecology is key.
Lackey, A C R; Boughman, J W
2013-08-01
Sexual selection and ecological differences are important drivers of speciation. Much research has focused on female choice, yet the role of male competition in ecological speciation has been understudied. Here, we test how mating habitats impact sexual selection and speciation through male competition. Using limnetic and benthic species of threespine stickleback fish, we find that different mating habitats select differently on male traits through male competition. In mixed habitat with both vegetated and open areas, selection favours two trait combinations of male body size and nuptial colour: large with little colour and small with lots of colour. This matches what we see in reproductively isolated stickleback species, suggesting male competition could promote trait divergence and reproductive isolation. In contrast, when only open habitat exists, selection favours one trait combination, large with lots of colour, which would hinder trait divergence and reproductive isolation. Other behavioural mechanisms in male competition that might promote divergence, such as avoiding aggression with heterospecifics, are insufficient to maintain separate species. This work highlights the importance of mating habitats in male competition for both sexual selection and speciation. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Liu, Jun; Shikano, Takahito; Leinonen, Tuomas; Cano, José Manuel; Li, Meng-Hua; Merilä, Juha
2014-01-01
Quantitative trait locus (QTL) mapping studies of Pacific three-spined sticklebacks (Gasterosteus aculeatus) have uncovered several genomic regions controlling variability in different morphological traits, but QTL studies of Atlantic sticklebacks are lacking. We mapped QTL for 40 morphological traits, including body size, body shape, and body armor, in a F2 full-sib cross between northern European marine and freshwater three-spined sticklebacks. A total of 52 significant QTL were identified at the 5% genome-wide level. One major QTL explaining 74.4% of the total variance in lateral plate number was detected on LG4, whereas several major QTL for centroid size (a proxy for body size), and the lengths of two dorsal spines, pelvic spine, and pelvic girdle were mapped on LG21 with the explained variance ranging from 27.9% to 57.6%. Major QTL for landmark coordinates defining body shape variation also were identified on LG21, with each explaining ≥15% of variance in body shape. Multiple QTL for different traits mapped on LG21 overlapped each other, implying pleiotropy and/or tight linkage. Thus, apart from providing confirmatory data to support conclusions born out of earlier QTL studies of Pacific sticklebacks, this study also describes several novel QTL of both major and smaller effect for ecologically important traits. The finding that many major QTL mapped on LG21 suggests that this linkage group might be a hotspot for genetic determinants of ecologically important morphological traits in three-spined sticklebacks. PMID:24531726
Tran, Lucy A P
2016-04-01
Biotic and abiotic factors often are treated as mutually exclusive drivers of diversification processes. In this framework, ecological specialists are expected to have higher speciation rates than generalists if abiotic factors are the primary controls on species diversity but lower rates if biotic interactions are more important. Speciation rate is therefore predicted to positively correlate with ecological specialization in the purely abiotic model but negatively correlate in the biotic model. In this study, I show that the positive relationship between ecological specialization and speciation expected from the purely abiotic model is recovered only when a species-specific trait, digestive strategy, is modeled in the terrestrial, herbivorous mammals (Mammalia). This result suggests a more nuanced model in which the response of specialized lineages to abiotic factors is dependent on a biological trait. I also demonstrate that the effect of digestive strategy on the ecological specialization-speciation rate relationship is not due to a difference in either the degree of ecological specialization or the speciation rate between foregut- and hindgut-fermenting mammals. Together, these findings suggest that a biological trait, alongside historical abiotic events, played an important role in shaping mammal speciation at long temporal and large geographic scales.
Doudová, Jana; Douda, Jan; Mandák, Bohumil
2017-01-01
Heterocarpy enables species to effectively spread under unfavourable conditions by producing two or more types of fruit differing in ecological characteristics. Although it is frequent in annuals occupying disturbed habitats that are vulnerable to invasion, there is still a lack of congeneric studies addressing the importance of heterocarpy for species invasion success. We compared two pairs of heterocarpic Atriplex species, each of them comprising one invasive and one non-invasive non-native congener. In two common garden experiments, we (i) simulated the influence of different levels of nutrients and population density on plants grown from different types of fruits and examined several traits that are generally positively associated with invasion success, and (ii) grew plants in a replacement series experiment to evaluate resource partitioning between them and to compare their competitive ability. We found that specific functional traits or competitiveness of species cannot explain the invasiveness of Atriplex species, indicating that species invasiveness involves more complex interactions of traits that are important only in certain ecological contexts, i.e. in specific environmental conditions and only some habitats. Interestingly, species trait differences related to invasion success were found between plants growing from the ecologically most contrasting fruit types. We suggest that fruit types differing in ecological behaviour may be essential in the process of invasion or in the general spreading of heterocarpic species, as they either the maximize population growth (type C fruit) or enhance the chance of survival of new populations (type A fruit). Congeners offer the best available methodical framework for comparing traits among phylogenetically closely related invasive and non-invasive species. However, as indicated by our results, this approach is unlikely to reveal invasive traits because of the complexity underlying invasiveness. PMID:28445514
NASA Astrophysics Data System (ADS)
Kennard, M. J.; Pusey, B. J.; Arthington, A. H.
2005-05-01
North-eastern Australia encompasses 18o of latitude, monsoonal/tropical to sub-tropical/temperate climates, geomorphologically diverse rivers, and flow regimes with markedly varied seasonality, constancy and predictability. Fish assemblages in the region vary in relation to the predictability of aquatic habitat availability and other topographic, climatic and/or biogeographic factors. This paper examines how environmental, biogeographic and phylogenetic factors may constrain ecological trait composition at local and regional scales. We derived 17 categories of ecological traits to describe the morphology, behaviour, habitat, life history and trophic characteristics of 114 fish species from 64 river basins. Trait composition varied substantially across the region. The number of riffle dwelling species, maximum size and longevity of fishes was greater in the hydrologically predictable and constant rivers of the Wet Tropics region than in more unpredictable or seasonal environments. The importance of herbivory was also greater in the tropics. Historical biogeographic and phylogenetic factors may confound our ability to understand the role of environmental factors in determining spatial variation in ecological trait composition. Understanding the functional linkages between environmental drivers of fish species distributions via their ecological characteristics should provide a foundation for predicting future impacts of environmental change in a region of Australia subject to increasing human pressures.
Understanding the individual to implement the ecosystem approach to fisheries management.
Ward, Taylor D; Algera, Dirk A; Gallagher, Austin J; Hawkins, Emily; Horodysky, Andrij; Jørgensen, Christian; Killen, Shaun S; McKenzie, David J; Metcalfe, Julian D; Peck, Myron A; Vu, Maria; Cooke, Steven J
2016-01-01
Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management.
Understanding the individual to implement the ecosystem approach to fisheries management
Ward, Taylor D.; Algera, Dirk A.; Gallagher, Austin J.; Hawkins, Emily; Horodysky, Andrij; Jørgensen, Christian; Killen, Shaun S.; McKenzie, David J.; Metcalfe, Julian D.; Peck, Myron A.; Vu, Maria; Cooke, Steven J.
2016-01-01
Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management. PMID:27293757
Statzner, B; Hildrew, A G; Resh, V H
2001-01-01
The role that entomology has played in the historical (1800s-1970s) development of ecological theories that match species traits with environmental constraints is reviewed along three lineages originating from the ideas of a minister (Malthus TR. 1798. An Essay on the Principle of Population. London: Johnson) and a chemist (Liebig J. 1840. Die Organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig: Vieweg). Major developments in lineage 1 focus on habitat as a filter for species traits, succession, nonequilibrium and equilibrium conditions, and generalizations about the correlation of traits to environmental constraints. In lineage 2, we trace the evolution of the niche concept and focus on ecophysiological traits, biotic interactions, and environmental conditions. Finally, we describe the conceptual route from early demographic studies of human and animal populations to the r-K concept in lineage 3. In the 1970s, the entomologist Southwood merged these three lineages into the "habitat templet concept" (Southwood TRE. 1977. J. Anim. Ecol. 46:337-65), which has stimulated much subsequent research in entomology and general ecology. We conclude that insects have been a far more important resource for the development of ecological theory than previously acknowledged.
Avian malaria, ecological host traits and mosquito abundance in southeastern Amazonia.
Fecchio, Alan; Ellis, Vincenzo A; Bell, Jeffrey A; Andretti, Christian B; D'Horta, Fernando M; Silva, Allan M; Tkach, Vasyl V; Weckstein, Jason D
2017-07-01
Avian malaria is a vector transmitted disease caused by Plasmodium and recent studies suggest that variation in its prevalence across avian hosts is correlated with a variety of ecological traits. Here we examine the relationship between prevalence and diversity of Plasmodium lineages in southeastern Amazonia and: (1) host ecological traits (nest location, nest type, flocking behaviour and diet); (2) density and diversity of avian hosts; (3) abundance and diversity of mosquitoes; and (4) season. We used molecular methods to detect Plasmodium in blood samples from 675 individual birds of 120 species. Based on cytochrome b sequences, we recovered 89 lineages of Plasmodium from 136 infected individuals sampled across seven localities. Plasmodium prevalence was homogeneous over time (dry season and flooding season) and space, but heterogeneous among 51 avian host species. Variation in prevalence among bird species was not explained by avian ecological traits, density of avian hosts, or mosquito abundance. However, Plasmodium lineage diversity was positively correlated with mosquito abundance. Interestingly, our results suggest that avian host traits are less important determinants of Plasmodium prevalence and diversity in southeastern Amazonia than in other regions in which they have been investigated.
Sexual imprinting on ecologically divergent traits leads to sexual isolation in sticklebacks
Kozak, Genevieve M.; Head, Megan L.; Boughman, Janette W.
2011-01-01
During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such ‘magic traits’ easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity. PMID:21270044
Lázaro, Amparo; Hegland, Stein Joar; Totland, Orjan
2008-08-01
The pollination syndrome hypothesis has provided a major conceptual framework for how plants and pollinators interact. However, the assumption of specialization in pollination systems and the reliability of floral traits in predicting the main pollinators have been questioned recently. In addition, the relationship between ecological and evolutionary specialization in pollination interactions is still poorly understood. We used data of 62 plant species from three communities across southern Norway to test: (1) the relationships between floral traits and the identity of pollinators, (2) the association between floral traits (evolutionary specialization) and ecological generalization, and (3) the consistency of both relationships across communities. Floral traits significantly affected the identity of pollinators in the three communities in a way consistent with the predictions derived from the pollination syndrome concept. However, hover flies and butterflies visited flowers with different shapes in different communities, which we mainly attribute to among-community variation in pollinator assemblages. Interestingly, ecological generalization depended more on the community-context (i.e. the plant and pollinator assemblages in the communities) than on specific floral traits. While open yellow and white flowers were the most generalist in two communities, they were the most specialist in the alpine community. Our results warn against the use of single measures of ecological generalization to question the pollination syndrome concept, and highlight the importance of community comparisons to assess the pollination syndromes, and to understand the relationships between ecological and evolutionary specialization in plant-pollinator interactions.
NASA Astrophysics Data System (ADS)
Madin, Joshua S.; Anderson, Kristen D.; Andreasen, Magnus Heide; Bridge, Tom C. L.; Cairns, Stephen D.; Connolly, Sean R.; Darling, Emily S.; Diaz, Marcela; Falster, Daniel S.; Franklin, Erik C.; Gates, Ruth D.; Hoogenboom, Mia O.; Huang, Danwei; Keith, Sally A.; Kosnik, Matthew A.; Kuo, Chao-Yang; Lough, Janice M.; Lovelock, Catherine E.; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M.; Pochon, Xavier; Pratchett, Morgan S.; Putnam, Hollie M.; Roberts, T. Edward; Stat, Michael; Wallace, Carden C.; Widman, Elizabeth; Baird, Andrew H.
2016-03-01
Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.
Madin, Joshua S.; Anderson, Kristen D.; Andreasen, Magnus Heide; Bridge, Tom C.L.; Cairns, Stephen D.; Connolly, Sean R.; Darling, Emily S.; Diaz, Marcela; Falster, Daniel S.; Franklin, Erik C.; Gates, Ruth D.; Hoogenboom, Mia O.; Huang, Danwei; Keith, Sally A.; Kosnik, Matthew A.; Kuo, Chao-Yang; Lough, Janice M.; Lovelock, Catherine E.; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M.; Pochon, Xavier; Pratchett, Morgan S.; Putnam, Hollie M.; Roberts, T. Edward; Stat, Michael; Wallace, Carden C.; Widman, Elizabeth; Baird, Andrew H.
2016-01-01
Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research. PMID:27023900
Madin, Joshua S; Anderson, Kristen D; Andreasen, Magnus Heide; Bridge, Tom C L; Cairns, Stephen D; Connolly, Sean R; Darling, Emily S; Diaz, Marcela; Falster, Daniel S; Franklin, Erik C; Gates, Ruth D; Harmer, Aaron; Hoogenboom, Mia O; Huang, Danwei; Keith, Sally A; Kosnik, Matthew A; Kuo, Chao-Yang; Lough, Janice M; Lovelock, Catherine E; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M; Pochon, Xavier; Pratchett, Morgan S; Putnam, Hollie M; Roberts, T Edward; Stat, Michael; Wallace, Carden C; Widman, Elizabeth; Baird, Andrew H
2016-03-29
Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism's function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.
Parallel evolution of sexual isolation in sticklebacks.
Boughman, Janette Wenrick; Rundle, Howard D; Schluter, Dolph
2005-02-01
Mechanisms of speciation are not well understood, despite decades of study. Recent work has focused on how natural and sexual selection cause sexual isolation. Here, we investigate the roles of divergent natural and sexual selection in the evolution of sexual isolation between sympatric species of threespine sticklebacks. We test the importance of morphological and behavioral traits in conferring sexual isolation and examine to what extent these traits have diverged in parallel between multiple, independently evolved species pairs. We use the patterns of evolution in ecological and mating traits to infer the likely nature of selection on sexual isolation. Strong parallel evolution implicates ecologically based divergent natural and/or sexual selection, whereas arbitrary directionality implicates nonecological sexual selection or drift. In multiple pairs we find that sexual isolation arises in the same way: assortative mating on body size and asymmetric isolation due to male nuptial color. Body size and color have diverged in a strongly parallel manner, similar to ecological traits. The data implicate ecologically based divergent natural and sexual selection as engines of speciation in this group.
Wright, Ian J.; Ackerly, David D.; Bongers, Frans; Harms, Kyle E.; Ibarra-Manriquez, Guillermo; Martinez-Ramos, Miguel; Mazer, Susan J.; Muller-Landau, Helene C.; Paz, Horacio; Pitman, Nigel C. A.; Poorter, Lourens; Silman, Miles R.; Vriesendorp, Corine F.; Webb, Cam O.; Westoby, Mark; Wright, S. Joseph
2007-01-01
Background and Aims When ecologically important plant traits are correlated they may be said to constitute an ecological ‘strategy’ dimension. Through identifying these dimensions and understanding their inter-relationships we gain insight into why particular trait combinations are favoured over others and into the implications of trait differences among species. Here we investigated relationships among several traits, and thus the strategy dimensions they represented, across 2134 woody species from seven Neotropical forests. Methods Six traits were studied: specific leaf area (SLA), the average size of leaves, seed and fruit, typical maximum plant height, and wood density (WD). Trait relationships were quantified across species at each individual forest as well as across the dataset as a whole. ‘Phylogenetic’ analyses were used to test for correlations among evolutionary trait-divergences and to ascertain whether interspecific relationships were biased by strong taxonomic patterning in the traits. Key Results The interspecific and phylogenetic analyses yielded congruent results. Seed and fruit size were expected, and confirmed, to be tightly related. As expected, plant height was correlated with each of seed and fruit size, albeit weakly. Weak support was found for an expected positive relationship between leaf and fruit size. The prediction that SLA and WD would be negatively correlated was not supported. Otherwise the traits were predicted to be largely unrelated, being representatives of putatively independent strategy dimensions. This was indeed the case, although WD was consistently, negatively related to leaf size. Conclusions The dimensions represented by SLA, seed/fruit size and leaf size were essentially independent and thus conveyed largely independent information about plant strategies. To a lesser extent the same was true for plant height and WD. Our tentative explanation for negative WD–leaf size relationships, now also known from other habitats, is that the traits are indirectly linked via plant hydraulics. PMID:16595553
CLO-PLA: a database of clonal and bud-bank traits of the Central European flora.
Klimešová, Jitka; Danihelka, Jiří; Chrtek, Jindřich; de Bello, Francesco; Herben, Tomáš
2017-04-01
This dataset presents comprehensive and easy-to-use information on 29 functional traits of clonal growth, bud banks, and lifespan of members of the Central European flora. The source data were compiled from a number of published sources (see the reference file) and the authors' own observations or studies. In total, 2,909 species are included (2,745 herbs and 164 woody species), out of which 1,532 (i.e., 52.7% of total) are classified as possessing clonal growth organs (1,480, i.e., 53.9%, if woody plants are excluded). This provides a unique, and largely unexplored, set of traits of clonal growth that can be used in studies on comparative plant ecology, plant evolution, community assembly, and ecosystem functioning across the large flora of Central Europe. It can be directly imported into a number of programs and packages that perform trait-based and phylogenetic analyses aimed to answer a variety of open and pressing ecological questions. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Purschke, Oliver; Dengler, Jürgen; Bruelheide, Helge; Chytrý, Milan; Jansen, Florian; Hennekens, Stephan; Jandt, Ute; Jiménez-Alfaro, Borja; Kattge, Jens; De Patta Pillar, Valério; Sandel, Brody; Winter, Marten
2015-04-01
The trait composition of plant communities is determined by abiotic, biotic and historical factors, but the importance of macro-climatic factors in explaining trait-environment relationships at the local scale remains unclear. Such knowledge is crucial for biogeographical and ecological theory but also relevant to devise management measures to mitigate the negative effects of climate change. To address these questions, an iDiv Working Group has established the first global vegetation-plot database (sPlot). sPlot currently contains ~700,000 plots from over 50 countries and all biomes, and is steadily growing. Approx. 70% of the most frequent species are represented by at least one trait in the global trait database TRY and gap-filled data will become available for the most common traits. We will give an overview about the structure and present content of sPlot in terms of spatial distribution, data properties and trait coverage. We will explain next steps and perspectives, present first cross-biome analyses of community-weighted mean traits and trait variability, and highlight some ecological questions that can be addressed with sPlot.
Modelling the ecological niche from functional traits
Kearney, Michael; Simpson, Stephen J.; Raubenheimer, David; Helmuth, Brian
2010-01-01
The niche concept is central to ecology but is often depicted descriptively through observing associations between organisms and habitats. Here, we argue for the importance of mechanistically modelling niches based on functional traits of organisms and explore the possibilities for achieving this through the integration of three theoretical frameworks: biophysical ecology (BE), the geometric framework for nutrition (GF) and dynamic energy budget (DEB) models. These three frameworks are fundamentally based on the conservation laws of thermodynamics, describing energy and mass balance at the level of the individual and capturing the prodigious predictive power of the concepts of ‘homeostasis’ and ‘evolutionary fitness’. BE and the GF provide mechanistic multi-dimensional depictions of climatic and nutritional niches, respectively, providing a foundation for linking organismal traits (morphology, physiology, behaviour) with habitat characteristics. In turn, they provide driving inputs and cost functions for mass/energy allocation within the individual as determined by DEB models. We show how integration of the three frameworks permits calculation of activity constraints, vital rates (survival, development, growth, reproduction) and ultimately population growth rates and species distributions. When integrated with contemporary niche theory, functional trait niche models hold great promise for tackling major questions in ecology and evolutionary biology. PMID:20921046
NASA Astrophysics Data System (ADS)
Poyatos, Rafael; Sus, Oliver; Badiella, Llorenç; Mencuccini, Maurizio; Martínez-Vilalta, Jordi
2018-05-01
The ubiquity of missing data in plant trait databases may hinder trait-based analyses of ecological patterns and processes. Spatially explicit datasets with information on intraspecific trait variability are rare but offer great promise in improving our understanding of functional biogeography. At the same time, they offer specific challenges in terms of data imputation. Here we compare statistical imputation approaches, using varying levels of environmental information, for five plant traits (leaf biomass to sapwood area ratio, leaf nitrogen content, maximum tree height, leaf mass per area and wood density) in a spatially explicit plant trait dataset of temperate and Mediterranean tree species (Ecological and Forest Inventory of Catalonia, IEFC, dataset for Catalonia, north-east Iberian Peninsula, 31 900 km2). We simulated gaps at different missingness levels (10-80 %) in a complete trait matrix, and we used overall trait means, species means, k nearest neighbours (kNN), ordinary and regression kriging, and multivariate imputation using chained equations (MICE) to impute missing trait values. We assessed these methods in terms of their accuracy and of their ability to preserve trait distributions, multi-trait correlation structure and bivariate trait relationships. The relatively good performance of mean and species mean imputations in terms of accuracy masked a poor representation of trait distributions and multivariate trait structure. Species identity improved MICE imputations for all traits, whereas forest structure and topography improved imputations for some traits. No method performed best consistently for the five studied traits, but, considering all traits and performance metrics, MICE informed by relevant ecological variables gave the best results. However, at higher missingness (> 30 %), species mean imputations and regression kriging tended to outperform MICE for some traits. MICE informed by relevant ecological variables allowed us to fill the gaps in the IEFC incomplete dataset (5495 plots) and quantify imputation uncertainty. Resulting spatial patterns of the studied traits in Catalan forests were broadly similar when using species means, regression kriging or the best-performing MICE application, but some important discrepancies were observed at the local level. Our results highlight the need to assess imputation quality beyond just imputation accuracy and show that including environmental information in statistical imputation approaches yields more plausible imputations in spatially explicit plant trait datasets.
Dung beetles as drivers of ecosystem multifunctionality: Are response and effect traits interwoven?
Piccini, Irene; Nervo, Beatrice; Forshage, Mattias; Celi, Luisella; Palestrini, Claudia; Rolando, Antonio; Roslin, Tomas
2018-03-01
Rapid biodiversity loss has emphasized the need to understand how biodiversity affects the provisioning of ecological functions. Of particular interest are species and communities with versatile impacts on multiple parts of the environment, linking processes in the biosphere, lithosphere, and atmosphere to human interests in the anthroposphere (in this case, cattle farming). In this study, we examine the role of a specific group of insects - beetles feeding on cattle dung - on multiple ecological functions spanning these spheres (dung removal, soil nutrient content and greenhouse gas emissions). We ask whether the same traits which make species prone to extinction (i.e. response traits) may also affect their functional efficiency (as effect traits). To establish the link between response and effect traits, we first evaluated whether two traits (body mass and nesting strategy, the latter categorized as tunnelers or dwellers) affected the probability of a species being threatened. We then tested for a relationship between these traits and ecosystem functioning. Across Scandinavian dung beetle species, 75% of tunnelers and 30% of dwellers are classified as threatened. Hence, nesting strategy significantly affects the probability of a species being threatened, and constitutes a response trait. Effect traits varied with the ecological function investigated: density-specific dung removal was influenced by both nesting strategy and body mass, whereas methane emissions varied with body mass and nutrient recycling with nesting strategy. Our findings suggest that among Scandinavian dung beetles, nesting strategy is both a response and an effect trait, with tunnelers being more efficient in providing several ecological functions and also being more sensitive to extinction. Consequently, functionally important tunneler species have suffered disproportionate declines, and species not threatened today may be at risk of becoming so in the near future. This linkage between effect and response traits aggravates the consequences of ongoing biodiversity loss. Copyright © 2017 Elsevier B.V. All rights reserved.
Evolution in plant populations as a driver of ecological changes in arthropod communities
Johnson, Marc T.J.; Vellend, Mark; Stinchcombe, John R.
2009-01-01
Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to examine the community-level effects of ongoing evolution. PMID:19414473
Verheijen, Lieneke M; Aerts, Rien; Bönisch, Gerhard; Kattge, Jens; Van Bodegom, Peter M
2016-01-01
Plant functional types (PFTs) aggregate the variety of plant species into a small number of functionally different classes. We examined to what extent plant traits, which reflect species' functional adaptations, can capture functional differences between predefined PFTs and which traits optimally describe these differences. We applied Gaussian kernel density estimation to determine probability density functions for individual PFTs in an n-dimensional trait space and compared predicted PFTs with observed PFTs. All possible combinations of 1-6 traits from a database with 18 different traits (total of 18 287 species) were tested. A variety of trait sets had approximately similar performance, and 4-5 traits were sufficient to classify up to 85% of the species into PFTs correctly, whereas this was 80% for a bioclimatically defined tree PFT classification. Well-performing trait sets included combinations of correlated traits that are considered functionally redundant within a single plant strategy. This analysis quantitatively demonstrates how structural differences between PFTs are reflected in functional differences described by particular traits. Differentiation between PFTs is possible despite large overlap in plant strategies and traits, showing that PFTs are differently positioned in multidimensional trait space. This study therefore provides the foundation for important applications for predictive ecology. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Birkhofer, Klaus; Gossner, Martin M; Diekötter, Tim; Drees, Claudia; Ferlian, Olga; Maraun, Mark; Scheu, Stefan; Weisser, Wolfgang W; Wolters, Volkmar; Wurst, Susanne; Zaitsev, Andrey S; Smith, Henrik G
2017-05-01
Along with the global decline of species richness goes a loss of ecological traits. Associated biotic homogenization of animal communities and narrowing of trait diversity threaten ecosystem functioning and human well-being. High management intensity is regarded as an important ecological filter, eliminating species that lack suitable adaptations. Below-ground arthropods are assumed to be less sensitive to such effects than above-ground arthropods. Here, we compared the impact of management intensity between (grassland vs. forest) and within land-use types (local management intensity) on the trait diversity and composition in below- and above-ground arthropod communities. We used data on 722 arthropod species living above-ground (Auchenorrhyncha and Heteroptera), primarily in soil (Chilopoda and Oribatida) or at the interface (Araneae and Carabidae). Our results show that trait diversity of arthropod communities is not primarily reduced by intense local land use, but is rather affected by differences between land-use types. Communities of Auchenorrhyncha and Chilopoda had significantly lower trait diversity in grassland habitats as compared to forests. Carabidae showed the opposite pattern with higher trait diversity in grasslands. Grasslands had a lower proportion of large Auchenorrhyncha and Carabidae individuals, whereas Chilopoda and Heteroptera individuals were larger in grasslands. Body size decreased with land-use intensity across taxa, but only in grasslands. The proportion of individuals with low mobility declined with land-use intensity in Araneae and Auchenorrhyncha, but increased in Chilopoda and grassland Heteroptera. The proportion of carnivorous individuals increased with land-use intensity in Heteroptera in forests and in Oribatida and Carabidae in grasslands. Our results suggest that gradients in management intensity across land-use types will not generally reduce trait diversity in multiple taxa, but will exert strong trait filtering within individual taxa. The observed patterns for trait filtering in individual taxa are not related to major classifications into above- and below-ground species. Instead, ecologically different taxa resembled each other in their trait diversity and compositional responses to land-use differences. These previously undescribed patterns offer an opportunity to develop management strategies for the conservation of trait diversity across taxonomic groups in permanent grassland and forest habitats. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Revisiting the Holy Grail: using plant functional traits to understand ecological processes.
Funk, Jennifer L; Larson, Julie E; Ames, Gregory M; Butterfield, Bradley J; Cavender-Bares, Jeannine; Firn, Jennifer; Laughlin, Daniel C; Sutton-Grier, Ariana E; Williams, Laura; Wright, Justin
2017-05-01
One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a 'Holy Grail' in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community- and ecosystem-level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait-based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta-analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized. © 2016 Cambridge Philosophical Society.
Brown, Christopher J; O'Connor, Mary I; Poloczanska, Elvira S; Schoeman, David S; Buckley, Lauren B; Burrows, Michael T; Duarte, Carlos M; Halpern, Benjamin S; Pandolfi, John M; Parmesan, Camille; Richardson, Anthony J
2016-04-01
Climate change is shifting species' distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species' responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species' responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species' distribution and phenology changes. © 2015 John Wiley & Sons Ltd.
Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances.
Fort, Florian; Jouany, Claire; Cruz, Pablo
2015-01-01
Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance.
Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances
Fort, Florian; Jouany, Claire; Cruz, Pablo
2015-01-01
Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance. PMID:25741353
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A; Bevelhimer, Mark S; Frimpong, Dr. Emmanuel A,
2014-01-01
Classification systems are valuable to ecological management in that they organize information into consolidated units thereby providing efficient means to achieve conservation objectives. Of the many ways classifications benefit management, hypothesis generation has been discussed as the most important. However, in order to provide templates for developing and testing ecologically relevant hypotheses, classifications created using environmental variables must be linked to ecological patterns. Herein, we develop associations between a recent US hydrologic classification and fish traits in order to form a template for generating flow ecology hypotheses and supporting environmental flow standard development. Tradeoffs in adaptive strategies for fish weremore » observed across a spectrum of stable, perennial flow to unstable intermittent flow. In accordance with theory, periodic strategists were associated with stable, predictable flow, whereas opportunistic strategists were more affiliated with intermittent, variable flows. We developed linkages between the uniqueness of hydrologic character and ecological distinction among classes, which may translate into predictions between losses in hydrologic uniqueness and ecological community response. Comparisons of classification strength between hydrologic classifications and other frameworks suggested that spatially contiguous classifications with higher regionalization will tend to explain more variation in ecological patterns. Despite explaining less ecological variation than other frameworks, we contend that hydrologic classifications are still useful because they provide a conceptual linkage between hydrologic variation and ecological communities to support flow ecology relationships. Mechanistic associations among fish traits and hydrologic classes support the presumption that environmental flow standards should be developed uniquely for stream classes and ecological communities, therein.« less
Wills, Jarrah; Herbohn, John; Hu, Jing; Sohel, Shawkat; Baynes, Jack; Firn, Jennifer
2018-06-01
Can morphological plant functional traits predict demographic rates (e.g., growth) within plant communities as diverse as tropical forests? This is one of the most important next-step questions in trait-based ecology and particularly for global reforestation efforts. Due to the diversity of tropical tree species and their longevity, it is difficult to predict their performance prior to reforestation efforts. In this study, we investigate if simple leaf traits are predictors of the more complex ecological process of plant growth in regenerating selectively logged natural forest within the Wet Tropics (WTs) bioregion of Australia. This study used a rich historical data set to quantify tree growth within plots located at Danbulla National Park and State Forest on the Atherton Tableland. Leaf traits were collected from trees that have exhibited fast or slow growth over the last ~50 yr of measurement. Leaf traits were found to be poor predictors of tree growth for trees that have entered the canopy; however, for sub-canopy trees, leaf traits had a stronger association with growth rates. Leaf phosphorus concentrations were the strongest predictor of Periodic Annual Increment (PAI) for trees growing within the sub-canopy, with trees with higher leaf phosphorus levels showing a higher PAI. Sub-canopy tree leaves also exhibited stronger trade-offs between leaf traits and adhere to theoretical predictions more so than for canopy trees. We suggest that, in order for leaf traits to be more applicable to reforestation, size dependence of traits and growth relationships need to be more carefully considered, particularly when reforestation practitioners assign mean trait values to tropical tree species from multiple canopy strata. © 2018 by the Ecological Society of America.
Making Sense of Biodiversity: The Affordances of Systems Ecology.
Andersson, Erik; McPhearson, Timon
2018-01-01
We see two related, but not well-linked fields that together could help us better understand biodiversity and how it, over time, provides benefits to people. The affordances approach in environmental psychology offers a way to understand our perceptual appraisal of landscapes and biodiversity and, to some extent, intentional choice or behavior, i.e., a way of relating the individual to the system s/he/it lives in. In the field of ecology, organism-specific functional traits are similarly understood as the physiological and behavioral characteristics of an organism that informs the way it interacts with its surroundings. Here, we review the often overlooked role of traits in the provisioning of ecosystem services as a potential bridge between affordance theory and applied systems ecology. We propose that many traits can be understood as the basis for the affordances offered by biodiversity, and that they offer a more fruitful way to discuss human-biodiversity relations than do the taxonomic information most often used. Moreover, as emerging transdisciplinary studies indicate, connecting affordances to functional traits allows us to ask questions about the temporal and two-way nature of affordances and perhaps most importantly, can serve as a starting point for more fully bridging the fields of ecology and environmental psychology with respect to how we understand human-biodiversity relationships.
Estimating the Effect of Competition on Trait Evolution Using Maximum Likelihood Inference.
Drury, Jonathan; Clavel, Julien; Manceau, Marc; Morlon, Hélène
2016-07-01
Many classical ecological and evolutionary theoretical frameworks posit that competition between species is an important selective force. For example, in adaptive radiations, resource competition between evolving lineages plays a role in driving phenotypic diversification and exploration of novel ecological space. Nevertheless, current models of trait evolution fit to phylogenies and comparative data sets are not designed to incorporate the effect of competition. The most advanced models in this direction are diversity-dependent models where evolutionary rates depend on lineage diversity. However, these models still treat changes in traits in one branch as independent of the value of traits on other branches, thus ignoring the effect of species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics of traits involved in interspecific interactions are influenced by species similarity in trait values and where we can specify which lineages are in sympatry. We develop a maximum likelihood based approach to fit this model to combined phylogenetic and phenotypic data. Using simulations, we demonstrate that the approach accurately estimates the simulated parameter values across a broad range of parameter space. Additionally, we develop tools for specifying the biogeographic context in which trait evolution occurs. In order to compare models, we also apply these biogeographic methods to specify which lineages interact sympatrically for two diversity-dependent models. Finally, we fit these various models to morphological data from a classical adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for competition and geography perform better than other models. The matching competition model is an important new tool for studying the influence of interspecific interactions, in particular competition, on phenotypic evolution. More generally, it constitutes a step toward a better integration of interspecific interactions in many ecological and evolutionary processes. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mason, Chase M; Goolsby, Eric W; Davis, Kaleigh E; Bullock, Devon V; Donovan, Lisa A
2017-05-01
Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant fitness and environmental adaptation. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Goolsby, Eric W.; Davis, Kaleigh E.; Bullock, Devon V.; Donovan, Lisa A.
2017-01-01
Abstract Background and Aims Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. Methods A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Key Results Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Conclusions Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant fitness and environmental adaptation. PMID:28203721
Comparative Cryptogam Ecology: A Review of Bryophyte and Lichen Traits that Drive Biogeochemistry
Cornelissen, Johannes H. C.; Lang, Simone I.; Soudzilovskaia, Nadejda A.; During, Heinjo J.
2007-01-01
Background Recent decades have seen a major surge in the study of interspecific variation in functional traits in comparative plant ecology, as a tool to understanding and predicting ecosystem functions and their responses to environmental change. However, this research has been biased almost exclusively towards vascular plants. Very little is known about the role and applicability of functional traits of non-vascular cryptogams, particularly bryophytes and lichens, with respect to biogeochemical cycling. Yet these organisms are paramount determinants of biogeochemistry in several biomes, particularly cold biomes and tropical rainforests, where they: (1) contribute substantially to above-ground biomass (lichens, bryophytes); (2) host nitrogen-fixing bacteria, providing major soil N input (lichens, bryophytes); (3) control soil chemistry and nutrition through the accumulation of recalcitrant polyphenols (bryophytes) and through their control over soil and vegetation hydrology and temperatures; (4) both promote erosion (rock weathering by lichens) and prevent it (biological crusts in deserts); (5) provide a staple food to mammals such as reindeer (lichens) and arthropodes, with important feedbacks to soils and biota; and (6) both facilitate and compete with vascular plants. Approach Here we review current knowledge about interspecific variation in cryptogam traits with respect to biogeochemical cycling and discuss to what extent traits and measuring protocols needed for bryophytes and lichens correspond with those applied to vascular plants. We also propose and discuss several new or recently introduced traits that may help us understand and predict the control of cryptogams over several aspects of the biogeochemistry of ecosystems. Conclusions Whilst many methodological challenges lie ahead, comparative cryptogam ecology has the potential to meet some of the important challenges of understanding and predicting the biogeochemical and climate consequences of large-scale environmental changes driving shifts in the cryptogam components of vegetation composition. PMID:17353205
Liu, Zhaohua; Ji, Zhibin; Wang, Guizhi; Chao, Tianle; Hou, Lei; Wang, Jianmin
2016-11-03
Throughout a long period of adaptation and selection, sheep have thrived in a diverse range of ecological environments. Mongolian sheep is the common ancestor of the Chinese short fat-tailed sheep. Migration to different ecoregions leads to changes in selection pressures and results in microevolution. Mongolian sheep and its subspecies differ in a number of important traits, especially reproductive traits. Genome-wide intraspecific variation is required to dissect the genetic basis of these traits. This research resequenced 3 short fat-tailed sheep breeds with a 43.2-fold coverage of the sheep genome. We report more than 17 million single nucleotide polymorphisms and 2.9 million indels and identify 143 genomic regions with reduced pooled heterozygosity or increased genetic distance to each other breed that represent likely targets for selection during the migration. These regions harbor genes related to developmental processes, cellular processes, multicellular organismal processes, biological regulation, metabolic processes, reproduction, localization, growth and various components of the stress responses. Furthermore, we examined the haplotype diversity of 3 genomic regions involved in reproduction and found significant differences in TSHR and PRL gene regions among 8 sheep breeds. Our results provide useful genomic information for identifying genes or causal mutations associated with important economic traits in sheep and for understanding the genetic basis of adaptation to different ecological environments.
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, Elizabeth R.; Lowry, David B.; Juenger, Thomas E.
2016-01-01
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes. PMID:27613751
García-Navas, Vicente; Noguerales, Víctor; Cordero, Pedro J; Ortego, Joaquín
2017-05-04
The combination of model-based comparative techniques, disparity analyses and ecomorphological correlations constitutes a powerful method to gain insight into the evolutionary mechanisms that shape morphological variation and speciation processes. In this study, we used a time-calibrated phylogeny of 70 Iberian species of short-horned grasshoppers (Acrididae) to test for patterns of morphological disparity in relation to their ecology and phylogenetic history. Specifically, we examined the role of substrate type and level of ecological specialization in driving different aspects of morphological evolution (locomotory traits, chemosensitive organs and cranial morphology) in this recent radiation. We found a bimodal distribution of locomotory attributes corresponding to the two main substrate type guilds (plant vs. ground); plant-perching species tend to exhibit larger wings and thicker femora than those that remain on the ground. This suggests that life form (i.e., substrate type) is an important driving force in the evolution of morphological traits in short-horned grasshoppers, irrespective of ancestry. Substrate type and ecological specialization had no significant influence on head shape, a trait that showed a strong phylogenetic conservatism. Finally, we also found a marginal significant association between the length of antennae and the level of ecological specialization, suggesting that the development of sensory organs may be favored in specialist species. Our results provide evidence that even in taxonomic groups showing limited morphological and ecological disparity, natural selection seems to play a more important role than genetic drift in driving the speciation process. Overall, this study suggests that morphostatic radiations should not necessarily be considered as "non-adaptive" and that the speciation process can bind both adaptive divergence mechanisms and neutral speciation processes related with allopatric and/or reproductive isolation.
Phenotypic plasticity and specialization in clonal versus non-clonal plants: A data synthesis
NASA Astrophysics Data System (ADS)
Fazlioglu, Fatih; Bonser, Stephen P.
2016-11-01
Reproductive strategies can be associated with ecological specialization and generalization. Clonal plants produce lineages adapted to the maternal habitat that can lead to specialization. However, clonal plants frequently display high phenotypic plasticity (e.g. clonal foraging for resources), factors linked to ecological generalization. Alternately, sexual reproduction can be associated with generalization via increasing genetic variation or specialization through rapid adaptive evolution. Moreover, specializing to high or low quality habitats can determine how phenotypic plasticity is expressed in plants. The specialization hypothesis predicts that specialization to good environments results in high performance trait plasticity and specialization to bad environments results in low performance trait plasticity. The interplay between reproductive strategies, phenotypic plasticity, and ecological specialization is important for understanding how plants adapt to variable environments. However, we currently have a poor understanding of these relationships. In this study, we addressed following questions: 1) Is there a relationship between phenotypic plasticity, specialization, and reproductive strategies in plants? 2) Do good habitat specialists express greater performance trait plasticity than bad habitat specialists? We searched the literature for studies examining plasticity for performance traits and functional traits in clonal and non-clonal plant species from different habitat types. We found that non-clonal (obligate sexual) plants expressed greater performance trait plasticity and functional trait plasticity than clonal plants. That is, non-clonal plants exhibited a specialist strategy where they perform well only in a limited range of habitats. Clonal plants expressed less performance loss across habitats and a more generalist strategy. In addition, specialization to good habitats did not result in greater performance trait plasticity. This result was contrary to the predictions of the specialization hypothesis. Overall, reproductive strategies are associated with ecological specialization or generalization through phenotypic plasticity. While specialization is common in plant populations, the evolution of specialization does not control the nature of phenotypic plasticity as predicted under the specialization hypothesis.
Evolutionary heritage influences Amazon tree ecology.
Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R
2016-12-14
Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.
Evolutionary heritage influences Amazon tree ecology
Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.
2016-01-01
Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517
Angermeier, Paul L.; Frimpong, Emmanuel A.
2011-01-01
The need for integrated and widely accessible sources of species traits data to facilitate studies of ecology, conservation, and management has motivated development of traits databases for various taxa. In spite of the increasing number of traits-based analyses of freshwater fishes in the United States, no consolidated database of traits of this group exists publicly, and much useful information on these species is documented only in obscure sources. The largely inaccessible and unconsolidated traits information makes large-scale analysis involving many fishes and/or traits particularly challenging. We have compiled a database of > 100 traits for 809 (731 native and 78 nonnative) fish species found in freshwaters of the conterminous United States, including 37 native families and 145 native genera. The database, named Fish Traits, contains information on four major categories of traits: (1) trophic ecology; (2) body size, reproductive ecology, and life history; (3) habitat preferences; and (4) salinity and temperature tolerances. Information on geographic distribution and conservation status was also compiled. The database enhances many opportunities for conducting research on fish species traits and constitutes the first step toward establishing a central repository for a continually expanding set of traits of North American fishes.
Filling the gap in functional trait databases: use of ecological hypotheses to replace missing data.
Taugourdeau, Simon; Villerd, Jean; Plantureux, Sylvain; Huguenin-Elie, Olivier; Amiaud, Bernard
2014-04-01
Functional trait databases are powerful tools in ecology, though most of them contain large amounts of missing values. The goal of this study was to test the effect of imputation methods on the evaluation of trait values at species level and on the subsequent calculation of functional diversity indices at community level using functional trait databases. Two simple imputation methods (average and median), two methods based on ecological hypotheses, and one multiple imputation method were tested using a large plant trait database, together with the influence of the percentage of missing data and differences between functional traits. At community level, the complete-case approach and three functional diversity indices calculated from grassland plant communities were included. At the species level, one of the methods based on ecological hypothesis was for all traits more accurate than imputation with average or median values, but the multiple imputation method was superior for most of the traits. The method based on functional proximity between species was the best method for traits with an unbalanced distribution, while the method based on the existence of relationships between traits was the best for traits with a balanced distribution. The ranking of the grassland communities for their functional diversity indices was not robust with the complete-case approach, even for low percentages of missing data. With the imputation methods based on ecological hypotheses, functional diversity indices could be computed with a maximum of 30% of missing data, without affecting the ranking between grassland communities. The multiple imputation method performed well, but not better than single imputation based on ecological hypothesis and adapted to the distribution of the trait values for the functional identity and range of the communities. Ecological studies using functional trait databases have to deal with missing data using imputation methods corresponding to their specific needs and making the most out of the information available in the databases. Within this framework, this study indicates the possibilities and limits of single imputation methods based on ecological hypothesis and concludes that they could be useful when studying the ranking of communities for their functional diversity indices.
Filling the gap in functional trait databases: use of ecological hypotheses to replace missing data
Taugourdeau, Simon; Villerd, Jean; Plantureux, Sylvain; Huguenin-Elie, Olivier; Amiaud, Bernard
2014-01-01
Functional trait databases are powerful tools in ecology, though most of them contain large amounts of missing values. The goal of this study was to test the effect of imputation methods on the evaluation of trait values at species level and on the subsequent calculation of functional diversity indices at community level using functional trait databases. Two simple imputation methods (average and median), two methods based on ecological hypotheses, and one multiple imputation method were tested using a large plant trait database, together with the influence of the percentage of missing data and differences between functional traits. At community level, the complete-case approach and three functional diversity indices calculated from grassland plant communities were included. At the species level, one of the methods based on ecological hypothesis was for all traits more accurate than imputation with average or median values, but the multiple imputation method was superior for most of the traits. The method based on functional proximity between species was the best method for traits with an unbalanced distribution, while the method based on the existence of relationships between traits was the best for traits with a balanced distribution. The ranking of the grassland communities for their functional diversity indices was not robust with the complete-case approach, even for low percentages of missing data. With the imputation methods based on ecological hypotheses, functional diversity indices could be computed with a maximum of 30% of missing data, without affecting the ranking between grassland communities. The multiple imputation method performed well, but not better than single imputation based on ecological hypothesis and adapted to the distribution of the trait values for the functional identity and range of the communities. Ecological studies using functional trait databases have to deal with missing data using imputation methods corresponding to their specific needs and making the most out of the information available in the databases. Within this framework, this study indicates the possibilities and limits of single imputation methods based on ecological hypothesis and concludes that they could be useful when studying the ranking of communities for their functional diversity indices. PMID:24772273
Veltsos, P; Gregson, E; Morrissey, B; Slate, J; Hoikkala, A; Butlin, R K; Ritchie, M G
2015-01-01
We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power. PMID:26198076
Wood, Jennifer L; Tang, Caixian; Franks, Ashley E
2018-01-01
Understanding how biotic and abiotic factors govern the assembly of rhizosphere-microbial communities is a long-standing goal in microbial ecology. In phytoremediation research, where plants are used to remediate heavy metal-contaminated soils, a deeper understanding of rhizosphere-microbial ecology is needed to fully exploit the potential of microbial-assisted phytoremediation. This study investigated whether Grime's competitor/stress-tolerator/ruderal (CSR) theory could be used to describe the impact of cadmium (Cd) and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the assembly of soil-bacterial communities using Illumina 16S rRNA profiling and the predictive metagenomic-profiling program, PICRUSt. Using predictions based on CSR theory, we hypothesized that Cd and the presence of a rhizosphere would affect community assembly. We predicted that the additional resource availability in the rhizosphere would enrich for competitive life strategists, while the presence of Cd would select for stress-tolerators. Traits identified as competitive followed CSR predictions, discriminating between rhizosphere and bulk-soil communities whilst stress-tolerance traits increased with Cd dose, but only in bulk-soil communities. These findings suggest that a bacterium's competitive attributes are critical to its ability to occupy and proliferate in a Cd-contaminated rhizosphere. Ruderal traits, which relate to community re-colonization potential, were synergistically decreased by the presence of the rhizosphere and Cd dose. Taken together this microcosm study suggests that the CSR theory is broadly applicable to microbial communities. Further work toward developing a simplified and robust strategy for microbial CSR classification will provide an ecologically meaningful framework to interpret community-level changes across a range of biomes.
Martin, Michael D; Mendelson, Tamra C
2014-12-01
Understanding the mechanisms by which phenotypic divergence occurs is central to speciation research. These mechanisms can be revealed by measuring differences in traits that are subject to different selection pressures; greater influence of different types of selection can be inferred from greater divergence in associated traits. Here, we address the potential roles of natural and sexual selection in promoting phenotypic divergence between species of snubnose darters by comparing differences in body shape, an ecologically relevant trait, and male color, a sexual signal. Body shape was measured using geometric morphometrics, and male color was measured using digital photography and visual system-dependent color values. Differences in male color are larger than differences in body shape across eight allopatric, phylogenetically independent species pairs. While this does not exclude the action of divergent natural selection, our results suggest a relatively more important role for sexual selection in promoting recent divergence in darters. Variation in the relative differences between male color and body shape across species pairs reflects the continuous nature of speciation mechanisms, ranging from ecological speciation to speciation by sexual selection alone. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Intraspecific variation shapes community-level behavioral responses to urbanization in spiders.
Dahirel, Maxime; Dierick, Jasper; De Cock, Maarten; Bonte, Dries
2017-09-01
Urban areas are an extreme example of human-changed environments, exposing organisms to multiple and strong selection pressures. Adaptive behavioral responses are thought to play a major role in animals' success or failure in such new environments. Approaches based on functional traits have proven especially valuable to understand how species communities respond to environmental gradients. Until recently, they have, however, often ignored the potential consequences of intraspecific trait variation (ITV). When ITV is prevalent, it may highly impact ecological processes and resilience against stressors. This may be especially relevant in animals, in which behavioral traits can be altered very flexibly at the individual level to track environmental changes. We investigated how species turnover and ITV influenced community-level behavioral responses in a set of 62 sites of varying levels of urbanization, using orb web spiders and their webs as models of foraging behavior. ITV alone explained around one-third of the total trait variation observed among communities. Spider web structure changed according to urbanization, in ways that increase the capture efficiency of webs in a context of smaller urban prey. These trait shifts were partly mediated by species turnover, but ITV increased their magnitude, potentially helping to buffer the effects of environmental changes on communities. The importance of ITV varied depending on traits and on the spatial scale at which urbanization was considered. Despite being neglected from community-level analyses in animals, our results highlight the importance of accounting for intraspecific trait variation to fully understand trait responses to (human-induced) environmental changes and their impact on ecosystem functioning. © 2017 by the Ecological Society of America.
Independent Evolution of Leaf and Root Traits within and among Temperate Grassland Plant Communities
Kembel, Steven W.; Cahill, James F.
2011-01-01
In this study, we used data from temperate grassland plant communities in Alberta, Canada to test two longstanding hypotheses in ecology: 1) that there has been correlated evolution of the leaves and roots of plants due to selection for an integrated whole-plant resource uptake strategy, and 2) that trait diversity in ecological communities is generated by adaptations to the conditions in different habitats. We tested the first hypothesis using phylogenetic comparative methods to test for evidence of correlated evolution of suites of leaf and root functional traits in these grasslands. There were consistent evolutionary correlations among traits related to plant resource uptake strategies within leaf tissues, and within root tissues. In contrast, there were inconsistent correlations between the traits of leaves and the traits of roots, suggesting different evolutionary pressures on the above and belowground components of plant morphology. To test the second hypothesis, we evaluated the relative importance of two components of trait diversity: within-community variation (species trait values relative to co-occurring species; α traits) and among-community variation (the average trait value in communities where species occur; β traits). Trait diversity was mostly explained by variation among co-occurring species, not among-communities. Additionally, there was a phylogenetic signal in the within-community trait values of species relative to co-occurring taxa, but not in their habitat associations or among-community trait variation. These results suggest that sorting of pre-existing trait variation into local communities can explain the leaf and root trait diversity in these grasslands. PMID:21687704
Marshall, Athole H; Collins, Rosemary P; Humphreys, Mike W; Scullion, John
2016-02-01
Grasslands cover a significant proportion of the agricultural land within the UK and across the EU, providing a relatively cheap source of feed for ruminants and supporting the production of meat, wool and milk from grazing animals. Delivering efficient animal production from grassland systems has traditionally been the primary focus of grassland-based research. But there is increasing recognition of the ecological and environmental benefits of these grassland systems and the importance of the interaction between their component plants and a host of other biological organisms in the soil and in adjoining habitats. Many of the ecological and environmental benefits provided by grasslands emanate from the interactions between the roots of plant species and the soil in which they grow. We review current knowledge on the role of grassland ecosystems in delivering ecological and environmental benefits. We will consider how improved grassland can deliver these benefits, and the potential opportunities for plant breeding to improve specific traits that will enhance these benefits whilst maintaining forage production for livestock consumption. Opportunities for exploiting new plant breeding approaches, including high throughput phenotyping, and for introducing traits from closely related species are discussed.
Gonçalves, Fernando; Bovendorp, Ricardo S; Beca, Gabrielle; Bello, Carolina; Costa-Pereira, Raul; Muylaert, Renata L; Rodarte, Raisa R; Villar, Nacho; Souza, Rafael; Graipel, Maurício E; Cherem, Jorge J; Faria, Deborah; Baumgarten, Julio; Alvarez, Martín R; Vieira, Emerson M; Cáceres, Nilton; Pardini, Renata; Leite, Yuri L R; Costa, Leonora P; Mello, Marco A R; Fischer, Erich; Passos, Fernando C; Varzinczak, Luiz H; Prevedello, Jayme A; Cruz-Neto, Ariovaldo P; Carvalho, Fernando; Percequillo, Alexandre R; Paviolo, Agustin; Nava, Alessandra; Duarte, José M B; de la Sancha, Noé U; Bernard, Enrico; Morato, Ronaldo G; Ribeiro, Juliana F; Becker, Rafael G; Paise, Gabriela; Tomasi, Paulo S; Vélez-Garcia, Felipe; Melo, Geruza L; Sponchiado, Jonas; Cerezer, Felipe; Barros, Marília A S; de Souza, Albérico Q S; Dos Santos, Cinthya C; Giné, Gastón A F; Kerches-Rogeri, Patricia; Weber, Marcelo M; Ambar, Guilherme; Cabrera-Martinez, Lucía V; Eriksson, Alan; Silveira, Maurício; Santos, Carolina F; Alves, Lucas; Barbier, Eder; Rezende, Gabriela C; Garbino, Guilherme S T; Rios, Élson O; Silva, Adna; Nascimento, Alexandre Túlio A; de Carvalho, Rodrigo S; Feijó, Anderson; Arrabal, Juan; Agostini, Ilaria; Lamattina, Daniela; Costa, Sebastian; Vanderhoeven, Ezequiel; de Melo, Fabiano R; de Oliveira Laroque, Plautino; Jerusalinsky, Leandro; Valença-Montenegro, Mônica M; Martins, Amely B; Ludwig, Gabriela; de Azevedo, Renata B; Anzóategui, Agustin; da Silva, Marina X; Figuerêdo Duarte Moraes, Marcela; Vogliotti, Alexandre; Gatti, Andressa; Püttker, Thomas; Barros, Camila S; Martins, Thais K; Keuroghlian, Alexine; Eaton, Donald P; Neves, Carolina L; Nardi, Marcelo S; Braga, Caryne; Gonçalves, Pablo R; Srbek-Araujo, Ana Carolina; Mendes, Poliana; de Oliveira, João A; Soares, Fábio A M; Rocha, Patrício A; Crawshaw, Peter; Ribeiro, Milton C; Galetti, Mauro
2018-02-01
Measures of traits are the basis of functional biological diversity. Numerous works consider mean species-level measures of traits while ignoring individual variance within species. However, there is a large amount of variation within species and it is increasingly apparent that it is important to consider trait variation not only between species, but also within species. Mammals are an interesting group for investigating trait-based approaches because they play diverse and important ecological functions (e.g., pollination, seed dispersal, predation, grazing) that are correlated with functional traits. Here we compile a data set comprising morphological and life history information of 279 mammal species from 39,850 individuals of 388 populations ranging from -5.83 to -29.75 decimal degrees of latitude and -34.82 to -56.73 decimal degrees of longitude in the Atlantic forest of South America. We present trait information from 16,840 individuals of 181 species of non-volant mammals (Rodentia, Didelphimorphia, Carnivora, Primates, Cingulata, Artiodactyla, Pilosa, Lagomorpha, Perissodactyla) and from 23,010 individuals of 98 species of volant mammals (Chiroptera). The traits reported include body mass, age, sex, reproductive stage, as well as the geographic coordinates of sampling for all taxa. Moreover, we gathered information on forearm length for bats and body length and tail length for rodents and marsupials. No copyright restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data. © 2018 by the Ecological Society of America.
Gravuer, Kelly; Eskelinen, Anu
2017-01-01
Microbial traits related to ecological responses and functions could provide a common currency facilitating synthesis and prediction; however, such traits are difficult to measure directly for all taxa in environmental samples. Past efforts to estimate trait values based on phylogenetic relationships have not always distinguished between traits with high and low phylogenetic conservatism, limiting reliability, especially in poorly known environments, such as soil. Using updated reference trees and phylogenetic relationships, we estimated two phylogenetically conserved traits hypothesized to be ecologically important from DNA sequences of the 16S rRNA gene from soil bacterial and archaeal communities. We sampled these communities from an environmental change experiment in California grassland applying factorial addition of late-season precipitation and soil nutrients to multiple soil types for 3 years prior to sampling. Estimated traits were rRNA gene copy number, which contributes to how rapidly a microbe can respond to an increase in resources and may be related to its maximum growth rate, and genome size, which suggests the breadth of environmental and substrate conditions in which a microbe can thrive. Nutrient addition increased community-weighted mean estimated rRNA gene copy number and marginally increased estimated genome size, whereas precipitation addition decreased these community means for both estimated traits. The effects of both treatments on both traits were associated with soil properties, such as ammonium, available phosphorus, and pH. Estimated trait responses within several phyla were opposite to the community mean response, indicating that microbial responses, although largely consistent among soil types, were not uniform across the tree of life. Our results show that phylogenetic estimation of microbial traits can provide insight into how microbial ecological strategies interact with environmental changes. The method could easily be applied to any of the thousands of existing 16S rRNA sequence data sets and offers potential to improve our understanding of how microbial communities mediate ecosystem function responses to global changes.
Tng, David Y P; Jordan, Greg J; Bowman, David M J S
2013-01-01
Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world's tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest - open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.
Tng, David Y. P.; Jordan, Greg J.; Bowman, David M. J. S.
2013-01-01
Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. PMID:24358359
CHAPIN, F. STUART
2003-01-01
Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime. PMID:12588725
2018-01-01
Abstract The generation of plant diversity involves complex interactions between geography, environment and organismal traits. Many macroevolutionary processes and emergent patterns have been identified in different plant groups through the study of spatial data, but rarely in the context of a large radiation of tropical herbaceous angiosperms. A powerful system for testing interrelated biogeographical hypotheses is provided by the terrestrial bromeliads, a Neotropical group of extensive ecological diversity and importance. In this investigation, distributional data for 564 species of terrestrial bromeliads were used to estimate variation in the position and width of species-level hydrological habitat occupancy and test six core hypotheses linking geography, environment and organismal traits. Taxonomic groups and functional types differed in hydrological habitat occupancy, modulated by convergent and divergent trait evolution, and with contrasting interactions with precipitation abundance and seasonality. Plant traits in the Bromeliaceae are intimately associated with bioclimatic differentiation, which is in turn strongly associated with variation in geographical range size and species richness. These results emphasize the ecological relevance of structural-functional innovation in a major plant radiation. PMID:29479409
Marchini, Agnese; Munari, Cristina; Mistri, Michele
2008-06-01
The soft-bottom communities of eight Italian lagoons were analyzed for eight biological traits (feeding, mobility, adult life habitat, body size, life span, reproductive technique, type of larva and reproductive frequency) in order to identify the dominant traits in different transitional environments. We considered the ecological quality status (EcoQS) of the stations, assessed by two biotic indices, AMBI and Bentix. Stations were categorized into EcoQS classes to investigate the relationship between biological functions and ecological quality. The results indicate that the variability of the data was governed by traits linked to resource utilization rather than to life cycle. Lagoons affected by chronic disturbance displayed a poor functional composition, which usually corresponded to poor EcoQS in some cases, correlations between ecological groups and traits modalities were ecologically relevant; however, classes of EcoQS were found to be relatively independent from the functional structure of the considered stations.
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
2016-09-09
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
Vizentin-Bugoni, Jeferson; Maruyama, Pietro K; Debastiani, Vanderlei J; Duarte, L da S; Dalsgaard, Bo; Sazima, Marlies
2016-01-01
Virtually all empirical ecological interaction networks to some extent suffer from undersampling. However, how limitations imposed by sampling incompleteness affect our understanding of ecological networks is still poorly explored, which may hinder further advances in the field. Here, we use a plant-hummingbird network with unprecedented sampling effort (2716 h of focal observations) from the Atlantic Rainforest in Brazil, to investigate how sampling effort affects the description of network structure (i.e. widely used network metrics) and the relative importance of distinct processes (i.e. species abundances vs. traits) in determining the frequency of pairwise interactions. By dividing the network into time slices representing a gradient of sampling effort, we show that quantitative metrics, such as interaction evenness, specialization (H2 '), weighted nestedness (wNODF) and modularity (Q; QuanBiMo algorithm) were less biased by sampling incompleteness than binary metrics. Furthermore, the significance of some network metrics changed along the sampling effort gradient. Nevertheless, the higher importance of traits in structuring the network was apparent even with small sampling effort. Our results (i) warn against using very poorly sampled networks as this may bias our understanding of networks, both their patterns and structuring processes, (ii) encourage the use of quantitative metrics little influenced by sampling when performing spatio-temporal comparisons and (iii) indicate that in networks strongly constrained by species traits, such as plant-hummingbird networks, even small sampling is sufficient to detect their relative importance for the frequencies of interactions. Finally, we argue that similar effects of sampling are expected for other highly specialized subnetworks. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Semenov, Georgy A; Scordato, Elizabeth S C; Khaydarov, David R; Smith, Chris C R; Kane, Nolan C; Safran, Rebecca J
2017-11-01
Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between the alba and personata subspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437 SNP loci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome-wide divergence. Variation in only one trait-head plumage patterning-was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome-wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution. © 2017 John Wiley & Sons Ltd.
A trait-based test for habitat filtering: Convex hull volume
Cornwell, W.K.; Schwilk, D.W.; Ackerly, D.D.
