Sample records for econazole nitrate spray

  1. Preliminary investigation tests of novel antifungal topical aerosol

    PubMed Central

    Kapadia, Monali M.; Solanki, S. T.; Parmar, V.; Thosar, M. M.; Pancholi, S. S.

    2012-01-01

    Spray formulation can minimize pain and irritation experience during the application of conventional dosage forms. Econazole Nitrate is an active ingredient of the aerosol concentrate to be used for twice-daily application because of its long durability in the superficial layers of the fungal infected skin. The aim of this study is preliminary investigation of Econazole Nitrate spray by varying the concentrations of different constituents of the spray. The ratios of Propylene glycol (PG) and isopropyl myristate (IPM) were selected as independent variables in 22 full factorial designs, keeping the concentration of solvent, co-solvent and propellant LPG constant. Aerosol also contained Ethanol as solvent and Isopropyl alcohol as co-solvent. All ingredients of the aerosol were packaged in an aluminum container fitted with continuous-spray valves. Physical properties evaluated for the Econazole Nitrate spray included delivery rate, delivery amount, pressure, minimum fill, leakage, flammability, spray patterns, particle image and plume angle. Glass containers were used to study incompatibility between concentrate and propellant due to the ease of visible inspection. Isopropyl myristate at lower concentrate showed turbidity, while at high concentration it met the requirements for aerosol and produced Econazole Nitrate spray with expected characteristics. PMID:23066214

  2. Econazole nitrate foam 1% for the treatment of tinea pedis: results from two double-blind, vehicle-controlled, phase 3 clinical trials.

    PubMed

    Elewski, Boni E; Vlahovic, Tracey C

    2014-07-01

    Econazole nitrate is a broad-spectrum topical antifungal with activity against a variety of dermatophytes and yeasts. A new topical dosage form, econazole nitrate topical foam 1%, utilizing patented Proderm Technology® has been developed for treatment of interdigital tinea pedis. To evaluate econazole nitrate foam 1% versus foam vehicle for treatment of interdigital tinea pedis. Two randomized, double-blind, parallel-group, vehicle-controlled, multicenter studies enrolled males and females ≥12 years old with a clinical diagnosis of interdigital tinea pedis and baseline fungal culture positive for a dermatophyte. Subjects applied econazole nitrate foam 1% (n=246) or foam vehicle (n=249) once daily for 4 weeks. The primary endpoint was proportion of subjects achieving a complete cure (negative KOH, negative fungal culture, complete resolution of all signs and symptoms) at 2 weeks post-treatment (Day 43). Secondary endpoints included mycologic cure (negative KOH and negative culture) and effective treatment (mycologic cure + no or mild erythema and/or scaling and all other signs and symptoms absent). The complete cure rate at Day 43 was 24.3% for econazole nitrate foam 1% vs 3.6% for foam vehicle. In addition, higher rates of mycologic cure (67.6% vs 16.9%) and effective treatment (48.6% vs 10.8%) were observed with econazole nitrate foam 1% versus the foam vehicle. There were few adverse events and only nasopharyngitis and headache were experienced by >1% of subjects. No serious adverse events were reported for econazole nitrate foam 1%. Econazole nitrate foam 1% exhibited superiority over foam vehicle for the primary and secondary endpoints with a high mycologic cure rate for all pathogens evaluated. Econazole nitrate foam 1% was safe and well tolerated with a safety profile comparable with the foam vehicle. Econazole nitrate foam 1% presents a novel alternative for the management of tinea pedis.

  3. Synergistic Activity of Econazole-Nitrate and Chelerythrine against Clinical Isolates of Candida albicans.

    PubMed

    Chen, Zhibao; Li, Xinran; Wu, Xiuping; Wang, Wei; Wang, Wendong; Xin, Mingxun; Shen, Fengge; Liu, Lihui; Liang, Junchao; Li, Lei; Yu, Lu

    2014-01-01

    The aim of this investigation was to assess the in-vitro interaction of two antifungal agents, econazole-nitrate and chelerythrine, against ten fluconazole-resistant clinical isolates and one ATCC type strain 10231 of Candida albicans. The checkerboard microdilution method was performed according to the recommendations of the National Committee for Clinical Laboratory Standards, and the results were determined by visual examination. The interaction intensity was tested in all isolates using the fractional inhibitory concentration index (FICI). These experiments showed synergism between econazole-nitrate and chelerythrine in antifungal activity against C. albicans, and no antagonistic activity was observed in any of the strains tested. Moreover, time-kill curves were performed with selected strains to confirm the positive interactions. The similarity between the results of the FICI values and the time-kill curves revealed that chelerythrine greatly enhances the antifungal effects of econazole-nitrate against isolates of C. albicans. This synergistic effect may markedly reduce the dose of econazole-nitrate required to treat candidiasis, thereby decreasing the econazole-nitrate toxic side effects. This novel synergism might provide a potential combination treatment against fungal infections.

  4. Efficacy of Topical Therapy with Newly Developed Terbinafine and Econazole Formulations in the Treatment of Dermatophytosis in Cats.

    PubMed

    Ivaskiene, M; Matusevicius, A P; Grigonis, A; Zamokas, G; Babickaite, L

    2016-09-01

    In the field of veterinary dermatology dermatophytosis is one of the most frequently occurring infectious diseases, therefore its treatment should be effective, convenient, safe and inexpensive. The aim of this study was to evaluate the efficacy of newly developed topical formulations in the treatment of cats with dermatophytosis. Evaluation of clinical efficacy and safety of terbinafine and econazole formulations administered topically twice a day was performed in 40 cats. Cats, suffering from the most widely spread Microsporum canis-induced dermatophytosis and treated with terbinafine hydrochloride 1% cream, recovered within 20.3±0.88 days; whereas when treated with econazole nitrate 1% cream, they recovered within 28.4±1.14 days. A positive therapeutic effect was yielded by combined treatment with local application of creams and whole coat spray with enilconazole 0.2% emulsion "Imaverol". Most cats treated with econazole cream revealed redness and irritation of the skin at the site of application. This study demonstrates that terbinafine tended to have superior clinical efficacy (p<0.001) in the treatment of dermatophytosis in cats compared to the azole tested.

  5. Treatment of Signs and Symptoms (Pruritus) of Interdigital Tinea Pedis With Econazole Nitrate Foam, 1.

    PubMed

    Hoffman, Lauren K; Raymond, Isabelle; Kircik, Leon

    2018-02-01

    Tinea pedis is the most common dermatophyte infection. Treatment is critical to alleviate pruritic symptoms, to reduce the risk for secondary bacterial infection, and to limit the spread of infection to other body sites or other individuals. The objective of this study was to compare the abilities of econazole nitrate topical foam, 1% and ketoconazole cream (2%) to reduce pruritus, thus improving quality of life, and to determine patient preference for the foam product versus the cream product in patients with interdigital tinea pedis. A single-center, investigator-blinded, observational pilot study was conducted to compare econazole nitrate topical foam (1%) to ketoconazole cream (2%). In this split-body study, 20 subjects received both econazole nitrate topical foam and ketoconazole cream and applied the medications daily to either the right or left foot for 14 days. Improvements in patient quality of life (pruritus) and patient preference were measured using the pruritus visual analog scale (VAS), Skindex-16, and patient preference questionnaires. Nineteen subjects completed the study and one subject was lost to follow-up. Reductions in VAS scores of econazole nitrate topical foam were significantly greater than those of ketoconazole cream, indicating the superiority of the econazole nitrate foam in reducing pruritus. Skindex-16 data showed significant reductions in total scores and individual domains, including patient symptom, emotional, and functional domains, by the final visit. Since each subject received both medications the questionnaire was not medication-specific. Responses to patient preference questionnaires showed that econazole nitrate topical foam,1% was rated as "good" or "excellent" in all measures assessed. One adverse event was noted. In patients with interdigital tinea pedis, application of econazole nitrate topical foam 1% twice daily for two weeks was clinically effective and significantly superior to ketoconazole cream 2% in reducing pruritus. J Drugs Dermatol. 2018;17(2):229-232.

  6. Econazole Nitrate Foam 1% Improves the Itch of Tinea Pedis.

    PubMed

    Fleischer, Alan B; Raymond, Isabelle

    2016-09-01

    Econazole nitrate topical foam, 1%, is indicated for the treatment of interdigital tinea pedis caused by Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum in patients 12 years of age and older. The symptom of itch or pruritus was evaluated in two randomized, double-blind, parallel-group, vehicle-controlled, multicenter Phase III studies in which econazole foam was compared with foam vehicle in subjects with interdigital tinea pedis. A thin, uniform layer of study treatment was applied once daily to all clinically affected interdigital regions of both feet for four weeks. At baseline, at least 69% of all subjects had moderate to severe itch. Throughout the duration of both studies, numerically econazole foam was numerically superior to vehicle in achieving absence of itch. After the cessation of treatment, from day 29, itching continues to improve until day 43 in the active treatment group, whereas there is no evident continued improvement within the vehicle foam groups. At day 43, in the active treatment groups, 83% in Study 1 and 71% in Study 2 achieved complete absence of itching. Using less stringent criteria, for the econazole nitrate foam arm, achieving no itch or mild itch (0 or 1), in Study 1, 95% and 86.8% in Study 2 achieved this outcome. Tolerability of the products was excellent with few treatment-related adverse events. In summary, econazole foam decreased the burden of itch as early as day 8 in patients with interdigital tinea pedis, and this improvement continued after cessation of treatment.

    J Drugs Dermatol. 2016;15(9):1111-1114.

  7. Microwave-assisted microemulsion technique for production of miconazole nitrate- and econazole nitrate-loaded solid lipid nanoparticles.

    PubMed

    Shah, Rohan M; Eldridge, Daniel S; Palombo, Enzo A; Harding, Ian H

    2017-08-01

    The microwave-assisted production of solid lipid nanoparticles (SLNs) is a novel technique reported recently by our group. The small particle size, solid nature and use of physiologically well-tolerated lipid materials make SLNs an interesting and potentially efficacious drug carrier. The main purpose of this research work was to investigate the suitability of microwave-assisted microemulsion technique to encapsulate selected ionic drug substances such as miconazole nitrate and econazole nitrate. The microwave-produced SLNs had a small size (250-300nm), low polydispersity (<0.20), high encapsulation efficiency (72-87%) and loading capacity (3.6-4.3%). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies suggested reduced crystallinity of stearic acid in SLNs. The release studies demonstrated a slow, sustained but incomplete release of drugs (<60% after 24h) from microwave-produced SLNs. Data fitting of drug release data revealed that the release of both drugs from microwave-produced SLNs was governed by non-Fickian diffusion indicating that drug release was both diffusion- and dissolution- controlled. Anti-fungal efficacy of drug-loaded SLNs was evaluated on C. albicans. The cell viability studies showed that cytotoxicity of SLNs was concentration-dependent. These encouraging results suggest that the microwave-assisted procedure is suitable for encapsulation of ionic drugs and that microwave-produced SLNs can act as potential carriers of antifungal drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Use of decimal assay for additivity to demonstrate synergy in pair combinations of econazole, nikkomycin Z, and ibuprofen against Candida albicans in vitro.

    PubMed Central

    Tariq, V N; Scott, E M; McCain, N E

    1995-01-01

    Interactions between six compounds (econazole, miconazole, amphotericin B, nystatin, nikkomycin Z, and ibuprofen) were investigated for their antifungal activities against Candida albicans by using pair combinations in an in vitro decimal assay for additivity based on disk diffusion. Additive interactions were observed between miconazole and econazole, amphotericin B and nystatin, and amphotericin B and ibuprofen, while an antagonistic interaction was observed between econazole and amphotericin B. Synergistic interactions were recorded for the combinations of econazole and ibuprofen, econazole and nikkomycin Z, and ibuprofen and nikkomycin Z. PMID:8592989

  9. Enhanced econazole penetration into human nail by 2-n-nonyl-1,3-dioxolane.

    PubMed

    Hui, Xiaoying; Chan, Thomas C K; Barbadillo, Sherry; Lee, Christine; Maibach, Howard I; Wester, Ronald C

    2003-01-01

    This study determines the enhancing effects of 2-n-nonyl-1,3-dioxolane on the penetration of econazole, an antifungal drug, into the deeper layers of the human nail where fungal infection resides. Aliquots (10 microL) of Econail lacquer formulation containing 0.45 mg of [(14)C]-econazole with 18% 2-n-nonyl-1,3-dioxolane (test group) or without 2-n-nonyl-1,3-dioxolane (control group) were applied twice daily for 14 days to human nails that had been washed with ethanol before each morning's application. The hydration of the nail sample was well controlled to simulate normal physiological conditions. After 14 days of dosing, the inner ventral section of the nail plate was assayed for absorbed drug content, using a micrometer-controlled drilling and nail powder removal system. The mass balance values of [(14)C]-econazole in this study were 90.8 and 96.4% for the test and control groups, respectively. The weight-normalized econazole content in the ventral/intermediate nail plate center in the test group was 6-fold greater than that in the control (p = 0.008). The total econazole absorbed into the supporting bed cotton ball in the test group was nearly 200-fold greater than that in the control group (p = 0.008) over the 14-day period. The amount of econazole after dosing in the inner part of the human nail (potential diseased area) was 11.1 +/- 2.6 (SD) microg/mg of nail powder with 2-n-nonyl-1,3-dioxolane in the lacquer and 1.78 +/- 0.32 microg/mg without 2-n-nonyl-1,3-dioxolane (p = 0.008). The surface nail contained more econazole (p = 0.004), that is, nonabsorbed drug, where 2-n-nonyl-1,3-dioxolane was not part of the dosing solution. Econazole in the support bed under the nail (the total absorbed dose) was 47.5 +/- 22.0 mg in the lacquer with 2-n-nonyl-1,3-dioxolane and 0.2 +/- 0.1 mg in the lacquer without 2-n-nonyl-1,3-dioxolane (p = 0.008). Moreover the concentration in the deep nail layer in the test group is 14,000 times higher than minimum inhibitory concentration (MIC) believed necessary to inhibit the growth of infecting fungi (Dermatophytes species). In a subsequent study, [(14)C]-dioxolane did not penetrate the nail well. Therefore, the mechanism of enhancement of econazole penetration is at the formulation/nail interface. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association

  10. Athlete's foot

    PubMed Central

    2009-01-01

    Introduction Around 15% to 25% of people are likely to have athlete's foot at any one time. The infection can spread to other parts of the body and to other people. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of topical treatments for athlete's foot? We searched: Medline, Embase, The Cochrane Library, and other important databases up to July 2008 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 14 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: improved foot hygiene, including socks and hosiery; topical allylamines (naftifine and terbinafine); topical azoles (bifonazole, clotrimazole, econazole nitrate, miconazole nitrate, sulconazole nitrate, and tioconazole); and topical ciclopirox olamine. PMID:21696646

  11. Athlete's foot.

    PubMed

    Crawford, Fay

    2009-07-20

    Around 15% to 25% of people are likely to have athlete's foot at any one time. The infection can spread to other parts of the body and to other people. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of topical treatments for athlete's foot? We searched: Medline, Embase, The Cochrane Library, and other important databases up to July 2008 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 14 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: improved foot hygiene, including socks and hosiery; topical allylamines (naftifine and terbinafine); topical azoles (bifonazole, clotrimazole, econazole nitrate, miconazole nitrate, sulconazole nitrate, and tioconazole); and topical ciclopirox olamine.

  12. A Prototype Antifungal Contact Lens

    PubMed Central

    Ciolino, Joseph B.; Hudson, Sarah P.; Mobbs, Ashley N.; Hoare, Todd R.; Iwata, Naomi G.; Fink, Gerald R.

    2011-01-01

    Purpose. To design a contact lens to treat and prevent fungal ocular infections. Methods. Curved contact lenses were created by encapsulating econazole-impregnated poly(lactic-co-glycolic) acid (PLGA) films in poly(hydroxyethyl methacrylate) (pHEMA) by ultraviolet photopolymerization. Release studies were conducted in phosphate-buffered saline at 37°C with continuous shaking. The contact lenses and their release media were tested in an antifungal assay against Candida albicans. Cross sections of the pre- and postrelease contact lenses were characterized by scanning electron microscopy and by Raman spectroscopy. Results. Econazole-eluting contact lenses provided extended antifungal activity against Candida albicans fungi. Fungicidal activity varied in duration and effectiveness depending on the mass of the econazole-PLGA film encapsulated in the contact lens. Conclusions. An econazole-eluting contact lens could be used as a treatment for fungal ocular infections. PMID:21527380

  13. Econazole imprinted textiles with antifungal activity.

    PubMed

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 μg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Econazole-releasing porous space maintainers for fungal periprosthetic joint infection.

    PubMed

    Tatara, Alexander M; Rozich, Allison J; Kontoyiannis, Panayiotis D; Watson, Emma; Albert, Nathaniel D; Bennett, George N; Mikos, Antonios G

    2018-05-11

    While antibiotic-eluting polymethylmethacrylate space maintainers have shown efficacy in the treatment of bacterial periprosthetic joint infection and osteomyelitis, antifungal-eluting space maintainers are associated with greater limitations for treatment of fungal musculoskeletal infections including limited elution concentration and duration. In this study, we have designed a porous econazole-eluting space maintainer capable of greater inhibition of fungal growth than traditional solid space maintainers. The eluted econazole demonstrated bioactivity in a concentration-dependent manner against the most common species responsible for fungal periprosthetic joint infection as well as staphylococci. Lastly, these porous space maintainers retain compressive mechanical properties appropriate to maintain space before definitive repair of the joint or bony defect.

  15. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-04-21

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances.

  16. 21 CFR 524.1443 - Miconazole.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Specifications—(1) Each gram of cream contains miconazole nitrate equivalent to 20 milligrams miconazole base. (2) Each gram of lotion or spray contains miconazole nitrate equivalent to 1 percent...

  17. 21 CFR 524.1443 - Miconazole.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (a) Specifications—(1) Each gram of cream contains miconazole nitrate equivalent to 20 milligrams miconazole base. (2) Each gram of lotion or spray contains miconazole nitrate equivalent to 1 percent...

  18. 21 CFR 524.1443 - Miconazole.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (a) Specifications—(1) Each gram of cream contains miconazole nitrate equivalent to 20 milligrams miconazole base. (2) Each gram of lotion or spray contains miconazole nitrate equivalent to 1 percent...

  19. 21 CFR 524.1443 - Miconazole.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (a) Specifications—(1) Each gram of cream contains miconazole nitrate equivalent to 20 milligrams miconazole base. (2) Each gram of lotion or spray contains miconazole nitrate equivalent to 1 percent...

  20. 21 CFR 524.1443 - Miconazole.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (a) Specifications—(1) Each gram of cream contains miconazole nitrate equivalent to 20 milligrams miconazole base. (2) Each gram of lotion or spray contains miconazole nitrate equivalent to 1 percent...

  1. Effects of spray-irrigated treated effluent on water quantity and quality, and the fate and transport of nitrogen in a small watershed, New Garden Township, Chester County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.; Galeone, Daniel G.; Veneziale, John M.; Olson, Leif E.; O'Brien, David L.

    2005-01-01

    An increasing number of communities in Pennsylvania are implementing land-treatment systems to dispose of treated sewage effluent. Disposal of treated effluent by spraying onto the land surface, instead of discharging to streams, may recharge the ground-water system and reduce degradation of stream-water quality. The U.S. Geological Survey (USGS), in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP) and the Chester County Water Resources Authority (CCWRA) and with assistance from the New Garden Township Sewer Authority, conducted a study from October 1997 through December 2001 to assess the effects of spray irrigation of secondary treated sewage effluent on the water quantity and quality and the fate and transport of nitrogen in a 38-acre watershed in New Garden Township, Chester County, Pa. On an annual basis, the spray irrigation increased the recharge to the watershed. Compared to the annual recharge determined for the Red Clay Creek watershed above the USGS streamflow-gaging station (01479820) near Kennett Square, Pa., the spray irrigation increased annual recharge in the study watershed by approximately 8.8 in. (inches) in 2000 and 4.3 in. in 2001. For 2000 and 2001, the spray irrigation increased recharge 65-70 percent more than the recharge estimates determined for the Red Clay Creek watershed. The increased recharge was equal to 30-39 percent of the applied effluent. The spray-irrigated effluent increased base flow in the watershed. The magnitude of the increase appeared to be related to the time of year when the application rates increased. During the late fall through winter and into the early spring period, when application rates were low, base flow increased by approximately 50 percent over the period prior to effluent application. During the early spring through summer to the late fall period, when application rates were high, base flow increased by approximately 200 percent over the period prior to effluent application. The spray-irrigated effluent affected the ground-water quality of the shallow aquifer differently on the hilltop and hillside topographic settings of the watershed where spray irrigation was being applied (application area). Concentrations of nitrate-nitrogen (nitrate N) and chloride (Cl) in the effluent were higher than concentrations of these constituents in shallow ground water from wells on the hilltop and hillside prior to start of spray irrigation. In water from wells on the hilltop, concentrations of nitrate N and Cl increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. In water from wells on the hillside, which were on the eastern part of the application area, nitrate N and Cl concentrations increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. However, on the hillside of the western application area, the ground-water quality was not affected by the spray-irrigated effluent because of the greater thickness of unconsolidated material and higher amounts of clay present in those unconsolidated sands. Although nitrate N concentrations increased in water from hilltop and hillside wells in the application area, the nitrate N concentrations were below the effluent concentration. A combination of plant uptake, biological activity, and denitrification may be the processes accounting for the lower nitrate N concentrations in shallow ground water compared to the spray-irrigated effluent. Cl concentrations in water from hilltop western application area well Ch-5173 increased during the study period but were an order of magnitude less than the input effluent concentration. Cl concentrations in shallow ground water in the e

  2. Application of anaerobic digested residues on safe food production.

    PubMed

    Shi, Ya-juan; Lu, Yong-long; Liang, Dan

    2002-01-01

    Experiments were conducted in pot culture and field plots to study the effects of Anaerobic Digested Residues (ADR) on nitrate accumulation in leaf vegetables, which is critical for the safety of food. The results showed that compared to chemical fertilizer, ADR could decrease the nitrate accumulation in rape and spinach. Furthermore, nitrate content in plant tissue was increased with the increase of percentage of chemical nitrogen in the mixture of chemical fertilizer and ADR. A comparison of spraying digested slurry with irrigation showed that spraying method could reduce the nitrate content of rape, however, a reverse result was found in spinach. The nitrate accumulation in rape affected by ADR was more apparent in high fertility soil than that in low fertility one. To regulate the nitrate accumulation in plant, it was more apparent in rape under greenhouse cultivation, while more apparent in spinach under open-air cultivation. The results demonstrated that the ADR was effective in the safe food production and it may convert the technology to be more profitable.

  3. Ionic composition and nitrate in drainage water from fields fertilized with different nitrogen sources, middle swamp watershed, North Carolina, August 2000-August 2001

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2004-01-01

    A study was conducted from August 2000 to August 2001 to characterize the influence of fertilizer use from different nitrogen sources on the quality of drainage water from 11 subsurface tile drains and 7 surface field ditches in a North Carolina Coastal Plain watershed. Agricultural fields receiving commercial fertilizer (conventional sites), swine lagoon effluent (spray sites), and wastewater-treatment plant sludge (sludge site) in the Middle Swamp watershed were investigated. The ionic composition of drainage water in tile drains and ditches varied depending on fertilizer source type. The dominant ions identified in water samples from tile drains and ditches include calcium, magnesium, sodium, chloride, nitrate, and sulfate, with tile drains generally having lower pH, low or no bicarbonates, and higher nitrate and chloride concentrations. Based on fertilizer source type, median nitrate-nitrogen concentrations were significantly higher at spray sites (32.0 milligrams per liter for tiles and 8.2 milligrams per liter for ditches) relative to conventional sites (6.8 milligrams per liter for tiles and 2.7 milligrams per liter for ditches). The median instantaneous nitrate-nitrogen yields also were significantly higher at spray sites (420 grams of nitrogen per hectare per day for tile drains and 15.6 grams of nitrogen per hectare per day for ditches) relative to conventional sites (25 grams of nitrogen per hectare per day for tile drains and 8.1 grams of nitrogen per hectare per day for ditches). The tile drain site where sludge is applied had a median nitrate-nitrogen concentration of 10.5 milligrams per liter and a median instantaneous nitrate-nitrogen yield of 93 grams of nitrogen per hectare per day, which were intermediate to those of the conventional and spray tile drain sites. Results from this study indicate that nitrogen loadings and subsequent edge-of-field nitrate-nitrogen yields through tile drains and ditches were significantly higher at sites receiving applications of swine lagoon effluent compared to sites receiving commercial fertilizer.

  4. FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE

    DOEpatents

    Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

    1962-06-26

    A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

  5. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  6. Sources and distribution of nitrate in ground water at a farmed field irrigated with sewage treatment-plant effluent, Tallahassee, Florida

    USGS Publications Warehouse

    Berndt, M.P.

    1990-01-01

    The city of Tallahassee, Florida began applying sewage treatment-plant effluent to a sprayfield southeast of the city in 1980. Fertilizers containing inorganic nitrogen were also applied in conjunction with the operation of a commercial farm at this site. Analysis of groundwater in the surficial aquifer and the Upper Floridan aquifer have indicated that nitrate concentrations in some wells exceed the prescribed drinking water maximum contaminant level of 10 mg/L (nitrate as nitrogen). Nitrate concentrations greater than the maximum contaminant level were not detected in samples from monitoring wells outside the sprayfield boundary. Analyses of water from the unsaturated zone indicated that conversion of organic nitrogen and ammonia to nitrate was complete before the nitrogen- enriched water reached the water table. Groundwater samples from wells in the surficial and Upper Floridan aquifers less than 100 ft deep located inside sprayed areas had mean concentrations of nitrate much higher than samples from similar wells located outside sprayed areas at the southeast sprayfield. These shallow wells inside the sprayed areas were the only wells in which the maximum contaminant level for nitrate was exceeded. Analyses of the nitrogen isotope ratios in groundwater were used to determine whether the major source of nitrogen was treated sewage or fertilizers. The nitrogen isotope ratios in contaminated groundwater at the southeast sprayfield were compared to those at another sprayfield southwest of the city, where treated sewage was the sole source of nitrogen. Statistical analyses indicated a significant difference in the nitrogen isotope ratios at the two sites, indicating that both nitrogen sources are significant at the southeast sprayfield. (USGS)

  7. Wastewater application by spray irrigation on a field southeast of Tallahassee, Florida; effects on ground-water quality and quantity, 1980-82

    USGS Publications Warehouse

    Elder, J.F.; Hunn, J.D.; Calhoun, C.W.

    1985-01-01

    A field southeast of Tallahassee, Florida, used for land application of wastewater by spray irrigation was the site of a ground-water monitoring study to determine effects of spray irrigation on water-table elevations and ground-water quality. The study was conducted during 1980-82 in cooperation with the City of Tallahassee. The wastewater has relatively high concentrations of chloride, nitrogen, phosphorus, organic carbon , coliform bacteria, sodium, and potassium. These substances are usually attenuated before they can impact the ground water. However, increases in chloride and nitrate-nitrogen were evident in ground water in some of the monitoring wells during the study. Chloride concentrations increased five-fold or more in some wells directly affected by spray irrigation, and nitrate-nitrogen concentrations increased eight-fold or more. Ground-water levels in the area of the spray field fluctuated over a range of several feet. These fluctuations were affected somewhat by spray irrigation, but the primary control on water levels was rainfall. As of December 1982, constituents introduced to the system by spray irrigation of effluent had not exceeded drinking water standard in the ground water. However, the system had not yet stabilized and more changes in ground-water quality could be expected. (USGS)

  8. Application of classification-tree methods to identify nitrate sources in ground water

    USGS Publications Warehouse

    Spruill, T.B.; Showers, W.J.; Howe, S.S.

    2002-01-01

    A study was conducted to determine if nitrate sources in ground water (fertilizer on crops, fertilizer on golf courses, irrigation spray from hog (Sus scrofa) wastes, and leachate from poultry litter and septic systems) could be classified with 80% or greater success. Two statistical classification-tree models were devised from 48 water samples containing nitrate from five source categories. Model I was constructed by evaluating 32 variables and selecting four primary predictor variables (??15N, nitrate to ammonia ratio, sodium to potassium ratio, and zinc) to identify nitrate sources. A ??15N value of nitrate plus potassium 18.2 indicated inorganic or soil organic N. A nitrate to ammonia ratio 575 indicated nitrate from golf courses. A sodium to potassium ratio 3.2 indicated spray or poultry wastes. A value for zinc 2.8 indicated poultry wastes. Model 2 was devised by using all variables except ??15N. This model also included four variables (sodium plus potassium, nitrate to ammonia ratio, calcium to magnesium ratio, and sodium to potassium ratio) to distinguish categories. Both models were able to distinguish all five source categories with better than 80% overall success and with 71 to 100% success in individual categories using the learning samples. Seventeen water samples that were not used in model development were tested using Model 2 for three categories, and all were correctly classified. Classification-tree models show great potential in identifying sources of contamination and variables important in the source-identification process.

  9. The Living Filter: Monitoring Nitrate Accumulation after 50 Years of Wastewater Irrigation

    NASA Astrophysics Data System (ADS)

    Hagedorn, J.

    2015-12-01

    As global freshwater sources decline due to environmental contamination and a growing population, more sustainable wastewater renovation techniques will need to be applied to ensure freshwater for future generations. One such example of a sustainable solution is called the Living Filter, located on the campus of Pennsylvania State University. For fifty years, Pennsylvania State University has sprayed treated wastewater onto agricultural fields and forest ecosystems, leaving natural processes to further filter the wastewater. This cyclical process is deemed sustainable because the freshwater is recycled, providing drinking water to an increasing university population and nutrients to agricultural crops, without causing major environmental catastrophes such as fish kills, eutrophication or groundwater contamination. At first glance this project seems sustainable and effective, but for how long can this setup continue without nutrient overloading and environmental contamination? To be truly declared sustainable, the hopeful answer to this question is indefinitely. Using a combination of soil core and monitoring tools, ecosystem indicators such as soil nutrient capacities, moisture levels, and soil characteristics were measured. Comparing data from the initial system installation to present data collected from soil cores showed how ecosystems changed over time. Results revealed that nitrate concentrations were elevated through the profile in all land use types, but the concentrations were below EPA threshold. Soil characteristic analysis including particle size distribution, soil elemental composition, and texture yielded inconclusive results regarding which factors control the nitrate accumulation most significantly. The nitrate depth profile findings suggest that spray irrigation at the Living Filter under the current rates of application has not caused the ultimate stage of nitrogen saturation in the spray irrigation site. Variations in land use present interesting findings about causation for differences in nitrate concentrations. From the viewpoint of nitrate accumulation and potential for environmental contamination, the Living Filter continues to serve as a viable mechanism for absorbing nutrient discharge and serving as the final stage of wastewater treatment.

  10. Econazole Topical

    MedlinePlus

    ... jock itch, and ringworm.This medication is sometimes prescribed for other uses; ask your doctor or pharmacist ... of it or use it more often than prescribed by your doctor.Thoroughly clean the infected area, ...

  11. Electrical Characteristics and Preparation of (Ba0.5Sr0.5)TiO3 Films by Spray Pyrolysis and Rapid Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Koo, Horng-Show; Chen, Mi; Ku, Hong-Kou; Kawai, Tomoji

    2007-04-01

    Functional films of (Ba0.5Sr0.5)TiO3 on Pt (1000 Å)/Ti (100 Å)/SiO2 (2000 Å)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Barium nitrate, strontium nitrate and titanium isopropoxide are used as starting materials with ethylene glycol as solvent. For (Ba0.5Sr0.5)TiO3 functional thin film, thermal characteristics of the precursor powder scratched from as-sprayed films show a remarkable peak around 300-400 °C and 57.7% weight loss up to 1000 °C. The as-sprayed precursor film with coffee-like color and amorphous-like phase is transformed into the resultant film with white, crystalline perovskite phase and characteristic peaks (110) and (100). The resultant films show correspondent increases of dielectric constant, leakage current and dissipation factor with increasing annealing temperatures. The dielectric constant is 264 and tangent loss is 0.21 in the resultant films annealed at 750 °C for 5 min while leakage current density is 1.5× 10-6 A/cm2 in the film annealed at 550 °C for 5 min.

  12. Electrical Characteristics and Preparation of Nanostructured Pb(Zr0.5Ti0.5)O3 Films by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Koo, Horng-Show; Chen, Mi; Hotta, Yoichi; Kawai, Tomoji

    2007-07-01

    Nanostructured thin films of Pb(Zr0.5Ti0.5)O3 on Pt (1000 Å)/Ti (100 Å)/SiO2 (2000 Å)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Lead nitrate, zirconium nitrate and titanium isopropoxide are used as starting material with ethylene glycol as solvent. The crystal structure of the as-sprayed films are transformed from the amorphous, pyrochlore and multiple phases of pyrochlore and perovskite to the single phase of perovskite as the annealing temperature is increased up to 500 °C. For the formation of single phase perovskite, excess lead of 10 mol % is required to compensate the loss of lead during the processing of the primitive films. The physical characteristics of the resultant films show the dielectric constant (\\varepsilonr) of 400, remanent polarization (2Pr) of 30.0 μC/cm2 and coercive field (2Ec) of 70.0 kV/cm, respectively.

  13. Characteristics of Fe powders prepared by spray pyrolysis from a spray solution with ethylene glycol as the source material of heat pellet

    NASA Astrophysics Data System (ADS)

    Koo, H. Y.; Kim, J. H.; Hong, S. K.; Ko, Y. N.; Jang, H. C.; Jung, D. S.; Han, J. M.; Hong, Y. J.; Kang, Y. C.; Kang, S. H.; Cho, S. B.

    2012-06-01

    Fe powders as the heat pellet material for thermal batteries are prepared from iron oxide powders obtained by spray pyrolysis from a spray solution of iron nitrate with ethylene glycol. The iron oxide powders with hollow and thin wall structure produce Fe powders with elongated structure and fine primary particle size at a low reducing temperature of 615 °C. The mean size of the primary Fe powders with elongated structure decreases with increasing concentration of ethylene glycol dissolved into the spray solution. The heat pellets prepared from the fine-size Fe powders with elongated structure have good ignition sensitivities below 1 watt. The heat pellets formed from the Fe powders obtained from the spray solution with 0.5 M EG have an extremely high burn rate of 26 cms-1.

  14. Application of paper spray ionization for explosives analysis.

    PubMed

    Tsai, Chia-Wei; Tipple, Christopher A; Yost, Richard A

    2017-10-15

    A desired feature in the analysis of explosives is to decrease the time of the entire analysis procedure, including sampling. A recently utilized ambient ionization technique, paper spray ionization (PSI), provides the possibility of combining sampling and ionization. However, an interesting phenomenon that occurs in generating negatively charged ions pose some challenges in applying PSI to explosives analysis. The goal of this work is to investigate the possible solutions for generating explosives ions in negative mode PSI. The analysis of 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) was performed. Several solvent systems with different surface tensions and additives were compared to determine their effect on the ionization of explosives. The solvents tested include tert-butanol, isopropanol, methanol, and acetonitrile. The additives tested were carbon tetrachloride and ammonium nitrate. Of the solvents tested, isopropanol yielded the best results. In addition, adding ammonium nitrate to the isopropanol enhanced the analyte signal. Experimentally determined limits of detection (LODs) as low as 0.06 ng for PETN, on paper, were observed with isopropanol and the addition of 0.4 mM ammonium nitrate as the spray solution. In addition, the explosive components of two plastic explosive samples, Composition 4 and Semtex, were successfully analyzed via surface sampling when using the developed method. The analysis of explosives using PSI-MS in negative ion mode was achieved. The addition of ammonium nitrate to isopropanol, in general, enhanced the analyte signal and yielded better ionization stability. Real-world explosive samples were analyzed, which demonstrates one of the potential applications of PSI-MS analysis. Copyright © 2017 John Wiley & Sons, Ltd.

  15. The route of liquid precursor to ZnO nanoparticles in premixed combustion spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2018-04-01

    Zinc oxide nanoparticles had been successfully synthesized by premixed combustion spray pyrolysis. Zinc acetate was dissolved in distilled water was selected as a liquid precursor. Zinc nitrate was also used for comparison the effect of precursor type on the generated particles morphology and the crystallinity. The premixed combustion reaction used liquefied petroleum gas (LPG) mainly consisting of butane and propane as a fuel and compressed air used as an oxidizer. The liquid precursor was atomized using a custom two fluid nozzle to generate droplets. Then, the droplets were sprayed by the flow of air as a carrier gas into the premixed combustion reactor. The zinc precursor was decomposed to zinc oxide due to the high temperature as a result of combustion reaction inside the reactor resulting in nanoparticles formation. The particle size decreased with the increase of the fuel flow rate. In addition, it can be found that at the same flow rate of fuel, the particle size of zinc oxide synthesized using zinc nitrate is larger than that of the use of zinc acetate as a precursor.

  16. 1-[(3-Aryloxy-3-aryl)propyl]-1H-imidazoles, new imidazoles with potent activity against Candida albicans and dermatophytes. Synthesis, structure-activity relationship, and molecular modeling studies.

    PubMed

    La Regina, Giuseppe; D'Auria, Felicia Diodata; Tafi, Andrea; Piscitelli, Francesco; Olla, Stefania; Caporuscio, Fabiana; Nencioni, Lucia; Cirilli, Roberto; La Torre, Francesco; De Melo, Nadja Rodrigues; Kelly, Steven L; Lamb, David C; Artico, Marino; Botta, Maurizio; Palamara, Anna Teresa; Silvestri, Romano

    2008-07-10

    New 1-[(3-aryloxy-3-aryl)propyl]-1 H-imidazoles were synthesized and evaluated against Candida albicans and dermatophytes in order to develop structure-activity relationships (SARs). Against C. albicans the new imidazoles showed minimal inhibitory concentrations (MICs) comparable to those of ketoconazole, miconazole, and econazole, and were more potent than fluconazole. Several derivatives ( 10, 12, 14, 18- 20, 24, 28, 29, 30, and 34) turned out to be potent inhibitors of C. albicans strains resistant to fluconazole, with MIC values less than 10 microg/mL. Against dermatophytes strains, compounds 20, 25, and 33 (MIC

  17. Polymicrobial nature of vaginitis in young women: a microbiological and therapeutic study.

    PubMed

    Kippax, R A; Caradoc-Davies, G; Meech, R J

    1982-03-24

    Thirty-six young females attending the Student Health Service with vaginitis were investigated by serial semiquantitative aerobic, anaerobic, fungal, mycoplasma and viral cultures over a 10 day period and results were correlated with signs and symptoms. Antifungal therapy (econazole pessaries and cream) resulted in clearance of candida from 13 out of 16 patients where there was no increase in the anaerobic flora. In the four subjects where candida was isolated along with Gardnerella vaginalis plus abnormal anaerobic flora, only one cleared with econazole, the remaining three clearing during therapy with metronidazole. In the nine subjects with Gardnerella vaginalis and abnormal anaerobic flora, metronidazole relieved symptoms despite failure to eradicate G. vaginalis in seven indicating the pathogenic role of the anaerobic flora rather then G. vaginalis. Mycoplasma hominis, Ureaplasma urealyticum and gram negative enteric bacilli were not implicated as primary agents in causing vaginitis.

  18. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors

    PubMed Central

    Rudin, Thomas; Wegner, Karsten

    2013-01-01

    A new flame-assisted spray pyrolysis (FASP) reactor design is presented, which allows the use of inexpensive precursors and solvents (e.g., ethanol) for synthesis of nanoparticles (10–20 nm) with uniform characteristics. In this reactor design, a gas-assisted atomizer generates the precursor solution spray that is mixed and combusted with externally fed inexpensive fuel gases (acetylene or methane) at a defined height above the atomizing nozzle. The gaseous fuel feed can be varied to control the combustion enthalpy content of the flame and onset of particle formation. This way, the enthalpy density of the flame is decoupled from the precursor solution composition. Low enthalpy content precursor solutions are prone to synthesis of non-uniform particles (e.g., bimodal particle size distribution) by standard flame spray pyrolysis (FSP) processes. For example, metal nitrates in ethanol typically produce nanosized particles by gas-to-particle conversion along with larger particles by droplet-to-particle conversion. The present FASP design facilitates the use of such low enthalpy precursor solutions for synthesis of homogeneous nanopowders by increasing the combustion enthalpy density of the flame with low-cost, gaseous fuels. The effect of flame enthalpy density on product properties in the FASP configuration is explored by the example of Bi2O3 nanoparticles produced from bismuth nitrate in ethanol. Product powders were characterized by nitrogen adsorption, X-ray diffraction, X-ray disk centrifuge, and transmission electron microscopy. Homogeneous Bi2O3 nanopowders were produced both by increasing the gaseous fuel content and, most notably, by cutting the air entrainment prior to ignition of the spray. PMID:23408113

  19. Modeling the impact of sea-spray on particle concentrations in a coastal city.

    PubMed

    Pryor, S C; Barthelmie, R J; Schoof, J T; Binkowski, F S; Delle Monache, L; Stull, R

    2008-02-25

    With the worlds population becoming increasingly focused on coastal locations there is a need to better understand the interactions between anthropogenic emissions and marine atmospheres. Herein an atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city--Vancouver, British Columbia. It is shown that the model can reasonably represent the average features of the gas phase and particle climate relative to in situ measurements. It is further demonstrated that reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate, but that the importance of these heterogeneous reactions is critically dependent on both the initial vertical profile of sea spray and the sea-spray source functions. The results emphasize the need for improved understanding of sea spray production and dispersion and further that model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield mis-leading results in terms of emission sensitivities of particle composition and concentrations.

  20. Season matters when sampling streams for swine CAFO waste pollution impacts.

    PubMed

    Mallin, Michael A; McIver, Matthew R

    2018-02-01

    Concentrated (or confined) animal feed operations (CAFOs) are the principal means of livestock production in the United States, and such facilities pollute nearby waterways because of their waste management practices; CAFO waste is pumped from the confinement structure into a cesspit and sprayed on a field. Stocking Head Creek is located in eastern North Carolina, a state with >9,000,000 head of swine confined in CAFOs. This watershed contains 40 swine CAFOs; stream water quality was investigated at seven sites during 2016, with five sampling dates in early spring and five in summer. Geometric mean fecal coliform counts were in the thousands/100 mL at five sites in spring and all seven sites in summer. Excessive nitrate pollution was widespread with concentrations up to >11.0 mg N/L. Seasonality played an important role in pollutant concentrations. In North Carolina, spraying animal waste on adjoining fields is permissible from March 1 through September 30. Seasonal data showed significantly higher (p < 0.01) concentrations of conductivity, nitrate, total nitrogen, total organic carbon, and fecal bacteria in summer as opposed to early spring. Thus, sampling performed only in winter-early spring would significantly underestimate impacts from swine CAFO spray fields on nearby waterways.

  1. Investigation of photocalalytic activity of ZnO prepared by spray pyrolis with various precursors

    NASA Astrophysics Data System (ADS)

    Bourfaa, F.; Lamri Zeggar, M.; A, A.; Aida, M. S.; Attaf, N.

    2016-03-01

    Semiconductor photocatalysts such as ZnO has attracted much attention in recent years due to their various applications for the degradation of organic pollutants in water, air and in dye sensitized photovoltaic solar cell. In the present work, ZnO thin films were prepared by ultrasonic spray pyrolysis by using different precursors namely: acetate, chloride and zinc nitrate in order to investigate their influence on ZnO photocatalytic activity. The films crystalline structure was studied by mean of X- ray diffraction measurements (XRD) and the films surface morphology by Scanning Electron Microscopy (SEM). The films optical properties were studied by mean of UV-visible spectroscopy. The prepared films were tested for the degradation of the red reactive dye largely used in textile industry. As a result, we found that the zinc nitrate is the best precursor to prepare ZnO thin films suitable for a good photocatalytic activity.

  2. In vitro susceptibility of filamentous fungi from mycotic keratitis to azole drugs.

    PubMed

    Shobana, C S; Mythili, A; Homa, M; Galgóczy, L; Priya, R; Babu Singh, Y R; Panneerselvam, K; Vágvölgyi, C; Kredics, L; Narendran, V; Manikandan, P

    2015-03-01

    The in vitro antifungal activities of azole drugs viz., itraconazole, voriconazole, ketoconazole, econazole and clotrimazole were investigated in order to evaluate their efficacy against filamentous fungi isolated from mycotic keratitis. The specimen collection was carried out from fungal keratitis patients attending Aravind eye hospital and Post-graduate institute of ophthalmology, Coimbatore, India and was subsequently processed for the isolation of fungi. The dilutions of antifungal drugs were prepared in RPMI 1640 medium. Minimum inhibitory concentrations (MICs) were determined and MIC50 and MIC90 were calculated for each drug tested. A total of 60 fungal isolates were identified as Fusarium spp. (n=30), non-sporulating moulds (n=9), Aspergillus flavus (n=6), Bipolaris spp. (n=6), Exserohilum spp. (n=4), Curvularia spp. (n=3), Alternaria spp. (n=1) and Exophiala spp. (n=1). The MICs of ketoconazole, clotrimazole, voriconazole, econazole and itraconazole for all the fungal isolates ranged between 16 μg/mL and 0.03 μg/mL, 4 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL and 32 μg/mL and 0.06 μg/mL respectively. From the MIC50 and MIC90 values, it could be deciphered that in the present study, clotrimazole was more active against the test isolates at lower concentrations (0.12-5 μg/mL) when compared to other drugs tested. The results suggest that amongst the tested azole drugs, clotrimazole followed by voriconazole and econazole had lower MICs against moulds isolated from mycotic keratitis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Contribution Of Spray Irrigation Of Wastewater To Groundwater Contamination In The Karst Of Southeastern Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Mooers, H. D.; Alexander, E. C., Jr.

    1994-01-01

    A vegetable- and meat-canning facility located in the karst of southeastern Minnesota disposes ≈2.85×105 m3 yr-1 of wastewater by spray irrigation of an 83.7-ha field located atop the local groundwater divide. Cannery effluent contains high levels of chloride and nitrogen (organic and ammonia), in excess of 7000 mg/l and 400 mg/l, respectively. Nitrate-nitrogen concentrations are generally < 5 mg/l. Agricultural, domestic, and municipal sources of chloride and nitrate are common in the region, and water supplies frequently exceed the drinking-water limit for nitrate-nitrogen of 10 mg/l. Fifty-two area wells and thirteen surface-water locations were sampled and analyzed for five ionic species, including: chloride (Cl), nitrate-nitrogen (NO3-N), sulfate (SO4), nitrite-nitrogen (NO2-N), and phosphate (PO4). Two distinct chloride plumes flowing outward from the groundwater divide were identified, and 65% of the wells sampled had nitrate-nitrogen concentrations in excess of 10 mg/l. The data were divided into two groups: one group of samples from wells located near the canning facility and another group from outside that area. A correlation coefficient of R2= 0.004 for Cl vs. NO3-N in the vicinity of the irrigation fields indicates essentially no relationship between the source of Cl and NO3. In areas of agricultural and domestic activities located away from the cannery, an R2 of 0.54 suggests that Cl and NO3 have common sources in these areas.

  4. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO 3 − aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; ...

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO 3 −) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na + and Ca 2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms bymore » multiphase reactions of HNO 3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH 4NO 3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO 3 on mineral aerosol supports the conclusion that aerosol NO 3 − is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO 3 − and HNO 3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  5. Effects of NO(y) aging on the dehydration dynamics of model sea spray aerosol.

    PubMed

    Woods, Ephraim; Heylman, Kevin D; Gibson, Amanda K; Ashwell, Adam P; Rossi, Sean R

    2013-05-23

    The reactions of NO(y) species in the atmosphere with sea spray aerosol replace halogen anions with nitrate. These experiments show the effect of increasing the nitrate content of model sea spray aerosol particles on the morphology changes and the phase transitions driven by changes in relative humidity (RH). The components of the model particles include H2O, Na+, Mg2+, Cl-, NO3-, and SO4(2-). Tandem differential mobility analyzer (TDMA) measurements yield the water content and efflorescence relative humidity (ERH) of these particles, and probe molecule spectroscopic measurements reveal subsequent phase transitions and partially characterize the salt composition on the surface of dry particles. The results show three effects of increasing the nitrate composition: decreasing the EFH (46 to 29%), production of a metastable aqueous layer on the surface of effloresced particles, and decreasing the sulfate content near the surface of dry particles. For the mixtures studied here, the initial crystallization event forms a core of NaCl. For particles that contain a substantial metastable aqueous layer following efflorescence, probe molecule spectroscopy shows a second crystallization at a lower RH. This subsequent phase transition is likely the formation of Na2SO4. Homogeneous nucleation theory (HNT) using a semiempirical formulation predicts the ERH of all mixtures within 2.0% RH, with a mean absolute deviation of 1.0%. The calculations suggest that structures associated with highly concentrated or supersaturated magnesium ions strongly affect the interfacial tension between the NaCl crystal nucleus and the droplet from which it forms.

  6. In vitro evaluation of mucoadhesive vaginal tablets of antifungal drugs prepared with thiolated polymer and development of a new dissolution technique for vaginal formulations.

    PubMed

    Baloglu, Esra; Ay Senyıgıt, Zeynep; Karavana, Sinem Yaprak; Vetter, Anja; Metın, Dilek Yesim; Hilmioglu Polat, Suleyha; Guneri, Tamer; Bernkop-Schnurch, Andreas

    2011-01-01

    The main objective of this work was to develop antifungal matrix tablet for vaginal applications using mucoadhesive thiolated polymer. Econazole nitrate (EN) and miconazole nitrate (MN) were used as antifungal drugs to prepare the vaginal tablet formulations. Thiolated poly(acrylic acid)-cysteine (PAA-Cys) conjugate was synthesized by the covalent attachment of L-cysteine to PAA with the formation of amide bonds between the primary amino group of L-cysteine and the carboxylic acid group of the polymer. Vaginal mucoadhesive matrix tablets were prepared by direct compression technique. The investigation focused on the influence of modified polymer on water uptake behavior, mucoadhesive property and release rate of drug. Thiolated polymer increased the water uptake ratio and mucoadhesive property of the formulations. A new simple dissolution technique was developed to simulate the vaginal environment for the evaluation of release behavior of vaginal tablets. In this technique, daily production amount and rate of the vaginal fluid was used without any rotational movement. The drug release was found to be slower from PAA-Cys compared to that from PAA formulations. The similarity study results confirmed that the difference in particle size of EN and MN did not affect their release profile. The release process was described by plotting the fraction released drug versus time and n fitting data to the simple exponential model: M(t)/M(∞)=kt(n). The release kinetics were determined as Super Case II for all the formulations prepared with PAA or PAA-Cys. According to these results the mucoadhesive vaginal tablet formulations prepared with PAA-Cys represent good example for delivery systems which prolong the residence time of drugs at the vaginal mucosal surface.

  7. Geochemistry and characteristics of nitrogen transport at a confined animal feeding operation in a coastal plain agricultural watershed, and implications for nutrient loading in the Neuse River basin, North Carolina, 1999-2002

    USGS Publications Warehouse

    Spruill, T.B.; Tesoriero, A.J.; Mew, H.E.; Farrell, K.M.; Harden, S.L.; Colosimo, A.B.; Kraemer, S.R.

    2005-01-01

    Chemical, geologic, hydrologic, and age-dating information collected between 1999 and 2002 were used to examine the transport of contaminants, primarily nitrogen, in ground water and the pathways to surface water in a coastal plain setting in North Carolina. Data were collected from more than 35 wells and 4 surface-water sampling sites located in a 0.59 square-mile basin to examine detailed hydrogeology and geochemical processes affecting nutrient fate and transport. Two additional surface-water sampling sites were located downstream from the primary study site to evaluate basin-scale effects. Chemical and flow data also were collected at an additional 10 sites in the Coastal Plain portion of the Neuse River basin located between Kinston and New Bern, North Carolina, to evaluate loads transported in the Neuse River and primary tributary basins. At the Lizzie Research Station study site in North Carolina, horizontal flow is induced by the presence of a confining unit at shallow depth. Age-dating, chemical, and piezometric data indicate that horizontal flow from the surficial aquifer is the dominant source of ground water to streamflow. Nitrogen applied on cultivated fields at the Lizzie Research Station is substantially reduced as it moves from recharge to discharge areas. Denitrification in deeper parts of the aquifer and in riparian zones is indicated by a characterization of redox conditions in the aquifer and by the presence of excess nitrogen gas. Direct ground-water discharge of nitrate to surface water during base-flow conditions is unlikely to be significant because of strongly reducing conditions that occur in the riparian zones of these streams. Nitrate loads from a drainage tile at the study site may account for much of the nitrate load in the receiving stream, indicating that a major source of nutrients from ground water to this stream is artificial drainage. During base-flow conditions when the streams are not flowing, it is hypothesized that the mineralization of organic matter on the streambed is the source of nitrate and(or) ammonium in the stream. Base flow is a small contributor to nitrogen loads, because both flows and inorganic nitrogen concentrations are low during summer months. Effects of a confined hog operation on ground-water quality also were evaluated. The use of sprayed swine wastes to fertilize crops at the Lizzie Research Station study site since 1995 resulted in increased concentrations of nitrate and other chemical constituents in ground water beneath spray fields when compared to ground water beneath fields treated with commercial fertilizer. The nitrate concentration in ground water from the spray field well increased by a factor of 3.5 after 4 years of spray applications. Nitrate concentrations ranged from 10 to 35 milligrams per liter, and one concentration as high as 56 milligrams per liter was observed in water from this well in spring 2002. This finding is in agreement with findings of other studies conducted in the Coastal Plain of North Carolina that nitrate concentrations were significantly higher in ground water from cultivated fields sprayed with swine wastes than from fields treated with commercial fertilizer. Loads and yields of nitrogen and phosphorus in 14 streams in the Neuse River basin were evaluated for calendar years 2000 and 2001. Data indicate that anthropogenic effects on nitrogen yields were greatest in the first-order stream studied (yields were greater than 2 tons per square mile [ton/mi2] and 1 ton/mi2 or less in second- and higher-order streams) in the Little Contentnea Creek subbasin. Nitrogen yields in streams in the Contentnea Creek subbasin ranged from 0.59 to 2 ton/mi2 with typical yields of approximately 1 ton/mi2. Contentnea Creek near Evansdale had the highest yield (2 ton/mi2), indicating that a major source of nitrogen is upstream from this station. Nitrogen yields were lower at Contentnea Creek at Hookerton in 2000 and 2001 compared to previous yi

  8. Role of short-acting nitroglycerin in the management of ischemic heart disease.

    PubMed

    Boden, William E; Padala, Santosh K; Cabral, Katherine P; Buschmann, Ivo R; Sidhu, Mandeep S

    2015-01-01

    Nitroglycerin is the oldest and most commonly prescribed short-acting anti-anginal agent; however, despite its long history of therapeutic usage, patient and health care provider education regarding the clinical benefits of the short-acting formulations in patients with angina remains under-appreciated. Nitrates predominantly induce vasodilation in large capacitance blood vessels, increase epicardial coronary arterial diameter and coronary collateral blood flow, and impair platelet aggregation. The potential for the prophylactic effect of short-acting nitrates remains an under-appreciated part of optimal medical therapy to reduce angina and decrease myocardial ischemia, thereby enhancing the quality of life. Short-acting nitroglycerin, administered either as a sublingual tablet or spray, can complement anti-anginal therapy as part of optimal medical therapy in patients with refractory and recurrent angina either with or without myocardial revascularization, and is most commonly used to provide rapid therapeutic relief of acute recurrent angina attacks. When administered prophylactically, both formulations increase angina-free walking time on treadmill testing, abolish or delay ST segment depression, and increase exercise tolerance. The sublingual spray formulation provides several clinical advantages compared to tablet formulations, including a lower incidence of headache and superiority to the sublingual tablet in terms of therapeutic action and time to onset, while the magnitude and duration of vasodilatory action appears to be comparable. Furthermore, the sublingual spray formulation may be advantageous to tablet preparations in patients with dry mouth. This review discusses the efficacy and utility of short-acting nitroglycerin (sublingual spray and tablet) therapy for both preventing and aborting an acute angina attack, thereby leading to an improved quality of life.

  9. Role of short-acting nitroglycerin in the management of ischemic heart disease

    PubMed Central

    Boden, William E; Padala, Santosh K; Cabral, Katherine P; Buschmann, Ivo R; Sidhu, Mandeep S

    2015-01-01

    Nitroglycerin is the oldest and most commonly prescribed short-acting anti-anginal agent; however, despite its long history of therapeutic usage, patient and health care provider education regarding the clinical benefits of the short-acting formulations in patients with angina remains under-appreciated. Nitrates predominantly induce vasodilation in large capacitance blood vessels, increase epicardial coronary arterial diameter and coronary collateral blood flow, and impair platelet aggregation. The potential for the prophylactic effect of short-acting nitrates remains an under-appreciated part of optimal medical therapy to reduce angina and decrease myocardial ischemia, thereby enhancing the quality of life. Short-acting nitroglycerin, administered either as a sublingual tablet or spray, can complement anti-anginal therapy as part of optimal medical therapy in patients with refractory and recurrent angina either with or without myocardial revascularization, and is most commonly used to provide rapid therapeutic relief of acute recurrent angina attacks. When administered prophylactically, both formulations increase angina-free walking time on treadmill testing, abolish or delay ST segment depression, and increase exercise tolerance. The sublingual spray formulation provides several clinical advantages compared to tablet formulations, including a lower incidence of headache and superiority to the sublingual tablet in terms of therapeutic action and time to onset, while the magnitude and duration of vasodilatory action appears to be comparable. Furthermore, the sublingual spray formulation may be advantageous to tablet preparations in patients with dry mouth. This review discusses the efficacy and utility of short-acting nitroglycerin (sublingual spray and tablet) therapy for both preventing and aborting an acute angina attack, thereby leading to an improved quality of life. PMID:26316714

  10. Partitioning of Nitric Acid to Nitrate by NaCl and CaCO3 and Its Effect on Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Evans, M. C.; Campbell, S. W.; Poor, N. D.

    2003-12-01

    Nitrogen oxides produced by combustion in automobile engines, power plant boilers, and industrial processes are transformed to nitric acid in the atmosphere. This nitric acid then deposits to land or water and may be a significant nitrogen input to sensitive coastal estuaries. The sodium chloride from sea salt spray and calcium carbonate from mineral dust react in the atmosphere with nitric acid to form sodium nitrate or calcium nitrate, respectively. The nitrate particle deposition velocity can be substantially lower than that of nitric acid, which may lower the atmospheric nitrogen deposition rate near the urban sources of nitrogen oxides but raise the deposition rate over the open water. The relative effects of different ambient air concentrations of sodium chloride and calcium carbonate on nitrogen atmospheric deposition rates were examined by using the EQUISOLVII model to estimate the partitioning of nitric acid to nitrate combined with the NOAA buoy model and Williams model to calculate the gas and aerosol deposition velocities.

  11. An enlarged, adaptable active site in CYP164 family P450 enzymes, the sole P450 in Mycobacterium leprae.

    PubMed

    Agnew, Christopher R J; Warrilow, Andrew G S; Burton, Nicholas M; Lamb, David C; Kelly, Steven L; Brady, R Leo

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 μM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.

  12. An Enlarged, Adaptable Active Site in CYP164 Family P450 Enzymes, the Sole P450 in Mycobacterium leprae

    PubMed Central

    Agnew, Christopher R. J.; Warrilow, Andrew G. S.; Burton, Nicholas M.; Lamb, David C.; Kelly, Steven L.

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin “open” conformation of the enzyme (Kd [dissociation constant] of 0.1 μM), with binding to the low-spin “closed” form being significantly hindered (Kd of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy. PMID:22037849

  13. METHOD FOR THE PREPARATION OF STABLE ACTINIDE METAL OXIDE-CONTAINING SLURRIES AND OF THE OXIDES THEREFOR

    DOEpatents

    Hansen, R.S.; Minturn, R.E.

    1958-02-25

    This patent deals with a method of preparing actinide metal oxides of a very fine particle size and of forming stable suspensions therefrom. The process consists of dissolving the nitrate of the actinide element in a combustible organic solvent, converting the solution obtained into a spray, and igniting the spray whereby an oxide powder is obtained. The oxide powder is then slurried in an aqueous soiution of a substance which is adsorbable by said oxides, dspersed in a colloid mill whereby a suspension is obtained, and electrodialyzed until a low spectiic conductance is reached.

  14. Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.)

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the effect of nano silver and silver nitrate on yield of seed in basil plant. The study was carried out in a randomized block design with three replications. Results Four levels of either silver nitrate (0, 100, 200 and 300 ppm) or nano silver (0, 20, 40, and 60 ppm) were sprayed on basil plant at seed growth stage. The results showed that there was no significant difference between 100 ppm of silver nitrate and 60 ppm concentration of nano silver on the shoot silver concentration. However, increasing the concentration of silver nitrate from 100 to 300 ppm caused a decrease in seed yield. In contrast, a raise in the concentration of nano silver from 20 to 60 ppm has led to an improvement in the seed yield. Additionally, the lowest amount of seed yield was found with control plants. Conclusions Finally, with increasing level of silver nitrate, the polyphenol compound content was raised but the enhancing level of nano silver resulting in the reduction of these components. In conclusion, nano silver can be used instead of other compounds of silver. PMID:25383311

  15. SORBENT CAPTURE OF NICKEL, LEAD, AND CADMIUM IN A LABORATORY SWIRL FLAME INCINERATOR

    EPA Science Inventory

    The paper gives results of an investigation of the in-situ capture of toxic metals by sorbents in a small semi-industrial scale 82 kW research combustor. The metals considered, nickel, lead, and cadmium, were introduced into the system as aqueous nitrate solutions sprayed down th...

  16. Microemulsion flame pyrolysis for hopcalite nanoparticle synthesis: a new concept for catalyst preparation.

    PubMed

    Biemelt, T; Wegner, K; Teichert, J; Kaskel, S

    2015-04-07

    A new route to highly active hopcalite catalysts via flame spray pyrolysis of an inverse microemulsion precursor is reported. The nitrate derived nanoparticles are around 15 nm in diameter and show excellent conversion of CO under ambient conditions, outperforming commercial reference hopcalite materials produced by co-precipitation.

  17. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Kelly, J. T.; Bash, J. O.

    2015-11-01

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the fine-mode size distribution, include sea surface temperature (SST) dependency, and reduce surf-enhanced emissions. Predictions from the updated CMAQ model and those of the previous release version, CMAQv5.0.2, were evaluated using several coastal and national observational data sets in the continental US. The updated emissions generally reduced model underestimates of sodium, chloride, and nitrate surface concentrations for coastal sites in the Bay Regional Atmospheric Chemistry Experiment (BRACE) near Tampa, Florida. Including SST dependency to the SSA emission parameterization led to increased sodium concentrations in the southeastern US and decreased concentrations along parts of the Pacific coast and northeastern US. The influence of sodium on the gas-particle partitioning of nitrate resulted in higher nitrate particle concentrations in many coastal urban areas due to increased condensation of nitric acid in the updated simulations, potentially affecting the predicted nitrogen deposition in sensitive ecosystems. Application of the updated SSA emissions to the California Research at the Nexus of Air Quality and Climate Change (CalNex) study period resulted in a modest improvement in the predicted surface concentration of sodium and nitrate at several central and southern California coastal sites. This update of SSA emissions enabled a more realistic simulation of the atmospheric chemistry in coastal environments where marine air mixes with urban pollution.

  18. Effect of Fatty Acyl Group and Sterol Composition on Sensitivity of Lecithin Liposomes to Imidazole Antimycotics

    PubMed Central

    Yamaguchi, Hideyo; Iwata, Kazuo

    1979-01-01

    The specific affinity for membrane lipids and the membrane selectivity of three imidazole derivatives, clotrimazole, miconazole, and econazole, were studied using various types of liposomes with respect to the lecithin fatty acyl group composition and the liposome content and composition of sterol as membrane models. The sensitivity of liposomes to these drugs was primarily dependent upon the lecithin fatty acyl group composition. With sterol-free liposome systems, each imidazole induced maximum release of trapped glucose as a marker from the unsaturated dioleoyl lecithin liposomes, minimum release from the saturated dipalmitoyl lecithin liposomes, and intermediate release from egg lecithin liposomes. The sensitivity of the dipalmitoyl lecithin liposomes to any imidazole drug was not influenced by the incorporation of cholesterol or ergosterol. On the other hand, clotrimazole-induced permeability changes of liposomes prepared from unsaturated dioleoyl lecithin or egg lecithin were greatly enhanced by the incorporation of ergosterol, whereas they were suppressed by cholesterol incorporation. The sensitivity of liposomes prepared from these unsaturated lecithins to miconazole and econazole was also augmented by ergosterol incorporation, although it was scarcely altered by cholesterol incorporation. Negatively charged liposomes were more sensitive to the three imidazole drugs than positively charged liposomes. PMID:525988

  19. Effect of fatty acyl group and sterol composition on sensitivity of lecithin liposomes to imidazole antimycotics.

    PubMed

    Yamaguchi, H; Iwata, K

    1979-05-01

    The specific affinity for membrane lipids and the membrane selectivity of three imidazole derivatives, clotrimazole, miconazole, and econazole, were studied using various types of liposomes with respect to the lecithin fatty acyl group composition and the liposome content and composition of sterol as membrane models. The sensitivity of liposomes to these drugs was primarily dependent upon the lecithin fatty acyl group composition. With sterol-free liposome systems, each imidazole induced maximum release of trapped glucose as a marker from the unsaturated dioleoyl lecithin liposomes, minimum release from the saturated dipalmitoyl lecithin liposomes, and intermediate release from egg lecithin liposomes. The sensitivity of the dipalmitoyl lecithin liposomes to any imidazole drug was not influenced by the incorporation of cholesterol or ergosterol. On the other hand, clotrimazole-induced permeability changes of liposomes prepared from unsaturated dioleoyl lecithin or egg lecithin were greatly enhanced by the incorporation of ergosterol, whereas they were suppressed by cholesterol incorporation. The sensitivity of liposomes prepared from these unsaturated lecithins to miconazole and econazole was also augmented by ergosterol incorporation, although it was scarcely altered by cholesterol incorporation. Negatively charged liposomes were more sensitive to the three imidazole drugs than positively charged liposomes.

  20. Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density.

    PubMed

    Cho, Jung Sang; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2016-02-01

    In the synthesis of hydroxyapatite powders by spray pyrolysis, control of the particle size was investigated by varying the initial concentration of the precursor solution and the pyrolysis temperature. Calcium phosphate solutions (Ca/P ratio of 1.67) with a range of concentrations from 0.1 to 2.0 mol/L were prepared by dissolving calcium nitrate tetrahydrate and diammonium hydrogen phosphate in deionized water and subsequently adding nitric acid. Hydroxyapatite powders were then synthesized by spray pyrolysis at 900°C and at 1500°C, using these calcium phosphate precursor solutions, under the fixed carrier gas flow rate of 10 L/min. The particle size decreased as the precursor concentration decreased and the spray pyrolysis temperature increased. Sinterability tests conducted at 1100°C for 1 h showed that the smaller and denser the particles were, the higher the relative densities were of sintered hydroxyapatite disks formed from these particles. The practical implication of these results is that highly sinterable small and dense hydroxyapatite particles can be synthesized by means of spray pyrolysis using a low-concentration precursor solution and a high pyrolysis temperature under a fixed carrier gas flow rate. © 2015 Wiley Periodicals, Inc.

  1. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into themore » experiment configuration has been explored.« less

  2. Ascorbate oxidation is a prerequisite for its transport into rat liver microsomal vesicles.

    PubMed Central

    Csala, M; Mile, V; Benedetti, A; Mandl, J; Bánhegyi, G

    2000-01-01

    Oxidation and uptake of ascorbate show similar time courses in rat liver microsomal vesicles: a rapid burst phase is followed by a slower process. Inhibitors of ascorbate oxidation (proadifen, econazole or quercetin) also effectively decreased the uptake of ascorbate. The results show that dehydroascorbate is the transport form of ascorbate at the membrane of the endoplasmic reticulum. PMID:10880339

  3. METHOD AND APPARATUS FOR CALCINING SALT SOLUTIONS

    DOEpatents

    Lawroski, S.; Jonke, A.A.; Taecker, R.G.

    1961-10-31

    A method is given for converting uranyl nitrate solution into solid UO/ sub 3/, The solution is sprayed horizontally into a fluidized bed of UO/sub 3/ particles at 310 to 350 deg C by a nozzle of the coaxial air jet type at about 26 psig, Under these conditions the desired conversion takes place, and caking in the bed is avoided.

  4. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    NASA Astrophysics Data System (ADS)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  5. Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates.

    PubMed

    Strobel, Reto; Pratsinis, Sotiris E

    2011-05-28

    The effect of solvent composition on particle formation during flame spray pyrolysis of inexpensive metal-nitrates has been investigated for alumina, iron oxide, cobalt oxide, zinc oxide and magnesium oxide. The as-prepared materials were characterized by electron microscopy, nitrogen adsorption, X-ray diffraction (XRD) and disc centrifugation (XDC). The influence of solvent parameters such as boiling point, combustion enthalpy and chemical reactivity on formation of either homogeneous nanoparticles by evaporation/nucleation/coagulation (gas-to-particle conversion) or large particles through precipitation and conversion within the sprayed droplets (droplet-to-particle conversion) is discussed. For Al(2)O(3), Fe(2)O(3), Co(3)O(4) and partly also MgO, the presence of a carboxylic acid in the FSP solution resulted in homogeneous nanoparticles. This is attributed to formation of volatile metal carboxylates in solution as evidenced by attenuated total reflectance spectroscopy (ATR). For ZnO and MgO rather homogeneous nanoparticles were formed regardless of solvent composition. For ZnO this is attributed to its relatively low dissociation temperature compared to other oxides. While for MgO this is traced to the high decomposition temperature of Mg(NO(3))(2) together with Mg(OH)(2)↔MgO transformations. Cobalt oxide (Co(3)O(4)) nanoparticles made by FSP were not aggregated but rather loosely agglomerated as determined by the excellent agreement between XRD- and XDC-derived crystallite and particle sizes, respectively, pointing out the potential of FSP to make non-aggregated particles. This journal is © the Owner Societies 2011

  6. Heterogeneous reactivity of sea spray particles during the CalNex field campaign: Insight from single particle measurements and correlations with gas phase measurements

    NASA Astrophysics Data System (ADS)

    Gaston, C. J.; Riedel, T. P.; Thornton, J. A.; Wagner, N.; Brown, S. S.; Quinn, P.; Bates, T. S.; Prather, K. A.

    2011-12-01

    Sea spray particles are ubiquitous in marine environments. Heterogeneous reactions between sea spray particles and gas phase pollutants, such as HNO3(g), and N2O5(g), alter particle composition by displacing particulate phase halogens in sea spray and releasing these halogen species into the gas phase; these halogen-containing gas phase species play a significant role in tropospheric ozone production. Measurements of both gas phase and particle phase species on board the R/V Atlantis during the CalNEX 2010 field campaign provided an opportunity to examine the impact of heterogeneous reactivity of marine aerosols along the California coast. During the cruise, coastal measurements were made near the Santa Monica and Port of Los Angeles regions to monitor the chemical processing of marine aerosols. Sea spray particles were analyzed since these particles were the major chloride-containing particles detected. Real-time single particle measurements made using an aerosol time-of-flight mass spectrometer (ATOFMS) revealed the nocturnal processing of sea spray particles through the loss of particulate chloride and a simultaneous gain in particulate nitrate. Gas phase measurements are consistent with the particle phase observations: As N2O5(g) levels rose overnight, the production of ClNO2(g) coincided with the decrease in particulate chloride. These observations provide unique insight into heterogeneous reactivity from both a gas and particle phase perspective. Results from these measurements can be used to better constrain the rate of heterogeneous reactions on sea spray particles.

  7. [Does the sampling locality influence on the antifungal activity of the flavonoids of Marrubium vulgare against Aspergillus niger and Candida albicans?].

    PubMed

    Bouterfas, K; Mehdadi, Z; Aouad, L; Elaoufi, M M; Khaled, M B; Latreche, A; Benchiha, W

    2016-09-01

    The study was undertaken to determine the effect of the sampling locality on the antifungal activity of the flavonoids extracted from the leaves of Marrubium vulgare L. against two fungal strains; Aspergillus niger ATCC 16404 and Candida albicans ATCC 10231. The leaves were collected from three different sampling localities belonging northwest Algeria: Tessala mount, M'sila forest and Ain Skhouna. The flavonoid extraction was carried out by using organic solvents with increasing polarity. A phytochemical screening was performed by staining test tubes. The inhibition diameters were measured by solid medium diffusion method. The minimum inhibitory concentrations were determined by dilution method on solid medium. The antifungal activity varied significantly (P<0.001) according to the sampling locality of the leaves, the flavonoid extract and its concentration, and the strain fungal type. The inhibition diameters varied between 8.16 and recorded 37.5mm even recording a total inhibition of fungal growth and often exceed those induced marketed antifungals (Amphotericin, Fluconazole, Terbinafine and econazole nitrate). The minimum inhibitory concentrations (MICs) obtained range between 6.25 and 100μg/mL; experiencing strong antifungal inhibition. The phytochemical screening revealed the existence of certain flavonoids classes such as flavans and flavanols which may be responsible of this remarkable antifungal power. The sampling locality of Marrubium vulgare leaves influenced on the antifungal activity of flavonoids. These have proven very good fungistatic and worth valuing in pharmacology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Characterization of High-Velocity Solution Precursor Flame-Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic SOFC Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Laakso, Jarmo; Kylmälahti, Mikko; Vuoristo, Petri

    2013-06-01

    A modified high-velocity oxy-fuel spray (HVOF) thermal spray torch equipped with liquid feeding hardware was used to spray manganese-cobalt solutions on ferritic stainless steel grade Crofer 22 APU substrates. The HVOF torch was modified in such a way that the solution could be fed axially into the combustion chamber through 250- and 300-μm-diameter liquid injector nozzles. The solution used in this study was prepared by diluting nitrates of manganese and cobalt, i.e., Mn(NO3)2·4H2O and Co(NO3)2·6H2O, respectively, in deionized water. The as-sprayed coatings were characterized by X-ray diffraction and field-emission scanning electron microscopy operating in secondary electron mode. Chemical analyses were performed on an energy dispersive spectrometer. Coatings with remarkable density could be prepared by the novel high-velocity solution precursor flame spray (HVSPFS) process. Due to finely sized droplet formation in the HVSPFS process and the use of as delivered Crofer 22 APU substrate material having very low substrate roughness ( R a < 0.5 μm), thin and homogeneous coatings, with thicknesses lower than 10 μm could be prepared. The coatings were found to have a crystalline structure equivalent to MnCo2O4 spinel with addition of Co-oxide phases. Crystallographic structure was restored back to single-phase spinel structure by heat treatment.

  9. Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions

    USGS Publications Warehouse

    Michalski, Greg; Böhlke, J.K.; Thiemens , Mark

    2004-01-01

    Isotopic analysis of nitrate and sulfate minerals from the nitrate ore fields of the Atacama Desert in northern Chile has shown anomalous 17O enrichments in both minerals. Δ17O values of 14–21 ‰ in nitrate and 0.4 to 4 ‰ in sulfate are the most positive found in terrestrial minerals to date. Modeling of atmospheric processes indicates that the Δ17O signatures are the result of photochemical reactions in the troposphere and stratosphere. We conclude that the bulk of the nitrate, sulfate and other soluble salts in some parts of the Atacama Desert must be the result of atmospheric deposition of particles produced by gas to particle conversion, with minor but varying amounts from sea spray and local terrestrial sources. Flux calculations indicate that the major salt deposits could have accumulated from atmospheric deposition in a period of 200,000 to 2.0 M years during hyper-arid conditions similar to those currently found in the Atacama Desert. Correlations between Δ17O and δ18O in nitrate salts from the Atacama Desert and Mojave Desert, California, indicate varying fractions of microbial and photochemical end-member sources. The photochemical nitrate isotope signature is well preserved in the driest surficial environments that are almost lifeless, whereas the microbial nitrate isotope signature becomes dominant rapidly with increasing moisture, biologic activity, and nitrogen cycling. These isotopic signatures have important implications for paleoclimate, astrobiology, and N cycling studies.

  10. Effect of phytoplankton biomass in seawater on chemical properties of sea spray aerosols.

    PubMed

    Park, Jiyeon; Kim, Dohyung; Lee, Kwangyul; Han, Seunghee; Kim, Hyunji; Williams, Leah R; Joo, Hung Soo; Park, Kihong

    2016-09-15

    This study is to investigate the effect of biological seawater properties on sea spray aerosols (SSA). Concentrations of chlorophyll-a and bacteria were measured at coastal site in Korea in fall and summer seasons. Also, aerosol mass spectrometer (AMS) was used to determine chemical constituents (organics, sulfate, nitrate, ammonium, and chloride) of non-refractory submicrometer aerosols sprayed from seawaters using a bubble bursting system. The average concentration of chlorophyll-a in seawater in fall was 1.75±0.78μg/l, whereas it significantly increased to 5.11±2.16μg/l in summer. It was found that the fraction of organics in the submicrometer SSA was higher in summer (68%) than fall (49%), and that the organic fraction in the SSA increased as the concentration of chlorophyll-a increased in seawater, suggesting that the high phytoplankton biomass in seawater could lead to the enhancement of organic species in the SSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Phase transition studies in bismuth ferrite thin films synthesized via spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Goyal, Ankit; Lakhotia, Harish

    2013-06-01

    Multiferroic are the materials, which combine two or more "ferroic" properties, ferromagnetism, ferroelectricity or ferroelasticity. BiFeO3 is the only single phase multiferroic material which possesses a high Curie temperature (TC ˜ 1103 K), and a high Neel temperature (TN ˜ 643 K) at room temperature. Normally sophisticated methods are being used to deposit thin films but here we have tried a different method Low cost Spray Pyrolysis Method to deposit BiFeO3 thin film of Glass Substrate with rhombohedral crystal structure and R3c space group. Bismuth Ferrite thin films are synthesized using Bismuth Nitrate and Iron Nitrate as precursor solutions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to study structural analysis of prepared thin films. XRD pattern shows phase formation of BiFeO3 and SEM analysis shows formation of nanocrystals of 200 nm. High Temperature Resistivity measurements were done by using Keithley Electrometer (Two Probe system). Abrupt behavior in temperature range (313 K - 400K) has been observed in resistance studies which more likely suggests that in this transition the structure is tetragonal rather than rhombohedral. BiFeO3 is the potential active material in the next generation of ferroelectric memory devices.

  12. Controlling Microstructure of Yttria-Stabilized Zirconia Prepared from Suspensions and Solutions by Plasma Spraying with High Feed Rates

    NASA Astrophysics Data System (ADS)

    Musalek, Radek; Medricky, Jan; Tesar, Tomas; Kotlan, Jiri; Pala, Zdenek; Lukac, Frantisek; Illkova, Ksenia; Hlina, Michal; Chraska, Tomas; Sokolowski, Pawel; Curry, Nicholas

    2017-12-01

    Introduction of suspension and solution plasma spraying led to a breakthrough in the deposition of yttria-stabilized zirconia (YSZ) coatings and enabled preparation of new types of layers. However, their deposition with high feed rates needed, for example, for the deposition of thermal barrier coatings (TBCs) on large-scale components, is still challenging. In this study, possibility of high-throughput plasma spraying of YSZ coatings is demonstrated for the latest generation of high-enthalpy hybrid water-stabilized plasma (WSP-H) torch technology. The results show that microstructure of the coatings prepared by WSP-H may be tailored for specific applications by the choice of deposition conditions, in particular formulation of the liquid feedstock. Porous and columnar coatings with low thermal conductivity (0.5-0.6 W/mK) were prepared from commercial ethanol-based suspension. Dense vertically cracked coatings with higher thermal conductivity but also higher internal cohesion were deposited from suspension containing ethanol/water mixture and coarser YSZ particles. Spraying of solution formulated from diluted zirconium acetate and yttrium nitrate hexahydrate led also to the successful deposition of YSZ coating combining regions of porous and denser microstructure and providing both low thermal conductivity and improved cohesion of the coating. Enthalpy content, liquid-plasma interaction and coating buildup mechanisms are also discussed.

  13. Electro Spray Method for Flexible Display

    DTIC Science & Technology

    2016-05-12

    conditions which expensive and complicated.8-9) Kim et al. reported the fabrication of IZO thin films via combustion processing and obtained mobility values...metal nitrates as metal sources in solutions. Through the high self-generated energies by the combustion of acetylacetone or urea in solution...barrier to increase the mobility of solution-process-derived TFTs. Therefore, we used H2O as the solvent in our precursor solution. The use of H2O

  14. Miconazole Nitrate-loaded Microparticles For Buccal Use: Immediate Drug Release and Antifungal Effect.

    PubMed

    Cartagena, Andres Felipe; Lyra, Amanda Martinez; Kapuchczinski, Aline Cristina; Urban, Amanda Migliorini; Esmerino, Luis Antonio; Klein, Traudi; Nadal, Jessica Mendes; Farago, Paulo Vitor; Campanha, Nara Hellen

    2017-01-01

    Miconazole nitrate has been widely employed in treatment of oral mycoses, however your immediate bio-availability and location in the affected area is critical. The aim of this study was to prepare and evaluate Eudragit® L100 and Gantrez MS-955 microparticles containing miconazole nitrate for oral delivery. Microparticles were prepared by spray-drying method to achieve high encapsulation efficiency and increase the drug solubility. The microparticles were formed containing 10% and 20% of drug on polymer Eudragit® L100 (E10 and E20), Gantrez MS-955 (G10 and G20) or their combination (EG10 and EG20). The influence of formulation factors (polymer:drug ratio, type of polymer) on yield percent, encapsulation efficiency, particle size, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, differential scanning calorimetry, in vitro drug release and antifungal activity were investigated. Acceptable yield, micrometer-sized and drug-loading efficiencies higher than 89% were obtained. No change in FTIR assignments was recorded after the microencapsulation procedure. X-ray and differential scanning calorimetry studies revealed amorphous/non-crystalline formulations. Miconazole nitrate-microparticles provided a remarkable increase of dissolution rate of the drug. Miconazole nitrate and G10, G20 and EG20 microparticles fitted to biexponential kinetic model, and E10, E20 and EG10 microparticles, monoexponential kinetic model. The antifungal activity test demonstrated that miconazole nitrate-microparticles possessed the same anti-Candida albicans activity as the pure drug. These results indicate that miconazole nitrate-microparticles are feasible carriers for increased release of miconazole at oral environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. The Role of Nitroglycerin and Other Nitrogen Oxides in Cardiovascular Therapeutics.

    PubMed

    Divakaran, Sanjay; Loscalzo, Joseph

    2017-11-07

    The use of nitroglycerin in the treatment of angina pectoris began not long after its original synthesis in 1847. Since then, the discovery of nitric oxide as a biological effector and better understanding of its roles in vasodilation, cell permeability, platelet function, inflammation, and other vascular processes have advanced our knowledge of the hemodynamic (mostly mediated through vasodilation of capacitance and conductance arteries) and nonhemodynamic effects of organic nitrate therapy, via both nitric oxide-dependent and -independent mechanisms. Nitrates are rapidly absorbed from mucous membranes, the gastrointestinal tract, and the skin; thus, nitroglycerin is available in a number of preparations for delivery via several routes: oral tablets, sublingual tablets, buccal tablets, sublingual spray, transdermal ointment, and transdermal patch, as well as intravenous formulations. Organic nitrates are commonly used in the treatment of cardiovascular disease, but clinical data limit their use mostly to the treatment of angina. They are also used in the treatment of subsets of patients with heart failure and pulmonary hypertension. One major limitation of the use of nitrates is the development of tolerance. Although several agents have been studied for use in the prevention of nitrate tolerance, none are currently recommended owing to a paucity of supportive clinical data. Only 1 method of preventing nitrate tolerance remains widely accepted: the use of a dosing strategy that provides an interval of no or low nitrate exposure during each 24-h period. Nitric oxide's important role in several cardiovascular disease mechanisms continues to drive research toward finding novel ways to affect both endogenous and exogenous sources of this key molecular mediator. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Cadmium Alternatives: Zinc-Nickel Electroplating & Repair of Aluminum Coatings

    DTIC Science & Technology

    2008-02-27

    Brighteners and Other Additives to Create Low Embrittling Plating Process • Based on Successful Test Results an LHE Alkaline Zn-Ni Formula was Selected for...Corrosion Testing (Salt Spray and Galvanic) – Fluid Immersion (ASTM F 483) Lubricity (Fasteners)– – Strippability • Ammonium Nitrate (pH 10...Considered – LDC 5030 Sn-Zn and SIFCO 4018 Zn-Ni • LDC 5030 Sn-Zn Selected Because of No-Bake Hydrogen Embrittlement Performance • Aluminum Surface

  17. Evaluation of Dipsol IZ-C17 LHE Zinc-Nickel Plating (Briefing Charts)

    DTIC Science & Technology

    2007-01-24

    Results • Based on Successful Test Results an LHE Alkaline Zn-Ni Formula was Selected for Further Development – Identified as Dipsol IZ-C17 (13 to...Hydrogen Embrittlement Test Methods • Select Repair Procedures 16. ENVIRONMENTAL ASSURANCE 2006 Status • IZ-C17 Tech Bulletin (Draft) Prepared...Corrosion Testing (Salt Spray and Galvanic) – Fluid Immersion (ASTM F 483) – Lubricity (Fasteners) – Strippability (BCA – Ammonium Nitrate pH 10) – Throwing

  18. Clotrimazole and econazole inhibit Streptococcus mutans biofilm and virulence in vitro.

    PubMed

    Qiu, Wei; Ren, Biao; Dai, Huanqin; Zhang, Lixin; Zhang, Qiong; Zhou, Xuedong; Li, Yuqing

    2017-01-01

    The aim of this study was to determine the inhibitory effect of eight antifungal drugs on S. mutans growth, biofilm formation and virulence factors. The actions of antifungal drugs on S. mutans were determined by recovery plates and survival kinetic curves. Biofilms were observed by scanning electron microscopy and the viable cells were recovered on BHI plates, meanwhile biofilms were stained by BacLight live/dead kit to investigate the biofilm viability. Bacteria/extracellular polysaccharides staining assays were performed to determine the EPS production of S. mutans biofilms. Acidogenicity and acidurity of S. mutans were determined using pH drop and acid tolerance assays, and the expression of ldh gene was evaluated using qPCR. We found that clotrimazole (CTR) and econazole (ECO) showed antibacterial activities on S. mutans UA159 and S. mutans clinical isolates at 12.5 and 25mg/L, respectively. CTR and ECO could also inhibit S. mutans biofilm formation and reduce the viability of preformed biofilm. CTR and ECO affected the live/dead ratio and the EPS/bacteria ratio of S. mutans biofilms. CTR and ECO also inhibited the pH drop, lactate acid production, and acid tolerance. The abilities of CTR and ECO to inhibit S. mutans ldh expression were also confirmed. We found that two antifungal azoles, CTR and ECO, had the abilities to inhibit the growth and biofilm formation of S. mutans and more importantly, they could also inhibit the virulence factors of S. mutans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nonylphenol exposure is associated with oxidative and nitrative stress in pregnant women.