2006-01-01
Community assembly theory suggests that two processes affect the distribution of trait values within communities: competition and habitat filtering. Within a local community, competition leads to ecological differentiation of coexisting species, while habitat filtering reduces the spread of trait values, reflecting shared ecological tolerances. Many statistical tests for the effects of competition exist in the literature, but measures of habitat filtering are less well-developed. Here, we present convex hull volume, a construct from computational geometry, which provides an n-dimensional measure of the volume of trait space occupied by species in a community. Combined with ecological null models, this measure offers a useful test for habitat filtering. We use convex hull volume and a null model to analyze California woody-plant trait and community data. Our results show that observed plant communities occupy less trait space than expected from random assembly, a result consistent with habitat filtering. ?? 2006 by the Ecological Society of America.
Nygren, G H; Nylin, S; Stefanescu, C
2006-11-01
Comma butterflies (Nymphalidae: Polygonia c-album L.) from one Belgian site and three Spanish sites were crossed with butterflies from a Swedish population in order to investigate inheritance of female host plant choice, egg mass and larval growth rate. We found three different modes of inheritance for the three investigated traits. In line with earlier results from crosses between Swedish and English populations, the results regarding female oviposition preference (choice between Urtica dioica and Salix caprea) showed X-linked inheritance to be of importance for the variation between Sweden and the other sites. Egg mass and growth rate did not show any sex-linked inheritance. Egg mass differences between populations seem to be controlled mainly by additive autosomal genes, as hybrids showed intermediate values. The growth rates of both hybrid types following reciprocal crossings were similar to each other but consistently higher than for the two source populations, suggesting a nonadditive mode of inheritance which is not sex-linked. The different modes of inheritance for host plant preference vs. important life history traits are likely to result in hybrids with unfit combinations of traits. This type of potential reproductive barrier based on multiple ecologically important traits deserves more attention, as it should be a common situation for instance in the early stages of population divergence in host plant usage, facilitating ecological speciation.
Be meek or be bold? A colony-level behavioural syndrome in ants
Bengston, S. E.; Dornhaus, A.
2014-01-01
Consistent individual variation in animal behaviour is nearly ubiquitous and has important ecological and evolutionary implications. Additionally, suites of behavioural traits are often correlated, forming behavioural syndromes in both humans and other species. Such syndromes are often described by testing for variation in traits across commonly described dimensions (e.g. aggression and neophobia), independent of whether this variation is ecologically relevant to the focal species. Here, we use a variety of ecologically relevant behavioural traits to test for a colony-level behavioural syndrome in rock ants (Temnothorax rugatulus). Specifically, we combine field and laboratory assays to measure foraging effort, how colonies respond to different types of resources, activity level, response to threat and aggression level. We find evidence for a colony level syndrome that suggests colonies consistently differ in coping style—some are more risk-prone, whereas others are more risk-averse. Additionally, by collecting data across the North American range of this species, we show that environmental variation may affect how different populations maintain consistent variation in colony behaviour. PMID:25100691
A Trait-Based Approach to Advance Coral Reef Science.
Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R; Darling, Emily S; Falster, Daniel S; Huang, Danwei; Keith, Sally A; Mizerek, Toni; Pandolfi, John M; Putnam, Hollie M; Baird, Andrew H
2016-06-01
Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Environmental Influences on Mate Preferences as Assessed by a Scenario Manipulation Experiment
Marzoli, Daniele; Moretto, Francesco; Monti, Aura; Tocci, Ornella; Roberts, S. Craig; Tommasi, Luca
2013-01-01
Many evolutionary psychology studies have addressed the topic of mate preferences, focusing particularly on gender and cultural differences. However, the extent to which situational and environmental variables might affect mate preferences has been comparatively neglected. We tested 288 participants in order to investigate the perceived relative importance of six traits of an ideal partner (wealth, dominance, intelligence, height, kindness, attractiveness) under four different hypothetical scenarios (status quo/nowadays, violence/post-nuclear, poverty/resource exhaustion, prosperity/global well-being). An equal number of participants (36 women, 36 men) was allotted to each scenario; each was asked to allocate 120 points across the six traits according to their perceived value. Overall, intelligence was the trait to which participants assigned most importance, followed by kindness and attractiveness, and then by wealth, dominance and height. Men appraised attractiveness as more valuable than women. Scenario strongly influenced the relative importance attributed to traits, the main finding being that wealth and dominance were more valued in the poverty and post-nuclear scenarios, respectively, compared to the other scenarios. Scenario manipulation generally had similar effects in both sexes, but women appeared particularly prone to trade off other traits for dominance in the violence scenario, and men particularly prone to trade off other traits for wealth in the poverty scenario. Our results are in line with other correlational studies of situational variables and mate preferences, and represent strong evidence of a causal relationship of environmental factors on specific mate preferences, corroborating the notion of an evolved plasticity to current ecological conditions. A control experiment seems to suggest that our scenarios can be considered as realistic descriptions of the intended ecological conditions. PMID:24069291
A trait-based approach for examining microbial community assembly
NASA Astrophysics Data System (ADS)
Prest, T. L.; Nemergut, D.
2015-12-01
Microorganisms regulate all of Earth's major biogeochemical cycles and an understanding of how microbial communities assemble is a key part in evaluating controls over many types of ecosystem processes. Rapid advances in technology and bioinformatics have led to a better appreciation for the variation in microbial community structure in time and space. Yet, advances in theory are necessary to make sense of these data and allow us to generate unifying hypotheses about the causes and consequences of patterns in microbial biodiversity and what they mean for ecosystem function. Here, I will present a metaanalysis of microbial community assembly from a variety of successional and post-disturbance systems. Our analysis shows various distinct patterns in community assembly, and the potential importance of nutrients and dispersal in shaping microbial community beta diversity in these systems. We also used a trait-based approach to generate hypotheses about the mechanisms driving patterns of microbial community assembly and the implications for function. Our work reveals the importance of rRNA operon copy number as a community aggregated trait in helping to reconcile differences in community dynamics between distinct types of successional and disturbed systems. Specifically, our results demonstrate that decreases in average copy number can be a common feature of communities across various drivers of ecological succession, supporting a transition from an r-selected to a K-selected community. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, from cells to populations and communities, and has implications for both ecology and evolution. Trait-based approaches are an important next step to generate and test hypotheses about the forces structuring microbial communities and the subsequent consequences for ecosystem function.
Verheijen, Lieneke M; Aerts, Rien; Brovkin, Victor; Cavender-Bares, Jeannine; Cornelissen, Johannes H C; Kattge, Jens; van Bodegom, Peter M
2015-08-01
Earth system models demonstrate large uncertainty in projected changes in terrestrial carbon budgets. The lack of inclusion of adaptive responses of vegetation communities to the environment has been suggested to hamper the ability of modeled vegetation to adequately respond to environmental change. In this study, variation in functional responses of vegetation has been added to an earth system model (ESM) based on ecological principles. The restriction of viable mean trait values of vegetation communities by the environment, called 'habitat filtering', is an important ecological assembly rule and allows for determination of global scale trait-environment relationships. These relationships were applied to model trait variation for different plant functional types (PFTs). For three leaf traits (specific leaf area, maximum carboxylation rate at 25 °C, and maximum electron transport rate at 25 °C), relationships with multiple environmental drivers, such as precipitation, temperature, radiation, and CO2 , were determined for the PFTs within the Max Planck Institute ESM. With these relationships, spatiotemporal variation in these formerly fixed traits in PFTs was modeled in global change projections (IPCC RCP8.5 scenario). Inclusion of this environment-driven trait variation resulted in a strong reduction of the global carbon sink by at least 33% (2.1 Pg C yr(-1) ) from the 2nd quarter of the 21st century onward compared to the default model with fixed traits. In addition, the mid- and high latitudes became a stronger carbon sink and the tropics a stronger carbon source, caused by trait-induced differences in productivity and relative respirational costs. These results point toward a reduction of the global carbon sink when including a more realistic representation of functional vegetation responses, implying more carbon will stay airborne, which could fuel further climate change. © 2015 John Wiley & Sons Ltd.
Perceived importance of employees' traits in the service industry.
Lange, Rense; Houran, James
2009-04-01
Selection assessments are common practice to help reduce employee turnover in the service industry, but as too little is known about employees' characteristics, which are valued most highly by human resources professionals, a sample of 108 managers and human resources professionals rated the perceived importance of 31 performance traits for Line, Middle, and Senior employees. Rasch scaling analyses indicated strong consensus among the respondents. Nonsocial skills, abilities, and traits such as Ethical Awareness, Self-motivation, Writing Skills, Verbal Ability, Creativity, and Problem Solving were rated as more important for higher level employees. By contrast, traits which directly affect the interaction with customers and coworkers (Service Orientation, Communication Style, Agreeableness, Sense of Humor, Sensitivity to Diversity, Group Process, and Team Building) were rated as more important for lower level employees. Respondents' age and sex did not substantially alter these findings. Results are discussed in terms of improving industry professionals' perceived ecological and external validities of generic and customized assessments of employee.
Foraging traits modulate stingless bee community disassembly under forest loss.
Lichtenberg, Elinor M; Mendenhall, Chase D; Brosi, Berry
2017-10-01
Anthropogenic land use change is an important driver of impacts to biological communities and the ecosystem services they provide. Pollination is one ecosystem service that may be threatened by community disassembly. Relatively little is known about changes in bee community composition in the tropics, where pollination limitation is most severe and land use change is rapid. Understanding how anthropogenic changes alter community composition and functioning has been hampered by high variability in responses of individual species. Trait-based approaches, however, are emerging as a potential method for understanding responses of ecologically similar species to global change. We studied how communities of tropical, eusocial stingless bees (Apidae: Meliponini) disassemble when forest is lost. These bees are vital tropical pollinators that exhibit high trait diversity, but are under considerable threat from human activities. We compared functional traits of stingless bee species found in pastures surrounded by differing amounts of forest in an extensively deforested landscape in southern Costa Rica. Our results suggest that foraging traits modulate competitive interactions that underlie community disassembly patterns. In contrast to both theoretical predictions and temperate bee communities, we found that stingless bee species with the widest diet breadths were less likely to persist in sites with less forest. These wide-diet-breadth species also tend to be solitary foragers, and are competitively subordinate to group-foraging stingless bee species. Thus, displacement by dominant, group-foraging species may make subordinate species more dependent on the larger or more diversified resource pool that natural habitats offer. We also found that traits that may reduce reliance on trees-nesting in the ground or inside nests of other species-correlated with persistence in highly deforested landscapes. The functional trait perspective we employed enabled capturing community processes in analyses and suggests that land use change may disassemble bee communities via different mechanisms in temperate and tropical areas. Our results further suggest that community processes, such as competition, can be important regulators of community disassembly under land use change. A better understanding of community disassembly processes is critical for conserving and restoring pollinator communities and the ecosystem services and functions they provide. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Lohbeck, Madelon; Bongers, Frans; Martinez-Ramos, Miguel; Poorter, Lourens
2016-10-01
Many studies suggest that biodiversity may be particularly important for ecosystem multifunctionality, because different species with different traits can contribute to different functions. Support, however, comes mostly from experimental studies conducted at small spatial scales in low-diversity systems. Here, we test whether different species contribute to different ecosystem functions that are important for carbon cycling in a high-diversity human-modified tropical forest landscape in Southern Mexico. We quantified aboveground standing biomass, primary productivity, litter production, and wood decomposition at the landscape level, and evaluated the extent to which tree species contribute to these ecosystem functions. We used simulations to tease apart the effects of species richness, species dominance and species functional traits on ecosystem functions. We found that dominance was more important than species traits in determining a species' contribution to ecosystem functions. As a consequence of the high dominance in human-modified landscapes, the same small subset of species mattered across different functions. In human-modified landscapes in the tropics, biodiversity may play a limited role for ecosystem multifunctionality due to the potentially large effect of species dominance on biogeochemical functions. However, given the spatial and temporal turnover in species dominance, biodiversity may be critically important for the maintenance and resilience of ecosystem functions. © 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
Zhao, Tian; Villéger, Sébastien; Lek, Sovan; Cucherousset, Julien
2014-01-01
Investigations on the functional niche of organisms have primarily focused on differences among species and tended to neglect the potential effects of intraspecific variability despite the fact that its potential ecological and evolutionary importance is now widely recognized. In this study, we measured the distribution of functional traits in an entire population of largemouth bass (Micropterus salmoides) to quantify the magnitude of intraspecific variability in functional traits and niche (size, position, and overlap) between age classes. Stable isotope analyses (δ13C and δ15N) were also used to determine the association between individual trophic ecology and intraspecific functional trait variability. We observed that functional traits were highly variable within the population (mean coefficient variation: 15.62% ± 1.78% SE) and predominantly different between age classes. In addition, functional and trophic niche overlap between age classes was extremely low. Differences in functional niche between age classes were associated with strong changes in trophic niche occurring during ontogeny while, within age classes, differences among individuals were likely driven by trophic specialization. Each age class filled only a small portion of the total functional niche of the population and age classes occupied distinct portions in the functional space, indicating the existence of ontogenetic specialists with different functional roles within the population. The high amplitude of intraspecific variability in functional traits and differences in functional niche position among individuals reported here supports the recent claims for an individual-based approach in functional ecology. PMID:25558359
Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.
Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito
2014-11-11
Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.
Angermeier, Paul L.; Frimpong, Emmanuel A.
2009-01-01
The need for integrated and widely accessible sources of species traits data to facilitate studies of ecology, conservation, and management has motivated development of traits databases for various taxa. In spite of the increasing number of traits-based analyses of freshwater fishes in the United States, no consolidated database of traits of this group exists publicly, and much useful information on these species is documented only in obscure sources. The largely inaccessible and unconsolidated traits information makes large-scale analysis involving many fishes and/or traits particularly challenging. FishTraits is a database of >100 traits for 809 (731 native and 78 exotic) fish species found in freshwaters of the conterminous United States, including 37 native families and 145 native genera. The database contains information on four major categories of traits: (1) trophic ecology, (2) body size and reproductive ecology (life history), (3) habitat associations, and (4) salinity and temperature tolerances. Information on geographic distribution and conservation status is also included. Together, we refer to the traits, distribution, and conservation status information as attributes. Descriptions of attributes are available here. Many sources were consulted to compile attributes, including state and regional species accounts and other databases.
Species' Traits as Predictors of Range Shifts Under Contemporary Climate Change: A Meta-analysis
NASA Astrophysics Data System (ADS)
MacLean, S. A.; Beissinger, S. R.
2016-12-01
A growing body of literature seeks to explain variation in range shifts using species' ecological and life history traits, with expectations that shifts should be greater in species with greater dispersal ability, reproductive potential, and ecological generalization. If trait-based arguments, hold, then traits would provide valuable evidence-based tools for conservation and management that could increase the accuracy of future range projections, vulnerability assessments, and predictions of novel community assemblages. However, empirical support is limited in extent and consensus, and trait-based relationships remain largely unvalidated. We conducted a comprehensive literature review of species' traits as predictors of range shifts, collecting results from over 11,000 species' responses across multiple taxa from studies that directly compared 20th century and contemporary distributions for multispecies assemblages. We then performed a meta-analysis to calculate the mean study-level effects of body size, fecundity, diet breadth, habitat breadth, and historic range limit, while directly controlling for ecological and methodological heterogeneity across studies that could bias reported effect sizes. We show that ecological and life history traits have had limited success in accounting for variation among species in range shifts over the past century. Of the five traits analyzed, only habitat breadth and historic range limit consistently supported range shift predictions across multiple studies. Fecundity, body size, and diet breadth showed no clear relationship with range shifts, and some traits identified in our literature review (e.g. migratory ecology) have consistently contradicted range shift predictions. Current understanding of species' traits as predictors of range shifts is limited, and standardized study is needed before traits can be reliably incorporated into projections of climate change impacts.
Ackerly, D D; Cornwell, W K
2007-02-01
Plant functional traits vary both along environmental gradients and among species occupying similar conditions, creating a challenge for the synthesis of functional and community ecology. We present a trait-based approach that provides an additive decomposition of species' trait values into alpha and beta components: beta values refer to a species' position along a gradient defined by community-level mean trait values; alpha values are the difference between a species' trait values and the mean of co-occurring taxa. In woody plant communities of coastal California, beta trait values for specific leaf area, leaf size, wood density and maximum height all covary strongly, reflecting species distributions across a gradient of soil moisture availability. Alpha values, on the other hand, are generally not significantly correlated, suggesting several independent axes of differentiation within communities. This trait-based framework provides a novel approach to integrate functional ecology and gradient analysis with community ecology and coexistence theory.
Dencker, Tim Spaanheden; Pecuchet, Laurene; Beukhof, Esther; Richardson, Katherine; Payne, Mark R; Lindegren, Martin
2017-01-01
Biodiversity is a multifaceted concept, yet most biodiversity studies have taken a taxonomic approach, implying that all species are equally important. However, species do not contribute equally to ecosystem processes and differ markedly in their responses to changing environments. This recognition has led to the exploration of other components of biodiversity, notably the diversity of ecologically important traits. Recent studies taking into account both taxonomic and trait diversity have revealed that the two biodiversity components may exhibit pronounced temporal and spatial differences. These apparent incongruences indicate that the two components may respond differently to environmental drivers and that changes in one component might not affect the other. Such incongruences may provide insight into the structuring of communities through community assembly processes, and the resilience of ecosystems to change. Here we examine temporal and spatial patterns and drivers of multiple marine biodiversity indicators using the North Sea fish community as a case study. Based on long-term spatially resolved survey data on fish species occurrences and biomasses from 1983 to 2014 and an extensive trait dataset we: (i) investigate temporal and spatial incongruences between taxonomy and trait-based indicators of both richness and evenness; (ii) examine the underlying environmental drivers and, (iii) interpret the results in the context of assembly rules acting on community composition. Our study shows that taxonomy and trait-based biodiversity indicators differ in time and space and that these differences are correlated to natural and anthropogenic drivers, notably temperature, depth and substrate richness. Our findings show that trait-based biodiversity indicators add information regarding community composition and ecosystem structure compared to and in conjunction with taxonomy-based indicators. These results emphasize the importance of examining and monitoring multiple indicators of biodiversity in ecological studies as well as for conservation and ecosystem-based management purposes.
Pecuchet, Laurene; Beukhof, Esther; Richardson, Katherine; Payne, Mark R.; Lindegren, Martin
2017-01-01
Biodiversity is a multifaceted concept, yet most biodiversity studies have taken a taxonomic approach, implying that all species are equally important. However, species do not contribute equally to ecosystem processes and differ markedly in their responses to changing environments. This recognition has led to the exploration of other components of biodiversity, notably the diversity of ecologically important traits. Recent studies taking into account both taxonomic and trait diversity have revealed that the two biodiversity components may exhibit pronounced temporal and spatial differences. These apparent incongruences indicate that the two components may respond differently to environmental drivers and that changes in one component might not affect the other. Such incongruences may provide insight into the structuring of communities through community assembly processes, and the resilience of ecosystems to change. Here we examine temporal and spatial patterns and drivers of multiple marine biodiversity indicators using the North Sea fish community as a case study. Based on long-term spatially resolved survey data on fish species occurrences and biomasses from 1983 to 2014 and an extensive trait dataset we: (i) investigate temporal and spatial incongruences between taxonomy and trait-based indicators of both richness and evenness; (ii) examine the underlying environmental drivers and, (iii) interpret the results in the context of assembly rules acting on community composition. Our study shows that taxonomy and trait-based biodiversity indicators differ in time and space and that these differences are correlated to natural and anthropogenic drivers, notably temperature, depth and substrate richness. Our findings show that trait-based biodiversity indicators add information regarding community composition and ecosystem structure compared to and in conjunction with taxonomy-based indicators. These results emphasize the importance of examining and monitoring multiple indicators of biodiversity in ecological studies as well as for conservation and ecosystem-based management purposes. PMID:29253876
Messinger, Susanna M; Ostling, Annette
2013-11-01
Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.
The role of ecology, neutral processes and antagonistic coevolution in an apparent sexual arms race.
Perry, Jennifer C; Garroway, Colin J; Rowe, Locke
2017-09-01
Some of the strongest examples of a sexual 'arms race' come from observations of correlated evolution in sexually antagonistic traits among populations. However, it remains unclear whether these cases truly represent sexually antagonistic coevolution; alternatively, ecological or neutral processes might also drive correlated evolution. To investigate these alternatives, we evaluated the contributions of intersex genetic correlations, ecological context, neutral genetic divergence and sexual coevolution in the correlated evolution of antagonistic traits among populations of Gerris incognitus water striders. We could not detect intersex genetic correlations for these sexually antagonistic traits. Ecological variation was related to population variation in the key female antagonistic trait (spine length, a defence against males), as well as body size. Nevertheless, population covariation between sexually antagonistic traits remained substantial and significant even after accounting for all of these processes. Our results therefore provide strong evidence for a contemporary sexual arms race. © 2017 John Wiley & Sons Ltd/CNRS.
Lee, Ko-Huan; Shaner, Pei-Jen L; Lin, Yen-Po; Lin, Si-Min
2016-05-01
Acoustic signals for mating are important traits that could drive population differentiation and speciation. Ecology may play a role in acoustic divergence through direct selection (e.g., local adaptation to abiotic environment), constraint of correlated traits (e.g., acoustic traits linked to another trait under selection), and/or interspecific competition (e.g., character displacement). However, genetic drift alone can also drive acoustic divergence. It is not always easy to differentiate the role of ecology versus drift in acoustic divergence. In this study, we tested the role of ecology and drift in shaping geographic variation in the advertisement calls of Microhyla fissipes. We examined three predictions based on ecological processes: (1) the correlation between temperature and call properties across M. fissipes populations; (2) the correlation between call properties and body size across M. fissipes populations; and (3) reproductive character displacement (RCD) in call properties between M. fissipes populations that are sympatric with and allopatric to a congener M. heymonsi. To test genetic drift, we examined correlations among call divergence, geographic distance, and genetic distance across M. fissipes populations. We recorded the advertisement calls from 11 populations of M. fissipes in Taiwan, five of which are sympatrically distributed with M. heymonsi. We found geographic variation in both temporal and spectral properties of the advertisement calls of M. fissipes. However, the call properties were not correlated with local temperature or the callers' body size. Furthermore, we did not detect RCD. By contrast, call divergence, geographic distance, and genetic distance between M. fissipes populations were all positively correlated. The comparisons between phenotypic Q st (P st) and F st values did not show significant differences, suggesting a role of drift. We concluded that genetic drift, rather than ecological processes, is the more likely driver for the geographic variation in the advertisement calls of M. fissipes.
Maltby, John; Day, Liz; Hall, Sophie
2015-01-01
The current paper presents a new measure of trait resilience derived from three common mechanisms identified in ecological theory: Engineering, Ecological and Adaptive (EEA) resilience. Exploratory and confirmatory factor analyses of five existing resilience scales suggest that the three trait resilience facets emerge, and can be reduced to a 12-item scale. The conceptualization and value of EEA resilience within the wider trait and well-being psychology is illustrated in terms of differing relationships with adaptive expressions of the traits of the five-factor personality model and the contribution to well-being after controlling for personality and coping, or over time. The current findings suggest that EEA resilience is a useful and parsimonious model and measure of trait resilience that can readily be placed within wider trait psychology and that is found to contribute to individual well-being. PMID:26132197
Benscoter, Allison M.; Reece, Joshua S.; Noss, Reed F.; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.; Watling, James I.
2013-01-01
The presence of multiple interacting threats to biodiversity and the increasing rate of species extinction make it critical to prioritize management efforts on species and communities that maximize conservation success. We implemented a multi-step approach that coupled vulnerability assessments evaluating threats to Florida taxa such as climate change, sea-level rise, and habitat fragmentation with in-depth literature surveys of taxon-specific ecological traits. The vulnerability, adaptive capacity, and ecological traits of 12 threatened and endangered subspecies were compared to non-listed subspecies of the same parent species. Overall, the threatened and endangered subspecies showed high vulnerability and low adaptive capacity, in particular to sea level rise and habitat fragmentation. They also exhibited larger home ranges and greater dispersal limitation compared to non-endangered subspecies, which may inhibit their ability to track changing climate in fragmented landscapes. There was evidence for lower reproductive capacity in some of the threatened or endangered taxa, but not for most. Taxa located in the Florida Keys or in other low coastal areas were most vulnerable to sea level rise, and also showed low levels of adaptive capacity, indicating they may have a lower probability of conservation success. Our analysis of at-risk subspecies and closely related non-endangered subspecies demonstrates that ecological traits help to explain observed differences in vulnerability and adaptive capacity. This study points to the importance of assessing the relative contributions of multiple threats and evaluating conservation value at the species (or subspecies) level when resources are limited and several factors affect conservation success. PMID:23940614
Sazatornil, Federico D; Moré, Marcela; Benitez-Vieyra, Santiago; Cocucci, Andrea A; Kitching, Ian J; Schlumpberger, Boris O; Oliveira, Paulo E; Sazima, Marlies; Amorim, Felipe W
2016-11-01
A major challenge in evolutionary ecology is to understand how co-evolutionary processes shape patterns of interactions between species at community level. Pollination of flowers with long corolla tubes by long-tongued hawkmoths has been invoked as a showcase model of co-evolution. Recently, optimal foraging models have predicted that there might be a close association between mouthparts' length and the corolla depth of the visited flowers, thus favouring trait convergence and specialization at community level. Here, we assessed whether hawkmoths more frequently pollinate plants with floral tube lengths similar to their proboscis lengths (morphological match hypothesis) against abundance-based processes (neutral hypothesis) and ecological trait mismatches constraints (forbidden links hypothesis), and how these processes structure hawkmoth-plant mutualistic networks from five communities in four biogeographical regions of South America. We found convergence in morphological traits across the five communities and that the distribution of morphological differences between hawkmoths and plants is consistent with expectations under the morphological match hypothesis in three of the five communities. In the two remaining communities, which are ecotones between two distinct biogeographical areas, interactions are better predicted by the neutral hypothesis. Our findings are consistent with the idea that diffuse co-evolution drives the evolution of extremely long proboscises and flower tubes, and highlight the importance of morphological traits, beyond the forbidden links hypothesis, in structuring interactions between mutualistic partners, revealing that the role of niche-based processes can be much more complex than previously known. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Benscoter, Allison M; Reece, Joshua S; Noss, Reed F; Brandt, Laura A; Mazzotti, Frank J; Romañach, Stephanie S; Watling, James I
2013-01-01
The presence of multiple interacting threats to biodiversity and the increasing rate of species extinction make it critical to prioritize management efforts on species and communities that maximize conservation success. We implemented a multi-step approach that coupled vulnerability assessments evaluating threats to Florida taxa such as climate change, sea-level rise, and habitat fragmentation with in-depth literature surveys of taxon-specific ecological traits. The vulnerability, adaptive capacity, and ecological traits of 12 threatened and endangered subspecies were compared to non-listed subspecies of the same parent species. Overall, the threatened and endangered subspecies showed high vulnerability and low adaptive capacity, in particular to sea level rise and habitat fragmentation. They also exhibited larger home ranges and greater dispersal limitation compared to non-endangered subspecies, which may inhibit their ability to track changing climate in fragmented landscapes. There was evidence for lower reproductive capacity in some of the threatened or endangered taxa, but not for most. Taxa located in the Florida Keys or in other low coastal areas were most vulnerable to sea level rise, and also showed low levels of adaptive capacity, indicating they may have a lower probability of conservation success. Our analysis of at-risk subspecies and closely related non-endangered subspecies demonstrates that ecological traits help to explain observed differences in vulnerability and adaptive capacity. This study points to the importance of assessing the relative contributions of multiple threats and evaluating conservation value at the species (or subspecies) level when resources are limited and several factors affect conservation success.
Benscoter, Allison M.; Reece, Joshua S.; Noss, Reed F.; Brandt, Laura B.; Mazzotti, Frank J.; Romañach, Stephanie S.; Watling, James I.
2013-01-01
The presence of multiple interacting threats to biodiversity and the increasing rate of species extinction make it critical to prioritize management efforts on species and communities that maximize conservation success. We implemented a multi-step approach that coupled vulnerability assessments evaluating threats to Florida taxa such as climate change, sea-level rise, and habitat fragmentation with in-depth literature surveys of taxon-specific ecological traits. The vulnerability, adaptive capacity, and ecological traits of 12 threatened and endangered subspecies were compared to non-listed subspecies of the same parent species. Overall, the threatened and endangered subspecies showed high vulnerability and low adaptive capacity, in particular to sea level rise and habitat fragmentation. They also exhibited larger home ranges and greater dispersal limitation compared to non-endangered subspecies, which may inhibit their ability to track changing climate in fragmented landscapes. There was evidence for lower reproductive capacity in some of the threatened or endangered taxa, but not for most. Taxa located in the Florida Keys or in other low coastal areas were most vulnerable to sea level rise, and also showed low levels of adaptive capacity, indicating they may have a lower probability of conservation success. Our analysis of at-risk subspecies and closely related non-endangered subspecies demonstrates that ecological traits help to explain observed differences in vulnerability and adaptive capacity. This study points to the importance of assessing the relative contributions of multiple threats and evaluating conservation value at the species (or subspecies) level when resources are limited and several factors affect conservation success.
Kneitel, Jamie M
2012-01-01
Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure.
Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores
Lampert, Evan
2012-01-01
Specialist and generalist insect herbivore species often differ in how they respond to host plant traits, particularly defensive traits, and these responses can include weakened or strengthened immune responses to pathogens and parasites. Accurate methods to measure immune response in the presence and absence of pathogens and parasites are necessary to determine whether susceptibility to these natural enemies is reduced or increased by host plant traits. Plant chemical traits are particularly important in that host plant metabolites may function as antioxidants beneficial to the immune response, or interfere with the immune response of both specialist and generalist herbivores. Specialist herbivores that are adapted to process and sometimes accumulate specific plant compounds may experience high metabolic demands that may decrease immune response, whereas the metabolic demands of generalist species differ due to more broad-substrate enzyme systems. However, the direct deleterious effects of plant compounds on generalist herbivores may weaken their immune responses. Further research in this area is important given that the ecological relevance of plant traits to herbivore immune responses is equally important in natural systems and agroecosystems, due to potential incompatibility of some host plant species and cultivars with biological control agents of herbivorous pests. PMID:26466545
Plant Functional Traits: Soil and Ecosystem Services.
Faucon, Michel-Pierre; Houben, David; Lambers, Hans
2017-05-01
Decline of ecosystem services has triggered numerous studies aiming at developing more sustainable agricultural management practices. Some agricultural practices may improve soil properties by expanding plant biodiversity. However, sustainable management of agroecosystems should be performed from a functional plant trait perspective. Advances in functional ecology, especially plant functional trait effects on ecosystem processes and services, provide pivotal knowledge for ecological intensification of agriculture; this approach acknowledges that a crop field is an agroecosystem whose ecological processes influence soil properties. We highlight the links between plant functional traits and soil properties in relation to four major ecosystem processes involved in vital ecosystem services: food production, crop protection, climate change mitigation, and soil and water conservation, aiming towards ecological intensification of sustainable agricultural and soil management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trait-based approaches for understanding microbial biodiversity and ecosystem functioning
Krause, Sascha; Le Roux, Xavier; Niklaus, Pascal A.; Van Bodegom, Peter M.; Lennon, Jay T.; Bertilsson, Stefan; Grossart, Hans-Peter; Philippot, Laurent; Bodelier, Paul L. E.
2014-01-01
In ecology, biodiversity-ecosystem functioning (BEF) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEF of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEF using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEF studies are often inadequate to unravel BEF relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEF relationships and thus generating systematic principles in microbial ecology and more generally ecology. PMID:24904563
NASA Astrophysics Data System (ADS)
Bochet, Esther; García-Fayos, Patricio
2017-04-01
In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In conclusion, these new insights from basic ecology and practical management guidance represent a great opportunity for practitioners to move forward with the success of roadslope restoration in semiarid environments.
Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients.
Pellissier, Loïc; Ndiribe, Charlotte; Dubuis, Anne; Pradervand, Jean-Nicolas; Salamin, Nicolas; Guisan, Antoine; Rasmann, Sergio
2013-05-01
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables. © 2013 Blackwell Publishing Ltd/CNRS.
Occam's shadow: levels of analysis in evolutionary ecology - where to next?
Cooch, E.G.; Cam, E.; Link, W.A.
2002-01-01
Evolutionary ecology is the study of evolutionary processes, and the ecological conditions that influence them. A fundamental paradigm underlying the study of evolution is natural selection. Although there are a variety of operational definitions for natural selection in the literature, perhaps the most general one is that which characterizes selection as the process whereby heritable variation in fitness associated with variation in one or more phenotypic traits leads to intergenerational change in the frequency distribution of those traits. The past 20 years have witnessed a marked increase in the precision and reliability of our ability to estimate one or more components of fitness and characterize natural selection in wild populations, owing particularly to significant advances in methods for analysis of data from marked individuals. In this paper, we focus on several issues that we believe are important considerations for the application and development of these methods in the context of addressing questions in evolutionary ecology. First, our traditional approach to estimation often rests upon analysis of aggregates of individuals, which in the wild may reflect increasingly non-random (selected) samples with respect to the trait(s) of interest. In some cases, analysis at the aggregate level, rather than the individual level, may obscure important patterns. While there are a growing number of analytical tools available to estimate parameters at the individual level, and which can cope (to varying degrees) with progressive selection of the sample, the advent of new methods does not reduce the need to consider carefully the appropriate level of analysis in the first place. Estimation should be motivated a priori by strong theoretical analysis. Doing so provides clear guidance, in terms of both (i) assisting in the identification of realistic and meaningful models to include in the candidate model set, and (ii) providing the appropriate context under which the results are interpreted. Second, while it is true that selection (as defined) operates at the level of the individual, the selection gradient is often (if not generally) conditional on the abundance of the population. As such, it may be important to consider estimating transition rates conditional on both the parameter values of the other individuals in the population (or at least their distribution), and population abundance. This will undoubtedly pose a considerable challenge, for both single- and multi-strata applications. It will also require renewed consideration of the estimation of abundance, especially for open populations. Thirdly, selection typically operates on dynamic, individually varying traits. Such estimation may require characterizing fitness in terms of individual plasticity in one or more state variables, constituting analysis of the norms of reaction of individuals to variable environments. This can be quite complex, especially for traits that are under facultative control. Recent work has indicated that the pattern of selection on such traits is conditional on the relative rates of movement among and frequency of spatially heterogeneous habitats, suggesting analyses of evolution of life histories in open populations can be misleading in some cases.
Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks.
Billiard, Sylvain; Ferrière, Régis; Méléard, Sylvie; Tran, Viet Chi
2015-11-01
How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals. Trait values influence ecological processes (demographic events, competition), and competition generates selection on trait variation, thus closing the eco-evolutionary feedback loop. The demographic effects of the trait are also expected to influence the generation and maintenance of neutral variation. We consider a large population limit with rare mutation, under the assumption that the neutral marker mutates faster than the trait under selection. We prove the convergence of the stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process (SFVP). When restricted to the trait space this process is the Trait Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a favorable mutation, a genetical bottleneck occurs and the marker associated with this favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how the neutral diversity is restored afterwards, we obtain the condition for a time-scale separation; under this condition, we show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions. We discuss the implications of the SFVP for our understanding of the dynamics of neutral variation under eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our results highlight the joint importance of mutations, ecological parameters, and trait values in the restoration of neutral diversity after a selective sweep.
Monteiro, Angelo Barbosa; Faria, Lucas Del Bianco
2018-06-06
For decades, food web theory has proposed phenomenological models for the underlying structure of ecological networks. Generally, these models rely on latent niche variables that match the feeding behaviour of consumers with their resource traits. In this paper, we used a comprehensive database to evaluate different hypotheses on the best dependency structure of trait-matching patterns between consumers and resource traits. We found that consumer feeding behaviours had complex interactions with resource traits; however, few dimensions (i.e. latent variables) could reproduce the trait-matching patterns. We discuss our findings in the light of three food web models designed to reproduce the multidimensionality of food web data; additionally, we discuss how using species traits clarify food webs beyond species pairwise interactions and enable studies to infer ecological generality at larger scales, despite potential taxonomic differences, variations in ecological conditions and differences in species abundance between communities. © 2018 John Wiley & Sons Ltd/CNRS.
Xu, Nai Yin; Jin, Shi Qiao; Li, Jian
2017-01-01
The distinctive regional characteristics of cotton fiber quality in the major cotton-producing areas in China enhance the textile use efficiency of raw cotton yarn by improving fiber quality through ecological regionalization. The "environment vs. trait" GGE biplot analysis method was adopted to explore the interaction between conventional cotton sub-regions and cotton fiber quality traits based on the datasets collected from the national cotton regional trials from 2011 to 2015. The results showed that the major cotton-producing area in China were divided into four fiber quality ecological regions, namely, the "high fiber quality ecological region", the "low micronaire ecological region", the "high fiber strength and micronaire ecological region", and the "moderate fiber quality ecological region". The high fiber quality ecological region was characterized by harmonious development of cotton fiber length, strength, micronaire value and the highest spinning consistency index, and located in the conventional cotton regions in the upper and lower reaches of Yangtze River Valley. The low micronaire value ecological region composed of the northern and south Xinjiang cotton regions was characterized by low micronaire value, relatively lower fiber strength, and relatively high spinning consistency index performance. The high fiber strength and micronaire value ecological region covered the middle reaches of Yangtze River Valley, Nanxiang Basin and Huaibei Plain, and was prominently characterized by high strength and micronaire value, and moderate performance of other traits. The moderate fiber quality ecological region included North China Plain and Loess Plateau cotton growing regions in the Yellow River Valley, and was characterized by moderate or lower performances of all fiber quality traits. This study effectively applied "environment vs. trait" GGE biplot to regionalize cotton fiber quality, which provided a helpful reference for the regiona-lized cotton growing regions in terms of optimal raw fiber production for textile industry, and gave a good example for the implementation of similar ecological regionalization of other crops as well.
Massen, Jorg J M; Antonides, Alexandra; Arnold, Anne-Marie K; Bionda, Thomas; Koski, Sonja E
2013-09-01
Human and nonhuman animals show personality: temporal and contextual consistency in behavior patterns that vary among individuals. In contrast to most other species, personality of chimpanzees, Pan troglodytes, has mainly been studied with non-behavioral methods. We examined boldness, exploration tendency, persistence and tool-orientation in 29 captive chimpanzees using repeated experiments conducted in an ecologically valid social setting. High temporal repeatability and contextual consistency in all these traits indicated they reflected personality. In addition, Principal Component Analysis revealed two independent syndromes, labeled exploration-persistence and boldness. We found no sex or rank differences in the trait scores, but the scores declined with age. Nonetheless, there was considerable inter-individual variation within age-classes, suggesting that behavior was not merely determined by age but also by dispositional effects. In conclusion, our study complements earlier rating studies and adds new traits to the chimpanzee personality, thereby supporting the existence of multiple personality traits among chimpanzees. We stress the importance of ecologically valid behavioral research to assess multiple personality traits and their association, as it allows inclusion of ape studies in the comparison of personality structures across species studied behaviorally, and furthers our attempts to unravel the causes and consequences of animal personality. © 2013 Wiley Periodicals, Inc.
Disentangling the phylogenetic and ecological components of spider phenotypic variation.
Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo
2014-01-01
An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.
Disentangling the Phylogenetic and Ecological Components of Spider Phenotypic Variation
Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo
2014-01-01
An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure. PMID:24651264
Allen, Maximilian L; Wilmers, Christopher C; Elbroch, L Mark; Golla, Julie M; Wittmer, Heiko U
2016-08-01
Encounter competition is interference competition in which animals directly contend for resources. Ecological theory predicts the trait that determines the resource holding potential (RHP), and hence the winner of encounter competition, is most often body size or mass. The difficulties of observing encounter competition in complex organisms in natural environments, however, has limited opportunities to test this theory across diverse species. We studied the outcome of encounter competition contests among mesocarnivores at deer carcasses in California to determine the most important variables for winning these contests. We found some support for current theory in that body mass is important in determining the winner of encounter competition, but we found that other factors including hunger and species-specific traits were also important. In particular, our top models were "strength and hunger" and "size and hunger," with models emphasizing the complexity of variables influencing outcomes of encounter competition. In addition, our wins above predicted (WAP) statistic suggests that an important aspect that determines the winner of encounter competition is species-specific advantages that increase their RHP, as bobcats (Lynx rufus) and spotted skunks (Spilogale gracilis) won more often than predicted based on mass. In complex organisms, such as mesocarnivores, species-specific adaptations, including strategic behaviors, aggressiveness, and weapons, contribute to competitive advantages and may allow certain species to take control or defend resources better than others. Our results help explain how interspecific competition shapes the occurrence patterns of species in ecological communities. © 2016 by the Ecological Society of America.
2010-01-01
Background Nutrition and predation have been considered two primary agents of selection important in the evolution of avian life history traits. The relative importance of these natural selective forces in the evolution of avian embryonic developmental period (EDP) remain poorly resolved, perhaps in part because research has tended to focus on a single, high taxonomic-level group of birds: Order Passeriformes. The marine bird families Alcidae (auks) and Spheniscidae (penguins) exhibit marked variation in EDP, as well as behavioural and ecological traits ultimately linked to EDP. Therefore, auks and penguins provide a unique opportunity to assess the natural selective basis of variation in a key life-history trait at a low taxonomic-level. We used phylogenetic comparative methods to investigate the relative importance of behavioural and ecological factors related to nutrition and predation in the evolution of avian EDP. Results Three behavioural and ecological variables related to nutrition and predation risk (i.e., clutch size, activity pattern, and nesting habits) were significant predictors of residual variation in auk and penguin EDP based on models predicting EDP from egg mass. Species with larger clutch sizes, diurnal activity patterns, and open nests had significantly shorter EDPs. Further, EDP was found to be longer among birds which forage in distant offshore waters, relative to those that foraged in near shore waters, in line with our predictions, but not significantly so. Conclusion Current debate has emphasized predation as the primary agent of selection driving avian life history diversification. Our results suggest that both nutrition and predation have been important selective forces in the evolution of auk and penguin EDP, and highlight the importance of considering these questions at lower taxonomic scales. We suggest that further comparative studies on lower taxonomic-level groups will continue to constructively inform the debate on evolutionary determinants of avian EDP, as well as other life history parameters. PMID:20546608
Hipfner, J Mark; Gorman, Kristen B; Vos, Rutger A; Joy, Jeffrey B
2010-06-14
Nutrition and predation have been considered two primary agents of selection important in the evolution of avian life history traits. The relative importance of these natural selective forces in the evolution of avian embryonic developmental period (EDP) remain poorly resolved, perhaps in part because research has tended to focus on a single, high taxonomic-level group of birds: Order Passeriformes. The marine bird families Alcidae (auks) and Spheniscidae (penguins) exhibit marked variation in EDP, as well as behavioural and ecological traits ultimately linked to EDP. Therefore, auks and penguins provide a unique opportunity to assess the natural selective basis of variation in a key life-history trait at a low taxonomic-level. We used phylogenetic comparative methods to investigate the relative importance of behavioural and ecological factors related to nutrition and predation in the evolution of avian EDP. Three behavioural and ecological variables related to nutrition and predation risk (i.e., clutch size, activity pattern, and nesting habits) were significant predictors of residual variation in auk and penguin EDP based on models predicting EDP from egg mass. Species with larger clutch sizes, diurnal activity patterns, and open nests had significantly shorter EDPs. Further, EDP was found to be longer among birds which forage in distant offshore waters, relative to those that foraged in near shore waters, in line with our predictions, but not significantly so. Current debate has emphasized predation as the primary agent of selection driving avian life history diversification. Our results suggest that both nutrition and predation have been important selective forces in the evolution of auk and penguin EDP, and highlight the importance of considering these questions at lower taxonomic scales. We suggest that further comparative studies on lower taxonomic-level groups will continue to constructively inform the debate on evolutionary determinants of avian EDP, as well as other life history parameters.
Ecological implications of behavioural syndromes.
Sih, Andrew; Cote, Julien; Evans, Mara; Fogarty, Sean; Pruitt, Jonathan
2012-03-01
Interspecific trait variation has long served as a conceptual foundation for our understanding of ecological patterns and dynamics. In particular, ecologists recognise the important role that animal behaviour plays in shaping ecological processes. An emerging area of interest in animal behaviour, the study of behavioural syndromes (animal personalities) considers how limited behavioural plasticity, as well as behavioural correlations affects an individual's fitness in diverse ecological contexts. In this article we explore how insights from the concept and study of behavioural syndromes provide fresh understanding of major issues in population ecology. We identify several general mechanisms for how population ecology phenomena can be influenced by a species or population's average behavioural type, by within-species variation in behavioural type, or by behavioural correlations across time or across ecological contexts. We note, in particular, the importance of behavioural type-dependent dispersal in spatial ecology. We then review recent literature and provide new syntheses for how these general mechanisms produce novel insights on five major issues in population ecology: (1) limits to species' distribution and abundance; (2) species interactions; (3) population dynamics; (4) relative responses to human-induced rapid environmental change; and (5) ecological invasions. © 2012 Blackwell Publishing Ltd/CNRS.
Ducrot, Virginie; Usseglio-Polatera, Philippe; Péry, T Alexandre R R; Mouthon, Jacques; Lafont, Michel; Roger, Marie-Claude; Garric, Jeanne; Férard, Jean-François
2005-09-01
An original species-selection method for the building of test batteries is presented. This method is based on the statistical analysis of the biological and ecological trait patterns of species. It has been applied to build a macroinvertebrate test battery for the assessment of sediment toxicity, which efficiently describes the diversity of benthic macroinvertebrate biological responses to toxicants in a large European lowland river. First, 109 potential representatives of benthic communities of European lowland rivers were selected from a list of 479 taxa, considering 11 biological traits accounting for the main routes of exposure to a sediment-bound toxicant and eight ecological traits providing an adequate description of habitat characteristics used by the taxa. Second, their biological and ecological trait patterns were compared using coinertia analysis. This comparison allowed the clustering of taxa into groups of organisms that exhibited similar life-history characteristics, physiological and behavioral features, and similar habitat use. Groups exhibited various sizes (7-35 taxa), taxonomic compositions, and biological and ecological features. Main differences among group characteristics concerned morphology, substrate preferendum and habitat utilization, nutritional features, maximal size, and life-history strategy. Third, the best representatives of the mean biological and ecological characteristics of each group were included in the test battery. The final selection was composed of Chironomus riparius (Insecta: Diptera), Branchiura sowerbyi (Oligochaeta: Tubificidae), Lumbriculus variegatus (Oligochaeta: Lumbriculidae), Valvata piscinalis (Gastropoda: Valvatidae), and Sericostoma personatum (Trichoptera: Sericostomatidae). This approach permitted the biological and ecological variety of the battery to be maximized. Because biological and ecological traits of taxa determine species sensitivity, such maximization should permit the battery to better account for the sensitivity range within a community.
Urbanization reduces and homogenizes trait diversity in stream macroinvertebrate communities.
Barnum, Thomas R; Weller, Donald E; Williams, Meghan
2017-12-01
More than one-half of the world's population lives in urban areas, so quantifying the effects of urbanization on ecological communities is important for understanding whether anthropogenic stressors homogenize communities across environmental and climatic gradients. We examined the relationship of impervious surface coverage (a marker of urbanization) and the structure of stream macroinvertebrate communities across the state of Maryland and within each of Maryland's three ecoregions: Coastal Plain, Piedmont, and Appalachian, which differ in stream geomorphology and community composition. We considered three levels of trait organization: individual traits, unique combinations of traits, and community metrics (functional richness, functional evenness, and functional divergence) and three levels of impervious surface coverage (low [<2.5%], medium [2.5% to 10%], and high [>10%]). The prevalence of an individual trait differed very little between low impervious surface and high impervious surface sites. The arrangement of trait combinations in community trait space for each ecoregion differed when impervious surface coverage was low, but the arrangement became more similar among ecoregions as impervious surface coverage increased. Furthermore, trait combinations that occurred only at low or medium impervious surface coverage were clustered in a subset of the community trait space, indicating that impervious surface affected the presence of only a subset of trait combinations. Functional richness declined with increasing impervious surface, providing evidence for environmental filtering. Community metrics that include abundance were also sensitive to increasing impervious surface coverage: functional divergence decreased while functional evenness increased. These changes demonstrate that increasing impervious surface coverage homogenizes the trait diversity of macroinvertebrate communities in streams, despite differences in initial community composition and stream geomorphology among ecoregions. Community metrics were also more sensitive to changes in the abundance rather than the gain or loss of trait combinations, showing the potential for trait-based approaches to serve as early warning indicators of environmental stress for monitoring and biological assessment programs. © 2017 by the Ecological Society of America.
Biological and ecological traits of marine species
Claus, Simon; Dekeyzer, Stefanie; Vandepitte, Leen; Tuama, Éamonn Ó; Lear, Dan; Tyler-Walters, Harvey
2015-01-01
This paper reviews the utility and availability of biological and ecological traits for marine species so as to prioritise the development of a world database on marine species traits. In addition, the ‘status’ of species for conservation, that is, whether they are introduced or invasive, of fishery or aquaculture interest, harmful, or used as an ecological indicator, were reviewed because these attributes are of particular interest to society. Whereas traits are an enduring characteristic of a species and/or population, a species status may vary geographically and over time. Criteria for selecting traits were that they could be applied to most taxa, were easily available, and their inclusion would result in new research and/or management applications. Numerical traits were favoured over categorical. Habitat was excluded as it can be derived from a selection of these traits. Ten traits were prioritized for inclusion in the most comprehensive open access database on marine species (World Register of Marine Species), namely taxonomic classification, environment, geography, depth, substratum, mobility, skeleton, diet, body size and reproduction. These traits and statuses are being added to the database and new use cases may further subdivide and expand upon them. PMID:26312188
Derroire, Géraldine; Powers, Jennifer S; Hulshof, Catherine M; Cárdenas Varela, Luis E; Healey, John R
2018-01-10
A coordinated response to environmental drivers amongst individual functional traits is central to the plant strategy concept. However, whether the trait co-ordination observed at the global scale occurs at other ecological scales (especially within species) remains an open question. Here, for sapling communities of two tropical dry forest types in Costa Rica, we show large differences amongst traits in the relative contribution of species turnover and intraspecific variation to their directional changes in response to environmental changes along a successional gradient. We studied the response of functional traits associated with the leaf economics spectrum and drought tolerance using intensive sampling to analyse inter- and intra-specific responses to environmental changes and ontogeny. Although the overall functional composition of the sapling communities changed during succession more through species turnover than through intraspecific trait variation, their relative contributions differed greatly amongst traits. For instance, community mean specific leaf area changed mostly due to intraspecific variation. Traits of the leaf economics spectrum showed decoupled responses to environmental drivers and ontogeny. These findings emphasise how divergent ecological mechanisms combine to cause great differences in changes of individual functional traits over environmental gradients and ecological scales.
Kneitel, Jamie M.
2012-01-01
Trade-offs among species’ ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species’ ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species’ traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure. PMID:22844526
Segall, Marion; Tolley, Krystal A; Vanhooydonck, Bieke; Measey, G John; Herrel, Anthony
2013-10-15
Temperature is an extrinsic factor that influences reptile behavior because of its impact on reptile physiology. Understanding the impact of temperature on performance traits is important as it may affect the ecology and fitness of ectothermic animals such as reptiles. Here, we examined the temperature dependence of performance in two species of South African dwarf chameleon (Bradypodion): one adapted to a semi-arid environment and one to a mesic environment. Ecologically relevant performance traits were tested at different temperatures to evaluate their thermal dependence, and temperature-performance breadths for 80% and 90% of each performance trait were calculated. Our results show distinct differences in the thermal dependence of speed- versus force-related performance traits. Moreover, our results show that the semi-arid species is better adapted to higher temperatures and as such has a better chance of coping with the predicted increases in environmental temperature. The mesic area-adapted species seems to be more sensitive to an increase in temperature and could therefore potentially be threatened by the predicted future climate change. However, further studies investigating the potential for acclimation in chameleons are needed to better understand how animals may respond to future climate change.
Parallel evolution of storage roots in Morning Glories (Convolvulaceae)
USDA-ARS?s Scientific Manuscript database
Storage roots are an ecologically and agriculturally important plant trait. In morning glories, storage roots are well characterized in the crop species sweetpotato. Storage roots have evolved numerous times across the morning glory family. This study aims to understand whether this was through para...
Green, Stephanie J; Côté, Isabelle M
2014-11-01
Understanding how predators select their prey can provide important insights into community structure and dynamics. However, the suite of prey species available to a predator is often spatially and temporally variable. As a result, species-specific selectivity data are of limited use for predicting novel predator-prey interactions because they are assemblage specific. We present a method for predicting diet selection that is applicable across prey assemblages, based on identifying general morphological and behavioural traits of prey that confer vulnerability to predation independent of species identity. We apply this trait-based approach to examining prey selection by Indo-Pacific lionfish (Pterois volitans and Pterois miles), invasive predators that prey upon species-rich reef fish communities and are rapidly spreading across the western Atlantic. We first generate hypotheses about morphological and behavioural traits recurring across fish species that could facilitate or deter predation by lionfish. Constructing generalized linear mixed-effects models that account for relatedness among prey taxa, we test whether these traits predict patterns of diet selection by lionfish within two independent data sets collected at different spatial scales: (i) in situ visual observations of prey consumption and availability for individual lionfish and (ii) comparisons of prey abundance in lionfish stomach contents to availability on invaded reefs at large. Both analyses reveal that a number of traits predicted to affect vulnerability to predation, including body size, body shape, position in the water column and aggregation behaviour, are important determinants of diet selection by lionfish. Small, shallow-bodied, solitary fishes found resting on or just above reefs are the most vulnerable. Fishes that exhibit parasite cleaning behaviour experience a significantly lower risk of predation than non-cleaning fishes, and fishes that are nocturnally active are at significantly greater risk. Together, vulnerable traits heighten the risk of predation by a factor of nearly 200. Our study reveals that a trait-based approach yields insights into predator-prey interactions that are robust across prey assemblages. Importantly, in situ observations of selection yield similar results to broadscale comparisons of prey use and availability, which are more typically gathered for predator species. A trait-based approach could therefore be of use across predator species and ecosystems to predict the outcomes of changing predator-prey interactions on community dynamics. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Harrison, Sarah J; Raubenheimer, David; Simpson, Stephen J; Godin, Jean-Guy J; Bertram, Susan M
2014-10-07
Phosphorus has been identified as an important determinant of nutrition-related biological variation. The macronutrients protein (P) and carbohydrates (C), both alone and interactively, are known to affect animal performance. No study, however, has investigated the importance of phosphorus relative to dietary protein or carbohydrates, or the interactive effects of phosphorus with these macronutrients, on fitness-related traits in animals. We used a nutritional geometry framework to address this question in adult field crickets (Gryllus veletis). Our results showed that lifespan, weight gain, acoustic mate signalling and egg production were maximized on diets with different P : C ratios, that phosphorus did not positively affect any of these fitness traits, and that males and females had different optimal macronutrient intake ratios for reproductive performance. When given a choice, crickets selected diets that maximized both lifespan and reproductive performance by preferentially eating diets with low P : C ratios, and females selected diets with a higher P : C ratio than males. Conversely, phosphorus intake was not regulated. Overall, our findings highlight the importance of disentangling the influences of different nutrients, and of quantifying both their individual and interactive effects, on animal fitness traits, so as to gain a more integrative understanding of their nutritional ecology. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Individual-based models in ecology after four decades
Grimm, Volker
2014-01-01
Individual-based models simulate populations and communities by following individuals and their properties. They have been used in ecology for more than four decades, with their use and ubiquity in ecology growing rapidly in the last two decades. Individual-based models have been used for many applied or “pragmatic” issues, such as informing the protection and management of particular populations in specific locations, but their use in addressing theoretical questions has also grown rapidly, recently helping us to understand how the sets of traits of individual organisms influence the assembly of communities and food webs. Individual-based models will play an increasingly important role in questions posed by complex ecological systems. PMID:24991416
Morphology, sociality, and ecology: can morphology predict pairing behavior in coral reef fishes?
NASA Astrophysics Data System (ADS)
Brandl, S. J.; Bellwood, D. R.
2013-09-01
Morphology can contain valuable information about the ecological performance of reef fishes, but it has rarely been used in combination with social traits. Social behavior is known to influence the ecological role of fishes; however, the ecological basis for pairing in reef fishes is not well understood. Field observations of 2,753 individuals, in 47 species in six families of biting reef fishes (Acanthuridae, Chaetodontidae, Kyphosidae, Labridae, Pomacanthidae, Siganidae), were used in combination with six morphological measurements, to examine the morphology of fishes in different social systems. A principal components analysis of morphological traits segregated species with high proportions of pairing individuals from non-pairing species along principal component 1, explaining 40.8 % of the variation. Pairing species were characterized by large eyes, concave foreheads, pointed snouts, deep bodies, and small maximum sizes. There was a significant positive relationship between these morphological traits (i.e., scores on PC1) and the prevalence of pairing within the Chaetodontidae ( r 2 = 0.59; P = 0.026), Siganidae ( r 2 = 0.72; P = 0.004), and Acanthuridae ( r 2 = 0.82; P < 0.001). This was consistent when traits were corrected for phylogenetic effects. No pattern was evident in the scarine Labridae ( r 2 = 0.15; P = 0.17). The morphological characteristics found among pairing species suggest that pairing species share common ecological traits, including foraging for small prey items in micro-topographically complex environments such as reef crevices. These ecological traits may have played a role in the evolution of pairing behavior and subsequently led to the development of reproductive patterns based on monogamy.
Sexual selection and conflict as engines of ecological diversification.
Bonduriansky, Russell
2011-12-01
Ecological diversification presents an enduring puzzle: how do novel ecological strategies evolve in organisms that are already adapted to their ecological niche? Most attempts to answer this question posit a primary role for genetic drift, which could carry populations through or around fitness "valleys" representing maladaptive intermediate phenotypes between alternative niches. Sexual selection and conflict are thought to play an ancillary role by initiating reproductive isolation and thereby facilitating divergence in ecological traits through genetic drift or local adaptation. Here, I synthesize theory and evidence suggesting that sexual selection and conflict could play a more central role in the evolution and diversification of ecological strategies through the co-optation of sexual traits for viability-related functions. This hypothesis rests on three main premises, all of which are supported by theory and consistent with the available evidence. First, sexual selection and conflict often act at cross-purposes to viability selection, thereby displacing populations from the local viability optimum. Second, sexual traits can serve as preadaptations for novel viability-related functions. Third, ancestrally sex-limited sexual traits can be transferred between sexes. Consequently, by allowing populations to explore a broad phenotypic space around the current viability optimum, sexual selection and conflict could act as powerful drivers of ecological adaptation and diversification.
Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P.
2015-01-01
Convergent (or parallel) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some non-convergent evolution is present. It is therefore important to explicitly quantify the convergent and non-convergent aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was convergent across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that convergent evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respect to the dichotomous habitat classifications frequently used in such studies. PMID:22276537
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Curtis
2004-05-01
This is the third in a series of annual reports that address reproductive ecological research and comparisons of hatchery and wild origin spring chinook in the Yakima River basin. Data have been collected prior to supplementation to characterize the baseline reproductive ecology, demographics and phenotypic traits of the unsupplemented upper Yakima population, however this report focuses on data collected on hatchery and wild spring chinook returning in 2003; the third year of hatchery adult returns. This report is organized into three chapters, with a general introduction preceding the first chapter and summarizes data collected between April 1, 2003 and Marchmore » 31, 2004 in the Yakima basin. Summaries of each of the chapters in this report are included below. A major component of determining supplementation success in the Yakima Klickitat Fishery Project's spring chinook (Oncorhynchus tshawytscha) program is an increase in natural production. Within this context, comparing upper Yakima River hatchery and wild origin fish across traits such as sex ratio, age composition, size-at-age, fecundity, run timing and gamete quality is important because these traits directly affect population productivity and individual fish fitness which determine a population's productivity.« less
Miller, Eliot T; Wagner, Sarah K; Harmon, Luke J; Ricklefs, Robert E
2017-02-01
Quantifying the relationship between form and function can inform use of morphology as a surrogate for ecology. How the strength of this relationship varies continentally can inform understanding of evolutionary radiations; for example, does the relationship break down when certain lineages invade and diversify in novel habitats? The 75 species of Australian honeyeaters (Meliphagidae) are morphologically and ecologically diverse, with species feeding on nectar, insects, fruit, and other resources. We investigated Meliphagidae ecomorphology and community structure by (1) quantifying the concordance between morphology and ecology (foraging behavior), (2) estimating rates of trait evolution in relation to the packing of ecological space, and (3) comparing phylogenetic and trait community structure across the broad environmental gradients of the continent. We found that morphology explained 37% of the variance in ecology (and 62% vice versa), and we uncovered well-known bivariate relationships among the multivariate ecomorphological data. Ecological trait diversity declined less rapidly than phylogenetic diversity along a gradient of decreasing precipitation. We employ a new method (trait fields) and extend another (phylogenetic fields) to show that while species in phylogenetically clustered, arid-environment assemblages are similar morphologically, they are as varied in foraging behavior as those from more diverse assemblages. Thus, although closely related and similar morphologically, these arid-adapted species have diverged in ecological space to a similar degree as their mesic counterparts.
The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.
Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne
2014-01-01
Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a QST/FST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (QST) was compared with divergence at eight neutral microsatellite loci (FST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had QST values significantly lower than FST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (QST>FST). Estimates of heritability were high for all traits (means ranging between 0.55-0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.