    PubMed

    Wang, Pei-Wei; Chen, Mei-Lien; Huang, Li-Wei; Yang, Winnie; Wu, Kuen-Yuh; Huang, Yu-Fang

    2015-01-01

    Animal studies have shown that exposure to nonylphenol (NP) increases oxidative/nitrative stress, but whether it does so in humans is unknown. This study examines prenatal exposure to NP and its effects on oxidatively/nitratively damaged DNA, lipid peroxidation, and the activities of antioxidants. A total of 146 urine and blood specimens were collected during gestational weeks 27-38 and hospital admission for delivery, respectively. Urinary NP was analyzed by high-performance liquid chromatography (HPLC). Urinary biomarkers of oxidatively/nitratively damaged DNA and lipid peroxidation, including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-nitroguanine (8-NO(2)Gua), 8-iso-prostaglandin F(2α) (8-isoPF(2α)) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), were simultaneously analyzed using isotope-dilution liquid-chromatography/electron spray ionization tandem mass spectrometry. The activities of maternal plasma superoxide dismutase and glutathione peroxidase were analyzed by enzyme-linked immunosorbent assay. Urinary NP level was significantly associated with 8-oxodG and 8-NO(2)Gua levels in late pregnancy, suggesting that NP may enhance oxidatively and nitratively damaged DNA. The adjusted odds ratios for high 8-oxodG level exhibited a significantly dose-response relationship with NP levels, stratified into four quartiles. 8-oxodG appears to be a more sensitive and effective biomarker of NP exposure than 8-NO(2)Gua. These relationships suggest NP may play a role in the pregnancy complications.

  20. Powdery Emulsion Explosive: A New Excellent Industrial Explosive

    NASA Astrophysics Data System (ADS)

    Ni, Ouqi; Zhang, Kaiming; Yu, Zhengquan; Tang, Shujuan

    2012-07-01

    Powdery emulsion explosive (PEE), a new powdery industrial explosive with perfect properties, has been made using an emulsification-spray drying technique. PEE is composed of 91-92.5 wt% ammonium nitrate (AN), 4.5-6 wt% organic fuels, and 1.5-1.8 wt% water. Due to its microstructure as a water-in-oil (W/O) emulsion and low water content, it has excellent detonation performance, outstanding water resistance, reliable safety, and good application compared with other industrial explosives, such as ammonite, emulsion explosives, and ANFO.

  1. SEPARATION APPARATUS

    DOEpatents

    Huff, J.B.

    1962-03-13

    A furnace apparatus is designed for treating a nuclear reactor waste solution. The solution is sprayed onto a bed of burning petroleum coke which expels water, the more volatile fission products, and nitrogen oxides. Next, chlorine gas is introduced from below which causes aluminum to volatilize as aluminum chloride and along with it certain fission products including Nb/sup 95/ and Zr/sup 95/. These lose their radioactivity within four years and the long- lived radioactivity remains with the ash, which is stored. (AEC) V) nitrate. (P.C.H.)

  2. An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and source apportionment

    NASA Astrophysics Data System (ADS)

    Cesari, D.; Donateo, A.; Conte, M.; Merico, E.; Giangreco, A.; Giangreco, F.; Contini, D.

    2016-06-01

    A measurement campaign was performed between 04/03/2013 and 17/07/2013 for simultaneous collection of PM2.5 samples in two nearby sites in southeastern Italy: an urban site and an urban background site. PM2.5 at the two sites were similar; however, the chemical composition and the contributions of the main sources were significantly different. The coefficients of divergence (CODs) showed spatial heterogeneity of EC (higher at the urban site because of traffic emissions) and of all metals. Major ions (NH4+, Na+, and SO42 -) and OC had low CODs, suggesting a homogeneous distribution of sea spray, secondary sulfate, and secondary organic matter (SOM = 1.6*OCsec, where OCsec is the secondary OC). The strong correlations between Na+ and Cl-, and the low Cl-/Na+ ratios, suggested the presence of aged sea spray with chloride depletion (about 79% of Cl-) and formation of sodium nitrate at both sites. In both sites, the non-sea-salt sulfate was about 97% of sulfate, and the strong correlation between SO42 - and NH4+ indicated that ammonium was present as ammonium sulfate. However, during advection of Saharan Dust, calcium sulfate was present rather than ammonium sulfate. The source apportionment was performed using the Positive Matrix Factorization comparing outputs of model EPA PMF 3.0 and 5.0 version. Six aerosol sources were identified at both sites: traffic, biomass burning, crustal-resuspended dust, secondary nitrate, marine aerosol, and secondary sulfate. The PMF3.0 model was not completely able, in these sites, to separate marine contribution from secondary nitrate and secondary sulfate from OC, underestimating the marine contribution and overestimating the secondary sulfate with respect to stoichiometric calculations. The application of specific constraints on PMF5.0 provided cleaner profiles, improving the comparison with stoichiometric calculations. The seasonal trends revealed larger biomass burning contributions during the cold period at both sites due to domestic heating emissions added to those of agricultural practices. Secondary aerosol represented about 50% of PM2.5 at both sites (about 1/3 due to SOM), with a slight increase during the cold season, probably due to the formation of secondary OC via gas-to-particle conversion. Secondary inorganic aerosol (nitrate plus sulfate) did not show seasonal trend because the reduction of nitrate due to thermal instability during the warm season was compensated by an almost equivalent increase of sulfate.

  3. Characterization of ANFO explosive by high accuracy ESI(±)-FTMS with forensic identification on real samples by EASI(-)-MS.

    PubMed

    Hernandes, Vinicius Veri; Franco, Marcos Fernado; Santos, Jandyson Machado; Melendez-Perez, Jose J; de Morais, Damila Rodrigues; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Zacca, Jorge Jardim; Logrado, Lucio Paulo Lima; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-04-01

    Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. The Chemical Composition and Mixing State of Sea Spray Aerosol and Organic Aerosol in the Winter-Spring Arctic

    NASA Astrophysics Data System (ADS)

    Kirpes, R.; Bondy, A. L.; Bonanno, D.; Moffet, R.; Wang, B.; Laskin, A.; Ault, A. P.; Pratt, K.

    2016-12-01

    The Arctic region is undergoing rapid transformations and loss of sea ice due to climate change. With increased sea ice fracturing resulting in greater open ocean surface, winter emissions of sea spray aerosol (SSA) are expected to be increasing. Additionally, during the winter-spring transition, Arctic haze contributes to the Arctic aerosol budget. The magnitude of aerosol climate effects depends on the aerosol composition and mixing state (distribution of chemical species within and between particles). However, few studies of aerosol chemistry have been conducted in the winter Arctic, despite it being a time when aerosol impacts on clouds are expected to be significant. To study aerosol composition and mixing state in the winter Arctic, atmospheric particles were collected near Barrow, Alaska in January and February 2014 for off-line individual particle chemical analysis. SSA was the most prevalent particle type observed. Sulfate and nitrate were observed to be internally mixed with SSA and organic aerosol. Greater than 98% of observed SSA particles contained organic content, with 15-35% organic volume fraction on average for individual particles. The SSA organic compounds consisted of carbohydrates, lipids, and fatty acids found in the seawater surface microlayer. SSA was determined to be emitted from open leads, while transported sulfate and nitrate contributed to aging of SSA and organic aerosol. Determining the aerosol chemical composition and mixing state in the winter Arctic will further the understanding of how individual aerosol particles impact climate through radiative effects and cloud formation.

  5. Enhanced transdermal delivery of 18β-glycyrrhetic acid via elastic vesicles: in vitro and in vivo evaluation.

    PubMed

    Li, Shuang; Qiu, Yuqin; Zhang, Suohui; Gao, Yunhua

    2012-07-01

    The aim of this work was to develop an elastic vesicular formulation to enhance the skin permeation of a poorly water-soluble 18β-glycyrrhetic acid (GA) and treat dermatitis. Elastic vesicles of GA were prepared by the film method with high pressure homogenizer and characterized by storage stability. In vitro permeation studies were carried on rat skin using Franz diffusion cell. In vivo skin deposition of GA was studied using HPLC assay. Chronic allergic contact dermatitis model was built to evaluate pharmacodynamic of GA elastic vesicles. The GA elastic vesicles developed have high flexibility and the storage stability was at least for 6 months at 4°C and for 4 months at 25°C. In vitro cumulative penetration of GA from elastic vesicles within 8 hours was 5.3-fold and 23.2-fold higher than that of conventional liposomes and saturated solution, respectively. After non-occlusive application to mice ears in vivo, skin deposition of GA increased immediately and reached the C(max) at 3 h (1.95 ± 0.32 µg/cm²) and still detected, even after 16 hours GA removed. In vivo anti-inflammatory activity study, GA elastic vesicles showed significant reduction in ear thickness and mass (25.52% and 49.23%) (P < 0.05). The suppressive activity was comparable to that of positive control group (Triamcinolone Acetonide and Econazole Nitrate cream in market), while few side effects were observed in present model. The results suggested that of GA elastic vesicular was safe and effective in treatment of contact dermatitis by transdermal administration.

  6. Systemic glyceryl trinitrate reduces anal sphincter tone: is there a therapeutic indication?

    PubMed

    Connolly, C; Tierney, S; Grace, P

    2018-05-01

    Nitric oxide (NO) has diverse roles as a biological messenger. [1] Topically applied nitrate donors cause relaxation of the internal anal sphincter (IAS) and facilitate healing of anal fissures [2,3]. Systemic nitrates are commonly used for the treatment of ischaemic heart disease, yet the effects of systemically administered nitrates on the smooth muscle of the IAS are unknown. Our aim was to test the hypothesis that systemically administered nitrates at a normal dose, cause inhibition of anal sphincter activity. With fully informed consent, anal manometry was performed on nine volunteers. Maximum and mean anal resting pressure (representing the IAS), maximum squeeze pressure (representing the external anal sphincter), heart rate and blood pressure were measured, before and after administration of a normal 400 μg dose of sublingual glyceryl trinitrate spray. Data are expressed as mean (± standard error of the mean (SEM)). In four females and five males ranging from 19 to 50 years of age, administration of GTN resulted in a significant reduction in systolic blood pressure from 138 ± 5 to 127 ± 4 mmHg, P < 0.01. Mean resting pressure, over 5 min, was significantly reduced from 70 ± 10 to 62 ± 10 mmHg P < 0.05. The maximum resting pressure was also significantly reduced from 109 ± 12 to 86 ± 10 mmHg P = 0.04. Maximum squeeze pressure, heart rate and diastolic blood pressure were not significantly reduced. Systemic nitrates significantly inhibit internal anal sphincter function.

  7. Method of making highly sinterable lanthanum chromite powder

    DOEpatents

    Richards, Von L.; Singhal, Subhash C.

    1992-01-01

    A highly sinterable powder consisting essentially of LaCrO.sub.3, containing from 5 weight % to 20 weight % of a chromite of dopant Ca, Sr, Co, Ba, or Mg and a coating of a chromate of dopant Ca, Sr, Co, Ba, or Mg; is made by (1) forming a solution of La, Cr, and dopant; (2) heating their solutions; (3) forming a combined solution having a desired ratio of La, Cr, and dopant and heating to reduce solvent; (4) forming a foamed mass under vacuum; (5) burning off organic components and forming a charred material; (6) grinding the charred material; (7) heating the char at from 590.degree. C. to 950 C. in inert gas containing up to 50,000 ppm O.sub.2 to provide high specific surface area particles; (8) adding that material to a mixture of a nitrate of Cr and dopant to form a slurry; (9) grinding the particles in the slurry; (10) freeze or spray drying the slurry to provide a coating of nitrates on the particles; and (11) heating the coated particles to convert the nitrate coating to a chromate coating and provide a highly sinterable material having a high specific surface area of over 7 m.sup.2 /g.

  8. Nitrate in ground water and spring water near four dairy farms in North Florida, 1990-93

    USGS Publications Warehouse

    Andrews, W.J.

    1994-01-01

    Concentrations of nitrate and other selected water- quality characteristics were analyzed periodically for two years in water from 51 monitoring wells installed at four farms and in water discharging from three nearby springs along the Suwannee River in Lafayette and Suwannee Counties to examine the quality of ground water at these farms and the transport of nutrients in ground water to the nearby spring-fed Suwannee River: Ground water from shallow wells, which were completed in the top ten feet of the saturated zone in a surficial sandy aquifer and in the karstic Upper Floridan aquifer generally had the highest concentrations of nitrate, ranging from <.02 to 130 mg/L as nitrogen. Nitrate concentrations commonly exceeded the primary drinking water standard of 10 mg/L for nitrate as nitrogen in water from shallow wells, which tapped the top ten feet of the uppermost aquifers near waste-disposal areas such as wastewater lagoons and defoliated, intensive-use areas near milking barns. Upgradient from waste-disposal areas, concentrations of nitrate in ground water were commonly less than 1 mg/L as nitrogen. Water samples from deep wells (screened 20 feet deeper than shallow wells in these aquifers) generally had lower concentrations of nitrate (ranging from <0.02 to 84 mg/L) than water from shallow wells. Water samples from the three monitored springs (Blue, Telford, and Convict Springs) had nitrate concentrations ranging from 1.5 to 6.5 mg/L as nitrogen, which were higher than those typically occurring in water from upgradient wells at the monitored dairy farms or from back- ground wells sampled in the region. Analyses of nitrogen isotope ratios in nitrate indicated that leachate from animal wastes was the principal source of nitrate in ground water adjacent to waste-disposal areas at the monitored and unmonitored dairy farms. Leachate from a combi- nation of fertilizers, soils, and animal wastes appeared to be the source of nitrate in ground- water downgradient from pastures and wastewater spray fields at dairy farms and in water discharging from three nearby springs. Although denitrifying bacteria were present in counts sometimes exceeding 240,000 colonies/100mL in water from dairy-farm monitoring wells, ground water in the uppermost aquifers in Lafayette and Suwannee Counties generally contained too much oxygen for denitrification to remove nitrate from shallow ground water. Denitrification was more likely to occur in deeper ground water, which typically has lower dissolved oxygen concentrations.

  9. Periodic mesoporous organosilica materials as sorbents for solid-phase extraction of drugs prior to simultaneous enantiomeric separation by capillary electrophoresis.

    PubMed

    Valimaña-Traverso, Jesús; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; García, María Ángeles; Sierra, Isabel; Marina, María Luisa

    2018-06-19

    Two novel periodic mesoporous organosilica materials were synthesized with a neutral phenylene-bridged ligand, 1,4-bis(trimethoxysilylethyl)benzene, one of them using tetraethyl orthosilicate as additional silica source (PMO-TMSEB-1 and PMO-TMSEB-2). A third material was also synthesized with 1,4-bis(triethoxysilyl)benzene ligand (PMO-TESB-1) which use has scarcely been reported. The three materials were evaluated as solid-phase extraction (SPE) sorbents for the off-line extraction of a mixture of seven drugs of different nature (duloxetine, terbutaline, econazole, propranolol, verapamil, metoprolol, and betaxolol) from water samples. Subsequent simultaneous enantiomeric analysis by CE, using sulfated-β-cyclodextrin (2% w/v) dissolved in a 25 mM phosphate buffer (pH 3.0) and a voltage of -20 kV (negative polarity) was carried out. Enantiomeric resolutions ranging from 2.4 to 8.5 were obtained in an analysis time of 16 min. After optimization of SPE parameters, it was shown that using just 100 mg of PMO-TESB-1 as sorbent, a preconcentration factor of 400 with 200 mL solution was achieved, allowing recoveries between 80.5 and 103.1% (except for terbutaline), with good repeatability (% RSD = 2-8 %, n = 5). Analytical characteristics of the method were evaluated in terms of precision, linearity and accuracy with method quantitation limits between 5.6 and 21.9 μg/L. The developed method was applied to the analysis of spiked wastewater samples collected in different treatment plants, with recoveries between 73.9 and 102.9% except for econazole with recovery values ranging between 58.5 and 72.4%. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings

    NASA Astrophysics Data System (ADS)

    Jaworski, R.; Pawlowski, L.; Pierlot, C.; Roudet, F.; Kozerski, S.; Petit, F.

    2010-01-01

    The paper aims at reviewing of the recent studies related to the development of suspension plasma sprayed TiO2 and Ca5(PO4)3OH (hydroxyapatite, HA) coatings as well as their multilayer composites obtained onto stainless steel, titanium and aluminum substrates. The total thickness of the coatings was in the range 10 to 150 μm. The suspensions on the base of distilled water, ethanol and their mixtures were formulated with the use of fine commercial TiO2 pigment crystallized as rutile and HA milled from commercial spray-dried powder or synthesized from calcium nitrate and ammonium phosphate in an optimized reaction. The powder was crystallized as hydroxyapatite. Pneumatic and peristaltic pump liquid feeders were applied. The injection of suspension to the plasma jet was studied carefully with the use of an atomizer injector or a continuous stream one. The injectors were placed outside or inside of the anode-nozzle of the SG-100 plasma torch. The stream of liquid was tested under angle right or slightly backwards with regard to the torch axis. The sprayed deposits were submitted to the phase analysis by the use of x-ray diffraction. The content of anatase and rutile was calculated in the titanium oxide deposits as well as the content of the decomposition phases in the hydroxyapatite ones. The micro-Raman spectroscopy was used to visualize the area of appearance of some phases. Scratch test enabled to characterize the adhesion of the deposits, their microhardness and friction coefficient. The electric properties including electron emission, impedance spectroscopy, and dielectric properties of some coatings were equally tested.

  11. Y2O3-MgO Nano-Composite Synthesized by Plasma Spraying and Thermal Decomposition of Solution Precursors

    NASA Astrophysics Data System (ADS)

    Muoto, Chigozie Kenechukwu

    This research aims to identify the key feedstock characteristics and processing conditions to produce Y2O3-MgO composite coatings with high density and hardness using solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes, and also, to explore the phenomena involved in the production of homogenized nano-composite powders of this material system by thermal decomposition of solution precursor mixtures. The material system would find potential application in the fabrication of components for optical applications such as transparent windows. It was shown that a lack of major endothermic events during precursor decomposition and the resultant formation of highly dense particles upon pyrolysis are critical precursor characteristics for the deposition of dense and hard Y2O3-MgO coatings by SPPS. Using these principles, a new Y2O3-MgO precursor solution was developed, which yielded a coating with Vickers hardness of 560 Hv. This was a considerable improvement over the hardness of the coatings obtained using conventional solution precursors, which was as low as 110 Hv. In the thermal decomposition synthesis process, binary solution precursor mixtures of: yttrium nitrate (Y[n]) or yttrium acetate (Y[a]), with magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were used in order to study the effects of precursor chemistry on the structural characteristics of the resultant Y2O3-MgO powders. The phase domains were coarse and distributed rather inhomogeneously in the materials obtained from the Y[n]Mg[n] and Y[a]Mg[a] mixtures; finer and more homogeneously-distributed phase domains were obtained for ceramics produced from the Y[a]Mg[n] and Y[n]Mg[a] mixtures. It was established that these phenomena were related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization. Addition of ammonium acetate to the Y[n[Mg[n] mixture changed the endothermic process to exothermic and improved the dispersion of the component phases. Two suspension types, made with powders synthesized from the Y[n]Mg[n] and Y[n]Mg[a] precursor mixtures were sprayed by SPS. The densities and hardnesses of the coatings deposited using the two powder types were similar. However, the microstructure of coatings deposited using the Y[n]Mg[a]-synthesized powder exhibited some eutectic configuration which was not observed in the coatings deposited using the Y[n]Mg[n]-synthesized powder.

  12. Method of making highly sinterable lanthanum chromite powder

    DOEpatents

    Richards, V.L.; Singhal, S.C.

    1992-09-01

    A highly sinterable powder consisting essentially of LaCrO[sub 3], containing from 5 weight % to 20 weight % of a chromite of dopant Ca, Sr, Co, Ba, or Mg and a coating of a chromate of dopant Ca, Sr, Co, Ba, or Mg; is made by (1) forming a solution of La, Cr, and dopant; (2) heating their solutions; (3) forming a combined solution having a desired ratio of La, Cr, and dopant and heating to reduce solvent; (4) forming a foamed mass under vacuum; (5) burning off organic components and forming a charred material; (6) grinding the charred material; (7) heating the char at from 590 C to 950 C in inert gas containing up to 50,000 ppm O[sub 2] to provide high specific surface area particles; (8) adding that material to a mixture of a nitrate of Cr and dopant to form a slurry; (9) grinding the particles in the slurry; (10) freeze or spray drying the slurry to provide a coating of nitrates on the particles; and (11) heating the coated particles to convert the nitrate coating to a chromate coating and provide a highly sinterable material having a high specific surface area of over 7 m[sup 2]/g. 2 figs.

  13. Pulsed arc plasma jet synchronized with drop-on-demand dispenser

    NASA Astrophysics Data System (ADS)

    Mavier, F.; Lemesre, L.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F.

    2017-04-01

    This work concerns with the liquid injection in arc plasma spraying for the development of finely structured ceramics coatings. Nanostructured coatings can be now achieved with nanopowders dispersed in a liquid (SPS: Suspension Plasma Spraying) or with a salt dissolved into a liquid (SPPS: Solution Precursor Plasma Spraying) injected into the plasma jet. Controlling electric arc instabilities confined in non-transferred arc plasma torch is therefore a key issue to get reproducible coating properties. Adjustment of parameters with a mono-cathode arc plasma allows a new resonance mode called “Mosquito”. A pulsed arc plasma producing a periodic regular voltage signal with modulation of enthalpy is obtained. The basic idea is to synchronize the injection system with the arc to introduce the liquid material in each plasma oscillation in the same conditions, in order to control the plasma treatment of the material in-fly. A custom-developed pulsed arc plasma torch is used with a drop-on-demand dispenser triggered by the arc voltage. A delay is added to adjust the droplets emission time and their penetration into the plasma gusts. Indeed, the treatment of droplets is also shown to be dependent on this injection delay. A TiO2 suspension and an aqueous solution of aluminium nitrate were optimized to get ejectable inks forming individual droplets. The feasibility of the process was demonstrated for SPS and SPPS techniques. Coatings from the suspension and the solution were achieved. First synchronized sprayings show a good penetration of the droplets into the plasma. Coatings show a fine structure of cauliflowers shapes. The synchronization of the ejection allows a control of morphology and a better deposition efficiency. Further investigations will find the optimal operating parameters to show the full potential of this original liquid injection technique.

  14. Characterization of nutrients and fecal indicator bacteria at a concentrated swine feeding operation in Wake County, North Carolina, 2009-2011

    USGS Publications Warehouse

    Harden, Stephen L.; Rogers, Shane W.; Jahne, Michael A.; Shaffer, Carrie E.; Smith, Douglas G.

    2012-01-01

    Study sites were sampled for laboratory analysis of nutrients, total suspended solids (TSS), and (or) fecal indicator bacteria (FIB). Nutrient analyses included measurement of dissolved ammonia, total and dissolved ammonia + organic nitrogen, dissolved nitrate + nitrite, dissolved orthophosphate, and total phosphorus. The FIB analyses included measurement of Escherichia coli and enterococci. Samples of wastewater at the swine facility were collected from a pipe outfall from the swine housing units, two storage lagoons, and the spray fields for analysis of nutrients, TSS, and FIB. Soil samples collected from a spray field were analyzed for FIB. Monitoring locations were established for collecting discharge and water-quality data during storm events at three in-field runoff sites and two sites on the headwater stream (one upstream and one downstream) next to the swine facility. Stormflow samples at the five monitoring locations were collected for four storm events during 2009 to 2010 and analyzed for nutrients, TSS, and FIB. Monthly water samples also were collected during base-flow conditions at all four stream sites for laboratory analysis of nutrients, TSS, and (or) FIB.

  15. Environmentally Sound Processing Technology: JANNAF Safety and Environmental Protection Subcommittee and Propellant Development and Characterization Subcommittee Joint Workshop

    NASA Technical Reports Server (NTRS)

    Pickett, Lorri A. (Editor)

    1995-01-01

    Topics covered include: Risk assessment of hazardous materials, Automated systems for pollution prevention and hazardous materials elimination, Study design for the toxicity evaluation of ammonium perchlorate, Plasma sprayed bondable stainless surface coatings, Development of CFC-free cleaning processes, New fluorinated solvent alternatives to ozone depleting solvents, Cleaning with highly fluorinated liquids, Biotreatment of propyleneglycol nitrate by anoxic denitrification, Treatment of hazardous waste with white rot fungus, Hydrothermal oxidation as an environmentally benign treatment technology, Treatment of solid propellant manufacturing wastes by base hydrolysis, Design considerations for cleaning using supercritical fluid technology, and Centrifugal shear carbon dioxide cleaning.

  16. Effects of diurnal control in the mineral concentration of nutrient solution on tomato yield and nutrient absorption in hydroponics.

    PubMed

    Higashide, T; Shimaji, H; Takaichi, M

    1996-12-01

    We researched effects of diurnal change of the mineral concentration on tomato yield and nutrient absorption. First, we examined the effect on yield in a spray culture, in the experiment 1-1, when nitrate concentration of solution (N) and potassium concentration (K) were low and phosphate concentration (P) was high during the daytime, while N and K were high and P was low during the night, the yield was low. In the experiment 1-2, when N and K were high and P was low during the daytime, while N and K were low and P was high during the night, the yield was low. Second, we examined the effect on nutrient absorption in a water culture. Concentration of KNO3, of solution was changed in the daytime or the night. When KNO3 level was low during the daytime, while it was high during the night, total nitrate and potassium absorption for 24 hours was the highest. It were showed the possibility of the efficient supply of minerals to plants by the diurnal control in minerals.

  17. Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu

    2014-10-01

    La-doped strontium titanate (LST) is a promising, redox-stable perovskite material for direct hydrocarbon oxidation anodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this study, nano-sized LST and Sm-doped ceria (SDC) powders are produced by the sol-gel and glycine-nitrate processes, respectively. The chemical compatibility between LST and electrolyte materials is studied. A LST-SDC composite anode is prepared by suspension plasma spraying (SPS). The effects of annealing conditions on the phase structure, microstructure, and chemical stability of the LST-SDC composite anode are investigated. The results indicate that the suspension plasma-sprayed LST-SDC anode has the same phase structure as the original powders. LST exhibits a good chemical compatibility with SDC and Mg/Sr-doped lanthanum gallate (LSGM). The anode has a porosity of ∼40% with a finely porous structure that provides high gas permeability and a long three-phase boundary for the anode reaction. Single cells assembled with the LST-SDC anode, La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte, and La0.8Sr0.2CoO3-SDC cathode show a good performance at 650-800 °C. The annealing reduces the impedances due to the enhancement in the bonding between the particles in the anode and interface of anode and LSGM electrolyte, thus improving the output performance of the cell.

  18. Impact of sludge stabilization processes and sludge origin (urban or hospital) on the mobility of pharmaceutical compounds following sludge landspreading in laboratory soil-column experiments.

    PubMed

    Lachassagne, Delphine; Soubrand, Marilyne; Casellas, Magali; Gonzalez-Ospina, Adriana; Dagot, Christophe

    2015-11-01

    This study aimed to determine the effect of sludge stabilization treatments (liming and anaerobic digestion) on the mobility of different pharmaceutical compounds in soil amended by landspreading of treated sludge from different sources (urban and hospital). The sorption and desorption potential of the following pharmaceutical compounds: carbamazepine (CBZ), ciprofloxacin (CIP), sulfamethoxazole (SMX), salicylic acid (SAL), ibuprofen (IBU), paracetamol (PAR), diclofenac (DIC), ketoprofen (KTP), econazole (ECZ), atenolol (ATN), and their solid-liquid distribution during sludge treatment (from thickening to stabilization) were investigated in the course of batch testing. The different sludge samples were then landspread at laboratory scale and leached with an artificial rain simulating 1 year of precipitation adapted to the surface area of the soil column used. The quality of the resulting leachate was investigated. Results showed that ibuprofen had the highest desorption potential for limed and digested urban and hospital sludge. Ibuprofen, salicylic acid, diclofenac, and paracetamol were the only compounds found in amended soil leachates. Moreover, the leaching potential of these compounds and therefore the risk of groundwater contamination depend mainly on the origin of the sludge because ibuprofen and diclofenac were present in the leachates of soils amended with urban sludge, whereas paracetamol and salicylic acid were found only in the leachates of soils amended with hospital sludge. Although carbamazepine, ciprofloxacin, sulfamethoxazole, ketoprofen, econazole, and atenolol were detected in some sludge, they were not present in any leachate. This reflects either an accumulation and/or (bio)degradation of these compounds (CBZ, CIP, SMX, KTP, ECZ, and ATN ), thus resulting in very low mobility in soil. Ecotoxicological risk assessment, evaluated by calculating the risk quotients for each studied pharmaceutical compound, revealed no high risk due to the application on the soil of sludge stabilized by liming or anaerobic digestion.

  19. The effect of gallic acid on cytotoxicity, Ca(2+) homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes.

    PubMed

    Hsu, Shu-Shong; Chou, Chiang-Ting; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-25

    Gallic acid, a polyhydroxylphenolic compound, is widely distributed in various plants, fruits and foods. It has been shown that gallic acid passes into blood brain barrier and reaches the brain tissue of middle cerebral artery occlusion rats. However, the effect of gallic acid on Ca(2+) signaling in glia cells is unknown. This study explored whether gallic acid affected Ca(2+) homeostasis and induced Ca(2+)-associated cytotoxicity in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Gallic acid (20-40 μM) concentration-dependently induced cytotoxicity and intracellular Ca(2+) level ([Ca(2+)]i) increases in DBTRG-05MG cells but not in CTX TNA2 cells. In DBTRG-05MG cells, the Ca(2+) response was decreased by half by removal of extracellular Ca(2+). In Ca(2+)-containing medium, gallic acid-induced Ca(2+) entry was inhibited by store-operated Ca(2+) channel inhibitors (2-APB, econazole and SKF96365). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished gallic acid-induced [Ca(2+)]i increases. Conversely, incubation with gallic acid also abolished thapsigargin-induced [Ca(2+)]i increases. Inhibition of phospholipase C with U73122 abolished gallic acid-induced [Ca(2+)]i increases. Gallic acid significantly caused cytotoxicity in DBTRG-05MG cells, which was partially prevented by prechelating cytosolic Ca(2+) with BAPTA-AM. Moreover, gallic acid activated mitochondrial apoptotic pathways that involved ROS production. Together, in DBTRG-05MG cells but not in CTX TNA2 cells, gallic acid induced [Ca(2+)]i increases by causing Ca(2+) entry via 2-APB, econazole and SKF96365-sensitive store-operated Ca(2+) entry, and phospholipase C-dependent release from the endoplasmic reticulum. This Ca(2+) signal subsequently evoked mitochondrial pathways of apoptosis that involved ROS production. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak power densities as high as 520 mW/cm2 at 800 °C for YSZ and 350 mW/cm 2 at 800 °C for YSZ/GDC bilayer electrolytes.

  1. Inside versus Outside: Ion Redistribution in Nitric Acid Reacted Sea Spray Aerosol Particles as Determined by Single Particle Analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Guasco, T.; Ryder, O. S.; Baltrusaitis, J.; Cuadra-Rodriguez, L. A.; Collins, D. B.; Ruppel, M. J.; Bertram, T. H.; Prather, K. A.; Grassian, V. H.

    2013-12-01

    Sea spray aerosol (SSA) particles were generated under real-world conditions using natural seawater and a unique ocean-atmosphere facility equipped with actual breaking waves or a marine aerosol reference tank (MART) that replicates those conditions. The SSA particles were exposed to nitric acid in situ in a flow tube and the well-known chloride displacement and nitrate formation reaction was observed. However, as discussed here, little is known about how this anion displacement reaction affects the distribution of cations and other chemical constituents within and phase state of individual SSA particles. Single particle analysis of individual SSA particles shows that cations (Na+, K+, Mg2+ and Ca2+) within individual particles undergo a spatial redistribution after heterogeneous reaction with nitric acid, along with a more concentrated layer of organic matter at the surface of the particle. These data suggest that specific ion and aerosol pH effects play an important role in aerosol particle structure in ways that have not been previously recognized. The ordering of organic coatings can impact trace gas uptake, and subsequently impact trace gas budgets of O3 and NOx.

  2. [Effects of calcium and ABA on photosynthesis and related enzymes activities in cucumber seedlings under drought stress].

    PubMed

    Chen, Lu Lu; Wang, Xiu Feng; Liu, Mei; Yang, Feng Juan; Shi, Qing Hua; Wei, Min; Li, Qing Ming

    2016-12-01

    To investigate the effect of calcium and ABA on photosynthesis and the activities of antioxidant enzymes in cucumber seedlings under drought stress, the cucumber was used as the expe-riment materials, normal nutrient solution culture was considered as the control, and PEG-6000 application in the nutrient solution simulated the drought stress. There were five different treatments which were spraying water, ABA, CaCl 2 +ABA, LaCl 3 (calcium channel inhibitor)+ABA and EGTA (calcium ion chelating agent)+ABA under drought stress. The results showed that drought stress inhibited the growth of cucumber seedlings, and reduced the activities of antioxidant enzymes, nitrate reductase, net photosynthetic rate and fluorescence parameters of the cucumber seedlings leaves. The application of ABA reduced the inhibition of activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), photosynthesis (P n , g s ) and the fluorescence parameters (F v '/F m ', q P and ETR), and decreased the damage of drought stress on plant. Spraying CaCl 2 +ABAsignificantly promoted the positive effect of ABA, while EGTA+ABA and LaCl 3 +ABA didn't show the promoting effect.

  3. Synthesis and photocatalytic property of Zinc Oxide (ZnO) fine particle using flame spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Widiyandari, Hendri; Ayu Ketut Umiati, Ngurah; Dwi Herdianti, Rizki

    2018-05-01

    Advance oxidation process (AOP) using photocatalysis constitute a promising technology for the treatment of wastewaters containing non-easily removable organic compound. Zinc oxide (ZnO) is one of efficient photocatalyst materials. This research reported synthesis of ZnO fine particle from zinc nitrate hexahydrate using Flame Spray Pyrolysis (FSP) method. In this method, oxygen (O2) gas were used as oxidizer and LPG (liquid petroleum gas) were used as fuel. The effect of O2 gas flow rate during ZnO particle fabrication to the microstructure, optical and photocatalytic properties were systematically discussed. The photocatalytic activity of ZnO was tested for the degradation of amaranth dye with initial concentration of 10 ppm under irradiation of solar simulator. The rate of decrease in amaranth concentration was measured using UV-Visible spectrophotometer. The ZnO synthesized using FSP has a hexagonal crystalline structure. Scanning electron microscope images showed that ZnO has a spherical formed which was the mixture of solid and hollow particles. The optimum condition for amaranth degradation was shown by ZnO produced at a flow rate of 1.5 L/min which able to degrade amaranth dye up to 95,3 % at 75 minutes irradiation.

  4. Alleviation of salt stress in lemongrass by salicylic acid.

    PubMed

    Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2012-07-01

    Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions.

  5. Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions

    NASA Astrophysics Data System (ADS)

    Cattin, L.; Reguig, B. A.; Khelil, A.; Morsli, M.; Benchouk, K.; Bernède, J. C.

    2008-07-01

    NiO thin films have been deposited by chemical spray pyrolysis using a perfume atomizer to grow the aerosol. The influence of the precursor, nickel chloride hexahydrate (NiCl 2·6H 2O), nickel nitrate hexahydrate (Ni(NO 3) 2·6H 2O), nickel hydroxide hexahydrate (Ni(OH) 2·6H 2O), nickel sulfate tetrahydrate (NiSO 4·4H 2O), on the thin films properties has been studied. In the experimental conditions used (substrate temperature 350 °C, precursor concentration 0.2-0.3 M, etc.), pure NiO thin films crystallized in the cubic phase can be achieved only with NiCl 2 and Ni(NO 3) 2 precursors. These films have been post-annealed at 425 °C for 3 h either in room atmosphere or under vacuum. If all the films are p-type, it is shown that the NiO films conductivity and optical transmittance depend on annealing process. The properties of the NiO thin films annealed under room atmosphere are not significantly modified, which is attributed to the fact that the temperature and the environment of this annealing is not very different from the experimental conditions during spray deposition. The annealing under vacuum is more efficient. This annealing being proceeded in a vacuum no better than 10 -2 Pa, it is supposed that the modifications of the NiO thin film properties, mainly the conductivity and optical transmission, are related to some interaction between residual oxygen and the films.

  6. Detecting groundwater contamination of a river in Georgia, USA using baseflow sampling

    NASA Astrophysics Data System (ADS)

    Reichard, James S.; Brown, Chandra M.

    2009-05-01

    Algal blooms and fish kills were reported on a river in coastal Georgia (USA) downstream of a poultry-processing plant, prompting officials to conclude the problems resulted from overland flow associated with over-application of wastewater at the plant’s land application system (LAS). An investigation was undertaken to test the hypothesis that contaminated groundwater was also playing a significant role. Weekly samples were collected over a 12-month period along an 18 km reach of the river and key tributaries. Results showed elevated nitrogen concentrations in tributaries draining the plant and a tenfold increase in nitrate in the river between the tributary inputs. Because ammonia concentrations were low in this reach, it was concluded that nitrate was entering via groundwater discharge. Data from detailed river sampling and direct groundwater samples from springs and boreholes were used to isolate the entry point of the contaminant plume. Analysis showed two separate plumes, one associated with the plant’s unlined wastewater lagoon and another with its LAS spray fields. The continuous discharge of contaminated groundwater during summer low-flow conditions was found to have a more profound impact on river-water quality than periodic inputs by overland flow and tributary runoff.

  7. Development of a multiplexed electrospray micro-thruster with post-acceleration and beam containment

    NASA Astrophysics Data System (ADS)

    Lenguito, G.; Gomez, A.

    2013-10-01

    We report the development of a compact thruster based on Multiplexed ElectroSprays (MES). It relied on a microfabricated Si array of emitters coupled with an extractor electrode and an accelerator electrode. The accelerator stage was introduced for two purposes: containing beam opening and avoiding electrode erosion due to droplet impingement, as well as boosting specific impulse and thrust. Multiplexing is generally necessary as a thrust multiplier to reach eventually the level required (O(102) μN) by small satellites. To facilitate system optimization and debugging, we focused on a 7-nozzle MES device and compared its performance to that of a single emitter. To ensure uniformity of operation of all nozzles their hydraulic impedance was augmented by packing them with micrometer-size beads. Two propellants were tested: a solution of 21.5% methyl ammonium formate in formamide and the better performing pure ionic liquid ethyl ammonium nitrate (EAN). The 7-MES device spraying EAN at ΔV = 5.93 kV covered a specific impulse range from 620 s to 1900 s and a thrust range from 0.6 μN to 5.4 μN, at 62% efficiency. Remarkably, less than 1% of the beam was demonstrated to impact on the accelerator electrode, which bodes well for long-term applications in space.

  8. Gaseous Chemistry and Aerosol Mechanism Developments for Version 3.5.1 of the Online Regional Model, WRF-Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer-Nicholls, Scott; Lowe, Douglas; Utembe, Steve

    We have made a number of developments in the regional coupled model WRF-Chem, with the aim of making the model more suitable for prediction of atmospheric composition and of interactions between air quality and weather. We have worked on the European domain, with a particular focus on making the model suitable for the study of night time chemistry and oxidation by the nitrate radical in the UK atmosphere. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been implemented to enable more explicit simulation of VOC degradation. N2O5 heterogeneous chemistry has been added to the existingmore » sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas phase scheme. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments is illustrated in order to demonstrate the impact that these changes have in the North-West European domain. These developments are now part of the freely available WRF-Chem distribution.« less

  9. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism.

    PubMed

    Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie

    2017-12-19

    The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and production.

  10. Sahara dust, ocean spray, volcanoes, biomass burning: pathways of nutrients into Andean rainforests

    NASA Astrophysics Data System (ADS)

    Fabian, P.; Rollenbeck, R.; Spichtinger, N.; Brothers, L.; Dominguez, G.; Thiemens, M.

    2009-10-01

    Regular rain and fogwater sampling in the Podocarpus National Park, on the humid eastern slopes of the Ecuadorian Andes, along an altitude profile between 1960 and 3180 m, has been carried out since 2002. The samples, accumulated over about 1-week intervals, were analysed for pH, conductivity and major ions (K+, Na+, NH4+, Ca2+, Mg2+, Cl-, SO42-, NO3-, PO43-). About 35% of the weekly samples had very low ion contents, with pH mostly above 5 and conductivity below 10 μS/cm. 10-days back trajectories (FLEXTRA) showed that respective air masses originated in pristine continental areas, with little or no obvious pollution sources. About 65%, however, were significantly loaded with cations and anions, with pH as low as 3.5 to 4.0 and conductivity up to 50 μS/cm. The corresponding back trajectories clearly showed that air masses had passed over areas of intense biomass burning, active volcanoes, and the ocean, with episodic Sahara and/or Namib desert dust interference. Enhanced SO42- and NO3+ were identified, by combining satellite-based fire pixel observations with back trajectories, as predominantly resulting from biomass burning. Analyses of oxygen isotopes 16O, 17O, and 18O in nitrate show that nitrate in the samples is indeed a product of atmospheric conversion of precursors. Some SO42-, about 10% of the total input, could be identified to originate from active volcanoes, whose plumes were encountered by about 10% of all trajectories. Enhanced Na+, K+, and Cl- were found to originate from ocean spray sources. They were associated with winds providing Atlantic air masses to the receptor site within less than 5 days. Episodes of enhanced Ca2+ and Mg2+ were found to be associated with air masses from African deserts. Satellite aerosol data confirm desert sources both on the Northern (Sahara) as on the Southern Hemisphere (Namib), depending on the season. A few significant PO43- peaks are related with air masses originating from North African phosphate mining fields.

  11. Homogeneous Iron Phosphate Nanoparticles by Combustion of Sprays

    PubMed Central

    Rudin, Thomas; Pratsinis, Sotiris E.