Swenson, Nathan G; Enquist, Brian J
2009-08-01
Species diversity is promoted and maintained by ecological and evolutionary processes operating on species attributes through space and time. The degree to which variability in species function regulates distribution and promotes coexistence of species has been debated. Previous work has attempted to quantify the relative importance of species function by using phylogenetic relatedness as a proxy for functional similarity. The key assumption of this approach is that function is phylogenetically conserved. If this assumption is supported, then the phylogenetic dispersion in a community should mirror the functional dispersion. Here we quantify functional trait dispersion along several key axes of tree life-history variation and on multiple spatial scales in a Neotropical dry-forest community. We next compare these results to previously reported patterns of phylogenetic dispersion in this same forest. We find that, at small spatial scales, coexisting species are typically more functionally clustered than expected, but traits related to adult and regeneration niches are overdispersed. This outcome was repeated when the analyses were stratified by size class. Some of the trait dispersion results stand in contrast to the previously reported phylogenetic dispersion results. In order to address this inconsistency we examined the strength of phylogenetic signal in traits at different depths in the phylogeny. We argue that: (1) while phylogenetic relatedness may be a good general multivariate proxy for ecological similarity, it may have a reduced capacity to depict the functional mechanisms behind species coexistence when coexisting species simultaneously converge and diverge in function; and (2) the previously used metric of phylogenetic signal provided erroneous inferences about trait dispersion when married with patterns of phylogenetic dispersion.
Polymorphic butterfly reveals the missing link in ecological speciation.
Chamberlain, Nicola L; Hill, Ryan I; Kapan, Durrell D; Gilbert, Lawrence E; Kronforst, Marcus R
2009-11-06
Ecological speciation occurs when ecologically based, divergent selection causes the evolution of reproductive isolation. There are many empirical examples of this process; however, there exists a poorly characterized stage during which the traits that distinguish species ecologically and reproductively segregate in a single population. By using a combination of genetic mapping, mate-choice experiments, field observations, and population genetics, we studied a butterfly population with a mimetic wing color polymorphism and found that the butterflies exhibited partial, color-based, assortative mate preference. These traits represent the divergent, ecologically based signal and preference components of sexual isolation that usually distinguish incipient and sibling species. The association between behavior and recognition trait in a single population may enhance the probability of speciation and provides an example of the missing link between an interbreeding population and isolated species.
Husemann, M; Tobler, M; McCauley, C; Ding, B; Danley, P D
2014-05-01
The cichlid fishes of Lake Malawi represent one of the most diverse adaptive radiations of vertebrates known. Among the rock-dwelling cichlids (mbuna), closely related sympatric congeners possess similar trophic morphologies (i.e. cranial and jaw structures), defend overlapping or adjacent territories, but can be easily distinguished based on male nuptial coloration. The apparent morphological similarity of congeners, however, leads to an ecological conundrum: theory predicts that ecological competition should lead to competitive exclusion. Hence, we hypothesized that slight, yet significant, ecological differences accompanied the divergence in sexual signals and that the divergence of ecological and sexual traits is correlated. To evaluate this hypothesis, we quantified body shape, a trait of known ecological importance, in populations of Maylandia zebra, a barred, widespread mbuna, and several sympatric nonbarred congeners. We found that the barred populations differ in body shape from their nonbarred sympatric congeners and that the direction of shape differences was consistent across all barred vs. nonbarred comparisons. Barred populations are generally deeper bodied which may be an adaptation to the structurally complex habitat they prefer, whereas the nonbarred species have a more fusiform body shape, which may be adaptive in their more open microhabitat. Furthermore, M. zebra populations sympatric with nonbarred congeners differ from populations where the nonbarred phenotype is absent and occupy less morphospace, indicating potential ecological character displacement. Mitochondrial DNA as well as published AFLP data indicated that the nonbarred populations are not monophyletic and therefore may have evolved multiple times independently. Overall our data suggest that the evolution of coloration and body shape may be coupled as a result of correlational selection. We hypothesize that correlated evolution of sexually selected and ecological traits may have contributed to rapid speciation as well as the maintenance of diversity in one of the most diverse adaptive radiations known. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Community variability and ecological functioning: 40 years of change in the North Sea benthos.
Clare, D S; Robinson, L A; Frid, C L J
2015-06-01
Using established associations between species traits (life history, morphological and behavioural characteristics) and key ecological functions, we applied biological traits analysis (BTA) to investigate the consequences of 40 years of change in two North Sea benthic communities. Ecological functioning (trait composition) was found to be statistically indistinguishable across periods that differed significantly in taxonomic composition. A temporary alteration to functioning was, however, inferred at both sampling stations; coinciding with the North Sea regime shift of the 1980s. Trait composition recovered after 1 year at the station located inside the grounds of a trawl fishery, whereas the station located outside the main area of fishing activity underwent a six-year period of significantly altered, and temporally unstable, trait composition. A further alteration to functioning was inferred at the fished station, when the population of a newly established species rapidly increased in numbers. The results suggest that density compensation by characteristically similar (redundant) taxa acts to buffer changes to ecological functioning over time, but that functional stability is subject to aperiodic disruption due to substitutions of dissimilar taxa or uncompensated population fluctuations. The rate at which ecological functioning stabilises and recovers appears to be dependent on environmental context; e.g. disturbance regime. Copyright © 2015 Elsevier Ltd. All rights reserved.
Within-species patterns challenge our understanding of the leaf economics spectrum.
Anderegg, Leander D L; Berner, Logan T; Badgley, Grayson; Sethi, Meera L; Law, Beverly E; HilleRisLambers, Janneke
2018-05-01
The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait-trait covariation. We found that most variation in LES traits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species. LES traits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation in LES traits cannot always be interpreted as differences in resource use strategy. © 2018 John Wiley & Sons Ltd/CNRS.
The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective.
Gilbert, Gregory S; Parker, Ingrid M
2016-08-04
An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems.
Life cycle specialization of filamentous pathogens - colonization and reproduction in plant tissues.
Haueisen, Janine; Stukenbrock, Eva H
2016-08-01
Filamentous plant pathogens explore host tissues to obtain nutrients for growth and reproduction. Diverse strategies for tissue invasion, defense manipulation, and colonization of inter and intra-cellular spaces have evolved. Most research has focused on effector molecules, which are secreted to manipulate plant immunity and facilitate infection. Effector genes are often found to evolve rapidly in response to the antagonistic host-pathogen co-evolution but other traits are also subject to adaptive evolution during specialization to the anatomy, biochemistry and ecology of different plant hosts. Although not directly related to virulence, these traits are important components of specialization but little is known about them. We present and discuss specific life cycle traits that facilitate exploration of plant tissues and underline the importance of increasing our insight into the biology of plant pathogens. Copyright © 2016. Published by Elsevier Ltd.
Bhaskar, Radika; Porder, Stephen; Balvanera, Patricia; Edwards, Erika J
2016-05-01
We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in N-related traits. We also expected ecological selection during succession for differences in nitrogen use strategies, and corresponding shifts in legume abundance. We used phylogenetic analyses to test for trait conservatism in foliar and litter N, C:N, and N resorption. We also evaluated differences in N-related traits between old-growth and secondary forests. We found a weak phylogenetic signal for all traits, partly explained by wide variation within legumes. Across taxa we observed a positive relationship between leaf and litter N, but no shift in resorption strategies along the successional gradient. Despite species turnover, N-resorption, and N-related traits showed little change across succession, suggesting that, at least for these traits, secondary forests rapidly recover ecosystem function. Collectively, our results also suggest that legumes should not be considered a single functional group from a biogeochemical perspective.
Character convergence under competition for nutritionally essential resources.
Fox, Jeremy W; Vasseur, David A
2008-11-01
Resource competition is thought to drive divergence in resource use traits (character displacement) by generating selection favoring individuals able to use resources unavailable to others. However, this picture assumes nutritionally substitutable resources (e.g., different prey species). When species compete for nutritionally essential resources (e.g., different nutrients), theory predicts that selection drives character convergence. We used models of two species competing for two essential resources to address several issues not considered by existing theory. The models incorporated either slow evolutionary change in resource use traits or fast physiological or behavioral change. We report four major results. First, competition always generates character convergence, but differences in resource requirements prevent competitors from evolving identical resource use traits. Second, character convergence promotes coexistence. Competing species always attain resource use traits that allow coexistence, and adaptive trait change stabilizes the ecological equilibrium. In contrast, adaptation in allopatry never preadapts species to coexist in sympatry. Third, feedbacks between ecological dynamics and trait dynamics lead to surprising dynamical trajectories such as transient divergence in resource use traits followed by subsequent convergence. Fourth, under sufficiently slow trait change, ecological dynamics often drive one of the competitors to near extinction, which would prevent realization of long-term character convergence in practice.
Ecology of zoonotic infectious diseases in bats: current knowledge and future directions
Hayman, D.T.; Bowen, R.A.; Cryan, P.M.; McCracken, G.F.; O'Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L.
2013-01-01
Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.
Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions
Hayman, D T S; Bowen, R A; Cryan, P M; McCracken, G F; O’Shea, T J; Peel, A J; Gilbert, A; Webb, C T; Wood, J L N
2013-01-01
Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics. PMID:22958281
Trait Variation in Yeast Is Defined by Population History
Warringer, Jonas; Zörgö, Enikö; Cubillos, Francisco A.; Zia, Amin; Gjuvsland, Arne; Simpson, Jared T.; Forsmark, Annabelle; Durbin, Richard; Omholt, Stig W.; Louis, Edward J.; Liti, Gianni; Moses, Alan; Blomberg, Anders
2011-01-01
A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism. PMID:21698134
Trait variation in yeast is defined by population history.
Warringer, Jonas; Zörgö, Enikö; Cubillos, Francisco A; Zia, Amin; Gjuvsland, Arne; Simpson, Jared T; Forsmark, Annabelle; Durbin, Richard; Omholt, Stig W; Louis, Edward J; Liti, Gianni; Moses, Alan; Blomberg, Anders
2011-06-01
A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism.
Functional traits, convergent evolution, and periodic tables of niches.
Winemiller, Kirk O; Fitzgerald, Daniel B; Bower, Luke M; Pianka, Eric R
2015-08-01
Ecology is often said to lack general theories sufficiently predictive for applications. Here, we examine the concept of a periodic table of niches and feasibility of niche classification schemes from functional trait and performance data. Niche differences and their influence on ecological patterns and processes could be revealed effectively by first performing data reduction/ordination analyses separately on matrices of trait and performance data compiled according to logical associations with five basic niche 'dimensions', or aspects: habitat, life history, trophic, defence and metabolic. Resultant patterns then are integrated to produce interpretable niche gradients, ordinations and classifications. Degree of scheme periodicity would depend on degrees of niche conservatism and convergence causing species clustering across multiple niche dimensions. We analysed a sample data set containing trait and performance data to contrast two approaches for producing niche schemes: species ordination within niche gradient space, and niche categorisation according to trait-value thresholds. Creation of niche schemes useful for advancing ecological knowledge and its applications will depend on research that produces functional trait and performance datasets directly related to niche dimensions along with criteria for data standardisation and quality. As larger databases are compiled, opportunities will emerge to explore new methods for data reduction, ordination and classification. © 2015 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss).
Jonathan Shaw, A; Devos, Nicolas; Liu, Yang; Cox, Cymon J; Goffinet, Bernard; Flatberg, Kjell Ivar; Shaw, Blanka
2016-08-01
Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss)
Jonathan Shaw, A.; Devos, Nicolas; Liu, Yang; Cox, Cymon J.; Goffinet, Bernard; Flatberg, Kjell Ivar; Shaw, Blanka
2016-01-01
Background and Aims Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. Methods We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium. Key Results Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium. Conclusions Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification. PMID:27268484
Hagey, Travis J; Uyeda, Josef C; Crandell, Kristen E; Cheney, Jorn A; Autumn, Kellar; Harmon, Luke J
2017-10-01
Understanding macroevolutionary dynamics of trait evolution is an important endeavor in evolutionary biology. Ecological opportunity can liberate a trait as it diversifies through trait space, while genetic and selective constraints can limit diversification. While many studies have examined the dynamics of morphological traits, diverse morphological traits may yield the same or similar performance and as performance is often more proximately the target of selection, examining only morphology may give an incomplete understanding of evolutionary dynamics. Here, we ask whether convergent evolution of pad-bearing lizards has followed similar evolutionary dynamics, or whether independent origins are accompanied by unique constraints and selective pressures over macroevolutionary time. We hypothesized that geckos and anoles each have unique evolutionary tempos and modes. Using performance data from 59 species, we modified Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to account for repeated origins estimated using Bayesian ancestral state reconstructions. We discovered that adhesive performance in geckos evolved in a fashion consistent with Brownian motion with a trend, whereas anoles evolved in bounded performance space consistent with more constrained evolution (an Ornstein-Uhlenbeck model). Our results suggest that convergent phenotypes can have quite distinctive evolutionary patterns, likely as a result of idiosyncratic constraints or ecological opportunities. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
USDA-ARS?s Scientific Manuscript database
Avocado (Persea americana Mill.) is an economically important tropical fruit native to Mesoamerica. It belongs to the Lauraceae family and is subdivided in three horticultural races (Guatemalan, Mexican, and West Indian) based primarily on ecological adaptation, botanical and physiological traits. T...
To date, published studies with herbicide tolerant transgenic crops have failed to demonstrate that transgene escape to wild relatives results in more competitive hybrids. However, it is important to consider transgene escape in the context of the types of traits, which will lik...
Loewen, Charlie J G; Vinebrooke, Rolf D
2016-10-01
Species diversity is often an implicit source of biological insurance for communities against the impacts of novel perturbations, such as the introduction of an invasive species. High environmental heterogeneity (e.g., a mountainous gradient) is expected to beget greater regional species diversity and variation in functional traits related to environmental tolerances. Thus, heterogeneous metacommunities are expected to provide more tolerant colonists that buffer stressed local communities in the absence of dispersal limitation. We tested the hypothesis that importation of a regional zooplankton pool assembled from a diverse array of lakes and ponds lessens the impacts of a novel predator on local species-poor alpine communities by increasing response diversity (i.e., diversity of tolerances to environmental change) as mediated by variation in functional traits related to predator evasion. We also tested whether impacts varied with temperature, as warming may modify (e.g., dampen or amplify) invasion effects. An eight-week factorial experiment ([fishless vs. introduced Oncorhynchus mykiss (rainbow trout)] × [ambient temperature vs. heated] × [local vs. local + regional species pool]) was conducted using 32 1,000-L mesocosms. Associations between experimental treatments and species functional traits were tested by R-mode linked to Q-mode (RLQ) and fourth-corner analyses. Although the introduced predator suppressed local species richness and community biomass, colonization by several montane zooplankters reversed these negative effects, resulting in increased species diversity and production. Invasion resistance was unaffected by higher temperatures, which failed to elicit any significance impacts on the community. We discovered that the smaller body sizes of imported species drove functional overcompensation (i.e., increased production) in invaded communities. The observed ecological surprise showed how regionally sourced biodiversity from a highly heterogeneous landscape can offset, and even reverse, the local negative impacts of an invasive species. Further, prey body size was found to be a key species trait mediating the ecological impacts of the aquatic invasive predator. Our study highlights the novel application of a functional approach to understanding the impacts of biological invasions, using species traits that pertain directly to potential responses to exotic species. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Neumann, Hermann; Diekmann, Rabea; Kröncke, Ingrid
2016-02-01
Analysis of ecosystem functioning is essential to describe the ecological status of ecosystems and is therefore directly requested in international directives. There is a lack of knowledge regarding functional aspects of benthic communities and their environmental and anthropogenic driving forces in the southern North Sea. This study linked functional composition of epibenthic communities to environmental conditions and fishing effort and investigated spatial correlations between habitat characteristics to gain insight into potential synergistic and/or cumulative effects. Functional composition of epifauna was assessed by using biological trait analysis (BTA), which considered 15 ecological traits of 54 species. Functional composition was related to ten predictor variables derived from sediment composition, bottom temperature and salinity, hydrodynamics, annual primary production and fishing effort. Our results revealed significantly different functional composition between the Dogger Bank, the Oyster Ground, the West and North Frisian coast. Mobility, feeding type, size and adult longevity were the most important traits differentiating the communities. A high proportion of trait modalities related to an opportunistic life mode were obvious in coastal areas especially at the West Frisian coast and in the area of the Frisian Front indicating disturbed communities. In contrast, functional composition in the Dogger Bank area indicated undisturbed communities with prevalence of large, long-lived and permanently attached species being sensitive towards disturbance such as fishing. Tidal stress, mud content of sediments, salinity, stratification and fishing effort were found to be the most important habitat characteristics shaping functional composition. Strong correlations were found between variables, especially between those which changed gradually from the coast to offshore areas including fishing effort. Unfavourable extremes of these factors in coastal areas resulted in disturbed epibenthic communities, while the relative influence of a single factor on functional composition cannot be quantified. Coastal communities seemed to be well adapted to disturbance and the prevalence of opportunistic trait modalities not necessarily revealed a poor ecological status according to the Marine Strategy Framework Directive (MSFD). The integration of functional aspects into the assessment of ecosystem health is recommended, since widely used structural measures failed in naturally disturbed habitats.
Medrano, Mónica; Herrera, Carlos M; Bazaga, Pilar
2014-10-01
The ecological significance of epigenetic variation has been generally inferred from studies on model plants under artificial conditions, but the importance of epigenetic differences between individuals as a source of intraspecific diversity in natural plant populations remains essentially unknown. This study investigates the relationship between epigenetic variation and functional plant diversity by conducting epigenetic (methylation-sensitive amplified fragment length polymorphisms, MSAP) and genetic (amplified fragment length polymorphisms, AFLP) marker-trait association analyses for 20 whole-plant, leaf and regenerative functional traits in a large sample of wild-growing plants of the perennial herb Helleborus foetidus from ten sampling sites in south-eastern Spain. Plants differed widely in functional characteristics, and exhibited greater epigenetic than genetic diversity, as shown by per cent polymorphism of MSAP fragments (92%) or markers (69%) greatly exceeding that for AFLP ones (41%). After controlling for genetic structuring and possible cryptic relatedness, every functional trait considered exhibited a significant association with at least one AFLP or MSAP marker. A total of 27 MSAP (13.0% of total) and 12 AFLP (4.4%) markers were involved in significant associations, which explained on average 8.2% and 8.0% of trait variance, respectively. Individual MSAP markers were more likely to be associated with functional traits than AFLP markers. Between-site differences in multivariate functional diversity were directly related to variation in multilocus epigenetic diversity after multilocus genetic diversity was statistically accounted for. Results suggest that epigenetic variation can be an important source of intraspecific functional diversity in H. foetidus, possibly endowing this species with the capacity to exploit a broad range of ecological conditions despite its modest genetic diversity. © 2014 John Wiley & Sons Ltd.
Cressler, Clayton E; King, Aaron A; Werner, Earl E
2010-09-01
Inducible defense, which is phenotypic plasticity in traits that affect predation risk, is taxonomically widespread and has been shown to have important ecological consequences. However, it remains unclear what factors promote the evolution of qualitatively different defense strategies and when evolution should favor strategies that involve modification of multiple traits. Previous theory suggests that individual-level trade-offs play a key role in defense evolution, but most of this work has assumed that trade-offs are independent. Here we show that the shape of the behavioral trade-off between foraging gain and predation risk determines the interaction between this trade-off and the life-history trade-off between growth and reproduction. The interaction between these fundamental trade-offs determines the optimal investment into behavioral and life-history defenses. Highly nonlinear foraging-predation risk trade-offs favor the evolution of behavioral defenses, while linear trade-offs favor life-history defenses. Between these extremes, integrated defense responses are optimal, with defense expression strongly depending on ontogeny. We suggest that these predictions may be general across qualitatively different defenses. Our results have important implications for theory on the ecological effects of inducible defense, which has not considered how qualitatively different defenses might alter ecological interactions.
Martini, Séverine; Haddock, Steven H. D.
2017-01-01
The capability of animals to emit light, called bioluminescence, is considered to be a major factor in ecological interactions. Because it occurs across diverse taxa, measurements of bioluminescence can be powerful to detect and quantify organisms in the ocean. In this study, 17 years of video observations were recorded by remotely operated vehicles during surveys off the California Coast, from the surface down to 3,900 m depth. More than 350,000 observations are classified for their bioluminescence capability based on literature descriptions. The organisms represented 553 phylogenetic concepts (species, genera or families, at the most precise taxonomic level defined from the images), distributed within 13 broader taxonomic categories. The importance of bioluminescent marine taxa is highlighted in the water column, as we showed that 76% of the observed individuals have bioluminescence capability. More than 97% of Cnidarians were bioluminescent, and 9 of the 13 taxonomic categories were found to be bioluminescent dominant. The percentage of bioluminescent animals is remarkably uniform over depth. Moreover, the proportion of bioluminescent and non-bioluminescent animals within taxonomic groups changes with depth for Ctenophora, Scyphozoa, Chaetognatha, and Crustacea. Given these results, bioluminescence has to be considered an important ecological trait from the surface to the deep-sea. PMID:28374789
NASA Astrophysics Data System (ADS)
Martini, Séverine; Haddock, Steven H. D.
2017-04-01
The capability of animals to emit light, called bioluminescence, is considered to be a major factor in ecological interactions. Because it occurs across diverse taxa, measurements of bioluminescence can be powerful to detect and quantify organisms in the ocean. In this study, 17 years of video observations were recorded by remotely operated vehicles during surveys off the California Coast, from the surface down to 3,900 m depth. More than 350,000 observations are classified for their bioluminescence capability based on literature descriptions. The organisms represented 553 phylogenetic concepts (species, genera or families, at the most precise taxonomic level defined from the images), distributed within 13 broader taxonomic categories. The importance of bioluminescent marine taxa is highlighted in the water column, as we showed that 76% of the observed individuals have bioluminescence capability. More than 97% of Cnidarians were bioluminescent, and 9 of the 13 taxonomic categories were found to be bioluminescent dominant. The percentage of bioluminescent animals is remarkably uniform over depth. Moreover, the proportion of bioluminescent and non-bioluminescent animals within taxonomic groups changes with depth for Ctenophora, Scyphozoa, Chaetognatha, and Crustacea. Given these results, bioluminescence has to be considered an important ecological trait from the surface to the deep-sea.
Ecological genomics of adaptation and speciation in fungi.
Leducq, Jean-Baptiste
2014-01-01
Fungi play a central role in both ecosystems and human societies. This is in part because they have adopted a large diversity of life history traits to conquer a wide variety of ecological niches. Here, I review recent fungal genomics studies that explored the molecular origins and the adaptive significance of this diversity. First, macro-ecological genomics studies revealed that fungal genomes were highly remodelled during their evolution. This remodelling, in terms of genome organization and size, occurred through the proliferation of non-coding elements, gene compaction, gene loss and the expansion of large families of adaptive genes. These features vary greatly among fungal clades, and are correlated with different life history traits such as multicellularity, pathogenicity, symbiosis, and sexual reproduction. Second, micro-ecological genomics studies, based on population genomics, experimental evolution and quantitative trait loci approaches, have allowed a deeper exploration of early evolutionary steps of the above adaptations. Fungi, and especially budding yeasts, were used intensively to characterize early mutations and chromosomal rearrangements that underlie the acquisition of new adaptive traits allowing them to conquer new ecological niches and potentially leading to speciation. By uncovering the ecological factors and genomic modifications that underline adaptation, these studies showed that Fungi are powerful models for ecological genomics (eco-genomics), and that this approach, so far mainly developed in a few model species, should be expanded to the whole kingdom.
Bajer, Katalin; Horváth, Gergely; Molnár, Orsolya; Török, János; Garamszegi, László Zsolt; Herczeg, Gábor
2015-02-01
Consistent individual differences within (animal personality) and across (behavioural syndrome) behaviours became well recognized during the past decade. Nevertheless, our knowledge about the evolutionary and developmental mechanisms behind the phenomena is still incomplete. Here, we explored if risk-taking and exploration were consistent and linked to different ecologically relevant traits in wild-caught adult male European green lizards (Lacerta viridis) and in their 2-3 weeks old laboratory-reared offspring. Both adults and juveniles displayed animal personality, consistency being higher in juveniles. We found correlation between risk-taking and exploration (suggestive of a behavioural syndrome) only in adults. Juveniles were more explorative than adults. Large or ectoparasite-free adult males were more explorative than small or parasitized males. Juvenile females tended to be more risk-taking than males. Behaviour of fathers and their offspring did not correlate. We conclude that European green lizards show high behavioural consistency and age is an important determinant of its strength and links to traits likely affecting fitness. Copyright © 2014 Elsevier B.V. All rights reserved.
Towards a richer evolutionary game theory
McNamara, John M.
2013-01-01
Most examples of the application of evolutionary game theory to problems in biology involve highly simplified models. I contend that it is time to move on and include much more richness in models. In particular, more thought needs to be given to the importance of (i) between-individual variation; (ii) the interaction between individuals, and hence the process by which decisions are reached; (iii) the ecological and life-history context of the situation; (iv) the traits that are under selection, and (v) the underlying psychological mechanisms that lead to behaviour. I give examples where including variation between individuals fundamentally changes predicted outcomes of a game. Variation also selects for real-time responses, again resulting in changed outcomes. Variation can select for other traits, such as choosiness and social sensitivity. More generally, many problems involve coevolution of more than one trait. I identify situations where a reductionist approach, in which a game is isolated from is ecological setting, can be misleading. I also highlight the need to consider flexibility of behaviour, mental states and other issues concerned with the evolution of mechanism. PMID:23966616
Darwell, C T; Cook, J M
2017-02-01
A key debate in ecology centres on the relative importance of niche and neutral processes in determining patterns of community assembly with particular focus on whether ecologically similar species with similar functional traits are able to coexist. Meanwhile, molecular studies are increasingly revealing morphologically indistinguishable cryptic species with presumably similar ecological roles. Determining the geographic distribution of such cryptic species provides opportunities to contrast predictions of niche vs. neutral models. Discovery of sympatric cryptic species increases alpha diversity and supports neutral models, while documentation of allopatric/parapatric cryptic species increases beta diversity and supports niche models. We tested these predictions using morphological and molecular data, coupled with environmental niche modelling analyses, of a fig wasp community along its 2700-km latitudinal range. Molecular methods increased previous species diversity estimates from eight to eleven species, revealing morphologically cryptic species in each of the four wasp genera studied. Congeneric species pairs that were differentiated by a key morphological functional trait (ovipositor length) coexisted sympatrically over large areas. In contrast, morphologically similar species, with similar ovipositor lengths, typically showed parapatric ranges with very little overlap. Despite parapatric ranges, environmental niche models of cryptic congeneric pairs indicate large regions of potential sympatry, suggesting that competitive processes are important in determining the distributions of ecologically similar species. Niche processes appear to structure this insect community, and cryptic diversity may typically contribute mostly to beta rather than alpha diversity. © 2016 John Wiley & Sons Ltd.
Weston, David J.; Turetsky, Merritt R.; Johnson, Matthew G.; ...
2017-10-27
Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even ‘extend’ to influence community structure and ecosystem level processes. The progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Therefore, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. We introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration,more » biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, David J.; Turetsky, Merritt R.; Johnson, Matthew G.
Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even ‘extend’ to influence community structure and ecosystem level processes. The progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Therefore, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. We introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration,more » biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.« less
Weston, David J; Turetsky, Merritt R; Johnson, Matthew G; Granath, Gustaf; Lindo, Zoë; Belyea, Lisa R; Rice, Steven K; Hanson, David T; Engelhardt, Katharina A M; Schmutz, Jeremy; Dorrepaal, Ellen; Euskirchen, Eugénie S; Stenøien, Hans K; Szövényi, Péter; Jackson, Michelle; Piatkowski, Bryan T; Muchero, Wellington; Norby, Richard J; Kostka, Joel E; Glass, Jennifer B; Rydin, Håkan; Limpens, Juul; Tuittila, Eeva-Stiina; Ullrich, Kristian K; Carrell, Alyssa; Benscoter, Brian W; Chen, Jin-Gui; Oke, Tobi A; Nilsson, Mats B; Ranjan, Priya; Jacobson, Daniel; Lilleskov, Erik A; Clymo, R S; Shaw, A Jonathan
2018-01-01
Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses. © 2017 UT-Battelle New Phytologist © 2017 New Phytologist Trust.
Pollinator-driven ecological speciation in plants: new evidence and future perspectives
Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D.
2014-01-01
Background The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. Scope This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies further illustrate innovative experimental approaches, and they employ modern tools in genetics and floral trait quantification. Future advances to the field require better quantification of selection through male fitness and pollinator isolation, for instance by exploiting next-generation sequencing technologies. By combining these new tools with strategically chosen study systems, and smart experimental design, we predict that examples of pollinator-driven speciation will be among the most widespread and compelling of all cases of ecological speciation. PMID:24418954
Hoehndorf, Robert; Alshahrani, Mona; Gkoutos, Georgios V; Gosline, George; Groom, Quentin; Hamann, Thomas; Kattge, Jens; de Oliveira, Sylvia Mota; Schmidt, Marco; Sierra, Soraya; Smets, Erik; Vos, Rutger A; Weiland, Claus
2016-11-14
The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established vocabularies or ontologies, but rather serve as an overarching framework based on which different application- and domain-specific ontologies, thesauri and vocabularies of phenotypes observed in flowering plants can be integrated.
terHorst, Casey P
2010-12-01
Ecologists have long recognized the importance of indirect ecological effects on species abundances, coexistence, and diversity. However, the evolutionary consequences of indirect interactions are rarely considered. Here I conduct selection experiments and examine the evolutionary response of Colpoda sp., a ciliated protozoan, to other members of the inquiline community of purple pitcher plants (Sarracenia purpurea). I measured the evolution of six traits in response to (1) predation by mosquito larvae, (2) competition from other ciliated protozoans, and (3) simultaneous predation and competition. The latter treatment incorporated both direct effects and indirect effects due to interactions between predators and competitors. Population growth rate and cell size evolved in response to direct effects of predators and competitors. However, trait values in the multispecies treatment were similar to those in the monoculture treatment, indicating that direct effects were offset by strong indirect effects on the evolution of traits. For most of the traits measured, indirect effects were opposed to, and often stronger than, direct effects. These indirect effects occurred as a result of behavioral changes of the predator in the presence of competitors and as a result of reduced densities of competitors in the presence of predators. Incorporating indirect effects provides a more realistic description of how species evolve in complex natural communities.
Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua
2016-04-19
Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity.
Fajardo, Alex; Siefert, Andrew
2018-05-01
Understanding patterns of functional trait variation across environmental gradients offers an opportunity to increase inference in the mechanistic causes of plant community assembly. The leaf economics spectrum (LES) predicts global tradeoffs in leaf traits and trait-environment relationships, but few studies have examined whether these predictions hold across different levels of organization, particularly within species. Here, we asked (1) whether the main assumptions of the LES (expected trait relationships and shifts in trait values across resource gradients) hold at the intraspecific level, and (2) how within-species trait correlations scale up to interspecific or among-community levels. We worked with leaf traits of saplings of woody species growing across light and soil N and P availability gradients in temperate rainforests of southern Chile. We found that ITV accounted for a large proportion of community-level variation in leaf traits (e.g., LMA and leaf P) and played an important role in driving community-level shifts in leaf traits across environmental gradients. Additionally, intraspecific leaf trait relationships were generally consistent with interspecific and community-level trait relationships and with LES predictions-e.g., a strong negative intraspecific LMA-leaf N correlation-although, most trait relationships varied significantly among species, suggesting idiosyncrasies in the LES at the intraspecific level. © 2018 by the Ecological Society of America.
Motivational Basis of Personality Traits: A Meta-Analysis of Value-Personality Correlations.
Fischer, Ronald; Boer, Diana
2015-10-01
We investigated the relationships between personality traits and basic value dimensions. Furthermore, we developed novel country-level hypotheses predicting that contextual threat moderates value-personality trait relationships. We conducted a three-level v-known meta-analysis of correlations between Big Five traits and Schwartz's (1992) 10 values involving 9,935 participants from 14 countries. Variations in contextual threat (measured as resource threat, ecological threat, and restrictive social institutions) were used as country-level moderator variables. We found systematic relationships between Big Five traits and human values that varied across contexts. Overall, correlations between Openness traits and the Conservation value dimension and Agreeableness traits and the Transcendence value dimension were strongest across all samples. Correlations between values and all personality traits (except Extraversion) were weaker in contexts with greater financial, ecological, and social threats. In contrast, stronger personality-value links are typically found in contexts with low financial and ecological threats and more democratic institutions and permissive social context. These effects explained on average more than 10% of the variability in value-personality correlations. Our results provide strong support for systematic linkages between personality and broad value dimensions, but they also point out that these relations are shaped by contextual factors. © 2014 Wiley Periodicals, Inc.
Grossman, Jake J; Cavender-Bares, Jeannine; Hobbie, Sarah E; Reich, Peter B; Montgomery, Rebecca A
2017-10-01
Over the last two decades, empirical work has established that higher biodiversity can lead to greater primary productivity; however, the importance of different aspects of biodiversity in contributing to such relationships is rarely elucidated. We assessed the relative importance of species richness, phylogenetic diversity, functional diversity, and identity of neighbors for stem growth 3 yr after seedling establishment in a tree diversity experiment in eastern Minnesota. Generally, we found that community-weighted means of key functional traits (including mycorrhizal association, leaf nitrogen and calcium, and waterlogging tolerance) as well as species richness were strong, independent predictors of stem biomass growth. More phylogenetically diverse communities did not consistently produce more biomass than expected, and the trait values or diversity of individual functional traits better predicted biomass production than did a multidimensional functional diversity metric. Furthermore, functional traits and species richness best predicted growth at the whole-plot level (12 m 2 ), whereas neighborhood composition best predicted growth at the focal tree level (0.25 m 2 ). The observed effects of biodiversity on growth appear strongly driven by positive complementary effects rather than by species-specific selection effects, suggesting that synergistic species' interactions rather than the influence of a few important species may drive overyielding. © 2017 by the Ecological Society of America.
Oppenheim, Sara J; Gould, Fred; Hopper, Keith R
2018-03-01
Intraspecific variation in ecologically important traits is a cornerstone of Darwin's theory of evolution by natural selection. The evolution and maintenance of this variation depends on genetic architecture, which in turn determines responses to natural selection. Some models suggest that traits with complex architectures are less likely to respond to selection than those with simple architectures, yet rapid divergence has been observed in such traits. The simultaneous evolutionary lability and genetic complexity of host plant use in the Lepidopteran subfamily Heliothinae suggest that architecture may not constrain ecological adaptation in this group. Here we investigate the response of Chloridea virescens, a generalist that feeds on diverse plant species, to selection for performance on a novel host, Physalis angulata (Solanaceae). P. angulata is the preferred host of Chloridea subflexa, a narrow specialist on the genus Physalis. In previous experiments, we found that the performance of C. subflexa on P. angulata depends on many loci of small effect distributed throughout the genome, but whether the same architecture would be involved in the generalist's adoption of P. angulata was unknown. Here we report a rapid response to selection in C. virescens for performance on P. angulata, and establish that the genetic architecture of intraspecific variation is quite similar to that of the interspecific differences in terms of the number, distribution, and effect sizes of the QTL involved. We discuss the impact of genetic architecture on the ability of Heliothine moths to respond to varying ecological selection pressures.
“Real time” genetic manipulation: a new tool for ecological field studies
Schäfer, Martin; Brütting, Christoph; Gase, Klaus; Reichelt, Michael; Baldwin, Ian; Meldau, Stefan
2014-01-01
Summary Field experiments with transgenic plants often reveal the functional significance of genetic traits important for plant performance in their natural environments. Until now, only constitutive overexpression, ectopic expression and gene silencing methods have been used to analyze gene-related phenotypes in natural habitats. These methods do not allow sufficient control over gene expression to study ecological interactions in real-time, genetic traits playing essential roles in development, or dose-dependent effects. We applied the sensitive dexamethasone (DEX)-inducible pOp6/LhGR expression system to the ecological model plant Nicotiana attenuata and established a lanolin-based DEX application method to facilitate ectopic gene expression and RNAi mediated gene silencing in the field and under challenging conditions (e.g. high temperature, wind and UV radiation). Fully established field-grown plants were used to silence phytoene desaturase and thereby cause photobleaching only in specific plant sectors, and to activate expression of the cytokinin (CK) biosynthesis gene isopentenyl transferase (ipt). We used ipt expression to analyze the role of CK’s in both the glasshouse and field to understand resistance to the native herbivore Tupiocoris notatus, which attack plants at small spatial scales. By spatially restricting ipt expression and elevating CK levels in single leaves, T. notatus damage increased, demonstrating CK’s role in this plant-herbivore interaction at a small scale. As the arena of most ecological interactions is highly constrained in time and space, these tools will advance the genetic analysis of dynamic traits that matter for plant performance in nature. PMID:23906159
Does geography or ecology best explain 'cultural' variation among chimpanzee communities?
Kamilar, Jason M; Marshack, Joshua L
2012-02-01
Much attention has been paid to geographic variation in chimpanzee behavior, but few studies have applied quantitative techniques to explain this variation. Here, we apply methods typically utilized in macroecology to explain variation in the putative cultural traits of chimpanzees. We analyzed published data containing 39 behavioral traits from nine chimpanzee communities. We used a canonical correspondence analysis to examine the relative importance of environmental characteristics and geography, which may be a proxy for inter-community gene flow and/or social transmission, for explaining geographic variation in chimpanzee behavior. We found that geography, and longitude in particular, was the best predictor of behavioral variation. Chimpanzee communities in close longitudinal proximity to each other exhibit similar behavioral repertoires, independent of local ecological factors. No ecological variables were significantly related to behavioral variation. These results support the idea that inter-community dispersal patterns have played a major role in structuring behavioral variation. We cannot be certain whether behavioral variation has a genetic basis, is the result of innovation and diffusion, or a combination of the two. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hueni, A.; Schweiger, A. K.
2015-12-01
Field spectrometry has substantially gained importance in vegetation ecology due to the increasing knowledge about causal ties between vegetation spectra and biochemical and structural plant traits. Additionally, worldwide databases enable the exchange of spectral and plant trait data and promote global research cooperation. This can be expected to further enhance the use of field spectrometers in ecological studies. However, the large amount of data collected during spectral field campaigns poses major challenges regarding data management, archiving and processing. The spectral database Specchio is designed to organize, manage, process and share spectral data and metadata. We provide an example for using Specchio based on leaf level spectra of prairie plant species collected during the 2015 field campaign of the Dimensions of Biodiversity research project, conducted at the Cedar Creek Long-Term Ecological Research site, in central Minnesota. We show how spectral data collections can be efficiently administered, organized and shared between distinct research groups and explore the capabilities of Specchio for data quality checks and initial processing steps.
Arbour, Jessica Hilary; López-Fernández, Hernán
2016-08-17
Adaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by 'ecological opportunity' are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification. We use Neotropical cichlid fishes to test if variation in rates of functional evolution is consistent with changing ecological opportunity. Across a functional morphological axis associated with ram-suction feeding traits, evolutionary rates declined through time as lineages diversified in South America. Evolutionary rates of ram-suction functional morphology also appear to have accelerated as cichlids colonized Central America and encountered renewed opportunity. Our results suggest that ecological opportunity may play an important role in shaping patterns of morphological diversity of even broadly distributed lineages like Neotropical cichlids. © 2016 The Author(s).
López-Fernández, Hernán
2016-01-01
Adaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by ‘ecological opportunity’ are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification. We use Neotropical cichlid fishes to test if variation in rates of functional evolution is consistent with changing ecological opportunity. Across a functional morphological axis associated with ram–suction feeding traits, evolutionary rates declined through time as lineages diversified in South America. Evolutionary rates of ram–suction functional morphology also appear to have accelerated as cichlids colonized Central America and encountered renewed opportunity. Our results suggest that ecological opportunity may play an important role in shaping patterns of morphological diversity of even broadly distributed lineages like Neotropical cichlids. PMID:27512144
Hoiss, Bernhard; Krauss, Jochen; Potts, Simon G; Roberts, Stuart; Steffan-Dewenter, Ingolf
2012-11-07
Knowledge about the phylogeny and ecology of communities along environmental gradients helps to disentangle the role of competition-driven processes and environmental filtering for community assembly. In this study, we evaluated patterns in species richness, phylogenetic structure and life-history traits of bee communities along altitudinal gradients in the Alps, Germany. We found a linear decline in species richness and abundance but increasing phylogenetic clustering in communities with increasing altitude. The proportion of social- and ground-nesting species, as well as mean body size and altitudinal range of bee communities, increased with increasing altitude, whereas the mean geographical distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, whereas the relative importance of competition increases at low altitudes. We conclude that inherent phylogenetic and ecological species attributes at high altitudes pose a threat for less competitive alpine specialists with ongoing climate change.
Hoiss, Bernhard; Krauss, Jochen; Potts, Simon G.; Roberts, Stuart; Steffan-Dewenter, Ingolf
2012-01-01
Knowledge about the phylogeny and ecology of communities along environmental gradients helps to disentangle the role of competition-driven processes and environmental filtering for community assembly. In this study, we evaluated patterns in species richness, phylogenetic structure and life-history traits of bee communities along altitudinal gradients in the Alps, Germany. We found a linear decline in species richness and abundance but increasing phylogenetic clustering in communities with increasing altitude. The proportion of social- and ground-nesting species, as well as mean body size and altitudinal range of bee communities, increased with increasing altitude, whereas the mean geographical distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, whereas the relative importance of competition increases at low altitudes. We conclude that inherent phylogenetic and ecological species attributes at high altitudes pose a threat for less competitive alpine specialists with ongoing climate change. PMID:22933374
USDA-ARS?s Scientific Manuscript database
All plants, including crop species, harbor a community of fungal endophyte species, however, we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the...
Climate-related genetic variation in drought-resistance of Douglas-fir ( Pseudotsuga menziesii )
Sheel Bansal; Constance A. Harrington; Peter J. Gould; J. Bradley St.Clair
2014-01-01
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits...
Gomes Rodrigues, Helder; Billet, Guillaume
2017-01-01
Investigating life history traits in mammals is crucial to understand their survival in changing environments. However, these parameters are hard to estimate in a macroevolutionary context. Here we show that the use of dental ontogenetic parameters can provide clues to better understand the adaptive nature of phenotypic traits in extinct species such as South American notoungulates. This recently extinct order of mammals evolved in a context of important geological, climatic, and environmental variations. Interestingly, notoungulates were mostly herbivorous and acquired high-crowned teeth very early in their evolutionary history. We focused on the variations in crown height, dental eruption pattern, and associated body mass of 69 notoungulate taxa, placed in their phylogenetic and geological contexts. We showed that notoungulates evolved higher crowns several times between 45 and 20 Ma, independently of the variation in body mass. Interestingly, the independent acquisitions of ever-growing teeth were systematically accompanied by eruption of molars faster than permanent premolars. These repeated associations of dental innovations have never been documented for other mammals and raise questions on their significance and causal relationships. We suggest that these correlated changes could originate from ontogenetic adjustments favored by structural constraints, and may indicate accelerated life histories. Complementarily, these more durable and efficient dentitions could be selected to cope with important ingestions of abrasive particles in the context of intensified volcanism and increasing aridity. This study demonstrates that assessing both life history and ecological traits allows a better knowledge of the specializations of extinct mammals that evolved under strong environmental constraints. PMID:28096389
The importance of retaining a phylogenetic perspective in traits-based community analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.
1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineagesmore » had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.« less
The importance of retaining a phylogenetic perspective in traits-based community analyses
Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.
2015-04-08
1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineagesmore » had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.« less
Jennings, David E; Krupa, James J; Rohr, Jason R
2016-07-01
Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush
Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul
2016-01-01
BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake in the world for a species that recently lost considerable genetic diversity and is now in recovery. Unknown is whether observed patterns are a result of an early stage of incipient speciation, gene flow-selection equilibrium, or reverse speciation causing formerly divergent ecotypes to collapse into a single gene pool.
Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele
2014-01-01
Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions.
Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele
2014-01-01
Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions. PMID:24905464
Pluck or Luck: Does Trait Variation or Chance Drive Variation in Lifetime Reproductive Success?
Snyder, Robin E; Ellner, Stephen P
2018-04-01
While there has been extensive interest in how intraspecific trait variation affects ecological processes, outcomes are highly variable even when individuals are identical: some are lucky, while others are not. Trait variation is therefore important only if it adds substantially to the variability produced by luck. We ask when trait variation has a substantial effect on variability in lifetime reproductive success (LRS), using two approaches: (1) we partition the variation in LRS into contributions from luck and trait variation and (2) we ask what can be inferred about an individual's traits and with what certainty, given their observed LRS. In theoretical stage- and size-structured models and two empirical case studies, we find that luck usually dominates the variance of LRS. Even when individuals differ substantially in ways that affect expected LRS, unless the effects of luck are substantially reduced (e.g., low variability in reproductive life span or annual fecundity), most variance in lifetime outcomes is due to luck, implying that departures from "null" models omitting trait variation will be hard to detect. Luck also obscures the relationship between realized LRS and individual traits. While trait variation may influence the fate of populations, luck often governs the lives of individuals.
Community trait overdispersion due to trophic interactions: concerns for assembly process inference
Petchey, Owen L.
2016-01-01
The expected link between competitive exclusion and community trait overdispersion has been used to infer competition in local communities, and trait clustering has been interpreted as habitat filtering. Such community assembly process inference has received criticism for ignoring trophic interactions, as competition and trophic interactions might create similar trait patterns. While other theoretical studies have generally demonstrated the importance of predation for coexistence, ours provides the first quantitative demonstration of such effects on assembly process inference, using a trait-based ecological model to simulate the assembly of a competitive primary consumer community with and without the influence of trophic interactions. We quantified and contrasted trait dispersion/clustering of the competitive communities with the absence and presence of secondary consumers. Trophic interactions most often decreased trait clustering (i.e. increased dispersion) in the competitive communities due to evenly distributed invasions of secondary consumers and subsequent competitor extinctions over trait space. Furthermore, effects of trophic interactions were somewhat dependent on model parameters and clustering metric. These effects create considerable problems for process inference from trait distributions; one potential solution is to use more process-based and inclusive models in inference. PMID:27733548
Comparisons of fish species traits from small streams to large rivers
Goldstein, R.M.; Meador, M.R.
2004-01-01
To examine the relations between fish community function and stream size, we classified 429 lotic freshwater fish species based on multiple categories within six species traits: (1) substrate preference, (2) geomorphic preference, (3) trophic ecology, (4) locomotion morphology, (5) reproductive strategy, and (6) stream size preference. Stream size categories included small streams, small, medium, and large rivers, and no size preference. The frequencies of each species trait category were determined for each stream size category based on life history information from the literature. Cluster analysis revealed the presence of covarying groups of species trait categories. One cluster (RUN) included the traits of planktivore and herbivore feeding ecology, migratory reproductive behavior and broadcast spawning, preferences for main-channel habitats, and a lack of preferences for substrate type. The frequencies of classifications for the RUN cluster varied significantly across stream size categories (P = 0.009), being greater for large rivers than for small streams and rivers. Another cluster (RIFFLE) included the traits of invertivore feeding ecology, simple nester reproductive behavior, a preference for riffles, and a preference for bedrock, boulder, and cobble-rubble substrate. No significant differences in the frequency of classifications among stream size categories were detected for the RIFFLE cluster (P = 0.328). Our results suggest that fish community function is structured by large-scale differences in habitat and is different for large rivers than for small streams and rivers. Our findings support theoretical predictions of variation in species traits among stream reaches based on ecological frameworks such as landscape filters, habitat templates, and the river continuum concept. We believe that the species trait classifications presented here provide an opportunity for further examination of fish species' relations to physical, chemical, and biological factors in lotic habitats ranging from small streams to large rivers.
A new perspective on trait differences between native and invasive exotic plants.
Leffler, A Joshua; James, Jeremy J; Monaco, Thomas A; Sheley, Roger L
2014-02-01
Functional differences between native and exotic species potentially constitute one factor responsible for plant invasion. Differences in trait values between native and exotic invasive species, however, should not be considered fixed and may depend on the context of the comparison. Furthermore, the magnitude of difference between native and exotic species necessary to trigger invasion is unknown. We propose a criterion that differences in trait values between a native and exotic invasive species must be greater than differences between co-occurring natives for this difference to be ecologically meaningful and a contributing factor to plant invasion. We used a meta-analysis to quantify the difference between native and exotic invasive species for various traits examined in previous studies and compared this value to differences among native species reported in the same studies. The effect size between native and exotic invasive species was similar to the effect size between co-occurring natives except for studies conducted in the field; in most instances, our criterion was not met although overall differences between native and exotic invasive species were slightly larger than differences between natives. Consequently, trait differences may be important in certain contexts, but other mechanisms of invasion are likely more important in most cases. We suggest that using trait values as predictors of invasion will be challenging.
Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem.
Dahlin, Kyla M; Asner, Gregory P; Field, Christopher B
2013-04-23
Understanding how and why plant communities vary across space has long been a goal of ecology, yet parsing the relative importance of different influences has remained a challenge. Species-specific models are not generalizable, whereas broad plant functional type models lack important detail. Here we consider plant trait patterns at the local scale and ask whether plant chemical traits are more closely linked to environmental gradients or to changes in species composition. We used the visible-to-shortwave infrared (VSWIR) spectrometer of the Carnegie Airborne Observatory to develop maps of four plant chemical traits--leaf nitrogen per mass, leaf carbon per mass, leaf water concentration, and canopy water content--across a diverse Mediterranean-type ecosystem (Jasper Ridge Biological Preserve, CA). For all four traits, plant community alone was the strongest predictor of trait variation (explaining 46-61% of the heterogeneity), whereas environmental gradients accounted for just one fourth of the variation in the traits. This result emphasizes the critical role that species composition plays in mediating nutrient and carbon cycling within and among different communities. Environmental filtering and limits to similarity can act strongly, simultaneously, in a spatially heterogeneous environment, but the local-scale environmental gradients alone cannot account for the variation across this landscape.
USDA-ARS?s Scientific Manuscript database
The study of the genetic basis of ecological adaptation remains in its infancy, and most studies have focused on phenotypically simple traits. Host plant use by herbivorous insects is phenotypically complex. While research has illuminated the evolutionary determinants of host use, knowledge of its...
Escudero, Adrián; Valladares, Fernando
2016-04-01
Functional traits are the center of recent attempts to unify key ecological theories on species coexistence and assembling in populations and communities. While the plethora of studies on the role of functional traits to explain patterns and dynamics of communities has rendered a complex picture due to the idiosyncrasies of each study system and approach, there is increasing evidence on their actual relevance when aspects such as different spatial scales, intraspecific variability and demography are considered.
Consumptive emasculation: the ecological and evolutionary consequences of pollen theft.
Hargreaves, Anna L; Harder, Lawrence D; Johnson, Steven D
2009-05-01
Many of the diverse animals that consume floral rewards act as efficient pollinators; however, others 'steal' rewards without 'paying' for them by pollinating. In contrast to the extensive studies of the ecological and evolutionary consequences of nectar theft, pollen theft and its implications remain largely neglected, even though it affects plant reproduction more directly. Here we review existing studies of pollen theft and find that: (1) most pollen thieves pollinate other plant species, suggesting that theft generally arises from a mismatch between the flower and thief that precludes pollen deposition, (2) bees are the most commonly documented pollen thieves, and (3) the floral traits that typically facilitate pollen theft involve either spatial or temporal separation of sex function within flowers (herkogamy and dichogamy, respectively). Given that herkogamy and dichogamy occur commonly and that bees are globally the most important floral visitors, pollen theft is likely a greatly under-appreciated component of floral ecology and influence on floral evolution. We identify the mechanisms by which pollen theft can affect plant fitness, and review the evidence for theft-induced ecological effects, including pollen limitation. We then explore the consequences of pollen theft for the evolution of floral traits and sexual systems, and conclude by identifying key directions for future research.
The niche, biogeography and species interactions
Wiens, John J.
2011-01-01
In this paper, I review the relevance of the niche to biogeography, and what biogeography may tell us about the niche. The niche is defined as the combination of abiotic and biotic conditions where a species can persist. I argue that most biogeographic patterns are created by niche differences over space, and that even ‘geographic barriers’ must have an ecological basis. However, we know little about specific ecological factors underlying most biogeographic patterns. Some evidence supports the importance of abiotic factors, whereas few examples exist of large-scale patterns created by biotic interactions. I also show how incorporating biogeography may offer new perspectives on resource-related niches and species interactions. Several examples demonstrate that even after a major evolutionary radiation within a region, the region can still be invaded by ecologically similar species from another clade, countering the long-standing idea that communities and regions are generally ‘saturated’ with species. I also describe the somewhat paradoxical situation where competition seems to limit trait evolution in a group, but does not prevent co-occurrence of species with similar values for that trait (called here the ‘competition–divergence–co-occurrence conundrum’). In general, the interface of biogeography and ecology could be a major area for research in both fields. PMID:21768150
The potential for host switching via ecological fitting in the emerald ash borer-host plant system.
Cipollini, Don; Peterson, Donnie L
2018-02-27
The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.
NASA Astrophysics Data System (ADS)
Gadeken, K.; Dorgan, K. M.; Moore, J.; Berke, S. K.
2016-02-01
Evolutionary relationships may shed light on observed patterns of diversity and functional traits when viewed through the lens of phylogeny. The potential for phylogenetic information to be used to explain patterns in community structure, such as niche partitioning and responses to stress, is extensive. Differential distribution of related species with similar functional traits suggests niche partitioning, and local redundancy in functional traits may indicate the potential for interspecific competition. In this study, we investigated phylogenetic and functional diversity as a function of habitat for sites with varying levels of oil contamination in the Northern Gulf of Mexico. Our study was conducted in a shallow benthic community at the Chandeleur Islands, a group of uninhabited barrier islands. Infauna were sampled from seagrass (Halodule wrightii) and bare sediment at three sites along the island chain that experienced variable levels of oil impact from the Deepwater Horizon oil spill. Individuals were preserved and 18S and COI genes sequenced, and a phylogenetic tree was constructed of the local community using maximum likelihood. Phylogenetic diversity and evenness were quantified. Ecologically important functional traits were then compiled into respective distance matrices, evaluated through different functional diversity indices, and assessed for correlation with the phylogeny. This integration of functional and phylogenetic diversity has the potential to provide greater insight into factors driving community structure than either metric alone. Determining relevant metrics of diversity is critical to understanding the ecological effects of major disturbances such as oil spills.
From plant traits to plant communities: a statistical mechanistic approach to biodiversity.
Shipley, Bill; Vile, Denis; Garnier, Eric
2006-11-03
We developed a quantitative method, analogous to those used in statistical mechanics, to predict how biodiversity will vary across environments, which plant species from a species pool will be found in which relative abundances in a given environment, and which plant traits determine community assembly. This provides a scaling from plant traits to ecological communities while bypassing the complications of population dynamics. Our method treats community development as a sorting process involving species that are ecologically equivalent except with respect to particular functional traits, which leads to a constrained random assembly of species; the relative abundance of each species adheres to a general exponential distribution as a function of its traits. Using data for eight functional traits of 30 herbaceous species and community-aggregated values of these traits in 12 sites along a 42-year chronosequence of secondary succession, we predicted 94% of the variance in the relative abundances.
Spitz, Jérôme; Ridoux, Vincent; Brind'Amour, Anik
2014-09-01
Understanding 'Why a prey is a prey for a given predator?' can be facilitated through trait-based approaches that identify linkages between prey and predator morphological and ecological characteristics and highlight key functions involved in prey selection. Enhanced understanding of the functional relationships between predators and their prey is now essential to go beyond the traditional taxonomic framework of dietary studies and to improve our knowledge of ecosystem functioning for wildlife conservation and management. We test the relevance of a three-matrix approach in foraging ecology among a marine mammal community in the northeast Atlantic to identify the key functional traits shaping prey selection processes regardless of the taxonomy of both the predators and prey. Our study reveals that prey found in the diet of marine mammals possess functional traits which are directly and significantly linked to predator characteristics, allowing the establishment of a functional typology of marine mammal-prey relationships. We found prey selection of marine mammals was primarily shaped by physiological and morphological traits of both predators and prey, confirming that energetic costs of foraging strategies and muscular performance are major drivers of prey selection in marine mammals. We demonstrate that trait-based approaches can provide a new definition of the resource needs of predators. This framework can be used to anticipate bottom-up effects on marine predator population dynamics and to identify predators which are sensitive to the loss of key prey functional traits when prey availability is reduced. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Valverde-Barrantes, Oscar J; Smemo, Kurt A; Feinstein, Larry M; Kershner, Mark W; Blackwood, Christopher B
2018-03-01
Functional differences between trees with arbuscular (AM) or ectomycorrhizal (ECM) partnerships influence important ecological processes including nutrient cycling, community assembly, and biomass allocation patterns. Although most broadleaf temperate forests show both mycorrhizal types, relatively few studies have addressed functional difference among coexisting mycorrhizal tree species. The maintenance of ECM associations usually requires higher C investment than AM, leading to (A) lower root biomass and (B) more conservative root trait syndromes in ECM tree species compared to AM species. Here we quantified the representation and trait syndromes of 14 canopy tree species associated with either AM or ECM fungi in a natural forest community. Our results showed that, whereas species root abundance was proportional to basal area, some ECM tree roots were largely under-represented (up to ~ 33%). Most of the under-representation was due to lower than expected root abundance of Quercus rubra and Fagus grandifolia. Functional root traits in tree species were similar, with the exception of higher tissue density in ECM species. Moreover, closely related AM and ECM exhibited similar traits, suggesting inherited trait syndrome from a common ancestor. Thus, we found little evidence of divergent functional root trait syndromes between mycorrhizal types. Cores dominated by ECM species influenced trait distribution at the community level, but not total biomass, suggesting that mycorrhizal affiliation may have a stronger effect on the spatial distribution of traits but not on biomass stocks. Our results present an important step toward relating belowground carbon dynamics to species traits, including mycorrhizal type, in broadleaf temperate forests.
Ecology, sexual selection and speciation.
Maan, Martine E; Seehausen, Ole
2011-06-01
The spectacular diversity in sexually selected traits among animal taxa has inspired the hypothesis that divergent sexual selection can drive speciation. Unfortunately, speciation biologists often consider sexual selection in isolation from natural selection, even though sexually selected traits evolve in an ecological context: both preferences and traits are often subject to natural selection. Conversely, while behavioural ecologists may address ecological effects on sexual communication, they rarely measure the consequences for population divergence. Herein, we review the empirical literature addressing the mechanisms by which natural selection and sexual selection can interact during speciation. We find that convincing evidence for any of these scenarios is thin. However, the available data strongly support various diversifying effects that emerge from interactions between sexual selection and environmental heterogeneity. We suggest that evaluating the evolutionary consequences of these effects requires a better integration of behavioural, ecological and evolutionary research. © 2011 Blackwell Publishing Ltd/CNRS.
Dean E. Pearson
2010-01-01
Indirect interactions are important for structuring ecological systems. However, research on indirect effects has been heavily biased toward top-down trophic interactions, and less is known about other indirect-interaction pathways. As autogenic ecosystem engineers, plants can serve as initiators of nontrophic indirect interactions that, like top-down pathways, can...
Animal behaviour and algal camouflage jointly structure predation and selection.
Start, Denon
2018-05-01
Trait variation can structure interactions between individuals, thus shaping selection. Although antipredator strategies are an important component of many aquatic systems, how multiple antipredator traits interact to influence consumption and selection remains contentious. Here, I use a common larval dragonfly (Epitheca canis) and its predator (Anax junius) to test for the joint effects of activity rate and algal camouflage on predation and survival selection. I found that active and poorly camouflaged Epitheca were more likely to be consumed, and thus, survival selection favoured inactive and well-camouflaged individuals. Notably, camouflage dampened selection on activity rate, likely by reducing attack rates when Epitheca encountered a predator. Correlational selection is therefore conferred by the ecological interaction of traits, rather than by opposing selection acting on linked traits. I suggest that antipredator traits with different adaptive functions can jointly structure patterns of consumption and selection. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Climate change and functional traits affect population dynamics of a long-lived seabird.
Jenouvrier, Stéphanie; Desprez, Marine; Fay, Remi; Barbraud, Christophe; Weimerskirch, Henri; Delord, Karine; Caswell, Hal
2018-07-01
Recent studies unravelled the effect of climate changes on populations through their impact on functional traits and demographic rates in terrestrial and freshwater ecosystems, but such understanding in marine ecosystems remains incomplete. Here, we evaluate the impact of the combined effects of climate and functional traits on population dynamics of a long-lived migratory seabird breeding in the southern ocean: the black-browed albatross (Thalassarche melanophris, BBA). We address the following prospective question: "Of all the changes in the climate and functional traits, which would produce the biggest impact on the BBA population growth rate?" We develop a structured matrix population model that includes the effect of climate and functional traits on the complete BBA life cycle. A detailed sensitivity analysis is conducted to understand the main pathway by which climate and functional trait changes affect the population growth rate. The population growth rate of BBA is driven by the combined effects of climate over various seasons and multiple functional traits with carry-over effects across seasons on demographic processes. Changes in sea surface temperature (SST) during late winter cause the biggest changes in the population growth rate, through their effect on juvenile survival. Adults appeared to respond to changes in winter climate conditions by adapting their migratory schedule rather than by modifying their at-sea foraging activity. However, the sensitivity of the population growth rate to SST affecting BBA migratory schedule is small. BBA foraging activity during the pre-breeding period has the biggest impact on population growth rate among functional traits. Finally, changes in SST during the breeding season have little effect on the population growth rate. These results highlight the importance of early life histories and carry-over effects of climate and functional traits on demographic rates across multiple seasons in population response to climate change. Robust conclusions about the roles of various phases of the life cycle and functional traits in population response to climate change rely on an understanding of the relationships of traits to demographic rates across the complete life cycle. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd oxn behalf of British Ecological Society.
Biases in comparative analyses of extinction risk: mind the gap.