    2013-01-01

    Low-cost synthesis of iron phosphate nanostructured particles is attractive for large scale fortification of basic foods (rice, bread, etc.) as well as for Li-battery materials. This is achieved here by flame-assisted and flame spray pyrolysis (FASP and FSP) of inexpensive precursors (iron nitrate, phosphate), solvents (ethanol), and support gases (acetylene and methane). The iron phosphate powders produced here were mostly amorphous and exhibited excellent solubility in dilute acid, an indicator of relative iron bioavailability. The amorphous and crystalline fractions of such powders were determined by X-ray diffraction (XRD) and their cumulative size distribution by X-ray disk centrifuge. Fine and coarse size fractions were obtained also by sedimentation and characterized by microscopy and XRD. The coarse size fraction contained maghemite Fe2O3 while the fine was amorphous iron phosphate. Furthermore, the effect of increased production rate (up to 11 g/h) on product morphology and solubility was explored. Using increased methane flow rates through the ignition/pilot flame of the FSP-burner and inexpensive powder precursors resulted in also homogeneous iron phosphate nanoparticles essentially converting the FSP to a FASP process. The powders produced by FSP at increased methane flow had excellent solubility in dilute acid as well. Such use of methane or even natural gas might be economically attractive for large scale flame-synthesis of nanoparticles. PMID:23407874

  12. Photoelectrochemical performance of W-doped BiVO4 thin films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Holland, S. Keith; Dutter, Melissa R.; Lawrence, David J.; Reisner, Barbara A.; DeVore, Thomas C.

    2014-01-01

    The effects of tungsten doping and hydrogen annealing on the photoelectrochemical (PEC) performance of bismuth vanadate (BiVO4) photoanodes for solar water splitting were studied. Thin films of BiVO were deposited on indium tin oxide-coated glass slides by ultrasonic spray pyrolysis of an aqueous solution containing bismuth nitrate and vanadium oxysulfate. Tungsten doping was achieved by adding either silicotungstic acid (STA) or ammonium metatungstate (AMT) to the precursor. The 1.7- to 2.2-μm-thick films exhibited a highly porous microstructure. Undoped films that were reduced at 375°C in 3% H exhibited the largest photocurrent densities under 0.1 W cm-2 AM1.5 illumination, where photocurrent densities of up to 1.3 mA cm-2 at 0.5 V with respect to Ag/AgCl were achieved. Films doped with 1% or 5% (atomic percent) tungsten from either STA or AMT exhibited reduced PEC performance and greater sample-to-sample performance variations. Powder x-ray diffraction data indicated that the films continue to crystallize in the monoclinic polymorph at low doping levels but crystallize in the tetragonal scheelite structure at higher doping. It is surmised that the phase and morphology differences promoted by the addition of W during the deposition process reduced the PEC performance as measured by photovoltammetry.

  13. Activity of terbinafine in experimental fungal infections of laboratory animals.

    PubMed Central

    Petranyi, G; Meingassner, J G; Mieth, H

    1987-01-01

    The allylamine derivative terbinafine is the first antifungal agent with primary fungicidal properties against dermatophytes which acts systemically after oral application as well as locally after topical application. Comparative oral studies carried out with griseofulvin and ketoconazole in model infections such as guinea pig trichophytosis and microsporosis revealed terbinafine to be superior to the reference compounds both clinically and mycologically. An excellent antimycotic activity of terbinafine was also demonstrable after topical treatment of guinea pig dermatophytoses caused by Trichophyton mentagrophytes or Microsporum canis. Results of comparative chemotherapeutic studies carried out with econazole and tolnaftate demonstrated superior efficacy of terbinafine in the treatment of both trichophytosis and microsporosis. Skin infections of guinea pigs caused by Candida albicans and vaginal candidiasis in rats proved to be responsive to a topical application of terbinafine also. However, the reference compounds, clotrimazole and miconazole, exhibited activity superior to that of terbinafine in both models. PMID:3435103

  14. IDAHO CHEMICAL PROCESSING PLANT TECHNICAL PROGRESS REPORT FOR APRIL THROUGH JUNE 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, C.E.

    1958-11-01

    Processing of uranium -aluminum alloy was continued with slight process modifications. Means for recovering rare gases from dissolver off-gas are described. Results of extensive decontamination procedures required to enable entrance to the continuous dissolver cell are also indicated. Pilot plant studies of dissolving aluminum continuously showed that rates of dissolution were decreased by factors of 2 to 4 as the concentration of nitric acid fed was increased from 5.4 to 11N. The rate of aluminum dissolution was found to be proportional to initial area exposed for pieces of different shape. It was found possible to produce a highly basic aluminummore » nitrate solution at a reasonable rate by dissolving to low concentration in dilute acid, followed by evaporation to the desired level. Uranium exchange rate measurements for the TBP extraction process are described. A canned rotor pump under test with graphite bearings operated 6000 hours with nominal wear. Difficulties were experienced in testing a nutating disc pump. Measurements of the potential of zirconium in hydrofluoric acid as a function of pH confirmed the predicted equation. In teflon vessels, zirconium dissolves a little more rapidly in nitric-hydrofluoric acid mixtures than in glass vessels, presumably due to reaction of fluoride with silica. Titunium alloy Types 55A and 75A were found to resist corrosion by certain boiling nitric-hydrochloric acid mixtures. Initial tests have commenced with a NaK-heated 100 liter/hour pilot plant aluminum nitrate calciner to continue process demonstration. In tests in the smaller pilot plant unit, increasing feed spray air ratio was found to increase particle loading in the cyclone effluent. Laboratory studies indicated that a venturi scrubber using dilute nitric acid at 80 C should remove ruthenium effectively from calciner off-gas. In a pilot plant test in which a significant fraction of ruthenium feed was retained by the alumina, substantial absorption of volatilized ruthenium was obtained. Thermal conductivity of alumina near 3000 F was about 0.26 Btu/hr)(ft)( F). In leaching studies, very little strontium or plutonium was removed by water from alumina calcined at 550 C. Dilute nitric acid, however, extracted strontium from this material to the same degree (~ 50 percent) as from material calcined at 400 C. Concentrated basic aluminum nitrate was produced from simulated aluminum nitrate waste by slow hydrolysis with urea followed by evaporation. Aluminum was efficiently extracted from buffered aluminum nitrate solution by acetylacetone and was stripped back into nitric acid. A filterable aluminum phosphate was precipituted from aluminum nitrate solution by urea hydrolysis; the phosphate effectively carried fission products, however. Spectrophotometric methods were developed for macro and micro quantities of uranium, in the presence of high concentrations of other ions, based on tetrapropylammonium nitrate extraction. (For preceding period see ID0-14443.) (auth)« less

  15. Soft chemistry routes for synthesis of rare earth oxide nanoparticles with well defined morphological and structural characteristics

    NASA Astrophysics Data System (ADS)

    Mancic, L.; Marinkovic, B. A.; Marinkovic, K.; Dramicanin, M.; Milosevic, O.

    2011-11-01

    Phosphors of (Y0.75Gd0.25)2O3:Eu3+ (5 at.%) have been prepared through soft chemistry routes. Conversion of the starting nitrates mixture into oxide is performed through two approaches: (a) hydrothermal treatment (HT) at 200 °C/3 h of an ammonium hydrogen carbonate precipitated mixture and (b) by thermally decomposition of pure nitrate precursor solution at 900 °C in dispersed phase (aerosol) within a tubular flow reactor by spray pyrolysis process (SP). The powders are additionally thermally treated at different temperatures: 600, 1000, and 1100 °C for either 3 or 12 h. HT—derived particles present exclusively one-dimensional morphology (nanorods) up to the temperatures of 600 °C, while the leaf-like particles start to grow afterward. SP—derived particles maintain their spherical shape up to the temperatures of 1100 °C. These submicron sized spheres were actually composed of randomly aggregated nanoparticles. All powders exhibits cubic Ia- 3 structure (Y0.75Gd0.25)2O3:Eu and have improved optical characteristics due to their nanocrystalline nature. The detailed study of the influence of structural and morphological powder characteristics on their emission properties is performed based on the results of X-ray powder diffractometry, scanning electron microscopy, X-ray energy dispersive spectroscopy, transmission electron microscopy, and photoluminescence measurements.

  16. Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiagvik, Alaska

    DOE PAGES

    Gunsch, Matthew J.; Kirpes, Rachel M.; Kolesar, Katheryn R.; ...

    2017-09-14

    Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aerosol sources and compare to natural conditions. From August to September 2015 in Utqiagvik (Barrow), AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (0.13–4 µm projected area diameter) and real-time single-particle mass spectrometry (0.2–1.5 µm vacuum aerodynamic diameter). During periods influenced by the Arctic Ocean (70 %more » of the study), our results show that fresh sea spray aerosol contributed ~20 %, by number, of particles between 0.13 and 0.4 µm, 40–70 % between 0.4 and 1 µm, and 80–100 % between 1 and 4 µm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 % of the study), the third largest oil field in North America, there was a strong influence from submicron (0.13–1 µm) combustion-derived particles (20–50 % organic carbon, by number; 5–10% soot by number). While sea spray aerosol still comprised a large fraction of particles (90 % by number from 1 to 4 µm) detected under Prudhoe Bay influence, these particles were internally mixed with sulfate and nitrate indicative of aging processes during transport. In addition, the overall mode of the particle size number distribution shifted from 76 nm during Arctic Ocean influence to 27 nm during Prudhoe Bay influence, with particle concentrations increasing from 130 to 920 cm -3 due to transported particle emissions from the oil fields. The increased contributions of carbonaceous combustion products and partially aged sea spray aerosol should be considered in future Arctic atmospheric composition and climate simulations.« less

  17. Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiagvik, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsch, Matthew J.; Kirpes, Rachel M.; Kolesar, Katheryn R.

    Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aerosol sources and compare to natural conditions. From August to September 2015 in Utqiagvik (Barrow), AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (0.13–4 µm projected area diameter) and real-time single-particle mass spectrometry (0.2–1.5 µm vacuum aerodynamic diameter). During periods influenced by the Arctic Ocean (70 %more » of the study), our results show that fresh sea spray aerosol contributed ~20 %, by number, of particles between 0.13 and 0.4 µm, 40–70 % between 0.4 and 1 µm, and 80–100 % between 1 and 4 µm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 % of the study), the third largest oil field in North America, there was a strong influence from submicron (0.13–1 µm) combustion-derived particles (20–50 % organic carbon, by number; 5–10% soot by number). While sea spray aerosol still comprised a large fraction of particles (90 % by number from 1 to 4 µm) detected under Prudhoe Bay influence, these particles were internally mixed with sulfate and nitrate indicative of aging processes during transport. In addition, the overall mode of the particle size number distribution shifted from 76 nm during Arctic Ocean influence to 27 nm during Prudhoe Bay influence, with particle concentrations increasing from 130 to 920 cm -3 due to transported particle emissions from the oil fields. The increased contributions of carbonaceous combustion products and partially aged sea spray aerosol should be considered in future Arctic atmospheric composition and climate simulations.« less

  18. Silicon-slurry/aluminide coating. [protecting gas turbine engine vanes and blades

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Young, S. G. (Inventor)

    1983-01-01

    A low cost coating protects metallic base system substrates from high temperatures, high gas velocity ovidation, thermal fatigue and hot corrosion and is particularly useful fo protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrates from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue and increased the resistance of certain superalloys to hot corrosion.

  19. Microbial and Nutrient Concentration and Load Data During Stormwater Runoff at a Swine Concentrated Animal Feeding Operation in the North Carolina Coastal Plain, 2006-2007

    USGS Publications Warehouse

    Harden, Stephen L.

    2008-01-01

    This report summarizes water-quality and hydrologic data collected during 2006-2007 to characterize bacteria and nutrient loads associated with overland runoff and subsurface tile drainage in spray fields at a swine concentrated animal feeding operation. Four monitoring locations were established at the Lizzie Research Site in the North Carolina Coastal Plain Physiographic Province for collecting discharge and water-quality data during stormwater-runoff events. Water stage was measured continuously at each monitoring location. A stage-discharge relation was developed for each site and was used to compute instantaneous discharge values for collected samples. Water-quality samples were collected for five storm events during 2006-2007 for analysis of nutrients and fecal indicator bacteria. Instantaneous loads of nitrite plus nitrate, total coliform, Escherichia coli (E. coli), and enterococci were computed for selected times during the five storm events.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apaydin, Ramazan Oguzhan; Ebin, Burcak; Gurmen, Sebahattin

    Copper-Nickel (CuNi) nanostructured alloy particles were produced by Ultrasonic Spray Pyrolysis and Hydrogen Reduction Method (USP-HR) from high purity copper and nickel nitrate aqueous solutions. The effect of the precursor solution in the range of 0.1 and 0.5 mol/L on the morphology and crystallite size of CuNi nanoparticles were investigated under 2 h running time, 700 °C operating temperature and 0.5 L/min H{sub 2} flow rate. Particle size, morphology, composition and crystallite structure were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD). Particle characterization studies show that nanostructured alloy particles have cubic crystal structuremore » and they are in submicron size range with spherical morphology. The crystallite sizes of the particles calculated with Scherrer formula are 40 and 34 nm and average particles sizes observed from the SEM images are 300 and 510 nm for each experiment respectively.« less

  1. Innovative Formulation Combining Al, Zr and Si Precursors to Obtain Anticorrosion Hybrid Sol-Gel Coating.

    PubMed

    Genet, Clément; Menu, Marie-Joëlle; Gavard, Olivier; Ansart, Florence; Gressier, Marie; Montpellaz, Robin

    2018-05-10

    The aim of our study is to improve the aluminium alloy corrosion resistance with Organic-Inorganic Hybrid (OIH) sol-gel coating. Coatings are obtained from unusual formulation with precursors mixing: glycidoxypropyltrimethoxysilane (GPTMS), zirconium (IV) propoxide (TPOZ) and aluminium tri-sec-butoxide (ASB). This formulation was characterized and compared with sol formulations GPTMS/TPOZ and GPTMS/ASB. In each formulation, a corrosion inhibitor, cerium (III) nitrate hexahydrate, is employed to improve the corrosion performance. Coatings obtained from sol based on GPTMS/TPOZ/ASB have good anti-corrosion performances with Natural Salt Spray (NSS) resistance of 500 h for a thickness lower than 4 µm. Contact angle measurement showed a coating hydrophobic behaviour. To understand these performances, nuclear magnetic resonance (NMR) analyses were performed, results make sol-gel coating condensation evident and are in very good agreement with previous results.

  2. CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Singh, Iqbal; Kaur, Gursharan; Bedi, R. K.

    2011-09-01

    An aqueous solution of cupric nitrate trihydrate (Cu(NO 3) 2·3H 2O) modified with cetyltrimetylammonium bromide (CTAB) is used to deposit CuO films on glass substrate by chemical spray pyrolysis technique. The thermal analysis shows that the dried CTAB doped precursor decomposes by an exothermic reaction and suggests that minimum substrate temperature for film deposition should be greater than 270 °C. X-ray diffraction (XRD) studies indicate the formation of monoclinic CuO with preferential orientation along (0 0 2) plane for all film samples. The CTAB used as cationic surfactant in precursor results in the suppression of grain growth in films along the (1 1 0), (0 2 0) and (2 2 0) crystal planes of CuO. Surfactant modified films showed an increase in crystallite size of 14 nm at substrate temperature of 300 °C. The scanning electron micrographs (FESEM) confirm the uniform distribution of facets like grains on the entire area of substrate. CTAB modified films show a significant reduction in the particle agglomeration. Electrical studies of the CuO films deposited at substrate temperature of 300 °C with and without surfactant reveal that the CTAB doping increase the activation energy of conduction by 0.217 eV and room temperature response to ammonia by 9%. The kinetics of the ammonia gas adsorption on the film surface follows the Elovich and Diffusion models.

  3. Photoelectrochemical performance of W-doped BiVO4 thin-films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Holland, Stephen K.; Dutter, Melissa R.; Lawrence, David J.; Reisner, Barbara A.; DeVore, Thomas C.

    2013-09-01

    The effect of tungsten doping and hydrogen annealing treatments on the photoelectrochemical (PEC) performance of bismuth vanadate (BiVO4) photoanodes for solar water splitting was studied. Thin films of BiVO4 were deposited on ITO-coated glass slides by ultrasonic spray pyrolysis of an aqueous solution containing bismuth nitrate and vanadium oxysulfate. Tungsten doping was achieved by adding either silicotungstic acid (STA) or ammonium metatungstate (AMT) in the aqueous precursor. The 1.7 μm - 2.2 μm thick films exhibited a highly porous microstructure. Undoped films that were reduced at 375 ºC in 3% H2 exhibited the largest photocurrent densities under 0.1 W cm-2 AM1.5 illumination. This performance enhancement was believed to be due to the formation of oxygen vacancies, which are shallow electron donors, in the films. Films doped with 1% or 5% tungsten from either STA or AMT exhibited reduced photoelectrochemical performance and greater sample-to-sample performance variations. Powder X-ray diffraction data of the undoped films indicated that they were comprised primarily of the monoclinic scheelite phase while unidentified phases were also present. Scanning electron microscopy showed slightly different morphology characteristics for the Wdoped films. It is surmised that the addition of W in the deposition process promoted the morphology differences and the formation of different phases, thus reducing the PEC performance of the photoanode samples. Significant PEC performance variability was also observed among films deposited using the described process.

  4. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  5. Desert dust,Ocean spray,Volcanoes,Biomass burning: Pathways of nutrients into Andean rainforests

    NASA Astrophysics Data System (ADS)

    Fabian, P.; Rollenbeck, R.; Spichtinger, N.; Dominguez, G.; Brothers, L.; Thiemens, M.

    2009-04-01

    Regular rain and fogwater sampling in the Podocarpus National Park, along an altitude profile between 1800 and 3185 m, has been carried out since 2002.The research area located in southern Ecuador on the wet eastern slopes of the Andes is dominated by trade winds from easterly directions. The samples, generally accumulated over 1-week intervals, have been analysed for pH,conductivity and major ions(K+,Na+,NH4+,Ca2+,Mg 2+,SO42-,NO3-,PO43). For all components a strong seasonal variation is observed,while the altitudinal gradient is less pronounced. About 35 % of the weekly samples had very low ion contents,at or below the detection limit, with pH generally above 5 and conductivity below 10 uS/cm.10 days back trajectories (FLEXTRA) showed that respective air masses originated in pristine continental areas,with little or no obvious pollution sources. About 65 %,however,were significantly loaded with cations and anions,with pH often as low as 3.5 to 4.0 and conductivity up to 50 uS/cm.Back trajectories showed that respective air masses had passed over areas of intense biomass burning,volcanoes,and the ocean,with even episodic Sahara and/or Namib desert dust interference. Enhanced SO4 2-and NO3- were identified,by combining satellite-based fire pixels with back trajectories,as predominantly resulting from biomass burning. Analyses of oxygen isotopes 16O ,17O ,and 18O of nitrate show that nitrate in fog samples is a product of atmospheric conversion of precursors.For most cases,by using emission inventories, anthropogenic precursor sources other than forest fires could be ruled out,thus leaving biomass burning as the main source of nitrate and sulphate in rain and fogwater. Some SO4 2- ,about 10 % of the total input,could be identified to originate from active volcanoes, whose plumes were sometimes encountered by the respective back trajectories. Enhanced Na +, K + ,and Cl - was found to originate from ocean spray sources.They were associated with strong winds providing Atlantic air masses to reach the receptor site within less than 5 days.Episodes of enhanced Ca 2+ and Mg 2+ were found to be associated with air masses from African deserts.Satellite aerosol data clearly confirmed desert sources both on the Northern (Sahara) as on the Southern Hemisphere (Namib),depending on season. Few episodes of distinct PO43-deposition are due to air masses either from north African (phosphate mining) or coastal sites of Peru (guano?). While volcanic,oceanic and desert sources are natural, large scale biomass burning is an anthropogenic source which adds about 7 kg/ha of NO3- and 14 kg/ha of SO4 2- per year .The episodic PO4 3- deposition amounts to about 2.6 kg/ha PO4 3- per year.Controlled fertilizing experiments are presently carried out to investigate the impact of these disturbances on the mountain forest ecosystem.

  6. Geochemistry of regional background aerosols in the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Pey, J.; Pérez, N.; Castillo, S.; Viana, M.; Moreno, T.; Pandolfi, M.; López-Sebastián, J. M.; Alastuey, A.; Querol, X.

    2009-11-01

    The chemical composition of regional background aerosols, and the time variability and sources in the Western Mediterranean are interpreted in this study. To this end 2002-2007 PM speciation data from an European Supersite for Atmospheric Aerosol Research (Montseny, MSY, located 40 km NNE of Barcelona in NE Spain) were evaluated, with these data being considered representative of regional background aerosols in the Western Mediterranean Basin. The mean PM 10, PM 2.5 and PM 1 levels at MSY during 2002-2007 were 16, 14 and 11 µg/m 3, respectively. After compiling data on regional background PM speciation from Europe to compare our data, it is evidenced that the Western Mediterranean aerosol is characterised by higher concentrations of crustal material but lower levels of OM + EC and ammonium nitrate than at central European sites. Relatively high PM 2.5 concentrations due to the transport of anthropogenic aerosols (mostly carbonaceous and sulphate) from populated coastal areas were recorded, especially during winter anticyclonic episodes and summer midday PM highs (the latter associated with the transport of the breeze and the expansion of the mixing layer). Source apportionment analyses indicated that the major contributors to PM 2.5 and PM 10 were secondary sulphate, secondary nitrate and crustal material, whereas the higher load of the anthropogenic component in PM 2.5 reflects the influence of regional (traffic and industrial) emissions. Levels of mineral, sulphate, sea spray and carbonaceous aerosols were higher in summer, whereas nitrate levels and Cl/Na were higher in winter. A considerably high OC/EC ratio (14 in summer, 10 in winter) was detected, which could be due to a combination of high biogenic emissions of secondary organic aerosol, SOA precursors, ozone levels and insolation, and intensive recirculation of aged air masses. Compared with more locally derived crustal geological dusts, African dust intrusions introduce relatively quartz-poor but clay mineral-rich silicate PM, with more kaolinitic clays from central North Africa in summer, and more smectitic clays from NW Africa in spring.

  7. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery.

    PubMed

    Leclercq, Loïc; Nardello-Rataj, Véronique

    2016-01-20

    Surfactants are usually used for the preparation of emulsions. Potential drawbacks on the human body or on the environment can be observed for some of them(e.g. skin irritation, hemolysis, protein denaturation, etc.). However, it is possible to use biocompatible emulsifiers such as native cyclodextrins (CDs). The mixture of oil (paraffin oil or isopropyl myristate), water and native CDs results in the formation of Pickering emulsions. The emulsion properties were investigated by ternary phase diagrams elaboration, multiple light scattering, optical and transmission microscopies. The results prove that these Pickering emulsions were very stable against coalescence due to the dense film format the oil/water interface. The rheological behavior has shown that these emulsions remain compatible for topical applications. This kind of emulsions (biocompatibility, stability and surfactant free) has been used to obtain sustainable formulations for antifungal econazole derivatives delivery. Our results prove that these new formulations are at least as active as commercially available formulations.

  8. N-15 tracing helps explaining N leaching losses from contrasting forest ecosystems

    NASA Astrophysics Data System (ADS)

    Staelens, J.; Rütting, T.; Huygens, D.; Müller, C.; Verheyen, K.; Boeckx, P.

    2009-04-01

    Despite chronically enhanced nitrogen (N) deposition to forest ecosystems in Europe and NE America, considerable N retention by forests has been observed, reducing N leaching losses. Organic and mineral soil layers typically immobilize more N than the aboveground biomass, but it is unclear which factors determine N retention in forest ecoystems. However, this knowledge is crucial to assess the impact of changing anthropogenic N emissions on future N cycling and N loss of forests. For coniferous and deciduous forest stands at comparable sites, it is known that both N deposition onto the forest floor as well as N loss by leaching below the rooting zone are significantly higher in coniferous stands. In addition, the N loss in coniferous stands is often more enhanced than can be explained by the higher N input only. This suggests lower N retention by coniferous stands, and may be related to differences in litter and soil characteristics, microbial activity, and N uptake by plant roots. To test this hypothesis, we studied the effect of forest type on N retention using 15N tracing techniques: a field tracer experiment and a combination of in situ isotope pool dilution and a tracing model. The N dynamics were examined for two adjacent forest stands (pedunculate oak (Quercus robur L.) and Scots pine (Pinus sylvestris L.)) on a well-drained sandy soil and with a similar stand history, located in a region with high N deposition (Belgium). Input-output N budgets were established by quantifying atmospheric deposition and leaching below the rooting zone, and confirmed the above finding of higher N deposition and disproportionately higher N loss for the pine stand compared to the oak stand. First, the fate of inorganic N within the ecosystems was studied by spraying three pulses of dissolved 15N, either as ammonium or as nitrate, onto the forest floor in 12 plots of 25 m2. The organic and mineral soil layers, tree roots, soil water percolate, ferns, and tree foliage were sampled and analyzed for total N and 15N four times in the year after 15N application. Here we present results of the 15N recovery four months after the first application, and compare the recovery between the two forest stands and the two N treatments. Second, gross N transformation rates in the undisturbed mineral forest soils were determined via 15N pool dilution and advanced trace modelling. Using five spatial replicates per stand, three 15N treatments were applied in the field to 'virtual' soil cores (0-10 cm) that were disturbed only at sampling. Each treatment solution contained ammonium, nitrate, and nitrite, with one of the N forms labelled with 15N at 99% at. excess. Intact soil cores were sampled at six time intervals over a 12-day period, and analyzed for N and 15N content in different mineral and organic pools. The parameters of different simultaneously occurring process rates were optimized using a Markov Chain Monte Carlo algorithm. In both stands, heterotrophic nitrification of the organic soil pool was more important than autotrophic nitrification of ammonium. Significantly different process rates between the two forest stands were found for mineralization, heterotrophic and autotrophic nitrification, and ammonium and nitrate immobilization. Gross mineralization and ammonium immobilization rates were higher in the oak soil than in the pine soil. Gross nitrate production, in contrast, was faster in the pine soil, while nitrate immobilization was slower. These different soil nitrate dynamics likely contribute to the observed higher nitrate leaching loss in the pine than oak stand. In addition to the faster nitrate immobilization in the oak soil, our results strongly suggested the occurrence of a second N-conserving process under oak, i.e. dissimilatory nitrate reduction to ammonium (DNRA). This is unexpected for a temperate forest soil under enhanced N deposition, as this process has mainly been described for unpolluted soils.

  9. Ground-water quality, levels, and flow direction near Fort Cobb Reservoir, Caddo County, Oklahoma, 1998-2000

    USGS Publications Warehouse

    Becker, Carol J.

    2001-01-01

    Fort Cobb Reservoir in northwest Caddo County Oklahoma is managed by the Bureau of Reclamation for water supply, recreation, flood control, and wildlife. Excessive amounts of nitrogen in the watershed have the potential to cause long-term eutrophication of the reservoir and increase already elevated concentrations of nitrogen in the Rush Springs aquifer. The U.S. Geological Survey in cooperation with the Bureau of Reclamation studied ground water in the area surrounding a swine feeding operation located less than 2 miles upgradient from Fort Cobb Reservoir in Caddo County, Oklahoma. Objectives of the study were to (1) determine if the operation was contributing nitrogen to the ground water and (2) measure changes in ground-water levels and determine the local ground-water flow direction in the area surrounding the swine feeding operation. Nitrate concentrations (28.1 and 31.5 milligrams per liter) were largest in two ground-water samples from a well upgradient of the wastewater lagoon. Nitrate concentrations ranged from 4.30 to 8.20 milligrams per liter in samples from downgradient wells. Traces of ammonia and nitrite were detected in a downgradient well, but not in upgradient wells. d15N values indicate atmospheric nitrogen, synthetic fertilizer, or plants were the predominate sources of nitrate in ground water from the downgradient wells. The d15N values in these samples are depleted in nitrogen-15, indicating that animal waste was not a significant contributor of nitrate. Manganese concentrations (1,150 and 965 micrograms per liter) in samples from a downgradient well were substantially larger than concentrations in samples from other wells, exceeding the secondary drinking-water standard of 50 micrograms per liter. Larger concentrations of bicarbonate, magnesium, fluoride, and iron and a higher pH were also measured in water from a downgradient well. Ground-water levels in an observation well were higher from April to mid-July and lower during the late summer and in the fall due to a seasonal decrease in precipitation, increase in water withdrawals, and increase in evapotranspiration. Ground water near the wastewater spray field moved south-southeast toward Willow Creek along a gradient of about 50 feet per mile. Analysis of ground-water samples suggest that commercial fertilizer is contributing nitrate upgradient of the swine feeding operation and that wastewater from the lagoon is contributing reduced forms of nitrogen, ammonia and nitrite. Additional downgradient wells would be needed to (1) determine if the swine feeding operation is adding excessive amounts of nitrogen to ground water, (2) determine the vertical dimension of wastewater flow, and (3) the extent of wastewater downgradient of the lagoon.

  10. Development of New Generation of Ceramics for Environmentally Focused Chemical Separations

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Girish

    This dissertation focuses on the use of composite materials for environmental applications. For the first time, applications of both fresh and aged concrete as inexpensive adsorbents for nitrogen dioxide (NO2) removal is demonstrated. Concrete is the most widely used composite material of the modern era. Cement manufacturing (a major component of concrete) is considered to be one of the leading contributors to air pollution, resulting in 7% of the global carbon dioxide emissions along with a number of other harmful pollutants such as oxides, mercury and particulates. These emissions aide in the formation of acid rain, smog, and toxic ground level ozone, causing detrimental effects such as respiratory illnesses, visibility reduction, eutrification and global warming. This thesis offers a novel and sustainable solution in mitigating NOX emissions, by introducing the significant adsorption potential of recycled concrete. The work is based on both commercially available cement paste and already aged concrete samples, providing truly scalable solutions. The concrete samples aged for different periods of time were exposed to NO2 to measure their adsorption capacity. The results show that all of the concrete samples (fresh and aged) exhibited excellent NO2 adsorption capacity, with the fresh concrete samples removing almost 100% of the NO2. Furthermore, to compare the effects of long term aging, 12 year-old recently demolished concrete samples were obtained and its NOX removal was shown to be almost 60%. The experimental results provide evidence of nitrate and nitrite species formation from chemical reactions occurring between NO2 and surface alkaline species. This important discovery can be utilized for NO2 removal and subsequent NOX sequestered demolished concrete (NSDC) recycling in new concrete, either as a set accelerating admixture or as a corrosion inhibitor, a big leap towards better sustainability and longevity of the new reinforced concrete structures. The rest of this thesis focuses on development of a new generation of ceramic membranes utilizing thermal spray techniques to produce highly scalable and extremely cost effective filtration membranes. Thermal spray method of membrane manufacturing has the advantage of economic scalability (up to tens of square meters) along with performance enhancement as compared to conventional wet casting process. In addition to developing a proof of concept for this approach, several strategies on how to improve ceramic membranes' performance via spraying process optimization are also described. Specifically, several thermal sprayed Alumina membrane samples were prepared by varying different process parameters. These samples were characterized using known techniques and subjected to permeability and size exclusion tests to correlate spraying parameters with membranes' performance. The membrane samples showed excellent clean water flux comparable to commercially available membranes and had rejection rates up to 96%. These results show that the membranes produced in this research achieve outstanding performance at a fraction of the cost of commercially produced membrane, enabling the use of membrane filtrations units in developing countries.

  11. Comparison of the performance between a spray gun and a spray boom in ornamentals.

    PubMed

    Foqué, D; Nuyttens, D

    2011-01-01

    Flemish greenhouse growers predominantly use handheld spray guns and spray lances for their crop protection purposes although these techniques are known for their heavy workload and their high operator exposure risks. Moreover, when these techniques are compared with spray boom equipment, they are often found to be less effective. On the other hand, handheld spraying techniques are less expensive and more flexible to use. Additionally, many Flemish growers are convinced that a high spray volume and spray pressure is needed to assure a good plant protection. The aim of this work was to evaluate and compare the spray deposition, penetration and uniformity between a manually pulled horizontal spray boom and a spray gun under controlled laboratory conditions. In total, six different spray application techniques were evaluated. In general, the total deposition results were comparable between the spray boom and the spray gun applications but the boom applications resulted in a more uniform spray distribution over the crop. On a plant level, the spray distribution was not uniform for the different techniques with highest deposits on the upper side of the top leaves. Using spray guns at a higher spray pressure did not improve spray penetration and deposition on the bottom side of the leaves. From the different nozzle types, the XR 80 03 gave the best results. Plant density clearly affected crop penetration and deposition on the bottom side of the leaves.

  12. Liquid Fertilizer Spraying Performance Using A Knapsack Power Sprayer On Soybean Field

    NASA Astrophysics Data System (ADS)

    Gatot, P.; Anang, R.

    2018-05-01

    An effort for increasing soybean production can be conducted by applying liquid fertilizer on soybean cultivation field. The objective of this research was to determine liquid fertilizer spraying performance using knapsack power sprayer TASCO TF-900 on a soybean cultivation field. Performances test were conducted in the Laboratory of Spraying Test and on a soybean cultivation field to determine (1) effective spraying width, (2) droplets diameter, (3) droplets density, (4) effective spraying discharge rate, and (5) effective field capacity of spraying. The research was conducted using 2 methods: (1) one-nozzle spraying, and (2) four- nozzles spraying. Results of the research showed that at a constant pressure of 900 kPa effective spraying width using one-nozzle spraying and four-nozzles spraying were 0.62 m and 1.10 m. A bigger effective spraying width was resulted in a bigger average effective spraying discharge rate and average effective spraying field capacity of 4.52 l/min and 83.92 m2/min on forward walking speed range of 0.94 m/s up to 1.77 m/s. On the contrary, bigger effective spraying width was result in bigger droplets diameter of 502.73 μm and a smaller droplets density of 98.39 droplets/cm2, whereas smaller effective spraying width was resulted in a smaller droplets diameter of 367.09 μm and a bigger droplets density of 350.53 droplets/cm2. One-nozzle spraying method produced a better spraying quality than four-nozzles spraying method, although four-nozzles spraying was resulted in a bigger effective field capacity of spraying.

  13. Method of protecting a surface with a silicon-slurry/aluminide coating. [coatings for gas turbine engine blades and vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Young, S. G. (Inventor)

    1982-01-01

    A low cost coating for protecting metallic base system substrates from high temperatures, high gas velocity oxidation, thermal fatigue and hot corrosion is described. The coating is particularly useful for protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrate from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue. Also, the Si-Al coating increased the resistance of certain superalloys to hot corrosion.

  14. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    NASA Astrophysics Data System (ADS)

    Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores

    2018-05-01

    Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  15. Comparison of the Characteristics and Performance of Flurbiprofen 8.75 mg Spray for Sore Throat.

    PubMed

    Veale, David; Shephard, Adrian; Adams, Verity; Lidster, Charlotte

    2017-01-01

    Sore throat sprays provide targeted relief by delivering the active ingredient directly to the site of pain. Different sprays vary in characteristics, thus affecting delivery of the active ingredient to the throat, which can impact compliance. The characteristics and performance of FLURBIPROFEN 8.75 mg SPRAY were compared with 12 other sprays. Parameters assessed included spray angle and pattern, droplet size distribution, shot weight uniformity and shot weight throughout life. Among all sprays tested WICK Sulagil Halsspray had the smallest spray angle (46°) and also the smallest diameter spray pattern (X=32.8 mm; Y=34.4 mm). Thiovalone® Buccal Spray Suspension had both the largest spray angle (82°) and largest diameter spray pattern (X=62.6 mm; Y=78.0 mm). Hasco Sept® Aerosol Spray had the smallest droplet size (Dv90=118.4 μm) whereas OKi infiammazione e dolore® 0.16% spray had the largest (Dv90=214.34 μm). In terms of shot weight uniformity, TANTUM® VERDE GOLA 0.25% spray showed the least variation (2% RSD) between shots and UNIBEN Aerosol Spray the most (23.4% RSD). Shot weight throughout life studies showed that FLURBIPROFEN 8.75 mg SPRAY had the least deviation from shot weight (1.77%) whereas OKi infiammazione e dolore® 0.16% spray deviated the most (44.9%). FLURBIPROFEN 8.75 mg SPRAY had the second smallest spray angle/pattern and droplet size distribution and also the least variation in shot weight. Different sore throat sprays vary in different attributes, affecting delivery of the active ingredient. FLURBIPROFEN 8.75 mg SPRAY performed well overall, ranking first among all sprays tested, and providing a dose which is targeted and uniformly delivered throughout the life of the bottle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves.

    PubMed

    Wang, Yong; Yu, Yu-Song; Li, Guo-Xiu; Jia, Tao-Ming

    2017-01-05

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern's Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu's, Varde's and Merrigton's model). It is found that the Merrigton's model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton's model is fitted with experimental results.

  17. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves

    PubMed Central

    Wang, Yong; Yu, Yu-song; Li, Guo-xiu; Jia, Tao-ming

    2017-01-01

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern’s Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu’s, Varde’s and Merrigton’s model). It is found that the Merrigton’s model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton’s model is fitted with experimental results. PMID:28054555

  18. Nitrogen retention in contrasting temperate forests exposed to high nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Staelens, J.; Adriaenssens, S.; Wuyts, K.; Verheyen, K.; Boeckx, P. F.

    2011-12-01

    A better understanding of factors affecting nitrogen (N) retention is needed to assess the impact of changing anthropogenic N emissions and climatic conditions on N cycling and N loss by terrestrial ecosystems. Retention of N has been demonstrated for a wide range of forests, including ecosystems exposed to chronically enhanced N deposition, but it is still unclear which factors determine this N retention capacity. Therefore, we examined the possible effects of forest type on N retention using stable N isotopes. The study was carried out in adjacent equal-aged deciduous (pedunculate oak (Quercus robur L.)) and coniferous (Scots pine (Pinus sylvestris L.)) stands with a similar stand history and growing on a well-drained sandy soil in a region with enhanced N deposition (Belgium). The N input-output budgets and gross soil N transformation rates differed significantly between the two stands. The forest floor was exposed to a high inorganic N input from atmospheric deposition, which was nearly twice as high in the pine stand (33 ± 2 kg N ha-1 yr-1; mean ± standard error) as in the oak stand (18 ± 1 kg N ha-1 yr-1). The N input was reflected in the soil solution under the rooting zone, but the mean nitrate concentration was eight times higher under pine (19 ± 5 mg N L-1) than under oak (2.3 ± 0.9 mg N L-1). Gross N dynamics in the mineral topsoil were determined by in situ 15N labelling of undisturbed soil cores combined with numerical data analysis. Gross N mineralization was two times faster in the oak soil while nitrate production was two times faster in the pine soil, indicating a dominant effect of vegetation cover on soil N cycling. The higher gross nitrification, particularly due to oxidation of organic N, in the pine soil compared to the oak soil, combined with negligible nitrate immobilization, was in line with the higher nitrate leaching under the pine forest. On a larger spatial and temporal scale, the fate of dissolved inorganic N within these forests was studied by spraying three pulses of 15N onto the forest floor during the growing season, either as ammonium or as nitrate. Four months and one year after the first application, 15N recovery was determined in the organic and mineral soil layers, fine tree roots, soil water percolate, ferns, and tree foliage. As hypothesized, N retention in the forest floor and mineral soil horizons was lower in the pine stand compared to oak, while N retention was lower for nitrate than for ammonium in both stands. The differences in 15N retention confirm that tree species affect the N balance of ecosystems under high anthropogenic N inputs and agree with the findings on gross soil N dynamics and N input-output budgets. Overall, the research underlines the importance of considering the interaction between tree species and carbon and N turnover when assessing the response of forest ecosystems to global change scenarios.

  19. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    PubMed

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  20. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    PubMed

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  1. Improved Orifice Plate for Spray Gun

    NASA Technical Reports Server (NTRS)

    Cunningham, W.

    1986-01-01

    Erratic spray pattern of commercial spray gun changed to repeatable one by simple redesign of two parts. In modified spray gun orifice plate and polytetrafluoroethylene bushing redesigned to assure centering and alignment with nozzle. Such improvement useful in many industrial applications requiring repeatable spray patterns. Might include spraying of foam insulation, paint, other protective coatings, detergents, abrasives, adhesives, process chemicals, or fuels. Unmodified spray gun produces erratic spray because lateral misalignment between orifice plate and nozzle.

  2. Evaluation of effervescent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Meng; Duan, YuFeng; Zhang, TieNan

    2010-09-15

    The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distancemore » increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)« less

  3. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  4. Particle size distribution of aerosols sprayed from household hand-pump sprays containing fluorine-based and silicone-based compounds.

    PubMed

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2015-01-01

    Japan has published safety guideline on waterproof aerosol sprays. Furthermore, the Aerosol Industry Association of Japan has adopted voluntary regulations on waterproof aerosol sprays. Aerosol particles of diameter less than 10 µm are considered as "fine particles". In order to avoid acute lung injury, this size fraction should account for less than 0.6% of the sprayed aerosol particles. In contrast, the particle size distribution of aerosols released by hand-pump sprays containing fluorine-based or silicone-based compounds have not been investigated in Japan. Thus, the present study investigated the aerosol particle size distribution of 16 household hand-pump sprays. In 4 samples, the ratio of fine particles in aerosols exceeded 0.6%. This study confirmed that several hand-pump sprays available in the Japanese market can spray fine particles. Since the hand-pump sprays use water as a solvent and their ingredients may be more hydrophilic than those of aerosol sprays, the concepts related to the safety of aerosol-sprays do not apply to the hand pump sprays. Therefore, it may be required for the hand-pump spray to develop a suitable method for evaluating the toxicity and to establish the safety guideline.

  5. An overview of spray drift reduction testing of spray nozzles

    USDA-ARS?s Scientific Manuscript database

    The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...

  6. Development of spray guns for the application of rigid foam insulation

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    The paper describes the activities initiated to improve the existing spray gun system used for spraying insulating foam on the External Tank of the Space Shuttle, due to the quality variations of the applied foam noted in the past. Consideration is given to the two tasks of the project: (1) investigations of possible improvements, as an interim measure, to the spray gun currently used to apply the large acreage spray-on-foam insulation and the evaluation of other commercial equipment; and (2) the design and fabrication of a new automatic spray gun. The design and operation of the currently used Binks 43 PA spray gun are described together with several new breadboard spray guns designed and fabricated and the testing procedures developed. These new guns include the Modular Automatic Foam spray gun, the Ball Valve spray gun, and the Tapered Plug Valve (TPV) gun. As a result of tests, the TPV spray gun is recommended to replace the currently used automatic spray gun.

  7. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    NASA Astrophysics Data System (ADS)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  8. A new approach in the first-line treatment of bacterial and mycotic vulvovaginitis with topical lipohydroperoxides and glycyrrhetic acid: a comparative study.