González-Suárez, Manuela; Lucas, Pablo M; Revilla, Eloy
2012-11-01
1. Comparative analyses are used to address the key question of what makes a species more prone to extinction by exploring the links between vulnerability and intrinsic species' traits and/or extrinsic factors. This approach requires comprehensive species data but information is rarely available for all species of interest. As a result comparative analyses often rely on subsets of relatively few species that are assumed to be representative samples of the overall studied group. 2. Our study challenges this assumption and quantifies the taxonomic, spatial, and data type biases associated with the quantity of data available for 5415 mammalian species using the freely available life-history database PanTHERIA. 3. Moreover, we explore how existing biases influence results of comparative analyses of extinction risk by using subsets of data that attempt to correct for detected biases. In particular, we focus on links between four species' traits commonly linked to vulnerability (distribution range area, adult body mass, population density and gestation length) and conduct univariate and multivariate analyses to understand how biases affect model predictions. 4. Our results show important biases in data availability with c.22% of mammals completely lacking data. Missing data, which appear to be not missing at random, occur frequently in all traits (14-99% of cases missing). Data availability is explained by intrinsic traits, with larger mammals occupying bigger range areas being the best studied. Importantly, we find that existing biases affect the results of comparative analyses by overestimating the risk of extinction and changing which traits are identified as important predictors. 5. Our results raise concerns over our ability to draw general conclusions regarding what makes a species more prone to extinction. Missing data represent a prevalent problem in comparative analyses, and unfortunately, because data are not missing at random, conventional approaches to fill data gaps, are not valid or present important challenges. These results show the importance of making appropriate inferences from comparative analyses by focusing on the subset of species for which data are available. Ultimately, addressing the data bias problem requires greater investment in data collection and dissemination, as well as the development of methodological approaches to effectively correct existing biases. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory
Ferriere, Regis; Legendre, Stéphane
2013-01-01
Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause ‘evolutionary suicide’. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps. PMID:23209163
Litter sex composition affects life-history traits in yellow-bellied marmots.
Monclús, Raquel; Blumstein, Daniel T
2012-01-01
1. The presence of siblings might have long-lasting fitness consequences because they influence the early environment in which an animal develops. Several studies under laboratory conditions have shown long-lasting consequences from the presence of male siblings in utero on morphology and life-history traits. However, in wild animals, such effects of litter sex composition are unexplored. 2. We capitalized on a long-term study of individually marked yellow-bellied marmots (Marmota flaviventris) and documented the effects of weaned litter sex composition and anogenital distance on several life-history and fitness traits. 3. First, we demonstrated that the number of males in a litter influenced anogenital distance. Then, we found that masculinized females, those with larger anogenital distances, were less likely to survive their first hibernation, were more likely to disperse and were less likely to become pregnant and wean young. Males from male-biased litters had lower growth rates, but we failed to detect longer-term consequences. 4. Taken together, our results show profound sex-dependent effects of litter sex composition, probably due to differential prenatal exposure to androgens, in free-living animals. We conclude that masculinization might constitute an alternative mechanism explaining variation in different demographic traits. This finding highlights the importance of studying these maternal effects, and they enhance our concern over the widespread use of endocrine disrupting compounds. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Philipson, Christopher D; Dent, Daisy H; O’Brien, Michael J; Chamagne, Juliette; Dzulkifli, Dzaeman; Nilus, Reuben; Philips, Sam; Reynolds, Glen; Saner, Philippe; Hector, Andy
2014-01-01
A life-history trade-off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged-over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species-specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed-effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed-effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade-off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade-off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments. PMID:25478157
Timing as a sexually selected trait: the right mate at the right moment.
Hau, Michaela; Dominoni, Davide; Casagrande, Stefania; Buck, C Loren; Wagner, Gabriela; Hazlerigg, David; Greives, Timothy; Hut, Roelof A
2017-11-19
Sexual selection favours the expression of traits in one sex that attract members of the opposite sex for mating. The nature of sexually selected traits such as vocalization, colour and ornamentation, their fitness benefits as well as their costs have received ample attention in field and laboratory studies. However, sexually selected traits may not always be expressed: coloration and ornaments often follow a seasonal pattern and behaviours may be displayed only at specific times of the day. Despite the widely recognized differences in the daily and seasonal timing of traits and their consequences for reproductive success, the actions of sexual selection on the temporal organization of traits has received only scant attention. Drawing on selected examples from bird and mammal studies, here we summarize the current evidence for the daily and seasonal timing of traits. We highlight that molecular advances in chronobiology have opened exciting new opportunities for identifying the genetic targets that sexual selection may act on to shape the timing of trait expression. Furthermore, known genetic links between daily and seasonal timing mechanisms lead to the hypothesis that selection on one timescale may simultaneously also affect the other. We emphasize that studies on the timing of sexual displays of both males and females from wild populations will be invaluable for understanding the nature of sexual selection and its potential to act on differences within and between the sexes in timing. Molecular approaches will be important for pinpointing genetic components of biological rhythms that are targeted by sexual selection, and to clarify whether these represent core or peripheral components of endogenous clocks. Finally, we call for a renewed integration of the fields of evolution, behavioural ecology and chronobiology to tackle the exciting question of how sexual selection contributes to the evolution of biological clocks.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).
Framework for analyzing ecological trait-based models in multidimensional niche spaces
NASA Astrophysics Data System (ADS)
Biancalani, Tommaso; DeVille, Lee; Goldenfeld, Nigel
2015-05-01
We develop a theoretical framework for analyzing ecological models with a multidimensional niche space. Our approach relies on the fact that ecological niches are described by sequences of symbols, which allows us to include multiple phenotypic traits. Ecological drivers, such as competitive exclusion, are modeled by introducing the Hamming distance between two sequences. We show that a suitable transform diagonalizes the community interaction matrix of these models, making it possible to predict the conditions for niche differentiation and, close to the instability onset, the asymptotically long time population distributions of niches. We exemplify our method using the Lotka-Volterra equations with an exponential competition kernel.
The evolutionary and behavioral modification of consumer responses to environmental change.
Abrams, Peter A
2014-02-21
How will evolution or other forms of adaptive change alter the response of a consumer species' population density to environmentally driven changes in population growth parameters? This question is addressed by analyzing some simple consumer-resource models to separate the ecological and evolutionary components of the population's response. Ecological responses are always decreased population size, but evolution of traits that have effects on both resource uptake rate and another fitness-related parameter may magnify, offset, or reverse this population decrease. Evolution can change ecologically driven decreases in population size to increases; this is likely when: (1) resources are initially below the density that maximizes resource growth, and (2) the evolutionary response decreases the consumer's resource uptake rate. Evolutionary magnification of the ecological decreases in population size can occur when the environmental change is higher trait-independent mortality. Such evolution-driven decreases are most likely when uptake-rate traits increase and the resource is initially below its maximum growth density. It is common for the difference between the new eco-evolutionary equilibrium and the new ecological equilibrium to be larger than that between the original and new ecological equilibrium densities. The relative magnitudes of ecological and evolutionary effects often depend sensitively on the magnitude of the environmental change and the nature of resource growth. © 2013 Elsevier Ltd. All rights reserved.
On the relationship between phylogenetic diversity and trait diversity.
Tucker, Caroline M; Davies, T Jonathan; Cadotte, Marc W; Pearse, William D
2018-05-21
Niche differences are key to understanding the distribution and structure of biodiversity. To examine niche differences, we must first characterize how species occupy niche space, and two approaches are commonly used in the ecological literature. The first uses species traits to estimate multivariate trait space (so-called functional trait diversity, FD); the second quantifies the amount of time or evolutionary history captured by a group of species (phylogenetic diversity, PD). It is often-but controversially-assumed that these putative measures of niche space are at a minimum correlated and perhaps redundant, since more evolutionary time allows for greater accumulation of trait changes. This theoretical expectation remains surprisingly poorly evaluated, particularly in the context of multivariate measures of trait diversity. We evaluated the relationship between phylogenetic diversity and trait diversity using analytical and simulation-based methods across common models of trait evolution. We show that PD correlates with FD increasingly strongly as more traits are included in the FD measure. Our results indicate that phylogenetic diversity can be a useful surrogate for high-dimensional trait diversity, but we also show that the correlation weakens when the underlying process of trait evolution includes variation in rate and optima. © 2018 by the Ecological Society of America.
Ecological selectivity of the emerging mass extinction in the oceans.
Payne, Jonathan L; Bush, Andrew M; Heim, Noel A; Knope, Matthew L; McCauley, Douglas J
2016-09-16
To better predict the ecological and evolutionary effects of the emerging biodiversity crisis in the modern oceans, we compared the association between extinction threat and ecological traits in modern marine animals to associations observed during past extinction events using a database of 2497 marine vertebrate and mollusc genera. We find that extinction threat in the modern oceans is strongly associated with large body size, whereas past extinction events were either nonselective or preferentially removed smaller-bodied taxa. Pelagic animals were victimized more than benthic animals during previous mass extinctions but are not preferentially threatened in the modern ocean. The differential importance of large-bodied animals to ecosystem function portends greater future ecological disruption than that caused by similar levels of taxonomic loss in past mass extinction events. Copyright © 2016, American Association for the Advancement of Science.
Leaf-IT: An Android application for measuring leaf area.
Schrader, Julian; Pillar, Giso; Kreft, Holger
2017-11-01
The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.
Sex ratio variation shapes the ecological effects of a globally introduced freshwater fish
Fryxell, David C.; Arnett, Heather A.; Apgar, Travis M.; Kinnison, Michael T.; Palkovacs, Eric P.
2015-01-01
Sex ratio and sexual dimorphism have long been of interest in population and evolutionary ecology, but consequences for communities and ecosystems remain untested. Sex ratio could influence ecological conditions whenever sexual dimorphism is associated with ecological dimorphism in species with strong ecological interactions. We tested for ecological implications of sex ratio variation in the sexually dimorphic western mosquitofish, Gambusia affinis. This species causes strong pelagic trophic cascades and exhibits substantial variation in adult sex ratios. We found that female-biased populations induced stronger pelagic trophic cascades compared with male-biased populations, causing larger changes to key community and ecosystem responses, including zooplankton abundance, phytoplankton abundance, productivity, pH and temperature. The magnitude of such effects indicates that sex ratio is important for mediating the ecological role of mosquitofish. Because both sex ratio variation and sexual dimorphism are common features of natural populations, our findings should encourage broader consideration of the ecological significance of sex ratio variation in nature, including the relative contributions of various sexually dimorphic traits to these effects. PMID:26490793
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iversen, C. M.; Powell, A. S.; McCormack, M. L.
To address the need for a centralized root trait database, we are compiling the Fine-Root Ecology Database (FRED) from published literature and unpublished data. FRED Version 1 (FRED 1.0) currently houses more than 70,000 observations of root traits and their associated site, vegetation, edaphic, and climatic conditions from across the globe (see image below, which shows the more than 1000 distinct locations associated with observations in FRED 1.0). Data collection is ongoing and will continue for the foreseeable future. The more than 300 root traits currently housed in FRED 1.0 are described in detail here. FRED is focused on finemore » roots (less than 2 mm), as coarse roots are studied using different methodology, often at very different scales, and have different traits and trait interpretations.« less
A global exploration of fine-root trait variation: opening the black box
USDA-ARS?s Scientific Manuscript database
A major part of ecosystem functioning relies on processes below ground, which are governed by fine root traits. This study synthesizes published and unpublished fine-root trait data available worldwide (>9000 observations from >1100 species on 14 traits) and examines their ecological value and globa...
USDA-ARS?s Scientific Manuscript database
1. Plant functional traits provide a mechanistic basis for understanding ecological variation among plant species and the implications of this variation for species distribution, community assembly and restoration. 2. The bulk of our functional trait understanding, however, is centered on traits rel...
A global database of nitrogen and phosphorus excretion rates of aquatic animals
Vanni, Michael J.; McIntyre, Peter B.; Allen, Dennis; ...
2017-03-06
Though their importance varies greatly among species and ecosystems, animals can be important in modulating ecosystem-level nutrient cycling. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater andmore » marine animals of N and/or P excretion rates. Furthermore, these observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. We used this data set to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).« less
A global database of nitrogen and phosphorus excretion rates of aquatic animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanni, Michael J.; McIntyre, Peter B.; Allen, Dennis
Though their importance varies greatly among species and ecosystems, animals can be important in modulating ecosystem-level nutrient cycling. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater andmore » marine animals of N and/or P excretion rates. Furthermore, these observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. We used this data set to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).« less
Palkovacs, Eric P.; Wasserman, Ben A.; Kinnison, Michael T.
2011-01-01
Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a “sharpening” of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems. PMID:21526156
Parasitism and the evolutionary ecology of animal personality
Barber, Iain; Dingemanse, Niels J.
2010-01-01
The ecological factors responsible for the evolution of individual differences in animal personality (consistent individual differences in the same behaviour across time and contexts) are currently the subject of intense debate. A limited number of ecological factors have been investigated to date, with most attention focusing on the roles of resource competition and predation. We suggest here that parasitism may play a potentially important, but largely overlooked, role in the evolution of animal personalities. We identify two major routes by which parasites might influence the evolution of animal personality. First, because the risk of acquiring parasites can be influenced by an individual's behavioural type, local parasite regimes may impose selection on personality traits and behavioural syndromes (correlations between personality traits). Second, because parasite infections have consequences for aspects of host ‘state’, parasites might induce the evolution of individual differences in certain types of host behaviour in populations with endemic infections. Also, because infection often leads to specific changes in axes of personality, parasite infections have the potential to decouple behavioural syndromes. Host–parasite systems therefore provide researchers with valuable tools to study personality variation and behavioural syndromes from a proximate and ultimate perspective. PMID:21078659
Toscano, Benjamin J; Gownaris, Natasha J; Heerhartz, Sarah M; Monaco, Cristián J
2016-09-01
Behavioral traits and diet were traditionally thought to be highly plastic within individuals. This view was espoused in the widespread use of optimality models, which broadly predict that individuals can modify behavioral traits and diet across ecological contexts to maximize fitness. Yet, research conducted over the past 15 years supports an alternative view; fundamental behavioral traits (e.g., activity level, exploration, sociability, boldness and aggressiveness) and diet often vary among individuals and this variation persists over time and across contexts. This phenomenon has been termed animal personality with regard to behavioral traits and individual specialization with regard to diet. While these aspects of individual-level phenotypic variation have been thus far studied in isolation, emerging evidence suggests that personality and individual specialization may covary, or even be causally related. Building on this work, we present the overarching hypothesis that animal personality can drive specialization through individual differences in various aspects of consumer foraging behavior. Specifically, we suggest pathways by which consumer personality traits influence foraging activity, risk-dependent foraging, roles in social foraging groups, spatial aspects of foraging and physiological drivers of foraging, which in turn can lead to consistent individual differences in food resource use. These pathways provide a basis for generating testable hypotheses directly linking animal personality to ecological dynamics, a major goal in contemporary behavioral ecology.
Marzluff, John
2017-01-01
Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation—variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity—has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920374
Gomes, A C R; Funghi, C; Soma, M; Sorenson, M D; Cardoso, G C
2017-07-01
Sexual traits (e.g. visual ornaments, acoustic signals, courtship behaviour) are often displayed together as multimodal signals. Some hypotheses predict joint evolution of different sexual signals (e.g. to increase the efficiency of communication) or that different signals trade off with each other (e.g. due to limited resources). Alternatively, multiple signals may evolve independently for different functions, or to communicate different information (multiple message hypothesis). We evaluated these hypotheses with a comparative study in the family Estrildidae, one of the largest songbird radiations, and one that includes many model species for research in sexual selection and communication. We found little evidence for either joint evolution or trade-offs between song and colour ornamentation. Some negative correlations between dance repertoire and song traits may suggest a functional compromise, but generally courtship dance also evolved independently from other signals. Instead of correlated evolution, we found that song, dance and colour are each related to different socio-ecological traits. Song complexity evolved together with ecological generalism, song performance with investment in reproduction, dance with commonness and habitat type, whereas colour ornamentation was shown previously to correlate mostly with gregariousness. We conclude that multimodal signals evolve in response to various socio-ecological traits, suggesting the accumulation of distinct signalling functions. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Schizotypal Traits and the Dark Triad From an Ecological Perspective: A Nonclinical Sample Study.
Láng, András; Birkás, Béla; Martin, László; Nagy, Tünde; Kállai, János
2017-01-01
The Dark Triad is a collection of socially aversive personality traits, namely subclinical psychopathy, Machiavellianism, and subclinical narcissism. These deviant traits, however, contribute to the success of individuals with dark personality traits. Therefore, Dark Triad traits can be conceived as pseudopathologies. Schizotypal traits have also been studies from the perspective of behavioral adaptations. In this study, we investigated whether schizotypal traits were associated with the Dark Triad traits and how schizotypal symptoms can be considered as parts of dark interpersonal strategies that contribute to the individual success of people with dark personality traits. A sample of 277 university students (198 females and 79 males; M age = 20.64; SD age = 2.15) were recruited to fill out the Short Dark Triad and the Schizotypal Personality Questionnaire-Brief Revised. Statistical analyses revealed that Machiavellianism was positively associated with restricted emotional and social life. Narcissism was negatively associated with interpersonal problems. Psychopathy was positively associated with distorted perceptions/cognitions and disorganization. Results of the study are discussed within a behavioral ecology framework. This perspective emphasizes the adaptive values connected to schizotypal personality traits. We further discuss how these adaptive traits fit into strategies of individuals with Dark Triad traits, and how these schizotypal traits might restrict or further promote their individual success.
Lõhmus, Kertu; Paal, Taavi; Liira, Jaan
2014-08-01
Species colonization in a new habitat patch is an efficiency indicator of biodiversity conservation. Colonization is a two-step process of dispersal and establishment, characterized by the compatibility of plant traits with landscape structure and habitat conditions. Therefore, ecological trait profiling of specialist species is initially required to estimate the relative importance of colonization filters. Old planted parks best satisfy the criteria of a newly created and structurally matured habitat for forest-dwelling plant species. We sampled species in 230 ancient deciduous forests (source habitat), 74 closed-canopy manor parks (target habitats), 151 linear wooded habitats (landscape corridors), and 97 open habitats (isolating matrix) in Estonia. We defined two species groups of interest: forest (107 species) and corridor specialists (53 species). An extra group of open habitat specialists was extracted for trait scaling. Differing from expectations, forest specialists have high plasticity in reproduction mechanisms: smaller seeds, larger dispersules, complementary selfing ability, and diversity of dispersal vectors. Forest specialists are shorter, less nutrient-demanding and mycorrhizal-dependent, stress-tolerant disturbance-sensitive competitors, while corridor specialists are large-seeded disturbance-tolerant competitors. About 40% of species from local species pools have immigrated into parks. The historic forest area, establishment-related traits, and stand quality enhance the colonization of forest specialists. The openness of landscape and mowing in the park facilitate corridor specialists. Species traits in parks vary between a forest and corridor specialist, except for earlier flowering and larger propagules. Forest species are not dispersal limited, but they continue to be limited by habitat properties even in the long term. Therefore, the shady parts of historic parks should be appreciated as important forest biodiversity-enhancing landscape structures. The habitat quality of secondary stands can be improved by nurturing a heterogeneous shrub and tree layer, and modest herb layer management.
Lõhmus, Kertu; Paal, Taavi; Liira, Jaan
2014-01-01
Species colonization in a new habitat patch is an efficiency indicator of biodiversity conservation. Colonization is a two-step process of dispersal and establishment, characterized by the compatibility of plant traits with landscape structure and habitat conditions. Therefore, ecological trait profiling of specialist species is initially required to estimate the relative importance of colonization filters. Old planted parks best satisfy the criteria of a newly created and structurally matured habitat for forest-dwelling plant species. We sampled species in 230 ancient deciduous forests (source habitat), 74 closed-canopy manor parks (target habitats), 151 linear wooded habitats (landscape corridors), and 97 open habitats (isolating matrix) in Estonia. We defined two species groups of interest: forest (107 species) and corridor specialists (53 species). An extra group of open habitat specialists was extracted for trait scaling. Differing from expectations, forest specialists have high plasticity in reproduction mechanisms: smaller seeds, larger dispersules, complementary selfing ability, and diversity of dispersal vectors. Forest specialists are shorter, less nutrient-demanding and mycorrhizal-dependent, stress-tolerant disturbance-sensitive competitors, while corridor specialists are large-seeded disturbance-tolerant competitors. About 40% of species from local species pools have immigrated into parks. The historic forest area, establishment-related traits, and stand quality enhance the colonization of forest specialists. The openness of landscape and mowing in the park facilitate corridor specialists. Species traits in parks vary between a forest and corridor specialist, except for earlier flowering and larger propagules. Forest species are not dispersal limited, but they continue to be limited by habitat properties even in the long term. Therefore, the shady parts of historic parks should be appreciated as important forest biodiversity-enhancing landscape structures. The habitat quality of secondary stands can be improved by nurturing a heterogeneous shrub and tree layer, and modest herb layer management. PMID:25247068
Schmitz, Oswald
2017-01-01
Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.
Lee, Chang-Hun
2011-05-01
The aim of this study is to identify an ecological prediction model of bullying behaviors. Based on an ecological systems theory, this study identifies significant factors influencing bullying behaviors at different levels of middle and high school. These levels include the microsystem, mesosystem, exosystem, and macrosystem. More specifically, the ecological factors investigated in this multilevel analysis are individual traits, family experiences, parental involvement, school climate, and community characteristics. Using data collected in 2008 from 485 randomly selected students in a school district, this study identifies a best-fitting structural model of bullying behavior. Findings suggest that the ecological model accounted for a high portion of variance in bullying behaviors. All of the ecological systems as well as individual traits were found to be significant influences on bullying behaviors either directly or indirectly.
Intraspecific variability and reaction norms of forest understory plant species traits
Burton, Julia I.; Perakis, Steven; McKenzie, Sean C.; Lawrence, Caitlin E.; Puettmann, Klaus J.
2017-01-01
Trait-based models of ecological communities typically assume intraspecific variation in functional traits is not important, though such variation can change species trait rankings along gradients in resources and environmental conditions, and thus influence community structure and function.We examined the degree of intraspecific relative to interspecific variation, and reaction norms of 11 functional traits for 57 forest understory plant species, including: intrinsic water-use efficiency (iWUE), Δ15N, 5 leaf traits, 2 stem traits and 2 root traits along gradients in light, nitrogen, moisture and understory cover.Our results indicate that interspecific trait variation exceeded intraspecific variation by at least 50% for most, but not all traits. Intraspecific variation in Δ15N, iWUE, leaf nitrogen content and root traits was high (47-70%) compared with most leaf traits and stem traits (13-38%).Δ15N varied primarily along gradients in abiotic conditions, while light and understory cover were relatively less important. iWUE was related primarily to light transmission, reflecting increases in photosynthesis relative to stomatal conductance. Leaf traits varied mainly as a function of light availability, with some reaction norms depending on understory cover. Plant height increased with understory cover, while stem specific density was related primarily to light. Resources, environmental conditions and understory cover did not contribute strongly to the observed variation in root traits.Gradients in resources, environmental conditions and competition all appear to control intraspecific variability in most traits to some extent. However, our results suggest that species cross-over (i.e., trait rank reversals) along the gradients measured here are generally not a concern.Intraspecific variability in understory plant species traits can be considerable. However, trait data collected under a narrow range of environmental conditions appears sufficient to establish species rankings and scale between community and ecosystem levels using trait-based models. Investigators may therefore focus on obtaining a sufficient sample size within a single set of conditions rather than characterizing trait variation across entire gradients in order to optimize sampling efforts.
NASA Astrophysics Data System (ADS)
Shiklomanov, A. N.; Cowdery, E.; Dietze, M.
2016-12-01
Recent syntheses of global trait databases have revealed that although the functional diversity among plant species is immense, this diversity is constrained by trade-offs between plant strategies. However, the use of among-trait and trait-environment correlations at the global scale for both qualitative ecological inference and land surface modeling has several important caveats. An alternative approach is to preserve the existing PFT-based model structure while using statistical analyses to account for uncertainty and variability in model parameters. In this study, we used a hierarchical Bayesian model of foliar traits in the TRY database to test the following hypotheses: (1) Leveraging the covariance between foliar traits will significantly constrain our uncertainty in their distributions; and (2) Among-trait covariance patterns are significantly different among and within PFTs, reflecting differences in trade-offs associated with biome-level evolution, site-level community assembly, and individual-level ecophysiological acclimation. We found that among-trait covariance significantly constrained estimates of trait means, and the additional information provided by across-PFT covariance led to more constraint still, especially for traits and PFTs with low sample sizes. We also found that among-trait correlations were highly variable among PFTs, and were generally inconsistent with correlations within PFTs. The hierarchical multivariate framework developed in our study can readily be enhanced with additional levels of hierarchy to account for geographic, species, and individual-level variability.
Leaf optical properties shed light on foliar trait variability at individual to global scales
NASA Astrophysics Data System (ADS)
Shiklomanov, A. N.; Serbin, S.; Dietze, M.
2017-12-01
Recent syntheses of large trait databases have contributed immensely to our understanding of drivers of plant function at the global scale. However, the global trade-offs revealed by such syntheses, such as the trade-off between leaf productivity and resilience (i.e. "leaf economics spectrum"), are often absent at smaller scales and fail to correlate with actual functional limitations. An improved understanding of how traits vary among communities, species, and individuals is critical to accurate representations of vegetation ecophysiology and ecological dynamics in ecosystem models. Spectral data from both field observations and remote sensing platforms present a rich and widely available source of information on plant traits. Here, we apply Bayesian inversion of the PROSPECT leaf radiative transfer model to a large global database of over 60,000 field spectra and plant traits to (1) comprehensively assess the accuracy of leaf trait estimation using PROSPECT spectral inversion; (2) investigate the correlations between optical traits estimable from PROSPECT and other important foliar traits such as nitrogen and lignin concentrations; and (3) identify dominant sources of variability and characterize trade-offs in optical and non-optical foliar traits. Our work provides a key methodological contribution by validating physically-based retrieval of plant traits from remote sensing observations, and provides insights about trait trade-offs related to plant acclimation, adaptation, and community assembly.
Frainer, André; McKie, Brendan G; Malmqvist, Björn
2014-03-01
Despite ample experimental evidence indicating that biodiversity might be an important driver of ecosystem processes, its role in the functioning of real ecosystems remains unclear. In particular, the understanding of which aspects of biodiversity are most important for ecosystem functioning, their importance relative to other biotic and abiotic drivers, and the circumstances under which biodiversity is most likely to influence functioning in nature, is limited. We conducted a field study that focussed on a guild of insect detritivores in streams, in which we quantified variation in the process of leaf decomposition across two habitats (riffles and pools) and two seasons (autumn and spring). The study was conducted in six streams, and the same locations were sampled in the two seasons. With the aid of structural equations modelling, we assessed spatiotemporal variation in the roles of three key biotic drivers in this process: functional diversity, quantified based on a species trait matrix, consumer density and biomass. Our models also accounted for variability related to different litter resources, and other sources of biotic and abiotic variability among streams. All three of our focal biotic drivers influenced leaf decomposition, but none was important in all habitats and seasons. Functional diversity had contrasting effects on decomposition between habitats and seasons. A positive relationship was observed in pool habitats in spring, associated with high trait dispersion, whereas a negative relationship was observed in riffle habitats during autumn. Our results demonstrate that functional biodiversity can be as significant for functioning in natural ecosystems as other important biotic drivers. In particular, variation in the role of functional diversity between seasons highlights the importance of fluctuations in the relative abundances of traits for ecosystem process rates in real ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Gossner, Martin M.; Grass, Ingo; Arnstadt, Tobias; Hofrichter, Martin; Floren, Andreas; Linsenmair, Karl Eduard; Weisser, Wolfgang W.; Steffan-Dewenter, Ingolf
2017-01-01
The specialization of ecological networks provides important insights into possible consequences of biodiversity loss for ecosystem functioning. However, mostly mutualistic and antagonistic interactions of living organisms have been studied, whereas detritivore networks and their successional changes are largely unexplored. We studied the interactions of saproxylic (deadwood-dependent) beetles with their dead host trees. In a large-scale experiment, 764 logs of 13 tree species were exposed to analyse network structure of three trophic groups of saproxylic beetles over 3 successional years. We found remarkably high specialization of deadwood-feeding xylophages and lower specialization of fungivorous and predatory species. During deadwood succession, community composition, network specialization and network robustness changed differently for the functional groups. To reveal potential drivers of network specialization, we linked species' functional traits to their network roles, and tested for trait matching between plant (i.e. chemical compounds) and beetle (i.e. body size) traits. We found that both plant and animal traits are major drivers of species specialization, and that trait matching can be more important in explaining interactions than neutral processes reflecting species abundance distributions. High network specialization in the early successional stage and decreasing network robustness during succession indicate vulnerability of detritivore networks to reduced tree species diversity and beetle extinctions, with unknown consequences for wood decomposition and nutrient cycling. PMID:28469020
Untangling the fungal niche: the trait-based approach.
Crowther, Thomas W; Maynard, Daniel S; Crowther, Terence R; Peccia, Jordan; Smith, Jeffrey R; Bradford, Mark A
2014-01-01
Fungi are prominent components of most terrestrial ecosystems, both in terms of biomass and ecosystem functioning, but the hyper-diverse nature of most communities has obscured the search for unifying principles governing community organization. In particular, unlike plants and animals, observational studies provide little evidence for the existence of niche processes in structuring fungal communities at broad spatial scales. This limits our capacity to predict how communities, and their functioning, vary across landscapes. We outline how a shift in focus, from taxonomy toward functional traits, might prove to be valuable in the search for general patterns in fungal ecology. We build on theoretical advances in plant and animal ecology to provide an empirical framework for a trait-based approach in fungal community ecology. Drawing upon specific characteristics of the fungal system, we highlight the significance of drought stress and combat in structuring free-living fungal communities. We propose a conceptual model to formalize how trade-offs between stress-tolerance and combative dominance are likely to organize communities across environmental gradients. Given that the survival of a fungus in a given environment is contingent on its ability to tolerate antagonistic competitors, measuring variation in combat trait expression along environmental gradients provides a means of elucidating realized, from fundamental niche spaces. We conclude that, using a trait-based understanding of how niche processes structure fungal communities across time and space, we can ultimately link communities with ecosystem functioning. Our trait-based framework highlights fundamental uncertainties that require testing in the fungal system, given their potential to uncover general mechanisms in fungal ecology.
Saunders, Megan; Glenn, Anthony E; Kohn, Linda M
2010-01-01
All plants, including crop species, harbor a community of fungal endophyte species, yet we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the study of functional trait variation in the host and its fungal consortium. We review studies on crop endophytes that investigate plant and fungal traits likely to be important in endophyte community processes. We focus on approaches that could speed detection of general trends in endophyte community assembly: (i) use of the ‘assembly rules’ concept to identify specific mechanisms that influence endophyte community dynamics, (ii) measurement of functional trait variation in plants and fungi to better understand endophyte community processes and plant–fungal interactions, and (iii) investigation of microbe–microbe interactions, and fungal traits that mediate them. This approach is well suited for research in agricultural systems, where pair-wise host–fungus interactions and mechanisms of fungal–fungal competition have frequently been described. Areas for consideration include the possibility that human manipulation of crop phenotype and deployment of fungal biocontrol species can significantly influence endophyte community assembly. Evaluation of endophyte assembly rules may help to fine-tune crop management strategies. PMID:25567944
Johnson, M T J; Agrawal, A A; Maron, J L; Salminen, J-P
2009-06-01
This study explored genetic variation and co-variation in multiple functional plant traits. Our goal was to characterize selection, heritabilities and genetic correlations among different types of traits to gain insight into the evolutionary ecology of plant populations and their interactions with insect herbivores. In a field experiment, we detected significant heritable variation for each of 24 traits of Oenothera biennis and extensive genetic covariance among traits. Traits with diverse functions formed several distinct groups that exhibited positive genetic covariation with each other. Genetic variation in life-history traits and secondary chemistry together explained a large proportion of variation in herbivory (r(2) = 0.73). At the same time, selection acted on lifetime biomass, life-history traits and two secondary compounds of O. biennis, explaining over 95% of the variation in relative fitness among genotypes. The combination of genetic covariances and directional selection acting on multiple traits suggests that adaptive evolution of particular traits is constrained, and that correlated evolution of groups of traits will occur, which is expected to drive the evolution of increased herbivore susceptibility. As a whole, our study indicates that an examination of genetic variation and covariation among many different types of traits can provide greater insight into the evolutionary ecology of plant populations and plant-herbivore interactions.
Pigmentation in Xiphophorus: an emerging system in ecological and evolutionary genetics.
Culumber, Zachary W
2014-02-01
The genus Xiphophorus has great potential to contribute to the study of vertebrate pigmentation and elucidating the relative influence of ecology, physiology, and behavior on evolution at the molecular level. More importantly, the association between pigmentation and a functional oncogene offers the potential to understand the evolution and maintenance of cancer-causing genetic elements. Using criteria laid out recently in the literature, I demonstrate the power of the Xiphophorus system for studying pigment evolution through integrative organismal biology. Using the most recent phylogeny, the phylogenetic distribution of several important pigmentation loci are reevaluated. I then review support for existing hypotheses of the functional importance of pigmentation. Finally, new observations and hypotheses regarding some of the characteristics of pigment patterns in natural populations and open questions and future directions in the study of the evolution of these traits are discussed.
The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish.
Stagaman, Keaton; Burns, Adam R; Guillemin, Karen; Bohannan, Brendan Jm
2017-07-01
All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1 - zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.
Friess, Daniel A.; Krauss, Ken W.; Horstman, Erik M.; Balke, Thorsten; Bouma, Tjeerd J.; Galli, Demis; Webb, Edward L.
2011-01-01
Intertidal wetlands such as saltmarshes and mangroves provide numerous important ecological functions, though they are in rapid and global decline. To better conserve and restore these wetland ecosystems, we need an understanding of the fundamental natural bottlenecks and thresholds to their establishment and long-term ecological maintenance. Despite inhabiting similar intertidal positions, the biological traits of these systems differ markedly in structure, phenology, life history, phylogeny and dispersal, suggesting large differences in biophysical interactions. By providing the first systematic comparison between saltmarshes and mangroves, we unravel how the interplay between species-specific life-history traits, biophysical interactions and biogeomorphological feedback processes determine where, when and what wetland can establish, the thresholds to long-term ecosystem stability, and constraints to genetic connectivity between intertidal wetland populations at the landscape level. To understand these process interactions, research into the constraints to wetland development, and biological adaptations to overcome these critical bottlenecks and thresholds requires a truly interdisciplinary approach.
Bustos-Segura, Carlos; Poelman, Erik H; Reichelt, Michael; Gershenzon, Jonathan; Gols, Rieta
2017-01-01
Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Foote, Andrew D; Newton, Jason; Piertney, Stuart B; Willerslev, Eske; Gilbert, M Thomas P
2009-12-01
Ecological divergence has a central role in speciation and is therefore an important source of biodiversity. Studying the micro-evolutionary processes of ecological diversification at its early stages provides an opportunity for investigating the causative mechanisms and ecological conditions promoting divergence. Here we use morphological traits, nitrogen stable isotope ratios and tooth wear to characterize two disparate types of North Atlantic killer whale. We find a highly specialist type, which reaches up to 8.5 m in length and a generalist type which reaches up to 6.6 m in length. There is a single fixed genetic difference in the mtDNA control region between these types, indicating integrity of groupings and a shallow divergence. Phylogenetic analysis indicates this divergence is independent of similar ecological divergences in the Pacific and Antarctic. Niche-width in the generalist type is more strongly influenced by between-individual variation rather than within-individual variation in the composition of the diet. This first step to divergent specialization on different ecological resources provides a rare example of the ecological conditions at the early stages of adaptive radiation.
Sanchez, Alvaro; Gore, Jeff
2013-01-01
The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate of those species that rely on cooperation for their survival. PMID:23637571
[Trait variability in ontogenesis of epiphytic lichen Hypogymnia physodes (L.) Nyl].
Suetina, Iu G; Glotov, N V
2014-01-01
Ontogenesis of the foliose lichen Hypogymniaphysodes has been described on the basis of the material obtained from natural populations. Ontogenetic dynamics (diameter of thallus and the number of lobes) and the features of reproductive structures (the number and diameter of labelloid and galeated sorales) were studied in ecologically different pine forests. We reasonably rejected the use of the variance analysis and nonparametric criteria for the result processing. It was shown that the median dynamics and trait variance may be either similar or different throughout the ontogenesis. The trait variances in ecologically different ecotopes were shown to be different.
Picante: R tools for integrating phylogenies and ecology.
Kembel, Steven W; Cowan, Peter D; Helmus, Matthew R; Cornwell, William K; Morlon, Helene; Ackerly, David D; Blomberg, Simon P; Webb, Campbell O
2010-06-01
Picante is a software package that provides a comprehensive set of tools for analyzing the phylogenetic and trait diversity of ecological communities. The package calculates phylogenetic diversity metrics, performs trait comparative analyses, manipulates phenotypic and phylogenetic data, and performs tests for phylogenetic signal in trait distributions, community structure and species interactions. Picante is a package for the R statistical language and environment written in R and C, released under a GPL v2 open-source license, and freely available on the web (http://picante.r-forge.r-project.org) and from CRAN (http://cran.r-project.org).
Hao, Guang-You; Goldstein, Guillermo; Sack, Lawren; Holbrook, N Michele; Liu, Zhi-Hui; Wang, Ai-Ying; Harrison, Rhett D; Su, Zhi-Hui; Cao, Kun-Fang
2011-11-01
Woody hemiepiphytic species (Hs) are important components of tropical rain forests, and they have been hypothesized to differ from non-hemiepiphytic tree species (NHs) in adaptations relating to water relations and carbon economy; but few studies have been conducted comparing ecophysiological traits between the two growth forms especially in an evolutionary context. Using common-garden plants of the genus Ficus, functional traits related to plant hydraulics and carbon economy were compared for seven NHs and seven Hs in their adult terrestrial "tree-like" growth phase. We used phylogenetically independent contrasts to test the hypothesis that differences in water availability selected for contrasting suites of traits in Hs and NHs, driving evolutionary correlations among functional traits including hydraulic conductivity and photosynthetic traits. Species of the two growth forms differed in functional traits; Hs had substantially lower xylem hydraulic conductivity and stomatal conductance, and higher instantaneous photosynthetic water use efficiency. Leaf morphological and structural traits also differed strikingly between the two growth forms. The Hs had significantly smaller leaves, higher leaf mass per area (LMA), and smaller xylem vessel lumen diameters. Across all the species, hydraulic conductivity was positively correlated with leaf gas exchange indicating high degrees of hydraulic-photosynthetic coordination. More importantly, these correlations were supported by correlations implemented on phylogenetic independent contrasts, suggesting that most trait correlations arose through repeated convergent evolution rather than as a result of chance events in the deep nodes of the lineage. Vatiation in xylem hydraulic conductivity was also centrally associated with a suite of other functional traits related to carbon economy and growth, such as LMA, water use efficiency, leaf nutrient concentration, and photosynthetic nutrient use efficiency, indicating important physiological constraints or trade-offs among functional traits. Shifts in this trait cluster apparently related to the adaptation to drought-prone canopy growth during the early life cycle of Hs and clearly affected ecophysiology of the later terrestrial stage of these species. Evolutionary flexibility in hydraulics and associated traits might be one basis for the hyper-diversification of Ficus species in tropical rain forests.
McLean, Bryan S; Helgen, Kristofer M; Goodwin, H Thomas; Cook, Joseph A
2018-03-01
Our understanding of mechanisms operating over deep timescales to shape phenotypic diversity often hinges on linking variation in one or few trait(s) to specific evolutionary processes. When distinct processes are capable of similar phenotypic signatures, however, identifying these drivers is difficult. We explored ecomorphological evolution across a radiation of ground-dwelling squirrels whose history includes convergence and constraint, two processes that can yield similar signatures of standing phenotypic diversity. Using four ecologically relevant trait datasets (body size, cranial, mandibular, and molariform tooth shape), we compared and contrasted variation, covariation, and disparity patterns in a new phylogenetic framework. Strong correlations existed between body size and two skull traits (allometry) and among skull traits themselves (integration). Inferred evolutionary modes were also concordant across traits (Ornstein-Uhlenbeck with two adaptive regimes). However, despite these broad similarities, we found divergent dynamics on the macroevolutionary landscape, with phenotypic disparity being differentially shaped by convergence and conservatism. Such among-trait heterogeneity in process (but not always pattern) reiterates the mosaic nature of morphological evolution, and suggests ground squirrel evolution is poorly captured by single process descriptors. Our results also highlight how use of single traits can bias macroevolutionary inference, affirming the importance of broader trait-bases in understanding phenotypic evolutionary dynamics. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Deciphering the Interdependence between Ecological and Evolutionary Networks.
Melián, Carlos J; Matthews, Blake; de Andreazzi, Cecilia S; Rodríguez, Jorge P; Harmon, Luke J; Fortuna, Miguel A
2018-05-24
Biological systems consist of elements that interact within and across hierarchical levels. For example, interactions among genes determine traits of individuals, competitive and cooperative interactions among individuals influence population dynamics, and interactions among species affect the dynamics of communities and ecosystem processes. Such systems can be represented as hierarchical networks, but can have complex dynamics when interdependencies among levels of the hierarchy occur. We propose integrating ecological and evolutionary processes in hierarchical networks to explore interdependencies in biological systems. We connect gene networks underlying predator-prey trait distributions to food webs. Our approach addresses longstanding questions about how complex traits and intraspecific trait variation affect the interdependencies among biological levels and the stability of meta-ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fu, Hui; Zhong, Jiayou; Yuan, Guixiang; Guo, Chunjing; Lou, Qian; Zhang, Wei; Xu, Jun; Ni, Leyi; Xie, Ping; Cao, Te
2015-01-01
Trait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along water depth gradient in a freshwater lake. We sampled 42 plots and 1513 individual plants, and measured 16 functional traits and abundance of 17 macrophyte species. Study results showed that maxent model can be highly robust (99.8%) in predicting the species relative abundance of macrophytes with observed community-weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM traits fitted from water depth gradient as the constraints. The measured traits showed notably distinct importance in predicting species abundances, with lowest for perennial growth form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were significant shifts in their effects on species relative abundance from positive in shallow water to negative in deep water. This result suggests that macrophyte species with tuber organ and greater leaf nitrogen content would become more abundant in shallow water, but would become less abundant in deep water. Our study highlights how functional traits distributed across gradients provide a robust path towards predictive community ecology. PMID:26167856
Závorka, Libor; Buoro, Mathieu; Cucherousset, Julien
2018-05-25
While there is a long-history of biological invasions and their ecological impacts have been widely demonstrated across taxa and ecosystems, our knowledge on the temporal dynamic of these impacts remains extremely limited. Using a meta-analytic approach, we investigated how the ecological impacts of non-native brown trout (Salmo trutta), a model species with a 170-year long and well-documented history of intentional introductions across the globe, vary with time since introduction. We first observed significant negative ecological impacts immediately after the species introduction. Second, we found that the negative ecological impacts decrease with time since introduction and that the average ecological impacts become non-significant more than one century after introduction. This pattern was consistent across other ecological contexts (i.e. geographical location, levels of biological organisation, and methodological approach). However, overall negative ecological impacts were more pronounced at the individual and population levels and in experimental studies. While the mechanisms leading to this decrease remain to be determined, our results indicate that rapid response of native organisms (e.g. adaptation, but also local extinction) may play an important role in this dynamic. Changes in native species traits and local extinction can have important conservation implications. Therefore, we argue that the decline of the negative ecological impacts over time should not be used as an argument to neglect the negative impacts of biological invasions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Cressler, Clayton E; Bengtson, Stefan; Nelson, William A
2017-07-01
Individual differences in genetics, age, or environment can cause tremendous differences in individual life-history traits. This individual heterogeneity generates demographic heterogeneity at the population level, which is predicted to have a strong impact on both ecological and evolutionary dynamics. However, we know surprisingly little about the sources of individual heterogeneity for particular taxa or how different sources scale up to impact ecological and evolutionary dynamics. Here we experimentally study the individual heterogeneity that emerges from both genetic and nongenetic sources in a species of freshwater zooplankton across a large gradient of food quality. Despite the tight control of environment, we still find that the variation from nongenetic sources is greater than that from genetic sources over a wide range of food quality and that this variation has strong positive covariance between growth and reproduction. We evaluate the general consequences of genetic and nongenetic covariance for ecological and evolutionary dynamics theoretically and find that increasing nongenetic variation slows evolution independent of the correlation in heritable life-history traits but that the impact on ecological dynamics depends on both nongenetic and genetic covariance. Our results demonstrate that variation in the relative magnitude of nongenetic versus genetic sources of variation impacts the predicted ecological and evolutionary dynamics.
The landscape ecology and microbiota of the human nose, mouth and throat
Proctor, Diana M.; Relman, David A.
2017-01-01
Landscape ecology examines the relationships between the spatial arrangement of different landforms and the processes that give rise to spatial and temporal patterns in local community structure. These relationships that underlie the patterns of the microbial communities that inhabit the human body, and in particular, those of the nose, mouth and throat, deserve greater attention. Important questions include what defines the size of a population (i.e., ‘patch’) in a given body site; what defines the boundaries of distinct patches within a single body site, and where and over what spatial scales within a body site are gradients detected. This review looks at the landscape ecology in the upper respiratory tract and mouth, and seeks greater clarity about the physiological factors, whether immunological, chemical or physical, that govern microbial community composition and function, and the ecological traits that underlie health and disease. PMID:28407480
Schmitz, Oswald
2017-01-01
Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts. PMID:29043073
Interactions between plants and primates shape community diversity in a rainforest in Madagascar.
Herrera, James P
2016-07-01
Models of ecological community assembly predict how communities of interacting organisms may be shaped by abiotic and biotic factors. Competition and environmental filtering are the predominant factors hypothesized to explain community assembly. This study tested the effects of habitat, phylogenetic and phenotypic trait predictors on species co-occurrence patterns and abundances, with the endemic primates of Madagascar as an empirical system. The abundance of 11 primate species was estimated along gradients of elevation, food resource abundance and anthropogenic habitat disturbance at local scales in south-east Madagascar. Community composition was compared to null models to test for phylogenetic and functional structure, and the effects of phylogenetic relatedness of co-occurring species, their trait similarity and environmental variables on species' abundances were tested using mixed models and quantile regressions. Resource abundance was the strongest predictor of community structure. Where food tree abundance was high, closely related species with similar traits dominated communities. High-elevation communities with lower food tree abundance consisted of species that were distantly related and had divergent traits. Closely related species had dissimilar abundances where they co-occurred, partially driven by trait dissimilarity, indicating character displacement. By integrating local-scale variation in primate community composition, evolutionary relatedness and functional diversity, this study found strong evidence that community assembly in this system can be explained by competition and character displacement along ecological gradients. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Sipos, J; Hodecek, J; Kuras, T; Dolny, A
2017-08-01
Although ecological succession is one of the principal focuses of recent restoration ecology research, it is still unclear which factors drive this process and positively influence species richness and functional diversity. In this study we sought to elucidate how species traits and functional diversity change during forest succession, and to identify important factors that determine the species in the observed assemblages. We analyzed species richness and functional diversity of ground beetle assemblages in relation to succession on post-industrial localities after habitat deterioration caused by spoil deposition. We selected ground beetles as they are known to be sensitive to landscape changes (with a large range of responses), and their taxonomy and ecology are generally well-known. Ground beetles were sampled on the spoil heaps during the last 30 years when spontaneous succession occurred. To calculate functional diversity, we used traits related to habitat and trophic niche, i.e. food specialization, wing morphology, trophic level, and bio-indication value. Ground beetle species were found to be distributed non-randomly in the assemblages in the late phase of succession. Ordination analyses revealed that the ground beetle assemblage was significantly associated with the proportion of forested area. Environmental heterogeneity generated assemblages that contained over-dispersed species traits. Our findings indicated that environmental conditions at late successional stages supported less mobile carnivorous species. Overall, we conclude that the decline in species richness and functional diversity in the middle of the studied succession gradient indicated that the assemblages of open habitats had been replaced by species typical of forest ecosystems.
Cheptou, P.-O.
2012-01-01
Background Baker's Law states that colonization by self-compatible organisms is more likely to be successful than colonization by self-incompatible organisms because of the ability for self-compatible organisms to produce offspring without pollination agents. This simple model has proved very successful in plant ecology and has been applied to various contexts, including colonizing or ruderal species, islands colonizers, invasive species or mating system variation across distribution ranges. Moreover, it is one of the only models in population biology linking two traits of major importance in ecology, namely dispersal and mating system. Although Baker's Law has stimulated a large number of empirical studies reporting the association of self-fertilization and colonizing ability in various contexts, the data have not established a general pattern for the association of traits. Scope In this paper, a critical position is adopted to discuss and clarify Baker's Law. From the literature referring to Baker's Law, an analysis made regarding how mating success is considered in such studies and discrepancies with population genetics theory of mating systems are highlighted. The data reporting the association of self-fertilization and colonizing ability are also briefly reviewed and the potential bias in interpretation is discussed. Lastly, a recent theoretical model analysing the link between colonizing ability and self-fertilization is considered. Conclusions Evolutionary predictions are actually more complex than Baker's intuitive arguments. It appears that Baker's Law encompasses a variety of ecological scenarios, which cannot be considered a priori as equivalent. Questioning what has been considered as self-evident for more than 50 years seems a reasonable objective to analyse in-depth dispersal and mating system traits. PMID:21685434
Behavioural hypervolumes of spider communities predict community performance and disbandment
Sih, Andrew; DiRienzo, Nicholas; Pinter-Wollman, Noa
2016-01-01
Trait-based ecology argues that an understanding of the traits of interactors can enhance the predictability of ecological outcomes. We examine here whether the multidimensional behavioural-trait diversity of communities influences community performance and stability in situ. We created experimental communities of web-building spiders, each with an identical species composition. Communities contained one individual of each of five different species. Prior to establishing these communities in the field, we examined three behavioural traits for each individual spider. These behavioural measures allowed us to estimate community-wide behavioural diversity, as inferred by the multidimensional behavioural volume occupied by the entire community. Communities that occupied a larger region of behavioural-trait space (i.e. where spiders differed more from each other behaviourally) gained more mass and were less likely to disband. Thus, there is a community-wide benefit to multidimensional behavioural diversity in this system that might translate to other multispecies assemblages. PMID:27974515
NASA Astrophysics Data System (ADS)
Gomez, C.; Quattrini, A.; Cordes, E. E.
2016-02-01
Deep-water corals represent abundant and highly diverse taxa with important functional and structural roles. Climate change can impact these ecological roles by altering coral community composition as response to changes in temperature, seawater chemistry, and food supply among other factors. Our aim is to understand processes of community assembly by integrating species' traits and environmental information into an evolutionary context. Particularly we examined whether depth and the factors that vary with it are important mechanisms in structuring deep-sea octocoral assemblages in the Gulf of Mexico. Collections were conducted on hardbottom from 250-2500 m depth across 27 sites using remotely operated vehicles. A total of 188 colonies spanning 54 different species where sampled from which 11 morphological traits were measured. The ensuing species-by-traits matrix was used as the basis for multivariate analyses performed on three different depth categories: 250-800 m, 800-1100 m, and 1100-2500 m. Principal coordinates analyses revealed that the traits of the octocoral community in the Gulf of Mexico segregate according to depth, where the first two components explained 79.8% of the variation in species' traits. Axis type (calcified - non-calcified), polyp shape and polyp retraction were highly correlated with PCo1, while polyp density, polyp arrangement (solitary - whorls), and type of sclerites were highly correlated with PCo2. Permutation tests showed statistical differences between depths (pseudo-F2,108=4.84, p<0.01), where the shallowest assemblage differed from the deepest one. Polyp size and inter-polyp distance showed significant positive relationships with depth, with higher variability in shallower communities, which highlight the labile nature of these traits. Functional diversity was higher in the shallowest and deepest depth zones; however, there was no significant difference (F2,32=1.33 p=0.27), suggesting that a wide range of traits are important in resource use and interacting with abiotic factors at the different depths. These results highlight the importance of including functional traits when attempting to make predictions of assembly mechanisms as well as for future responses of this significant taxonomic group as climate and ocean change progress.
Adaptation to fragmentation: evolutionary dynamics driven by human influences.
Cheptou, Pierre-Olivier; Hargreaves, Anna L; Bonte, Dries; Jacquemyn, Hans
2017-01-19
Fragmentation-the process by which habitats are transformed into smaller patches isolated from each other-has been identified as a major threat for biodiversity. Fragmentation has well-established demographic and population genetic consequences, eroding genetic diversity and hindering gene flow among patches. However, fragmentation should also select on life history, both predictably through increased isolation, demographic stochasticity and edge effects, and more idiosyncratically via altered biotic interactions. While species have adapted to natural fragmentation, adaptation to anthropogenic fragmentation has received little attention. In this review, we address how and whether organisms might adapt to anthropogenic fragmentation. Drawing on selected case studies and evolutionary ecology models, we show that anthropogenic fragmentation can generate selection on traits at both the patch and landscape scale, and affect the adaptive potential of populations. We suggest that dispersal traits are likely to experience especially strong selection, as dispersal both enables migration among patches and increases the risk of landing in the inhospitable matrix surrounding them. We highlight that suites of associated traits are likely to evolve together. Importantly, we show that adaptation will not necessarily rescue populations from the negative effects of fragmentation, and may even exacerbate them, endangering the entire metapopulation.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
A meta-analysis of zooplankton functional traits influencing ecosystem function.
Hébert, Marie-Pier; Beisner, Beatrix E; Maranger, Roxane
2016-04-01
The use of functional traits to characterize community composition has been proposed as a more effective way to link community structure to ecosystem functioning. Organismal morphology, body stoichiometry, and physiology can be readily linked to large-scale ecosystem processes through functional traits that inform on interspecific and species-environment interactions; yet such effect traits are still poorly included in trait-based approaches. Given their key trophic position in aquatic ecosystems, individual zooplankton affect energy fluxes and elemental processing. We compiled a large database of zooplankton traits contributing to carbon, nitrogen, and phosphorus cycling and examined the effect of classification and habitat (marine vs. freshwater) on trait relationships. Respiration and nutrient excretion rates followed mass-dependent scaling in both habitats, with exponents ranging from 0.70 to 0.90. Our analyses revealed surprising differences in allometry and respiration between habitats, with freshwater species having lower length-specific mass and three times higher mass-specific respiration rates. These differences in traits point to implications for ecological strategies as well as overall carbon storage and fluxes based on habitat type. Our synthesis quantifies multiple trait relationships and links organisms to ecosystem processes they influence, enabling a more complete integration of aquatic community ecology and biogeochemistry through the promising use of effect traits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Curtis M.
2003-05-01
This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second in a series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturallymore » spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2002 and March 31, 2003. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2002) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. Each chapter of this report deals with monitoring phenotypic and demographic traits of Yakima River basin spring chinook comparing hatchery and wild returns in 2002; the second year of adult hatchery returns. The first chapter deals specifically with adult traits of American River, Naches basin (excluding the American River), and upper Yakima River spring chinook, excluding gametes. The second chapter examines the gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish. In the third chapter, we describe work begun initially in 2002 to characterize and compare redds of naturally spawning wild and hatchery fish in the upper Yakima River.« less
The Biogeography of Putative Microbial Antibiotic Production
Bryant, Jessica A.; Charkoudian, Louise K.; Docherty, Kathryn M.; Jones, Evan; Kembel, Steven W.; Green, Jessica L.; Bohannan, Brendan J. M.
2015-01-01
Understanding patterns in the distribution and abundance of functional traits across a landscape is of fundamental importance to ecology. Mapping these distributions is particularly challenging for species-rich groups with sparse trait measurement coverage, such as flowering plants, insects, and microorganisms. Here, we use likelihood-based character reconstruction to infer and analyze the spatial distribution of unmeasured traits. We apply this framework to a microbial dataset comprised of 11,732 ketosynthase alpha gene sequences extracted from 144 soil samples from three continents to document the spatial distribution of putative microbial polyketide antibiotic production. Antibiotic production is a key competitive strategy for soil microbial survival and performance. Additionally, novel antibiotic discovery is highly relevant to human health, making natural antibiotic production by soil microorganisms a major target for bioprospecting. Our comparison of trait-based biogeographical patterns to patterns based on taxonomy and phylogeny is relevant to our basic understanding of microbial biogeography as well as the pressing need for new antibiotics. PMID:26102275
Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F
2016-08-01
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.
Reduce, reuse, and recycle: developmental evolution of trait diversification.
Preston, Jill C; Hileman, Lena C; Cubas, Pilar
2011-03-01
A major focus of evolutionary developmental (evo-devo) studies is to determine the genetic basis of variation in organismal form and function, both of which are fundamental to biological diversification. Pioneering work on metazoan and flowering plant systems has revealed conserved sets of genes that underlie the bauplan of organisms derived from a common ancestor. However, the extent to which variation in the developmental genetic toolkit mirrors variation at the phenotypic level is an active area of research. Here we explore evidence from the angiosperm evo-devo literature supporting the frugal use of genes and genetic pathways in the evolution of developmental patterning. In particular, these examples highlight the importance of genetic pleiotropy in different developmental modules, thus reducing the number of genes required in growth and development, and the reuse of particular genes in the parallel evolution of ecologically important traits.
Marine extinction risk shaped by trait-environment interactions over 500 million years.
Orzechowski, Emily A; Lockwood, Rowan; Byrnes, Jarrett E K; Anderson, Sean C; Finnegan, Seth; Finkel, Zoe V; Harnik, Paul G; Lindberg, David R; Liow, Lee Hsiang; Lotze, Heike K; McClain, Craig R; McGuire, Jenny L; O'Dea, Aaron; Pandolfi, John M; Simpson, Carl; Tittensor, Derek P
2015-10-01
Perhaps the most pressing issue in predicting biotic responses to present and future global change is understanding how environmental factors shape the relationship between ecological traits and extinction risk. The fossil record provides millions of years of insight into how extinction selectivity (i.e., differential extinction risk) is shaped by interactions between ecological traits and environmental conditions. Numerous paleontological studies have examined trait-based extinction selectivity; however, the extent to which these patterns are shaped by environmental conditions is poorly understood due to a lack of quantitative synthesis across studies. We conducted a meta-analysis of published studies on fossil marine bivalves and gastropods that span 458 million years to uncover how global environmental and geochemical changes covary with trait-based extinction selectivity. We focused on geographic range size and life habit (i.e., infaunal vs. epifaunal), two of the most important and commonly examined predictors of extinction selectivity. We used geochemical proxies related to global climate, as well as indicators of ocean acidification, to infer average global environmental conditions. Life-habit selectivity is weakly dependent on environmental conditions, with infaunal species relatively buffered from extinction during warmer climate states. In contrast, the odds of taxa with broad geographic ranges surviving an extinction (>2500 km for genera, >500 km for species) are on average three times greater than narrow-ranging taxa (estimate of odds ratio: 2.8, 95% confidence interval = 2.3-3.5), regardless of the prevailing global environmental conditions. The environmental independence of geographic range size extinction selectivity emphasizes the critical role of geographic range size in setting conservation priorities. © 2015 John Wiley & Sons Ltd.
Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L
Boucher, Florian C.; Thuiller, Wilfried; Arnoldi, Cindy; Albert, Cécile H.; Lavergne, Sébastien
2014-01-01
SUMMARY Functional variability (FV) of populations can be decomposed into three main features: the individual variability of multiple traits, the strength of correlations between those traits and the main direction of these correlations, the latter two being known as ‘phenotypic integration’. Evolutionary biology has long recognized that FV in natural populations is key to determining potential evolutionary responses, but this topic has been little studied in functional ecology. Here we focus on the arctico-alpine perennial plant species Polygonum viviparum L.. We used a comprehensive sampling of seven functional traits in 29 wild populations covering the whole environmental niche of the species. The niche of the species was captured by a temperature gradient, which separated alpine stressful habitats from species-rich, competitive sub-alpine ones. We seeked to assess the relative roles of abiotic stress and biotic interactions in shaping different aspects of functional variation within and among populations, that is, the multi-trait variability, the strength of correlations between traits, and the main directions of functional trade-offs. Populations with the highest extent of functional variability were found in the warm end of the gradient whereas populations exhibiting the strongest degree of phenotypic integration were located in sites with intermediate temperatures. This could reveal both the importance of environmental filtering and population demography in structuring FV. Interestingly, we found that the main axes of multivariate functional variation were radically different within and across population. Although the proximate causes of FV structure remain uncertain, our study presents a robust methodology for the quantitative study of functional variability in connection with species’ niches. It also opens up new perspectives for the conceptual merging of intraspecific functional patterns with community ecology. PMID:24790285
Matsuoka, Yoshihiro; Takumi, Shigeo; Kawahara, Taihachi
2015-09-30
How species ranges form in landscapes is a matter of long-standing evolutionary interest. However, little is known about how natural phenotypic variations of ecologically important traits contribute to species range expansion. In this study, we examined the phylogeographic patterns of phenotypic changes in life history (seed production) and phenological (flowering time) traits during the range expansion of Aegilops tauschii Coss. from the Transcaucasus and Middle East to central Asia. Our comparative analyses of the patterns of natural variations for those traits and their association with the intraspecific lineage structure showed that (1) the eastward expansion to Asia was driven by an intraspecific sublineage (named TauL1b), (2) high seed production ability likely had an important role at the initial dispersal stage of TauL1b's expansion to Asia, and (3) the phenological change to early flowering phenotypes was one of the key adaptation events for TauL1b to further expand its range in Asia. This study provides for the first time a broad picture of the process of Ae. tauschii's eastward range expansion in which life history and phenological traits may have had respective roles in its dispersal and adaptation in Asia. The clear association of seed production and flowering time patterns with the intraspecific lineage divergence found in this study invites further genetic research to bring the mechanistic understanding of the changes in these key functional traits during range expansion within reach.
Mimicry on the QT(L): genetics of speciation in Mimulus.
Bleiweiss, R
2001-08-01
Ecological studies suggest that hummingbird-pollinated plants in North America mimic each other to increase visitation by birds. Published quantitative trait locus (QTL) data for two Mimulus species indicate that floral traits associated with hummingbird versus bee pollination results from a few loci with major effects on morphology, as predicted by classical models for the evolution of mimicry. Thus, the architecture of genetic divergence associated with speciation may depend on the ecological context.
Barriers to adaptive reasoning in community ecology.
McLachlan, Athol J; Ladle, Richard J
2011-08-01
Recent high-profile calls for a more trait-focused approach to community ecology have the potential to open up novel research areas, generate new insights and to transform community ecology into a more predictive science. However, a renewed emphasis on function and phenotype also requires a fundamental shift in approach and research philosophy within community ecology to more fully embrace evolutionary reasoning. Such a subject-wise transformation will be difficult due to at least four factors: (1) the historical development of the academic discipline of ecology and its roots as a descriptive science; (2) the dominating role of the ecosystem concept in the driving of contemporary ecological thought; (3) the practical difficulties associated with defining and identifying (phenotypic) adaptations, and; (4) scaling effects in ecology; the difficulty of teasing apart the overlapping and shifting hierarchical processes that generate the observed environment-trait correlations in nature. We argue that the ability to predict future ecological conditions through a sufficient understanding of ecological processes will not be achieved without the placement of the concept of adaptation at the centre of ecology, with influence radiating outwards through all the related (and rapidly specializing) sub-disciplines. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.
Slater, Graham J
2015-04-21
A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.
NASA Astrophysics Data System (ADS)
Slater, Graham J.
2015-04-01
A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.
Ecology of Anopheles darlingi Root with respect to vector importance: a review
2011-01-01
Anopheles darlingi is one of the most important malaria vectors in the Americas. In this era of new tools and strategies for malaria and vector control it is essential to have knowledge on the ecology and behavior of vectors in order to evaluate appropriateness and impact of control measures. This paper aims to provide information on the importance, ecology and behavior of An. darlingi. It reviews publications that addressed ecological and behavioral aspects that are important to understand the role and importance of An. darlingi in the transmission of malaria throughout its area of distribution. The results show that Anopheles darlingi is especially important for malaria transmission in the Amazon region. Although numerous studies exist, many aspects determining the vectorial capacity of An. darlingi, i.e. its relation to seasons and environmental conditions, its gonotrophic cycle and longevity, and its feeding behavior and biting preferences, are still unknown. The vector shows a high degree of variability in behavioral traits. This makes it difficult to predict the impact of ongoing changes in the environment on the mosquito populations. Recent studies indicate a good ability of An. darlingi to adapt to environments modified by human development. This allows the vector to establish populations in areas where it previously did not exist or had been controlled to date. The behavioral variability of the vector, its adaptability, and our limited knowledge of these impede the establishment of effective control strategies. Increasing our knowledge of An. darlingi is necessary. PMID:21923902
Palmquist, Emily C.; Ralston, Barbara E.; Sarr. Daniel,; Merritt, David; Shafroth, Patrick B; Scott, Julian
2017-01-01
Trait-based approaches to vegetation analyses are becoming more prevalent in studies of riparian vegetation dynamics, including responses to flow regulation, groundwater pumping, and climate change. These analyses require species trait data compiled from the literature and floras or original field measurements. Gathering such data makes trait-based research time intensive at best and impracticable in some cases. To support trait-based analysis of vegetation along the Colorado River through Grand Canyon, a data set of 20 biological traits and ecological affinities for 179 species occurring in that study area was compiled. This diverse flora shares species with many riparian areas in the western USA and includes species that occur across a wide moisture gradient. Data were compiled from published scientific papers, unpublished reports, plant fact sheets, existing trait databases, regional floras, and plant guides. Data for ordinal environmental tolerances were more readily available than were quantitative traits. More publicly available data are needed for traits of both common and rare southwestern U.S. plant species to facilitate comprehensive, trait-based research. The trait data set is free to use and can be downloaded from ScienceBase: https://www.sciencebase.gov/catalog/item/58af41dee4b01ccd54f9f2ff and https://dx.doi.org/10.5066/F7QV3JN1
Coordination of physiological and structural traits in Amazon forest trees
NASA Astrophysics Data System (ADS)
Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.
2012-02-01
Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1020 individual trees (encompassing 661 species) located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C, and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components for tropical tree species. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions influenced structural traits with ρx of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus, although genetically determined foliar traits such as those associated with leaf construction costs coordinate independently of structural characteristics such as maximum height, others such as the classical "leaf economic spectrum" covary with structural traits such as leaf size and ΦLS. Coordinated structural and physiological adaptions are also associated with light acquisition/shade tolerance strategies with several traits such as MA and [C] being significant components of more than one ecological strategy dimension. This is argued to be a consequence of a range of different potential underlying causes for any observed variation in such "ambiguous" traits. Environmental effects on structural and physiological characteristics are also coordinated but in a different way to the gamut of linkages associated with genotypic differences.
Telonis-Scott, Marina; Sgrò, Carla M.; Hoffmann, Ary A.; Griffin, Philippa C.
2016-01-01
Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework. PMID:26733490
Brousseau, Louise; Bonal, Damien; Cigna, Jeremy; Scotti, Ivan
2013-10-01
In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences. Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured. In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence. The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation.
Brousseau, Louise; Bonal, Damien; Cigna, Jeremy; Scotti, Ivan
2013-01-01
Background and Aims In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences. Methods Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured. Key Results In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence. Conclusions The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation. PMID:24023042
The transition to modernity and chronic disease: mismatch and natural selection.
Corbett, Stephen; Courtiol, Alexandre; Lummaa, Virpi; Moorad, Jacob; Stearns, Stephen
2018-05-09
The Industrial Revolution and the accompanying nutritional, epidemiological and demographic transitions have profoundly changed human ecology and biology, leading to major shifts in life history traits, which include age and size at maturity, age-specific fertility and lifespan. Mismatch between past adaptations and the current environment means that gene variants linked to higher fitness in the past may now, through antagonistic pleiotropic effects, predispose post-transition populations to non-communicable diseases, such as Alzheimer disease, cancer and coronary artery disease. Increasing evidence suggests that the transition to modernity has also altered the direction and intensity of natural selection acting on many traits, with important implications for public and global health.
NASA Astrophysics Data System (ADS)
Poyatos, Rafael; Sus, Oliver; Vilà-Cabrera, Albert; Vayreda, Jordi; Badiella, Llorenç; Mencuccini, Maurizio; Martínez-Vilalta, Jordi
2016-04-01
Plant functional traits are increasingly being used in ecosystem ecology thanks to the growing availability of large ecological databases. However, these databases usually contain a large fraction of missing data because measuring plant functional traits systematically is labour-intensive and because most databases are compilations of datasets with different sampling designs. As a result, within a given database, there is an inevitable variability in the number of traits available for each data entry and/or the species coverage in a given geographical area. The presence of missing data may severely bias trait-based analyses, such as the quantification of trait covariation or trait-environment relationships and may hamper efforts towards trait-based modelling of ecosystem biogeochemical cycles. Several data imputation (i.e. gap-filling) methods have been recently tested on compiled functional trait databases, but the performance of imputation methods applied to a functional trait database with a regular spatial sampling has not been thoroughly studied. Here, we assess the effects of data imputation on five tree functional traits (leaf biomass to sapwood area ratio, foliar nitrogen, maximum height, specific leaf area and wood density) in the Ecological and Forest Inventory of Catalonia, an extensive spatial database (covering 31900 km2). We tested the performance of species mean imputation, single imputation by the k-nearest neighbors algorithm (kNN) and a multiple imputation method, Multivariate Imputation with Chained Equations (MICE) at different levels of missing data (10%, 30%, 50%, and 80%). We also assessed the changes in imputation performance when additional predictors (species identity, climate, forest structure, spatial structure) were added in kNN and MICE imputations. We evaluated the imputed datasets using a battery of indexes describing departure from the complete dataset in trait distribution, in the mean prediction error, in the correlation matrix and in selected bivariate trait relationships. MICE yielded imputations which better preserved the variability and covariance structure of the data and provided an estimate of between-imputation uncertainty. We found that adding species identity as a predictor in MICE and kNN improved imputation for all traits, but adding climate did not lead to any appreciable improvement. However, forest structure and spatial structure did reduce imputation errors in maximum height and in leaf biomass to sapwood area ratios, respectively. Although species mean imputations showed the lowest error for 3 out the 5 studied traits, dataset-averaged errors were lowest for MICE imputations with all additional predictors, when missing data levels were 50% or lower. Species mean imputations always resulted in larger errors in the correlation matrix and appreciably altered the studied bivariate trait relationships. In conclusion, MICE imputations using species identity, climate, forest structure and spatial structure as predictors emerged as the most suitable method of the ones tested here, but it was also evident that imputation performance deteriorates at high levels of missing data (80%).
Contrasting impacts of competition on ecological and social trait evolution in songbirds
Tobias, Joseph A.; Burns, Kevin J.; Mason, Nicholas A.; Shultz, Allison J.; Morlon, Hélène
2018-01-01
Competition between closely related species has long been viewed as a powerful selective force that drives trait diversification, thereby generating phenotypic diversity over macroevolutionary timescales. However, although the impact of interspecific competition has been documented in a handful of iconic insular radiations, most previous studies have focused on traits involved in resource use, and few have examined the role of competition across large, continental radiations. Thus, the extent to which broad-scale patterns of phenotypic diversity are shaped by competition remain largely unclear, particularly for social traits. Here, we estimate the effect of competition between interacting lineages by applying new phylogenetic models that account for such interactions to an exceptionally complete dataset of resource-use traits and social signaling traits for the entire radiation of tanagers (Aves, Thraupidae), the largest family of songbirds. We find that interspecific competition strongly influences the evolution of traits involved in resource use, with a weaker effect on plumage signals, and very little effect on song. Our results provide compelling evidence that interspecific exploitative competition contributes to ecological trait diversification among coexisting species, even in a large continental radiation. In comparison, signal traits mediating mate choice and social competition seem to diversify under different evolutionary models, including rapid diversification in the allopatric stage of speciation. PMID:29385141
Contrasting impacts of competition on ecological and social trait evolution in songbirds.
Drury, Jonathan P; Tobias, Joseph A; Burns, Kevin J; Mason, Nicholas A; Shultz, Allison J; Morlon, Hélène
2018-01-01
Competition between closely related species has long been viewed as a powerful selective force that drives trait diversification, thereby generating phenotypic diversity over macroevolutionary timescales. However, although the impact of interspecific competition has been documented in a handful of iconic insular radiations, most previous studies have focused on traits involved in resource use, and few have examined the role of competition across large, continental radiations. Thus, the extent to which broad-scale patterns of phenotypic diversity are shaped by competition remain largely unclear, particularly for social traits. Here, we estimate the effect of competition between interacting lineages by applying new phylogenetic models that account for such interactions to an exceptionally complete dataset of resource-use traits and social signaling traits for the entire radiation of tanagers (Aves, Thraupidae), the largest family of songbirds. We find that interspecific competition strongly influences the evolution of traits involved in resource use, with a weaker effect on plumage signals, and very little effect on song. Our results provide compelling evidence that interspecific exploitative competition contributes to ecological trait diversification among coexisting species, even in a large continental radiation. In comparison, signal traits mediating mate choice and social competition seem to diversify under different evolutionary models, including rapid diversification in the allopatric stage of speciation.
Briones-Fourzán, Patricia
2014-01-01
Coexistence of closely related species may be promoted by niche differentiation or result from interspecific trade-offs in life history and ecological traits that influence relative fitness differences and contribute to competitive inequalities. Although insufficient to prove coexistence, trait comparisons provide a first step to identify functional differences between co-occurring congeneric species in relation to mechanisms of coexistence. Here, a comparative review on life history and ecological traits is presented for two pairs of co-occurring species of spiny lobsters in the genus Panulirus: Panulirusgracilis and Panulirusinflatus from the Eastern Central Pacific region, and Panulirusargus and Panulirusguttatus from the Caribbean region. Panulirusgracilis and Panulirusinflatus have similar larval, postlarval, and adult sizes and a similar diet, but differ in degree of habitat specialization, fecundity, and growth rate. However, little is known on behavioral traits of these two species that may influence their competitive abilities and susceptibility to predators. The more abundant information on Panulirusargus and Panulirusguttatus shows that these two species differ more broadly in degree of habitat specialization, larval, postlarval and adult sizes, diet, fecundity, growth rate, degree of sociality, defense mechanisms, susceptibility to predators, and chemical ecology, suggesting a greater degree of niche differentiation between Panulirusargus and Panulirusguttatus than between Panulirusgracilis and Panulirusinflatus. Whether the substantial niche differentiation and apparent interspecific trade-offs between Panulirusargus and Panulirusguttatus relative to Panulirusgracilis and Panulirusinflatus reflect an earlier divergence of the former pair of species in the evolution of the genus constitutes an intriguing hypothesis. However, whether or not post-divergence evolution of each species pair occurred in sympatry remains uncertain.
Gilardelli, Federica; Sgorbati, Sergio; Armiraglio, Stefano; Citterio, Sandra; Gentili, Rodolfo
2015-05-01
Revegetation patterns after quarry abandonment have been widely studied from several ecological points of view, but a trait-based approach is still lacking. The aim of this study was to characterise the plant species assemblages and the associated functional traits filtered on different geomorphological surfaces in abandoned limestone quarry areas: artificial cliffs, embankments, and platforms. We then verified if species with certain traits were better able to overcome the dispersal and environmental filters necessary for establishment. To this aim, we analyzed 113 vegetation plots and collected data on 25 morphological, ecological, and dispersal traits to detect species adaptaions across these man-made environments. As a case study, we investigated the extraction basin of Botticino (Lombardy, Italy), the second largest in Italy. The results obtained by SIMPER and CCA analyses showed that rockiness, stoniness, slope, elevation, and time of surfaces are the main filters that varied across quarries and affected plant assemblages at the macro-scale level. Across the three geomorphological surfaces (meso-scale) of quarries, more specific abiotic filters selecting species were found. In turn, traits differentiation according to the three main geomorphological surfaces of quarry emphasized that further filters acting at the micro-scale imply differences in dispersal mechanisms and resource availability. This work highlighted the utility to study species assemblages and environmental filters to address quarry restoration according to the type of geomorphological surface. The investigation of some traits (chorological form, life forms, seed dispersal,s and plant height) can furnish some interesting indications for practice individuating further abiotic filters acting at the micro-scale.
Patterns of developmental plasticity in response to incubation temperature in reptiles.
While, Geoffrey M; Noble, Daniel W A; Uller, Tobias; Warner, Daniel A; Riley, Julia L; Du, Wei-Guo; Schwanz, Lisa E
2018-05-28
Early life environments shape phenotypic development in important ways that can lead to long-lasting effects on phenotype and fitness. In reptiles, one aspect of the early environment that impacts development is temperature (termed 'thermal developmental plasticity'). Indeed, the thermal environment during incubation is known to influence morphological, physiological, and behavioral traits, some of which have important consequences for many ecological and evolutionary processes. Despite this, few studies have attempted to synthesize and collate data from this expansive and important body of research. Here, we systematically review research into thermal developmental plasticity across reptiles, structured around the key papers and findings that have shaped the field over the past 50 years. From these papers, we introduce a large database (the 'Reptile Development Database') consisting of 9,773 trait means across 300 studies examining thermal developmental plasticity. This dataset encompasses data on a range of phenotypes, including morphological, physiological, behavioral, and performance traits along with growth rate, incubation duration, sex ratio, and survival (e.g., hatching success) across all major reptile clades. Finally, from our literature synthesis and data exploration, we identify key research themes associated with thermal developmental plasticity, important gaps in empirical research, and demonstrate how future progress can be made through targeted empirical, meta-analytic, and comparative work. © 2018 Wiley Periodicals, Inc.
Relative size predicts competitive outcome through 2 million years.
Liow, Lee Hsiang; Di Martino, Emanuela; Krzeminska, Malgorzata; Ramsfjell, Mali; Rust, Seabourne; Taylor, Paul D; Voje, Kjetil L
2017-08-01
Competition is an important biotic interaction that influences survival and reproduction. While competition on ecological timescales has received great attention, little is known about competition on evolutionary timescales. Do competitive abilities change over hundreds of thousands to millions of years? Can we predict competitive outcomes using phenotypic traits? How much do traits that confer competitive advantage and competitive outcomes change? Here we show, using communities of encrusting marine bryozoans spanning more than 2 million years, that size is a significant determinant of overgrowth outcomes: colonies with larger zooids tend to overgrow colonies with smaller zooids. We also detected temporally coordinated changes in average zooid sizes, suggesting that different species responded to a common external driver. Although species-specific average zooid sizes change over evolutionary timescales, species-specific competitive abilities seem relatively stable, suggesting that traits other than zooid size also control overgrowth outcomes and/or that evolutionary constraints are involved. © 2017 John Wiley & Sons Ltd/CNRS.
Fajardo, Alex; Piper, Frida I
2011-01-01
• The focus of the trait-based approach to study community ecology has mostly been on trait comparisons at the interspecific level. Here we quantified intraspecific variation and covariation of leaf mass per area (LMA) and wood density (WD) in monospecific forests of the widespread tree species Nothofagus pumilio to determine its magnitude and whether it is related to environmental conditions and ontogeny. We also discuss probable mechanisms controlling the trait variation found. • We collected leaf and stem woody tissues from 30-50 trees of different ages (ontogeny) from each of four populations at differing elevations (i.e. temperatures) and placed at each of three locations differing in soil moisture. • The total variation in LMA (coefficient of variation (CV) = 21.14%) was twice that of WD (CV = 10.52%). The total variation in traits was never less than 23% when compared with interspecific studies. Differences in elevation (temperature) for the most part explained variation in LMA, while differences in soil moisture and ontogeny explained the variation in WD. Traits covaried similarly in the altitudinal gradient only. • Functional traits of N. pumilio exhibited nonnegligible variation; LMA varied for the most part with temperature, while WD mostly varied with moisture and ontogeny. We demonstrate that environmental variation can cause important trait variation without species turnover. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Cortez, Michael H; Ellner, Stephen P
2010-11-01
The accumulation of evidence that ecologically important traits often evolve at the same time and rate as ecological dynamics (e.g., changes in species' abundances or spatial distributions) has outpaced theory describing the interplay between ecological and evolutionary processes with comparable timescales. The disparity between experiment and theory is partially due to the high dimensionality of models that include both evolutionary and ecological dynamics. Here we show how the theory of fast-slow dynamical systems can be used to reduce model dimension, and we use that body of theory to study a general predator-prey system exhibiting fast evolution in either the predator or the prey. Our approach yields graphical methods with predictive power about when new and unique dynamics (e.g., completely out-of-phase oscillations and cryptic dynamics) can arise in ecological systems exhibiting fast evolution. In addition, we derive analytical expressions for determining when such behavior arises and how evolution affects qualitative properties of the ecological dynamics. Finally, while the theory requires a separation of timescales between the ecological and evolutionary processes, our approach yields insight into systems where the rates of those processes are comparable and thus is a step toward creating a general ecoevolutionary theory.
Morphology captures diet and locomotor types in rodents.
Verde Arregoitia, Luis D; Fisher, Diana O; Schweizer, Manuel
2017-01-01
To understand the functional meaning of morphological features, we need to relate what we know about morphology and ecology in a meaningful, quantitative framework. Closely related species usually share more phenotypic features than distant ones, but close relatives do not necessarily have the same ecologies. Rodents are the most diverse group of living mammals, with impressive ecomorphological diversification. We used museum collections and ecological literature to gather data on morphology, diet and locomotion for 208 species of rodents from different bioregions to investigate how morphological similarity and phylogenetic relatedness are associated with ecology. After considering differences in body size and shared evolutionary history, we find that unrelated species with similar ecologies can be characterized by a well-defined suite of morphological features. Our results validate the hypothesized ecological relevance of the chosen traits. These cranial, dental and external (e.g. ears) characters predicted diet and locomotion and showed consistent differences among species with different feeding and substrate use strategies. We conclude that when ecological characters do not show strong phylogenetic patterns, we cannot simply assume that close relatives are ecologically similar. Museum specimens are valuable records of species' phenotypes and with the characters proposed here, morphology can reflect functional similarity, an important component of community ecology and macroevolution.
A behavioral perspective on fishing-induced evolution.
Uusi-Heikkilä, Silva; Wolter, Christian; Klefoth, Thomas; Arlinghaus, Robert
2008-08-01
The potential for excessive and/or selective fishing to act as an evolutionary force has been emphasized recently. However, most studies have focused on evolution of life-history traits in response to size-selective harvesting. Here we draw attention to fishing-induced evolution of behavioral and underlying physiological traits. We contend that fishing-induced selection directly acting on behavioral rather than on life-history traits per se can be expected in all fisheries that operate with passive gears such as trapping, angling and gill-netting. Recent artificial selection experiments in the nest-guarding largemouth bass Micropterus salmoides suggest that fishing-induced evolution of behavioral traits that reduce exposure to fishing gear might be maladaptive, potentially reducing natural recruitment. To improve understanding and management of fisheries-induced evolution, we encourage greater application of methods from behavioral ecology, physiological ecology and behavioral genetics.
Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event.
Caswell, Bryony A; Frid, Christopher L J
2017-01-01
Global warming during the Early Jurassic, and associated widespread ocean deoxygenation, was comparable in scale with the changes projected for the next century. This study quantifies the impact of severe global environmental change on the biological traits of marine communities that define the ecological roles and functions they deliver. We document centennial-millennial variability in the biological trait composition of Early Jurassic (Toarcian) seafloor communities and examine how this changed during the event using biological traits analysis. Environmental changes preceding the global oceanic anoxic event (OAE) produced an ecological shift leading to stressed benthic palaeocommunities with reduced resilience to the subsequent OAE. Changes in traits and ecological succession coincided with major environmental changes; and were of similar nature and magnitude to those in severely deoxygenated benthic communities today despite the very different timescales. Changes in community composition were linked to local redox conditions whereas changes in populations of opportunists were driven by primary productivity. Throughout most of the OAE substitutions by tolerant taxa conserved the trait composition and hence functioning, but periods of severe deoxygenation caused benthic defaunation that would have resulted in functional collapse. Following the OAE recovery was slow probably because the global nature of the event restricted opportunities for recruitment from outside the basin. Our findings suggest that future systems undergoing deoxygenation may initially show functional resilience, but severe global deoxygenation will impact traits and ecosystem functioning and, by limiting the species pool, will slow recovery rates.
Vegetation Demographics in Earth System Models: a review of progress and priorities
Fisher, Rosie A.; Koven, Charles D.; Anderegg, William R. L.; ...
2017-09-18
Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). Furthermore, these developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. We review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections butmore » also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We also argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.« less
Vegetation Demographics in Earth System Models: a review of progress and priorities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Rosie A.; Koven, Charles D.; Anderegg, William R. L.
Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). Furthermore, these developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. We review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections butmore » also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We also argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.« less
Siebenkäs, Alrun; Schumacher, Jens; Roscher, Christiane
2015-03-27
Functional traits are often used as species-specific mean trait values in comparative plant ecology or trait-based predictions of ecosystem processes, assuming that interspecific differences are greater than intraspecific trait variation and that trait-based ranking of species is consistent across environments. Although this assumption is increasingly challenged, there is a lack of knowledge regarding to what degree the extent of intraspecific trait variation in response to varying environmental conditions depends on the considered traits and the characteristics of the studied species to evaluate the consequences for trait-based species ranking. We studied functional traits of eight perennial grassland species classified into different functional groups (forbs vs. grasses) and varying in their inherent growth stature (tall vs. small) in a common garden experiment with different environments crossing three levels of nutrient availability and three levels of light availability over 4 months of treatment applications. Grasses and forbs differed in almost all above- and belowground traits, while trait differences related to growth stature were generally small. The traits showing the strongest responses to resource availability were similarly for grasses and forbs those associated with allocation and resource uptake. The strength of trait variation in response to varying resource availability differed among functional groups (grasses > forbs) and species of varying growth stature (small-statured > tall-statured species) in many aboveground traits, but only to a lower extent in belowground traits. These differential responses altered trait-based species ranking in many aboveground traits, such as specific leaf area, tissue nitrogen and carbon concentrations and above-belowground allocation (leaf area ratio and root : shoot ratio) at varying resource supply, while trait-based species ranking was more consistent in belowground traits. Our study shows that species grouping according to functional traits is valid, but trait-based species ranking depends on environmental conditions, thus limiting the applicability of species-specific mean trait values in ecological studies. Published by Oxford University Press on behalf of the Annals of Botany Company.
Convergence across a continent: adaptive diversification in a recent radiation of Australian lizards
Horner, Paul; Moritz, Craig
2016-01-01
Recent radiations are important to evolutionary biologists, because they provide an opportunity to study the mechanisms that link micro- and macroevolution. The role of ecological speciation during adaptive radiation has been intensively studied, but radiations can arise from a diversity of evolutionary processes; in particular, on large continental landmasses where allopatric speciation might frequently precede ecological differentiation. It is therefore important to establish a phylogenetic and ecological framework for recent continental-scale radiations that are species-rich and ecologically diverse. Here, we use a genomic (approx. 1 200 loci, exon capture) approach to fit branch lengths on a summary-coalescent species tree and generate a time-calibrated phylogeny for a recent and ecologically diverse radiation of Australian scincid lizards; the genus Cryptoblepharus. We then combine the phylogeny with a comprehensive phenotypic dataset for over 800 individuals across the 26 species, and use comparative methods to test whether habitat specialization can explain current patterns of phenotypic variation in ecologically relevant traits. We find significant differences in morphology between species that occur in distinct environments and convergence in ecomorphology with repeated habitat shifts across the continent. These results suggest that isolated analogous habitats have provided parallel ecological opportunity and have repeatedly promoted adaptive diversification. By contrast, speciation processes within the same habitat have resulted in distinct lineages with relatively limited morphological variation. Overall, our study illustrates how alternative diversification processes might have jointly stimulated species proliferation across the continent and generated a remarkably diverse group of Australian lizards. PMID:27306048
TRY – a global database of plant traits
Kattge, J; Díaz, S; Lavorel, S; Prentice, I C; Leadley, P; Bönisch, G; Garnier, E; Westoby, M; Reich, P B; Wright, I J; Cornelissen, J H C; Violle, C; Harrison, S P; Van Bodegom, P M; Reichstein, M; Enquist, B J; Soudzilovskaia, N A; Ackerly, D D; Anand, M; Atkin, O; Bahn, M; Baker, T R; Baldocchi, D; Bekker, R; Blanco, C C; Blonder, B; Bond, W J; Bradstock, R; Bunker, D E; Casanoves, F; Cavender-Bares, J; Chambers, J Q; Chapin, F S; Chave, J; Coomes, D; Cornwell, W K; Craine, J M; Dobrin, B H; Duarte, L; Durka, W; Elser, J; Esser, G; Estiarte, M; Fagan, W F; Fang, J; Fernández-Méndez, F; Fidelis, A; Finegan, B; Flores, O; Ford, H; Frank, D; Freschet, G T; Fyllas, N M; Gallagher, R V; Green, W A; Gutierrez, A G; Hickler, T; Higgins, S I; Hodgson, J G; Jalili, A; Jansen, S; Joly, C A; Kerkhoff, A J; Kirkup, D; Kitajima, K; Kleyer, M; Klotz, S; Knops, J M H; Kramer, K; Kühn, I; Kurokawa, H; Laughlin, D; Lee, T D; Leishman, M; Lens, F; Lenz, T; Lewis, S L; Lloyd, J; Llusià, J; Louault, F; Ma, S; Mahecha, M D; Manning, P; Massad, T; Medlyn, B E; Messier, J; Moles, A T; Müller, S C; Nadrowski, K; Naeem, S; Niinemets, Ü; Nöllert, S; Nüske, A; Ogaya, R; Oleksyn, J; Onipchenko, V G; Onoda, Y; Ordoñez, J; Overbeck, G; Ozinga, W A; Patiño, S; Paula, S; Pausas, J G; Peñuelas, J; Phillips, O L; Pillar, V; Poorter, H; Poorter, L; Poschlod, P; Prinzing, A; Proulx, R; Rammig, A; Reinsch, S; Reu, B; Sack, L; Salgado-Negret, B; Sardans, J; Shiodera, S; Shipley, B; Siefert, A; Sosinski, E; Soussana, J-F; Swaine, E; Swenson, N; Thompson, K; Thornton, P; Waldram, M; Weiher, E; White, M; White, S; Wright, S J; Yguel, B; Zaehle, S; Zanne, A E; Wirth, C
2011-01-01
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.
Ma, S L Y; Lu, Y M
2016-09-19
The Chinese hawthorn (Crataegus pinnatifida Bge. var. major N.E.Br.) is uniquely originated in northern China. The ecological and horticultural importance of Chinese hawthorn is considerable and some varieties are valued for their fruit or medicine extracts. Its taxonomy and phylogeny remain poorly understood. Apart from general plant morphological traits, pollen is an important trait for the classification of plants and their evolutionary origin. However, few studies have investigated the pollen of Chinese hawthorn. Here, an analysis of plant and pollen morphological characteristics was conducted in 57 cultivars from the Shenyang region. Thirty plant morphological characters and nine pollen grain characters were investigated. The plant morphological analysis revealed that the coefficient of variation for 13 traits was >20%, which indicates a high degree of variability. We also found that the pollen grains varied greatly in size, shape (from prolate to perprolate), and exine pattern (striate-perforate predominantly). The number of apertures was typically three. Based on these findings, we suggest that pollen morphology associated with plant morphological traits can be used for classification and phylogenetic analysis of Chinese hawthorn cultivars. In sum, our results provide new insights and constitute a scientific basis for future studies on the classification and evolution of Chinese hawthorn.
NASA Astrophysics Data System (ADS)
Schrodt, Franziska; Shan, Hanhuai; Fazayeli, Farideh; Karpatne, Anuj; Kattge, Jens; Banerjee, Arindam; Reichstein, Markus; Reich, Peter
2013-04-01
With the advent of remotely sensed data and coordinated efforts to create global databases, the ecological community has progressively become more data-intensive. However, in contrast to other disciplines, statistical ways of handling these large data sets, especially the gaps which are inherent to them, are lacking. Widely used theoretical approaches, for example model averaging based on Akaike's information criterion (AIC), are sensitive to missing values. Yet, the most common way of handling sparse matrices - the deletion of cases with missing data (complete case analysis) - is known to severely reduce statistical power as well as inducing biased parameter estimates. In order to address these issues, we present novel approaches to gap filling in large ecological data sets using matrix factorization techniques. Factorization based matrix completion was developed in a recommender system context and has since been widely used to impute missing data in fields outside the ecological community. Here, we evaluate the effectiveness of probabilistic matrix factorization techniques for imputing missing data in ecological matrices using two imputation techniques. Hierarchical Probabilistic Matrix Factorization (HPMF) effectively incorporates hierarchical phylogenetic information (phylogenetic group, family, genus, species and individual plant) into the trait imputation. Advanced Hierarchical Probabilistic Matrix Factorization (aHPMF) on the other hand includes climate and soil information into the matrix factorization by regressing the environmental variables against residuals of the HPMF. One unique opportunity opened up by aHPMF is out-of-sample prediction, where traits can be predicted for specific species at locations different to those sampled in the past. This has potentially far-reaching consequences for the study of global-scale plant functional trait patterns. We test the accuracy and effectiveness of HPMF and aHPMF in filling sparse matrices, using the TRY database of plant functional traits (http://www.try-db.org). TRY is one of the largest global compilations of plant trait databases (750 traits of 1 million plants), encompassing data on morphological, anatomical, biochemical, phenological and physiological features of plants. However, despite of unprecedented coverage, the TRY database is still very sparse, severely limiting joint trait analyses. Plant traits are the key to understanding how plants as primary producers adjust to changes in environmental conditions and in turn influence them. Forming the basis for Dynamic Global Vegetation Models (DGVMs), plant traits are also fundamental in global change studies for predicting future ecosystem changes. It is thus imperative that missing data is imputed in as accurate and precise a way as possible. In this study, we show the advantages and disadvantages of applying probabilistic matrix factorization techniques in incorporating hierarchical and environmental information for the prediction of missing plant traits as compared to conventional imputation techniques such as the complete case and mean approaches. We will discuss the implications of using gap-filled data for global-scale studies of plant functional trait - environment relationship as opposed to the above-mentioned conventional techniques, using examples of out-of-sample predictions of foliar Nitrogen across several species' ranges and biomes.
Specific gravity of woody tissue from lowland Neotropical plants: differences among forest types.
Casas, Luisa Fernanda; Aldana, Ana María; Henao-Diaz, Francisco; Villanueva, Boris; Stevenson, Pablo R
2017-05-01
Wood density, or more precisely, wood specific gravity, is an important parameter when estimating aboveground biomass, which has become a central tool for the management and conservation of forests around the world. When using biomass allometric equations for tropical forests, researchers are often required to assume phylogenetic trait conservatism, which allows us to assign genus- and family-level wood specific gravity mean values, to many woody species. The lack of information on this trait for many Neotropical plant species has led to an imprecise estimation of the biomass stored in Neotropical forests. The data presented here has information of woody tissue specific gravity from 2,602 individual stems for 386 species, including trees, lianas, and hemi-epiphytes of lowland tropical forests in Colombia. This data set was produced by us collecting wood cores from woody species in five localities in the Orinoco and Magdalena Basins in Colombia. We found lower mean specific gravity values in várzea than in terra firme and igapó. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
Kristensen, Nadiah Pardede; Johansson, Jacob; Chisholm, Ryan A; Smith, Henrik G; Kokko, Hanna
2018-06-25
Local adaptation to rare habitats is difficult due to gene flow, but can occur if the habitat has higher productivity. Differences in offspring phenotypes have attracted little attention in this context. We model a scenario where the rarer habitat improves offspring's later competitive ability - a carryover effect that operates on top of local adaptation to one or the other habitat type. Assuming localised dispersal, so the offspring tend to settle in similar habitat to the natal type, the superior competitive ability of offspring remaining in the rarer habitat hampers immigration from the majority habitat. This initiates a positive feedback between local adaptation and trait divergence, which can thereafter be reinforced by coevolution with dispersal traits that match ecotype to habitat type. Rarity strengthens selection on dispersal traits and promotes linkage disequilibrium between locally adapted traits and ecotype-habitat matching dispersal. We propose that carryover effects may initiate isolation by ecology. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Wells, Jonathan C K
2012-11-01
Humans are characterized by a suite of traits that seem to differentiate them profoundly from closely related apes such as the gorilla, chimpanzee, and orang-utan. These traits include longevity, cooperative breeding, stacking of offspring, lengthy maturation, and a complex life-course profile of adiposity. When, how, and why these traits emerged during our evolutionary history is currently attracting considerable attention. Most approaches to life history emphasize dietary energy availability and the risk of mortality as the two key stresses shaping life-history variability between and within species. The high energy costs of the large Homo brain are also seen as the central axis around which other life-history traits were reorganized. I propose that ecological volatility may have been a key stress, selecting in favor of the suite of traits in order to tolerate periods of energy scarcity, and increase reproductive output during periods of good conditions. Theses life-history adaptations may have preceded and enabled the trend toward encephalization. Copyright © 2012 Wiley Periodicals, Inc.
Flower color as a model system for studies of plant evo-devo.
Sobel, James M; Streisfeld, Matthew A
2013-01-01
Even though pigmentation traits have had substantial impacts on the field of animal evolutionary developmental biology, they have played only relatively minor roles in plant evo-devo. This is surprising given the often direct connection between flower color and fitness variation mediated through the effects of pollinators. At the same time, ecological and evolutionary genetic studies have utilized the molecular resources available for the anthocyanin pathway to generate several examples of the molecular basis of putatively adaptive transitions in flower color. Despite this opportunity to synthesize experimental approaches in ecology, evolution, and developmental biology, the investigation of many fundamental questions in evo-devo using this powerful model is only at its earliest stages. For example, a long-standing question is whether predictable genetic changes accompany the repeated evolution of a trait. Due to the conserved nature of the biochemical and regulatory control of anthocyanin biosynthesis, it has become possible to determine whether, and under what circumstances, different types of mutations responsible for flower color variation are preferentially targeted by natural selection. In addition, because plants use anthocyanin and related compounds in vegetative tissue for other important physiological functions, the identification of naturally occurring transitions from unpigmented to pigmented flowers provides the opportunity to examine the mechanisms by which regulatory networks are co-opted into new developmental domains. Here, we review what is known about the ecological and molecular basis of anthocyanic flower color transitions in natural systems, focusing on the evolutionary and developmental features involved. In doing so, we provide suggestions for future work on this trait and suggest that there is still much to be learned from the evolutionary development of flower color transitions in nature.
Stolzenberg, Nicolas; Nguyen The, Bénédicte; Salducci, Marie Dominique; Cavalli, Laurent
2009-06-18
Ecological characteristics (growth, morphology, reproduction) arise from the interaction between environmental factors and genetics. Genetic analysis of individuals' life history traits might be used to improve our understanding of mechanisms that form and maintain a hybrid zone. A fish hybrid zone was used to characterize the process of natural selection. Data were collected during two reproductive periods (2001 and 2002) and 1117 individuals (nase, Chondrostama nasus nasus, sofie C. toxostoma toxostoma and hybrids) were sampled. Reproductive dates of the two parental species overlapped at sympatric sites. The nase had an earlier reproductive period than the sofie; males had longer reproductive periods for both species. Hybridisation between female nase and male sofie was the most likely. Hybrids had a reproductive period similar to the inherited parental mitochondrial type. Growth and reproductive information from different environments has been synthesised following a bayesian approach of the von Bertalanffy model. Hybrid life history traits appear to link with maternal heritage. Hybrid size from the age of two and size at first maturity appeared to be closer to the size of the maternal origin species (nase or sofie). Median growth rates for hybrids were similar and intermediate between those of the parental species. We observed variable life history traits for hybrids and pure forms in the different parts of the hybrid zone. Geometrical analysis of the hybrid fish shape gave evidence of two main morphologies with a link to maternal heritage. Selective mating seemed to be the underlying process which, with mitochondrial heritage, could explain the evolution of the studied hybrid zone. More generally, we showed the importance of studies on hybrid zones and specifically the study of individuals' ecological characteristics, to improve our understanding of speciation.
Silveira, F A O; Oliveira, E G
2013-05-01
Understanding variation in plant traits in heterogeneous habitats is important to predict responses to changing environments, but trait-environment associations are poorly known along ecological gradients. We tested the hypothesis that plant architectural complexity increases with habitat complexity along a soil fertility gradient in a Cerrado (Neotropical savanna) area in southeastern Brazil. Plant architecture and productivity (estimated as the total number of healthy infructescences) of Miconia albicans (SW.) Triana were examined in three types of vegetation which together form a natural gradient of increasing soil fertility, tree density and canopy cover: grasslands (campo sujo, CS), shrublands (cerrado sensu strico, CE) and woodlands (cerradão, CD). As expected, plants growing at the CS were shorter and had a lower branching pattern, whereas plants at the CD were the tallest. Unexpectedly, however, CD plants did not show higher architectural complexity compared to CE plants. Higher architectural similarity between CE and CD plants compared to similarity between CS and CE plants suggests reduced expression of functional architectural traits under shade. Plants growing at the CE produced more quaternary shoots, leading to a larger number of infructescences. This higher plant productivity in CE indicates that trait variation in ecological gradients is more complex than previously thought. Nematode-induced galls accounted for fruit destruction in 76.5% infructescences across physiognomies, but percentage of attack was poorly related to architectural variables. Our data suggest shade-induced limitation in M. albicans architecture, and point to complex phenotypic variation in heterogeneous habitats in Neotropical savannas.
Montiglio, Pierre-Olivier; Wey, Tina W; Chang, Ann T; Fogarty, Sean; Sih, Andrew
2017-03-01
Despite a central line of research aimed at quantifying relationships between mating success and sexually dimorphic traits (e.g., ornaments), individual variation in sexually selected traits often explains only a modest portion of the variation in mating success. Another line of research suggests that a significant portion of the variation in mating success observed in animal populations could be explained by correlational selection, where the fitness advantage of a given trait depends on other components of an individual's phenotype and/or its environment. We tested the hypothesis that interactions between multiple traits within an individual (phenotype dependence) or between an individual's phenotype and its social environment (context dependence) can select for individual differences in behaviour (i.e., personality) and social plasticity. To quantify the importance of phenotype- and context-dependent selection on mating success, we repeatedly measured the behaviour, social environment and mating success of about 300 male stream water striders, Aquarius remigis. Rather than explaining individual differences in long-term mating success, we instead quantified how the combination of a male's phenotype interacted with the immediate social context to explain variation in hour-by-hour mating decisions. We suggest that this analysis captures more of the mechanisms leading to differences in mating success. Males differed consistently in activity, aggressiveness and social plasticity. The mating advantage of these behavioural traits depended on male morphology and varied with the number of rival males in the pool, suggesting mechanisms selecting for consistent differences in behaviour and social plasticity. Accounting for phenotype and context dependence improved the amount of variation in male mating success we explained statistically by 30-274%. Our analysis of the determinants of male mating success provides important insights into the evolutionary forces that shape phenotypic variation. In particular, our results suggest that sexual selection is likely to favour individual differences in behaviour, social plasticity (i.e., individuals adjusting their behaviour), niche preference (i.e., individuals dispersing to particular social conditions) or social niche construction (i.e., individuals modifying the social environment). The true effect of sexual traits can only be understood in interaction with the individual's phenotype and environment. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
NASA Astrophysics Data System (ADS)
Cardeccia, Alice; Marchini, Agnese; Occhipinti-Ambrogi, Anna; Galil, Bella; Gollasch, Stephan; Minchin, Dan; Narščius, Aleksas; Olenin, Sergej; Ojaveer, Henn
2018-02-01
The biological traits of the sixty-eight most widespread multicellular non-indigenous species (MWNIS) in European Seas: Baltic Sea, Western European Margin of the Atlantic Ocean and the Mediterranean Sea were examined. Data for nine biological traits was analyzed, and a total of 41 separate categories were used to describe the biological and ecological functions of these NIS. Our findings show that high dispersal ability, high reproductive rate and ecological generalization are the biological traits commonly associated with MWNIS. The functional groups that describe most of the 68 MWNIS are: photoautotrophic, zoobenthic (both sessile and motile) and nektonic predatory species. However, these 'most widespread' species comprise a wide range of taxa and biological trait profiles; thereby a clear "identikit of a perfect invader" for marine and brackish environments is difficult to define. Some traits, for example: "life form", "feeding method" and "mobility", feature multiple behaviours and strategies. Even species introduced by a single pathway, e.g. vessels, feature diverse biological trait profiles. MWNIS likely to impact community organization, structure and diversity are often associated with brackish environments. For many traits ("life form", "sociability", "reproductive type", "reproductive frequency", "haploid and diploid dispersal" and "mobility"), the categories mostly expressed by the impact-causing MWNIS do not differ substantially from the whole set of MWNIS.
Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops.
Milla, Rubén; Morente-López, Javier; Alonso-Rodrigo, J Miguel; Martín-Robles, Nieves; Chapin, F Stuart
2014-10-22
Trait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature. We provide the first comprehensive test of these hypotheses, based on a trait-screening programme of 30 herbaceous crops and their wild progenitors. During crop evolution plants became larger, which enabled them to compete more effectively for light, but they had poorly integrated phenotypes. In a subset of six herbaceous crop species investigated in greater depth, competitiveness for light increased during early plant domestication, whereas diminished phenotypic integration occurred later during crop improvement. Mass-specific leaf and root traits relevant to resource-use strategies (e.g. specific leaf area or tissue density of fine roots) changed during crop evolution, but in diverse and contrasting directions and magnitudes, depending on the crop species. Reductions in phenotypic integration and overinvestment in traits involved in competition for light may affect the chances of upgrading modern herbaceous crops to face current climatic and food security challenges. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Macrofaunal production and biological traits: Spatial relationships along the UK continental shelf
NASA Astrophysics Data System (ADS)
Bolam, S. G.; Eggleton, J. D.
2014-04-01
Biological trait analysis (BTA) is increasingly being employed to improve our understanding of the ecological functioning of marine benthic invertebrate communities. However, changes in trait composition are seldomly compared with concomitant changes in metrics of ecological function. Consequently, inferences regarding the functional implications of any changes are often anecdotal; we currently have a limited understanding of the functional significance of the traits commonly used. In this study, we quantify the relationship between benthic invertebrate trait composition and secondary production estimates using data spanning almost the breadth of the UK continental shelf. Communities described by their composition of 10 traits representing life history, morphology and behaviour showed strong relationships with variations in total secondary production. A much weaker relationship was observed for community productivity (or P:B), a measure of rate of energy turnover. Furthermore, the relationship between total production and multivariate taxonomic community composition was far weaker than that for trait composition. Indeed, the similarities between communities as defined by taxonomy were very different from those depicted by their trait composition. That is, as many studies have demonstrated, taxonomically different communities may display similar trait compositions, and vice versa. Finally, we found that descriptions of community trait composition vary greatly depending on whether abundance or biomass is used as the enumeration weighting method during BTA, and trait assessments based on biomass produced better relations with secondary production than those based on abundance. We discuss the significance of these findings with respect to BTA using marine benthic invertebrates.
Tao, Leiling; Gowler, Camden D.; Ahmad, Aamina; Hunter, Mark D.; de Roode, Jacobus C.
2015-01-01
Host–parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host–parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host–parasite systems. PMID:26468247
Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C
2015-10-22
Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. © 2015 The Author(s).
Desirable plant root traits for protecting unstable slopes against landslides
NASA Astrophysics Data System (ADS)
Stokes, A.; Atger, C.; Bengough, G.; Fourcaud, T.; Sidle, R. C.
2009-04-01
A trait is defined as a distinct, quantitative property of organisms, usually measured at the individual level and used comparatively across species. Plant quantitative traits are extremely important for understanding the local ecology of any site. Plant height, architecture, root depth, wood density, leaf size and leaf nitrogen concentration control ecosystem processes and define habitat for other taxa. An engineer conjecturing as to how plant traits may directly influence physical processes occurring on sloping land just needs to consider how e.g. canopy architecture and litter properties influence the partitioning of rainfall among interception loss, infiltration and runoff. Plant traits not only influence abiotic processes occurring at a site, but also the habitat for animals and invertebrates. Depending on the goal of the landslide engineer, the immediate and long-term effects of plant traits in an environment must be considered if a site is to remain viable and ecologically successful. When vegetation is considered in models of slope stability, usually the only root parameters taken into consideration are tensile strength and root area ratio. Root system spatial structure is not considered, although the length, orientation and diameter of roots are recognized as being of importance. Thick roots act like soil nails on slopes, reinforcing soil in the same way that concrete is reinforced with steel rods. The spatial position of these thick roots also has an indirect effect on soil fixation in that the location of thin and fine roots will depend on the arrangement of thick roots. Thin and fine roots act in tension during failure on slopes and if they cross the slip surface, are largely responsible for reinforcing soil on slopes. Therefore, the most important trait to consider initially is rooting depth. To stabilize a slope against a shallow landslide, roots must cross the shear surface. The number and thickness of roots in this zone will therefore largely determine slope stability. Rooting depth is species dependent when soil conditions are not limiting and the number of horizontal lateral roots borne on the vertical roots usually changes with depth. Therefore, the number and orientation of roots that the shear surface intersects will change significantly with rooting depth for the same plant, even for magnitudes of only several cm. Similarly, depending on the geometry of the root system, the angle at which a root crosses the shear surface can also have an influence on its resistance to pullout and breakage. The angle at which a root emerges from the parent root is dependent on root type, depth and species (when soil conditions are not limiting). Due to the physiology of roots, a root branch can be initiated at any point along a parent root, but not necessarily emerge fully from the parent root. These traits, along with others including size, relative growth rate, regeneration strategies, wood structure and strength will be discussed with regard to their influence on slope stability. How each of these traits is influenced by soil conditions and plantation techniques is also of extreme importance to the landslide engineer. The presence of obstacles in the soil, as well as compaction, affects root length and branching pattern. Roots of many species of woody plants on shallow soils also tend to grow along fractures deep into the underlying bedrock which allows roots to locate supplies of nutrient and water rich pockets. Rooting depths of herbaceous species in water-limited environments are highly correlated with infiltration depth, but waterlogged soils can asphyxiate tree roots, resulting in shallow root systems. The need to understand and integrate each of these traits for a species is not easy. Therefore, we suggest a hierarchy whereby traits are considered in order of importance, along with how external factors influence their expression over time.
Bourret, A; Garant, D
2017-03-01
Quantitative genetics approaches, and particularly animal models, are widely used to assess the genetic (co)variance of key fitness related traits and infer adaptive potential of wild populations. Despite the importance of precision and accuracy of genetic variance estimates and their potential sensitivity to various ecological and population specific factors, their reliability is rarely tested explicitly. Here, we used simulations and empirical data collected from an 11-year study on tree swallow (Tachycineta bicolor), a species showing a high rate of extra-pair paternity and a low recruitment rate, to assess the importance of identity errors, structure and size of the pedigree on quantitative genetic estimates in our dataset. Our simulations revealed an important lack of precision in heritability and genetic-correlation estimates for most traits, a low power to detect significant effects and important identifiability problems. We also observed a large bias in heritability estimates when using the social pedigree instead of the genetic one (deflated heritabilities) or when not accounting for an important cause of resemblance among individuals (for example, permanent environment or brood effect) in model parameterizations for some traits (inflated heritabilities). We discuss the causes underlying the low reliability observed here and why they are also likely to occur in other study systems. Altogether, our results re-emphasize the difficulties of generalizing quantitative genetic estimates reliably from one study system to another and the importance of reporting simulation analyses to evaluate these important issues.
Multilocus approaches for the measurement of selection on correlated genetic loci.
Gompert, Zachariah; Egan, Scott P; Barrett, Rowan D H; Feder, Jeffrey L; Nosil, Patrik
2017-01-01
The study of ecological speciation is inherently linked to the study of selection. Methods for estimating phenotypic selection within a generation based on associations between trait values and fitness (e.g. survival) of individuals are established. These methods attempt to disentangle selection acting directly on a trait from indirect selection caused by correlations with other traits via multivariate statistical approaches (i.e. inference of selection gradients). The estimation of selection on genotypic or genomic variation could also benefit from disentangling direct and indirect selection on genetic loci. However, achieving this goal is difficult with genomic data because the number of potentially correlated genetic loci (p) is very large relative to the number of individuals sampled (n). In other words, the number of model parameters exceeds the number of observations (p ≫ n). We present simulations examining the utility of whole-genome regression approaches (i.e. Bayesian sparse linear mixed models) for quantifying direct selection in cases where p ≫ n. Such models have been used for genome-wide association mapping and are common in artificial breeding. Our results show they hold promise for studies of natural selection in the wild and thus of ecological speciation. But we also demonstrate important limitations to the approach and discuss study designs required for more robust inferences. © 2016 John Wiley & Sons Ltd.
Historical changes in northeastern US bee pollinators related to shared ecological traits.
Bartomeus, Ignasi; Ascher, John S; Gibbs, Jason; Danforth, Bryan N; Wagner, David L; Hedtke, Shannon M; Winfree, Rachael
2013-03-19
Pollinators such as bees are essential to the functioning of terrestrial ecosystems. However, despite concerns about a global pollinator crisis, long-term data on the status of bee species are limited. We present a long-term study of relative rates of change for an entire regional bee fauna in the northeastern United States, based on >30,000 museum records representing 438 species. Over a 140-y period, aggregate native species richness weakly decreased, but richness declines were significant only for the genus Bombus. Of 187 native species analyzed individually, only three declined steeply, all of these in the genus Bombus. However, there were large shifts in community composition, as indicated by 56% of species showing significant changes in relative abundance over time. Traits associated with a declining relative abundance include small dietary and phenological breadth and large body size. In addition, species with lower latitudinal range boundaries are increasing in relative abundance, a finding that may represent a response to climate change. We show that despite marked increases in human population density and large changes in anthropogenic land use, aggregate native species richness declines were modest outside of the genus Bombus. At the same time, we find that certain ecological traits are associated with declines in relative abundance. These results should help target conservation efforts focused on maintaining native bee abundance and diversity and therefore the important ecosystems services that they provide.
Evolution of plant growth and defense in a continental introduction.
Agrawal, Anurag A; Hastings, Amy P; Bradburd, Gideon S; Woods, Ellen C; Züst, Tobias; Harvey, Jeffrey A; Bukovinszky, Tibor
2015-07-01
Substantial research has addressed adaptation of nonnative biota to novel environments, yet surprisingly little work has integrated population genetic structure and the mechanisms underlying phenotypic differentiation in ecologically important traits. We report on studies of the common milkweed Asclepias syriaca, which was introduced from North America to Europe over the past 400 years and which lacks most of its specialized herbivores in the introduced range. Using 10 populations from each continent grown in a common environment, we identified several growth and defense traits that have diverged, despite low neutral genetic differentiation between continents. We next developed a Bayesian modeling approach to account for relationships between molecular and phenotypic differences, confirming that continental trait differentiation was greater than expected from neutral genetic differentiation. We found evidence that growth-related traits adaptively diverged within and between continents. Inducible defenses triggered by monarch butterfly herbivory were substantially reduced in European populations, and this reduction in inducibility was concordant with altered phytohormonal dynamics, reduced plant growth, and a trade-off with constitutive investment. Freedom from the community of native and specialized herbivores may have favored constitutive over induced defense. Our replicated analysis of plant growth and defense, including phenotypically plastic traits, suggests adaptive evolution following a continental introduction.
The genetics of feed conversion efficiency traits in a commercial broiler line
Reyer, Henry; Hawken, Rachel; Murani, Eduard; Ponsuksili, Siriluck; Wimmers, Klaus
2015-01-01
Individual feed conversion efficiency (FCE) is a major trait that influences the usage of energy resources and the ecological footprint of livestock production. The underlying biological processes of FCE are complex and are influenced by factors as diverse as climate, feed properties, gut microbiota, and individual genetic predisposition. To gain an insight to the genetic relationships with FCE traits and to contribute to the improvement of FCE in commercial chicken lines, a genome-wide association study was conducted using a commercial broiler population (n = 859) tested for FCE and weight traits during the finisher period from 39 to 46 days of age. Both single-marker (generalized linear model) and multi-marker (Bayesian approach) analyses were applied to the dataset to detect genes associated with the variability in FCE. The separate analyses revealed 22 quantitative trait loci (QTL) regions on 13 different chromosomes; the integration of both approaches resulted in 7 overlapping QTL regions. The analyses pointed to acylglycerol kinase (AGK) and general transcription factor 2-I (GTF2I) as positional and functional candidate genes. Non-synonymous polymorphisms of both candidate genes revealed evidence for a functional importance of these genes by influencing different biological aspects of FCE. PMID:26552583
How weeds emerge: a taxonomic and trait-based examination using United States data
Kuester, Adam; Conner, Jeffrey K; Culley, Theresa; Baucom, Regina S
2014-01-01
Weeds can cause great economic and ecological harm to ecosystems. Despite their importance, comparisons of the taxonomy and traits of successful weeds often focus on a few specific comparisons – for example, introduced versus native weeds.We used publicly available inventories of US plant species to make comprehensive comparisons of the factors that underlie weediness. We quantitatively examined taxonomy to determine if certain genera are overrepresented by introduced, weedy or herbicide-resistant species, and we compared phenotypic traits of weeds to those of nonweeds, whether introduced or native.We uncovered genera that have more weeds and introduced species than expected by chance and plant families that have more herbicide-resistant species than expected by chance. Certain traits, generally related to fast reproduction, were more likely to be associated with weedy plants regardless of species’ origins. We also found stress tolerance traits associated with either native or introduced weeds compared with native or introduced nonweeds. Weeds and introduced species have significantly smaller genomes than nonweeds and native species.These results support trends for weedy plants reported from other floras, suggest that native and introduced weeds have different stress adaptations, and provide a comprehensive survey of trends across weeds within the USA. PMID:24494694
Geological Substrates Shape Tree Species and Trait Distributions in African Moist Forests
Fayolle, Adeline; Engelbrecht, Bettina; Freycon, Vincent; Mortier, Frédéric; Swaine, Michael; Réjou-Méchain, Maxime; Doucet, Jean-Louis; Fauvet, Nicolas; Cornu, Guillaume; Gourlet-Fleury, Sylvie
2012-01-01
Background Understanding the factors that shape the distribution of tropical tree species at large scales is a central issue in ecology, conservation and forest management. The aims of this study were to (i) assess the importance of environmental factors relative to historical factors for tree species distributions in the semi-evergreen forests of the northern Congo basin; and to (ii) identify potential mechanisms explaining distribution patterns through a trait-based approach. Methodology/Principal Findings We analyzed the distribution patterns of 31 common tree species in an area of more than 700,000 km2 spanning the borders of Cameroon, the Central African Republic, and the Republic of Congo using forest inventory data from 56,445 0.5-ha plots. Spatial variation of environmental (climate, topography and geology) and historical factors (human disturbance) were quantified from maps and satellite records. Four key functional traits (leaf phenology, shade tolerance, wood density, and maximum growth rate) were extracted from the literature. The geological substrate was of major importance for the distribution of the focal species, while climate and past human disturbances had a significant but lesser impact. Species distribution patterns were significantly related to functional traits. Species associated with sandy soils typical of sandstone and alluvium were characterized by slow growth rates, shade tolerance, evergreen leaves, and high wood density, traits allowing persistence on resource-poor soils. In contrast, fast-growing pioneer species rarely occurred on sandy soils, except for Lophira alata. Conclusions/Significance The results indicate strong environmental filtering due to differential soil resource availability across geological substrates. Additionally, long-term human disturbances in resource-rich areas may have accentuated the observed patterns of species and trait distributions. Trait differences across geological substrates imply pronounced differences in population and ecosystem processes, and call for different conservation and management strategies. PMID:22905127
Budde, Katharina B; Heuertz, Myriam; Hernández-Serrano, Ana; Pausas, Juli G; Vendramin, Giovanni G; Verdú, Miguel; González-Martínez, Santiago C
2014-01-01
Wildfire is a major ecological driver of plant evolution. Understanding the genetic basis of plant adaptation to wildfire is crucial, because impending climate change will involve fire regime changes worldwide. We studied the molecular genetic basis of serotiny, a fire-related trait, in Mediterranean maritime pine using association genetics. A single nucleotide polymorphism (SNP) set was used to identify genotype : phenotype associations in situ in an unstructured natural population of maritime pine (eastern Iberian Peninsula) under a mixed-effects model framework. RR-BLUP was used to build predictive models for serotiny in this region. Model prediction power outside the focal region was tested using independent range-wide serotiny data. Seventeen SNPs were potentially associated with serotiny, explaining approximately 29% of the trait phenotypic variation in the eastern Iberian Peninsula. Similar prediction power was found for nearby geographical regions from the same maternal lineage, but not for other genetic lineages. Association genetics for ecologically relevant traits evaluated in situ is an attractive approach for forest trees provided that traits are under strong genetic control and populations are unstructured, with large phenotypic variability. This will help to extend the research focus to ecological keystone non-model species in their natural environments, where polymorphisms acquired their adaptive value. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Colgan, Matthew S; Martin, Roberta E; Baldeck, Claire A; Asner, Gregory P
2015-01-01
Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology) and two functional traits (thorn type and seed dispersal mechanism). We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese) predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ(13)C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry.
Anderegg, William R L
2015-02-01
Plant hydraulics mediate terrestrial woody plant productivity, influencing global water, carbon, and biogeochemical cycles, as well as ecosystem vulnerability to drought and climate change. While inter-specific differences in hydraulic traits are widely documented, intra-specific hydraulic variability is less well known and is important for predicting climate change impacts. Here, I present a conceptual framework for this intra-specific hydraulic trait variability, reviewing the mechanisms that drive variability and the consequences for vegetation response to climate change. I performed a meta-analysis on published studies (n = 33) of intra-specific variation in a prominent hydraulic trait - water potential at which 50% stem conductivity is lost (P50) - and compared this variation to inter-specific variability within genera and plant functional types used by a dynamic global vegetation model. I found that intra-specific variability is of ecologically relevant magnitudes, equivalent to c. 33% of the inter-specific variability within a genus, and is larger in angiosperms than gymnosperms, although the limited number of studies highlights that more research is greatly needed. Furthermore, plant functional types were poorly situated to capture key differences in hydraulic traits across species, indicating a need to approach prediction of drought impacts from a trait-based, rather than functional type-based perspective.
Briones-Fourzán, Patricia
2014-01-01
Abstract Coexistence of closely related species may be promoted by niche differentiation or result from interspecific trade-offs in life history and ecological traits that influence relative fitness differences and contribute to competitive inequalities. Although insufficient to prove coexistence, trait comparisons provide a first step to identify functional differences between co-occurring congeneric species in relation to mechanisms of coexistence. Here, a comparative review on life history and ecological traits is presented for two pairs of co-occurring species of spiny lobsters in the genus Panulirus: Panulirus gracilis and Panulirus inflatus from the Eastern Central Pacific region, and Panulirus argus and Panulirus guttatus from the Caribbean region. Panulirus gracilis and Panulirus inflatus have similar larval, postlarval, and adult sizes and a similar diet, but differ in degree of habitat specialization, fecundity, and growth rate. However, little is known on behavioral traits of these two species that may influence their competitive abilities and susceptibility to predators. The more abundant information on Panulirus argus and Panulirus guttatus shows that these two species differ more broadly in degree of habitat specialization, larval, postlarval and adult sizes, diet, fecundity, growth rate, degree of sociality, defense mechanisms, susceptibility to predators, and chemical ecology, suggesting a greater degree of niche differentiation between Panulirus argus and Panulirus guttatus than between Panulirus gracilis and Panulirus inflatus. Whether the substantial niche differentiation and apparent interspecific trade-offs between Panulirus argus and Panulirus guttatus relative to Panulirus gracilis and Panulirus inflatus reflect an earlier divergence of the former pair of species in the evolution of the genus constitutes an intriguing hypothesis. However, whether or not post-divergence evolution of each species pair occurred in sympatry remains uncertain. PMID:25561843
mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling.