    PubMed

    Mainini, G; Rotondi, M; Scaffa, C

    2011-01-01

    PURPOSE OF INVESTIGATIONS: The aim of this randomized controlled trial was to evaluate efficacy and tolerability of a new association of lipohydroperoxides and glycyrrhetic acid on topical treatment of bacterial and mycotic vulvovaginitis. One hundred consecutive patients with bacterial or mycotic vulvovaginitis were randomly assigned to a study group treated with vaginal lipohydroperoxides and a derivative of glycyrrhetic acid for three days (n = 50), and a control group using vaginal antibacterial metronidazole (500 mg) or antimycotic econazole (150 mg) for six days (n = 50). A clinical and microbiological response was achieved in 80.4% and 88.9% in investigational and control group, respectively (p > 0.05). Compared to traditional antimicrobial drugs, the effect appears to be faster and safer, even if not significantly. The 6-month recurrence rate was 7.7% and 5.6% in the investigational and control group, respectively. Topical medication based on lipohydroperoxides and glycyrrhetic acid showed a clinical and microbiological efficacy in the first-line treatment of bacterial and mycotic vulvovaginitis, comparable to conventional drugs.

  9. [In vitro testing of yeast resistance to antimycotic substances].

    PubMed

    Potel, J; Arndt, K

    1982-01-01

    Investigations have been carried out in order to clarify the antibiotic susceptibility determination of yeasts. 291 yeast strains of different species were tested for sensitivity to 7 antimycotics: amphotericin B, flucytosin, nystatin, pimaricin, clotrimazol, econazol and miconazol. Additionally to the evaluation of inhibition zone diameters and MIC-values the influence of pH was examined. 1. The dependence of inhibition zone diameters upon pH-values varies due to the antimycotic tested. For standardizing purposes the pH 6.0 is proposed; moreover, further experimental parameters, such as nutrient composition, agar depth, cell density, incubation time and -temperature, have to be normed. 2. The relation between inhibition zone size and logarythmic MIC does not fit a linear regression analysis when all species are considered together. Therefore regression functions have to be calculated selecting the individual species. In case of the antimycotics amphotericin B, nystatin and pimaricin the low scattering of the MIC-values does not allow regression analysis. 3. A quantitative susceptibility determination of yeasts--particularly to the fungistatical substances with systemic applicability, flucytosin and miconazol, -- is advocated by the results of the MIC-tests.

  10. Experimental characterization of gasoline sprays under highly evaporating conditions

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar

    2018-05-01

    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.

  11. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method. Optimisation, characterisation and rheology.

    PubMed

    Tredwin, Christopher J; Young, Anne M; Georgiou, George; Shin, Song-Hee; Kim, Hae-Won; Knowles, Jonathan C

    2013-02-01

    Currently, most titanium implant coatings are made using hydroxyapatite and a plasma spraying technique. There are however limitations associated with plasma spraying processes including poor adherence, high porosity and cost. An alternative method utilising the sol-gel technique offers many potential advantages but is currently lacking research data for this application. It was the objective of this study to characterise and optimise the production of Hydroxyapatite (HA), fluorhydroxyapatite (FHA) and fluorapatite (FA) using a sol-gel technique and assess the rheological properties of these materials. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethylphosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the sol-gel derived FHA and FA. Optimisation of the chemistry and subsequent characterisation of the sol-gel derived materials was carried out using X-ray Diffraction (XRD) and Differential Thermal Analysis (DTA). Rheology of the sol-gels was investigated using a viscometer and contact angle measurement. A protocol was established that allowed synthesis of HA, FHA and FA that were at least 99% phase pure. The more fluoride incorporated into the apatite structure; the lower the crystallisation temperature, the smaller the unit cell size (changes in the a-axis), the higher the viscosity and contact angle of the sol-gel derived apatite. A technique has been developed for the production of HA, FHA and FA by the sol-gel technique. Increasing fluoride substitution in the apatite structure alters the potential coating properties. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  12. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    PubMed

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  13. A decision-support tool to predict spray deposition of insecticides in commercial potato fields and its implications for their performance.

    PubMed

    Nansen, Christian; Vaughn, Kathy; Xue, Yingen; Rush, Charlie; Workneh, Fekede; Goolsby, John; Troxclair, Noel; Anciso, Juan; Gregory, Ashley; Holman, Daniel; Hammond, Abby; Mirkov, Erik; Tantravahi, Pratyusha; Martini, Xavier

    2011-08-01

    Approximately US $1.3 billion is spent each year on insecticide applications in major row crops. Despite this significant economic importance, there are currently no widely established decision-support tools available to assess suitability of spray application conditions or of the predicted quality or performance of a given commercial insecticide applications. We conducted a field study, involving 14 commercial spray applications with either fixed wing airplane (N=8) or ground rig (N=6), and we used environmental variables as regression fits to obtained spray deposition (coverage in percentage). We showed that (1) ground rig applications provided higher spray deposition than aerial applications, (2) spray deposition was lowest in the bottom portion of the canopy, (3) increase in plant height reduced spray deposition, (4) wind speed increased spray deposition, and (5) higher ambient temperatures and dew point increased spray deposition. Potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), mortality increased asymptotically to approximately 60% in response to abamectin spray depositions exceeding around 20%, whereas mortality of psyllid adults reached an asymptotic response approximately 40% when lambda-cyhalothrin/thiamethoxam spray deposition exceeded 30%. A spray deposition support tool was developed (http://pilcc.tamu.edu/) that may be used to make decisions regarding (1) when is the best time of day to conduct spray applications and (2) selecting which insecticide to spray based on expected spray deposition. The main conclusion from this analysis is that optimization of insecticide spray deposition should be considered a fundamental pillar of successful integrated pest management programs to increase efficiency of sprays (and therefore reduce production costs) and to reduce risk of resistance development in target pest populations.

  14. Optimization of Fibrin Glue Spray Systems for Ophthalmic Surgery

    PubMed Central

    Chaurasia, Shyam S.; Champakalakshmi, Ravi; Angunawela, Romesh I.; Tan, Donald T.; Mehta, Jodhbir S.

    2012-01-01

    Purpose To optimize fibrin glue (FG) spray for ophthalmic surgery using two spray applicators, EasySpray and DuploSpray systems, by varying the distance from point of application and the pressure/flow rate, and to compare the adhesive strength of sutured and sutureless (FG sprayed) conjunctival graft surgery in a rabbit model. Methods FG was sprayed on a 0.2 mm-thick sheet of paper using EasySpray by variously combining application distances of 2.5, 5, 7.5, and 10 cm with pressures of 10, 15, and 20 psi. DuploSpray was used at the same distances but with varying flow rates of 1 and 2 L/min. Subsequently, FG was sprayed on porcine corneas and FG thickness was analyzed by histology. In addition, adhesive strength of the conjunctival graft (0.5 × 0.5 cm) attached to the rabbit cornea by sutured and sutureless surgery (FG spray) was compared using a tension meter. Results Histology measurements revealed that the FG thickness decreased with increases in distance and pressure of spray using the EasySpray applicator on paper and porcine corneal sections. The adhesive strength of the sutured conjunctival graft (41 ± 4.85 [kilopascal] KPa) was found to be higher than the graft attached by spraying (10 ± 2.3 KPa) and the sequential addition of FG (6 ± 0.714 KPa). Conclusions The EasySpray applicator formed a uniform spread of FG at a distance-pressure combination of 5 cm and 20 psi. The conjunctival graft attached with sutures had higher adhesive strength compared with grafts glued with a spray applicator. Although the adhesive strength of FG applied through the applicator was similar to the drop-wise sequential technique, the former was more cost effective because more samples could be sprayed compared with the sequential manual technique. Translational Relevance The standardization of the spray system for the application of FG in ophthalmology will provide an economical method for delivering consistent healing results after surgery. PMID:24049702

  15. Efficacy of Aedes aegypti control by indoor Ultra Low Volume (ULV) insecticide spraying in Iquitos, Peru

    PubMed Central

    Okamoto, Kenichi W.; Astete, Helvio; Vasquez, Gissella M.; Del Aguila, Clara; Pinedo, Raul; Cardenas, Roldan; Pacheco, Carlos; Chalco, Enrique; Rodriguez-Ferruci, Hugo; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2018-01-01

    Background Aedes aegypti is a primary vector of dengue, chikungunya, Zika, and urban yellow fever viruses. Indoor, ultra low volume (ULV) space spraying with pyrethroid insecticides is the main approach used for Ae. aegypti emergency control in many countries. Given the widespread use of this method, the lack of large-scale experiments or detailed evaluations of municipal spray programs is problematic. Methodology/Principal findings Two experimental evaluations of non-residual, indoor ULV pyrethroid spraying were conducted in Iquitos, Peru. In each, a central sprayed sector was surrounded by an unsprayed buffer sector. In 2013, spray and buffer sectors included 398 and 765 houses, respectively. Spraying reduced the mean number of adults captured per house by ~83 percent relative to the pre-spray baseline survey. In the 2014 experiment, sprayed and buffer sectors included 1,117 and 1,049 houses, respectively. Here, the sprayed sector’s number of adults per house was reduced ~64 percent relative to baseline. Parity surveys in the sprayed sector during the 2014 spray period indicated an increase in the proportion of very young females. We also evaluated impacts of a 2014 citywide spray program by the local Ministry of Health, which reduced adult populations by ~60 percent. In all cases, adult densities returned to near-baseline levels within one month. Conclusions/Significance Our results demonstrate that densities of adult Ae. aegypti can be reduced by experimental and municipal spraying programs. The finding that adult densities return to approximately pre-spray densities in less than a month is similar to results from previous, smaller scale experiments. Our results demonstrate that ULV spraying is best viewed as having a short-term entomological effect. The epidemiological impact of ULV spraying will need evaluation in future trials that measure capacity of insecticide spraying to reduce human infection or disease. PMID:29624581

  16. A Comparison of Fuel Sprays from Several Types of Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1936-01-01

    This report presents the tests results of a series of tests made of the sprays from 14 fuel injection nozzles of 9 different types, the sprays being injected into air at atmospheric density and at 6 and 14 times atmospheric density. High-speed spark photographs of the sprays from each nozzle at each air density were taken at the rate of 2,000 per second, and from them were obtained the dimensions of the sprays and the rates of spray-tip penetration. The sprays were also injected against plasticine targets placed at different distances from the nozzles, and the impressions made in the plasticine were used as an indication of the distribution of the fuel within the spray. Cross-sectional sketches of the different types of sprays are given showing the relative sizes of the spray cores and envelopes. The characteristics of the sprays are compared and discussed with respect to their application to various types of engines.

  17. An application of digital image processing techniques to the characterization of liquid petroleum gas (LPG) spray

    NASA Astrophysics Data System (ADS)

    Qi, Y. L.; Xu, B. Y.; Cai, S. L.

    2006-12-01

    To control fuel injection, optimize combustion and reduce emissions for LPG (liquefied petroleum gas) engines, it is necessary and important to understand the characteristics of LPG sprays. The present work investigates the geometry of LPG sprays, including spray tip penetration, spray angle, projected spray area and spray volume, by using schlieren photography and digital image processing techniques. Two types of single nozzle injectors were studied, with the same nozzle diameter, but one with and one without a double-hole flow-split head. A code developed to analyse the results directly from the digitized images is shown to be more accurate and efficient than manual measurement and analysis. Test results show that a higher injection pressure produces a longer spray tip penetration, a larger projected spray area and spray volume, but a smaller spray cone angle. The injector with the double-hole split-head nozzle produces better atomization and shorter tip penetration at medium and late injection times, but longer tip penetration in the early stage.

  18. Foliar spray banding characteristics

    Treesearch

    A.R. Womac; C.W. Smith; Joseph E. Mulrooney

    2004-01-01

    Foliar spray banding was explored as a means of reducing peticide use compared to broadcast applications. Barious geometric spray patterns and delivery angles of foliar spray bands were investigated to increase spray deposits in a crop row at a constant spray rate of 94 L/ha. Wind-free laboratory results indicated that a banded application using three 65° hollow-cone...

  19. Light extinction method on high-pressure diesel injection

    NASA Astrophysics Data System (ADS)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  20. Hydrogen no-vent fill testing in a 5 cubic foot (142 liter) tank using spray nozzle and spray bar liquid injection

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.

    1992-01-01

    A total of 38 hydrogen no-vent fill tests were performed in this test series using various size spray nozzles and a spray bar with different hole sizes in a 5 cubic foot receiver tank. Fill levels of 90 percent by volume or greater were achieved in 26 of the tests while maintaining a receiver tank pressure below 30 psia. Spray nozzles were mounted at the top of the tank, whereas, the spray bar was centered in the tank axially. The spray nozzle no-vent fills demonstrated tank pressure and temperature responses comparable to previous test series. Receiver tank pressure responses for the spray bar configuration were similar to the spray nozzle tests with the pressure initially rising rapidly, then leveling off as vapor condenses onto the discharging liquid streams, and finally ramping up near the end of the test due to ullage compression. Both liquid injection techniques tested were capable of filling the receiver tank to 90 percent under variable test conditions. Comparisons between the spray nozzle and spray bar configurations for well matched test conditions indicate the spray nozzle injection technique is more effective in minimizing the receiving tank pressure throughout a no-vent fill compared to the spray bar under normal gravity conditions.

  1. Spray pattern analysis in TWAS using photogrammetry and digital image correlation

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Rademacher, H. G.; Hagen, L.; Abdulgader, M.; El Barad’ei, M.

    2018-06-01

    In terms of arc spraying processes, the spray plume characteristic is mainly affected by the flow characteristic of the atomization gas at the nozzle inlet and intersection point of the wire tips, which in turn affect the particle distribution at the moment of impact when molten spray particles splash onto the substrate. With respect to the route of manufacturing of near net-shaped coatings on complex geometries, the acquisition of the spray patterns is pressingly necessary to determine the produced coating thickness. Within the scope of this study, computer fluid dynamics (CFD) simulations were carried out to determine the distribution of spray particles for different spray parameter settings. The results were evaluated by three-dimensional spray spot analyses using an optical measurement based on photogrammetry and digital image correlation. The optical measurement represents a promising and much faster candidate to measure spray patterns compared to the tactile measurement system but with an equal accuracy. For given nozzle configurations and spray parameter settings, numerous spray patterns were examined to their shape factors, demonstrating the potential of an online analysis, which encompasses a “fast sample loop” and a data processing system to generate a three-dimensional surface of the spray spot profile.

  2. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    NASA Astrophysics Data System (ADS)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  3. Exogenous sodium sulfide improves morphological and physiological responses of a hybrid Populus species to nitrogen dioxide.

    PubMed

    Hu, Yanbo; Bellaloui, Nacer; Sun, Guangyu; Tigabu, Mulualem; Wang, Jinghong

    2014-06-15

    Gaseous nitrogen dioxide (NO2) can disturb normal plant growth and trigger complex physiological responses. NO2-induced responses are influenced by biotic or abiotic factors. In this study, we investigated the effects of exogenous sodium sulfide (Na2S, 5mmolL(-1)) on epidermis and stomata related physico-chemical responses of hybrid poplar cuttings (Pouplus alba×P. berolinensis) to gaseous NO2 (4μl1(-1)) for three time periods (0, 14 and 48h). We also investigated hydrogen sulfide (H2S), nitrate-nitrogen and nitrate reductase activity (NR) in control and Na2S treated plants. Our results showed that NO2 exposure for 48h led to the decline of NR, maximal PSII quantum yield (Fv/Fm), net photosynthetic rate (Pn), and dark respiration rate (Rd). The maximum rate for the post-illumination carbon dioxide burst (PIB) occurred in 48-h exposed leaves 13-15s after darkening. Moreover, NO2 exposure resulted in a significant increase in nitrogen percentage (from 0 to 33%) and a decrease in the macro and micro-elements of leaf surface. Spraying Na2S aqueous solution on the leaf surfaces significantly increased the thicknesses of palisade/spongy tissue and H2S content. Na2S pretreatment alleviated NO2-caused toxic effects as indicated by increased NR and higher values of Pn, Fv/Fm, and actual photochemical efficiency in light (ФPSII) compared with the control. Na2S pretreatment had no significant impacts on PIB-based photorespiration or elements composition of a leaf surface. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    NASA Astrophysics Data System (ADS)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  5. Layered growth with bottom-spray granulation for spray deposition of drug.

    PubMed

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  6. Growth of ultra-thin TiO 2 films by spray pyrolysis on different substrates

    NASA Astrophysics Data System (ADS)

    Oja Acik, I.; Junolainen, A.; Mikli, V.; Danilson, M.; Krunks, M.

    2009-12-01

    In the present study TiO 2 films were deposited by spray pyrolysis method onto ITO covered glass and Si (1 0 0) substrates. The spray solution containing titanium(IV) isopropoxide, acetylacetone and ethanol was sprayed at a substrate temperature of 450 °C employing 1-125 spray pulses (1 s spray and 30 s pause). According to AFM, continuous coverage of ITO and Si substrates with TiO 2 layer is formed by 5-10 and below 5 spray pulses, respectively. XPS studies revealed that TiO 2 film growth on Si substrate using up to 4 spray pulses follows 2D or layer-by-layer-growth. Above 4 spray pulses, 3D or island growth becomes dominant irrespective of the substrate. Only 50 spray pulses result in TiO 2 layer with the thickness more than XPS measurement escape depth as any signal from the substrate could not be detected. TiO 2 grain size remains 30 nm on ITO and increases from 10-20 nm to 50-100 nm on Si substrate with the number of spray pulses from 1 to 125.

  7. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.

    PubMed

    Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam

    2014-01-01

    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.

  8. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet trajectory analysis overpredicts the liquid mass penetration, and indicates a need for a more rigorous model to account for the three-dimensional mixing field induced by the jet-crossflow interaction. Nonetheless, the general procedures and criteria that are outlined can be used to efficiently assess and compare the quality of sprays formed under different conditions.

  9. A fluorescent imaging technique for quantifying spray deposits on plant leaves

    USDA-ARS?s Scientific Manuscript database

    Because of the unique characteristics of electrostatically-charged sprays, use of traditional methods to quantify deposition from these sprays has been challenging. A new fluorescent imaging technique was developed to quantify spray deposits from electrostatically-charged sprays on natural plant lea...

  10. A user-friendly model for spray drying to aid pharmaceutical product development.

    PubMed

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.

  11. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.

  12. Detailed assessment of diesel spray atomization models using visible and X-ray extinction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnotti, G. M.; Genzale, C. L.

    The physical mechanisms characterizing the breakup of a diesel spray into droplets are still unknown. This gap in knowledge has largely been due to the challenges of directly imaging this process or quantitatively measuring the outcomes of spray breakup, such as droplet size. Recent x-ray measurements by Argonne National Laboratory, utilized in this work, provide needed information about the spatial evolution of droplet sizes in selected regions of the spray under a range of injection pressures (50–150 MPa) and ambient densities (7.6–22.8 kg/m3) relevant for diesel operating conditions. Ultra-small angle x-ray scattering (USAXS) measurements performed at the Advanced Photon Sourcemore » are presented, which quantify Sauter mean diameters (SMD) within optically thick regions of the spray that are inaccessible by conventional droplet sizing measurement techniques, namely in the near-nozzle region, along the spray centerline, and within the core of the spray. To quantify droplet sizes along the periphery of the spray, a complementary technique is proposed and introduced, which leverages the ratio of path-integrated x-ray and visible laser extinction (SAMR) measurements to quantify SMD. The SAMR and USAXS measurements are then utilized to evaluate current spray models used for engine computational fluid dynamic (CFD) simulations. We explore the ability of a carefully calibrated spray model, premised on aerodynamic wave growth theory, to capture the experimentally observed trends of SMD throughout the spray. The spray structure is best predicted with an aerodynamic primary and secondary breakup process that is represented with a slower time constant and larger formed droplet size than conventionally recommended for diesel spray models. Additionally, spray model predictions suggest that droplet collisions may not influence the resultant droplet size distribution along the spray centerline in downstream regions of the spray.« less

  13. Wind tunnel and field evaluation of drift from aerial spray applications with multiple spray formulations

    USDA-ARS?s Scientific Manuscript database

    The impact of different spray tank modifiers into an active ingredient spray mixture on spray atomization and in-field behavior under aerial application conditions were examined. Wind tunnel tests demonstrated that active ingredient solutions potentially results in significantly different atomizati...

  14. Spray drift reduction evaluations of spray nozzles using a standardized testing protocol

    USDA-ARS?s Scientific Manuscript database

    The development and testing of drift reduction technologies has come to the forefront of application research in the past few years in the United States. Drift reduction technologies (DRTs) can be spray nozzles, sprayer modifications, spray delivery assistance, spray property modifiers (adjuvants),...

  15. Use of Proper Orthogonal Decomposition Towards Time-resolved Image Analysis of Sprays

    DTIC Science & Technology

    2011-03-15

    High-speed movies of optically dense sprays exiting a Gas-Centered Swirl Coaxial (GCSC) injector are subjected to image analysis to determine spray...sequence prior to image analysis . Results of spray morphology including spray boundary, widths, angles and boundary oscillation frequencies, are

  16. 40 CFR 63.11177 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....11173(e)(3)(i). (c) Documentation from the spray gun manufacturer that each spray gun with a cup... operation, you must keep the records specified in paragraphs (e) through (g) of this section, as applicable... spray gun, electrostatic application, airless spray gun, or air assisted airless spray gun, has been...

  17. Modifications Of A Commercial Spray Gun

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  18. Multiple-Nozzle Spray Head Applies Foam Insulation

    NASA Technical Reports Server (NTRS)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  19. Characterization of sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C.-P.

    1984-01-01

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  20. Analysis of high injection pressure and ambient temperature on biodiesel spray characteristics using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal

    2017-09-01

    Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.

  1. Arc spray process for the aircraft and stationary gas turbine industry

    NASA Astrophysics Data System (ADS)

    Sampson, E. R.; Zwetsloot, M. P.

    1997-06-01

    Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.

  2. Field evaluation of a self-propelled sprayer and effects of the application rate on spray deposition and losses to the ground in greenhouse tomato crops.

    PubMed

    Sánchez-Hermosilla, Julián; Rincón, Víctor J; Páez, Francisco; Agüera, Francisco; Carvajal, Fernando

    2011-08-01

    In the greenhouses of south-eastern Spain, plant protection products are applied using mainly sprayers at high pressures and high volumes. This results in major losses on the ground and less than uniform spray deposition on the canopy. Recently, self-propelled vehicles equipped with vertical spray booms have appeared on the market. In this study, deposition on the canopy and the losses to the ground at different spray volumes have been compared, using a self-propelled vehicle with vertical spray booms versus a gun sprayer. Three different spray volumes have been tested with a boom sprayer, and two with a spray gun. The vehicle with the vertical spray boom gave similar depositions to those made with the gun, but at lower application volumes. Also, the distribution of the vertical spray boom was more uniform, with lower losses to the ground. The vertical spray booms used in tomato crops improve the application of plant protection products with respect to the spray gun, reducing the application volumes and the environmental risks of soil pollution. Copyright © 2011 Society of Chemical Industry.

  3. Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products

    NASA Astrophysics Data System (ADS)

    Lorenz, Christiane; Hagendorfer, Harald; von Goetz, Natalie; Kaegi, Ralf; Gehrig, Robert; Ulrich, Andrea; Scheringer, Martin; Hungerbühler, Konrad

    2011-08-01

    Consumer spray products are already on the market in the cosmetics and household sector, which suggest by their label that they contain engineered nanoparticles (ENP). Sprays are considered critical for human health, because the lungs represent a major route for the uptake of ENP into the human body. To contribute to the exposure assessment of ENP in consumer spray products, we analyzed ENP in four commercially available sprays: one antiperspirant, two shoe impregnation sprays, and one plant-strengthening agent. The spray dispersions were analyzed by inductively coupled plasma mass spectrometry (ICPMS) and (scanning-) transmission electron microscopy ((S)TEM). Aerosols were generated by using the original vessels, and analyzed by scanning mobility particle sizer (SMPS) and (S)TEM. On the basis of SMPS results, the nanosized aerosol depositing in the respiratory tract was modeled for female and male consumers. The derived exposure levels reflect a single spray application. We identified ENP in the dispersions of two products (shoe impregnation and plant spray). Nanosized aerosols were observed in three products that contained propellant gas. The aerosol number concentration increased linearly with the sprayed amount, with the highest concentration resulting from the antiperspirant. Modeled aerosol exposure levels were in the range of 1010 nanosized aerosol components per person and application event for the antiperspirant and the impregnation sprays, with the largest fraction of nanosized aerosol depositing in the alveolar region. Negligible exposure from the application of the plant spray (pump spray) was observed.

  4. A Multiple-Dose, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group QT/QTc Study to Evaluate the Electrophysiologic Effects of THC/CBD Spray.

    PubMed

    Sellers, Edward M; Schoedel, Kerri; Bartlett, Cindy; Romach, Myroslava; Russo, Ethan B; Stott, Colin G; Wright, Stephen; White, Linda; Duncombe, Paul; Chen, Chien-Feng

    2013-07-01

    Delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray has proved efficacious in the treatment of spasticity in multiple sclerosis and chronic pain. A thorough QT/QTc study was performed to investigate the effects of THC/CBD spray on electrocardiogram (ECG) parameters in compliance with regulatory requirements, evaluating the effect of a recommended daily dose (8 sprays/day) and supratherapeutic doses (24 or 36 sprays/day) of THC/CBD spray on the QT/QTc interval in 258 healthy volunteers. The safety, tolerability, and pharmacokinetic profile of THC/CBD spray were also evaluated. Therapeutic and supratherapeutic doses of THC/CBD spray had no effect on cardiac repolarization with primary and secondary endpoints of QTcI and QTcF/QTcB, respectively, showing similar results. There was no indication of any effect on heart rate, atrioventricular conduction, or cardiac depolarization and no new clinically relevant morphological changes were observed. Overall, 19 subjects (25.0%) in the supratherapeutic (24/36 daily sprays of THC/CBD spray) dose group and one (1.6%) in the moxifloxacin group withdrew early due to intolerable AEs. Four psychiatric serious adverse events (AEs) in the highest dose group resulted in a reduction in the surpatherapeutic dose to 24 sprays/day. In conclusion, THC/CBD spray does not significantly affect ECG parameters. Additionally, THC/CBD spray is well tolerated at therapeutic doses with an AE profile similar to previous clinical studies. © The Author(s) 2013.

  5. The influence of menthol on thermoregulation and perception during exercise in warm, humid conditions.

    PubMed

    Gillis, D Jason; House, James R; Tipton, Michael J

    2010-10-01

    Menthol has recently been added to various cooling products that claim to enhance athletic performance. This study assessed the effect of two such solutions during exercise in warm, humid conditions. Twelve participants (22 ± 2.9 years; VO2peak 47.4 ± 6.2 mL kg(-1) min(-1)) completed a peak power (PO(peak)) test and three separate exercise bouts in 30°C and 70% relative humidity after being sprayed with 100 mL of water containing either 0.05 or 0.2% l-menthol, or a control spray. During each trial, participants underwent 15 min of rest, spraying, 15 min of rest and 45 min of exercise at 45% of PO(peak). The following variables were measured: rectal temperature (T (re)), sweat rate (SR), skin blood flow (SBF), heart rate (HR), thermal comfort (TC) and sensation (TS) votes, irritation (IRR) and rating of perceived exertion (RPE). Mean skin (MST) and body temperatures (Tbody) were calculated. There was no significant difference in MST, Tbody SR, SBF, HR, TC or RPE between conditions. Spraying with 0.2% menthol significantly (P < 0.05) elevated T (re) by 0.2°C compared to the other conditions. Both menthol sprays caused participants to feel significantly cooler than control spraying (P = 0.001), but 0.2% spraying induced significantly cooler sensations (P = 0.01) than 0.05% spraying. Both menthol sprays induced greater irritation (P < 0.001) than control spraying. These findings suggest that 0.05% menthol spraying induced cooler upper body sensations without measurable thermoregulatory impairment. T (re) was significantly elevated with 0.2% spraying. Irritation persisted with both menthol sprays while TC remained unchanged, suggesting a causal relationship. The use in sport of a spray similar to those tested here remains equivocal.

  6. Modeling metal droplet sprays in spray forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muoio, N.G.; Crowe, C.T.; Fritsching, U.

    1995-12-31

    Spray casting is a process whereby a molten metal stream is atomized and deposited on a substrate. The rapid solidification of the metal droplets gives rise to a fine grain structure and improved material properties. This paper presents a simulation for the fluid and thermal interaction of the fluid and droplets in the spray and the effect on the droplet spray pattern. Good agreement is obtained between the measured and predicted droplet mass flux distribution in the spray.

  7. A User-Friendly Model for Spray Drying to Aid Pharmaceutical Product Development

    PubMed Central

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach. PMID:24040240

  8. 46 CFR 34.25-20 - Spray nozzles-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Spray nozzles-T/ALL. 34.25-20 Section 34.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-20 Spray nozzles—T/ALL. (a) Spray nozzles shall be of an approved type. ...

  9. 46 CFR 34.25-20 - Spray nozzles-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Spray nozzles-T/ALL. 34.25-20 Section 34.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-20 Spray nozzles—T/ALL. (a) Spray nozzles shall be of an approved type. ...

  10. 77 FR 40550 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Revision for the Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... filtered spray booth and enclosed spray gun cleaner. Maryland's 1997 SIP-approved regulation COMAR 26.11.19... equipment and materials storage such as spray booths, spray guns, and sealed containers for cleaning rags... standards include procedures for cleaning the spray gun equipment for applying automotive coatings. Affected...

  11. Effects of spray mixtures on droplet size under aerial application conditions and implications on drift

    USDA-ARS?s Scientific Manuscript database

    The use of simulated and mimic sprays for atomization studies in high speed wind tunnels allows researchers to limit the amount of active ingredients used in spray tests; however, it is important that these simulated and mimic sprays have the same physical and atomization characteristics of spray co...

  12. Electrostatic spraying in the chemical control of Triozoida limbata (Enderlein) (Hemiptera: Triozidae) in guava trees (Psidium guajava L.).

    PubMed

    Tavares, Rafael M; Cunha, João Par; Alves, Thales C; Bueno, Mariana R; Silva, Sérgio M; Zandonadi, César Hs

    2017-06-01

    Owing to the difficulty in reaching targets during pesticide applications on guava trees, it is important to evaluate new technologies that may improve pest management. In electrostatic spraying, an electric force is added to the droplets to control their movements such that they are efficiently directed to the target. The present study evaluated the performance of electrostatic and non-electrostatic spraying in the control of the guava psyllid, the deposition of the spray mixture on the leaves and the losses to the soil. The deposition of the spray mixture was up to 2 times greater when using electrostatic spraying in comparison with non-electrostatic application. The losses of the spray mixture to the soil were up to 4 times smaller with the electrostatic spraying. Electrostatic spraying had better control of the psyllid. It was possible to reduce the volume rate of application with electrostatic spraying without adversely affecting the control of the guava psyllid. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. A laser tomographic investigation of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Ahseng, C.; Felton, P.; Ungut, A.; Chigier, N. A.

    1980-01-01

    A light scattering technique is combined with a tomographic transformation to convert line of sight integrated data, measured in sprays, to measurements of droplet size and concentration in volume elements within the spray. The technique is developed and assessed by systematic experiments in axisymmetric sprays generated by twin-fluid atomisers. The good agreement found shows that, provided certain conditions are satisfied by the local spray structure, the technique provides information on spray structure, similar in detail and extent to that derived by photography, but with reduced experimental time. The technique is applied to an investigation of a kerosene spray vaporizing in a hot gas stream.

  14. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  15. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126..., ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. (a) When any item of ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

  16. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126..., ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. (a) When any item of ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

  17. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126..., ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. (a) When any item of ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

  18. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126..., ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. (a) When any item of ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

  19. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126..., ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. (a) When any item of ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

  20. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    PubMed

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Influence of handpiece maintenance sprays on resin bonding to dentin.

    PubMed

    Sugawara, Toyotarou; Kameyama, Atsushi; Haruyama, Akiko; Oishi, Takumi; Kukidome, Nobuyuki; Takase, Yasuaki; Tsunoda, Masatake

    2010-01-01

    To investigate the influence of maintenance spray on resin bonding to dentin. The crown of extracted, caries-free human molars was transversally sectioned with a model trimmer to prepare the dentin surfaces from mid-coronal sound dentin, and then uniformly abraded with #600 silicon carbide paper. The dentin surfaces were randomly divided into three groups: oil-free spray group where maintenance cleaner for air bearing handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; oil-containing spray group where maintenance cleaner for micro motor handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; and control group where the surface was rinsed with water spray for 30 s and then air-dried. These surfaces were then bonded with Clearfil SE Bond (Kuraray Medical), and resin composite (Clearfil AP-X, Kuraray Medical) build-up crowns were incrementally constructed on the bonded surfaces. After storage for 24 h in 37°C water, the bonded teeth were sectioned into hour-glass shaped slices (0.7-mm thick) perpendicular to the bonded surfaces. The specimens were then subjected to microtensile bond strength (μTBS) testing at a crosshead speed of 1.0 mm/min. Data were analyzed with one-way ANOVA and the Tukey-Kramer test. Maintenance spray-contaminated specimens (oil-free and oil-containing spray groups) showed significantly lower μTBS than control specimens (P < 0.05). However, there was no significant difference between the spray-contaminated groups (P > 0.05). Maintenance spray significantly reduces the bond strength of Clearfil SE Bond to dentin.

  2. CFD Simulation of Aerial Crop Spraying

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Qiang, Kua Yong; Mohd, Sofian; Rosly, Nurhayati

    2016-11-01

    Aerial crop spraying, also known as crop dusting, is made for aerial application of pesticides or fertilizer. An agricultural aircraft which is converted from an aircraft has been built to combine with the aerial crop spraying for the purpose. In recent years, many studies on the aerial crop spraying were conducted because aerial application is the most economical, large and rapid treatment for the crops. The main objective of this research is to study the airflow of aerial crop spraying system using Computational Fluid Dynamics. This paper is focus on the effect of aircraft speed and nozzle orientation on the distribution of spray droplet at a certain height. Successful and accurate of CFD simulation will improve the quality of spray during the real situation and reduce the spray drift. The spray characteristics and efficiency are determined from the calculated results of CFD. Turbulence Model (k-ɛ Model) is used for the airflow in the fluid domain to achieve a more accurate simulation. Furthermore, spray simulation is done by setting the Flat-fan Atomizer Model of Discrete Phase Model (DPM) at the nozzle exit. The interaction of spray from each flat-fan atomizer can also be observed from the simulation. The evaluation of this study is validation and grid dependency study using field data from industry.

  3. Potential hazard of volatile organic compounds contained in household spray products

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mahmudur; Kim, Ki-Hyun

    2014-03-01

    To assess the exposure levels of hazardous volatile pollutants released from common household spray products, a total of 10 spray products consisting of six body spray and four air spray products have been investigated. The body spray products included insect repellents (two different products), medicated patch, deodorant, hair spray, and humectant, whereas the air spray products included two different insecticides (mosquito and/or cockroach), antibacterial spray, and air freshener. The main objective of this study was to measure concentrations of 15 model volatile organic compounds (VOCs) using GC/MS coupled with a thermal desorber. In addition, up to 34 ‘compounds lacking authentic standards or surrogates (CLASS)' were also quantified based on the effective carbon number (ECN) theory. According to our analysis, the most common indoor pollutants like benzene, toluene, styrene, methyl ethyl ketone, and butyl acetate have been detected frequently in the majority of spray products with the concentration range of 5.3-125 mg L-1. If one assumes that the amount of spray products released into air reaches the 0.3 mL level for a given space size of 5 m3, the risk factor is expected to exceed the carcinogenic risk level set for benzene (10-5) by the U.S. EPA.

  4. Insights into Spray Development from Metered-Dose Inhalers Through Quantitative X-ray Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.

    Typical methods to study pMDI sprays employ particle sizing or visible light diagnostics, which suffer in regions of high spray density. X-ray techniques can be applied to pharmaceutical sprays to obtain information unattainable by conventional particle sizing and light-based techniques. We present a technique for obtaining quantitative measurements of spray density in pMDI sprays. A monochromatic focused X-ray beam was used to perform quantitative radiography measurements in the near-nozzle region and plume of HFA-propelled sprays. Measurements were obtained with a temporal resolution of 0.184 ms and spatial resolution of 5 mu m. Steady flow conditions were reached after around 30more » ms for the formulations examined with the spray device used. Spray evolution was affected by the inclusion of ethanol in the formulation and unaffected by the inclusion of 0.1% drug by weight. Estimation of the nozzle exit density showed that vapour is likely to dominate the flow leaving the inhaler nozzle during steady flow. Quantitative measurements in pMDI sprays allow the determination of nozzle exit conditions that are difficult to obtain experimentally by other means. Measurements of these nozzle exit conditions can improve understanding of the atomization mechanisms responsible for pMDI spray droplet and particle formation.« less

  5. 40 CFR 63.11171 - How do I know if my source is considered a new source or an existing source?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... associated equipment; (3) Spray guns and associated equipment; (4) Spray gun cleaning equipment; (5... stripping or surface coating equipment. If you purchase and install spray booths, enclosed spray gun cleaners, paint stripping equipment to reduce MeCl emissions, or purchase new spray guns to comply with...

  6. Initial and continued effects of a release spray in a coastal Oregon Douglas-fir plantation.

    Treesearch

    Richard E. Miller; Edmund L. Obermeyer

    1996-01-01

    Portions of a 4-year-old Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) plantation were sprayed with herbicide. Five years after spraying, we established 18 plots and used several means to determine retrospectively that six plots probably received full spray treatment and six others received no spray. Various...

  7. Effect of formulated glyphosate and adjuvant tank mixes on atomization from aerial application flat fan nozzles

    USDA-ARS?s Scientific Manuscript database

    This study was designed to determine if the present USDA ARS Spray Nozzle models based on water plus non-ionic surfactant spray solutions could be used to estimate spray droplet size data for different spray formulations through use of experimentally determined correction factors or if full spray fo...

  8. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: tree deposition and off-target losses

    USDA-ARS?s Scientific Manuscript database

    The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. ...

  9. Effect of aqueous sprays of ammonium fluoride on oxygen consumption and firmness of suture and dorsal tissues of Early Improved Elberta peaches. [Prunus persica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Facteau, T.J.; Rowe, K.E.

    1976-06-01

    Aqueous ammonium fluoride (NH/sub 4/F) sprays on Early Improved Elberta peaches (Prunus persica (L.) Batsch) resulted in increased O/sub 2/ consumption of suture tissue and inconsistent changes in O/sub 2/ consumption of dorsal tissue as the spray concentration was increased. Flesh firmness on the suture side of treated fruit was less than non-sprayed fruit and decreased as either the NH/sub 4/F spray concentration or number of sprays increased. The effect of spray on the dorsal side differed from year to year. Levels of fluoride (F) in the fruit tissue were associated with F concentration and number of F sprays appliedmore » only within the same year. 3 references, 1 table.« less

  10. Trends of particulate matter (PM2.5) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002-2010)

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Alastuey, A.; Pérez, N.; Pey, J.; Querol, X.

    2012-09-01

    The time variability and long term trends of PM2.5 (particulate matter of diameter < 2.5 μm) at various regional background (RB) sites across Europe are studied and interpreted in this work. Data on mean annual levels of PM2.5 measured at Montseny (MSY, North East Spain) and various RB sites in Spain and Europe are evaluated and compared, and subsequently analysed for statistically significant trends. The MSY site registered higher average PM2.5 levels than those measured at a selection of other RB sites across Spain, Portugal, Germany and Scandinavia by percentage compared to the mean of all the stations in these countries, but lower than those measured in Switzerland, Italy and Austria. Reductions in PM2.5 were observed across all stations in Spain and Europe to varying degrees (7-49%). MSY underwent a statistically significant reduction since measurements began, indicating a year-on-year gradual decrease (-3.7 μg m-3, calculated from the final year of data compared to the mean). Similar trends were observed in other RB sites across Spain (-1.9 μg m-3). Reductions recorded in PM2.5 across Europe were varied, with many experiencing gradual, year-on-year decreases (-1.8 μg m-3). These reductions have been attributed to various causes: the introduction and implementation of pollution abatement strategies in EU member states, the effect of the current economic crisis on emissions of PM2.5 and the influence of meteorology observed during the winters of 2009 and 2010. In addition, the North Atlantic Oscillation (NAO), a large scale meteorological phenomenon most prevalent during winter, was observed to influence the frequency of Saharan dust intrusions across the Iberian Peninsula. Chemical composition of PM2.5 at MSY is characterised by high levels of organic matter (OM) and sulphate, followed by crustal material, nitrate and ammonia. Sea Spray and elemental carbon (EC) comprised a minor part of the total PM2.5 mass. Statistical trend analysis was performed on the various chemical components of PM2.5 recorded at MSY to determine which components were accountable for the decrease in PM2.5 concentration. It is shown that OM underwent the largest decrease over the time period with a statistically significant trend (-1.3 μg m-3 compared to the mean), followed by sulphate (-0.8 μg m-3), ammonium (-0.5 μg m-3) and nitrate (-0.4 μg m-3). Conversely, sea spray, EC and crustal material reductions were found to be negligible.

  11. Trends of particulate matter (PM2.5) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002-2010)

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Alastuey, A.; Pérez, N.; Pey, J.; Querol, X.

    2012-04-01

    The time variability and long term trends of PM2.5 (particulate matter of diameter <2.5 μm) at various regional background (RB) sites across Europe are studied and interpreted in this work. Long-term trends of PM2.5 concentrations are relatively scarce across Europe, with few studies outlining the changes measured in PM2.5 concentrations over a significant period of time. To this end, data on mean annual levels of PM2.5 measured at Montseny (MSY, North East Spain) and various RB sites in Spain and Europe are evaluated and compared, and subsequently analysed for statistically significant trends. The MSY site registered higher average PM2.5 levels than those measured at a selection of other RB sites across Spain, Portugal, Germany and Scandinavia, but lower than those measured in Switzerland, Italy and Austria. Reductions in PM2.5 were observed across all stations in Spain and Europe to varying degrees. MSY underwent a statistically significant reduction since measurements began, indicating a year-on-year gradual decrease (-3.7 μg m-3, calculated from the final year of data compared to the mean). Similar trends were observed in other RB sites across Spain (-1.9 μg m-3). Reductions recorded in PM2.5 across Europe were varied, with many experiencing gradual, year-on-year decreases (-1.8 μg m-3). These reductions have been attributed to various causes: the introduction and implementation of pollution abatement strategies in EU member states, the effect of the current economic crisis on emissions of PM2.5 and the influence of anomalous meteorology observed during the winters of 2009 and 2010. The North Atlantic Oscillation (NAO), a large scale meteorological phenomenon most prevalent during winter, was observed to influence the frequency of Saharan dust intrusions across the Iberian Peninsula. Chemical composition of PM2.5 at MSY is characterised by high levels of organic matter (OM) and sulphate, followed by crustal material, nitrate and ammonia. Sea Spray and finally elemental carbon (EC) comprised a minor part of the total PM2.5 mass. Statistical trend analysis was performed on the various chemical components of PM2.5 recorded at MSY to determine which components were accountable for the decrease in PM2.5 concentration. It is shown that OM underwent the largest decrease over the time period with a statistically significant trend (-1.3 μg m-3 of the mean), followed by sulphate (-0.8 μg m-3), ammonium (-0.5 μg m-3) and nitrate (-0.4 μg m-3). Conversely, sea spray, EC and crustal material reductions were found to be negligible.