Scott, Finlay; Blanchard, Julia L; Andersen, Ken H
2014-10-01
Size spectrum ecological models are representations of a community of individuals which grow and change trophic level. A key emergent feature of these models is the size spectrum; the total abundance of all individuals that scales negatively with size. The models we focus on are designed to capture fish community dynamics useful for assessing the community impacts of fishing.We present mizer , an R package for implementing dynamic size spectrum ecological models of an entire aquatic community subject to fishing. Multiple fishing gears can be defined and fishing mortality can change through time making it possible to simulate a range of exploitation strategies and management options. mizer implements three versions of the size spectrum modelling framework: the community model, where individuals are only characterized by their size; the trait-based model, where individuals are further characterized by their asymptotic size; and the multispecies model where additional trait differences are resolved.A range of plot, community indicator and summary methods are available to inspect the results of the simulations.
Saastamoinen, Marjo; Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W; Fronhofer, Emanuel A; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M; Travis, Justin M J; Donohue, Kathleen; Bullock, James M; Del Mar Delgado, Maria
2018-02-01
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Keiser, Carl N; Pinter-Wollman, Noa; Ziemba, Michael J; Kothamasu, Krishna S; Pruitt, Jonathan N
2018-03-01
The traits of the primary case of an infectious disease outbreak, and the circumstances for their aetiology, potentially influence the trajectory of transmission dynamics. However, these dynamics likely also depend on the traits of the individuals with whom the primary case interacts. We used the social spider Stegodyphus dumicola to test how the traits of the primary case, group phenotypic composition and group size interact to facilitate the transmission of a GFP-labelled cuticular bacterium. We also compared bacterial transmission across experimentally generated "daisy-chain" vs. "star" networks of social interactions. Finally, we compared social network structure across groups of different sizes. Groups of 10 spiders experienced more bacterial transmission events compared to groups of 30 spiders, regardless of groups' behavioural composition. Groups containing only one bold spider experienced the lowest levels of bacterial transmission regardless of group size. We found no evidence for the traits of the primary case influencing any transmission dynamics. In a second experiment, bacteria were transmitted to more individuals in experimentally induced star networks than in daisy-chains, on which transmission never exceeded three steps. In both experimental network types, transmission success depended jointly on the behavioural traits of the interacting individuals; however, the behavioural traits of the primary case were only important for transmission on star networks. Larger social groups exhibited lower interaction density (i.e. had a low ratio of observed to possible connections) and were more modular, i.e. they had more connections between nodes within a subgroup and fewer connections across subgroups. Thus, larger groups may restrict transmission by forming fewer interactions and by isolating subgroups that interacted with the primary case. These findings suggest that accounting for the traits of single exposed hosts has less power in predicting transmission dynamics compared to the larger scale factors of the social groups in which they reside. Factors like group size and phenotypic composition appear to alter social interaction patterns, which leads to differential transmission of microbes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W.; Fronhofer, Emanuel A.; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M.; Travis, Justin M. J.; Donohue, Kathleen; Bullock, James M.; del Mar Delgado, Maria
2017-01-01
ABSTRACT Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. PMID:28776950
Disentangling the Correlated Evolution of Monogamy and Cooperation.
Dillard, Jacqueline R; Westneat, David F
2016-07-01
Lifetime genetic monogamy, by increasing sibling relatedness, has been proposed as an important causal factor in the evolution of altruism. Monogamy, however, could influence the subsequent evolution of cooperation in other ways. We present several alternative, non-mutually exclusive, evolutionary processes that could explain the correlated evolution of monogamy and cooperation. Our analysis of these possibilities reveals that many ecological or social factors can affect all three variables of Hamilton's Rule simultaneously, thus calling for a more holistic, systems-level approach to studying the evolution of social traits. This perspective reveals novel dimensions to coevolutionary relationships and provides solutions for assigning causality in complex cases of correlated social trait evolution, such as the sequential evolution of monogamy and cooperation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China
Kröber, Wenzel; Böhnke, Martin; Welk, Erik; Wirth, Christian; Bruelheide, Helge
2012-01-01
Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones. PMID:22539999
Leaf trait-environment relationships in a subtropical broadleaved forest in South-East China.
Kröber, Wenzel; Böhnke, Martin; Welk, Erik; Wirth, Christian; Bruelheide, Helge
2012-01-01
Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones.
NASA Astrophysics Data System (ADS)
Enquist, B. J.
2016-12-01
The link between variation in species-specific traits - due to acclimation, adaptation, and how ecological communities assemble in time and space - and larger scale ecosystem processes is an important focus for global change research. Understanding such linkages requires synthesis of evolutionary, biogeograpahic, and biogeochemical approaches. Recent observations reveal several paradoxical patterns across ecosystems. Optimality principles provide a novel framework for generating numerous predictions for how ecosystems have and will reorganize and respond to climate change. Tropical elevation gradients are natural laboratories to assess how changing climate can ramify to influence tropical forest diversity and ecosystem functioning. We tested several new predictions from trait- and metabolic scaling theories by assessing the covariation between climate, traits, biomass and gross and net primary productivity (GPP and NPP) across tropical forest plots spanning elevation gradients. We measured multiple leaf physiological, morphological, and stoichiometric traits linked to variation in tree growth. Consistent with theory, observed decreases in NPP and GPP with temperature were best predicted by forest biomass, and scaled allometrically as predicted by theory but the effect of temperature was much less, characterized by a kinetic response much lower ( 0.1eV) than predicted ( 0.65eV). This is likely due to an observed exponential increase in the mean community leaf P:N ratio and photosynthetic nutrient use efficiency with decreases in temperature. Our results are consistent with predictions from Trait Driver Theory, where adaptive/acclamatory shifts in plant traits compensate for the kinetic effects of temperature on tree growth. Further, most of the traits measured showed significantly skewed trait distributions consistent with recent observations that observed shifts in species composition. The development of trait-based scaling theory provides a robust basis to predict how shifts in climate have and will influence functional composition and ecosystem functioning. Together, these results highlight the potential critical importance optimality principles for understanding the role of the biosphere within the integrated earth system.
Macroevolution of perfume signalling in orchid bees.
Weber, Marjorie G; Mitko, Lukasz; Eltz, Thomas; Ramírez, Santiago R
2016-11-01
Theory predicts that both stabilising selection and diversifying selection jointly contribute to the evolution of sexual signalling traits by (1) maintaining the integrity of communication signals within species and (2) promoting the diversification of traits among lineages. However, for many important signalling traits, little is known about whether these dynamics translate into predictable macroevolutionary signatures. Here, we test for macroevolutionary patterns consistent with sexual signalling theory in the perfume signals of neotropical orchid bees, a group well studied for their chemical sexual communication. Our results revealed both high species-specificity and elevated rates of evolution in perfume signals compared to nonsignalling traits. Perfume complexity was correlated with the number of congeners in a species' range, suggesting that perfume evolution may be tied to the remarkably high number of orchid bee species coexisting together in some neotropical communities. Finally, sister-pair comparisons were consistent with both rapid divergence at speciation and character displacement upon secondary contact. Together, our results provide new insight into the macroevolution of sexual signalling in insects. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
A database of lotic invertebrate traits for North America
Vieira, Nicole K.M.; Poff, N. LeRoy; Carlisle, Daren M.; Moulton, Stephen R.; Koski, Marci L.; Kondratieff, Boris C.
2006-01-01
The assessment and study of stream communities may be enhanced if functional characteristics such as life-history, habitat preference, and reproductive strategy were more widely available for specific taxa. Species traits can be used to develop these functional indicators because many traits directly link functional roles of organisms with controlling environmental factors (for example, flow, substratum, temperature). In addition, some functional traits may not be constrained by taxonomy and are thus applicable at multiple spatial scales. Unfortunately, a comprehensive summary of traits for North American invertebrate taxa does not exist. Consequently, the U.S. Geological Survey's National Water-Quality Assessment Program in cooperation with Colorado State University compiled a database of traits for North American invertebrates. A total of 14,127 records for over 2,200 species, 1,165 genera, and 249 families have been entered into the database from 967 publications, texts and reports. Quality-assurance procedures indicated error rates of less than 3 percent in the data entry process. Species trait information was most complete for insect taxa. Traits describing resource acquisition and habitat preferences were most frequently reported, whereas those describing physiological tolerances and reproductive biology were the least frequently reported in the literature. The database is not exhaustive of the literature for North American invertebrates and is biased towards aquatic insects, but it represents a first attempt to compile traits in a web-accessible database. This report describes the database and discusses important decisions necessary for identifying ecologically relevant, environmentally sensitive, non-redundant, and statistically tractable traits for use in bioassessment programs.
A functional trait perspective on plant invasion
Drenovsky, Rebecca E.; Grewell, Brenda J.; D'Antonio, Carla M.; Funk, Jennifer L.; James, Jeremy J.; Molinari, Nicole; Parker, Ingrid M.; Richards, Christina L.
2012-01-01
Background and Aims Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management. Scope We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change. Conclusions To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels. PMID:22589328
Relating Stomatal Conductance to Leaf Functional Traits.
Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge
2015-10-12
Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.
How Can We Study the Evolution of Animal Minds?
Cauchoix, Maxime; Chaine, Alexis S.
2016-01-01
During the last 50 years, comparative cognition and neurosciences have improved our understanding of animal minds while evolutionary ecology has revealed how selection acts on traits through evolutionary time. We describe how cognition can be subject to natural selection like any other biological trait and how this evolutionary approach can be used to understand the evolution of animal cognition. We recount how comparative and fitness methods have been used to understand the evolution of cognition and outline how these approaches could extend our understanding of cognition. The fitness approach, in particular, offers unprecedented opportunities to study the evolutionary mechanisms responsible for variation in cognition within species and could allow us to investigate both proximate (i.e., neural and developmental) and ultimate (i.e., ecological and evolutionary) underpinnings of animal cognition together. We highlight recent studies that have successfully shown that cognitive traits can be under selection, in particular by linking individual variation in cognition to fitness. To bridge the gap between cognitive variation and fitness consequences and to better understand why and how selection can occur on cognition, we end this review by proposing a more integrative approach to study contemporary selection on cognitive traits combining socio-ecological data, minimally invasive neuroscience methods and measurement of ecologically relevant behaviors linked to fitness. Our overall goal in this review is to build a bridge between cognitive neuroscientists and evolutionary biologists, illustrate how their research could be complementary, and encourage evolutionary ecologists to include explicit attention to cognitive processes in their studies of behavior. PMID:27014163
NASA Astrophysics Data System (ADS)
White, J. C.; Hill, M. J.; Bickerton, M. A.; Wood, P. J.
2017-09-01
The widespread degradation of lotic ecosystems has prompted extensive river restoration efforts globally, but many studies have reported modest ecological responses to rehabilitation practices. The functional properties of biotic communities are rarely examined within post-project appraisals, which would provide more ecological information underpinning ecosystem responses to restoration practices and potentially pinpoint project limitations. This study examines macroinvertebrate community responses to three projects which aimed to physically restore channel morphologies. Taxonomic and functional trait compositions supported by widely occurring lotic habitats (biotopes) were examined across paired restored and non-restored (control) reaches. The multivariate location (average community composition) of taxonomic and functional trait compositions differed marginally between control and restored reaches. However, changes in the amount of multivariate dispersion were more robust and indicated greater ecological heterogeneity within restored reaches, particularly when considering functional trait compositions. Organic biotopes (macrophyte stands and macroalgae) occurred widely across all study sites and supported a high alpha (within-habitat) taxonomic diversity compared to mineralogical biotopes (sand and gravel patches), which were characteristic of restored reaches. However, mineralogical biotopes possessed a higher beta (between-habitat) functional diversity, although this was less pronounced for taxonomic compositions. This study demonstrates that examining the functional and structural properties of taxa across distinct biotopes can provide a greater understanding of biotic responses to river restoration works. Such information could be used to better understand the ecological implications of rehabilitation practices and guide more effective management strategies.
Evolution of ultraviolet vision in the largest avian radiation - the passerines.
Ödeen, Anders; Håstad, Olle; Alström, Per
2011-10-24
Interspecific variation in avian colour vision falls into two discrete classes: violet sensitive (VS) and ultraviolet sensitive (UVS). They are characterised by the spectral sensitivity of the most shortwave sensitive of the four single cones, the SWS1, which is seemingly under direct control of as little as one amino acid substitution in the cone opsin protein. Changes in spectral sensitivity of the SWS1 are ecologically important, as they affect the abilities of birds to accurately assess potential mates, find food and minimise visibility of social signals to predators. Still, available data have indicated that shifts between classes are rare, with only four to five independent acquisitions of UV sensitivity in avian evolution. We have classified a large sample of passeriform species as VS or UVS from genomic DNA and mapped the evolution of this character on a passerine phylogeny inferred from published molecular sequence data. Sequencing a small gene fragment has allowed us to trace the trait changing from one stable state to another through the radiation of the passeriform birds. Their ancestor is hypothesised to be UVS. In the subsequent radiation, colour vision changed between UVS and VS at least eight times. The phylogenetic distribution of SWS1 cone opsin types in Passeriformes reveals a much higher degree of complexity in avian colour vision evolution than what was previously indicated from the limited data available. Clades with variation in the colour vision system are nested among clades with a seemingly stable VS or UVS state, providing a rare opportunity to understand how an ecologically important trait under simple genetic control may co-evolve with, and be stabilised by, associated traits in a character complex.
Yazdanpanah, Farzaneh; Hanson, Johannes; Hilhorst, Henk W M; Bentsink, Leónie
2017-09-11
Seed dormancy, defined as the incapability of a viable seed to germinate under favourable conditions, is an important trait in nature and agriculture. Despite extensive research on dormancy and germination, many questions about the molecular mechanisms controlling these traits remain unanswered, likely due to its genetic complexity and the large environmental effects which are characteristic of these quantitative traits. To boost research towards revealing mechanisms in the control of seed dormancy and germination we depend on the identification of genes controlling those traits. We used transcriptome analysis combined with a reverse genetics approach to identify genes that are prominent for dormancy maintenance and germination in imbibed seeds of Arabidopsis thaliana. Comparative transcriptomics analysis was employed on freshly harvested (dormant) and after-ripened (AR; non-dormant) 24-h imbibed seeds of four different DELAY OF GERMINATION near isogenic lines (DOGNILs) and the Landsberg erecta (Ler) wild type with varying levels of primary dormancy. T-DNA knock-out lines of the identified genes were phenotypically investigated for their effect on dormancy and AR. We identified conserved sets of 46 and 25 genes which displayed higher expression in seeds of all dormant and all after-ripened DOGNILs and Ler, respectively. Knock-out mutants in these genes showed dormancy and germination related phenotypes. Most of the identified genes had not been implicated in seed dormancy or germination. This research will be useful to further decipher the molecular mechanisms by which these important ecological and commercial traits are regulated.
Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions.
Majdi, Nabil; Boiché, Anatole; Traunspurger, Walter; Lecerf, Antoine
2014-07-01
Predator effects on ecosystems can extend far beyond their prey and are often not solely lethally transmitted. Change in prey traits in response to predation risk can have important repercussions on community assembly and key ecosystem processes (i.e. trait-mediated indirect effects). In addition, some predators themselves alter habitat structure or nutrient cycling through ecological engineering effects. Tracking these non-trophic pathways is thus an important, yet challenging task to gain a better grasp of the functional role of predators. Multiple lines of evidence suggest that, in detritus-based food webs, non-trophic interactions may prevail over purely trophic interactions in determining predator effects on plant litter decomposition. This hypothesis was tested in a headwater stream by modulating the density of a flatworm predator (Polycelis felina) in enclosures containing oak (Quercus robur) leaf litter exposed to natural colonization by small invertebrates and microbial decomposers. Causal path modelling was used to infer how predator effects propagated through the food web. Flatworms accelerated litter decomposition through positive effects on microbial decomposers. The biomass of prey and non-prey invertebrates was not negatively affected by flatworms, suggesting that net predator effect on litter decomposition was primarily determined by non-trophic interactions. Flatworms enhanced the deposition and retention of fine sediments on leaf surface, thereby improving leaf colonization by invertebrates - most of which having strong affinities with interstitial habitats. This predator-induced improvement of habitat availability was attributed to the sticky nature of the mucus that flatworms secrete in copious amount while foraging. Results of path analyses further indicated that this bottom-up ecological engineering effect was as powerful as the top-down effect on invertebrate prey. Our findings suggest that predators have the potential to affect substantially carbon flow and nutrient cycling in detritus-based ecosystems and that this impact cannot be fully appreciated without considering non-trophic effects. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Demography of birds in a neotropical forest: Effects of allometry, taxonomy, and ecology
Brawn, J.D.; Karr, J.R.; Nichols, J.D.
1995-01-01
Comparative demographic studies of terrestrial vertebrates have included few samples of species from tropical forests. We analyzed 9 yr of mark-recapture data and estimated demographic parameters for 25 species of birds inhabiting lowland forests in central Panama. These species were all songbirds (Order Passeriformes) ranging in mass from 7 to 57 g. Using Jolly-Seber stochastic models for open populations, we estimated annual survival rate, population size, and recruitment between sampling periods for each species. We then explored relationships between these parameters and attributes such as body size, phylogenetic affiliation, foraging guild, and social behavior. Larger birds had comparatively long life-spans and low recruitment, but body size was not associated with population size. After adjusting for effects of body size, we found no association between phylogenetic affiliation and any demographic trait. Ecological attributes, especially foraging guild, were more clearly associated with interspecific variation in all demographic traits. Ant-followers had comparatively long life-spans, but species that participate in flocks did not live longer than solitary species. The allometric associations we observed were consistent with those demonstrated in other studies of vertebrates; thus. these relationships appear to be robust. Our finding that ecological factors were more influential than phylogenetic affiliation contrasts with comparative studies of temperate-zone birds and suggests that the relative importance of environmental vs. historical factors varies geographically.
Bloch, Guy; Bar-Shai, Noam; Cytter, Yotam; Green, Rachel
2017-11-19
The interactions between flowering plants and insect pollinators shape ecological communities and provide one of the best examples of coevolution. Although these interactions have received much attention in both ecology and evolution, their temporal aspects are little explored. Here we review studies on the circadian organization of pollination-related traits in bees and flowers. Research, mostly with the honeybee, Apis mellifera , has implicated the circadian clock in key aspects of their foraging for flower rewards. These include anticipation, timing of visits to flowers at specified locations and time-compensated sun-compass orientation. Floral rhythms in traits such as petal opening, scent release and reward availability also show robust daily rhythms. However, in only few studies was it possible to adequately determine whether these oscillations are driven by external time givers such as light and temperature cycles, or endogenous circadian clocks. The interplay between the timing of flower and pollinator rhythms may be ecologically significant. Circadian regulation of pollination-related traits in only few species may influence the entire pollination network and thus affect community structure and local biodiversity. We speculate that these intricate chronobiological interactions may be vulnerable to anthropogenic effects such as the introduction of alien invasive species, pesticides or environmental pollutants.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).
Baucom, Regina S; Mauricio, Rodney
2008-11-01
Evolutionary biologists explain the maintenance of intermediate levels of defense in plant populations as being due to trade-offs, or negative genetic covariances among ecologically important traits. Attempts at detecting trade-offs as constraints on the evolution of defense have not always been successful, leading some to conclude that such trade-offs rarely explain current levels of defense in the population. Using the agricultural pest Ipomoea purpurea, we measured correlations between traits involved in defense to glyphosate, the active ingredient in Roundup, a widely used herbicide. We found significant allocation costs of tolerance, as well as trade-offs between resistance and two measures of tolerance to glyphosate. Selection on resistance and tolerance exhibited differing patterns: tolerance to leaf damage was under negative directional selection, whereas resistance was under positive directional selection. The joint pattern of selection on resistance and tolerance to leaf damage indicated the presence of alternate peaks in the fitness landscape such that a combination of either high tolerance and low resistance, or high resistance and low tolerance was favored. The widespread use of this herbicide suggests that it is likely an important selective agent on weed populations. Understanding the evolutionary dynamics of herbicide defense traits is thus of increasing importance in the context of human-mediated evolution.
NASA Astrophysics Data System (ADS)
Chavana-Bryant, C.; Malhi, Y.; Gerard, F.
2015-12-01
Leaf aging is a fundamental driver of changes in leaf traits, thereby, regulating ecosystem processes and remotely-sensed canopy dynamics. Leaf age is particularly important for carbon-rich tropical evergreen forests, as leaf demography (leaf age distribution) has been proposed as a major driver of seasonal productivity in these forests. We explore leaf reflectance as a tool to monitor leaf age and develop a novel spectra-based (PLSR) model to predict age using data from a phenological study of 1,072 leaves from 12 lowland Amazonian canopy tree species in southern Peru. Our results demonstrate monotonic decreases in LWC and Pmass and increase in LMA with age across species; Nmass and Cmassshowed monotonic but species-specific age responses. Spectrally, we observed large age-related variation across species, with the most age-sensitive spectral domains found to be: green peak (550nm), red edge (680-750 nm), NIR (700-850 nm), and around the main water absorption features (~1450 and ~1940 nm). A spectra-based model was more accurate in predicting leaf age (R2= 0.86; %RMSE= 33) compared to trait-based models using single (R2=0.07 to 0.73; %RMSE=7 to 38) and multiple predictors (step-wise analysis; R2=0.76; %RMSE=28). Spectral and trait-based models established a physiochemical basis for the spectral age model. The relative importance of the traits modifying the leaf spectra of aging leaves was: LWC>LMA>Nmass>Pmass,&Cmass. Vegetation indices (VIs), including NDVI, EVI2, NDWI and PRI were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity, and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.
The nuclear question: rethinking species importance in multi-species animal groups.
Srinivasan, Umesh; Raza, Rashid Hasnain; Quader, Suhel
2010-09-01
1. Animals group for various benefits, and may form either simple single-species groups, or more complex multi-species associations. Multi-species groups are thought to provide anti-predator and foraging benefits to participant individuals. 2. Despite detailed studies on multi-species animal groups, the importance of species in group initiation and maintenance is still rated qualitatively as 'nuclear' (maintaining groups) or 'attendant' (species following nuclear species) based on species-specific traits. This overly simplifies and limits understanding of inherently complex associations, and is biologically unrealistic, because species roles in multi-species groups are: (i) likely to be context-specific and not simply a fixed species property, and (ii) much more variable than this dichotomy indicates. 3. We propose a new view of species importance (measured as number of inter-species associations), along a continuum from 'most nuclear' to 'least nuclear'. Using mixed-species bird flocks from a tropical rainforest in India as an example, we derive inter-species association measures from randomizations on bird species abundance data (which takes into account species 'availability') and data on 86 mixed-species flocks from two different flock types. Our results show that the number and average strength of inter-species associations covary positively, and we argue that species with many, strong associations are the most nuclear. 4. From our data, group size and foraging method are ecological and behavioural traits of species that best explain nuclearity in mixed-species bird flocks. Parallels have been observed in multi-species fish shoals, in which group size and foraging method, as well as diet, have been shown to correlate with nuclearity. Further, the context in which multi-species groups occur, in conjunction with species-specific traits, influences the role played by a species in a multi-species group, and this highlights the importance of extrinsic factors in shaping species importance. 5. Our view of nuclearity provides predictive power in examining species roles in a variety of situations (e.g. predicting leadership in differently composed communities), and can be applied to examine a broad range of ecological and evolutionary questions pertinent to multi-species groups in general.
Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions
NASA Astrophysics Data System (ADS)
Mahdavi, P.; Bergmeier, E.
2016-07-01
Plant species of a functional group respond similarly to environmental pressures and may be expected to act similarly on ecosystem processes and habitat properties. However, feasibility and applicability of functional groups in ecosystems across very different climatic regions have not yet been studied. In our approach we specified the functional groups in sand dune ecosystems of the Mediterranean, Hyrcanian and Irano-Turanian phytogeographic regions. We examined whether functional groups are more influenced by region or rather by habitat characteristics, and identified trait syndromes associated with common habitat types in sand dunes (mobile dunes, stabilized dunes, salt marshes, semi-wet sands, disturbed habitats). A database of 14 traits, 309 species and 314 relevés was examined and trait-species, trait-plot and species-plot matrices were built. Cluster analysis revealed similar plant functional groups in sand dune ecosystems across regions of very different species composition and climate. Specifically, our study showed that plant traits in sand dune ecosystems are grouped reflecting habitat affiliation rather than region and species pool. Environmental factors and constraints such as sand mobility, soil salinity, water availability, nutrient status and disturbance are more important for the occurrence and distribution of plant functional groups than regional belonging. Each habitat is shown to be equipped with specific functional groups and can be described by specific sets of traits. In restoration ecology the completeness of functional groups and traits in a site may serve as a guideline for maintaining or restoring the habitat.
Ackerly, David
2009-01-01
The concepts of niche conservatism and adaptive radiation have played central roles in the study of evolution and ecological diversification. With respect to phenotypic evolution, the two processes may be seen as opposite ends of a spectrum; however, there is no straightforward method for the comparative analysis of trait evolution that will identify these contrasting scenarios. Analysis of the rate of phenotypic evolution plays an important role in this context and merits increased attention. In this article, independent contrasts are used to estimate rates of evolution for continuous traits under a Brownian motion model of evolution. A unit for the rate of phenotypic diversification is introduced: the felsen, in honor of J. Felsenstein, is defined as an increase of one unit per million years in the variance among sister taxa of ln-transformed trait values. The use of a standardized unit of measurement facilitates comparisons among clades and traits. Rates of diversification of three functional traits (plant height, leaf size, and seed size) were estimated for four to six woody plant clades (Acer, Aesculus, Ceanothus, Arbutoideae, Hawaiian lobeliads, and the silversword alliance) for which calibrated phylogenies were available. For height and leaf size, rates were two to ≈300 times greater in the Hawaiian silversword alliance than in the other clades considered. These results highlight the value of direct estimates of rates of trait evolution for comparative analysis of adaptive radiation, niche conservatism, and trait diversification. PMID:19843698
Ackerly, David
2009-11-17
The concepts of niche conservatism and adaptive radiation have played central roles in the study of evolution and ecological diversification. With respect to phenotypic evolution, the two processes may be seen as opposite ends of a spectrum; however, there is no straightforward method for the comparative analysis of trait evolution that will identify these contrasting scenarios. Analysis of the rate of phenotypic evolution plays an important role in this context and merits increased attention. In this article, independent contrasts are used to estimate rates of evolution for continuous traits under a Brownian motion model of evolution. A unit for the rate of phenotypic diversification is introduced: the felsen, in honor of J. Felsenstein, is defined as an increase of one unit per million years in the variance among sister taxa of ln-transformed trait values. The use of a standardized unit of measurement facilitates comparisons among clades and traits. Rates of diversification of three functional traits (plant height, leaf size, and seed size) were estimated for four to six woody plant clades (Acer, Aesculus, Ceanothus, Arbutoideae, Hawaiian lobeliads, and the silversword alliance) for which calibrated phylogenies were available. For height and leaf size, rates were two to approximately 300 times greater in the Hawaiian silversword alliance than in the other clades considered. These results highlight the value of direct estimates of rates of trait evolution for comparative analysis of adaptive radiation, niche conservatism, and trait diversification.
Killen, S S; Adriaenssens, B; Marras, S; Claireaux, G; Cooke, S J
2016-01-01
Abstract Repeatability of behavioural and physiological traits is increasingly a focus for animal researchers, for which fish have become important models. Almost all of this work has been done in the context of evolutionary ecology, with few explicit attempts to apply repeatability and context dependency of trait variation toward understanding conservation-related issues. Here, we review work examining the degree to which repeatability of traits (such as boldness, swimming performance, metabolic rate and stress responsiveness) is context dependent. We review methods for quantifying repeatability (distinguishing between within-context and across-context repeatability) and confounding factors that may be especially problematic when attempting to measure repeatability in wild fish. Environmental factors such temperature, food availability, oxygen availability, hypercapnia, flow regime and pollutants all appear to alter trait repeatability in fishes. This suggests that anthropogenic environmental change could alter evolutionary trajectories by changing which individuals achieve the greatest fitness in a given set of conditions. Gaining a greater understanding of these effects will be crucial for our ability to forecast the effects of gradual environmental change, such as climate change and ocean acidification, the study of which is currently limited by our ability to examine trait changes over relatively short time scales. Also discussed are situations in which recent advances in technologies associated with electronic tags (biotelemetry and biologging) and respirometry will help to facilitate increased quantification of repeatability for physiological and integrative traits, which so far lag behind measures of repeatability of behavioural traits. PMID:27382470
Evolutionary genetics of plant adaptation.
Anderson, Jill T; Willis, John H; Mitchell-Olds, Thomas
2011-07-01
Plants provide unique opportunities to study the mechanistic basis and evolutionary processes of adaptation to diverse environmental conditions. Complementary laboratory and field experiments are important for testing hypotheses reflecting long-term ecological and evolutionary history. For example, these approaches can infer whether local adaptation results from genetic tradeoffs (antagonistic pleiotropy), where native alleles are best adapted to local conditions, or if local adaptation is caused by conditional neutrality at many loci, where alleles show fitness differences in one environment, but not in a contrasting environment. Ecological genetics in natural populations of perennial or outcrossing plants can also differ substantially from model systems. In this review of the evolutionary genetics of plant adaptation, we emphasize the importance of field studies for understanding the evolutionary dynamics of model and nonmodel systems, highlight a key life history trait (flowering time) and discuss emerging conservation issues. Copyright © 2011 Elsevier Ltd. All rights reserved.
A trait-based approach reveals the feeding selectivity of a small endangered Mediterranean fish.
Rodríguez-Lozano, Pablo; Verkaik, Iraima; Maceda-Veiga, Alberto; Monroy, Mario; de Sostoa, Adolf; Rieradevall, Maria; Prat, Narcís
2016-05-01
Functional traits are growing in popularity in modern ecology, but feeding studies remain primarily rooted in a taxonomic-based perspective. However, consumers do not have any reason to select their prey using a taxonomic criterion, and prey assemblages are variable in space and time, which makes taxon-based studies assemblage-specific. To illustrate the benefits of the trait-based approach to assessing food choice, we studied the feeding ecology of the endangered freshwater fish Barbus meridionalis. We hypothesized that B. meridionalis is a selective predator which food choice depends on several prey morphological and behavioral traits, and thus, its top-down pressure may lead to changes in the functional composition of in-stream macroinvertebrate communities. Feeding selectivity was inferred by comparing taxonomic and functional composition (13 traits) between ingested and free-living potential prey using the Jacob's electivity index. Our results showed that the fish diet was influenced by 10 of the 13 traits tested. Barbus meridionalis preferred prey with a potential size of 5-10 mm, with a medium-high drift tendency, and that drift during daylight. Potential prey with no body flexibility, conical shape, concealment traits (presence of nets and/or cases, or patterned coloration), and high aggregation tendency had a low predation risk. Similarly, surface swimmers and interstitial taxa were low vulnerable to predation. Feeding selectivity altered the functional composition of the macroinvertebrate communities. Fish absence favored taxa with weak aggregation tendency, weak flexibility, and a relatively large size (10-20 mm of potential size). Besides, predatory invertebrates may increase in fish absence. In conclusion, our study shows that the incorporation of the trait-based approach in diet studies is a promising avenue to improve our mechanistic understanding of predator-prey interactions and to help predict the ecological outcomes of predator invasions and extinctions.
Coordination and plasticity in leaf anatomical traits of invasive and native vine species.
Osunkoya, Olusegun O; Boyne, Richard; Scharaschkin, Tanya
2014-09-01
• Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance.• Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum. © 2014 Botanical Society of America, Inc.
Trait correlates of distribution trends in the Odonata of Britain and Ireland
Cham, Steve S.A.; Smallshire, Dave; Isaac, Nick J.B.
2015-01-01
A major challenge in ecology is understanding why certain species persist, while others decline, in response to environmental change. Trait-based comparative analyses are useful in this regard as they can help identify the key drivers of decline, and highlight traits that promote resistance to change. Despite their popularity trait-based comparative analyses tend to focus on explaining variation in range shift and extinction risk, seldom being applied to actual measures of species decline. Furthermore they have tended to be taxonomically restricted to birds, mammals, plants and butterflies. Here we utilise a novel approach to estimate occurrence trends for the Odonata in Britain and Ireland, and examine trait correlates of these trends using a recently available trait dataset. We found the dragonfly fauna in Britain and Ireland has undergone considerable change between 1980 and 2012, with 22 and 53% of species declining and increasing, respectively. Distribution region, habitat specialism and range size were the key traits associated with these trends, where habitat generalists that occupy southern Britain tend to have increased in comparison to the declining narrow-ranged specialist species. In combination with previous evidence, we conclude that the lower trend estimates for the narrow-ranged specialists could be a sign of biotic homogenization with ecological specialists being replaced by warm-adapted generalists. PMID:26618083
Five species, many genotypes, broad phenotypic diversity: When agronomy meets functional ecology.
Prieto, Ivan; Litrico, Isabelle; Violle, Cyrille; Barre, Philippe
2017-01-01
Current ecological theory can provide insight into the causes and impacts of plant domestication. However, just how domestication has impacted intraspecific genetic variability (ITV) is unknown. We used 50 ecotypes and 35 cultivars from five grassland species to explore how selection drives functional trait coordination and genetic differentiation. We quantified the extent of genetic diversity among different sets of functional traits and determined how much genetic diversity has been generated within populations of natural ecotypes and selected cultivars. In general, the cultivars were larger (e.g., greater height, faster growth rates) and had larger and thinner leaves (greater SLA). We found large (average 63%) and trait-dependent (ranging from 14% for LNC to 95.8% for growth rate) genetic variability. The relative extent of genetic variability was greater for whole-plant than for organ-level traits. This pattern was consistent within ecotypes and within cultivars. However, ecotypes presented greater ITV variability. The results indicated that genetic diversity is large in domesticated species with contrasting levels of heritability among functional traits and that selection for high yield has led to indirect selection of some associated leaf traits. These findings open the way to define which target traits should be the focus in selection programs, especially in the context of community-level selection. © 2017 Botanical Society of America.
Matthew B. Russell; Christopher W. Woodall; Anthony W. D' Amato; Grant M. Domke; Sassan S. Saatchi
2014-01-01
Plant functional traits (PFTs) have increased in popularity in recent years to describe various ecosystems and biological phenomena while advancing general ecological principles. To date, few have investigated distributional attributes of individual PFTs and their relationship with key attributes and processes of forest ecosystems. The objective of this study was to...
Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae).
Edwards, Erika J
2006-01-01
Recent studies have demonstrated significant correlations between stem and leaf hydraulic properties when comparing across species within ecological communities. This implies that these traits are co-evolving, but there have been few studies addressing plant water relations within an explicitly evolutionary framework. This study tests for correlated evolution among a suite of plant water-use traits and environmental parameters in seven species of Pereskia (Cactaceae), using phylogenetically independent contrasts. There were significant evolutionary correlations between leaf-specific xylem hydraulic conductivity, Huber Value, leaf stomatal pore index, leaf venation density and leaf size, but none of these traits appeared to be correlated with environmental water availability; only two water relations traits - mid-day leaf water potentials and photosynthetic water use efficiency - correlated with estimates of moisture regime. In Pereskia, it appears that many stem and leaf hydraulic properties thought to be critical to whole-plant water use have not evolved in response to habitat shifts in water availability. This may be because of the extremely conservative stomatal behavior and particular rooting strategy demonstrated by all Pereskia species investigated. These results highlight the need for a lineage-based approach to understand the relative roles of functional traits in ecological adaptation.
Araújo, Maisa da-Silva; Gil, Luiz Herman S; e-Silva, Alexandre de-Almeida
2012-08-02
The incidence of malaria in the Amazon is seasonal and mosquito vectorial capacity parameters, including abundance and longevity, depend on quantitative and qualitative aspects of the larval diet. Anopheles darlingi is a major malaria vector in the Amazon, representing >95% of total Anopheles population present in the Porto Velho region. Despite its importance in the transmission of the Plasmodium parasite, knowledge of the larval biology and ecology is limited. Studies regarding aspects of adult population ecology are more common than studies on larval ecology. However, in order develop effective control strategies and laboratory breeding conditions for this species, more data on the factors affecting vector biology is needed. The aim of the present study is to assess the effects of larval food quantity on the vectorial capacity of An. darling under laboratory conditions. Anopheles darlingi was maintained at 28°C, 80% humidity and exposed to a daily photoperiod of 12 h. Larvae were divided into three experimental groups that were fed either a low, medium, or high food supply (based on the food amounts consumed by other species of culicids). Each experiment was replicated for six times. A cohort of adults were also exposed to each type of diet and assessed for several biological characteristics (e.g. longevity, bite frequency and survivorship), which were used to estimate the vectorial capacity of each experimental group. The group supplied with higher food amounts observed a reduction in development time while larval survival increased. In addition to enhanced longevity, increasing larval food quantity was positively correlated with increasing frequency of bites, longer blood meal duration and wing length, resulting in greater vectorial capacity. However, females had greater longevity than males despite having smaller wings. Overall, several larval and adult biological traits were significantly affected by larval food availability. Greater larval food supply led to enhance larval and production and larger mosquitoes with longer longevity and higher biting frequency. Thus, larval food availability can alter important biological traits that influence the vectorial capacity of An. darlingi.
How flexible is phenotypic plasticity? Developmental windows for trait induction and reversal.
Hoverman, Jason T; Relyea, Rick A
2007-03-01
Inducible defenses allow prey to modulate their phenotypic responses to the level of predation risk in the environment and reduce the cost of constitutive defenses. Inherent in this statement is that prey must alter their phenotypes during development in order to form these defenses. This has lead many ecologists and evolutionary biologists to call for studies that examine developmental plasticity to provide insights into the importance of development in controlling the trajectories of trait formation, the integration of phenotypes over ontogeny, and the establishment of developmental windows for trait formation and reversal. By moving away from studies that focus on a single point in development, we can obtain a more complete understanding of the phenotypic decisions and limitations of prey. We exposed freshwater snails (Helisoma trivolvis) to environments in which predatory water bugs (Belostoma flumineum) were always absent, always present, or added and removed at different points in development. We discovered that snails formed morphological defenses against water bugs. Importantly, after the initial induction of defenses, snails showed similar developmental trajectories as snails reared without predators. Further, the snails possessed wide developmental windows for inducible defenses that extended past sexual maturity. However, being induced later in development appeared to have an associated cost (i.e., decreased shell thickness) that was not found when water bugs were always present. This epiphenotype (i.e., new shell formation as an extension of the current shell) suggests that resource limitation plays an important role in responses to temporal variation in predation risk and may have critical ecological costs that limit the benefits of the inducible defense. Lastly, the ability of snails to completely reverse their defenses was limited to early in ontogeny due to the constraints associated with modular growth of shell material. In sum, we demonstrate that taking a developmental perspective is extremely valuable for understanding the ecology of inducible defenses.
Beiras, Ricardo; Durán, Iria
2014-12-01
Some relevant shortcomings have been identified in the current approach for the classification of ecological status in marine water bodies, leading to delays in the fulfillment of the Water Framework Directive objectives. Natural variability makes difficult to settle fixed reference values and boundary values for the Ecological Quality Ratios (EQR) for the biological quality elements. Biological responses to environmental degradation are frequently of nonmonotonic nature, hampering the EQR approach. Community structure traits respond only once ecological damage has already been done and do not provide early warning signals. An alternative methodology for the classification of ecological status integrating chemical measurements, ecotoxicological bioassays and community structure traits (species richness and diversity), and using multivariate analyses (multidimensional scaling and cluster analysis), is proposed. This approach does not depend on the arbitrary definition of fixed reference values and EQR boundary values, and it is suitable to integrate nonlinear, sensitive signals of ecological degradation. As a disadvantage, this approach demands the inclusion of sampling sites representing the full range of ecological status in each monitoring campaign. National or international agencies in charge of coastal pollution monitoring have comprehensive data sets available to overcome this limitation.
Chase, Alexander B.; Karaoz, Ulas; Brodie, Eoin L.; ...
2017-11-14
Much genetic diversity within a bacterial community is likely obscured by microdiversity within operational taxonomic units (OTUs) defined by 16S rRNA gene sequences. However, it is unclear how variation within this microdiversity influences ecologically relevant traits. Here, we employ a multifaceted approach to investigate microdiversity within the dominant leaf litter bacterium,Curtobacterium, which comprises 7.8% of the bacterial community at a grassland site undergoing global change manipulations. We use cultured bacterial isolates to interpret metagenomic data, collectedin situover 2 years, together with lab-based physiological assays to determine the extent of trait variation within this abundant OTU. The response ofCurtobacteriumto seasonal variability andmore » the global change manipulations, specifically an increase in relative abundance under decreased water availability, appeared to be conserved across sixCurtobacteriumlineages identified at this site. Genomic and physiological analyses in the lab revealed that degradation of abundant polymeric carbohydrates within leaf litter, cellulose and xylan, is nearly universal across the genus, which may contribute to its high abundance in grassland leaf litter. However, the degree of carbohydrate utilization and temperature preference for this degradation varied greatly among clades. Overall, we find that traits withinCurtobacteriumare conserved at different phylogenetic depths. We speculate that similar to bacteria in marine systems, diverse microbes within this taxon may be structured in distinct ecotypes that are key to understandingCurtobacteriumabundance and distribution in the environment. IMPORTANCE. Despite the plummeting costs of sequencing, characterizing the fine-scale genetic diversity of a microbial community—and interpreting its functional importance—remains a challenge. Indeed, most studies, particularly studies of soil, assess community composition at a broad genetic level by classifying diversity into taxa (OTUs) defined by 16S rRNA sequence similarity. However, these classifications potentially obscure variation in traits that result in fine-scale ecological differentiation among closely related strains. Here, we investigated “microdiversity” in a highly diverse and poorly characterized soil system (leaf litter in a southern Californian grassland). Here, we focused on the most abundant bacterium,Curtobacterium, which by standard methods is grouped into only one OTU. We find that the degree of carbohydrate usage and temperature preference vary within the OTU, whereas its responses to changes in precipitation are relatively uniform. These results suggest that microdiversity may be key to understanding how soil bacterial diversity is linked to ecosystem functioning.« less
Cid, N; Verkaik, I; García-Roger, E M; Rieradevall, M; Bonada, N; Sánchez-Montoya, M M; Gómez, R; Suárez, M L; Vidal-Abarca, M R; Demartini, D; Buffagni, A; Erba, S; Karaouzas, I; Skoulikidis, N; Prat, N
2016-01-01
Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. Copyright © 2015 Elsevier B.V. All rights reserved.
Gómez-Chiarri, Marta; Warren, Wesley C; Guo, Ximing; Proestou, Dina
2015-09-01
The eastern oyster, Crassostrea virginica, provides important ecological and economical services, making it the target of restoration projects and supporting a significant fishery/aquaculture industry with landings valued at more than $100 million in 2012 in the United States of America. Due to the impact of infectious diseases on wild, restored, and cultured populations, the eastern oyster has been the focus of studies on host-pathogen interactions and immunity, as well as the target of selective breeding efforts for disease resistant oyster lines. Despite these efforts, relatively little is known about the genetic basis of resistance to diseases or environmental stress, not only in eastern oyster, but also in other molluscan species of commercial interest worldwide. In order to develop tools and resources to assist in the elucidation of the genomic basis of traits of commercial, biological, and ecological interest in oysters, a team of genome and bioinformatics experts, in collaboration with the oyster research community, is sequencing, assembling, and annotating the first reference genome for the eastern oyster and producing an exhaustive transcriptome from a variety of oyster developmental stages and tissues in response to a diverse set of environmentally-relevant stimuli. These transcriptomes and reference genome for the eastern oyster, added to the already available genome and transcriptomes for the Pacific oyster (Crassostrea gigas) and other bivalve species, will be an essential resource for the discovery of candidate genes and markers associated with traits of commercial, biological, and ecologic importance in bivalve molluscs, including those related to host-pathogen interactions and immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Blom, Mozes P K; Horner, Paul; Moritz, Craig
2016-06-15
Recent radiations are important to evolutionary biologists, because they provide an opportunity to study the mechanisms that link micro- and macroevolution. The role of ecological speciation during adaptive radiation has been intensively studied, but radiations can arise from a diversity of evolutionary processes; in particular, on large continental landmasses where allopatric speciation might frequently precede ecological differentiation. It is therefore important to establish a phylogenetic and ecological framework for recent continental-scale radiations that are species-rich and ecologically diverse. Here, we use a genomic (approx. 1 200 loci, exon capture) approach to fit branch lengths on a summary-coalescent species tree and generate a time-calibrated phylogeny for a recent and ecologically diverse radiation of Australian scincid lizards; the genus Cryptoblepharus We then combine the phylogeny with a comprehensive phenotypic dataset for over 800 individuals across the 26 species, and use comparative methods to test whether habitat specialization can explain current patterns of phenotypic variation in ecologically relevant traits. We find significant differences in morphology between species that occur in distinct environments and convergence in ecomorphology with repeated habitat shifts across the continent. These results suggest that isolated analogous habitats have provided parallel ecological opportunity and have repeatedly promoted adaptive diversification. By contrast, speciation processes within the same habitat have resulted in distinct lineages with relatively limited morphological variation. Overall, our study illustrates how alternative diversification processes might have jointly stimulated species proliferation across the continent and generated a remarkably diverse group of Australian lizards. © 2016 The Author(s).
Polling the face: prediction and consensus across cultures.
Rule, Nicholas O; Ambady, Nalini; Adams, Reginald B; Ozono, Hiroki; Nakashima, Satoshi; Yoshikawa, Sakiko; Watabe, Motoki
2010-01-01
Previous work has shown that individuals agree across cultures on the traits that they infer from faces. Previous work has also shown that inferences from faces can be predictive of important outcomes within cultures. The current research merges these two lines of work. In a series of cross-cultural studies, the authors asked American and Japanese participants to provide naïve inferences of traits from the faces of U.S. political candidates (Studies 1 and 3) and Japanese political candidates (Studies 2 and 4). Perceivers showed high agreement in their ratings of the faces, regardless of culture, and both sets of judgments were predictive of an important ecological outcome (the percentage of votes that each candidate received in the actual election). The traits predicting electoral success differed, however, depending on the targets' culture. Thus, when American and Japanese participants were asked to provide explicit inferences of how likely each candidate would be to win an election (Studies 3-4), judgments were predictive only for same-culture candidates. Attempts to infer the electoral success for the foreign culture showed evidence of self-projection. Therefore, perceivers can reliably infer predictive information from faces but require knowledge about the target's culture to make these predictions accurately.
SPITE VERSUS CHEATS: COMPETITION AMONG SOCIAL STRATEGIES SHAPES VIRULENCE IN PSEUDOMONAS AERUGINOSA
Inglis, R Fredrik; Brown, Sam P; Buckling, Angus
2012-01-01
Social interactions have been shown to play an important role in bacterial evolution and virulence. The majority of empirical studies conducted have only considered social traits in isolation, yet numerous social traits, such as the production of spiteful bacteriocins (anticompetitor toxins) and iron-scavenging siderophores (a public good) by the opportunistic pathogen Pseudomonas aeruginosa, are frequently expressed simultaneously. Crucially, both bacteriocin production and siderophore cheating can be favored under the same competitive conditions, and we develop theory and carry out experiments to determine how the success of a bacteriocin-producing genotype is influenced by social cheating of susceptible competitors and the resultant impact on disease severity (virulence). Consistent with our theoretical predictions, we find that the spiteful genotype is favored at higher local frequencies when competing against public good cheats. Furthermore, the relationship between spite frequency and virulence is significantly altered when the spiteful genotype is competed against cheats compared with cooperators. These results confirm the ecological and evolutionary importance of considering multiple social traits simultaneously. Moreover, our results are consistent with recent theory regarding the invasion conditions for strong reciprocity (helping cooperators and harming noncooperators). PMID:23106711
Haller, Benjamin C; de Vos, Jurriaan M; Keller, Barbara; Hendry, Andrew P; Conti, Elena
2014-01-01
The evolution of the flower is commonly thought to have spurred angiosperm diversification. Similarly, particular floral traits might have promoted diversification within specific angiosperm clades. We hypothesize that traits promoting the precise positional transfer of pollen between flowers might promote diversification. In particular, precise pollen transfer might produce partial reproductive isolation that facilitates adaptive divergence between parapatric populations differing in their reproductive-organ positions. We investigate this hypothesis with an individual-based model of pollen transfer dynamics associated with heterostyly, a floral syndrome that depends on precise pollen transfer. Our model shows that precise pollen transfer can cause sexual selection leading to divergence in reproductive-organ positions between populations served by different pollinators, pleiotropically causing an increase in reproductive isolation through a "magic trait" mechanism. Furthermore, this increased reproductive isolation facilitates adaptive divergence between the populations in an unlinked, ecologically selected trait. In a different pollination scenario, however, precise pollen transfer causes a decrease in adaptive divergence by promoting asymmetric gene flow. Our results highlight the idea that magic traits are not "magic" in isolation; in particular, the effect size of magic traits in speciation depends on the external environment, and also on other traits that modify the strength of the magic trait's influence on non-random mating. Overall, we show that the evolutionary consequences of pollen transfer dynamics can depend strongly on the available pollinator fauna and on the morphological fit between flowers and pollinators. Furthermore, our results illustrate the potential importance of even weak reproductive isolating barriers in facilitating adaptive divergence.
Introduction to a Virtual Issue on root traits
Norby, Richard J.; Iversen, Colleen M.
2017-05-31
Plant traits – ‘morphological, anatomical, physiological, biochem-ical and phenological characteristics of plants and their organs’(Kattge et al., 2011) – are increasingly being harnessed byempiricists and modelers as a framework to understand patternsin the structure and function of specie s across the globe. Trait-basedecology, which emphasizes functional traits over the taxonomicalrelationships among organisms (Laliberte, 2017), promises toimprove generality, synthesis, and predictive ability across ecolog-ical scales (Shipley et al., 2016). Indeed, plant trait studies areincreasingly prominent in the literature: a simple Web of Sciencesearch on the term indicates a surge in publications from 2576during the three-year period from 1999 to 2001 tomore » 13 234 in thethree-year period between 2014 and 2016. However, the mostcommon plant traits described in the literature relate to above -ground organs and their function, including leaf morphology,photosynthetic parameters, and above ground growth rate. Roottraits, particularly those of fine roots associated with criticalbelowground plant functions, are much less studied – they are, afterall, harder to measure and less likely to have a role in ecosystemmodels as they are encoded today. Although the TRY database ofplant traits (Kattge et al., 2011) has been a highly valuable resourcefor plant and ecosystem ecologists, < 1% of the data entries describefine-root functional traits. This glaring gap in our knowledge of thebelowground half of ecosystem function has led to a chorus of pleasin recent years for a stronger emphasis on the measurement andunderstanding of root traits (e.g . Bardgett et al., 2014).« less
Introduction to a Virtual Issue on root traits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norby, Richard J.; Iversen, Colleen M.
Plant traits – ‘morphological, anatomical, physiological, biochem-ical and phenological characteristics of plants and their organs’(Kattge et al., 2011) – are increasingly being harnessed byempiricists and modelers as a framework to understand patternsin the structure and function of specie s across the globe. Trait-basedecology, which emphasizes functional traits over the taxonomicalrelationships among organisms (Laliberte, 2017), promises toimprove generality, synthesis, and predictive ability across ecolog-ical scales (Shipley et al., 2016). Indeed, plant trait studies areincreasingly prominent in the literature: a simple Web of Sciencesearch on the term indicates a surge in publications from 2576during the three-year period from 1999 to 2001 tomore » 13 234 in thethree-year period between 2014 and 2016. However, the mostcommon plant traits described in the literature relate to above -ground organs and their function, including leaf morphology,photosynthetic parameters, and above ground growth rate. Roottraits, particularly those of fine roots associated with criticalbelowground plant functions, are much less studied – they are, afterall, harder to measure and less likely to have a role in ecosystemmodels as they are encoded today. Although the TRY database ofplant traits (Kattge et al., 2011) has been a highly valuable resourcefor plant and ecosystem ecologists, < 1% of the data entries describefine-root functional traits. This glaring gap in our knowledge of thebelowground half of ecosystem function has led to a chorus of pleasin recent years for a stronger emphasis on the measurement andunderstanding of root traits (e.g . Bardgett et al., 2014).« less
Evolutionary response when selection and genetic variation covary across environments.
Wood, Corlett W; Brodie, Edmund D
2016-10-01
Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd/CNRS.
Moodley, Desika; Geerts, Sjirk; Richardson, David M.; Wilson, John R. U.
2013-01-01
A major aim of invasion ecology is to identify characteristics of successful invaders. However, most plant groups studied in detail (e.g. pines and acacias) have a high percentage of invasive taxa. Here we examine the global introduction history and invasion ecology of Proteaceae—a large plant family with many taxa that have been widely disseminated by humans, but with few known invaders. To do this we compiled a global list of species and used boosted regression tree models to assess which factors are important in determining the status of a species (not introduced, introduced, naturalized or invasive). At least 402 of 1674 known species (24%) have been moved by humans out of their native ranges, 58 species (14%) have become naturalized but not invasive, and 8 species (2%) are invasive. The probability of naturalization was greatest for species with large native ranges, low susceptibility to Phytophthora root-rot fungus, large mammal-dispersed seeds, and with the capacity to resprout. The probability of naturalized species becoming invasive was greatest for species with large native ranges, those used as barrier plants, tall species, species with small seeds, and serotinous species. The traits driving invasiveness of Proteaceae were similar to those for acacias and pines. However, while some traits showed a consistent influence at introduction, naturalization and invasion, others appear to be influential at one stage only, and some have contrasting effects at different stages. Trait-based analyses therefore need to consider different invasion stages separately. On their own, these observations provide little predictive power for risk assessment, but when the causative mechanisms are understood (e.g. Phytophthora susceptibility) they provide valuable insights. As such there is considerable value in seeking the correlates and mechanisms underlying invasions for particular taxonomic or functional groups. PMID:24086442
NASA Astrophysics Data System (ADS)
Schneider, F. D.; Morsdorf, F.; Schmid, B.; Petchey, O. L.; Hueni, A.; Schimel, D.; Schaepman, M. E.
2016-12-01
Forest functional traits offer a mechanistic link between ecological processes and community structure and assembly rules. However, measuring functional traits of forests in a continuous and consistent way is particularly difficult due to the complexity of in-situ measurements and geo-referencing. New imaging spectroscopy measurements overcome these limitations allowing to map physiological traits on broad spatial scales. We mapped leaf chlorophyll, carotenoids and leaf water content over 900 ha of temperate mixed forest (Fig. 1a). The selected traits are functionally important because they are indicating the photosynthetic potential of trees, leaf longevity and protection, as well as tree water and drought stress. Spatially continuous measurements on the scale of individual tree crowns allowed to assess functional diversity patterns on a range of ecological extents. We used indexes of functional richness, divergence and evenness to map different aspects of diversity. Fig. 1b shows an example of physiological richness at an extent of 240 m radius. We compared physiological to morphological diversity patterns, derived based on plant area index, canopy height and foliage height diversity. Our results show that patterns of physiological and morphological diversity generally agree, independently measured by airborne imaging spectroscopy and airborne laser scanning, respectively. The occurrence of disturbance areas and mixtures of broadleaf and needle trees were the main drivers of the observed diversity patterns. Spatial patterns at varying extents and richness-area relationships indicated that environmental filtering is the predominant community assembly process. Our results demonstrate the potential for mapping physiological and morphological diversity in a temperate mixed forest between and within species on scales relevant to study community assembly and structure from space and test the corresponding measurement schemes.
Balachowski, Jennifer A.; Bristiel, Pauline M.; Volaire, Florence A.
2016-01-01
Background and Aims Evidence suggests drought severity is increasing due to climate change, but strategies promoting severe drought survival in perennial grasses have been seldom explored. This is particularly true of summer dormancy, an adaptation common in summer-dry Mediterranean-type climates. In addition, though theory predicts superior drought survival results in lower potential productivity, studies rarely measure both drought survival and growth under optimal conditions. Methods Physiological and functional ecological approaches were integrated to quantify interspecific variation in foliar and root traits in a suite of eight California perennial grass species. In a glasshouse experiment, summer dormancy, foliar functional trait variation, and seasonal growth and phenology under non-limiting water conditions and dehydration tolerance under progressive drought were quantified. In a second glasshouse study, root functional traits were quantified under non-limiting water conditions in rhizotrons. Key Results Summer dormancy was associated with higher dehydration tolerance, and negatively associated with traits conferring dehydration avoidance. Species with greater summer dormancy were characterized by greater springtime productivity, earlier reproduction, and a shallow and fine root system, which are indicative of dehydration escape. Summer dormancy was associated with an acquisitive, competitive functional strategy in spring, and a conservative strategy in summer. Conclusions Both the escape and acquisitive springtime strategies observed in summer dormant perennial taxa are typically associated with annual grasses. California grasslands were once dominated by perennial species, but have been overtaken by non-native Mediterranean annual grasses, which are expected to be further favoured by climate change. Owing to functional similarity with these exotic annuals, it is suggested that native summer dormant taxa may play an important ecological role in the future of both natural and restored California grasslands. PMID:27325898
Links between Plant Invasion, Anthropogenic Nitrogen Enrichment, and Wildfires: A Systematic Review
NASA Astrophysics Data System (ADS)
Felker-Quinn, E.; Gooding Lassiter, M.; Maxwell, A.; Housego, R.; Young, B.
2014-12-01
Wildfires can become positive feedbacks in climate change scenarios, because wildfires release large amounts of carbon sequestered in plants and soil to the atmosphere, and because their frequency increases with increasing temperatures. Invasive plants represent an important biotic link between anthropogenic activity and wildfire, as many of these species benefit from human disturbance while increasing fire frequency and severity. A robust body of literature addresses the response of invasive species to nitrogen enrichment, and a separate body of research assesses the feedbacks between invasive plant species and wildfire. We have undertaken a systematic review of these fields in order to evaluate the hypothesis that anthropogenic nitrogen loading contributes to increasing wildfires by promoting the growth and spread of fire-adapted invasive plant species. We identified invasive plant species using the Fire Effects Information System (FEIS), a Forest Service database that evaluates fire ecology of species identified as being of concern by land managers. We used information contained in the FEIS as well as more recent studies to characterize species on a continuum from fire-adapted to fire-intolerant based on traits related to interactions of fire with survival, reproduction, and spread. Of the 107 invasive plant species with fire ecology reports in the FEIS, we have initially classified 18 as fire-adapted, possessing traits that intensify fire regimes. Additionally, 33 species are fire-tolerant, benefiting from fire primarily because it creates a high-resource, low-competition environment. In continuing work, we are evaluating the responses of the invasive plant species to increased anthropogenic nitrogen with a focus on traits such as germination, productivity, and survival, as these traits contribute to wildfire frequency and severity. The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U.S. EPA.
History of domestication and spread of Aedes aegypti--a review.
Powell, Jeffrey R; Tabachnick, Walter J
2013-01-01
The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya.
History of domestication and spread of Aedes aegypti - A Review
Powell, Jeffrey R; Tabachnick, Walter J
2013-01-01
The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya. PMID:24473798
Frank, Hannah K; Frishkoff, Luke O; Mendenhall, Chase D; Daily, Gretchen C; Hadly, Elizabeth A
2017-08-01
If species' evolutionary pasts predetermine their responses to evolutionarily novel stressors, then phylogeny could predict species survival in an increasingly human-dominated world. To understand the role of phylogenetic relatedness in structuring responses to rapid environmental change, we focused on assemblages of Neotropical bats, an ecologically diverse and functionally important group. We examined how taxonomic and phylogenetic diversity shift between tropical forest and farmland. We then explored the importance of evolutionary history by ascertaining whether close relatives share similar responses to environmental change and which species traits might mediate these trends. We analyzed a 5-year data set (5,011 captures) from 18 sites in a countryside landscape in southern Costa Rica using statistical models that account and correct for imperfect detection of species across sites, spatial autocorrelation, and consideration of spatial scale. Taxonomic and phylogenetic diversity decreased with deforestation, and assemblages became more phylogenetically clustered. Species' responses to deforestation were strongly phylogenetically correlated. Body mass and absolute wing loading explained a substantial portion of species variation in species' habitat preferences, likely related to these traits' influence on maneuverability in cluttered forest environments. Our findings highlight the role that evolutionary history plays in determining which species will survive human impacts and the need to consider diversity metrics, evolutionary history, and traits together when making predictions about species persistence for conservation or ecosystem functioning.
Plant species richness and functional traits affect community stability after a flood event.
Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D
2016-05-19
Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. © 2016 The Author(s).
Plant species richness and functional traits affect community stability after a flood event
Fischer, Felícia M.; Wright, Alexandra J.; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W.; Pillar, Valério D.
2016-01-01
Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578
Phenotypic covariance at species’ borders
2013-01-01
Background Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species’ borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Results Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Conclusions Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species’ borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future. PMID:23714580
Phenotypic covariance at species' borders.
Caley, M Julian; Cripps, Edward; Game, Edward T
2013-05-28
Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species' borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species' borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future.
Plass-Johnson, Jeremiah G; Taylor, Marc H; Husain, Aidah A A; Teichberg, Mirta C; Ferse, Sebastian C A
2016-01-01
Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased degradation of coral reefs is associated with increased variability in fish community functional composition resulting from selective impacts on specific traits, thereby affecting the functional response of these communities to increasing perturbations.
Trait Variation Along a Forest Successional Gradient in Dry Tropical Forest, Florida Keys
NASA Astrophysics Data System (ADS)
Subedi, S.; Ross, M. S.
2016-12-01
In most part of South Florida tropical dry forests, the early colonized trees on disturbed uplands are mostly deciduous species cable of surviving for several years after establishment. However, trees in mature forests are generally characterized by a suite of evergreen species, most of which are completely absent in younger stands even in seedling stage. This complete transition from one functional group to another in the course of stand development suggests a distinct change in the underlying environment during the course of succession. Such change in hammock functional groups as a function of the changing environmental drivers during succession in tropical dry forests is unknown and addressing this question may help to understand which drivers of change act as filters that select for and against particular groups of species and traits. In this study, we evaluate number of important functional traits (specific leaf area, wood density, leaf d13C, leaf N:P ratio, and architectural traits such as height, crown dimensions, diameter at breast height) for woody plant species occurring along a successional gradient across three ecological scales, community, species, and individual. A significant change in the overall trait distribution across the successional gradient is found. Intraspecific trait variation within the community is increased with increase in forest age. Most of these traits have shown correlation with stand age and showed preference to a certain environment. Stand age is the most important variable explaining the distribution of community characteristics. It is found that early successional forest are mostly shaped by environmental driven processes, and as forest get older and structurally more complex, they are increasingly shaped by competitively driven processes leading to limiting similarity. This study has shown that the patterns of trait shift can be predictable and can be used to characterize habitats and stage of forest succession in dry tropical forest.
Plass-Johnson, Jeremiah G.; Taylor, Marc H.; Husain, Aidah A. A.; Teichberg, Mirta C.; Ferse, Sebastian C. A.
2016-01-01
Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased degradation of coral reefs is associated with increased variability in fish community functional composition resulting from selective impacts on specific traits, thereby affecting the functional response of these communities to increasing perturbations. PMID:27100189
McCauley, Shannon J; Davis, Christopher J; Werner, Earl E; Robeson, Michael S
2014-07-01
Species' range sizes are shaped by fundamental differences in species' ecological and evolutionary characteristics, and understanding the mechanisms determining range size can shed light on the factors responsible for generating and structuring biological diversity. Moreover, because geographic range size is associated with a species' risk of extinction and their ability to respond to global changes in climate and land use, understanding these mechanisms has important conservation implications. Despite the hypotheses that dispersal behaviour is a strong determinant of species range areas, few data are available to directly compare the relationship between dispersal behaviour and range size. Here, we overcome this limitation by combining data from a multispecies dispersal experiment with additional species-level trait data that are commonly hypothesized to affect range size (e.g. niche breadth, local abundance and body size.). This enables us to examine the relationship between these species-level traits and range size across North America for fifteen dragonfly species. Ten models based on a priori predictions about the relationship between species traits and range size were evaluated and two models were identified as good predictors of species range size. These models indicated that only two species' level traits, dispersal behaviour and niche breadth were strongly related to range size. The evidence from these two models indicated that dragonfly species that disperse more often and further had larger North American ranges. Extinction and colonization dynamics are expected to be a key linkage between dispersal behaviour and range size in dragonflies. To evaluate how extinction and colonization dynamics among dragonflies were related to range size we used an independent data set of extinction and colonization rates for eleven dragonfly species and assessed the relationship between these populations rates and North American range areas for these species. We found a negative relationship between North American range size and species' extinction-to-colonization ratios. Our results indicate that metapopulation dynamics act to shape the extent of species' continental distributions. These population dynamics are likely to interact with dispersal behaviour, particularly at species range margins, to determine range limits and ultimately species range sizes. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Digestive capacity predicts diet diversity in Neotropical frugivorous bats.
Saldaña-Vázquez, Romeo A; Ruiz-Sanchez, Eduardo; Herrera-Alsina, Leonel; Schondube, Jorge E
2015-09-01
1. Predicting the diet diversity of animals is important to basic and applied ecology. Knowledge of diet diversity in animals helps us understand niche partitioning, functional diversity and ecosystem services such as pollination, pest control and seed dispersal. 2. There is a negative relationship between the length of the digestive tract and diet diversity in animals; however, the role of digestive physiology in determining diet diversity has been ignored. This is especially important in vertebrates with powered flight because, unlike non-flying vertebrates, they have limitations that may constrain gut size. 3. Here, we evaluate the relationship between digestive capacity and diet diversity in Carollinae and Stenodermatinae frugivorous bats. These bats disperse the seeds of plants that are key to Neotropical forest regeneration. 4. Our results show that digestive capacity is a good predictor of diet diversity in Carollinae and Stenodermatinae frugivorous bats (R(2) = 0·77). 5. Surprisingly, the most phylogenetically closely related species were not similar in their digestive capacity or diet diversity. The lack of a phylogenetic signal for the traits evaluated implies differences in digestive physiology and diet in closely related species. 6. Our results highlight the predictive usefulness of digestive physiology for understanding the feeding ecology of animals. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn.
Teisher, J K; McKain, M R; Schaal, B A; Kellogg, E A
2017-11-10
Subfamily Arundinoideae represents one of the last unsolved taxonomic mysteries in the grass family (Poaceae) due to the narrow and remote distributions of many of its 19 morphologically and ecologically heterogeneous genera. Resolving the phylogenetic relationships of these genera could have substantial implications for understanding character evolution in the grasses, for example the twisted geniculate awn - a hygroscopic awn that has been shown to be important in seed germination for some grass species. In this study, the phylogenetic positions of most arundinoid genera were determined using DNA from herbarium specimens, and their placement affects interpretation of this ecologically important trait. A phylogenetic analysis was conducted on a matrix of full-plastome sequences from 123 species in 107 genera representing all grass subfamilies, with 15 of the 19 genera in subfamily Arundinoideae. Parsimony and maximum likelihood mapping approaches were used to estimate ancestral states for presence of a geniculate lemma awn with a twisted column across Poaceae. Lastly, anatomical characters were examined for former arundinoid taxa using light microscopy and scanning electron microscopy. Four genera traditionally included in Arundinoideae fell outside the subfamily in the plastome phylogeny, with the remaining 11 genera forming Arundinoideae sensu stricto . The twisted geniculate awn has originated independently at least five times in the PACMAD grasses, in the subfamilies Panicoideae, Danthonioideae/Chloridoideae and Arundinoideae. Morphological and anatomical characters support the new positions of the misplaced arundinoid genera in the phylogeny, but also highlight convergent and parallel evolution in the grasses. In placing the majority of arundinoid genera in a phylogenetic framework, our study answers one of the last remaining big questions in grass taxonomy while highlighting examples of convergent evolution in an ecologically important trait, the hygroscopic, twisted geniculate awn. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Plant diversity and root traits benefit physical properties key to soil function in grasslands.
Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D
2016-09-01
Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Hodge, Jennifer R; Alim, Chidera; Bertrand, Nick G; Lee, Wesley; Price, Samantha A; Tran, Binh; Wainwright, Peter C
2018-07-01
Antipredator defensive traits are thought to trade-off evolutionarily with traits that facilitate predator avoidance. However, complexity and scale have precluded tests of this prediction in many groups, including fishes. Using a macroevolutionary approach, we test this prediction in butterflyfishes, an iconic group of coral reef inhabitants with diverse social behaviours, foraging strategies and antipredator adaptations. We find that several antipredator traits have evolved adaptively, dependent primarily on foraging strategy. We identify a previously unrecognised axis of diversity in butterflyfishes where species with robust morphological defences have riskier foraging strategies and lack sociality, while species with reduced morphological defences feed in familiar territories, have adaptations for quick escapes and benefit from the vigilance provided by sociality. Furthermore, we find evidence for the constrained evolution of fin spines among species that graze solely on corals, highlighting the importance of corals, as both prey and structural refuge, in shaping fish morphology. © 2018 John Wiley & Sons Ltd/CNRS.
Weybright, Elizabeth H.; Caldwell, Linda L.; Ram, Nilam; Smith, Edward; Jacobs, Joachim
2014-01-01
South Africa has an increasing adolescent substance use problem, lack of leisure opportunities and resources, and high adolescent discretionary time. How aspects of leisure relate to adolescent substance use is not well understood. Little research has been conducted on the leisure behaviors and experiences of South African adolescents, if and how those behaviors are associated with substance use, and ecological influences on those associations. By applying multi-level models to longitudinal data obtained from youth living in high-risk contexts, this research examines the association between state and trait healthy leisure and adolescent substance use and how perceived parental over-control moderates those associations. Results indicate healthy leisure protects against substance use at state and trait levels, provides empirical support that risk behavior can be addressed through leisure-based interventions, and emphasizes the importance of both short- and long-term processes when considering the context-dependent nature of adolescents’ leisure experiences. PMID:24948905
Fast life history traits promote invasion success in amphibians and reptiles.
Allen, William L; Street, Sally E; Capellini, Isabella
2017-02-01
Competing theoretical models make different predictions on which life history strategies facilitate growth of small populations. While 'fast' strategies allow for rapid increase in population size and limit vulnerability to stochastic events, 'slow' strategies and bet-hedging may reduce variance in vital rates in response to stochasticity. We test these predictions using biological invasions since founder alien populations start small, compiling the largest dataset yet of global herpetological introductions and life history traits. Using state-of-the-art phylogenetic comparative methods, we show that successful invaders have fast traits, such as large and frequent clutches, at both establishment and spread stages. These results, together with recent findings in mammals and plants, support 'fast advantage' models and the importance of high potential population growth rate. Conversely, successful alien birds are bet-hedgers. We propose that transient population dynamics and differences in longevity and behavioural flexibility can help reconcile apparently contrasting results across terrestrial vertebrate classes. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Trait-level and momentary correlates of bulimia nervosa with a history of anorexia nervosa.
Goldschmidt, Andrea B; Peterson, Carol B; Wonderlich, Stephen A; Crosby, Ross D; Engel, Scott G; Mitchell, James E; Crow, Scott J; Cao, Li; Berg, Kelly C
2013-03-01
Some investigators have suggested subtyping bulimia nervosa (BN) by anorexia nervosa (AN) history. We examined trait-level and momentary eating-related and psychosocial factors in BN with and without an AN history. Interview, questionnaire, and ecological momentary assessment data of eating-related and psychological symptoms were collected from 122 women with BN, including 43 with (BN+) and 79 without an AN history (BN-). Body mass index (kg/m(2) ) was lower in BN+ than BN- (p = 0.001). Groups did not differ on trait-level anxiety, shape/weight concerns, psychiatric comorbidity, or dietary restraint; or on momentary anxiety, dietary restriction, binge eating, purging, or exercise frequency, or affective patterns surrounding binge/purge behaviors. Negative affect increased prior to exercise and decreased thereafter in BN+ but not BN-, although groups did not statistically differ. Results do not support formally subtyping BN by AN history. Exercise in BN+ may modulate negative affect, which could have important treatment implications. Copyright © 2012 Wiley Periodicals, Inc.
Culumber, Zachary W; Tobler, Michael
2016-02-19
Ecological factors often have a strong impact on spatiotemporal patterns of biodiversity. The integration of spatial ecology and phylogenetics allows for rigorous tests of whether speciation is associated with niche conservatism (constraints on ecological divergence) or niche divergence. We address this question in a genus of livebearing fishes for which the role of sexual selection in speciation has long been studied, but in which the potential role of ecological divergence during speciation has not been tested. By combining reconstruction of ancestral climate tolerances and disparity indices, we show that the earliest evolutionary split in Xiphophorus was associated with significant divergence for temperature variables. Niche evolution and present day niches were most closely associated with each species' geographic distribution relative to a biogeographic barrier, the Trans-Mexican Volcanic Belt. Tests for similarity of the environmental backgrounds of closely related species suggested that the relative importance of niche conservatism and divergence during speciation varied among the primary clades of Xiphophorus. Closely related species in the two swordtail clades exhibited higher levels of niche overlap than expected given environmental background similarity indicative of niche conservatism. In contrast, almost all species of platyfish had significantly divergent niches compared to environmental backgrounds, which is indicative of niche divergence. The results suggest that the relative importance of niche conservatism and divergence differed among the clades of Xiphophorus and that traits associated with niche evolution may be more evolutionarily labile in the platyfishes. Our results ultimately suggest that the taxonomic scale of tests for conservatism and divergence could greatly influence inferences of their relative importance in the speciation process.
Wells, Jonathan C K
2015-03-05
Hominin evolution saw the emergence of two traits-bipedality and encephalization-that are fundamentally linked because the fetal head must pass through the maternal pelvis at birth, a scenario termed the 'obstetric dilemma'. While adaptive explanations for bipedality and large brains address adult phenotype, it is brain and pelvic growth that are subject to the obstetric dilemma. Many contemporary populations experience substantial maternal and perinatal morbidity/mortality from obstructed labour, yet there is increasing recognition that the obstetric dilemma is not fixed and is affected by ecological change. Ecological trends may affect growth of the pelvis and offspring brain to different extents, while the two traits also differ by a generation in the timing of their exposure. Two key questions arise: how can the fit between the maternal pelvis and the offspring brain be 'renegotiated' as the environment changes, and what nutritional signals regulate this process? I argue that the potential for maternal size to change across generations precludes birthweight being under strong genetic influence. Instead, fetal growth tracks maternal phenotype, which buffers short-term ecological perturbations. Nevertheless, rapid changes in nutritional supply between generations can generate antagonistic influences on maternal and offspring traits, increasing the risk of obstructed labour. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Sikorski, Johannes; Pukall, Rüdiger; Stackebrandt, Erko
2008-10-01
The 'Evolution Canyons' I and II in Israel are model habitats to study adaptation and speciation of bacteria in the environment. These canyons represent similar ecological replicates, separated by 40 km, with a strongly sun-exposed and hot 'African' south-facing slope (SFS) vs. a cooler and mesic-lush 'European' north-facing slope (NFS). Previously, among 131 Bacillus simplex isolates, distinct genetic lineages (ecotypes), each specific for either SFS or NFS, were identified, suggesting a temperature-driven slope-specific adaptation. Here, we asked whether the ecological heterogeneity of SFS vs. NFS also affected carbon utilization abilities, as determined using the Biolog assay. Contrary to expectation, a correlation between substrate utilization patterns and the ecological origin of strains was not found. Rather, the patterns split according to the two major phylogenetic lineages each of which contain SFS and NFS ecotypes. We conclude that traits related to the general energy metabolism, as far as assessed here, are neither shaped by the major abiotic features of 'Evolution Canyon', namely solar radiation, temperature, and drought, nor by the soil characteristics. We further conclude that some traits diverge rather neutrally from each other, whereas other, more environmentally related traits are shaped by natural selection and show evolutionary convergence.
The causes and ecological correlates of head scale asymmetry and fragmentation in a tropical snake.
Brown, Gregory P; Madsen, Thomas; Dubey, Sylvain; Shine, Rick
2017-09-12
The challenge of identifying the proximate causes and ecological consequences of phenotypic variation can be facilitated by studying traits that are usually but not always bilaterally symmetrical; deviations from symmetry likely reflect disrupted embryogenesis. Based on a 19-year mark-recapture study of >1300 slatey-grey snakes (Stegonotus cucullatus) in tropical Australia, and incubation of >700 eggs, we document developmental and ecological correlates of two morphological traits: asymmetry and fragmentation of head scales. Asymmetry was directional (more scales on the left side) and was higher in individuals with lower heterozygosity, but was not heritable. In contrast, fragmentation was heritable and was higher in females than males. Both scale asymmetry and fragmentation were increased by rapid embryogenesis but were not affected by hydric conditions during incubation. Snakes with asymmetry and fragmentation exhibited slightly lower survival and increased (sex-specific) movements, and females with more scale fragmentation produced smaller eggs. Counterintuitively, snakes with more asymmetry had higher growth rates (possibly reflecting trade-offs with other traits), and snakes with more fragmentation had fewer parasites (possibly due to lower feeding rates). Our data paint an unusually detailed picture of the complex genetic and environmental factors that, by disrupting early embryonic development, generate variations in morphology that have detectable correlations with ecological performance.
Matterson, Kenan O.; Freeman, Christopher J.; Archer, Stephanie K.; Thacker, Robert W.
2015-01-01
Recent studies have renewed interest in sponge ecology by emphasizing the functional importance of sponges in a broad array of ecosystem services. Many critically important habitats occupied by sponges face chronic stressors that might lead to alterations in their diversity, relatedness, and functional attributes. We addressed whether proximity to human activity might be a significant factor in structuring sponge community composition, as well as potential functional roles, by monitoring sponge diversity and abundance at two structurally similar sites that vary in distance to areas of high coastal development in Bocas Del Toro, Panama. We surveyed sponge communities at each site using belt transects and differences between two sites were compared using the following variables: (1) sponge species richness, Shannon diversity, and inverse Simpson’s diversity; (2) phylogenetic diversity; (3) taxonomic and phylogenetic beta diversity; (4) trait diversity and dissimilarity; and (5) phylogenetic and trait patterns in community structure. We observed significantly higher sponge diversity at Punta Caracol, the site most distant from human development (∼5 km). Although phylogenetic diversity was lower at Saigon Bay, the site adjacent to a large village including many houses, businesses, and an airport, the sites did not exhibit significantly different patterns of phylogenetic relatedness in species composition. However, each site had a distinct taxonomic and phylogenetic composition (beta diversity). In addition, the sponge community at Saigon included a higher relative abundance of sponges with high microbial abundance and high chlorophyll a concentration, whereas the community at Punta Caracol had a more even distribution of these traits, yielding a significant difference in functional trait diversity between sites. These results suggest that lower diversity and potentially altered community function might be associated with proximity to human populations. This study highlights the importance of evaluating functional traits and phylogenetic diversity in addition to common diversity metrics when assessing potential environmental impacts on benthic communities. PMID:26587347
Multiple mechanisms of early plant community assembly with stochasticity driving the process.
Marteinsdóttir, Bryndís; Svavarsdóttir, Kristín; Thórhallsdóttir, Thóra Ellen
2018-01-01
Initial plant establishment is one of the most critical phases in ecosystem development, where an early suite of physical (environmental filtering), biological (seed limitation, species interactions) and stochastic factors may affect successional trajectories and rates. While functional traits are commonly used to study processes that influence plant community assembly in late successional communities, few studies have applied them to primary succession. The objective here was to determine the importance of these factors in shaping early plant community assembly on a glacial outwash plain, Skeiðarársandur, in SE Iceland using a trait based approach. We used data on vascular plant assemblages at two different spatial scales (community and neighborhood) sampled in 2005 and 2012, and compiled a dataset on seven functional traits linked to species dispersal abilities, establishment, and persistence for all species within these assemblages. Trait-based null model analyses were used to determine the processes that influenced plant community assembly from the regional species pool into local communities, and to determine if the importance of these processes in community assembly was dependent on local environment or changed with time. On the community scale, for most traits, random processes dominated the assembly from the regional species pool. However, in some communities, there was evidence of non-random assembly in relation to traits linked to species dispersal abilities, persistence, and establishment. On the neighborhood scale, assembly was mostly random. The relative importance of different processes varied spatially and temporally and the variation was linked to local soil conditions. While stochasticity dominated assembly patterns of our early successional communities, there was evidence of both seed limitation and environmental filtering. Our results indicated that as soil conditions improved, environmental constraints on assembly became weaker and the assembly became more dependent on species availability. © 2017 by the Ecological Society of America.
Ecological interactions and the Netflix problem.
Desjardins-Proulx, Philippe; Laigle, Idaline; Poisot, Timothée; Gravel, Dominique
2017-01-01
Species interactions are a key component of ecosystems but we generally have an incomplete picture of who-eats-who in a given community. Different techniques have been devised to predict species interactions using theoretical models or abundances. Here, we explore the K nearest neighbour approach, with a special emphasis on recommendation, along with a supervised machine learning technique. Recommenders are algorithms developed for companies like Netflix to predict whether a customer will like a product given the preferences of similar customers. These machine learning techniques are well-suited to study binary ecological interactions since they focus on positive-only data. By removing a prey from a predator, we find that recommenders can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour, although a simple test with a supervised learning approach (random forests) show we can predict interactions with high accuracy using only three traits per species. This result shows that binary interactions can be predicted without regard to the ecological community given only three variables: body mass and two variables for the species' phylogeny. These techniques are complementary, as recommenders can predict interactions in the absence of traits, using only information about other species' interactions, while supervised learning algorithms such as random forests base their predictions on traits only but do not exploit other species' interactions. Further work should focus on developing custom similarity measures specialized for ecology to improve the KNN algorithms and using richer data to capture indirect relationships between species.
Ecological interactions and the Netflix problem
Laigle, Idaline; Poisot, Timothée; Gravel, Dominique
2017-01-01
Species interactions are a key component of ecosystems but we generally have an incomplete picture of who-eats-who in a given community. Different techniques have been devised to predict species interactions using theoretical models or abundances. Here, we explore the K nearest neighbour approach, with a special emphasis on recommendation, along with a supervised machine learning technique. Recommenders are algorithms developed for companies like Netflix to predict whether a customer will like a product given the preferences of similar customers. These machine learning techniques are well-suited to study binary ecological interactions since they focus on positive-only data. By removing a prey from a predator, we find that recommenders can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour, although a simple test with a supervised learning approach (random forests) show we can predict interactions with high accuracy using only three traits per species. This result shows that binary interactions can be predicted without regard to the ecological community given only three variables: body mass and two variables for the species’ phylogeny. These techniques are complementary, as recommenders can predict interactions in the absence of traits, using only information about other species’ interactions, while supervised learning algorithms such as random forests base their predictions on traits only but do not exploit other species’ interactions. Further work should focus on developing custom similarity measures specialized for ecology to improve the KNN algorithms and using richer data to capture indirect relationships between species. PMID:28828250
Marine reserves: fish life history and ecological traits matter.
Claudet, J; Osenberg, C W; Domenici, P; Badalamenti, F; Milazzo, M; Falcón, J M; Bertocci, I; Benedetti-Cecchi, L; García-Charton, J A; Goñi, R; Borg, J A; Forcada, A; De Lucia, G A; Perez-Ruzafa, A; Afonso, P; Brito, A; Guala, I; Le Diréach, L; Sanchez-Jerez, P; Somerfield, P J; Planes, S
2010-04-01
Marine reserves are assumed to protect a wide range of species from deleterious effects stemming from exploitation. However, some species, due to their ecological characteristics, may not respond positively to protection. Very little is known about the effects of life history and ecological traits (e.g., mobility, growth, and habitat) on responses of fish species to marine reserves. Using 40 data sets from 12 European marine reserves, we show that there is significant variation in the response of different species of fish to protection and that this heterogeneity can be explained, in part, by differences in their traits. Densities of targeted size-classes of commercial species were greater in protected than unprotected areas. This effect of protection increased as the maximum body size of the targeted species increased, and it was greater for species that were not obligate schoolers. However, contrary to previous theoretical findings, even mobile species with wide home ranges benefited from protection: the effect of protection was at least as strong for mobile species as it was for sedentary ones. Noncommercial bycatch and unexploited species rarely responded to protection, and when they did (in the case of unexploited bentho-pelagic species), they exhibited the opposite response: their densities were lower inside reserves. The use of marine reserves for marine conservation and fisheries management implies that they should ensure protection for a wide range of species with different life-history and ecological traits. Our results suggest this is not the case, and instead that effects vary with economic value, body size, habitat, depth range, and schooling behavior.
Petelle, M B; Martin, J G A; Blumstein, D T
2015-10-01
Describing and quantifying animal personality is now an integral part of behavioural studies because individually distinctive behaviours have ecological and evolutionary consequences. Yet, to fully understand how personality traits may respond to selection, one must understand the underlying heritability and genetic correlations between traits. Previous studies have reported a moderate degree of heritability of personality traits, but few of these studies have either been conducted in the wild or estimated the genetic correlations between personality traits. Estimating the additive genetic variance and covariance in the wild is crucial to understand the evolutionary potential of behavioural traits. Enhanced environmental variation could reduce heritability and genetic correlations, thus leading to different evolutionary predictions. We estimated the additive genetic variance and covariance of docility in the trap, sociability (mirror image stimulation), and exploration and activity in two different contexts (open-field and mirror image simulation experiments) in a wild population of yellow-bellied marmots (Marmota flaviventris). We estimated both heritability of behaviours and of personality traits and found nonzero additive genetic variance in these traits. We also found nonzero maternal, permanent environment and year effects. Finally, we found four phenotypic correlations between traits, and one positive genetic correlation between activity in the open-field test and sociability. We also found permanent environment correlations between activity in both tests and docility and exploration in the MIS test. This is one of a handful of studies to adopt a quantitative genetic approach to explain variation in personality traits in the wild and, thus, provides important insights into the potential variance available for selection. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Ball, Aaron; Sanchez-Azofeifa, Arturo; Portillo-Quintero, Carlos; Rivard, Benoit; Castro-Contreras, Saulo; Fernandes, Geraldo
2015-01-01
Aim The general goal of this study is to investigate and analyze patterns of ecophysiological leaf traits and spectral response among life forms (trees, shrubs and lianas) in the Cerrado ecosystem. In this study, we first tested whether life forms are discriminated through leaf level functional traits. We then explored the correlation between leaf-level plant functional traits and spectral reflectance. Location Serra do Cipo National Park, Minas Gerais, Brazil. Methods Six ecophysiological leaf traits were selected to best characterize differences between life forms in the woody plant community of the Cerrado. Results were compared to spectral vegetation indices to determine if plant groups provide means to separate leaf spectral responses. Results Values obtained from leaf traits were similar to results reported from other tropical dry sites. Trees and shrubs significantly differed from lianas in terms of the percentage of leaf water content and Specific Leaf Area. Spectral indices were insufficient to capture the differences of these key traits between groups, though indices were still adequately correlated to overall trait variation. Conclusion The importance of life forms as biochemical and structurally distinctive groups is a significant finding for future remote sensing studies of vegetation, especially in arid and semi-arid environments. The traits we found as indicative of these groups (SLA and water content) are good candidates for spectral characterization. Future studies need to use the full wavelength (400 nm–2500 nm) in order to capture the potential response of these traits. The ecological linkage to water balance and life strategies encourages these traits as starting points for modeling plant communities using hyperspectral remote sensing. PMID:25692675
The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage
Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko
2016-01-01
Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729
Functional traits predict relationship between plant abundance dynamic and long-term climate warming
Soudzilovskaia, Nadejda A.; Elumeeva, Tatiana G.; Onipchenko, Vladimir G.; Shidakov, Islam I.; Salpagarova, Fatima S.; Khubiev, Anzor B.; Tekeev, Dzhamal K.; Cornelissen, Johannes H. C.
2013-01-01
Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year’s shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change. PMID:24145400
Rolhauser, Andrés G; Pucheta, Eduardo
2017-03-01
How plant functional traits (e.g., seed mass) drive species abundance within communities remains an unsolved question. Borrowing concepts from natural selection theory, we propose that trait-abundance relationships can generally correspond to one of three modes of trait selection: directional (a rectilinear relationship, where species at one end of a trait axis are most abundant), stabilizing (an n-shaped relationship), and disruptive (a u-shaped relationship). Stabilizing selection (i.e., the functional convergence of abundant species) would result from positive density-dependent interactions (e.g., facilitation) or due to generalized trade-offs in resource acquisition/use, while disruptive selection (i.e., the divergence of abundant species) would result from negative density-dependent interactions (e.g., competition) or due to environmental heterogeneity. These selection modes can be interpreted as proxies for community-level trait-fitness functions, which establish the degree to which traits are truly "functional". We searched for selection modes in a desert annual-plant community in Argentina (which was divided into winter and summer guilds) to test the hypothesis that the relative importance of disruptive mechanisms (competition, disturbances) decreases with the increase of abiotic stress, a stabilizing agent. Average density was analyzed as a function of eight traits generally linked to resource acquisition and competitive ability (maximum plant height, leaf size, specific leaf area, specific root length), resource retention and stress tolerance (leaf dissection, leaf dry matter content, specific root volume), and regeneration (seed mass) using multiple quadratic-regression models. Trait selection was stabilizing and/or directional when the environment was harshest (winter) and disruptive and/or directional when conditions were milder (summer). Selection patterns differed between guilds for two important traits: plant height and seed mass. These results suggest that abiotic stress may drive within-community functional convergence independently of the trait considered, opposing the view that some traits may be inherently convergent while others divergent. Our quadratic model-based approach provides standardized metrics of both linear and nonlinear selection that may allow simple comparisons among communities subjected to contrasting environmental conditions. These concepts, rooted in natural selection theory, may clarify the functional link between traits and species abundance, and thus help untangle the contributions of deterministic and stochastic processes on community assembly. © 2017 by the Ecological Society of America.
An invasive plant alters pollinator-mediated phenotypic selection on a native congener.
Beans, Carolyn M; Roach, Deborah A
2015-01-01
• Recent studies suggest that invasive plants compete reproductively with native plants by reducing the quantity or quality of pollinator visits. Although these studies have revealed ecological consequences of pollinator-mediated competition between invasive and native plants, the evolutionary outcomes of these interactions remain largely unexplored.• We studied the ecological and evolutionary impact of pollinator-mediated competition with an invasive jewelweed, Impatiens glandulifera, on a co-occurring native congener, I. capensis. Using a pollinator choice experiment, a hand pollination experiment, and a selection analysis, we addressed the following questions: (1) Do native pollinators show preference for the invasive or native jewelweed, and do they move between the two species? (2) Does invasive jewelweed pollen inhibit seed production in the native plant? (3) Does the invasive jewelweed alter phenotypic selection on the native plant's floral traits?• The pollinator choice experiment showed that pollinators strongly preferred the invasive jewelweed. The hand pollination experiment demonstrated that invasive pollen inhibited seed production in the native plant. The selection analysis showed that the presence of the invasive jewelweed altered phenotypic selection on corolla height in the native plant.• Invasive plants have the potential to alter phenotypic selection on floral traits in native plant populations. If native plants can evolve in response to this altered selection pressure, the evolution of floral traits may play an important role in permitting long-term coexistence of native and invasive plants. © 2015 Botanical Society of America, Inc.
Bossart, J L; Scriber, J M
1995-12-01
Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. F ST -values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits. © 1995 The Society for the Study of Evolution.
Manipulating glucocorticoids in wild animals: basic and applied perspectives
Sopinka, Natalie M.; Patterson, Lucy D.; Redfern, Julia C.; Pleizier, Naomi K.; Belanger, Cassia B.; Midwood, Jon D.; Crossin, Glenn T.; Cooke, Steven J.
2015-01-01
One of the most comprehensively studied responses to stressors in vertebrates is the endogenous production and regulation of glucocorticoids (GCs). Extensive laboratory research using experimental elevation of GCs in model species is instrumental in learning about stressor-induced physiological and behavioural mechanisms; however, such studies fail to inform our understanding of ecological and evolutionary processes in the wild. We reviewed emerging research that has used GC manipulations in wild vertebrates to assess GC-mediated effects on survival, physiology, behaviour, reproduction and offspring quality. Within and across taxa, exogenous manipulation of GCs increased, decreased or had no effect on traits examined in the reviewed studies. The notable diversity in responses to GC manipulation could be associated with variation in experimental methods, inherent differences among species, morphs, sexes and age classes, and the ecological conditions in which responses were measured. In their current form, results from experimental studies may be applied to animal conservation on a case-by-case basis in contexts such as threshold-based management. We discuss ways to integrate mechanistic explanations for changes in animal abundance in altered environments with functional applications that inform conservation practitioners of which species and traits may be most responsive to environmental change or human disturbance. Experimental GC manipulation holds promise for determining mechanisms underlying fitness impairment and population declines. Future work in this area should examine multiple life-history traits, with consideration of individual variation and, most importantly, validation of GC manipulations within naturally occurring and physiologically relevant ranges. PMID:27293716
Wagner, Katrin; Mendieta-Leiva, Glenda; Zotz, Gerhard
2015-01-01
Information on the degree of host specificity is fundamental for an understanding of the ecology of structurally dependent plants such as vascular epiphytes. Starting with the seminal paper of A.F.W. Schimper on epiphyte ecology in the late 19th century over 200 publications have dealt with the issue of host specificity in vascular epiphytes. We review and critically discuss this extensive literature. The available evidence indicates that host ranges of vascular epiphytes are largely unrestricted while a certain host bias is ubiquitous. However, tree size and age and spatial autocorrelation of tree and epiphyte species have not been adequately considered in most statistical analyses. More refined null expectations and adequate replication are needed to allow more rigorous conclusions. Host specificity could be caused by a large number of tree traits (e.g. bark characteristics and architectural traits), which influence epiphyte performance. After reviewing the empirical evidence for their relevance, we conclude that future research should use a more comprehensive approach by determining the relative importance of various potential mechanisms acting locally and by testing several proposed hypotheses regarding the relative strength of host specificity in different habitats and among different groups of structurally dependent flora. PMID:25564514
Differences in boldness are repeatable and heritable in a long-lived marine predator
Patrick, Samantha C; Charmantier, Anne; Weimerskirch, Henri
2013-01-01
Animal personalities, composed of axes of consistent individual behaviors, are widely reported and can have important fitness consequences. However, despite theoretical predictions that life-history trade-offs may cause and maintain personality differences, our understanding of the evolutionary ecology of personality remains poor, especially in long-lived species where trade-offs and senescence have been shown to be stronger. Furthermore, although much theoretical and empirical work assumes selection shapes variation in personalities, studies exploring the genetic underpinnings of personality traits are rare. Here we study one standard axis of personality, the shy–bold continuum, in a long-lived marine species, the wandering albatross from Possession Island, Crozet, by measuring the behavioral response to a human approach. Using generalized linear mixed models in a Bayesian framework, we show that boldness is highly repeatable and heritable. We also find strong differences in boldness between breeding colonies, which vary in size and density, suggesting birds are shyer in more dense colonies. These results demonstrate that in this seabird population, boldness is both heritable and repeatable and highlights the potential for ecological and evolutionary processes to shape personality traits in species with varying life-history strategies. PMID:24340172
Differences in boldness are repeatable and heritable in a long-lived marine predator.
Patrick, Samantha C; Charmantier, Anne; Weimerskirch, Henri
2013-11-01
Animal personalities, composed of axes of consistent individual behaviors, are widely reported and can have important fitness consequences. However, despite theoretical predictions that life-history trade-offs may cause and maintain personality differences, our understanding of the evolutionary ecology of personality remains poor, especially in long-lived species where trade-offs and senescence have been shown to be stronger. Furthermore, although much theoretical and empirical work assumes selection shapes variation in personalities, studies exploring the genetic underpinnings of personality traits are rare. Here we study one standard axis of personality, the shy-bold continuum, in a long-lived marine species, the wandering albatross from Possession Island, Crozet, by measuring the behavioral response to a human approach. Using generalized linear mixed models in a Bayesian framework, we show that boldness is highly repeatable and heritable. We also find strong differences in boldness between breeding colonies, which vary in size and density, suggesting birds are shyer in more dense colonies. These results demonstrate that in this seabird population, boldness is both heritable and repeatable and highlights the potential for ecological and evolutionary processes to shape personality traits in species with varying life-history strategies.
Interspecific competition alters nonlinear selection on offspring size in the field.
Marshall, Dustin J; Monro, Keyne
2013-02-01
Offspring size is one of the most important life-history traits with consequences for both the ecology and evolution of most organisms. Surprisingly, formal estimates of selection on offspring size are rare, and the degree to which selection (particularly nonlinear selection) varies among environments remains poorly explored. We estimate linear and nonlinear selection on offspring size, module size, and senescence rate for a sessile marine invertebrate in the field under three different intensities of interspecific competition. The intensity of competition strongly modified the strength and form of selection acting on offspring size. We found evidence for differences in nonlinear selection across the three environments. Our results suggest that the fitness returns of a given offspring size depend simultaneously on their environmental context, and on the context of other offspring traits. Offspring size effects can be more pervasive with regards to their influence on the fitness returns of other traits than previously recognized, and we suggest that the evolution of offspring size cannot be understood in isolation from other traits. Overall, variability in the form and strength of selection on offspring size in nature may reduce the efficacy of selection on offspring size and maintain variation in this trait. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Demographic drivers of functional composition dynamics.
Muscarella, Robert; Lohbeck, Madelon; Martínez-Ramos, Miguel; Poorter, Lourens; Rodríguez-Velázquez, Jorge Enrique; van Breugel, Michiel; Bongers, Frans
2017-11-01
Mechanisms of community assembly and ecosystem function are often analyzed using community-weighted mean trait values (CWMs). We present a novel conceptual framework to quantify the contribution of demographic processes (i.e., growth, recruitment, and mortality) to temporal changes in CWMs. We used this framework to analyze mechanisms of secondary succession in wet tropical forests in Mexico. Seed size increased over time, reflecting a trade-off between colonization by small seeds early in succession, to establishment by large seeds later in succession. Specific leaf area (SLA) and leaf phosphorus content decreased over time, reflecting a trade-off between fast growth early in succession vs. high survival late in succession. On average, CWM shifts were driven mainly (70%) by growth of surviving trees that comprise the bulk of standing biomass, then mortality (25%), and weakly by recruitment (5%). Trait shifts of growing and recruiting trees mirrored the CWM trait shifts, and traits of dying trees did not change during succession, indicating that these traits are important for recruitment and growth, but not for mortality, during the first 30 yr of succession. Identifying the demographic drivers of functional composition change links population dynamics to community change, and enhances insights into mechanisms of succession. © 2017 by the Ecological Society of America.
How weeds emerge: a taxonomic and trait-based examination using United States data.
Kuester, Adam; Conner, Jeffrey K; Culley, Theresa; Baucom, Regina S
2014-05-01
Weeds can cause great economic and ecological harm to ecosystems. Despite their importance, comparisons of the taxonomy and traits of successful weeds often focus on a few specific comparisons - for example, introduced versus native weeds. We used publicly available inventories of US plant species to make comprehensive comparisons of the factors that underlie weediness. We quantitatively examined taxonomy to determine if certain genera are overrepresented by introduced, weedy or herbicide-resistant species, and we compared phenotypic traits of weeds to those of nonweeds, whether introduced or native. We uncovered genera that have more weeds and introduced species than expected by chance and plant families that have more herbicide-resistant species than expected by chance. Certain traits, generally related to fast reproduction, were more likely to be associated with weedy plants regardless of species' origins. We also found stress tolerance traits associated with either native or introduced weeds compared with native or introduced nonweeds. Weeds and introduced species have significantly smaller genomes than nonweeds and native species. These results support trends for weedy plants reported from other floras, suggest that native and introduced weeds have different stress adaptations, and provide a comprehensive survey of trends across weeds within the USA. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Wang, Meirong; Liu, Fei; Lin, Pengcheng; Yang, Shaorong; Liu, Huanzhang
2015-01-01
In the past decades, it has been debated whether ecological niche should be conserved among closely related species (phylogenetic niche conservatism, PNC) or largely divergent (traditional ecological niche theory and ecological speciation) and whether niche specialist and generalist might remain in equilibrium or niche generalist could not appear. In this study, we employed morphological traits to describe ecological niche and test whether different niche dimensions exhibit disparate evolutionary patterns. We conducted our analysis on three Rhinogobio fish species (R. typus,R. cylindricus, and R. ventralis) from the upper Yangtze River, China. Among the 32 measured morphological traits except body length, PCA extracted the first four principal components with their loading scores >1.000. To find the PNC among species, Mantel tests were conducted with the Euclidean distances calculated from the four principal components (representing different niche dimensions) against the pairwise distances calculated from mitochondrial cytochrome b sequence variations. The results showed that the second and the third niche dimension, both related to swimming ability and behavior, exhibited phylogenetic conservatism. Further comparison on niche breadth among these three species revealed that the fourth dimension of R. typus showed the greatest width, indicating that this dimension exhibited niche generalism. In conclusion, our results suggested that different niche dimensions could show different evolutionary dynamic patterns: they may exhibit PNC or not, and some dimensions may evolve generalism. PMID:25691981
Natural selection on plant physiological traits in an urban environment
NASA Astrophysics Data System (ADS)
Lambrecht, Susan C.; Mahieu, Stephanie; Cheptou, Pierre-Olivier
2016-11-01
Current rates of urbanization are creating new opportunities for studying urban plant ecology, but our knowledge of urban plant physiology lags behind that of other ecosystems. Moreover, higher temperatures, elevated CO2, and increased inorganic nitrogen deposition along with altered moisture regimes of urban as compared to rural areas creates a compelling analog for studying adaptations of plants to climate change. We grew plants under common conditions in a greenhouse to determine whether populations of Crepis sancta (Asteraceae) differed in phenological, morphological, and physiological traits. We also used a field experiment to test for natural selection on these traits in urban Montpellier, France. Urban plants flowered and senesced later than rural plants, and natural selection favored later phenology in the urban habitat. Natural selection also favored larger plants with more leaves, and increased photosynthesis and leaf nitrogen concentration. Ours is the first study to document selection on plant functional traits in an urban habitat and, as such, advances our understanding of urban plant ecology and possible adaptations to climate change.
Giacomini, Henrique C.; DeAngelis, Donald; Trexler, Joel C.; Petrere, Miguel
2013-01-01
Community ecology seeks to understand and predict the characteristics of communities that can develop under different environmental conditions, but most theory has been built on analytical models that are limited in the diversity of species traits that can be considered simultaneously. We address that limitation with an individual-based model to simulate assembly of fish communities characterized by life history and trophic interactions with multiple physiological tradeoffs as constraints on species performance. Simulation experiments were carried out to evaluate the distribution of 6 life history and 4 feeding traits along gradients of resource productivity and prey accessibility. These experiments revealed that traits differ greatly in importance for species sorting along the gradients. Body growth rate emerged as a key factor distinguishing community types and defining patterns of community stability and coexistence, followed by egg size and maximum body size. Dominance by fast-growing, relatively large, and fecund species occurred more frequently in cases where functional responses were saturated (i.e. high productivity and/or prey accessibility). Such dominance was associated with large biomass fluctuations and priority effects, which prevented richness from increasing with productivity and may have limited selection on secondary traits, such as spawning strategies and relative size at maturation. Our results illustrate that the distribution of species traits and the consequences for community dynamics are intimately linked and strictly dependent on how the benefits and costs of these traits are balanced across different conditions.
Lacroix, Christelle; Seabloom, Eric W.; Borer, Elizabeth T.
2017-01-01
Ecological stoichiometry and resource competition theory both predict that nutrient rates and ratios can alter infectious disease dynamics. Pathogens such as viruses hijack nutrient rich host metabolites to complete multiple steps of their epidemiological cycle. As the synthesis of these molecules requires nitrogen (N) and phosphorus (P), environmental supply rates, and ratios of N and P to hosts can directly limit disease dynamics. Environmental nutrient supplies also may alter virus epidemiology indirectly by changing host phenotype or the dynamics of coinfecting pathogens. We tested whether host nutrient supplies and coinfection control pathogen growth within hosts and transmission to new hosts, either directly or through modifications of plant tissue chemistry (i.e., content and stoichiometric ratios of nutrients), host phenotypic traits, or among-pathogen interactions. We examined two widespread plant viruses (BYDV-PAV and CYDV-RPV) in cultivated oats (Avena sativa) grown along a range of N and of P supply rates. N and P supply rates altered plant tissue chemistry and phenotypic traits; however, environmental nutrient supplies and plant tissue content and ratios of nutrients did not directly alter virus titer. Infection with CYDV-RPV altered plant traits and resulted in thicker plant leaves (i.e., higher leaf mass per area) and there was a positive correlation between CYDV-RPV titer and leaf mass per area. CYDV-RPV titer was reduced by the presence of a competitor, BYDV-PAV, and higher CYDV-RPV titer led to more severe chlorotic symptoms. In our experimental conditions, virus transmission was unaffected by nutrient supply rates, co-infection, plant stoichiometry, or plant traits, although nutrient supply rates have been shown to increase infection and coinfection rates. This work provides a robust test of the role of plant nutrient content and ratios in the dynamics of globally important pathogens and reveals a more complex relationship between within-host virus growth and alterations of plant traits. A deeper understanding of the differential effects of environmental nutrient supplies on virus epidemiology and ecology is particularly relevant given the rapid increase of nutrients flowing into Earth's ecosystems as a result of human activities. PMID:29163408
Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis.
Suggett, David J; Warner, Mark E; Leggat, William
2017-10-01
Coral reefs have entered an era of 'ecological crisis' as climate change drives catastrophic reef loss worldwide. Coral growth and stress susceptibility are regulated by their endosymbiotic dinoflagellates (genus Symbiodinium). The phylogenetic diversity of Symbiodinium frequently corresponds to patterns of coral health and survival, but knowledge of functional diversity is ultimately necessary to reconcile broader ecological success over space and time. We explore here functional traits underpinning the complex biology of Symbiodinium that spans free-living algae to coral endosymbionts. In doing so we propose a mechanistic framework integrating the primary traits of resource acquisition and utilisation as a means to explain Symbiodinium functional diversity and to resolve the role of Symbiodinium in driving the stability of coral reefs under an uncertain future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chan, Nicholas R
2017-10-25
Birds originated and radiated in the presence of another group of flying vertebrates, the pterosaurs. Opinion is divided as to whether birds competitively displaced pterosaurs from small-body size niches or whether the two groups coexisted with little competition. Previous studies of Mesozoic birds and pterosaurs compared measurements of homologous limb bones to test these hypotheses. However, these characters probably reflect differing ancestries rather than ecologies. Here, competition and ecological separation were tested for using multivariate analyses of functionally equivalent morphological characters. As well as using characters from the fore- and hindlimbs, these analyses also included measurements of the lower jaw. The results of this study indicate that pterosaurs had relatively longer jaws, shorter metatarsals and shorter brachial regions compared with birds of similar size. Contrary to the results of previous studies, the distal wing was not important for separating the two clades in morphospace owing to the inclusion of the primary feathers in this unit. The differences found here indicate ecological separation based on differences in size, locomotory features and feeding adaptations. Thus, instead of one group displacing the other, birds and pterosaurs appear to have adopted distinctive ecological strategies throughout their period of coexistence. © 2017 The Author(s).
Laporte, Martin; Dalziel, Anne C; Martin, Nicolas; Bernatchez, Louis
2016-08-11
Improved performance in a given ecological niche can occur through local adaptation, phenotypic plasticity, or a combination of these mechanisms. Evaluating the relative importance of these two mechanisms is needed to better understand the cause of intra specific polymorphism. In this study, we reared populations of Lake Whitefish (Coregonus clupeaformis) representing the'normal' (benthic form) and the 'dwarf' (derived limnetic form) ecotypes in two different conditions (control and swim-training) to test the relative importance of adaptation and acclimation in the differentiation of traits related to swimming capacity. The dwarf whitefish is a more active swimmer than the normal ecotype, and also has a higher capacity for aerobic energy production in the swimming musculature. We hypothesized that dwarf fish would show changes in morphological and physiological traits consistent with reductions in the energetic costs of swimming and maintenance metabolism. We found differences in traits predicted to decrease the costs of prolonged swimming and standard metabolic rate and allow for a more active lifestyle in dwarf whitefish. Dwarf whitefish evolved a more streamlined body shape, predicted to lead to a decreased drag, and a smaller brain, which may decrease their standard metabolic rate. Contrary to predictions, we also found evidence of acclimation in liver size and metabolic enzyme activities. Results support the view that local adaptation has contributed to the genetically-based divergence of traits associated with swimming activity. Presence of post-zygotic barriers limiting gene flow between these ecotype pairs may have favoured repeated local adaptation to the limnetic niches.
Smith, Jennifer E; Monclús, Raquel; Wantuck, Danielle; Florant, Gregory L; Blumstein, Daniel T
2012-09-01
Natural selection is expected to shape phenotypic traits that permit organisms to respond appropriately to the environments in which they live. One important mechanism by which animals cope with changes in their environment is through physiological responses to stressors mediated by glucocorticoid hormones. Here we perform biological and physiological validations of a minimally-invasive technique for assessing fecal corticosterone metabolites (FCMs) in captive and wild groups of yellow-bellied marmots (Marmota flaviventris). Then we draw from ten years of data on these obligate hibernators at the Rocky Mountain Biological Laboratory in Colorado, USA to assess the extent to which seasonal and daily changes explain naturalistic variation in baseline levels of FCMs. Interestingly, beyond important population-level variation with respect to year, season, time of day, sex, age and reproductive state, we found repeatable inter-individual differences in FCMs, suggesting this hormonal trait might be a meaningful target of selection. FCM levels were 68% lower in captive than wild marmots, suggesting that the natural environment in which these animals occur is generally more challenging or less predictable than life in captivity. Most live-trapping events failed to represent stressors for wild marmots such that repeated measurements of traits were possible with minimal "stress" to subjects. We also document the natural ranges of annual and seasonal variation necessary for understanding the extent to which anthropogenic assaults represent stressors for wild mammals. Taken together, this study provides a foundation for understanding the evolution of hormonal traits and has important welfare and conservation implications for field biologists. Copyright © 2012 Elsevier Inc. All rights reserved.
Haller, Benjamin C.; de Vos, Jurriaan M.; Keller, Barbara; Hendry, Andrew P.; Conti, Elena
2014-01-01
The evolution of the flower is commonly thought to have spurred angiosperm diversification. Similarly, particular floral traits might have promoted diversification within specific angiosperm clades. We hypothesize that traits promoting the precise positional transfer of pollen between flowers might promote diversification. In particular, precise pollen transfer might produce partial reproductive isolation that facilitates adaptive divergence between parapatric populations differing in their reproductive-organ positions. We investigate this hypothesis with an individual-based model of pollen transfer dynamics associated with heterostyly, a floral syndrome that depends on precise pollen transfer. Our model shows that precise pollen transfer can cause sexual selection leading to divergence in reproductive-organ positions between populations served by different pollinators, pleiotropically causing an increase in reproductive isolation through a “magic trait” mechanism. Furthermore, this increased reproductive isolation facilitates adaptive divergence between the populations in an unlinked, ecologically selected trait. In a different pollination scenario, however, precise pollen transfer causes a decrease in adaptive divergence by promoting asymmetric gene flow. Our results highlight the idea that magic traits are not “magic” in isolation; in particular, the effect size of magic traits in speciation depends on the external environment, and also on other traits that modify the strength of the magic trait's influence on non-random mating. Overall, we show that the evolutionary consequences of pollen transfer dynamics can depend strongly on the available pollinator fauna and on the morphological fit between flowers and pollinators. Furthermore, our results illustrate the potential importance of even weak reproductive isolating barriers in facilitating adaptive divergence. PMID:25211280
Behavioral Variation in Gorillas: Evidence of Potential Cultural Traits
Robbins, Martha M.; Ando, Chieko; Fawcett, Katherine A.; Grueter, Cyril C.; Hedwig, Daniela; Iwata, Yuji; Lodwick, Jessica L.; Masi, Shelly; Salmi, Roberta; Stoinski, Tara S.; Todd, Angelique; Vercellio, Veronica; Yamagiwa, Juichi
2016-01-01
The question of whether any species except humans exhibits culture has generated much debate, partially due to the difficulty of providing conclusive evidence from observational studies in the wild. A starting point for demonstrating the existence of culture that has been used for many species including chimpanzees and orangutans is to show that there is geographic variation in the occurrence of particular behavioral traits inferred to be a result of social learning and not ecological or genetic influences. Gorillas live in a wide variety of habitats across Africa and they exhibit flexibility in diet, behavior, and social structure. Here we apply the ‘method of exclusion’ to look for the presence/absence of behaviors that could be considered potential cultural traits in well-habituated groups from five study sites of the two species of gorillas. Of the 41 behaviors considered, 23 met the criteria of potential cultural traits, of which one was foraging related, nine were environment related, seven involved social interactions, five were gestures, and one was communication related. There was a strong positive correlation between behavioral dissimilarity and geographic distance among gorilla study sites. Roughly half of all variation in potential cultural traits was intraspecific differences (i.e. variability among sites within a species) and the other 50% of potential cultural traits were differences between western and eastern gorillas. Further research is needed to investigate if the occurrence of these traits is influenced by social learning. These findings emphasize the importance of investigating cultural traits in African apes and other species to shed light on the origin of human culture. PMID:27603668
Behavioral Variation in Gorillas: Evidence of Potential Cultural Traits.
Robbins, Martha M; Ando, Chieko; Fawcett, Katherine A; Grueter, Cyril C; Hedwig, Daniela; Iwata, Yuji; Lodwick, Jessica L; Masi, Shelly; Salmi, Roberta; Stoinski, Tara S; Todd, Angelique; Vercellio, Veronica; Yamagiwa, Juichi
2016-01-01
The question of whether any species except humans exhibits culture has generated much debate, partially due to the difficulty of providing conclusive evidence from observational studies in the wild. A starting point for demonstrating the existence of culture that has been used for many species including chimpanzees and orangutans is to show that there is geographic variation in the occurrence of particular behavioral traits inferred to be a result of social learning and not ecological or genetic influences. Gorillas live in a wide variety of habitats across Africa and they exhibit flexibility in diet, behavior, and social structure. Here we apply the 'method of exclusion' to look for the presence/absence of behaviors that could be considered potential cultural traits in well-habituated groups from five study sites of the two species of gorillas. Of the 41 behaviors considered, 23 met the criteria of potential cultural traits, of which one was foraging related, nine were environment related, seven involved social interactions, five were gestures, and one was communication related. There was a strong positive correlation between behavioral dissimilarity and geographic distance among gorilla study sites. Roughly half of all variation in potential cultural traits was intraspecific differences (i.e. variability among sites within a species) and the other 50% of potential cultural traits were differences between western and eastern gorillas. Further research is needed to investigate if the occurrence of these traits is influenced by social learning. These findings emphasize the importance of investigating cultural traits in African apes and other species to shed light on the origin of human culture.
Stoll, Stefan; Kail, Jochem; Lorenz, Armin W.; Sundermann, Andrea; Haase, Peter
2014-01-01
It is commonly assumed that the colonization of restored river reaches by fish depends on the regional species pools; however, quantifications of the relationship between the composition of the regional species pool and restoration outcome are lacking. We analyzed data from 18 German river restoration projects and adjacent river reaches constituting the regional species pools of the restored reaches. We found that the ability of statistical models to describe the fish assemblages established in the restored reaches was greater when these models were based on ‘biotic’ variables relating to the regional species pool and the ecological traits of species rather than on ‘abiotic’ variables relating to the hydromorphological habitat structure of the restored habitats and descriptors of the restoration projects. For species presence in restored reaches, ‘biotic’ variables explained 34% of variability, with the occurrence rate of a species in the regional species pool being the most important variable, while ’abiotic’ variables explained only the negligible amount of 2% of variability. For fish density in restored reaches, about twice the amount of variability was explained by ‘biotic’ (38%) compared to ‘abiotic’ (21%) variables, with species density in the regional species pool being most important. These results indicate that the colonization of restored river reaches by fish is largely determined by the assemblages in the surrounding species pool. Knowledge of species presence and abundance in the regional species pool can be used to estimate the likelihood of fish species becoming established in restored reaches. PMID:24404187
RECENT ECOLOGICAL DIVERGENCE DESPITE MIGRATION IN SOCKEYE SALMON (ONCORHYNCHUS NERKA)
Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R
2010-01-01
Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (∼500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier. PMID:20030707
Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka).
Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R
2010-06-01
Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (approximately 500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000-15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.
Maximum entropy models of ecosystem functioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, Jason, E-mail: jason.bertram@anu.edu.au
2014-12-05
Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on themore » information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example.« less
Peel, Alison J; Baker, Kate S; Hayman, David T S; Suu-Ire, Richard; Breed, Andrew C; Gembu, Guy-Crispin; Lembo, Tiziana; Fernández-Loras, Andrés; Sargan, David R; Fooks, Anthony R; Cunningham, Andrew A; Wood, James L N
2016-08-01
Bats, including African straw-coloured fruit bats (Eidolon helvum), have been highlighted as reservoirs of many recently emerged zoonotic viruses. This common, widespread and ecologically important species was the focus of longitudinal and continent-wide studies of the epidemiological and ecology of Lagos bat virus, henipaviruses and Achimota viruses. Here we present a spatial, morphological, demographic, genetic and serological dataset encompassing 2827 bats from nine countries over an 8-year period. Genetic data comprises cytochrome b mitochondrial sequences (n=608) and microsatellite genotypes from 18 loci (n=544). Tooth-cementum analyses (n=316) allowed derivation of rare age-specific serologic data for a lyssavirus, a henipavirus and two rubulaviruses. This dataset contributes a substantial volume of data on the ecology of E. helvum and its viruses and will be valuable for a wide range of studies, including viral transmission dynamic modelling in age-structured populations, investigation of seasonal reproductive asynchrony in wide-ranging species, ecological niche modelling, inference of island colonisation history, exploration of relationships between island and body size, and various spatial analyses of demographic, morphometric or serological data.
Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka)
Pavey, Scott A.; Nielsen, Jennifer L.; Hamon, Troy R.
2010-01-01
Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (~500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.
Phylogenetic overdispersion of plant species in southern Brazilian savannas.
Silva, I A; Batalha, M A
2009-08-01
Ecological communities are the result of not only present ecological processes, such as competition among species and environmental filtering, but also past and continuing evolutionary processes. Based on these assumptions, we may infer mechanisms of contemporary coexistence from the phylogenetic relationships of the species in a community. We studied the phylogenetic structure of plant communities in four cerrado sites, in southeastern Brazil. We calculated two raw phylogenetic distances among the species sampled. We estimated the phylogenetic structure by comparing the observed phylogenetic distances to the distribution of phylogenetic distances in null communities. We obtained null communities by randomizing the phylogenetic relationships of the regional pool of species. We found a phylogenetic overdispersion of the cerrado species. Phylogenetic overdispersion has several explanations, depending on the phylogenetic history of traits and contemporary ecological interactions. However, based on coexistence models between grasses and trees, density-dependent ecological forces, and the evolutionary history of the cerrado flora, we argue that the phylogenetic overdispersion of cerrado species is predominantly due to competitive interactions, herbivores and pathogen attacks, and ecological speciation. Future studies will need to include information on the phylogenetic history of plant traits.
Merrill, R M; Naisbit, R E; Mallet, J; Jiggins, C D
2013-09-01
Shifts in host-plant use by phytophagous insects have played a central role in their diversification. Evolving host-use strategies will reflect a trade-off between selection pressures. The ecological niche of herbivorous insects is partitioned along several dimensions, and if populations remain in contact, recombination will break down associations between relevant loci. As such, genetic architecture can profoundly affect the coordinated divergence of traits and subsequently the ability to exploit novel habitats. The closely related species Heliconius cydno and H. melpomene differ in mimetic colour pattern, habitat and host-plant use. We investigate the selection pressures and genetic basis underlying host-use differences in these two species. Host-plant surveys reveal that H. melpomene specializes on a single species of Passiflora. This is also true for the majority of other Heliconius species in secondary growth forest at our study site, as expected under a model of interspecific competition. In contrast, H. cydno, which uses closed-forest habitats where both Heliconius and Passiflora are less common, appears not to be restricted by competition and uses a broad selection of the available Passiflora. However, other selection pressures are likely involved, and field experiments reveal that early larval survival of both butterfly species is highest on Passiflora menispermifolia, but most markedly so for H. melpomene, the specialist on that host. Finally, we demonstrate an association between host-plant acceptance and colour pattern amongst interspecific hybrids, suggesting that major loci underlying these important ecological traits are physically linked in the genome. Together, our results reveal ecological and genetic associations between shifts in habitat, host use and mimetic colour pattern that have likely facilitated both speciation and coexistence. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Between screening level risk assessments and complex ecological models, a need exists for practical identification of risk based on general information about species, chemicals, and exposure scenarios. Several studies have identified demographic, biological, and toxicological fa...
Longevity and ageing: appraising the evolutionary consequences of growing old
Bonsall, Michael B
2005-01-01
Senescence or ageing is an increase in mortality and/or decline in fertility with increasing age. Evolutionary theories predict that ageing or longevity evolves in response to patterns of extrinsic mortality or intrinsic damage. If ageing is viewed as the outcome of the processes of behaviour, growth and reproduction then it should be possible to predict mortality rate. Recent developments have shown that it is now possible to integrate these ecological and physiological processes and predict the shape of mortality trajectories. By drawing on the key exciting developments in the cellular, physiological and ecological process of longevity the evolutionary consequences of ageing are reviewed. In presenting these ideas an evolutionary demographic framework is used to argue how trade-offs in life-history strategies are important in the maintenance of variation in longevity within and between species. Evolutionary processes associated with longevity have an important role in explaining levels of biological diversity and speciation. In particular, the effects of life-history trait trade-offs in maintaining and promoting species diversity are explored. Such trade-offs can alleviate the effects of intense competition between species and promote species coexistence and diversification. These results have important implications for understanding a number of core ecological processes such as how species are divided among niches, how closely related species co-occur and the rules by which species assemble into food-webs. Theoretical work reveals that the proximate physiological processes are as important as the ecological factors in explaining the variation in the evolution of longevity. Possible future research challenges integrating work on the evolution and mechanisms of growing old are briefly discussed. PMID:16553312
Moen, Daniel S; Irschick, Duncan J; Wiens, John J
2013-12-22
Many clades contain ecologically and phenotypically similar species across continents, yet the processes generating this similarity are largely unstudied, leaving fundamental questions unanswered. Is similarity in morphology and performance across assemblages caused by evolutionary convergence or by biogeographic dispersal of evolutionarily conserved ecotypes? Does convergence to new ecological conditions erase evidence of past adaptation? Here, we analyse ecology, morphology and performance in frog assemblages from three continents (Asia, Australia and South America), assessing the importance of dispersal and convergent evolution in explaining similarity across regions. We find three striking results. First, species using the same microhabitat type are highly similar in morphology and performance across both clades and continents. Second, some species on different continents owe their similarity to dispersal and evolutionary conservatism (rather than evolutionary convergence), even over vast temporal and spatial scales. Third, in one case, an ecologically specialized ancestor radiated into diverse ecotypes that have converged with those on other continents, largely erasing traces of past adaptation to their ancestral ecology. Overall, our study highlights the roles of both evolutionary conservatism and convergence in explaining similarity in species traits over large spatial and temporal scales and demonstrates a statistical framework for addressing these questions in other systems.