  12. Functional Analysis and Treatment of Rumination Using Fixed-Time Delivery of a Flavor Spray

    ERIC Educational Resources Information Center

    Wilder, David A.; Register, Martisa; Register, Stanley; Bajagic, Vedrana; Neidert, Pamela L.

    2009-01-01

    A functional analysis suggested that rumination exhibited by an adult with autism was maintained by automatic reinforcement. Next, a preference assessment with three flavor sprays (i.e., flavored sprays used by dieters) showed that apple pie spray was most preferred. Finally, the effects of fixed-time delivery of the apple pie spray on levels of…

  13. Obtaining Thickness-Limited Electrospray Deposition for 3D Coating.

    PubMed

    Lei, Lin; Kovacevich, Dylan A; Nitzsche, Michael P; Ryu, Jihyun; Al-Marzoki, Kutaiba; Rodriguez, Gabriela; Klein, Lisa C; Jitianu, Andrei; Singer, Jonathan P

    2018-04-04

    Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.

  14. A numerical analysis of flat fan aerial crop spray

    NASA Astrophysics Data System (ADS)

    Malik Fesal, Siti Natasha; Fawzi, Mas; Omar, Zamri

    2017-09-01

    Spray drift mitigation, in the agriculture aerial spraying literature, and spray quality in the application of plant protection products, still continues as two critical components in evaluating shareholder value. A study on off-target drift and ground deposit onto a 250 m strip were simulated through series of Computational Fluid Dynamic (CFD) simulations. The drift patterns for evaporating droplets were released from a constant aircraft velocity at 30 m/s (60 mph) carrying 20 m swath width spray boom with 12 fan-type nozzles at released height from the ground ranging from 3.7 m to 4.7 m. Droplet trajectories are calculated from the given airspeed with a Lagrangian model for particle dispersion excluding any wind effect perturbation. The proposed CFD’s model predictions agreed well with cited literatures for a wide range of atmospheric stability values. The results revealed that there is considerable increased in spray drift and droplets trajectories with the increased in spray released height. It suggested that a combination of low aircraft spray released height with low airspeed is essential to improve spray quality and maximizing uniform deposition on the target area are significant in minimizing spray drift risks.

  15. Venom-spraying behavior of the scorpion Parabuthus transvaalicus (Arachnida: Buthidae).

    PubMed

    Nisani, Zia; Hayes, William K

    2015-06-01

    Many animals use chemical squirting or spraying behavior as a defensive response. Some members of the scorpion genus Parabuthus (family Buthidae) can spray their venom. We examined the stimulus control and characteristics of venom spraying by Parabuthus transvaalicus to better understand the behavioral context for its use. Venom spraying occurred mostly, but not always, when the metasoma (tail) was contacted (usually grasped by forceps), and was absent during stinging-like thrusts of the metasoma apart from contact. Scorpions were significantly more likely to spray when contact was also accompanied by airborne stimuli. Sprays happened almost instantaneously following grasping by forceps (median=0.23s) as a brief (0.07-0.30s, mean=0.18s), fine stream (<5° arc) that was not directed toward the stimulus source; however, rapid independent movements of the metasoma and/or telson (stinger) often created a more diffuse spray, increasing the possibility of venom contact with the sensitive eyes of potential scorpion predators. Successive venom sprays varied considerably in duration and velocity. Collectively, these results suggest that venom spraying might be useful as an antipredator function and can be modulated based on threat. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Early change in thermal perception is not a driver of anticipatory exercise pacing in the heat.

    PubMed

    Barwood, Martin James; Corbett, Jo; White, Danny; James, Jason

    2012-10-01

    Initial power output declines significantly during exercise in hot conditions on attaining a rapid increase in skin temperature when exercise commences. It is unclear whether this initial reduced power is mediated consciously, through thermal perceptual cues, or is a subconscious process. The authors tested the hypothesis that improved thermal perception (feeling cooler and more comfortable) in the absence of a change in thermal state (ie, similar deep-body and skin temperatures between spray conditions) would alter pacing and 40 km cycling time trial (TT) performance. Eleven trained participants (mean (SD): age 30 (8.1) years; height 1.78 (0.06) m; mass 76.0 (8.3) kg) completed three 40 km cycling TTs in standardised conditions (32°C, 50% RH) with thermal perception altered prior to exercise by application of cold-receptor-activating menthol spray (MENTHOL SPRAY), in contrast to a separate control spray (CONTROL SPRAY) and no spray control (CON). Thermal perception, perceived exertion, thermal responses and cycling TT performance were measured. MENTHOL SPRAY induced feelings of coolness and improved thermal comfort before and during exercise. Skin temperature profile at the start of exercise was similar between sprays (CON-SPRAY 33.3 (1.1)°C and MENTHOL SPRAY 33.4 (0.4)°C, but different to CON 34.5 (0.5)°C), but there was no difference in the pacing strategy adopted. There was no performance benefit using MENTHOL SPRAY; cycling TT completion time for CON is 71.58 (6.21) min, for CON-SPRAY is 70.94 (6.06) min and for MENTHOL SPRAY is 71.04 (5.47) min. The hypothesis is rejected. Thermal perception is not a primary driver of early pacing during 40 km cycling TT in hot conditions in trained participants.

  17. An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Le; Torelli, Roberto; Zhu, Xiucheng

    Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at amore » density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGE framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation. A set of turbulence and spray break-up model constants was identified to properly match the aforementioned measurements of liquid penetration within their experimental confidence intervals. An accuracy study on varying the minimum mesh size was also performed to ensure the grid convergence of the numerical results. Experimentally validated computational fluid dynamics (CFD) simulations were then used to investigate the local spray characteristics in the vicinity of the wall with a particular focus on Sauter Mean Diameter (SMD) and Reynolds and Weber numbers. The analysis was performed by considering before- and after-impingement conditions in order to take in account the influence of the impinged wall on the spray morphology.« less

  18. Turbulent dispersion of the icing cloud from spray nozzles used in icing tunnels

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Olsen, W. A., Jr.

    1986-01-01

    To correctly simulate flight in natural icing conditions, the turbulence in an icing simulator must be as low as possible. But some turbulence is required to mix the droplets from the spray nozzles and achieve an icing cloud of uniform liquid water content. The goal for any spray system is to obtain the widest possible spray cloud with the lowest possible turbulence in the test section of a icing tunnel. This investigation reports the measurement of turbulence and the three-dimensional spread of the cloud from a single spray nozzle. The task was to determine how the air turbulence and cloud width are affected by spray bars of quite different drag coefficients, by changes in the turbulence upstream of the spray, the droplet size, and the atomizing air. An ice accretion grid, located 6.3 m downstream of the single spray nozzle, was used to measure cloud spread. Both the spray bar and the grid were located in the constant velocity test section. Three spray bar shapes were tested: the short blunt spray bar used in the NASA Lewis Icing Research Tunnel, a thin 14.6 cm chord airfoil, and a 53 cm chord NACA 0012 airfoil. At the low airspeed (56 km/hr) the ice accretion pattern was axisymmetric and was not affected by the shape of the spray bar. At the high airspeed (169 km/hr) the spread was 30 percent smaller than at the low airspeed. For the widest cloud the spray bars should be located as far upstream in the low velocity plenum of the icing tunnel. Good comparison is obtained between the cloud spread data and predicitons from a two-dimensional cloud mixing computer code using the two equation turbulence (k epsilon g) model.

  19. Solid-state, triboelectrostatic and dissolution characteristics of spray-dried piroxicam-glucosamine solid dispersions.

    PubMed

    Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi

    2016-10-01

    This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Blood plasma response and urinary excretion of nitrite and nitrate in milk-fed calves after oral nitrite and nitrate administration.

    PubMed

    Hüsler, B R.; Blum, J W.

    2001-05-01

    There is marked endogenous production of nitrate in young calves. Here we have studied the contribution of exogenous nitrate and nitrite to plasma concentrations and urinary excretion of nitrite and nitrate in milk-fed calves. In experiment 1, calves were fed 0 or 200 &mgr;mol nitrate or nitrite/kg(0.75) or 100 &mgr;mol nitrite plus 100 &mgr;mol nitrate/kg(0.75) with milk for 3 d. In experiment 2, calves were fed 400 &mgr;mol nitrate or nitrite/kg(0.75) with milk for 1 d. Plasma nitrate rapidly and comparably increased after feeding nitrite, nitrate or nitrite plus nitrate. The rise of plasma nitrate was greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. Plasma nitrate decreased slowly after the 3-d administration of 200 &mgr;mol nitrate or nitrite/kg(0.75) and reached pre-experimental concentrations 4 d later. Urinary nitrate excretions nearly identically increased if nitrate, nitrite or nitrite plus nitrate were administered and excreted amounts were greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. After nitrite ingestion plasma nitrite only transiently increased after 2 and 4 h and urinary excretion rates remained unchanged. Plasma nitrate concentration remained unchanged if milk was not supplemented with nitrite or nitrate. Nitrate concentrations were stable for 24 h after addition of nitrite to full blood in vitro, whereas nitrite concentrations decreased within 2 h. In conclusion, plasma nitrate concentrations and urinary nitrate excretions are enhanced dose-dependently by feeding low amounts of nitrate and nitrite, whereas after ingested nitrite only a transient and small rise of plasma nitrite is observed because of rapid conversion to nitrate.

  1. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhuri, Ahsan; Love, Norman

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials formore » corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray systems, there exists a lack of fundamental understanding of the effect of hardware characteristics and operating parameters on HVOF thermally sprayed coatings. Motivated by these issues, this study is devoted to investigate the effect of hardware characteristics (e.g. spraying distance) and operating parameters (e.g. combustion chamber pressure, equivalence ratio, and total gas flow rate) on HVOF sprayed coatings using Inconel 718 alloy. The current study provides extensive understanding of several key operating and process parameters to optimize the next generation of HVOF thermally sprayed coatings for high temperature and harsh environment applications. A facility was developed to support this endeavor in a safe and efficient way, including a HVOF thermal spray system with a Data Acquisition and Remote Controls system (DARCS). The coatings microstructure and morphology were examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Nanoindentation.« less

  2. Nitrate Transport Is Independent of NADH and NAD(P)H Nitrate Reductases in Barley Seedlings 1

    PubMed Central

    Warner, Robert L.; Huffaker, Ray C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings. PMID:11537465

  3. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  4. Spray nozzle investigation for the Improved Helicopter Icing Spray System (IHISS)

    NASA Technical Reports Server (NTRS)

    Peterson, Andrew A.; Oldenburg, John R.

    1990-01-01

    A contract has been awarded by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System. Data are shown for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle. The IHISS, capable of deployment from any CH-47 helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.

  5. Water spray ventilator system for continuous mining machines

    DOEpatents

    Page, Steven J.; Mal, Thomas

    1995-01-01

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  6. Low pressure cold spraying on materials with low erosion resistance

    NASA Astrophysics Data System (ADS)

    Shikalov, V. S.; Klinkov, S. V.; Kosarev, V. F.

    2017-10-01

    In present work, the erosion-adhesion transition was investigated during cold spraying of aluminum particles on brittle ceramic substrates. Cold spraying was carried out with aid of sonic nozzle, which use allows significantly reducing the gas stagnation pressure without the effect of flow separation inside the nozzle and, accordingly, reducing the velocity of the spraying particles. Two stagnation pressures were chosen. The coating tracks were sprayed at different air temperatures in nozzle pre-chamber under each of regimes. Single sprayed tracks were obtained and their profiles were investigated by optical profilometry.

  7. Development of accelerated net nitrate uptake. [Zea mays L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKown, C.T.; McClure, P.R.

    1988-05-01

    Upon initial nitrate exposure, net nitrate uptake rates in roots of a wide variety of plants accelerate within 6 to 8 hours to substantially greater rates. Effects of solution nitrate concentrations and short pulses of nitrate ({le}1 hour) upon nitrate-induced acceleration of nitrate uptake in maize (Zea mays L.) were determined. Root cultures of dark-grown seedlings, grown without nitrate, were exposed to 250 micromolar nitrate for 0.25 to 1 hour or to various solution nitrate concentration (10-250 micromolar) for 1 hour before returning them to a nitrate-free solution. Net nitrate uptake rates were assayed at various periods following nitrate exposuremore » and compared to rates of roots grown either in the absence of nitrate (CaSO{sub 4}-grown) or with continuous nitrate for at least 20 hours. Three hours after initial nitrate exposure, nitrate pulse treatments increased nitrate uptake rates three- to four-fold compared to the rates of CaSO{sub 4}-grown roots. When cycloheximide (5 micrograms per milliliter) was included during a 1-hour pulse with 250 micromolar nitrate, development of the accelerated nitrate uptake state was delayed. Otherwise, nitrate uptake rates reached maximum values within 6 hours before declining. Maximum rates, however, were significantly less than those of roots exposed continuously for 20, 32, or 44 hours. Pulsing for only 0.25 hour with 250 micromolar nitrate and for 1 hour with 10 micromolar caused acceleration of nitrate uptake, but the rates attained were either less than or not sustained for a duration comparable to those of roots pulsed for 1 hour with 250 micromolar nitrate. These results indicate that substantial development of nitrate-induced accelerated nitrate uptake state can be achieved by small endogenous accumulations of nitrate, which appear to moderate the activity or level of root nitrate uptake.« less

  8. Simulation of preburner sprays, volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    The present study considered characteristics of sprays under a variety of conditions. Control of these sprays is important as the spray details can control both rocket combustion stability and efficiency. Under the present study Imperial College considered the following: (1) Measurement of the size and rate of spread of the sprays produced by single coaxial airblast nozzles with axial gaseous stream. The local size, velocity, and flux characteristics for a wide range of gas and liquid flowrates were measured, and the results were correlated with the conditions of the spray at the nozzle exit. (2) Examination of the effect of the geometry of single coaxial airblast atomizers on spray characteristics. The gas and liquid tube diameters were varied over a range of values, the liquid tube recess was varied, and the shape of the exit of the gaseous jet was varied from straight to converging. (3) Quantification of the effect of swirl in the gaseous stream on the spray characteristics produced by single coaxial airblast nozzles. (4) Quantification of the effect of reatomization by impingement of the spray on a flat disc positioned around 200 mm from the nozzle exit. This models spray impingement on the turbopump dome during the startup process of the preburner of the SSME. (5) Study of the interaction between multiple sprays without and with swirl in their gaseous stream. The spray characteristics of single nozzles were compared with that of three identical nozzles with their axis at a small distance from each other. This study simulates the sprays in the preburner of the SSME, where there are around 260 elements on the faceplate of the combustion chamber. (6) Design an experimental facility to study the characteristics of sprays at high pressure conditions and at supercritical pressure and temperature for the gas but supercritical pressure and subcritical temperature for the liquid.

  9. Optimization of the inter-tablet coating uniformity for an active coating process at lab and pilot scale.

    PubMed

    Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter

    2013-11-30

    The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Roemer, Timothy John; Hirschfeld, Deidre A.

    2004-11-01

    Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10; Valimet H-20; and Brodmann Flomaster. ASTM E8 tensile specimens were machinedmore » from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300 C, 22 h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulk-forming process.« less

  11. The effect of a simple annealing heat treatement on the mechanical properties of cold-sprayed aluminium.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Roemer, Timothy John; Hirschfeld, Deidre A.

    2005-08-01

    Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10: Valimet H-20: and Brodmann Flomaster. ASTM E8 tensile specimens were machinedmore » from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300 C, 22h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulkforming process.« less

  12. Metsulfuron spray drift reduces fruit yield of hawthorn (Crataegus monogyna L.).

    PubMed

    Kjaer, Christian; Strandberg, Morten; Erlandsen, Mogens

    2006-03-01

    This study was carried out to investigate whether spray drift of metsulfuron has a potential to negatively affect hawthorn (Crataegus monogyna) hedgerows near agricultural fields. For this purpose four doses of metsulfuron ranging from 5% to 40% of the field dose (4 g metsulfuron per hectare) were sprayed on trees in seven different hawthorn hedgerows. The actual deposition on the leaves was measured by means of a tracer (glycine). Spraying was conducted both at the bud stage and at early flowering. Leaves, flowers, green berries and mature berries were harvested and the number and weight of each were measured. The spraying at the bud stage caused a highly significant reduction in number and dry weight of berries, whereas it had no effects on leaf and flower production. The berry reduction was close to 100% at actual depositions relevant for spray drift under normal conditions. Spraying at early flowering also significantly reduced berries although the effect was smaller than for the spraying at bud stage. The early flower stage spraying caused no reduction in number and size of leaves. The possible ecological consequence is that metsulfuron spray drift from agricultural fields has a potential to reduce the amount of berries available for frugivorous birds in nearby hedgerows. A potential need for regulatory measures to reduce herbicide spray drift to hedgerows situated near agricultural fields with herbicide use is also indicated.

  13. Effect of particle in-flight behavior on the composition of thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Bai, Y.; Tang, J. J.; Liu, K.; Ding, C. H.; Yang, J. F.; Han, Z. H.

    2013-12-01

    In this work, 6 to 11 mol% YO1.5-stabilized zirconia (YSZ) coatings were deposited by supersonic and conventional atmospheric plasma spraying. During spraying, the surface temperature and velocity of in-flight particles were monitored by Spray Watch 2i on-line system. The phase composition of as-sprayed coatings was analyzed by X-ray diffractometry (XRD). Lattice parameters, tetragonality and the content of YO1.5 (mol%) of as-sprayed coatings were calculated according to the position of (0 0 4) and (4 0 0) diffraction peaks. It was found that the as-sprayed coatings were composed of metastable non-transformable tetragonal phase (t‧). However, the amount of YO1.5 (mol%) in the as-sprayed coatings decreased with the increase of melting index of in-flight particles due to the partial evaporation of YO1.5 during spraying.

  14. Thermal spray for commercial shipbuilding

    NASA Astrophysics Data System (ADS)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  15. Automatic macroscopic characterization of diesel sprays by means of a new image processing algorithm

    NASA Astrophysics Data System (ADS)

    Rubio-Gómez, Guillermo; Martínez-Martínez, S.; Rua-Mojica, Luis F.; Gómez-Gordo, Pablo; de la Garza, Oscar A.

    2018-05-01

    A novel algorithm is proposed for the automatic segmentation of diesel spray images and the calculation of their macroscopic parameters. The algorithm automatically detects each spray present in an image, and therefore it is able to work with diesel injectors with a different number of nozzle holes without any modification. The main characteristic of the algorithm is that it splits each spray into three different regions and then segments each one with an individually calculated binarization threshold. Each threshold level is calculated from the analysis of a representative luminosity profile of each region. This approach makes it robust to irregular light distribution along a single spray and between different sprays of an image. Once the sprays are segmented, the macroscopic parameters of each one are calculated. The algorithm is tested with two sets of diesel spray images taken under normal and irregular illumination setups.

  16. Electrical Resistivity of Wire Arc Sprayed Zn and Cu Coatings for In-Mold-Metal-Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch; Ochotta, P.

    2018-06-01

    Electrical functionalities can be integrated into plastic parts by integrating thermally sprayed metal coatings into the non-conductive base material. Thermally sprayed conducting tracks for power and signal transmission are one example. In this case, the electrical resistance or resistivity of the coatings should be investigated. Therefore, the electrical resistivity of wire arc sprayed Zn and Cu coatings has been investigated. In case of Zn coatings, spray distance, gas pressure and wire diameter could be identified as significant influencing parameters on the electrical resistivity. In contrast, process gas, gas pressure and voltage do have a significant influence on the electrical resistivity of Cu coatings. Through the use of the In-Mold-Metal-Spraying method (IMMS), thermal degradation can be avoided by transferring thermally sprayed coating from a mold insert onto the plastic part. Therefore, the influence of the transfer process on the electrical resistance of the coatings has also been investigated.

  17. The Cold Gas-Dynamic Spray and Characterization of Microcrystalline and Nanocrystalline Copper Alloys

    DTIC Science & Technology

    2012-12-01

    cold gas-dynamic spray process are well understood, the effects of feedstock powder microstructure and composition on the deposition process remain...The Relationship between Powder Zinc Content and Porosity .....74  5.  Compositional Variability as a Side Effect of the Cold Spray Deposition Process ...to expect in cold spray deposited copper coatings based on common spray parameters. Ning et

  18. 46 CFR 35.40-18 - Water spray systems-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Water spray systems-TB/ALL. 35.40-18 Section 35.40-18 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-18 Water spray systems—TB/ALL. (a) Water spray system apparatus shall be marked: “WATER SPRAY SYSTEM,” as appropriate, in not...

  19. 46 CFR 35.40-18 - Water spray systems-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Water spray systems-TB/ALL. 35.40-18 Section 35.40-18 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-18 Water spray systems—TB/ALL. (a) Water spray system apparatus shall be marked: “WATER SPRAY SYSTEM,” as appropriate, in not...

  20. Physicochemical and in vitro deposition properties of salbutamol sulphate/ipratropium bromide and salbutamol sulphate/excipient spray dried mixtures for use in dry powder inhalers.

    PubMed

    Corrigan, Deirdre O; Corrigan, Owen I; Healy, Anne Marie

    2006-09-28

    The physicochemical and aerodynamic properties of spray dried powders of the drug/drug mixture salbutamol sulphate/ipratropium bromide were investigated. The in vitro deposition properties of spray dried salbutamol sulphate and the spray dried drug/excipient mixtures salbutamol sulphate/lactose and salbutamol sulphate/PEG were also determined. Spray drying ipratropium bromide monohydrate resulted in a crystalline material from both aqueous and ethanolic solution. The product spray dried from aqueous solution consisted mainly of ipratropium bromide anhydrous. There was evidence of the presence of another polymorphic form of ipratropium bromide. When spray dried from ethanolic solution the physicochemical characterisation suggested the presence of an ipratropium bromide solvate with some anhydrous ipratropium bromide. Co-spray drying salbutamol sulphate with ipratropium bromide resulted in amorphous composites, regardless of solvent used. Particles were spherical and of a size suitable for inhalation. Twin impinger studies showed an increase in the fine particle fraction (FPF) of spray dried salbutamol sulphate compared to micronised salbutamol sulphate. Co-spray dried salbutamol sulphate:ipratropium bromide 10:1 and 5:1 systems also showed an increase in FPF compared to micronised salbutamol sulphate. Most co-spray dried salbutamol sulphate/excipient systems investigated demonstrated FPFs greater than that of micronised drug alone. The exceptions to this were systems containing PEG 4000 20% or PEG 20,000 40% both of which had FPFs not significantly different from micronised salbutamol sulphate. These two systems were crystalline unlike most of the other spray dried composites examined which were amorphous in nature.

  1. Spatial and temporal distribution of airborne Bacillus thuringiensis var. kurstaki during an aerial spray program for gypsy moth eradication.

    PubMed

    Teschke, K; Chow, Y; Bartlett, K; Ross, A; van Netten, C

    2001-01-01

    We measured airborne exposures to the biological insecticide Bacillus thuringiensis var. kurstaki (Btk) during an aerial spray program to eradicate gypsy moths on the west coast of Canada. We aimed to determine whether staying indoors during spraying reduced exposures, to determine the rate of temporal decay of airborne concentrations, and to determine whether drift occurred outside the spray zone. During spraying, the average culturable airborne Btk concentration measured outdoors within the spray zone was 739 colony-forming units (CFU)/m3 of air. Outdoor air concentrations decreased over time, quickly in an initial phase with a half time of 3.3 hr, and then more slowly over the following 9 days, with an overall half-time of about 2.4 days. Inside residences during spraying, average concentrations were initially 2-5 times lower than outdoors, but at 5-6 hr after spraying began, indoor concentrations exceeded those outdoors, with an average of 244 CFU/m3 vs. 77 CFU/m3 outdoors, suggesting that the initial benefits of remaining indoors during spraying may not persist as outside air moves indoors with normal daily activities. There was drift of culturable Btk throughout a 125- to 1,000-meter band outside the spray zone where measurements were made, a consequence of the fine aerosol sizes that remained airborne (count median diameters of 4.3 to 7.2 microm). Btk concentrations outside the spray zone were related to wind speed and direction, but not to distance from the spray zone.

  2. Thermal sprayed composite melt containment tubular component and method of making same

    DOEpatents

    Besser, Matthew F.; Terpstra, Robert L.; Sordelet, Daniel J.; Anderson, Iver E.

    2002-03-19

    A tubular thermal sprayed melt containment component for transient containment of molten metal or alloy wherein the tubular member includes a thermal sprayed inner melt-contacting layer for contacting molten metal or alloy to be processed, a thermal sprayed heat-generating layer deposited on the inner layer, and an optional thermal sprayed outer thermal insulating layer. The thermal sprayed heat-generating layer is inductively heated as a susceptor of an induction field or electrical resistively heated by passing electrical current therethrough. The tubular thermal sprayed melt containment component can comprise an elongated melt pour tube of a gas atomization apparatus where the melt pour tube supplies molten material from a crucible to an underlying melt atomization nozzle.

  3. Fabrication of topical metered dose film forming sprays for pain management.

    PubMed

    Ranade, Sneha; Bajaj, Amrita; Londhe, Vaishali; Babul, Najib; Kao, Danny

    2017-03-30

    Topical film-forming metered dose spray formulations were designed for management of pain. Ropivacaine, a local anesthetic is explored for its topical efficacy in alleviating pain. Metered dose spray containers, organic solvents, film forming polymers and permeation enhancers were utilized to fabricate the Metered Dose topical spray. Factors like viscosity, spray pattern, spray angle, volume of actuation, droplet size distribution of the metered dose spray formulation and drying time, flexibility and wash-ability of the film formed after spraying were assessed. Permeation of the drug into the porcine skin was observed based on ex-vivo diffusion studies and confocal microscopy. The results indicated a high level of drug concentration in the skin layers. Anti-nociceptive efficacy of the formulations was assessed on Wistar rats by hot plate and tail flick tests, based on the response to pain perception. The results were comparable to the conventional lidocaine gel. Topical film forming sprays have the ability to provide an accurate, long lasting and patient compliant delivery of drugs on the skin as compared to conventional gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sequential cryogen spraying for heat flux control at the skin surface

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  5. Granulometric characterization of airborne particulate release during spray application of nanoparticle-doped coatings

    NASA Astrophysics Data System (ADS)

    Göhler, Daniel; Stintz, Michael

    2014-08-01

    Airborne particle release during the spray application of coatings was analyzed in the nanometre and micrometre size range. In order to represent realistic conditions of domestic and handcraft use, the spray application was performed using two types of commercial propellant spray cans and a manual gravity spray gun. Four different types of coatings doped with three kinds of metal-oxide tracer nanoparticle additives (TNPA) were analyzed. Depending on the used coating and the kind of spray unit, particulate release numbers between 5 × 108 and 3 × 1010 particles per gram ejection mass were determined in the dried spray aerosols. The nanoparticulate fraction amounted values between 10 and 60 no%. The comparison between nanoparticle-doped coatings with non-doped ones showed no TNPA-attributed differences in both the macroscopic spray process characteristics and the particle release numbers. SEM, TEM and EDX-analyzes showed that the spray aerosols were composed of particles made up solely from matrix material and sheathed pigments, fillers and TNPAs. Isolated ZnO- or Fe2O3-TNPAs could not be observed.

  6. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix andmore » F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.« less

  7. Pharmacology of the human red cell voltage-dependent cation channel; Part I. Activation by clotrimazole and analogues.

    PubMed

    Barksmann, Trine L; Kristensen, Berit I; Christophersen, Palle; Bennekou, Poul

    2004-01-01

    The activation and pharmacological modulation of the nonselective voltage-dependent cation (NSVDC) channel from human erythrocytes were studied. Basic channel activation was achieved by suspending red cells in a low Cl(-) Ringer (2 mM), where a positive membrane potential (V(m) = E(Cl)) immediately developed. Voltage- and time-dependent activation of the NSVDC channel occurred, reaching a cation conductance (g+) of 1.5-2.0 microS cm(-2). In the presence of the classical Gárdos channel blocker clotrimazole (0-50 microM), activation occurred faster, and g+ saturated dose-dependently (EC50 = 14 microM) at a value of about 4 microS cm(-2). The clotrimazole analogues TRAM-34, econazole, and miconazole also stimulated the channel, whereas the chemically more distant Gárdos channel inhibitors nitrendipine and cetiedil had no effects. Although the potency for modulation of the NSVDC channel is much lower than the IC50 value for Gárdos channel inhibition, clotrimazole (and its analogues) constitutes the first chemical class of positive modulators of the NSVDC channel. This may be an important pharmacological "fingerprint" in the identification of the cloned equivalent of the erythrocyte channel.

  8. Aerial electrostatic spray deposition and canopy penetration in cotton

    USDA-ARS?s Scientific Manuscript database

    Spray deposition on abaxial and adaxial leaf surfaces along with canopy penetration are essential for insect control and foliage defoliation in cotton production agriculture. Researchers have reported that electrostatically charged sprays have increased spray deposit onto these surfaces under widel...

  9. Sea Spray and Icing in the Emerging Open Water of the Arctic Ocean

    DTIC Science & Technology

    2015-06-12

    concentrations of wind-generated sea spray and the resulting spray icing on offshore structures, such as wind turbines and exploration, drilling , and...We anticipate that structures placed in shallow water—wind turbines, drilling rigs, or man-made production islands, for instance—will, therefore...and the severity of sea spray icing on fixed offshore structures. We will use existing information on the relationship of the spray concentration

  10. The Development of an Environmentally Compliant, Multi-Functional Aerospace Coating Using Molecular- and Nano-Engineering Methods

    DTIC Science & Technology

    2006-10-02

    Al -TM-RE) alloy which could by spray applied using various deposition routes or deposited as a powder that is...corrosion properties of various spray deposited alloys from their properties as defective coatings on 2024-T3. "* HVOF spray deposited and cold spray ...layer. "* A method has been developed to distinguish the intrinsic corrosion properties of various spray deposited

  11. Deodorant spray: a newly identified cause of cold burn.

    PubMed

    May, Ulrich; Stirner, Karl-Heinz; Lauener, Roger; Ring, Johannes; Möhrenschlager, Matthias

    2010-09-01

    Two patients encountered a first-degree cold burn after use of a deodorant spray. The spray-nozzle to skin-surface distance was approximately 5 cm, and the spraying lasted approximately 15 seconds. Under laboratory conditions, the deodorant in use was able to induce a decline in temperature of >60 degrees C. These 2 cases highlight a little-known potential for skin damage by deodorant sprays if used improperly.

  12. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast.

    PubMed

    Kundoor, Vipra; Dalby, Richard N

    2011-08-01

    To systematically evaluate the effect of formulation- and administration-related variables on nasal spray deposition using a nasal cast. Deposition pattern was assessed by uniformly coating a transparent nose model with Sar-Gel®, which changes from white to purple on contact with water. Sprays were subsequently discharged into the cast, which was then digitally photographed. Images were quantified using Adobe® Photoshop. The effects of formulation viscosity (which influences droplet size), simulated administration techniques (head orientation, spray administration angle, spray nozzle insertion depth), spray pump design and metering volume on nasal deposition pattern were investigated. There was a significant decrease in the deposition area associated with sprays of increasing viscosity. This appeared to be mediated by an increase in droplet size and a narrowing of the spray plume. Administration techniques and nasal spray pump design also had a significant effect on the deposition pattern. This simple color-based method provides quantitative estimates of the effects that different formulation and administration variables may have on the nasal deposition area, and provides a rational basis on which manufacturers of nasal sprays can base their patient instructions or post approval changes when it is impractical to optimize these using a clinical study.

  13. Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists

    NASA Astrophysics Data System (ADS)

    Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.

    1993-10-01

    A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.

  14. Self-extinguishing behavior of kerosene spray fire in a completely enclosed compartment

    NASA Astrophysics Data System (ADS)

    Wang, Changjian; Guo, Jin; Yan, Weigang; Lu, Shouxiang

    2013-10-01

    The self-extinguishing behavior of kerosene spray fire was investigated in a completely enclosed compartment with the size of 3 m × 3 m × 3.4 m. The spray was generated by locating one BETE nozzle at the center of the bottom wall. A series of spray fire videos were obtained by changing BETE nozzle type and injecting pressure. The results show that spray fire undergoes four stages: the growth stage, the quasi-steady stage, the stretch stage and the self-extinguishing stage. Consumption of large quantities of oxygen causes spray fire to first be stretched and then quench. In this process, fire base migrates away from spray region and leads to the emergence of ghosting fire. Ghosting fire promotes the instability of spray fire and large fluctuation of its height, which provides help to its self-extinguishing. With increasing the injecting pressure or the nozzle diameter, the self-extinguishing time decreases. It is found that the self-extinguishing time is approximately in inverse relation with injecting flow rate. Additionally, we also observed the occurrence of two-phase deflagration just after ignition, and it accelerates the spray fire growth and induces a larger fire height than the following quasi-steady spray fire. The deflagration turns stronger with increasing the injecting pressure.

  15. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    NASA Astrophysics Data System (ADS)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  16. Dynamic characteristics of pulsed supersonic fuel sprays

    NASA Astrophysics Data System (ADS)

    Pianthong, K.; Matthujak, A.; Takayama, K.; Milton, B. E.; Behnia, M.

    2008-06-01

    This paper describes the dynamic characteristics of pulsed, supersonic liquid fuel sprays or jets injected into ambient air. Simple, single hole nozzles were employed with the nozzle sac geometries being varied. Different fuel types, diesel fuel, bio-diesel, kerosene, and gasoline were used to determine the effects of fuel properties on the spray characteristics. A vertical two-stage light gas gun was employed as a projectile launcher to provide a high velocity impact to produce the liquid jet. The injection pressure was around 0.88-1.24 GPa in all cases. The pulsed, supersonic fuel sprays were visualized by using a high-speed video camera and shadowgraph method. The spray tip penetration and velocity attenuation and other characteristics were examined and are described here. An instantaneous spray tip velocity of 1,542 m/s (Mach number 4.52) was obtained. However, this spray tip velocity can be sustained for only a very short period (a few microseconds). It then attenuates very quickly. The phenomenon of multiple high frequency spray pulses generated by a single shot impact and the changed in the angle of the shock structure during the spray flight, which had already been observed in previous studies, is again noted. Multiple shock waves from the conical nozzle spray were also clearly captured.

  17. A new HF-resistant tandem spray chamber for improved determination of trace elements and Pb isotopes using inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Krachler, Michael; Rausch, Nicole; Feuerbacher, Helmut; Klemens, Patrick

    2005-07-01

    The use of a new HF-resistant tandem spray chamber arrangement consisting of a cyclonic spray chamber and a Scott-type spray chamber made from PFA and PEEK provides a straightforward approach for improving the performance of inductively coupled-mass spectrometry (ICP-MS). The characteristics of the tandem spray chamber were critically evaluated against a PEEK cyclonic and a PFA Scott-type spray chamber, respectively. Sensitivity across the entire mass range was increased by about three times compared to the conventional setup utilizing only one spray chamber. Precision of the results, especially at low signal intensities, improved by 160% and 31% compared to the cyclonic and Scott-type spray chamber, respectively. Using the tandem spray chamber, the oxide formation rate was lowered by about 50%. Signals as low as 30 counts could be determined under routine measurement conditions with a RSD of 2.4% thus allowing to precisely quantify small concentration differences at the ng l - 1 concentration level. The excellent precision (0.02-0.07%) of 206Pb / 207Pb and 206Pb / 208Pb ratios determined in pore water samples was rather limited by the instrumental capabilities of the single collector ICP-MS instrument than by the performance of the tandem spray chamber.

  18. A network meta-analysis provides new insight into fungicide scheduling for the control of Botrytis cinerea in vineyards.

    PubMed

    González-Domínguez, Elisa; Fedele, Giorgia; Caffi, Tito; Delière, Laurent; Sauris, Pierre; Gramaje, David; Ramos-Sáez de Ojer, José Luis; Díaz-Losada, Emilia; Díez-Navajas, Ana M; Bengoa, Paul; Rossi, Vittorio

    2018-06-09

    Control of Botrytis bunch rot (BBR) is currently based on the application of fungicides at four timings corresponding to specific growth stages of vines: end of flowering (A), pre-bunch closure (B), veraison (C) and before harvest (D). The current research provides a network meta-analysis of 116 studies conducted between 1963 and 2016 in nine countries, in which 14 strategies (based on combinations of 1, 2, 3, or 4 sprays applied in A, B, C, and/or D) were compared. When a 1-spray strategy was applied, BBR control was more effective with sprays applied in A, C, or D than B. With a 2-spray strategy, strategy AC provided similar control as strategy BC; strategy CD also provided good control. For a 3-spray strategy, the best disease control was consistently obtained with strategy ACD. Four sprays strategy ABCD provided the best control but often involved needless sprays so that the routine application of four sprays is not justified. Spraying at timing A seems to be very important for achieving efficient and flexible disease control. Flexibility is reduced by spraying at timing B rather than A. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Determining the drift potential of Venturi nozzles compared with standard nozzles across three insecticide spray solutions in a wind tunnel.

    PubMed

    Ferguson, J Connor; Chechetto, Rodolfo G; O'Donnell, Chris C; Dorr, Gary J; Moore, John H; Baker, Greg J; Powis, Kevin J; Hewitt, Andrew J

    2016-08-01

    Previous research has sought to adopt the use of drift-reducing technologies (DRTs) for use in field trials to control diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera: Plutellidae) in canola (Brassica napus L.). Previous studies observed no difference in canopy penetration from fine to coarse sprays, but the coverage was higher for fine sprays. DBM has a strong propensity to avoid sprayed plant material, putting further pressure on selecting technologies that maximise coverage, but often this is at the expense of a greater drift potential. This study aims to examine the addition of a DRT oil that is labelled for control of DBM as well and its effect on the drift potential of the spray solution. The objectives of the study are to quantify the droplet size spectrum and spray drift potential of each nozzle type to select technologies that reduce spray drift, to examine the effect of the insecticide tank mix at both (50 and 100 L ha(-1) ) application rates on droplet size and spray drift potential across tested nozzle type and to compare the droplet size results of each nozzle by tank mix against the drift potential of each nozzle. The nozzle type affected the drift potential the most, but the spray solution also affected drift potential. The fine spray quality (TCP) resulted in the greatest drift potential (7.2%), whereas the coarse spray quality (AIXR) resulted in the lowest (1.3%), across all spray solutions. The spray solutions mixed at the 100 L ha(-1) application volume rate resulted in a higher drift potential than the same products mixed at the 50 L ha(-1) mix rate. The addition of the paraffinic DRT oil was significant in reducing the drift potential of Bacillus thuringiensis var. kurstkai (Bt)-only treatments across all tested nozzle types. The reduction in drift potential from the fine spray quality to the coarse spray quality was up to 85%. The addition of a DRT oil is an effective way to reduce the spray solution drift potential across all nozzle types and tank mixes evaluated in this study. The greatest reduction in drift potential can be achieved by changing nozzle type, which can reduce the losses of the spray to the surrounding environment. Venturi nozzles greatly reduce the drift potential compared with standard nozzles by as much as 85% across all three insecticide spray solutions. Results suggest that a significant reduction in drift potential can be achieved by changing the nozzle type, and can be achieved without a loss in control of DBM. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Short-term effects of a high nitrate diet on nitrate metabolism in healthy individuals.

    PubMed

    Bondonno, Catherine P; Liu, Alex H; Croft, Kevin D; Ward, Natalie C; Puddey, Ian B; Woodman, Richard J; Hodgson, Jonathan M

    2015-03-12

    Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake.

  1. A hypothesis of the Effect of a New Nasal Spray Made from Natural Medicines on Allergic Rhinitis in Animals

    NASA Astrophysics Data System (ADS)

    Zhai, Hailong; Wang, Yufang

    2018-01-01

    To verify the effect of a new nasal spray made from natural medicines on allergic rhinitis in animals. Methods: The main natural medicines contained in Acusine nasal spray plus essential traditional Chinese medicine contained in drugs for allergic rhinitis in Chinese market were used. By preparation process of extraction of traditional Chinese medicine such as steam distillation, ethanol extraction, a new nasal spray made from natural medicines was prepared. In the meantime, 24 BALB/c mice and New Zealand white rabbits were used. Then, mice were randomly divided into four group; control group, beclomethasone dipropionate group, Acusine group and new spray group, 6 mice in each group. Moreover, the effect of the new nasal spray made on passive cutaneous anaphylaxis was conducted by detecting absorptions of Evan’s blue (620nm) in the four groups. Allergic rhinitis models in 40 New Zealand white rabbits were established. Consequently, 40 allergic rhinitis models in rabbits were randomly divided into control group, Acusine group and new spray group, 10 rabbits in each group. The four groups were sprayed nasally with saline, Acusine spray and new spray respectively, three times/d, for 30 days. The nasal resistances in the four groups were measured with a rhinoresistometer. Moreover, their nasal mucosa was taken for HE staining. Consequently, their pathological manifestations were observed. The results: Absorption of Evan’s blue (620nm) of new spray group will be found significantly lower than Acusine group (P<0.05) and will have no significantly difference compared with beclomethasone dipropionate group(P>0.05). On the other hand, absorption of Evan’s blue (620nm) of beclomethasone dipropionate group will be significantly lower than Acusine group (P<0.05). Moreover, The nasal resistances of new spray group will be significantly lower than Acusine group (P<0.05) and will have no significantly difference compared with beclomethasone dipropionate group (P».05). Moreover, the nasal resistances of beclomethasone dipropionate group will be significantly lower than Acusine group (P<0.05). While, the nasal mucosa of control group will be found typical as nasal mucosa of allergic rhinitis. However, the nasal mucosa of beclomethasone dipropionate group, Acusine group and new spray group will be better than control group. Of them, new spray group will be the best. The nasal mucosa of beclomethasone dipropionate group will show the manifestation of drug-induced rhinitis. The conclusion: The invented new spray will not only have a better treatment effect on allergic rhinitis, similar with beclomethasone dipropionate, than Acusine Nasal Spray but also will not leave side effect on nasal mucosa, compared with beclomethasone dipropionate. Thus, the new spray made from natural medicines can be further studied as a better prescription drug, rather than an OTC like Acusine Nasal Spray, to replace beclomethasone dipropionate nasal spray. However, further study that would be required to produce a more meaningful answer.

  2. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction

    PubMed Central

    Fritz, Bradley K.; Hoffmann, W. Clint

    2016-01-01

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589

  3. Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products.

    PubMed

    Lim, Kar; Ma, Mitzi; Dolan, Kirk D

    2011-09-01

    The effect of spray drying on degradation of nutraceutical components in cull blueberry extract was investigated. Samples collected before and after spray drying were tested for antioxidant capacity using oxygen radical absorbance capacity (ORAC(FL) ) and total phenolics; and for individual anthocyanidins. In Study 1, four different levels of maltodextrin (blueberry solids to maltodextrin ratios of 5: 95, 10: 90, 30: 70, and 50: 50) were spray dried a pilot-scale spray dryer. There was significantly higher retention of nutraceutical components with increased levels of maltodextrin indicating a protective effect of maltodextrin on the nutraceutical components during spray drying. In Study 2, the air inlet temperature of the spray dryer was kept constant for all runs at 150 °C, with 2 different outlet temperatures of 80 and 90 °C. The degradation of nutraceutical components was not significantly different at the 2 selected outlet temperatures. ORAC(FL) reduction for blueberry samples after spray drying was 66.3% to 69.6%. After spray drying, total phenolics reduction for blueberry was 8.2% to 17.5%. Individual anthocyanidin reduction for blueberry was 50% to 70%. The experimental spray dried powders compared favorably to commercial blueberry powders. Results of the study show that use of blueberry by-products is feasible to make a value-added powder. Results can be used by producers to estimate final nutraceutical content of spray-dried blueberry by-products. © 2011 Institute of Food Technologists®

  4. Demonstration and Field Test of airjacket technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, D.; Fisk, W.J.; Gadgil, A.J.

    1998-06-01

    There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The differencemore » between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.« less

  5. EVALUATION OF CONVERGENT SPRAY TECHNOLOGYTM SPRAY PROCESS FOR ROOF COATING APPLICATION

    EPA Science Inventory

    The overall goal of this project was to demonstrate the feasibility of Convergent Spray TechnologyTM for the roofing industry. This was accomplished by producing an environmentally compliant coating utilizing recycled materials, a CSTTM spray process portable application cart, a...

  6. The effect of process parameters on Twin Wire Arc spray pattern shape

    DOE PAGES

    Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne

    2015-04-20

    A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less

  7. The effect of process parameters on Twin Wire Arc spray pattern shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne

    A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less

  8. Evaporating Spray in Supersonic Streams Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.

    2006-01-01

    Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.

  9. Impact of sea spray on the Yellow and East China Seas thermal structure during the passage of Typhoon Rammasun (2002)

    NASA Astrophysics Data System (ADS)

    Zhang, Lianxin; Zhang, Xuefeng; Chu, P. C.; Guan, Changlong; Fu, Hongli; Chao, Guofang; Han, Guijun; Li, Wei

    2017-10-01

    Strong winds lead to large amounts of sea spray in the lowest part of the atmospheric boundary layer. The spray droplets affect the air-sea heat fluxes due to their evaporation and the momentum due to the change of sea surface, and in turn change the upper ocean thermal structure. In this study, impact of sea spray on upper ocean temperatures in the Yellow and East China Seas (YES) during typhoon Rammasun's passage is investigated using the POMgcs ocean model with a sea spray parameterization scheme, in which the sea spray-induced heat fluxes are based on an improved Fairall's sea spray heat fluxes algorithm, and the sea spray-induced momentum fluxes are derived from an improved COARE version 2.6 bulk model. The distribution of the sea spray mediated turbulent fluxes was primarily located at Rammasun eye-wall region, in accord with the maximal wind speeds regions. When Rammasun enters the Yellow sea, the sea spray mediated latent (sensible) heat flux maximum is enhanced by 26% (13.5%) compared to that of the interfacial latent (sensible) heat flux. The maximum of the total air-sea momentum fluxes is enhanced by 43% compared to the counterpart of the interfacial momentum flux. Furthermore, the sea spray plays a key role in enhancing the intensity of the typhoon-induced "cold suction" and "heat pump" processes. When the effect of sea spray is considered, the maximum of the sea surface cooling in the right side of Rammasun's track is increased by 0.5°C, which is closer to the available satellite observations.

  10. Investigation of Spray Cooling Schemes for Dynamic Thermal Management

    NASA Astrophysics Data System (ADS)

    Yata, Vishnu Vardhan Reddy

    This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.

  11. Assessing possible exposures of ground troops to Agent Orange during the Vietnam War: the use of contemporary military records.

    PubMed

    Young, Alvin L; Cecil, Paul F; Guilmartin, John F

    2004-01-01

    Potential exposure of ground troops in Vietnam to Agent Orange and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) remains controversial despite the passage of 30 years since the Vietnam War. Because of uncertainty over the serum dioxin levels in ground troops at the end of their service in Vietnam, attempts have been made to develop a methodology for characterizing exposure of ground troops in Vietnam to Agent Orange and other herbicides based upon historical reconstruction from military records. Historical information is often useful in evaluating and modeling exposure, but such information should be reasonably accurate, complete, and reliable. This paper reviews the procedures and supporting historical information related to the spraying of herbicides in Vietnam. The historical information is classified into two categories: procedural information and operational information. Procedural information covered the process and procedures followed in spraying herbicides from US Air Force fixed wing aircraft (Operation RANCH HAND) in Vietnam, and included approval procedures for spray missions, the criteria required to conduct a mission, the control exercised by the Forward Air Controller and the Tactical Air Control Center and the characteristics of the equipment used to apply the herbicides. Operational information includes data from the RANCH HAND Daily Air Activities Reports, which included geographic locations of specific spray missions, the amount of herbicide sprayed by a specific mission, reports of battle damage to spray aircraft, reports of fighter aircraft support for aerial spray missions, and any comments, such as reasons for canceling a mission. Historical information demonstrates that herbicide spray missions were carefully planned and that spraying only occurred when friendly forces were not located in the target area. RANCH HAND spray missions were either not approved or cancelled if approved when there were friendly forces in the area designated for spraying. Stringent criteria had to be met before spray missions could be approved. The operational information shows that spray missions for both defoliation and crop destruction were conducted in an extremely hostile environment. Heavy 'fighter suppression' with antipersonnel ordnance was used to minimize the impact of hostile ground fire on RANCH HAND aircraft. Procedures were in place that prohibited movement of troops into sprayed areas immediately after a mission due to the possible presence of unexploded ordnance delivered by fighter aircraft supporting RANCH HAND missions. The optimal nature of the spray equipment and application procedures minimized the possibility of significant spray drift. Conclusions. Few friendly troops were sprayed by fixed wing aircraft during Operation RANCH HAND, which delivered 95% of all defoliants used in Vietnam. Similarly, few troops were sprayed during helicopter or surface-based spray operations, which constituted the remaining 5% of defoliants. Detailed policies and procedures for approval and execution of spray missions ensured that friendly forces were not located in the areas targeted for spraying. Fighter aircraft assigned to accompany each spray mission frequently suppressed much of the hostile fire with bombs and other ordnance. Confirmed clearance of the target area was necessary to avoid friendly casualties. Historical records establish that these policies and procedures were strictly followed. Exposure of troops whether from direct spraying or movement through areas recently sprayed was very unlikely. The wartime military records of troop positions and herbicide operations are valuable for some purposes, but have specific limitations in exposure reconstruction. The completeness and accuracy of the geographic data (maps used by RANCH HAND and military ground units) were dependent upon the inherent precision of the map, the accuracy with which it depicted surface features, and the completeness and accuracy of the information on which it is based. Navigation by the crew using visual orientation and reference to the map was the only means that aircrew on spray missions had for establishing their locations. A Forward Air Controller independent of Operation RANCH HAND was present at the location of each spray target immediately before and during spraying operations to verify the target location and ensure that friendly forces were clear of the target area. Anecdotal reports of direct spraying of troops in Vietnam likely reflect the RANCH HAND missions spraying insecticide for mosquito control at regular intervals from March 1967 through February 1972. Outlook. The distribution and levels of serum dioxin in RANCH HAND veterans and the US Army Chemical Corps Vietnam veterans (the unit responsible for helicopter and ground-based spray operations) are distinguishable from typical levels in the population decades after the Vietnam conflict. An exposure model similar to that proposed in the 2003 report of the Institute of Medicine's Committee on 'Characterizing Exposure of Veterans to Agent Orange and Other Herbicides Used in Vietnam' was tested in 1988 by the Centers for Disease Control and Prevention and found to be a poor predictor of absorbed dose of TCDD. Military records during the Vietnam War lack the precision to determine that troops were directly sprayed with herbicides during Operation RANCH HAND, especially given the procedures in place to ensure clearance of friendly forces from the target area and the lack of elevated serum levels of TCDD in ground troops judged to have operated in heavily sprayed areas.

  12. Application of High Performance Computing for Simulations of N-Dodecane Jet Spray with Evaporation

    DTIC Science & Technology

    2016-11-01

    sprays and develop a predictive theory for comparison to measurements in the laboratory of turbulent diesel sprays. 15. SUBJECT TERMS high...models into future simulations of turbulent jet sprays and develop a predictive theory for comparison to measurements in the lab of turbulent diesel ...A critical component of maintaining performance and durability of a diesel engine involves the formation of a fuel-air mixture as a diesel jet spray

  13. "Teaching" an Industrial Robot To Spray

    NASA Technical Reports Server (NTRS)

    Evans, A. R.; Sweet, G. K.

    1982-01-01

    Teaching device, consisting of spacer rod or tube with three-pointed tip and line level, is used during pattern "teach-in" to make sure that robot manipulator holds spray gun perpendicular to surface to be sprayed and at right distance from it. For slanted surfaces angle adapter is added between spacer rod and line-level indicator. Angle is determined by slope of surface to be sprayed, thus allowing a perpendicular spray pattern against even slanted surfaces.

  14. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources of...

  15. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources of...

  16. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued... potassium nitrite, in the production of cured red meat products and cured poultry products. [48 FR 1705, Jan...

  17. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  18. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  19. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  20. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  1. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery

    PubMed Central

    Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj

    2013-01-01

    Purpose The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. Methods The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. Results sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. Conclusion The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation. PMID:24039397

  2. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    PubMed

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial pattern of airborne spray drift.

  3. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery.

    PubMed

    Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj

    2013-01-01

    The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation.

  4. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector

    NASA Astrophysics Data System (ADS)

    Ramírez, A. I.; Som, S.; Aggarwal, Suresh K.; Kastengren, A. L.; El-Hannouny, E. M.; Longman, D. E.; Powell, C. F.

    2009-07-01

    A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software.

  5. Short-Term Effects of a High Nitrate Diet on Nitrate Metabolism in Healthy Individuals

    PubMed Central

    Bondonno, Catherine P.; Liu, Alex H.; Croft, Kevin D.; Ward, Natalie C.; Puddey, Ian B.; Woodman, Richard J.; Hodgson, Jonathan M.

    2015-01-01

    Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake. PMID:25774606

  6. 21 CFR 524.1662a - Oxytetracycline and hydrocortisone spray.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Oxytetracycline and hydrocortisone spray. 524... ANIMAL DRUGS § 524.1662a Oxytetracycline and hydrocortisone spray. (a) Specifications. Each 3-ounce unit of oxytetracycline hydrochloride and hydrocortisone spray contains 300 milligrams of oxytetracycline...

  7. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    EPA Science Inventory

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  8. VERIFYING THE PERFORMANCE OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES

    EPA Science Inventory

    Application of pesticide sprays usually results in formation of small spray droplets which can drift with air currents to nearby sensitive sites. A number of technologies offer the potential to reduce the amount of spray drift from pesticide applications. Acceptance and use of ...

  9. Spatial distribution visualization of PWM continuous variable-rate spray

    USDA-ARS?s Scientific Manuscript database

    Chemical application is a dynamic spatial distribution process, during which spray liquid covers the targets with certain thickness and uniformity. Therefore, it is important to study the 2-D and 3-D (dimensional) spray distribution to evaluate spraying quality. The curve-surface generation methods ...

  10. Developments in the formulation and delivery of spray dried vaccines.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-10-03

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.

  11. Characteristics of combustion flame sprayed nickel aluminum using a Coanda Assisted Spray Manipulation collar for off-normal deposits

    NASA Astrophysics Data System (ADS)

    Archibald, Reid S.

    A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.

  12. Measurement of Ambient Air Motion of D. I. Gasoline Spray by LIF-PIV

    NASA Astrophysics Data System (ADS)

    Yamakawa, Masahisa; Isshiki, Seiji; Yoshizaki, Takuo; Nishida, Keiya

    Ambient air velocity distributions in and around a D. I. gasoline spray were measured using a combination of LIF and PIV techniques. A rhodamine and water solution was injected into ambient air to disperse the fine fluorescent liquid particles used as tracers. A fuel spray was injected into the fluorescent tracer cloud and was illuminated by an Nd: YAG laser light sheet (532nm). The scattered light from the spray droplets and tracers was cut off by a high-pass filter (>560nm). As the fluorescence (>600nm) was transmitted through the high-pass filter, the tracer images were captured using a CCD camera and the ambient air velocity distribution could be obtained by PIV based on the images. This technique was applied to a D. I. gasoline spray. The ambient air flowed up around the spray and entered into the tail of the spray. Furthermore, the relative velocity between the spray and ambient air was investigated.

  13. Study of Heterogeneous Structure in Diesel Fuel Spray by Using Micro-Probe L2F

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Yamamoto, Shohei; Ueki, Hironobu; Ishdia, Masahiro

    A L2F (Laser 2-Focus velocimeter) was applied for the measurements of the velocity and size of droplets in diesel fuel sprays. The micro-scale probe of the L2F has an advantage in avoiding the multiple scattering from droplets in a dense region of fuel sprays. A data sampling rate of 15MHz has been achieved in the L2F system for detecting almost all of the droplets which passed through the measurement probe. Diesel fuel was injected into the atmosphere by using a common rail injector. Measurement positions were located along the spray axis at 10, 15, 20, 25, and 30 mm from the nozzle exit. Measurement result showed that the velocity and size of droplets decreased and the number density of droplets increased along the spray axis. It was clearly shown that the mass flow rate in the spray was highest near the spray tip and was lower inside the spray.

  14. Spray visualization of alternative fuels at hot ambient conditions

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2017-11-01

    Gas-to-Liquid (GTL) has gained significant interest as drop-in alternative jet fuel owing to its cleaner combustion characteristics. The physical and evaporation properties of GTL fuels are different from those of the conventional jet fuels. Those differences will have an effect on the spray, and in turn, the combustion performance. In this study, the non-reacting near nozzle spray dynamics such as spray cone angle, liquid sheet breakup and liquid velocity of GTL fuel will be investigated and compared with those of the conventional jet fuel. This work is a follow up of the preliminary study performed at atmospheric ambient conditions where differences were observed in the near nozzle spray characteristics between the fuels. Whereas, in this study the spray visualization will be performed in a hot and inert environment to account for the difference in evaporation characteristics of the fuels. The spray visualization images will be captured using the shadowgraph technique. A rigorous statistical analysis of the images will be performed to compare the spray dynamics between the fuels.

  15. Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8.

    PubMed

    Yánez-Mendizabal, V; Viñas, I; Usall, J; Cañamás, T; Teixidó, N

    2012-04-01

    The role of endospore production by Bacillus subtilis CPA-8 on survival during spray-drying was investigated by comparison with a non-spore-forming biocontrol agent Pantoea agglomerans CPA-2. Endospore formation promoted heat resistance in CPA-8 depending on growth time (72 h cultures were more resistant than 24 h ones). The survival of CPA-8 and CPA-2 after spray-drying was determined after being grown in optimised media for 24 and 72 h. Spray-dried 72 h CPA-8 had the best survival (32%), while CPA-2 viability was less than 2%. CPA-8 survival directly related with its ability to produce endospores. Spray-dried CPA-8 reduced Monilinia fructicola conidia germination similarly to fresh cells, demonstrating that spray-drying did not adversely affect biocontrol efficacy. Endospore production thus improves CPA-8 resistance to spray-drying. These results can provide a reliable basis for optimising of the spray-drying formulation process for CPA-8 and other microorganisms.

  16. Spray combustion at normal and reduced gravity in counterflow and co-flow configurations

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1995-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment In view of the nearly insurmountable difficulties of this two-phase flow, a systematic study of spray evaporation and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones, would be useful. A few years ago we proposed to use an electrostatic spray of charged droplets for this type of combustion experiments under well-defined conditions. In the simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip (cone-jet mode). This jet breaks up farther downstream into a spray of charged droplets - the so-called ElectroSpray (ES). Several advantages distinguish the electrospray from alternative atomization techniques: (1) it can produce quasi-monodisperse droplets over a phenomenal size range; (2) the atomization, that is strictly electrostatic, is decoupled from gas flow processes, which provides some flexibility in the selection and control of the experimental conditions; (3) the Coulombic repulsion of homopolarly charged droplets induces spray self-dispersion and prevents droplet coalescence; (4) the ES provides the opportunity of studying regimes of slip between droplets and host gas without compromising the control of the spray properties; and (5) the compactness and potential controllability of this spray generation system makes it appealing for studies in reduced-gravity environments aimed at isolating the spray behavior from natural convection complications. With these premises, in March 1991 we initiated a series of experiments under NASA sponsorship (NAG3-1259 and 1688) in which the ES was used as a research tool to examine spray combustion in counter-flow and co-flow spray diffusion flames, as summarized below. The ultimate objective of this investigation is to examine the formation and burning of sprays of liquid fuels, at both normal and reduced gravity, first in laminar regimes and then in turbulent ones.

  17. Development of the improved helicopter icing spray system (IHISS)

    NASA Technical Reports Server (NTRS)

    Peterson, Andrew A.; Jenks, Mark D.; Gaitskill, William H.

    1989-01-01

    Boeing Helicopters has been awarded a contract by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System (HISS). The Improved Hiss (IHISS), capable of deployment from any CH-47D helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. Results are presented for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle and validate spray boom aerodynamic characteristics. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.

  18. Spray distribution evaluation of different settings of a hand-held-trolley sprayer used in greenhouse tomato crops.

    PubMed

    Llop, Jordi; Gil, Emilio; Gallart, Montserrat; Contador, Felipe; Ercilla, Mireia

    2016-03-01

    Hand-held-trolley sprayers have recently been promoted to improve spray application techniques in greenhouses in south-eastern Spain. However, certain aspects remain to be improved. A modified hand-held-trolley sprayer was evaluated under two different canopy conditions (high and low canopy density) and with several sprayer settings (nozzle type, air assistance and spray volume). In this study, the deposition, coverage and uniformity of distribution of the spray on the canopy have been assessed. The deposition on leaves was significantly higher when flat-fan nozzles and air assistance were used at both high and low spray volumes. No differences were detected between the reference system at a high spray volume and the modified trolley at a low spray volume. Flat-fan nozzles with air assistance increased penetrability into the canopy. Air assistance and flat-fan nozzles allow volume rates to be reduced while maintaining or improving spray quality distribution. The working parameters of hand-held sprayers must be considered to reduce environmental risk and increase the efficacy of the spraying process. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Balanced Rotating Spray Tank and Pipe Cleaning and Cleanliness Verification System

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul E. B. (Inventor); Thaxton, Eric A. (Inventor)

    1998-01-01

    A system for cleaning and verifying the cleanliness of the interior surfaces of hollow items, such as small bottles, tanks, pipes and tubes, employs a rotating spray head for supplying a gas-liquid cleaning mixture to the item's surface at a supersonic velocity. The spray head incorporates a plurality of nozzles having diverging cross sections so that the incoming gas-liquid mixture is first converged within the spray head and then diverged through the nozzles, thereby accelerating the mixture to a supersonic velocity. In the preferred embodiment, three nozzles are employed; one forwardly facing nozzle at the end of the spray head and two oppositely facing angled nozzles exiting on opposite sides of the spray head which balance each other, and therefore impart no net side load on the spray head. A drive mechanism is provided to rotate the spray head and at the same time move the head back and forth within the item to be cleaned. The drive mechanism acts on a long metal tube to which the spray head is fixed, and thus no moving parts are exposed to the interior surfaces of the items to be cleaned, thereby reducing the risk of contamination.

  20. Inhalational and dermal exposures during spray application of biocides.

    PubMed

    Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang

    2005-01-01

    Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a.s./h) and after-high-pressure applications in the antifouling sector (110-300 mg a.s./h). The potential dermal exposure of spray operators was lowest (dose rates from 0.2 to 7 mg a.s./h) in the areas of food and feed disinfection and private and public hygiene during spraying with low-pressure devices. During fogging, wood protection and antifouling applications, high-potential dermal exposures of the operators were determined. Dermal dose rates varied between 100 and 34,000 mg a.s./h.

  1. Spray Drift Reduction Evaluations of Spray Nozzles Using a Standardized Testing Protocol

    DTIC Science & Technology

    2010-07-01

    Drop Size Characteristics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards, Vol. 14-02, ASTM...Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Non- imaging Light-Scattering Instruments 22. AGDISP Model

  2. Review of patents and application of spray drying in pharmaceutical, food and flavor industry.

    PubMed

    Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis

    2014-04-01

    Spray drying has always remained an energetic field of innovation in pharmaceutical, food and flavor industry since last couple of decades. The current communication embodies an in-depth application of spray drying in pulmonary drug delivery for production of uniform and respirable size particles suitable for nebulizers, dry powder inhalers (DPI) and pressurized metered dose inhalers (pMDI). The review also highlights spray drying application in the manufacturing of mucoadhesive formulation suitable for nasal cavities to improve the drug absorption and bioavailability. Recent research works and patents filed by various researchers on spray drying technology for solubility enhancement have also been accentuated. Benefits of spray drying in production of dry flavorings to meet a product with maximum yield and least flavor loss are also discussed. The use of spray drying in production of various food products like milk or soymilk powder, tomato pulp, dry fruit juice etc, and in encapsulation of vegetable oil or fish oil and dry creamer has been discussed. Current review also highlights the application of spray drying in the biotechnology field like production of dry influenza or measles vaccine as well as application in ceramic industry. Spray drying based patents issued by the U.S. Patent and Trademark Office in the area of drug delivery have also been included in the current review to emphasize importance of spray drying in the recent research scenario.

  3. Effectiveness of Large-Scale Chagas Disease Vector Control Program in Nicaragua by Residual Insecticide Spraying Against Triatoma dimidiata.

    PubMed

    Yoshioka, Kota; Nakamura, Jiro; Pérez, Byron; Tercero, Doribel; Pérez, Lenin; Tabaru, Yuichiro

    2015-12-01

    Chagas disease is one of the most serious health problems in Latin America. Because the disease is transmitted mainly by triatomine vectors, a three-phase vector control strategy was used to reduce its vector-borne transmission. In Nicaragua, we implemented an indoor insecticide spraying program in five northern departments to reduce house infestation by Triatoma dimidiata. The spraying program was performed in two rounds. After each round, we conducted entomological evaluation to compare the vector infestation level before and after spraying. A total of 66,200 and 44,683 houses were sprayed in the first and second spraying rounds, respectively. The entomological evaluation showed that the proportion of houses infested by T. dimidiata was reduced from 17.0% to 3.0% after the first spraying, which was statistically significant (P < 0.0001). However, the second spraying round did not demonstrate clear effectiveness. Space-time analysis revealed that reinfestation of T. dimidiata is more likely to occur in clusters where the pre-spray infestation level is high. Here we discuss how large-scale insecticide spraying is neither effective nor affordable when T. dimidiata is widely distributed at low infestation levels. Further challenges involve research on T. dimidiata reinfestation, diversification of vector control strategies, and implementation of sustainable vector surveillance. © The American Society of Tropical Medicine and Hygiene.

  4. Quality characteristic of spray-drying egg white powders.

    PubMed

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  5. Investigation of the spray characteristics for a secondary fuel injection nozzle using a digital image processing method

    NASA Astrophysics Data System (ADS)

    Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji

    2007-05-01

    There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.

  6. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.

  7. Sustained release of diltiazem HCl tableted after co-spray drying and physical mixing with PVAc and PVP.

    PubMed

    Al-Zoubi, Nizar; Al-Obaidi, Ghada; Tashtoush, Bassam; Malamataris, Stavros

    2016-01-01

    In this work, aqueous diltiazem HCl and polyvinyl-pyrrolidone (PVP) solutions were mixed with Kollicoat SR 30D and spray dried to microparticles of different drug:excipient ratio and PVP content. Co-spray dried products and physical mixtures of drug, Kollidon SR and PVP were tableted. Spray drying process, co-spray dried products and compressibility/compactability of co-spray dried and physical mixtures, as well as drug release and water uptake of matrix-tablets was evaluated. Simple power equation fitted drug release and water uptake (R(2) > 0.909 and 0.938, respectively) and correlations between them were examined. Co-spray dried products with PVP content lower than in physical mixtures result in slower release, while at equal PVP content (19 and 29% w/w of excipient) in similar release (f2 > 50). Increase of PVP content increases release rate and co-spray drying might be an alternative, when physical mixing is inadequate. Co-spray dried products show better compressibility/compatibility but higher stickiness to the die-wall compared to physical mixtures. SEM observations and comparison of release and swelling showed that distribution of tableted component affects only the swelling, while PVP content for both co-spray dried and physical mixes is major reason for release alterations and an aid for drug release control.

  8. Spray formation of biodiesel-water in air-assisted atomizer using Schlieren photography

    NASA Astrophysics Data System (ADS)

    Amirnordin, S. H.; Khalid, A.; Sapit, A.; Salleh, H.; Razali, A.; Fawzi, M.

    2016-11-01

    Biodiesels are attractive renewable energy sources, particularly for industrial boiler and burner operators. However, biodiesels produce higher nitrogen oxide (NOx) emissions compared with diesel. Although water-emulsified fuels can lower NOx emissions by reducing flame temperature, its influence on atomization needs to be investigated further. This study investigates the effects of water on spray formation in air-assisted atomizers. The Schlieren method was used to capture the spray images in terms of tip penetration, spray angle, and spray area. The experiment used palm oil biodiesel at different blending ratios (B5, B10, and B15) and water contents (0vol%-15vol%). Results show that water content in the fuel increases the spray penetration and area but reduces the spray angle because of the changes in fuel properties. Therefore, biodiesel-water application is applicable to burner systems.

  9. Factors influencing the effective spray cone angle of pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1992-01-01

    The spray cone angles produced by several simplex pressure-swirl nozzles are examined using three liquids whose viscosities range from 0.001 to 0.012 kg/ms (1 to 12 cp). Measurements of both the visible spray cone angle and the effective spray cone angle are carried out over wide ranges of injection pressure and for five different values of the discharge orifice length/diameter ratio. The influence of the number of swirl chamber feed slots on spray cone angle is also examined. The results show that the spray cone angle widens with increase in injection pressure but is reduced by increases in liquid viscosity and/or discharge orifice length/diameter ratio. Variation in the number of swirl chamber feed slots between one and three has little effect on the effective spray cone angle.

  10. Experimental and Numerical Analysis of the Cooling Performance of Water Spraying Systems during a Fire

    PubMed Central

    Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie

    2015-01-01

    The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519

  11. The study on the interdependence of spray characteristics and evaporation history of fuel spray in high temperature air crossflow

    NASA Astrophysics Data System (ADS)

    Zhu, J. Y.; Chin, J. S.

    1986-06-01

    A numerical calculation method is used to predict the variation of the characteristics of fuel spray moving in a high temperature air crossflow, mainly, Sauter mean diameter SMD, droplet size distribution index N of Rosin-Rammler distribution and evaporation percentage changing with downstream distance X from the nozzle. The effect of droplet heat-up period evaporation process and forced convection are taken into full account; thus, the calculation model is a very good approximation to the process of spray evaporation in a practical combustor, such as ramjet, aero-gas turbine, liquid propellant rocket, diesel and other liquid fuel-powered combustion devices. The changes of spray characteristics N, SMD and spray evaporation percentage with air velocity, pressure, temperature, fuel injection velocity, and the initial spray parameters are presented.

  12. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  13. Current implications of past DDT indoor spraying in Oman.

    PubMed

    Booij, Petra; Holoubek, Ivan; Klánová, Jana; Kohoutek, Jiří; Dvorská, Alice; Magulová, Katarína; Al-Zadjali, Said; Čupr, Pavel

    2016-04-15

    In Oman, DDT was sprayed indoors during an intensive malaria eradication program between 1976 and 1992. DDT can remain for years after spraying and is associated with potential health risk. This raises the concern for human exposure in areas where DDT was used for indoor spraying. Twelve houses in three regions with a different history of DDT indoor spraying were chosen for a sampling campaign in 2005 to determine p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and p,p'-dichlorodiphenyldichloroethane (p,p'-DDD) levels in indoor air, dust, and outdoor soil. Although DDT was only sprayed indoor, p,p'-DDT, p,p'-DDE and p,p'-DDD were also found in outdoor soil. The results indicate that release and exposure continue for years after cessation of spraying. The predicted cancer risk based on concentrations determined in 2005, indicate that there was still a significant cancer risk up to 13 to 16years after indoor DDT spraying. A novel approach, based on region-specific half-lives, was used to predict concentrations in 2015 and showed that more than 21years after spraying, cancer risk for exposure to indoor air, dust, and outdoor soil are acceptable in Oman for adults and young children. The model can be used for other locations and countries to predict prospective exposure of contaminants based on indoor experimental measurements and knowledge about the spraying time-schedule to extrapolate region-specific half-lives and predict effects on the human population years after spraying. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment... POINT SOURCE CATEGORY Manufacture of Spray Dried Detergents Subcategory § 417.150 Applicability; description of the manufacture of spray dried detergents subcategory. The provisions of this subpart are...

  15. Quantitative Assessment of Spray Deposition with Water-Sensitive Paper

    USDA-ARS?s Scientific Manuscript database

    Spray droplets, discharged from the lower six nozzles of an airblast sprayer, were sampled on pairs of absorbent filter and water-sensitive papers at nine distances from sprayer. Spray deposition on filter targets were measured by fluorometry and spray distribution on WSP targets were assessed by t...

  16. Aerial application equipment for herbicidal drift reduction.

    Treesearch

    1976-01-01

    This publication provides silviculturists and managers of utility rights-of-way with a description and evaluation of available helicopter spray application equipment. Modified conventional equipment will reduce drift of sprays in normal carriers and apply various high-viscosity sprays. Specialized spray systems have found limited use in forestry; they are more commonly...

  17. Remotely controlled spray gun

    NASA Technical Reports Server (NTRS)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  18. Further Evaluation of Spray Characterization of Sprayers Typically Used in Vector Control

    DTIC Science & Technology

    2012-01-01

    E1260. Standard test method for determining liquid drop size characteristics in a spray using optical nonimaging light-scattering instru- ments...The time that the spray cloud was directed through the optical path of the laser varied between sprayers depending on the width of the spray plume

  19. Herbicidal drift control: aerial spray equipment, formulations, and supervision.

    Treesearch

    H. Gratkowski

    1974-01-01

    Public concern over environmental pollution requires increasingly sophisticated procedures when herbicides are used in silviculture. Many specialized aerial application systems and spray additives have been developed to reduce drift of herbicidal sprays. This publication provides forest-land managers with a brief description of these aerial spray systems and additives...

  20. PRN 90-3: Announcing the Formation of an Industry-Wide Spray Drift Task Force

    EPA Pesticide Factsheets

    A Spray Drift Task Force has been organized pursuant to provisions of FIFRA section 3 (c)(2)(B)(ii) to share the cost of developing a generic spray drift data base capable of satisfying spray drift data requirements for pesticide product registrations.

  1. 49 CFR 173.465 - Type A packaging tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., with contents, must be capable of withstanding the water spray, free drop, stacking and penetration... paragraph (b) of this section are met. (b) Water spray test. The water spray test must precede each test or test sequence prescribed in this section. The water spray test must simulate exposure to rainfall of...

  2. A new method for spray deposit assessment

    Treesearch

    Chester M. Himel; Leland Vaughn; Raymond P. Miskus; Arthur D. Moore

    1965-01-01

    Solid fluorescent particles suspended in a spray liquid are distributed in direct proportion to the size of the spray droplets. Use of solid fluorescent particles is the basis of a new method for visual recognition of the size and number of droplets impinging on target and nontarget portions of sprayed areas.

  3. Atomization from agricultural spray nozzles: Effects of air shear and tank mix adjuvants

    USDA-ARS?s Scientific Manuscript database

    Spray adjuvants can have a substantial impact on spray atomization from agricultural nozzles; however, this process is also affected by the nozzle type, operating pressure and, for aerial application, the airspeed of application. Different types of ground spray nozzle can dramatically affect the im...

  4. Effects of nozzle spray angle on droplet size and velocity

    USDA-ARS?s Scientific Manuscript database

    Spray applicators have many choices in selecting a spray nozzle to make an application of an agricultural product. They must balance flowrate, spray pressure, and nozzle type and setup to deliver their agrochemical in the right droplet size for their particular needs. Studies were conducted to det...

  5. Measuring droplet size of agriuclutral spray nozzles - Measurement distance and airspeed effects

    USDA-ARS?s Scientific Manuscript database

    With a number of new spray testing laboratories going into operation within the U.S. and each gearing up to measure spray atomization from agricultural spray nozzles using laser diffraction, establishing and following a set of scientific standard procedures is crucial to long term data generation an...

  6. Spray Distribution of Boomless Nozzles: The Boomjet 5880, Radiarc and Boom Buster

    Treesearch

    James H. Miller

    1990-01-01

    Abstract. The patterns of spray distribution are described for three boomless nozzlesthat arc commonly used, or have promise, for forestry applications: The BoomJet5880 cluster nozzle (Spraying Systems Co.), the Radiarc (Waldrum specialties ), and the Boom Buster (Evergreen Products). Spray distribution patterns were determined using regularly...

  7. A New Quantitative 3D Imaging Method for Characterizing Spray in the Near-field of Nozzle Exits

    DTIC Science & Technology

    2015-01-13

    measurements were performed on a flat-panel tabletop cone - beam CT system in the Radiology Department at Stanford University. The X-ray generator (CPI...quantitative measurement technique to examine the dense near-field region of sprays using X-ray computed tomography (CT). An optimized “spray CT system” was...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 X-ray CT, Spray, Hollow Cone Spray, Near Field REPORT DOCUMENTATION PAGE 11. SPONSOR

  8. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  9. Evaluation of Convergent Spray Technology(TM) Spray Process for Roof Coating Application

    NASA Technical Reports Server (NTRS)

    Scarpa, J.; Creighton, B.; Hall, T.; Hamlin, K.; Howard, T.

    1998-01-01

    The overall goal of this project was to demonstrate the feasibility of(CST) Convergent Spray Technology (Trademark) for the roofing industry. This was accomplished by producing an environmentally compliant coating utilization recycled materials, a CST(Trademark) spray process portable application cart, and hand-held applicator with a CST(Trademark) spray process nozzle. The project culminated with application of this coating to a nine hundred sixty square foot metal for NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama.

  10. Balanced-Rotating-Spray Tank-And-Pipe-Cleaning System

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Caimi, Raoul E. B.

    1995-01-01

    Spray head translates and rotates to clean entire inner surface of tank or pipe. Cleansing effected by three laterally balanced gas/liquid jets from spray head that rotates about longitudinal axis. Uses much less liquid. Cleaning process in system relies on mechanical action of jets instead of contaminant dissolution. Eliminates very difficult machining needed to make multiple converging/diverging nozzles within one spray head. Makes nozzle much smaller. Basic two-phase-flow, supersonic-nozzle design applied to other spray systems for interior or exterior cleaning.

  11. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of uniform...

  12. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of uniform...

  13. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of uniform...

  14. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of uniform...

  15. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    PubMed

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  16. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2000-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  17. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  18. [Study on Xinyueshu spray drying assisted with copovidone and its effect on powder property].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Yan, Hong-Mei; Hu, Shao-Ying; Jia, Xiao-Bin

    2013-12-01

    To study the application characteristics of copovidone (PVP-S630) in Xinyueshu extracts during the spray drying process, and its effect on such pharmaceutical properties as micromeritics and drug release behavior. PVP-S630 was added into Xinyueshu extracts to study on the spray drying, the effect of different dosages of PVP-S630 against the wall sticking effect of the spray drying, as well as the power property of Xinyueshu spray drying power and the dissolution in vitro behavior of the effective component of hyperoside. The results showed that PVP-S630 revealed a significant anti-wall sticking effect, with no notable change in the grain size of the spray drying power, increase in the fluidity, improvement in the moisture absorption and remarkable rise in the dissolution in vitro behavior of hyperoside. It was worth further studying the application of PVP-S630 in spray drying power of traditional Chinese medicine.

  19. Application Of Holography In The Distribution Measurement Of Fuel Spraying Field In Diesel Engines

    NASA Astrophysics Data System (ADS)

    Xiang, He Wan; Xiong, Li Zhi

    1988-01-01

    The distribution of fuel spraying field in the combustion chamber is an important factor which influences the performance of diesel engines. Precise data for those major parameters of the spraying field distribution are difficult to obtain using conventional ways of measurement, so its effects on the combustion process cannot be controlled. The laser holographic measurement is used and many researches have been made on the injecting nozzles used in diesel engines Series 95, 100 and 130. These researches show that clear spraying field hologram can be taken with an "IC Engine Laser Holography System". By rendition and data processing, droplet size, amount and their space distribution in the spraying; the spraying range, cone angle and other dependable data can be obtained. Therefore, the spraying quality of an injecting nozzle can be precisely determined, which provides reliable basis for the improvement of diesel engines' functions.

  20. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... recreational boat surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of...

  1. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  2. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... recreational boat surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of...

  3. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... recreational boat surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of...

  4. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a) or...

  5. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a) or...

  6. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...

  7. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... finishing material. (5) Dry spray booth. A spray booth not equipped with a water washing system as described in subparagraph (4) of this paragraph. A dry spray booth may be equipped with (i) distribution or... it enters the exhaust duct; or (ii) overspray dry filters to minimize dusts; or (iii) overspray dry...

  8. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... finishing material. (5) Dry spray booth. A spray booth not equipped with a water washing system as described in subparagraph (4) of this paragraph. A dry spray booth may be equipped with (i) distribution or... it enters the exhaust duct; or (ii) overspray dry filters to minimize dusts; or (iii) overspray dry...

  9. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... finishing material. (5) Dry spray booth. A spray booth not equipped with a water washing system as described in subparagraph (4) of this paragraph. A dry spray booth may be equipped with (i) distribution or... it enters the exhaust duct; or (ii) overspray dry filters to minimize dusts; or (iii) overspray dry...

  10. Aerial electrostatic-charged spray for deposition and efficacy against sweetpotato whitefly (Bemisia tabaci) on cotton

    USDA-ARS?s Scientific Manuscript database

    Efficacy of aerial electrostatic-charged sprays was evaluated for spray deposit characteristics and season-long control of sweet potato whitefly (SWF), Bemisia tabaci biotype B (a.k.a. B. argentifolii), in an irrigated 24-ha cotton field. Treatments included electrostatic-charged sprays at full and ...

  11. Evaluating the treatment efficacy of Bacillus thuriengiensis Var. Kurstaki: reliability of various tools

    Treesearch

    Ghislain Rousseau

    2003-01-01

    The success of an operational or pilot insecticide spraying program against the spruce budworm (Choristoneura fumiferana Clemens) depends to a great extent on a variety of factors, and, in particular on: spraying efficacy and the meteorological conditions during and immediately following spraying. Among other things, spraying efficacy depends on:...

  12. Characterization and Analysis of Paper Spray Ionization of Organic Compounds.

    PubMed

    Aliaga-Aguilar, Hugo

    2018-01-01

    Paper spray ionization has arisen relatively recently as a complement and alternative to electro- and nanospray ionization with silica capillaries. A majority of the work in the present literature focuses on the chemical aspect of paper spray. In order to study the physical and phenomenological facet of its implementation, we measured current and voltage distributions of Taylor cones. To study transport phenomena on filter paper, we addressed the behavior of large, sparingly soluble tetraalkylammonium ions, which are usually used as mobility standards, in paper spray. The variation of intensity with time of monomers and dimers of these ions was measured with a differential mobility analyzer and compared with that produced by contamination in the paper. At the same time, we evaluated the proficiency of different paper spray techniques for protein analysis using nano spray as a reference. Experiments suggest that Taylor cones in paper spray are subject to hysteresis, whereas transport phenomena in the porous substrate notably affects the ionization of the sample. Additionally, we observed that paper spray tends to favor lower charge states in proteins. Graphical Abstract.

  13. Macroscale and Nanoscale Morphology Evolution during in Situ Spray Coating of Titania Films for Perovskite Solar Cells.

    PubMed

    Su, Bo; Caller-Guzman, Herbert A; Körstgens, Volker; Rui, Yichuan; Yao, Yuan; Saxena, Nitin; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter

    2017-12-20

    Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH 3 NH 3 PbI 3 ) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, Sibendu; Wang, Zihan; Pei, Yuanjiang

    A state-of-the-art spray modeling methodology, recently presented by Senecal et al. [ , , ], is applied to Large Eddy Simulations (LES) of vaporizing gasoline sprays. Simulations of non-combusting Spray G (gasoline fuel) from the Engine Combustion Network are performed. Adaptive mesh refinement (AMR) with cell sizes from 0.09 mm to 0.5 mm are utilized to further demonstrate grid convergence of the dynamic structure LES model for the gasoline sprays. Grid settings are recommended to optimize the accuracy/runtime tradeoff for LES-based spray simulations at different injection pressure conditions typically encountered in gasoline direct injection (GDI) applications. The influence of LESmore » sub-grid scale (SGS) models is explored by comparing the results from dynamic structure and Smagorinsky based models against simulations without any SGS model. Twenty different realizations are simulated by changing the random number seed used in the spray sub-models. It is shown that for global quantities such as spray penetration, comparing a single LES simulation to experimental data is reasonable. Through a detailed analysis using the relevance index (RI) criteria, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of the gasoline sprays.« less

  15. LSPRAY-IV: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2012-01-01

    LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.

  16. [Research about effect of spray drying conditions on hygroscopicity of spray dry powder of gubi compound's water extract and its mechanism].

    PubMed

    Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei

    2014-02-01

    To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).

  17. Effect of Spray Distance on Microstructure and Tribological Performance of Suspension Plasma-Sprayed Hydroxyapatite-Titania Composite Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Haifeng; Geng, Xin; Wang, Jingjing; Xiao, Jinkun; Zhu, Peizhi

    2016-10-01

    Hydroxyapatite (HA)-titania (TiO2) composite coatings prepared on Ti6Al4V alloy surface can combine the excellent mechanical property of the alloy substrate and the good biocompatibility of the coating material. In this paper, HA-TiO2 composite coatings were deposited on Ti6Al4V substrates using suspension plasma spray (SPS). X-ray diffraction, scanning electron microscopy, Fourier infrared absorption spectrometry and friction tests were used to analyze the microstructure and tribological properties of the obtained coatings. The results showed that the spray distance had an important influence on coating microstructure and tribological performance. The amount of decomposition phases decreased as the spray distance increased. The increase in spray distance from 80 to 110 mm improved the crystalline HA content and decreased the wear performance of the SPS coatings. In addition, the spray distance had a big effect on the coating morphology due to different substrate temperature resulting from different spray distance. Furthermore, a significant presence of OH- and CO3 2- was observed, which was favorable for the biomedical applications.

  18. Upward and downward facing high mass flux spray cooling with additives: A novel technique to enhance the heat removal rate at high initial surface temperature

    NASA Astrophysics Data System (ADS)

    Pati, A. R.; Kumar, A.; Mohapatra, S. S.

    2018-06-01

    The objective of the current work is to enhance the spray cooling by changing the orientation of the nozzle with different additives (acetone, methanol, ethanol, benzene, n-hexane, tween 20 and salt) in water. The experiments are carried out by upward, downward and both upward and downward facing sprays. The optimization result depicts that the spray produced by upward facing spray gives higher heat flux than the downward facing spray and also cooling by both the upward and downward facing spray simultaneously produces better result than the individual. Further experiments with both upward and downward facing spray by using different coolants reveal that in case of cooling by ethanol (500 ppm) + water mixture, the maximum enhancement of surface heat flux ( 2.57 MW/m2) and cooling rate (204 °C/s) is observed. However, the minimum surface heat flux is achieved in case of methanol (100 ppm) + water due to higher contact angle (710) among all the considered coolants.