Moen, Daniel S.; Irschick, Duncan J.; Wiens, John J.
2013-01-01
Many clades contain ecologically and phenotypically similar species across continents, yet the processes generating this similarity are largely unstudied, leaving fundamental questions unanswered. Is similarity in morphology and performance across assemblages caused by evolutionary convergence or by biogeographic dispersal of evolutionarily conserved ecotypes? Does convergence to new ecological conditions erase evidence of past adaptation? Here, we analyse ecology, morphology and performance in frog assemblages from three continents (Asia, Australia and South America), assessing the importance of dispersal and convergent evolution in explaining similarity across regions. We find three striking results. First, species using the same microhabitat type are highly similar in morphology and performance across both clades and continents. Second, some species on different continents owe their similarity to dispersal and evolutionary conservatism (rather than evolutionary convergence), even over vast temporal and spatial scales. Third, in one case, an ecologically specialized ancestor radiated into diverse ecotypes that have converged with those on other continents, largely erasing traces of past adaptation to their ancestral ecology. Overall, our study highlights the roles of both evolutionary conservatism and convergence in explaining similarity in species traits over large spatial and temporal scales and demonstrates a statistical framework for addressing these questions in other systems. PMID:24174109
A key ecological trait drove the evolution of biparental care and monogamy in an amphibian.
Brown, Jason L; Morales, Victor; Summers, Kyle
2010-04-01
Linking specific ecological factors to the evolution of parental care pattern and mating system is a difficult task of key importance. We provide evidence from comparative analyses that an ecological factor (breeding pool size) is associated with the evolution of parental care across all frogs. We further show that the most intensive form of parental care (trophic egg feeding) evolved in concert with the use of small pools for tadpole deposition and that egg feeding was associated with the evolution of biparental care. Previous research on two Peruvian poison frogs (Ranitomeya imitator and Ranitomeya variabilis) revealed similar life histories, with the exception of breeding pool size. This key ecological difference led to divergence in parental care patterns and mating systems. We present ecological field experiments that demonstrate that biparental care is essential to tadpole survival in small (but not large) pools. Field observations demonstrate social monogamy in R. imitator, the species that uses small pools. Molecular analyses demonstrate genetic monogamy in R. imitator, the first example of genetic monogamy in an amphibian. In total, this evidence constitutes the most complete documentation to date that a single ecological factor drove the evolution of biparental care and genetic and social monogamy in an animal.
Thematic and spatial resolutions affect model-based predictions of tree species distribution.
Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei
2013-01-01
Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.
Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution
Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei
2013-01-01
Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828
Feng, Yu-Long; Fu, Gai-Lan; Zheng, Yu-Long
2008-08-01
Comparisons between invasive and native species may not characterize the traits of invasive species, as native species might be invasive elsewhere if they were introduced. In this study, invasive Oxalis corymbosa and Peperomia pellucida were compared with their respective noninvasive alien congeners. We hypothesized that the invasive species have higher specific leaf (SLA) than their respective noninvasive alien congeners, and analyzed the physiological and ecological consequences of the higher SLA. Higher SLA was indeed the most important trait for the two invaders, which was associated with their lower leaf construction cost, higher nitrogen (N) allocation to photosynthesis and photosynthetic N use efficiency (PNUE). The higher N allocation to photosynthesis of the invaders in turn increased their PNUE, N content in photosynthesis, biochemical capacity for photosynthesis, and therefore light-saturated photosynthetic rate. The above resource capture-, use- and growth-related traits may facilitate the two invaders' invasion, while further comparative studies on a wider range of invasive and noninvasive congeners are needed to understand the generality of this pattern and to fully assess the competitive advantages afforded by these traits.
Teichert, Nils; Lepage, Mario; Lobry, Jérémy
2018-10-15
Assessing ecological health of aquatic ecosystems is crucial in the current context of biodiversity loss to guide and prioritize management actions. Although several fish-based indices were developed to assess the ecological status of estuarine ecosystems, they do not provide guidance on the causal responses of communities to disturbances. The functional trait-based approach provides an understanding of how human disturbance affects the composition of biological and ecological traits in assemblages, as well as their consequences for ecosystem functioning. Here, we evaluate the responses of fish assemblages to human disturbance in 30 French estuaries using several taxonomic and functional indices (e.g. diversity, evenness or redundancy). We tested whether these indices can provide additional information on the human impacts and health of assemblages that are not reflected by the ecological indicator (fish-based index ELFI). Results indicated that high values of local human disturbances were associated to a decrease in fish abundance, decrease in species richness and reduced functional redundancy, whereas taxonomic and functional evenness increased. In contrast, the functional richness remained stable suggesting that the functional traits of species removed by stressors were maintained by more tolerant species. Indeed, we found that the local disturbances mainly resulted in a decrease in the proportions of small benthic species feeding on macro-invertebrates, which were dominant in the studied estuaries. Some functional alterations were detected by the fish-based index, but the decline of functional redundancy was not reflected, highlighting a serious concern for management. Indeed, the abrupt collapse of functional redundancy in response to local disturbances can decrease the ability of assemblages to maintain certain species traits in the face of future environmental disturbance, including climate change. From a management perspective, the application of such functional redundancy measure in monitoring programs can help stakeholders identify sensitive areas where conservation efforts need to be planned. Copyright © 2018 Elsevier B.V. All rights reserved.
Maruyama, Munetoshi; Steiner, Florian M; Stauffer, Christian; Akino, Toshiharu; Crozier, Ross H; Schlick-Steiner, Birgit C
2008-08-19
Ants of the genus Lasius are ecologically important and an important system for evolutionary research. Progress in evolutionary research has been hindered by the lack of a well-founded phylogeny of the subgenera, with three previous attempts disagreeing. Here we employed two mitochondrial genes (cytochrome c oxidase subunit I, 16S ribosomal RNA), comprising 1,265 bp, together with 64 morphological characters, to recover the phylogeny of Lasius by Bayesian and Maximum Parsimony inference after exploration of potential causes of phylogenetic distortion. We use the resulting framework to infer evolutionary pathways for social parasitism and fungiculture. We recovered two well supported major lineages. One includes Acanthomyops, Austrolasius, Chthonolasius, and Lasius pallitarsis, which we confirm to represent a seventh subgenus, the other clade contains Dendrolasius, and Lasius sensu stricto. The subgenus Cautolasius, displaying neither social parasitism nor fungiculture, probably belongs to the second clade, but its phylogenetic position is not resolved at the cutoff values of node support we apply. Possible causes for previous problems with reconstructing the Lasius phylogeny include use of other reconstruction techniques, possibly more prone to instabilities in some instances, and the inclusion of phylogenetically distorting characters. By establishing an updated phylogenetic framework, our study provides the basis for a later formal taxonomic revision of subgenera and for studying the evolution of various ecologically and sociobiologically relevant traits of Lasius, although there is need for future studies to include nuclear genes and additional samples from the Nearctic. Both social parasitism and fungiculture evolved twice in Lasius, once in each major lineage, which opens up new opportunities for comparative analyses. The repeated evolution of social parasitism has been established for other groups of ants, though not for temporary social parasitism as found in Lasius. For fungiculture, the independent emergence twice in a monophyletic group marks a novel scenario in ants. We present alternative hypotheses for the evolution of both traits, with one of each involving loss of the trait. Though less likely for both traits than later evolution without reversal, we consider reversal as sufficiently plausible to merit independent testing.
Hormones in the city: endocrine ecology of urban birds.
Bonier, Frances
2012-05-01
Urbanization dramatically changes the landscape, presenting organisms with novel challenges and often leading to reduced species diversity. Urban ecologists have documented numerous biotic and abiotic consequences of urbanization, such as altered climate, species interactions, and community composition, but we lack an understanding of the mechanisms underlying organisms' responses to urbanization. Here, I review findings from the nascent field of study of the endocrine ecology of urban birds. Thus far, no clear or consistent patterns have been revealed, but we do have evidence that urban habitat can shape endocrine traits, and that those traits might contribute to adaptation to the urban environment. I suggest strong approaches for future work addressing exciting questions about the role of endocrine traits in mediating responses to urbanization within species across the globe. Copyright © 2012 Elsevier Inc. All rights reserved.
Stanley, Christina R; Mettke-Hofmann, Claudia; Preziosi, Richard F
2017-01-01
Despite a recent surge in the popularity of animal personality studies and their wide-ranging associations with various aspects of behavioural ecology, our understanding of the development of personality over ontogeny remains poorly understood. Stability over time is a central tenet of personality; ecological pressures experienced by an individual at different life stages may, however, vary considerably, which may have a significant effect on behavioural traits. Invertebrates often go through numerous discrete developmental stages and therefore provide a useful model for such research. Here we test for both differential consistency and age effects upon behavioural traits in the gregarious cockroach Diploptera punctata by testing the same behavioural traits in both juveniles and adults. In our sample, we find consistency in boldness, exploration and sociality within adults whilst only boldness was consistent in juveniles. Both boldness and exploration measures, representative of risk-taking behaviour, show significant consistency across discrete juvenile and adult stages. Age effects are, however, apparent in our data; juveniles are significantly bolder than adults, most likely due to differences in the ecological requirements of these life stages. Size also affects risk-taking behaviour since smaller adults are both bolder and more highly explorative. Whilst a behavioural syndrome linking boldness and exploration is evident in nymphs, this disappears by the adult stage, where links between other behavioural traits become apparent. Our results therefore indicate that differential consistency in personality can be maintained across life stages despite age effects on its magnitude, with links between some personality traits changing over ontogeny, demonstrating plasticity in behavioural syndromes.
Mettke-Hofmann, Claudia; Preziosi, Richard F.
2017-01-01
Despite a recent surge in the popularity of animal personality studies and their wide-ranging associations with various aspects of behavioural ecology, our understanding of the development of personality over ontogeny remains poorly understood. Stability over time is a central tenet of personality; ecological pressures experienced by an individual at different life stages may, however, vary considerably, which may have a significant effect on behavioural traits. Invertebrates often go through numerous discrete developmental stages and therefore provide a useful model for such research. Here we test for both differential consistency and age effects upon behavioural traits in the gregarious cockroach Diploptera punctata by testing the same behavioural traits in both juveniles and adults. In our sample, we find consistency in boldness, exploration and sociality within adults whilst only boldness was consistent in juveniles. Both boldness and exploration measures, representative of risk-taking behaviour, show significant consistency across discrete juvenile and adult stages. Age effects are, however, apparent in our data; juveniles are significantly bolder than adults, most likely due to differences in the ecological requirements of these life stages. Size also affects risk-taking behaviour since smaller adults are both bolder and more highly explorative. Whilst a behavioural syndrome linking boldness and exploration is evident in nymphs, this disappears by the adult stage, where links between other behavioural traits become apparent. Our results therefore indicate that differential consistency in personality can be maintained across life stages despite age effects on its magnitude, with links between some personality traits changing over ontogeny, demonstrating plasticity in behavioural syndromes. PMID:28489864
Moeller, David A; Geber, Monica A
2005-04-01
The repeated evolutionary transition from outcrossing to self-pollination in flowering plants has been suggested to occur because selfing provides reproductive assurance. Reports from biogeographical and ecological surveys indicate that selfing taxa are often associated with stressful and ephemeral environments, situations in which plant abundance is low (e.g., Baker's law) and with novel plant communities, however experimental tests of ecological hypotheses are few. In this study, we examined the ecological context of selection on mating system traits (herkogamy and protandry) in a California annual, Clarkia xantiana, where natural selfing populations differ from outcrossing populations in that they are often of small size or low density and occur mainly outside the range of pollinator-sharing congeners. We constructed artificial populations of plants with broad genetic variation in floral traits and manipulated two ecological factors, plant population size, and the presence versus absence of pollinator-sharing congeners, in the center of the geographic range of outcrossing populations. We found evidence for context-dependent selection on herkogamy and protandry via female fitness in which reduced traits, which promote autonomous selfing, were favored in small populations isolated from congeners whereas selection was comparatively weak in large populations or when congeners were present. In small, isolated populations, the fertility of plants with low herkogamy or protandry was elevated by 66% and 58%, respectively, compared to those with high herkogamy or protandry. The presence of pollinator-sharing congeners augmented bee visitation rates to C. xantiana flowers by 47% for all bees and by 93% for pollen specialists. By facilitating pollinator visitation, congeners mitigated selection on mating system traits in small populations, where outcross mating success is often low (the Allee effect). We also found support for the hypothesis that pollinator availability directly influenced variation in the strength of selection on herkogamy among populations. The striking parallels between our experimental results and patterns of variation in ecological factors across the geographic range of outcrossing and selfing populations suggest that reproductive assurance may play a central role in directing mating system evolution in C. xantiana.
Green, Kristina Karlsson; Svensson, Erik I; Bergsten, Johannes; Härdling, Roger; Hansson, Bengt
2014-07-01
Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus and Graphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Hobbs, Jean-Paul A.; Jones, G. P.; Munday, P. L.
2010-03-01
Determining the species most vulnerable to increasing degradation of coral reef habitats requires identification of the ecological traits that increase extinction risk. In the terrestrial environment, endemic species often face a high risk of extinction because of an association among three traits that threaten species persistence: small geographic range size, low abundance and ecological specialisation. To test whether these traits are associated in coral reef fishes, this study compared abundance and specialisation in endemic and widespread angelfishes at the remote Christmas and Cocos Islands in the Indian Ocean. The interrelationships among traits conferring high extinction risk in terrestrial communities did not apply to these fishes. Endemic angelfishes were 50-80 times more abundant than widespread species at these islands. Furthermore, there was no relationship between abundance and ecological specialisation. Endemic species were not more specialised than widespread congeners and endemics used similar resources to many widespread species. Three widespread species exhibited low abundance and some degree of specialisation, which may expose them to a greater risk of local extinction. For endemic species, high abundance and lack of specialisation on susceptible habitats may compensate for the global extinction risk posed by having extremely small geographic ranges. However, recent extinctions of small range reef fishes confirm that endemics are not immune to the increasing severity of large-scale disturbances that can affect species throughout their geographic range.
Goldstein, R.M.; Meador, M.R.
2005-01-01
We used species traits to examine the variation in fish assemblages for 21 streams in the Northern Lakes and Forests Ecoregion along a gradient of habitat disturbance. Fish species were classified based on five species trait-classes (trophic ecology, substrate preference, geomorphic preference, locomotion morphology, and reproductive strategy) and 29 categories within those classes. We used a habitat quality index to define a reference stream and then calculated Euclidean distances between the reference and each of the other sites for the five traits. Three levels of species trait analyses were conducted: (1) a composite measure (the sum of Euclidean distances across all five species traits), (2) Euclidean distances for the five individual species trait-classes, and (3) frequencies of occurrence of individual trait categories. The composite Euclidean distance was significantly correlated to the habitat index (r = -0.81; P = 0.001), as were the Euclidean distances for four of the five individual species traits (substrate preference: r = -0.70, P = 0.001; geomorphic preference: r = -0.69, P = 0.001; trophic ecology: r = -0.73, P = 0.001; and reproductive strategy: r = -0.64, P = 0.002). Although Euclidean distances for locomotion morphology were not significantly correlated to habitat index scores (r = -0.21; P = 0.368), analysis of variance and principal components analysis indicated that Euclidean distances for locomotion morphology contributed to significant variation in the fish assemblages among sites. Examination of trait categories indicated that low habitat index scores (degraded streams) were associated with changes in frequency of occurrence within the categories of all five of the species traits. Though the objectives and spatial scale of a study will dictate the level of species trait information required, our results suggest that species traits can provide critical information at multiple levels of data analysis. ?? Copyright by the American Fisheries Society 2005.
Effects of hedgerows on bats and bush crickets at different spatial scales
NASA Astrophysics Data System (ADS)
Lacoeuilhe, Aurélie; Machon, Nathalie; Julien, Jean-François; Kerbiriou, Christian
2016-02-01
Biodiversity is threatened by the loss and fragmentation of habitats. The role of hedgerows in maintaining biodiversity is well established, but few studies have addressed the importance for biodiversity of the intrinsic characteristics of hedgerows and the quality of hedgerow networks along a spatial scale. We examined three quality indices providing information at different territorial levels: density in the landscape, structural diversity and wood production. We performed an acoustic survey in a grassland to estimate the species abundance and community composition of bats (9 taxa) and bush crickets (11 species). Using an approach based on species and traits, we assessed how hedgerow quality influenced the activity of these taxa at different spatial scales (from 50 to 1000 m) and focused on three types of traits: bush cricket mobility ability, bat foraging strategy and habitat specialization. In general, our results showed the importance of hedgerow quality for bats and bush crickets, but the strength of the association between taxa and hedgerows varied substantially among the species and the spatial scales. Although it depends on the taxa, the production, density and structural diversity of hedgerows each had an overall positive effect. Our results suggested that these effects were generally more important at large scales. The scale effect of the production index is the best predictor of activity for bat and bush cricket taxa and traits. Our results showed the importance of hedgerow quality for the ecology of bat and bush cricket communities and could be used to improve conservation management.
Medina, Susan; Gupta, S. K.; Vadez, Vincent
2017-01-01
Under conditions of high vapor pressure deficit (VPD) and soil drying, restricting transpiration is an important avenue to gain efficiency in water use. The question we raise in this article is whether breeding for agro-ecological environments that differ for the rainfall have selected for traits that control plant water use. These are measured in pearl millet materials bred for zones varying in rainfall (8 combinations of parent and F1-hybrids, 18 F1-hybrids and then 40 F1-hybrids). In all cases, we found an agro-ecological variation in the slope of the transpiration response to increasing VPD, and parental line variation in the transpiration response to soil drying within hybrids/parent combinations. The hybrids adapted to lower rainfall had higher transpiration response curves than those from the highest rainfall zones, but showed no variation in how transpiration responded to soil drying. The genotypes bred for lower rainfall zones showed lower leaf area, dry matter, thicker leaves, root development, and exudation, than the ones bred for high rainfall zone when grown in the low VPD environment of the greenhouse, but there was no difference in their root length neither on the root/shoot index in these genotypes. By contrast, when grown under high VPD conditions outdoors, the lower rainfall hybrids had the highest leaf, tiller, and biomass development. Finally, under soil drying the genotypes from the lower rainfall accumulated less biomass than the ones from higher rainfall zone, and so did the parental lines compared to the hybrids. These differences in the transpiration response and growth clearly showed that breeding for different agro-ecological zones also bred for different genotype strategies in relation to traits related to plant water use. Highlights: • Variation in transpiration response reflected breeding for agro-ecological zones • Different growth strategies depended on the environmental conditions • Different ideotypes reflected rainfall levels in specific agro-ecological zones PMID:29163578
Medina, Susan; Gupta, S K; Vadez, Vincent
2017-01-01
Under conditions of high vapor pressure deficit (VPD) and soil drying, restricting transpiration is an important avenue to gain efficiency in water use. The question we raise in this article is whether breeding for agro-ecological environments that differ for the rainfall have selected for traits that control plant water use. These are measured in pearl millet materials bred for zones varying in rainfall (8 combinations of parent and F 1 -hybrids, 18 F 1 -hybrids and then 40 F 1 -hybrids). In all cases, we found an agro-ecological variation in the slope of the transpiration response to increasing VPD, and parental line variation in the transpiration response to soil drying within hybrids/parent combinations. The hybrids adapted to lower rainfall had higher transpiration response curves than those from the highest rainfall zones, but showed no variation in how transpiration responded to soil drying. The genotypes bred for lower rainfall zones showed lower leaf area, dry matter, thicker leaves, root development, and exudation, than the ones bred for high rainfall zone when grown in the low VPD environment of the greenhouse, but there was no difference in their root length neither on the root/shoot index in these genotypes. By contrast, when grown under high VPD conditions outdoors, the lower rainfall hybrids had the highest leaf, tiller, and biomass development. Finally, under soil drying the genotypes from the lower rainfall accumulated less biomass than the ones from higher rainfall zone, and so did the parental lines compared to the hybrids. These differences in the transpiration response and growth clearly showed that breeding for different agro-ecological zones also bred for different genotype strategies in relation to traits related to plant water use. Highlights : • Variation in transpiration response reflected breeding for agro-ecological zones • Different growth strategies depended on the environmental conditions • Different ideotypes reflected rainfall levels in specific agro-ecological zones.
A modelling framework for improving plant establishment during ecological restoration
USDA-ARS?s Scientific Manuscript database
Plants seeded during ecological restoration projects often perish en masse, and researchers are currently searching for traits promoting increased survival. In this study of a big sagebrush (Artemisia tridentata Nutt.) ecosystem, we found survivorship rankings of seeded grass species varied across 3...
The Icarus challenge - Predicting vulnerability to climate change using an algorithm-based species’ trait approachHenry Lee II, Christina Folger, Deborah A. Reusser, Patrick Clinton, and Rene Graham1 U.S. EPA, Western Ecology Division, Newport, OR USA E-mail: lee.henry@ep...
USDA-ARS?s Scientific Manuscript database
Resource availability has long been recognized for playing a major role in structuring plant communities. Nonetheless, a functional understanding of root traits and interactions with soil organisms involved in acquiring those resources has largely remained out of focus and outside mainstream ecolog...
Leung, Jonathan Y S; Cheung, Napo K M
2017-03-15
Mangrove plantation is widely applied to re-establish the plant community in degraded mangroves, but its effectiveness to restore the ecological functions of macrobenthic community remains poorly known, especially when pollution may overwhelm its potential positive effect. Here, we tested the effect of mangrove plantation on the ecological functions of macrobenthic community in a polluted mangrove by analyzing biological traits of macrobenthos and calculating functional diversity. Mangrove plantation was shown to enhance the functional diversity and restore the ecological functions of macrobenthic community, depending on seasonality. Given the polluted sediment, however, typical traits of opportunistic species (e.g. small and short-lived) prevailed in all habitats and sampling times. We conclude that mangrove plantation can help diversify the ecological functions of macrobenthic community, but its effectiveness is likely reduced by pollution. From the management perspective, therefore, pollution sources must be stringently regulated and mangrove plantation should be conducted to fully recover degraded mangroves. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of an Unmanned Aerial System (UAS) for Scaling Terrestrial Ecosystem Traits
NASA Astrophysics Data System (ADS)
Meng, R.; McMahon, A. M.; Serbin, S.; Rogers, A.
2015-12-01
The next generation of Ecosystem and Earth System Models (EESMs) will require detailed information on ecosystem structure and function, including properties of vegetation related to carbon (C), water, and energy cycling, in order to project the future state of ecosystems. High spatial-temporal resolution measurements of terrestrial ecosystem are also important for EESMs, because they can provide critical inputs and benchmark datasets for evaluation of EESMs simulations across scales. The recent development of high-quality, low-altitude remote sensing platforms or small UAS (< 25 kg) enables measurements of terrestrial ecosystems at unprecedented temporal and spatial scales. Specifically, these new platforms can provide detailed information on patterns and processes of terrestrial ecosystems at a critical intermediate scale between point measurements and suborbital and satellite platforms. Given their potential for sub-decimeter spatial resolution, improved mission safety, high revisit frequency, and reduced operation cost, these platforms are of particular interest in the development of ecological scaling algorithms to parameterize and benchmark EESMs, particularly over complex and remote terrain. Our group is developing a small UAS platform and integrated sensor package focused on measurement needs for scaling and informing ecosystem modeling activities, as well as scaling and mapping plant functional traits. To do this we are developing an integrated software workflow and hardware package using off-the-shelf instrumentation including a high-resolution digital camera for Structure from Motion, spectroradiometer, and a thermal infrared camera. Our workflow includes platform design, measurement, image processing, data management, and information extraction. The fusion of 3D structure information, thermal-infrared imagery, and spectroscopic measurements, will provide a foundation for the development of ecological scaling and mapping algorithms. Our initial focus is in temperate forests but near-term research will expand into the high-arctic and eventually tropical systems. The results of this prototype study show that off-the-shelf technology can be used to develop a low-cost alternative for mapping plant traits and three-dimensional structure for ecological research.
Cahill, James F
2015-10-26
The way that plants are conceptualized in the context of ecological understanding is changing. In one direction, a reductionist school is pulling plants apart into a list of measured 'traits', from which ecological function and outcomes of species interactions may be inferred. This special issue offers an alternative, and more holistic, view: that the ecological functions performed by a plant will be a consequence not only of their complement of traits but also of the ways in which their component parts are used in response to environmental and social conditions. This is the realm of behavioural ecology, a field that has greatly advanced our understanding of animal biology, ecology and evolution. Included in this special issue are 10 articles focussing not on the tried and true metaphor that plant growth is similar to animal movement, but instead on how application of principles from animal behaviour can improve our ability to understand plant biology and ecology. The goals are not to draw false parallels, nor to anthropomorphize plant biology, but instead to demonstrate how existing and robust theory based on fundamental principles can provide novel understanding for plants. Key to this approach is the recognition that behaviour and intelligence are not the same. Many organisms display complex behaviours despite a lack of cognition (as it is traditionally understood) or any hint of a nervous system. The applicability of behavioural concepts to plants is further enhanced with the realization that all organisms face the same harsh forces of natural selection in the context of finding resources, mates and coping with neighbours. As these ecological realities are often highly variable in space and time, it is not surprising that all organisms-even plants-exhibit complex behaviours to handle this variability. The articles included here address diverse topics in behavioural ecology, as applied to plants: general conceptual understanding, plant nutrient foraging, root-root interactions, and using and helping others. As a group, the articles in this special issue demonstrate how plant ecological understanding can be enhanced through incorporation of behavioural ideas and set the stage for future research in the emerging discipline of plant behavioural ecology. Published by Oxford University Press on behalf of the Annals of Botany Company.
Ecological and genetic barriers differentiate natural populations of Saccharomyces cerevisiae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clowers, Katie J.; Heilberger, Justin; Piotrowski, Jeff S.
How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causalmore » genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Lastly, our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.« less
Ecological and genetic barriers differentiate natural populations of Saccharomyces cerevisiae
Clowers, Katie J.; Heilberger, Justin; Piotrowski, Jeff S.; ...
2015-05-06
How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causalmore » genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Lastly, our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.« less
Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress.
Medina, Matías H; Correa, Juan A; Barata, Carlos
2007-05-01
Polluting events can change community structure and ecosystem functioning. Selection of genetically inherited tolerance on exposed populations, here referred as micro-evolution due to pollution, has been recognized as one of the causes of these changes. However, there is a gap between studies addressing this process and those assessing effects at higher levels of biological organization. In this review we attempt to address these evolutionary considerations into the ecological risk assessment (ERA) of polluting events and to trigger the discussion about the consequences of this process for the ecosystem response to toxic stress. We provide clear evidence that pollution drives micro-evolutionary processes in several species. When this process occurs, populations inhabiting environments that become polluted may persist. However, due to the existence of ecological costs derived from the loss of genetic variability, negative pleiotropy with fitness traits and/or from physiological alterations, micro-evolution due to pollution may alter different properties of the affected populations. Despite the existence of empirical evidence showing that safety margins currently applied in the ERA process may account for pollution-induced genetic changes in tolerance, information regarding long-term ecological consequences at higher levels of biological organization due to ecological costs is not explicitly considered in these procedures. In relation to this, we present four testable hypotheses considering that micro-evolution due to pollution acts upon the variability of functional response traits of the exposed populations and generates changes on their functional effect traits, therefore, modifying the way species exploit their ecological niches and participate in the overall ecosystem functioning.
Molecular Ecological Insights into Neotropical Bird–Tick Interactions
Esser, Helen J.; Loaiza, Jose R.; Herre, Edward Allen; Aguilar, Celestino; Quintero, Diomedes; Alvarez, Eric; Bermingham, Eldredge
2016-01-01
In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In contrast, immature Neotropical ticks are often found on wild birds, yet difficulties in identifying immatures hinder studies of birds’ role in tropical tick ecology and tick-borne disease transmission. In Panama, we found immature ticks on 227 out of 3,498 individually–sampled birds representing 93 host species (24% of the bird species sampled, and 13% of the Panamanian land bird fauna). Tick parasitism rates did not vary with rainfall or temperature, but did vary significantly with several host ecological traits. Likewise, Neotropical–Nearctic migratory birds were significantly less likely to be infested than resident species. Using a molecular library developed from morphologically–identified adult ticks specifically for this study, we identified eleven tick species parasitizing birds, indicating that a substantial portion of the Panamanian avian species pool is parasitized by a diversity of tick species. Tick species that most commonly parasitized birds had the widest diversity of avian hosts, suggesting that immature tick species are opportunistic bird parasites. Although certain avian ecological traits are positively associated with parasitism, we found no evidence that individual tick species show specificity to particular avian host ecological traits. Finally, our data suggest that the four principal vectors of Rocky Mountain Spotted Fever in the Neotropics rarely, if ever, parasitize Panamanian birds. However, other tick species that harbor newly–discovered rickettsial parasites of unknown pathogenicity are frequently found on these birds. Given our discovery of broad interaction between Panamanian tick and avian biodiversity, future work on tick ecology and the dynamics of emerging tropical tick-borne pathogens should explicitly consider wild bird as hosts. PMID:27203693
Variability in life-history and ecological traits is a buffer against extinction in mammals.
González-Suárez, Manuela; Revilla, Eloy
2013-02-01
Anthropogenic degradation of the world's ecosystems is leading to a widespread and accelerating loss of biodiversity. However, not all species respond equally to existing threats, raising the question: what makes a species more vulnerable to extinction? We propose that higher intraspecific variability may reduce the risk of extinction, as different individuals and populations within a species may respond differently to occurring threats. Supporting this prediction, our results show that mammalian species with more variable adult body masses, litter sizes, sexual maturity ages and population densities are less vulnerable to extinction. Our findings reveal the role of local variation among populations, particularly of large mammals, as a buffering mechanism against extinction, and emphasise the importance of considering trait variation in comparative analyses and conservation management. © 2012 Blackwell Publishing Ltd/CNRS.
Armbruster, W S; Di Stilio, V S; Tuxill, J D; Flores, T C; Velásquez Runk, J L
1999-01-01
Nearly forty years ago R. L. Berg proposed that plants with specialized pollination ecology evolve genetic and developmental systems that decouple floral morphology from phenotypic variation in vegetative traits. These species evolve separate floral and vegetative trait clusters, or as she termed them, "correlation pleiades." The predictions of this hypothesis have been generally supported, but only a small sample of temperate-zone herb and grass species has been tested. To further evaluate this hypothesis, especially its applicability to plants of other growth forms, we examined the patterns of phenotypic variation and covariation of floral and vegetative traits in nine species of Neotropical plants. We recognized seven specific predictions of Berg's hypothesis. Our results supported some predictions but not others. Species with specialized pollination systems usually had floral traits decoupled (weak correlation; Canna and Eichornia) or buffered (relationship with shallow proportional slope; Calathea and Canna) from variation in vegetative traits. However, the same trend was also observed in three species with unspecialized pollination systems (Echinodorus, Muntingia, and Wedelia). One species with unspecialized pollination (Croton) and one wind-pollinated species (Cyperus) showed no decoupling or buffering, as predicted. While species with specialized pollination usually showed lower coefficients of variation for floral traits than vegetative traits (as predicted), the same was also true of species with unspecialized or wind pollination (unlike our prediction). Species with specialized pollination showed less variation in floral traits than did species with unspecialized or wind pollination, as predicted. However, the same was true of the corresponding vegetative traits, which was unexpected. Also in contrast to our prediction, plants with specialized pollination systems did not exhibit tighter phenotypic integration of floral characters than did species with generalized pollination systems. We conclude that the patterns of morphological integration among floral traits and between floral and vegetative traits tend to be species specific, not easily predicted from pollination ecology, and generally more complicated than R. L. Berg envisaged.
McKown, Athena D; Cochard, Hervé; Sack, Lawren
2010-04-01
Leaf venation architecture is tremendously diverse across plant species. Understanding the hydraulic functions of given venation traits can clarify the organization of the vascular system and its adaptation to environment. Using a spatially explicit model (the program K_leaf), we subjected realistic simulated leaves to modifications and calculated the impacts on xylem and leaf hydraulic conductance (K(x) and K(leaf), respectively), important traits in determining photosynthesis and growth. We tested the sensitivity of leaves to altered vein order conductivities (1) in the absence or (2) presence of hierarchical vein architecture, (3) to major vein tapering, and (4) to modification of vein densities (length/leaf area). The K(x) and K(leaf) increased with individual vein order conductivities and densities; for hierarchical venation systems, the greatest impact was from increases in vein conductivity for lower vein orders and increases in density for higher vein orders. Individual vein order conductivities were colimiting of K(x) and K(leaf), as were their densities, but the effects of vein conductivities and densities were orthogonal. Both vein hierarchy and vein tapering increased K(x) relative to xylem construction cost. These results highlight the important consequences of venation traits for the economics, ecology, and evolution of plant transport capacity.
Zhao, Weiwei; Cornwell, William K; van Pomeren, Marinda; van Logtestijn, Richard S P; Cornelissen, Johannes H C
2016-11-01
Fire affects and is affected by plants. Vegetation varies in flammability, that is, its general ability to burn, at different levels of ecological organization. To scale from individual plant traits to community flammability states, understanding trait effects on species flammability variation and their interaction is important. Plant traits are the cumulative result of evolution and they show, to differing extents, phylogenetic conservatism. We asked whether phylogenetic distance between species predicts species mixture effects on litterbed flammability. We conducted controlled laboratory burns for 34 phylogenetically wide-ranging species and 34 random two-species mixtures from them. Generally, phylogenetic distance did not predict species mixture effects on flammability. Across the plant phylogeny, most species were flammable except those in the non- Pinus Pinaceae, which shed small needles producing dense, poorly ventilated litterbeds above the packing threshold and therefore nonflammable. Consistently, either positive or negative dominance effects on flammability of certain flammable or those non-flammable species were found in mixtures involving the non- Pinus Pinaceae. We demonstrate litter particle size is key to explaining species nonadditivity in fuelbed flammability. The potential of certain species to influence fire disproportionately to their abundance might increase the positive feedback effects of plant flammability on community flammability state if flammable species are favored by fire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, Alexander B.; Karaoz, Ulas; Brodie, Eoin L.
ABSTRACT Much genetic diversity within a bacterial community is likely obscured by microdiversity within operational taxonomic units (OTUs) defined by 16S rRNA gene sequences. However, it is unclear how variation within this microdiversity influences ecologically relevant traits. Here, we employ a multifaceted approach to investigate microdiversity within the dominant leaf litter bacterium, Curtobacterium , which comprises 7.8% of the bacterial community at a grassland site undergoing global change manipulations. We use cultured bacterial isolates to interpret metagenomic data, collected in situ over 2 years, together with lab-based physiological assays to determine the extent of trait variation within this abundant OTU. Themore » response of Curtobacterium to seasonal variability and the global change manipulations, specifically an increase in relative abundance under decreased water availability, appeared to be conserved across six Curtobacterium lineages identified at this site. Genomic and physiological analyses in the lab revealed that degradation of abundant polymeric carbohydrates within leaf litter, cellulose and xylan, is nearly universal across the genus, which may contribute to its high abundance in grassland leaf litter. However, the degree of carbohydrate utilization and temperature preference for this degradation varied greatly among clades. Overall, we find that traits within Curtobacterium are conserved at different phylogenetic depths. We speculate that similar to bacteria in marine systems, diverse microbes within this taxon may be structured in distinct ecotypes that are key to understanding Curtobacterium abundance and distribution in the environment. IMPORTANCE Despite the plummeting costs of sequencing, characterizing the fine-scale genetic diversity of a microbial community—and interpreting its functional importance—remains a challenge. Indeed, most studies, particularly studies of soil, assess community composition at a broad genetic level by classifying diversity into taxa (OTUs) defined by 16S rRNA sequence similarity. However, these classifications potentially obscure variation in traits that result in fine-scale ecological differentiation among closely related strains. Here, we investigated “microdiversity” in a highly diverse and poorly characterized soil system (leaf litter in a southern Californian grassland). We focused on the most abundant bacterium, Curtobacterium , which by standard methods is grouped into only one OTU. We find that the degree of carbohydrate usage and temperature preference vary within the OTU, whereas its responses to changes in precipitation are relatively uniform. These results suggest that microdiversity may be key to understanding how soil bacterial diversity is linked to ecosystem functioning.« less
Chase, Alexander B.; Karaoz, Ulas; Brodie, Eoin L.; ...
2017-11-14
ABSTRACT Much genetic diversity within a bacterial community is likely obscured by microdiversity within operational taxonomic units (OTUs) defined by 16S rRNA gene sequences. However, it is unclear how variation within this microdiversity influences ecologically relevant traits. Here, we employ a multifaceted approach to investigate microdiversity within the dominant leaf litter bacterium, Curtobacterium , which comprises 7.8% of the bacterial community at a grassland site undergoing global change manipulations. We use cultured bacterial isolates to interpret metagenomic data, collected in situ over 2 years, together with lab-based physiological assays to determine the extent of trait variation within this abundant OTU. Themore » response of Curtobacterium to seasonal variability and the global change manipulations, specifically an increase in relative abundance under decreased water availability, appeared to be conserved across six Curtobacterium lineages identified at this site. Genomic and physiological analyses in the lab revealed that degradation of abundant polymeric carbohydrates within leaf litter, cellulose and xylan, is nearly universal across the genus, which may contribute to its high abundance in grassland leaf litter. However, the degree of carbohydrate utilization and temperature preference for this degradation varied greatly among clades. Overall, we find that traits within Curtobacterium are conserved at different phylogenetic depths. We speculate that similar to bacteria in marine systems, diverse microbes within this taxon may be structured in distinct ecotypes that are key to understanding Curtobacterium abundance and distribution in the environment. IMPORTANCE Despite the plummeting costs of sequencing, characterizing the fine-scale genetic diversity of a microbial community—and interpreting its functional importance—remains a challenge. Indeed, most studies, particularly studies of soil, assess community composition at a broad genetic level by classifying diversity into taxa (OTUs) defined by 16S rRNA sequence similarity. However, these classifications potentially obscure variation in traits that result in fine-scale ecological differentiation among closely related strains. Here, we investigated “microdiversity” in a highly diverse and poorly characterized soil system (leaf litter in a southern Californian grassland). We focused on the most abundant bacterium, Curtobacterium , which by standard methods is grouped into only one OTU. We find that the degree of carbohydrate usage and temperature preference vary within the OTU, whereas its responses to changes in precipitation are relatively uniform. These results suggest that microdiversity may be key to understanding how soil bacterial diversity is linked to ecosystem functioning.« less
Trait synergisms and the rarity, extirpation, and extinction risk of desert fishes.
Olden, Julian D; Poff, N LeRoy; Bestgen, Kevin R
2008-03-01
Understanding the causes and consequences of species extinctions is a central goal in ecology. Faced with the difficult task of identifying those species with the greatest need for conservation, ecologists have turned to using predictive suites of ecological and life-history traits to provide reasonable estimates of species extinction risk. Previous studies have linked individual traits to extinction risk, yet the nonadditive contribution of multiple traits to the entire extinction process, from species rarity to local extirpation to global extinction, has not been examined. This study asks whether trait synergisms predispose native fishes of the Lower Colorado River Basin (USA) to risk of extinction through their effects on rarity and local extirpation and their vulnerability to different sources of threat. Fish species with "slow" life histories (e.g., large body size, long life, and delayed maturity), minimal parental care to offspring, and specialized feeding behaviors are associated with smaller geographic distribution, greater frequency of local extirpation, and higher perceived extinction risk than that expected by simple additive effects of traits in combination. This supports the notion that trait synergisms increase the susceptibility of native fishes to multiple stages of the extinction process, thus making them prone to the multiple jeopardies resulting from a combination of fewer individuals, narrow environmental tolerances, and long recovery times following environmental change. Given that particular traits, some acting in concert, may differentially predispose native fishes to rarity, extirpation, and extinction, we suggest that management efforts in the Lower Colorado River Basin should be congruent with the life-history requirements of multiple species over large spatial and temporal scales.
Reed, Robert N.; Rodda, Gordon H.
2009-01-01
Giant Constrictors: Biological and Management Profiles and an Establishment Risk Assessment for Nine Large Species of Pythons, Anacondas, and the Boa Constrictor, estimates the ecological risks associated with colonization of the United States by nine large constrictors. The nine include the world's four largest snake species (Green Anaconda, Eunectes murinus; Indian or Burmese Python, Python molurus; Northern African Python, Python sebae; and Reticulated Python, Broghammerus reticulatus), the Boa Constrictor (Boa constrictor), and four species that are ecologically or visually similar to one of the above (Southern African Python, Python natalensis; Yellow Anaconda, Eunectes notaeus; DeSchauensee's Anaconda, Eunectes deschauenseei; and Beni Anaconda, Eunectes beniensis). At present, the only probable pathway by which these species would become established in the United States is the pet trade. Although importation for the pet trade involves some risk that these animals could become established as exotic or invasive species, it does not guarantee such establishment. Federal regulators have the task of appraising the importation risks and balancing those risks against economic, social, and ecological benefits associated with the importation. The risk assessment quantifies only the ecological risks, recognizing that ecosystem processes are complex and only poorly understood. The risk assessment enumerates the types of economic impacts that may be experienced, but leaves quantification of economic costs to subsequent studies. Primary factors considered in judging the risk of establishment were: (1) history of establishment in other countries, (2) number of each species in commerce, (3) suitability of U.S. climates for each species, and (4) natural history traits, such as reproductive rate and dispersal ability, that influence the probability of establishment, spread, and impact. In addition, the risk assessment reviews all management tools for control of invasive giant constrictor populations. There is great uncertainty about many aspects of the risk assessment; the level of uncertainty is estimated separately for each risk component. Overall risk was judged to be high for five of the giant constrictors studied, and medium for the other four species. Because all nine species shared a large number of natural history traits that promote invasiveness or impede population control, none of the species was judged to be of low risk.
Powell, Jeff R; Parrent, Jeri L; Hart, Miranda M; Klironomos, John N; Rillig, Matthias C; Maherali, Hafiz
2009-12-07
The diversity of functional and life-history traits of organisms depends on adaptation as well as the legacy of shared ancestry. Although the evolution of traits in macro-organisms is well studied, relatively little is known about character evolution in micro-organisms. Here, we surveyed an ancient and ecologically important group of microbial plant symbionts, the arbuscular mycorrhizal (AM) fungi, and tested hypotheses about the evolution of functional and life-history traits. Variation in the extent of root and soil colonization by AM fungi is constrained to a few nodes basal to the most diverse groups within the phylum, with relatively little variation associated with recent divergences. We found no evidence for a trade-off in biomass allocated to root versus soil colonization in three published glasshouse experiments; rather these traits were positively correlated. Partial support was observed for correlated evolution between fungal colonization strategies and functional benefits of the symbiosis to host plants. The evolution of increased soil colonization was positively correlated with total plant biomass and shoot phosphorus content. Although the effect of AM fungi on infection by root pathogens was phylogenetically conserved, there was no evidence for correlated evolution between the extent of AM fungal root colonization and pathogen infection. Variability in colonization strategies evolved early in the diversification of AM fungi, and we propose that these strategies were influenced by functional interactions with host plants, resulting in an evolutionary stasis resembling trait conservatism.
[Applied ecology: retrospect and prospect].
He, Xingyuan; Zeng, Dehui
2004-10-01
Applied ecology is evolved into a principal part of modern ecology that rapidly develops. The major stimulus for the development of applied ecology roots in seeking the solutions for the problems of human populations, resources and environments. Through four decades, the science of applied ecology has been becoming a huge group of disciplines. The future for the applied ecology should concern more with human-influenced and managed ecosystems, and acknowledge humans as the components of ecosystems. Nowadays and in future, the top-priorities in applied ecology should include following fields: sustainable ecosystems and biosphere, ecosystem services and ecological design, ecological assessment of genetically modified organisms, ecology of biological invasions, epidemical ecology, ecological forecasting, ecological process and its control. The authors believe that the comprehensive and active research hotspots coupled some new traits would occur around these fields in foreseeable future.
The evolution of multivariate maternal effects.
Kuijper, Bram; Johnstone, Rufus A; Townley, Stuart
2014-04-01
There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations.
The Evolution of Multivariate Maternal Effects
Kuijper, Bram; Johnstone, Rufus A.; Townley, Stuart
2014-01-01
There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations. PMID:24722346
QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep
Poissant, J; Davis, C S; Malenfant, R M; Hogg, J T; Coltman, D W
2012-01-01
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male–male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep. PMID:21847139
Fujisawa, Tomochika; Vogler, Alfried P; Barraclough, Timothy G
2015-01-22
Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution.
Is xenodontine snake reproduction shaped by ancestry, more than by ecology?
Bellini, Gisela P; Arzamendia, Vanesa; Giraudo, Alejandro R
2017-01-01
One of the current challenges of evolutionary ecology is to understand the effects of phylogenetic history (PH) and/or ecological factors (EF) on the life-history traits of the species. Here, the effects of environment and phylogeny are tested for the first time on the reproductive biology of South American xenodontine snakes. We studied 60% of the tribes of this endemic and most representative clade in a temperate region of South America. A comparative method (canonical phylogenetic ordination-CPO) was used to find the relative contributions of EF and PH upon life-history aspects of snakes, comparing the reproductive mode, mean fecundity, reproductive potential, and frequency of nearly 1,000 specimens. CPO analysis showed that PH or ancestry explained most of the variation in reproduction, whereas EF explained little of this variation. The reproductive traits under study are suggested to have a strong phylogenetic signal in this clade, the ancestry playing a big role in reproduction. The EF also influenced the reproduction of South American xenodontines, although to a lesser extent. Our finding provides new evidence of how the evolutionary history is embodied in the traits of living species.
Bruehl, Stephen; Liu, Xiaoxia; Burns, John W.; Chont, Melissa; Jamison, Robert N.
2013-01-01
Links between elevated trait anger expressiveness (anger-out) and greater chronic pain intensity are well documented, but pain-related effects of expressive behaviors actually used to regulate anger when it is experienced have been little explored. This study used ecological momentary assessment methods to explore prospective associations between daily behavioral anger expression and daily chronic pain intensity. Forty-eight chronic low back pain (LBP) patients and 36 healthy controls completed electronic diary ratings of momentary pain and behavioral anger expression in response to random prompts 4 times daily for 7 days. Across groups, greater trait anger-out was associated with greater daily behavioral anger expression (P < 0.001). LBP participants showed higher levels of daily anger expression than controls (P < 0.001). Generalized estimating equation analyses in the LBP group revealed a lagged main effect of greater behavioral anger expression on increased chronic pain intensity in the subsequent assessment period (P < 0.05). Examination of a trait × situation model for anger-out revealed prospective associations between elevated chronic pain intensity and later increases in behavioral anger expression that were restricted largely to individuals low in trait anger-out (P < 0.001). Trait × situation interactions for trait anger suppression (anger-in) indicated similar influences of pain intensity on subsequent behavioral anger expression occurring among low anger-in persons (P < 0.001). Overlap with trait and state negative affect did not account for study findings. This study for the first time documents lagged within-day influences of behavioral anger expression on subsequent chronic pain intensity. Trait anger regulation style may moderate associations between behavioral anger expression and chronic pain intensity. PMID:22940462
Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits
Hoyle, Gemma L.; Steadman, Kathryn J.; Good, Roger B.; McIntosh, Emma J.; Galea, Lucy M. E.; Nicotra, Adrienne B.
2015-01-01
Seed germination strategies vary dramatically among species but relatively little is known about how germination traits correlate with other elements of plant strategy systems. Understanding drivers of germination strategy is critical to our understanding of the evolutionary biology of plant reproduction.We present a novel assessment of seed germination strategies focussing on Australian alpine species as a case study. We describe the distribution of germination strategies and ask whether these are correlated with, or form an independent axis to, other plant functional traits. Our approach to describing germination strategy mimicked realistic temperatures that seeds experience in situ following dispersal. Strategies were subsequently assigned using an objective clustering approach. We hypothesized that two main strategies would emerge, involving dormant or non-dormant seeds, and that while these strategies would be correlated with seed traits (e.g., mass or endospermy) they would be largely independent of vegetative traits when analysed in a phylogenetically structured manner.Across all species, three germination strategies emerged. The majority of species postponed germination until after a period of cold, winter-like temperatures indicating physiological and/or morphological dormancy mechanisms. Other species exhibited immediate germination at temperatures representative of those at dispersal. Interestingly, seeds of an additional 13 species “staggered” germination over time. Germination strategies were generally conserved within families. Across a broad range of ecological traits only seed mass and endospermy showed any correlation with germination strategy when phylogenetic relatedness was accounted for; vegetative traits showed no significant correlations with germination strategy. The results indicate that germination traits correlate with other aspects of seed ecology but form an independent axis relative to vegetative traits. PMID:26528294
Parasite vulnerability to climate change: an evidence-based functional trait approach
Cizauskas, Carrie A.; Clements, Chris F.; Dougherty, Eric R.; Harris, Nyeema C.; Phillips, Anna J.
2017-01-01
Despite the number of virulent pathogens that are projected to benefit from global change and to spread in the next century, we suggest that a combination of coextinction risk and climate sensitivity could make parasites at least as extinction prone as any other trophic group. However, the existing interdisciplinary toolbox for identifying species threatened by climate change is inadequate or inappropriate when considering parasites as conservation targets. A functional trait approach can be used to connect parasites' ecological role to their risk of disappearance, but this is complicated by the taxonomic and functional diversity of many parasite clades. Here, we propose biological traits that may render parasite species particularly vulnerable to extinction (including high host specificity, complex life cycles and narrow climatic tolerance), and identify critical gaps in our knowledge of parasite biology and ecology. By doing so, we provide criteria to identify vulnerable parasite species and triage parasite conservation efforts. PMID:28280551
Ecological and morphological traits predict depth-generalist fishes on coral reefs
Bridge, Tom C. L.; Luiz, Osmar J.; Coleman, Richard R.; Kane, Corinne N.; Kosaki, Randall K.
2016-01-01
Ecological communities that occupy similar habitats may exhibit functional convergence despite significant geographical distances and taxonomic dissimilarity. On coral reefs, steep gradients in key environmental variables (e.g. light and wave energy) restrict some species to shallow depths. We show that depth-generalist reef fishes are correlated with two species-level traits: caudal fin aspect ratio and diet. Fishes with high aspect ratio (lunate) caudal fins produce weaker vortices in the water column while swimming, and we propose that ‘silent swimming’ reduces the likelihood of detection and provides an advantage on deeper reefs with lower light irradiance and water motion. Significant differences in depth preference among trophic guilds reflect variations in the availability of different food sources along a depth gradient. The significance of these two traits across three geographically and taxonomically distinct assemblages suggests that deep-water habitats exert a strong environmental filter on coral reef-fish assemblages. PMID:26791616
Sherratt, Emma; Serb, Jeanne M; Adams, Dean C
2017-12-08
Rates of morphological evolution vary across different taxonomic groups, and this has been proposed as one of the main drivers for the great diversity of organisms on Earth. Of the extrinsic factors pertaining to this variation, ecological hypotheses feature prominently in observed differences in phenotypic evolutionary rates across lineages. But complex organisms are inherently modular, comprising distinct body parts that can be differentially affected by external selective pressures. Thus, the evolution of trait covariation and integration in modular systems may also play a prominent role in shaping patterns of phenotypic diversity. Here we investigate the role ecological diversity plays in morphological integration, and the tempo of shell shape evolution and of directional asymmetry in bivalved scallops. Overall, the shape of both valves and the magnitude of asymmetry of the whole shell (difference in shape between valves) are traits that are evolving fast in ecomorphs under strong selective pressures (gliders, recessers and nestling), compared to low rates observed in other ecomorphs (byssal-attaching, free-living and cementing). Given that different parts of an organism can be under different selective pressures from the environment, we also examined the degree of evolutionary integration between the valves as it relates to ecological shifts. We find that evolutionary morphological integration is consistent and surprisingly high across species, indicating that while the left and right valves of a scallop shell are diversifying in accordance with ecomorphology, they are doing so in a concerted fashion. Our study on scallops adds another strong piece of evidence that ecological shifts play an important role in the tempo and mode of morphological evolution. Strong selective pressures from the environment, inferred from the repeated evolution of distinct ecomorphs, have influenced the rate of morphological evolution in valve shape and the magnitude of asymmetry between valves. Our observation that morphological integration of the valves making up the shell is consistently strong suggests tight developmental pathways are responsible for the concerted evolution of these structures while environmental pressures are driving whole shell shape. Finally, our study shows that directional asymmetry in shell shape among species is an important aspect of scallop macroevolution.
NASA Astrophysics Data System (ADS)
Cho, H. J.; Karaoz, U.; Zhalnina, K.; Firestone, M. K.; Brodie, E.
2016-12-01
A growing plant root exudes changing combinations of compounds including root litter and other detritus throughout its developmental stages, providing a major source of organic C for rhizosphere bacteria. Clear patterns of microbial succession have been observed in the rhizosphere of a number of plants. These patterns of microbial succession are likely key to the processing of soil organic carbon and nutrient recycling. What is less well understood are the microbial traits, or combinations of traits, selected for during plant development. Are these traits or trait-combinations conserved, and is phylogeny a useful integrator of traits? Understanding the mechanisms underlying ecological succession would enable improved prediction of future rhizosphere states and consequences for C and nutrient cycles. In this study, we resolve the responses of rhizosphere bacteria at strain-level during plant (Avena fatua) developmental stages using both isolation and metagenomic approaches. Metagenome reads from bulk and rhizosphere soils were mapped to the genomes of thirty nine bacterial isolates numerically abundant ( 0.5% in relative abundance) and phylogenetically representative of these soils, and also to ninety six metagenome-derived genome bins. Analysis of temporal coverage patterns demonstrate that bacteria can be classified as positive and negative rhizosphere responders, with traits associated with root exudate utilization being important. Significant strain level diversity was observed and variance in the temporal coverage patterns further distinguished closely related strains of the same genera. For example, while a number of strains from the Bradyrhizobia, Mesorhizobia and Mycobacteria all increased in coverage with root growth, suggesting that recently acquired traits are selected for. Candidate traits distinguishing closely related strains included those related to xylose and other plant cell-wall derived sugar utilization, motility and aromatic organic acid utilization. These combinations of traits act together to influence rhizosphere bacterial succession, and developing linkages to other traits related to carbon and nutrient cycling will be key to understanding the feedbacks between plant response to environmental change and soil biogeochemical cycles.
NASA Astrophysics Data System (ADS)
Wang, R.; Wang, Q.; Zhao, N.; Yu, G.; He, N.
2017-12-01
Fine roots are the most distal roots that act as the primary belowground organs in acquiring limiting nutrients and water from the soil. However, limited by the inconsistency in definitions of fine roots and the different protocols among studies, knowledge of root system traits has, to date, still lagged far behind our understanding of above-ground traits. In particular, whether variation in fine root traits among the plant species along a single root economics spectrum and this underlying mechanism are still hotly debated. In this study, we sampled the first-order root using the standardized protocols, and measured six important root traits related to resource use strategies, from 181 plant species from subtropical to boreal forests. Base on this large dataset, we concluded that different phylogenetic and environmental factors affected on root thickness and nutrient, resulting in the decoupled pattern between them. Specifically, variation in species-level traits related to root thickness (including root diameter, RD and specific root length, SRL) was restricted by common ancestry and little plastic to the changing environments, whereas the large-scale variation in woody root nutrient was mainly controlled by environmental differences, especially soil variables. For community-level traits, mean annual temperature (MAT) mainly influenced the community-level root thickness through the direct effect of changes in plant species composition, while soil P had a positive influence effect on community-level root nitrogen concentration (CWM_RN), reflecting the strong influence of soil fertility on belowground root nutrient. The different environmental constraints and selective pressures acting between root thickness and nutrient traits allows for multiple ecological strategies to adapt to complex environmental conditions. In addition, strong relationships between community-level root traits and environmental variables, due to environmental filters, indicate that in contrast with individual species-level trait, community-aggregated root traits could be used to improve our ability to predict how the distribution of vegetation will change in response to a changing climate.
USDA-ARS?s Scientific Manuscript database
Abstract. Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the mag...
A new perspective on trait differences between native and invasive exotic plants: reply to critique
USDA-ARS?s Scientific Manuscript database
A meta-analysis contrasting morphological and physiological traits of invasive species and native species was conducted using data acquired from journal articles published between the years 1995 and 2010. This study (Leffler et al. 2014, Ecology 95:298-305), generated a comment from Dawson et al. (...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKown, Athena; Klapste, Jaroslav; Guy, Robert
2014-01-01
To uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa Torr. & Gray) from natural populations throughout western North America. Extensive information from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34K Populus SNP array) of all accessions were used for gene discovery in a genome-wide association study (GWAS).
Paccard, Antoine; Van Buskirk, Josh; Willi, Yvonne
2016-05-01
Species distribution limits are hypothesized to be caused by small population size and limited genetic variation in ecologically relevant traits, but earlier studies have not evaluated genetic variation in multivariate phenotypes. We asked whether populations at the latitudinal edges of the distribution have altered quantitative genetic architecture of ecologically relevant traits compared with midlatitude populations. We calculated measures of evolutionary potential in nine Arabidopsis lyrata populations spanning the latitudinal range of the species in eastern and midwestern North America. Environments at the latitudinal extremes have reduced water availability, and therefore plants were assessed under wet and dry treatments. We estimated genetic variance-covariance (G-) matrices for 10 traits related to size, development, and water balance. Populations at southern and northern distribution edges had reduced levels of genetic variation across traits, but their G-matrices were more spherical; G-matrix orientation was unrelated to latitude. As a consequence, the predicted short-term response to selection was at least as strong in edge populations as in central populations. These results are consistent with genetic drift eroding variation and reducing the effectiveness of correlational selection at distribution margins. We conclude that genetic variation of isolated traits poorly predicts the capacity to evolve in response to multivariate selection and that the response to selection may frequently be greater than expected at species distribution margins because of genetic drift.
Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits.
Ippolito, A; Todeschini, R; Vighi, M
2012-03-01
Assessing the sensitivity of different species to chemicals is one of the key points in predicting the effects of toxic compounds in the environment. Trait-based predicting methods have proved to be extremely efficient for assessing the sensitivity of macroinvertebrates toward compounds with non specific toxicity (narcotics). Nevertheless, predicting the sensitivity of organisms toward compounds with specific toxicity is much more complex, since it depends on the mode of action of the chemical. The aim of this work was to predict the sensitivity of several freshwater macroinvertebrates toward three classes of plant protection products: organophosphates, carbamates and pyrethroids. Two databases were built: one with sensitivity data (retrieved, evaluated and selected from the U.S. Environmental Protection Agency ECOTOX database) and the other with biological traits. Aside from the "traditional" traits usually considered in ecological analysis (i.e. body size, respiration technique, feeding habits, etc.), multivariate analysis was used to relate the sensitivity of organisms to some other characteristics which may be involved in the process of intoxication. Results confirmed that, besides traditional biological traits, related to uptake capability (e.g. body size and body shape) some traits more related to particular metabolic characteristics or patterns have a good predictive capacity on the sensitivity to these kinds of toxic substances. For example, behavioral complexity, assumed as an indicator of nervous system complexity, proved to be an important predictor of sensitivity towards these compounds. These results confirm the need for more complex traits to predict effects of highly specific substances. One key point for achieving a complete mechanistic understanding of the process is the choice of traits, whose role in the discrimination of sensitivity should be clearly interpretable, and not only statistically significant.
Real versus Artificial Variation in the Thermal Sensitivity of Biological Traits.
Pawar, Samraat; Dell, Anthony I; Savage, Van M; Knies, Jennifer L
2016-02-01
Whether the thermal sensitivity of an organism's traits follows the simple Boltzmann-Arrhenius model remains a contentious issue that centers around consideration of its operational temperature range and whether the sensitivity corresponds to one or a few underlying rate-limiting enzymes. Resolving this issue is crucial, because mechanistic models for temperature dependence of traits are required to predict the biological effects of climate change. Here, by combining theory with data on 1,085 thermal responses from a wide range of traits and organisms, we show that substantial variation in thermal sensitivity (activation energy) estimates can arise simply because of variation in the range of measured temperatures. Furthermore, when thermal responses deviate systematically from the Boltzmann-Arrhenius model, variation in measured temperature ranges across studies can bias estimated activation energy distributions toward higher mean, median, variance, and skewness. Remarkably, this bias alone can yield activation energies that encompass the range expected from biochemical reactions (from ~0.2 to 1.2 eV), making it difficult to establish whether a single activation energy appropriately captures thermal sensitivity. We provide guidelines and a simple equation for partially correcting for such artifacts. Our results have important implications for understanding the mechanistic basis of thermal responses of biological traits and for accurately modeling effects of variation in thermal sensitivity on responses of individuals, populations, and ecological communities to changing climatic temperatures.
Pollinator-mediated assemblage processes in California wildflowers.
Briscoe Runquist, R; Grossenbacher, D; Porter, S; Kay, K; Smith, J
2016-05-01
Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator-mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co-occurrence patterns to determine the role of pollinator-mediated processes in structuring plant communities dominated by congeners. We surveyed three species-rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co-flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44-48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co-occurrence. Together, it appears that pollinators influence community assemblage in these three clades. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.