  19. Spray process for in situ synthesizing Ti(C,N)-TiB2-Al2O3 composite ceramic coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Liu, Hongwei; Sun, Sihao

    2017-12-01

    Using core wires with Ti-B4C-C as core and Al as strip materials, Ti(C,N)-TiB2-Al2O3 composite ceramic coatings were prepared on 45 steel substrates by the reactive arc spray technology. The influence of spray voltage, current, gas pressure and distance on the coatings was discussed. The spray parameters were optimized with porosity of the coatings as evaluation standard. The results showed that the most important factor which influences the quality of the coatings was spray distance. Then spray gas pressure, current and voltage followed in turn. The optimum process was spray current of 120A, voltage of 36, gas pressure of 0.7MPa and distance of 160mm. The porosity of coatings prepared in this spray process was only 2.11%. The coatings were composed of TiB2, TiC0.3N0.7, TiN, Al2O3 and AlN. Good properties and uniform distribution of these ceramic phases made the coatings have excellent comprehensive performances.

  20. Developments in the formulation and delivery of spray dried vaccines

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Soema, Peter C.; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    ABSTRACT Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery. PMID:28925794

  1. Identifying Indicators of Progress in Thermal Spray Research Using Bibliometrics Analysis

    NASA Astrophysics Data System (ADS)

    Li, R.-T.; Khor, K. A.; Yu, L.-G.

    2016-12-01

    We investigated the research publications on thermal spray in the period of 1985-2015 using the data from Web of Science, Scopus and SciVal®. Bibliometrics analysis was employed to elucidate the country and institution distribution in various thermal spray research areas and to characterize the trends of topic change and technology progress. Results show that China, USA, Japan, Germany, India and France were the top countries in thermal spray research, and Xi'an Jiaotong University, Universite de Technologie Belfort-Montbeliard, Shanghai Institute of Ceramics, ETH Zurich, National Research Council of Canada, University of Limoges were among the top institutions that had high scholarly research output during 2005-2015. The terms of the titles, keywords and abstracts of the publications were analyzed by the Latent Dirichlet Allocation model and visually mapped using the VOSviewer software to reveal the progress of thermal spray technology. It is found that thermal barrier coating was consistently the main research area in thermal spray, and high-velocity oxy-fuel spray and cold spray developed rapidly in the last 10 years.

  2. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  3. INEL Spray-forming Research

    NASA Technical Reports Server (NTRS)

    Mchugh, Kevin M.; Key, James F.

    1993-01-01

    Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.

  4. The Messy Aerosol Submodel MADE3 (v2.0b): Description and a Box Model Test

    NASA Technical Reports Server (NTRS)

    Kaiser, J. C.; Hendricks, J.; Righi, M.; Riemer, N.; Zaveri, R. A.; Metzger, S.; Aquila, Valentina

    2014-01-01

    We introduce MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, 3rd generation), an aerosol dynamics submodel for application within the MESSy framework (Modular Earth Submodel System). MADE3 builds on the predecessor aerosol submodels MADE and MADE-in. Its main new features are the explicit representation of coarse particle interactions both with other particles and with condensable gases, and the inclusion of hydrochloric acid (HCl)chloride (Cl) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new submodel as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess the performance of MADE3 we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model simulation of an idealized marine boundary layer test case. MADE3 and MADE results are very similar, except in the coarse mode, where the aerosol is dominated by sea spray particles. Cl is reduced in MADE3 with respect to MADE due to the HClCl partitioning that leads to Cl removal from the sea spray aerosol in our test case. Additionally, aerosol nitrate concentration is higher in MADE3 due to the condensation of nitric acid on coarse particles. MADE3 and PartMC- MOSAIC show substantial differences in the fine particle size distributions (sizes about 2 micrometers) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distribution, and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model.

  5. Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic

    NASA Astrophysics Data System (ADS)

    Kirpes, Rachel M.; Bondy, Amy L.; Bonanno, Daniel; Moffet, Ryan C.; Wang, Bingbing; Laskin, Alexander; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Few measurements of aerosol chemical composition have been made during the winter-spring transition (following polar sunrise) to constrain Arctic aerosol-cloud-climate feedbacks. Herein, we report the first measurements of individual particle chemical composition near Utqiaġvik (Barrow), Alaska, in winter (seven sample days in January and February 2014). Individual particles were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX, 24 847 particles), Raman microspectroscopy (300 particles), and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS, 290 particles). Sea spray aerosol (SSA) was observed in all samples, with fresh and aged SSA comprising 99 %, by number, of 2.5-7.5 µm diameter particles, 65-95 % from 0.5-2.5 µm, and 50-60 % from 0.1-0.5 µm, indicating SSA is the dominant contributor to accumulation and coarse-mode aerosol during the winter. The aged SSA particles were characterized by reduced chlorine content with 94 %, by number, internally mixed with secondary sulfate (39 %, by number, internally mixed with both nitrate and sulfate), indicative of multiphase aging reactions during transport. There was a large number fraction (40 % of 1.0-4.0 µm diameter particles) of aged SSA during periods when particles were transported from near Prudhoe Bay, consistent with pollutant emissions from the oil fields participating in atmospheric processing of aerosol particles. Organic carbon and sulfate particles were observed in all samples and comprised 40-50 %, by number, of 0.1-0.4 µm diameter particles, indicative of Arctic haze influence. Soot was internally mixed with organic and sulfate components. All sulfate was mixed with organic carbon or SSA particles. Therefore, aerosol sources in the Alaskan Arctic and resulting aerosol chemical mixing states need to be considered when predicting aerosol climate effects, particularly cloud formation, in the winter Arctic.

  6. Molecular Components of Nitrate and Nitrite Efflux in Yeast

    PubMed Central

    Cabrera, Elisa; González-Montelongo, Rafaela; Giraldez, Teresa; de la Rosa, Diego Alvarez

    2014-01-01

    Some eukaryotes, such as plant and fungi, are capable of utilizing nitrate as the sole nitrogen source. Once transported into the cell, nitrate is reduced to ammonium by the consecutive action of nitrate and nitrite reductase. How nitrate assimilation is balanced with nitrate and nitrite efflux is unknown, as are the proteins involved. The nitrate assimilatory yeast Hansenula polymorpha was used as a model to dissect these efflux systems. We identified the sulfite transporters Ssu1 and Ssu2 as effective nitrate exporters, Ssu2 being quantitatively more important, and we characterize the Nar1 protein as a nitrate/nitrite exporter. The use of strains lacking either SSU2 or NAR1 along with the nitrate reductase gene YNR1 showed that nitrate reductase activity is not required for net nitrate uptake. Growth test experiments indicated that Ssu2 and Nar1 exporters allow yeast to cope with nitrite toxicity. We also have shown that the well-known Saccharomyces cerevisiae sulfite efflux permease Ssu1 is also able to excrete nitrite and nitrate. These results characterize for the first time essential components of the nitrate/nitrite efflux system and their impact on net nitrate uptake and its regulation. PMID:24363367

  7. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  8. Estimation of equivalence ratio distribution in diesel spray using a computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumasa; Tsujimura, Taku; Kusaka, Jin

    2014-08-01

    It is important to understand the mechanism of mixing and atomization of the diesel spray. In addition, the computational prediction of mixing behavior and internal structure of a diesel spray is expected to promote the further understanding about a diesel spray and development of the diesel engine including devices for fuel injection. In this study, we predicted the formation of diesel fuel spray with 3D-CFD code and validated the application by comparing experimental results of the fuel spray behavior and the equivalence ratio visualized by Layleigh-scatter imaging under some ambient, injection and fuel conditions. Using the applicable constants of KH-RT model, we can predict the liquid length spray on a quantitative level. under various fuel injection, ambient and fuel conditions. On the other hand, the change of the vapor penetration and the fuel mass fraction and equivalence ratio distribution with change of fuel injection and ambient conditions quantitatively. The 3D-CFD code used in this study predicts the spray cone angle and entrainment of ambient gas are predicted excessively, therefore there is the possibility of the improvement in the prediction accuracy by the refinement of fuel droplets breakup and evaporation model and the quantitative prediction of spray cone angle.

  9. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  10. Dust Explosion Characteristics of Aluminum, Titanium, Zinc, and Iron-Based Alloy Powders Used in Cold Spray Processing

    NASA Astrophysics Data System (ADS)

    Sakata, K.; Tagomori, K.; Sugiyama, N.; Sasaki, S.; Shinya, Y.; Nanbu, T.; Kawashita, Y.; Narita, I.; Kuwatori, K.; Ikeda, T.; Hara, R.; Miyahara, H.

    2014-01-01

    Compared to conventional thermal spray coating, cold spray processing typically employs finer, smaller-diameter metal powders. Furthermore, cold-sprayed particles exhibit fewer surface oxides than thermally sprayed particles due to the absence of particle melting during spraying. For these reasons, it is important to consider the potential for dust explosions or fires during cold spray processing, for both industrial and R&D applications. This work examined the dust explosion characteristics of metal powders typically used in cold spray coating, for the purpose of preventing dust explosions and fires and thus protecting the health and safety of workers and guarding against property damage. In order to safely make use of the new cold spray technology in industrial settings, it is necessary to manage the risks based on an appropriate assessment of the hazards. However, there have been few research reports focused on such risk management. Therefore, in this study, the dust explosion characteristics of aluminum, titanium, zinc, carbonyl iron, and eutectoid steel containing chromium at 4 wt.% (4 wt.% Cr-eutectoid steel) powders were evaluated according to the standard protocols JIS Z 8818, IEC61241-2-3(1994-09) section 3, and JIS Z 8817. This paper reports our results concerning the dust explosion properties of the above-mentioned metal powders.

  11. Skin exposure to deodorants/antiperspirants in aerosol form.

    PubMed

    Steiling, W; Buttgereit, P; Hall, B; O'Keeffe, L; Safford, B; Tozer, S; Coroama, M

    2012-06-01

    Many cosmetic products are available in spray form. Even though the principal targets of these products are the skin and hair, spraying leads to the partitioning of the product between the target and the surrounding air. In the previous COLIPA study (Hall et al., 2007) the daily use of deodorant/antiperspirant (Deo/AP) in spray form was quantified in terms of the amount of product dispensed from the spray can, without specifically quantifying the product fraction reaching the skin during use. Results of the present study provide this additional information, necessary for a reliable safety assessment of sprayed Deo/AP products. In a novel experimental approach the information obtained from real-life movement analysis (automated motion imaging) of volunteers using their own products was integrated with the aerosol cloud sampling data obtained from the same products, leading to the computation of the product deposited on the skin. The 90th percentile values, expressed as percent deposition relative to the can weight loss after spraying, are 23.5% and 11.4% for ethanol-based and non-ethanol-based products, respectively. Additionally, the study has generated data on the skin area covered by the products, spray duration time, spray angle and spray distance from the skin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. From drop impact physics to spray cooling models: a critical review

    NASA Astrophysics Data System (ADS)

    Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron

    2018-03-01

    Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.

  13. Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme.

    PubMed

    Ji, Shuying; Thulstrup, Peter Waaben; Mu, Huiling; Hansen, Steen Honoré; van de Weert, Marco; Rantanen, Jukka; Yang, Mingshi

    2016-11-20

    In the spray drying process, organic solvents can be added to facilitate drying, accommodate certain functional excipients, and modify the final particle characteristics. In this study, lysozyme was used as a model pharmaceutical protein to study the effect of ethanol as a co-solvent on the stability and aerosol performance of spray-dried protein. Lysozyme was dissolved in solutions with various ratios of ethanol and water, and subsequently spray-dried. A change from spherical particles into wrinkled and folded particles was observed upon increasing the ratio of ethanol in the feed. The aerosol performance of the spray-dried lysozyme from ethanol-water solution was improved compared to that from pure water. The conformation of lysozyme in the ethanol-water solution and spray dried powder was altered, but the native structure of lysozyme was restored upon reconstitution in water after the spray drying process. The enzymatic activities of the spray-dried lysozyme showed no significant impact of ethanol; however, the lysozyme enzymatic activity was ca. 25% lower compared to the starting material. In conclusion, the addition of ethanol as a co-solvent in the spray drying feed for lysozyme did not compromise the conformation of the protein after drying, while it improved the inhaled aerosol performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Relieving thermal discomfort: Effects of sprayed L-menthol on perception, performance, and time trial cycling in the heat.

    PubMed

    Barwood, M J; Corbett, J; Thomas, K; Twentyman, P

    2015-06-01

    L-menthol stimulates cutaneous thermoreceptors and induces cool sensations improving thermal comfort, but has been linked to heat storage responses; this could increase risk of heat illness during self-paced exercise in the heat. Therefore, L-menthol application could lead to a discrepancy between behavioral and autonomic thermoregulatory drivers. Eight male participants volunteered. They were familiarized and then completed two trials in hot conditions (33.5 °C, 33% relative humidity) where their t-shirt was sprayed with CONTROL-SPRAY or MENTHOL-SPRAY after 10 km (i.e., when they were hot and uncomfortable) of a 16.1-km cycling time trial (TT). Thermal perception [thermal sensation (TS) and comfort (TC)], thermal responses [rectal temperature (Trec ), skin temperature (Tskin )], perceived exertion (RPE), heart rate, pacing (power output), and TT completion time were measured. MENTHOL-SPRAY made participants feel cooler and more comfortable and resulted in lower RPE (i.e., less exertion) yet performance was unchanged [TT completion: CONTROL-SPRAY 32.4 (2.9) and MENTHOL-SPRAY 32.7 (3.0) min]. Trec rate of increase was 1.40 (0.60) and 1.45 (0.40) °C/h after CONTROL-SPRAY and MENTHOL-SPRAY application, which were not different. Spraying L-menthol toward the end of self-paced exercise in the heat improved perception, but did not alter performance and did not increase heat illness risk. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Agglomerated novel spray-dried lactose-leucine tailored as a carrier to enhance the aerosolization performance of salbutamol sulfate from DPI formulations.

    PubMed

    Molina, Carlos; Kaialy, Waseem; Chen, Qiao; Commandeur, Daniel; Nokhodchi, Ali

    2017-12-19

    Spray-drying allows to modify the physicochemical/mechanical properties of particles along with their morphology. In the present study, L -leucine with varying concentrations (0.1, 0.5, 1, 5, and 10% w/v) were incorporated into lactose monohydrate solution for spray-drying to enhance the aerosolization performance of dry powder inhalers containing spray-dried lactose-leucine and salbutamol sulfate. The prepared spray-dried lactose-leucine carriers were analyzed using laser diffraction (particle size), differential scanning calorimetry (thermal behavior), scanning electron microscopy (morphology), powder X-ray diffraction (crystallinity), Fourier transform infrared spectroscopy (interaction at molecular level), and in vitro aerosolization performance (deposition). The results showed that the efficacy of salbutamol sulfate's aerosolization performance was, in part, due to the introduction of L -leucine in the carrier, prior to being spray-dried, accounting for an increase in the fine particle fraction (FPF) of salbutamol sulfate from spray-dried lactose-leucine (0.5% leucine) in comparison to all other carriers. It was shown that all of the spray-dried carriers were spherical in their morphology with some agglomerates and contained a mixture of amorphous, α-lactose, and β-lactose. It was also interesting to note that spray-dried lactose-leucine particles were agglomerated during the spray-drying process to make coarse particles (volume mean diameter of 79 to 87 μm) suitable as a carrier in DPI formulations.

  16. Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments.

    PubMed

    Hakim, Hakimullah; Thammakarn, Chanathip; Suguro, Atsushi; Ishida, Yuki; Kawamura, Akinobu; Tamura, Miho; Satoh, Keisuke; Tsujimura, Misato; Hasegawa, Tomomi; Takehara, Kazuaki

    2015-02-01

    Hypochlorous acid (HOCl) solutions were evaluated for their virucidal ability against a low pathogenic avian influenza virus (AIV), H7N1. HOCl solutions containing 50, 100 and 200 ppm chlorine (pH 6) or their sprayed solutions (harvested in dishes placed at 1 or 30 cm distance between the spray nozzle and dish) were mixed with the virus with or without organic materials (5% fetal bovine serum: FBS). Under plain diluent conditions (without FBS), harvested solutions of HOCl after spraying could decrease the AIV titer by more than 1,000 times, to an undetectable level (< 2.5 log10TCID50/ml) within 5 sec, with the exception of the 50 ppm solution harvested after spraying at the distance of 30 cm. Under the dirty conditions (in the presence of 5% FBS), they lost their virucidal activity. When HOCl solutions were sprayed directly on the virus on rayon sheets for 10 sec, the solutions of 100 and 200 ppm could inactivate AIV immediately after spraying, while 50 ppm solution required at least 3 min of contact time. In the indirect spray form, after 10 sec of spraying, the lids of the dishes were opened to expose the virus on rayon sheets to HOCl. In this form, the 200 ppm solution inactivated AIV within 10 min of contact, while 50 and 100 ppm could not inactivate it. These data suggest that HOCl can be used in spray form to inactivate AIV at the farm level.

  17. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.

    PubMed

    Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie

    2012-06-01

    Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.

  18. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products and...

  19. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products and...

  20. Arabidopsis Nitrate Transporter NRT1.9 Is Important in Phloem Nitrate Transport[W][OA

    PubMed Central

    Wang, Ya-Yun; Tsay, Yi-Fang

    2011-01-01

    This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport. PMID:21571952

  1. A report on the indoor residual spraying (IRS) in the control of Phlebotomus argentipes, the vector of visceral leishmaniasis in Bihar (India): an initiative towards total elimination targeting 2015 (Series-1).

    PubMed

    Kumar, V; Kesari, S; Dinesh, D S; Tiwari, A K; Kumar, A J; Kumar, R; Singh, V P; Das, P

    2009-09-01

    Visceral leishmaniasis, commonly known as kala-azar is endemic in Bihar state, India. Current vector control programme in Bihar focuses mainly on spraying the sandfly infested dwellings with DDT. The Government of India in collaboration with WHO has fixed the target 2015 for total elimination of kala-azar. The present study was carried out to see the impact of DDT and improved IEC in the containment of vector density vis-à-vis disease transmission. Before the start of the spraying operations training was imparted to all the medical and paramedical personnel regarding the methods of spraying operations. Pre- and post-sandfly density was monitored in four selected districts. Incidences of kala-azar cases were compared for pre- and post-spray periods. Social acceptability and perceptions of households was collected through questionnaires from 500 randomly selected households in the study districts. House index in three study districts reduced considerably during post-spray when compared to pre-spray. Kala-azar incidence in many districts was reduced after the DDT spray. Either partial or complete refusal was reported in 14.4%, while 35% were not satisfied with the suspension concentration and coverage; and 46.6% were found satisfied with the spraying procedure. Strengthening the IEC activities to sensitise the community, proper training of health personnel, monitoring of spray, good surveillance, proper treatment of cases and two rounds of DDT spray with good coverage in the endemic districts up to three years are essential to achieve the desired total elimination of kala-azar in Bihar state.

  2. Effect of spray volume on the deposition, viability and infectivity of entomopathogenic nematodes in a foliar spray on vegetables.

    PubMed

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-10-01

    Spray volume can influence the amount of free water on the leaf surface and subsequently the ability of entomopathogenic nematodes (EPNs) to move. In this study, an investigation was made of the effect of spray volume (548, 730 and 1095 L ha(-1) ) on the deposition, viability and infectivity of EPNs against Galleria mellonella on savoy cabbage, cauliflower and leek. Increasing spray volume decreased nematode deposition on 7.1 cm2 leek leaf discs at a 15° angle with the spray nozzle. Although the number of living nematodes observed on leek after 240 min of exposure was not significantly different between the low-volume application (548 L ha(-1) ) and the high-volume application (1095 L ha(-1) ), a greater infectivity was obtained in the latter application. The higher number of droplets deposited on the leek discs in the high-volume application may have stimulated nematode movement. No significant effect of spray volume was observed on the relative deposition of Steinernema carpocapsae on the bottom side of cauliflower and savoy cabbage leaf discs. In spite of the low S. carpocapsae deposition on the bottom side of the savoy cabbage discs, high infectivity was obtained against G. mellonella. Using the lowest spray volume on savoy cabbage, infectivity decreased with increasing exposure time, while infectivity was not affected by exposure time when a spray volume of 730 L ha(-1) or more was used. Spray volume is an important application parameter, as it affects nematode infectivity. Future research should investigate the effect of spray volume in the field and its influence on the effect of adjuvants. Copyright © 2012 Society of Chemical Industry.

  3. The effects of sea spray and atmosphere-wave coupling on air-sea exchange during a tropical cyclone

    NASA Astrophysics Data System (ADS)

    Garg, Nikhil; Kwee Ng, Eddie Yin; Narasimalu, Srikanth

    2018-04-01

    The study investigates the role of the air-sea interface using numerical simulations of Hurricane Arthur (2014) in the Atlantic. More specifically, the present study aims to discern the role ocean surface waves and sea spray play in modulating the intensity and structure of a tropical cyclone (TC). To investigate the effects of ocean surface waves and sea spray, numerical simulations were carried out using a coupled atmosphere-wave model, whereby a sea spray microphysical model was incorporated within the coupled model. Furthermore, this study also explores how sea spray generation can be modelled using wave energy dissipation due to whitecaps; whitecaps are considered as the primary mode of spray droplets generation at hurricane intensity wind speeds. Three different numerical simulations including the sea- state-dependent momentum flux, the sea-spray-mediated heat flux, and a combination of the former two processes with the sea-spray-mediated momentum flux were conducted. The foregoing numerical simulations were evaluated against the National Data Buoy Center (NDBC) buoy and satellite altimeter measurements as well as a control simulation using an uncoupled atmosphere model. The results indicate that the model simulations were able to capture the storm track and intensity: the surface wave coupling results in a stronger TC. Moreover, it is also noted that when only spray-mediated heat fluxes are applied in conjunction with the sea-state-dependent momentum flux, they result in a slightly weaker TC, albeit stronger compared to the control simulation. However, when a spray-mediated momentum flux is applied together with spray heat fluxes, it results in a comparably stronger TC. The results presented here allude to the role surface friction plays in the intensification of a TC.

  4. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses

    NASA Astrophysics Data System (ADS)

    Hong, Se-Woon; Zhao, Lingying; Zhu, Heping

    2018-02-01

    The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. In this study, an integrated computational fluid dynamics (CFD) model was developed to predict displacement of pesticide spray droplets discharged from an air-assisted sprayer, depositions onto tree canopies, and off-target deposition and airborne drift in an apple orchard. Pesticide droplets discharged from a moving sprayer were tracked using the Lagrangian particle transport model, and the deposition model was applied to droplets entering porous canopy zones. Measurements of the droplet deposition and drift in the same orchard were used to validate the model simulations. Good agreement was found between the measured and simulated spray concentrations inside tree canopies and off-target losses (ground deposition and airborne drifts) with the overall relative errors of 22.1% and 40.6%, respectively, under three growth stages. The CFD model was able to estimate the mass balance of pesticide droplets in the orchard, which was practically difficult to investigate by measurements in field conditions. As the foliage of trees became denser, spray deposition inside canopies increased from 8.5% to 65.8% and airborne drift and ground deposition decreased from 25.8% to 7.0% and 47.8% to 21.2%, respectively. Higher wind speed also increased the spray airborne drift downwind of the orchard. This study demonstrates that CFD model can be used to evaluate spray application performance and design and operate sprayers with increased spray efficiencies and reduced drift potentials.

  5. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    NASA Astrophysics Data System (ADS)

    Lyons, Shawn M.; Harrison, Mark A.; Law, S. Edward

    2011-06-01

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic-nozzle sprays.

  6. Improving the feline veterinary consultation: the usefulness of Feliway spray in reducing cats' stress.

    PubMed

    Pereira, Joana Soares; Fragoso, Sara; Beck, Alexandra; Lavigne, Stephane; Varejão, Artur Severo; da Graça Pereira, Gonçalo

    2016-12-01

    Going to the veterinary clinic is a stressful experience for most cats as they feel threatened when entering a new and confined environment. The aim of this research was to investigate if Feliway spray, when used on the table in the consultation room, can decrease cats' stress and ease their handling. A randomised, double-blind, placebo-controlled clinical trial was developed, using a total sample of 87 cats of both sexes, castrated or intact, of any breed, aged >26 weeks. A Feliway spray and a placebo solution spray were tested in two different consultation rooms. During the first phase, Feliway spray was applied to the examination table of one room and the placebo spray in the other. After a washout period of 15 days the spray allocation was switched. After the first 15 mins of general questioning and physical examination carried out by the veterinarian, the observer assessed the stress levels of the cats based on a seven-level 'cat stress score', and the ease of handling based on a five-point 'scale of handling' developed by the authors. The study demonstrated that the use of Feliway spray leads to significant (P = 0.01) differences in cats' usual behaviour, according to their owners. With regard to stress, animals exposed to Feliway spray showed significantly lower stress levels than those treated with placebo (P = 0.02). Regarding the scale of handling, the scoring did not differ significantly between cats under the effect of Feliway spray and cats receiving placebo (P = 0.01). This research shows that the use of Feliway spray on the examination table improves the welfare of cats by reducing their stress during veterinary consultations. Feliway spray significantly changed the behaviour of the cats in this study, and offers a simple and effective way to help decrease stress in cats during the consultation. © The Author(s) 2015.

  7. Integrated computational study of ultra-high heat flux cooling using cryogenic micro-solid nitrogen spray

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Tan, Daisuke

    2012-10-01

    A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected to result in an extensive improvement in the effective cooling performance of large scale supercomputer systems.

  8. Cold spray NDE for porosity and other process anomalies

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar surface profile information plus attenuation measurements trended with porosity. The ultrasound measurements, however, may be limited to geometries where the substrate back-wall is normal to the cold spray surface and not too thick. Eddy current showed a strong correlation with porosity. Eddy currents can also be sensitive to cracks and do not need fluid coupling to make measurements, but are not sensitive to coating thicknesses in most cases. Vickers hardness measurements also tracked well with porosity; however, these types of hardness measurements are also not sensitive to coating thickness. An NDE program may include multiple measurements.

  9. Nitrate analogs as attractants for soybean cyst nematode.

    PubMed

    Hosoi, Akito; Katsuyama, Tsutomu; Sasaki, Yasuyuki; Kondo, Tatsuhiko; Yajima, Shunsuke; Ito, Shinsaku

    2017-08-01

    Soybean cyst nematode (SCN) Heterodera glycines Ichinohe, a plant parasite, is one of the most serious pests of soybean. In this paper, we report that SCN is attracted to nitrate and its analogs. We performed attraction assays to screen for novel attractants for SCN and found that nitrates were attractants for SCN and SCN recognized nitrate gradients. However, attraction of SCN to nitrates was not observed on agar containing nitrate. To further elucidate the attraction mechanism in SCN, we performed attraction assays using nitrate analogs ([Formula: see text], [Formula: see text], [Formula: see text]). SCN was attracted to all nitrate analogs; however, attraction of SCN to nitrate analogs was not observed on agar containing nitrate. In contrast, SCN was attracted to azuki root, irrespective of presence or absence of nitrate in agar media. Our results suggest that the attraction mechanisms differ between plant-derived attractant and nitrate.

  10. 30 CFR 75.1101 - Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deluge-type water sprays, foam generators; main... Fire Protection § 75.1101 Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives. [Statutory Provisions] Deluge-type water sprays or foam generators automatically actuated by rise...

  11. 30 CFR 75.1101 - Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deluge-type water sprays, foam generators; main... Fire Protection § 75.1101 Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives. [Statutory Provisions] Deluge-type water sprays or foam generators automatically actuated by rise...

  12. 46 CFR 34.05-5 - Fire extinguishing systems-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... described in 46 CFR subpart 95.16 or a water spray system must be installed in all lamp and paint lockers... 46 CFR subpart 95.16, a foam spray system, or a water spray system must be installed for the...

  13. 46 CFR 34.05-5 - Fire extinguishing systems-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... described in 46 CFR subpart 95.16 or a water spray system must be installed in all lamp and paint lockers... 46 CFR subpart 95.16, a foam spray system, or a water spray system must be installed for the...

  14. 46 CFR 34.05-5 - Fire extinguishing systems-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... described in 46 CFR subpart 95.16 or a water spray system must be installed in all lamp and paint lockers... 46 CFR subpart 95.16, a foam spray system, or a water spray system must be installed for the...

  15. Rules of Engagement for Land Forces: A Matter of Training, not Lawyering

    DTIC Science & Technology

    1994-04-01

    display that you have superior force at your disposal. Warning shot. Shoot a warning shot, if authorized. Pepper spray. Spray cayenne pepper spray, if...to indicate available force. He may use pepper spray or some other irritant, * C-7 if available, to ward off those who may reach toward a vehicle. He

  16. Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture

    NASA Astrophysics Data System (ADS)

    Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2015-07-01

    We have experimentally studied the heat transfer under conditions of pulsed multinozzle jet spray impact onto a vertical surface. The working coolant fluid was aqueous ethanol solution in a range of concentrations K 1 = 0-96%. The duration of spray pulses was τ = 2, 4, and 10 ms at a repetition frequency of 10 Hz. The maximum heat transfer coefficient was achieved at an ethanol solution concentration within 50-60%. The thermal efficiency of pulsed spray cooling grows with increasing ethanol concentration and decreasing jet spray pulse duration.

  17. Process for forming exoergic structures with the use of a plasma

    DOEpatents

    Kelly, M.D.

    1987-05-29

    A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.

  18. Working Group on Ice Forces (4th) State-of-the-Art Report Held in Iowa City, Iowa in 1986.

    DTIC Science & Technology

    1989-02-01

    INTRODUCTION When droplets generated from sea water fly in cold air, cool and hit an object, spray ice will form. Spray ice causes hazards and...or spray generated by waves hitting the structure. Wind-generated spray forms as a result of direct whipping of wave crests by the wind and of bursting...Spray generated by waves hitting a structure, on the other hand, can result in very high liquid water contents. Values of up to 5 kgm -3 have been

  19. Method for fabricating beryllium structures

    DOEpatents

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1977-01-01

    Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.

  20. Efficacy of clobetasol spray: factors beyond patient compliance.

    PubMed

    Bhutani, Tina; Koo, John; Maibach, Howard I

    2012-02-01

    Clobetasol 0.05% spray, a topical clobetasol propionate, is a non-greasy formulation that has shown increased clinical efficacy in a head-to-head comparison with foam formulation. Moreover, available data from randomized, controlled, double-blind trials suggests that clobetasol spray is, in fact, slightly more effective than most, if not all, other preparations of clobetasol. The fact that clobetasol spray is exceptionally easy to comply with may have played a major role in this outcome; however, other factors must be considered. These include vehicle metamorphosis post-application as well as vehicle and excipient effects on stratum corneum permeability. Basic concepts in topical drug delivery and how they apply to this spray vehicle may further explain the greater efficacy of clobetasol spray.

  1. Bioactivation of organic nitrates and the mechanism of nitrate tolerance.

    PubMed

    Klemenska, Emila; Beresewicz, Andrzej

    2009-01-01

    Organic nitrates, such as nitroglycerin, are commonly used in the therapy of cardiovascular disease. Long-term therapy with these drugs, however, results in the rapid development of nitrate tolerance, limiting their hemodynamic and anti-ischemic efficacy. In addition, nitrate tolerance is associated with the expression of potentially deleterious modifications such as increased oxidative stress, endothelial dysfunction, and sympathetic activation. In this review we discuss current concepts regarding the mechanisms of organic nitrate bioactivation, nitrate tolerance, and nitrate-mediated oxidative stress and endothelial dysfunction. We also examine how hydralazine may prevent nitrate tolerance and related endothelial dysfunction.

  2. Respiratory Nitrate Ammonification by Shewanella oneidensis MR-1▿

    PubMed Central

    Cruz-García, Claribel; Murray, Alison E.; Klappenbach, Joel A.; Stewart, Valley; Tiedje, James M.

    2007-01-01

    Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification. PMID:17098906

  3. Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra.

    PubMed

    Giorio, Chiara; Tapparo, Andrea; Dall'Osto, Manuel; Beddows, David C S; Esser-Gietl, Johanna K; Healy, Robert M; Harrison, Roy M

    2015-03-17

    Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.

  4. Preparation and Layer-by-Layer Solution Deposition of Cu(In,Ga)O2 Nanoparticles with Conversion to Cu(In,Ga)S2 Films

    PubMed Central

    Dressick, Walter J.; Soto, Carissa M.; Fontana, Jake; Baker, Colin C.; Myers, Jason D.; Frantz, Jesse A.; Kim, Woohong

    2014-01-01

    We present a method of Cu(In,Ga)S2 (CIGS) thin film formation via conversion of layer-by-layer (LbL) assembled Cu-In-Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1–2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization. PMID:24941104

  5. Nitrate transport in the cyanobacterium Anacystis nidulans R2. Kinetic and energetic aspects.

    PubMed Central

    Rodríguez, R; Lara, C; Guerrero, M G

    1992-01-01

    Nitrate transport has been studied in the cyanobacterium Anacystis nidulans R2 by monitoring intracellular nitrate accumulation in intact cells of the mutant strain FM6, which lacks nitrate reductase activity and is therefore unable to reduce the transported nitrate. Kinetic analysis of nitrate transport as a function of external nitrate concentration revealed apparent substrate inhibition, with a peak velocity at 20-25 microM-nitrate. A Ks (NO3-) of 1 microM was calculated. Nitrate transport exhibited a stringent requirement for Na+. Neither Li+ nor K+ could substitute for Na+. Monensin depressed nitrate transport in a concentration-dependent manner, inhibition being more than 60% at 2 microM, indicating that the Na(+)-dependence of active nitrate transport relies on the maintenance of a Na+ electrochemical gradient. The operation of an Na+/NO3- symport system is suggested. Nitrite behaved as an effective competitive inhibitor of nitrate transport, with a Ki (NO2-) of 3 microM. The time course of nitrite inhibition of nitrate transport was consistent with competitive inhibition by mixed alternative substrates. Nitrate and nitrite might be transported by the same carrier. PMID:1554347

  6. Relation of nitrate concentrations to baseflow in the Raccoon River, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Lutz, D.S.

    2004-01-01

    Excessive nitrate-nitrogen (nitrate) export from the Raccoon River in west central Iowa is an environmental concern to downstream receptors. The 1972 to 2000 record of daily streamflow and the results from 981 nitrate measurements were examined to describe the relation of nitrate to streamflow in the Raccoon River. No long term trends in streamflow and nitrate concentrations were noted in the 28-year record. Strong seasonal patterns were evident in nitrate concentrations, with higher concentrations occurring in spring and fall. Nitrate concentrations were linearly related to streamflow at daily, monthly, seasonal, and annual time scales. At all time scales evaluated, the relation was improved when baseflow was used as the discharge variable instead of total streamflow. Nitrate concentrations were found to be highly stratified according to flow, but there was little relation of nitrate to streamflow within each flow range. Simple linear regression models developed to predict monthly mean nitrate concentrations explained as much as 76 percent of the variability in the monthly nitrate concentration data for 2001. Extrapolation of current nitrate baseflow relations to historical conditions in the Raccoon River revealed that increasing baseflow over the 20th century could account for a measurable increase in nitrate concentrations.

  7. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(-)-myrtenol nitrate.

    PubMed

    Bew, Sean P; Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a 'halide for nitrate' substitution. Employing readily available starting materials, reagents and Horner-Wadsworth-Emmons chemistry the synthesis of easily separable, synthetically versatile 'key building blocks' (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, 'off the shelf' materials. Exploiting their reactivity we have studied their ability to undergo an 'allylic halide for allylic nitrate' substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates ('isoprene nitrates') in 66-80% overall yields. Using NOESY experiments the elucidation of the carbon-carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our 'halide for nitrate' substitution chemistry we outline the straightforward transformation of (1R,2S)-(-)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(-)-myrtenol nitrate.

  8. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    PubMed Central

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (p<0.001 and =0.017 for nitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  9. The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150.

    PubMed

    Wang, L; Stuart, M E; Lewis, M A; Ward, R S; Skirvin, D; Naden, P S; Collins, A L; Ascott, M J

    2016-01-15

    Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses.

    PubMed

    Garcerá, Cruz; Moltó, Enrique; Chueca, Patricia

    2017-12-01

    Only a portion of the water volume sprayed is deposited on the target when applying plant protection products with air-assisted axial-fan airblast sprayers in high growing crops. A fraction of the off-target losses deposits on the ground, but droplets also drift away from the site. This work aimed at assessing the spray distribution to different compartments (tree canopy, ground and air) during pesticide applications in a Mediterranean citrus orchard. Standard cone nozzles (Teejet D3 DC35) and venturi drift reducing nozzles (Albuz TVI 80 03) were compared. Applications were performed with a conventional air-assisted sprayer, with a spray volume of around 3000lha -1 in a Navel orange orchard. Brilliant Sulfoflavine (BSF) was used as a tracer. Results showed that only around 46% of the applied spray was deposited on the target trees and around 4% of the spray was deposited on adjacent trees from adjoining rows independently of the nozzle type. Applications with standard nozzles produced more potential airborne spray drift (23%) than those with the drift reducing nozzles (17%) but fewer direct losses to the ground (22% vs. 27%). Indirect losses (sedimenting spray drift) to the ground of adjacent paths were around 7-9% in both cases. The important data set of spray distribution in the different compartments around sprayed orchard (air, ground, vegetation) generated in this work is highly useful as input source of exposure to take into account for the risk assessment in Mediterranean citrus scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments

    PubMed Central

    HAKIM, Hakimullah; THAMMAKARN, Chanathip; SUGURO, Atsushi; ISHIDA, Yuki; KAWAMURA, Akinobu; TAMURA, Miho; SATOH, Keisuke; TSUJIMURA, Misato; HASEGAWA, Tomomi; TAKEHARA, Kazuaki

    2014-01-01

    Hypochlorous acid (HOCl) solutions were evaluated for their virucidal ability against a low pathogenic avian influenza virus (AIV), H7N1. HOCl solutions containing 50, 100 and 200 ppm chlorine (pH 6) or their sprayed solutions (harvested in dishes placed at 1 or 30 cm distance between the spray nozzle and dish) were mixed with the virus with or without organic materials (5% fetal bovine serum: FBS). Under plain diluent conditions (without FBS), harvested solutions of HOCl after spraying could decrease the AIV titer by more than 1,000 times, to an undetectable level (< 2.5 log10TCID50/ml) within 5 sec, with the exception of the 50 ppm solution harvested after spraying at the distance of 30 cm. Under the dirty conditions (in the presence of 5% FBS), they lost their virucidal activity. When HOCl solutions were sprayed directly on the virus on rayon sheets for 10 sec, the solutions of 100 and 200 ppm could inactivate AIV immediately after spraying, while 50 ppm solution required at least 3 min of contact time. In the indirect spray form, after 10 sec of spraying, the lids of the dishes were opened to expose the virus on rayon sheets to HOCl. In this form, the 200 ppm solution inactivated AIV within 10 min of contact, while 50 and 100 ppm could not inactivate it. These data suggest that HOCl can be used in spray form to inactivate AIV at the farm level. PMID:25421399

  12. A demonstration of the antimicrobial effectiveness of various copper surfaces

    PubMed Central

    2013-01-01

    Background Bacterial contamination on touch surfaces results in increased risk of infection. In the last few decades, work has been done on the antimicrobial properties of copper and its alloys against a range of micro-organisms threatening public health in food processing, healthcare and air conditioning applications; however, an optimum copper method of surface deposition and mass structure has not been identified. Results A proof-of-concept study of the disinfection effectiveness of three copper surfaces was performed. The surfaces were produced by the deposition of copper using three methods of thermal spray, namely, plasma spray, wire arc spray and cold spray The surfaces were then inoculated with meticillin-resistant Staphylococcus aureus (MRSA). After a two hour exposure to the surfaces, the surviving MRSA were assayed and the results compared. The differences in the copper depositions produced by the three thermal spray methods were examined in order to explain the mechanism that causes the observed differences in MRSA killing efficiencies. The cold spray deposition method was significantly more effective than the other methods. It was determined that work hardening caused by the high velocity particle impacts created by the cold spray technique results in a copper microstructure that enhances ionic diffusion, and copper ions are principally responsible for antimicrobial activity. Conclusions This test showed significant microbiologic differences between coatings produced by different spray techniques and demonstrates the importance of the copper application technique. The cold spray technique shows superior anti-microbial effectiveness caused by the high impact velocity imparted to the sprayed particles which results in high dislocation density and high ionic diffusivity. PMID:23537176

  13. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization

    PubMed Central

    Jong, Teresa; Li, Jian; Mortonx, David A.V.; Zhou, Qi (Tony); Larson, Ian

    2016-01-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared to those produced by jet-milling. Inhalable colistin powder formulations were produced by jet-milling or spray-drying (with or without L-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, while the spray-dried particles were more spherical. Significantly higher fine particle fractions (FPFs) were measured for the spray-dried (43.8-49.6%) vs. the jet-milled formulation (28.4 %) from a Rotahaler at 60L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of L-leucine in the spray drying feed-solution gave no significant improvement in FPF. As measured by inverse gas chromatography, spray-dried formulations had significantly (p<0.001) lower dispersive, specific and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without L-leucine. Based upon our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray-drying, contributed significantly to the reduction of surface free energy and the superior aerosolization performance. PMID:26886330

  14. Selective and conventional house-spraying of DDT and bendiocarb against Anopheles pseudopunctipennis in southern Mexico.

    PubMed

    Casas, M; Torres, J L; Bown, D N; Rodríguez, M H; Arredondo-Jiménez, J I

    1998-12-01

    Indoor feeding behaviors and mortalities of Anopheles pseudopunctipennis females were evaluated following contact with selective (bands covering mosquitoes' preferred resting areas) and full applications of DDT and bendiocarb on indoor sprayable surfaces. The DDT residues provoked strong avoidance behavior. To a lesser degree, mosquitoes were also repelled by bendiocarb-sprayed surfaces. Because of strong irritancy/repellency, unfed mosquitoes were driven outdoors in proportionally higher numbers. The resting time on selectively or fully DDT-sprayed huts was greatly reduced in comparison to bendiocarb-sprayed huts. Although unfed mosquitoes tended to rest on non-DDT-sprayed surfaces in the selectively treated hut, the man-biting rate was similar with both types of treatments. Unfed mosquitoes were repelled less from selectively bendiocarb-treated surfaces. Similar reductions in postfed resting times were observed on all surfaces suggesting that once fed, mosquitoes rested on sprayed surfaces for shorter intervals of time. Engorged mosquitoes had normal resting behavior (pre- and postspray) within the range of preferred resting heights in both DDT- and bendiocarb-sprayed huts, but the proportion of mosquitoes fed in the DDT-treated huts was lower. Selective spraying of walls was as effective as spraying the complete walls with both insecticides, but DDT was more effective in reducing mosquito-human contact. These studies show that by more effectively targeting vector behavior, a cost-effective alternative to traditional control techniques can be achieved.

  15. Clay as a matrix former for spray drying of drug nanosuspensions.

    PubMed

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2014-04-25

    Utilization of sugars (e.g. lactose, sucrose) as matrix formers for spray drying of drug nanosuspensions is associated with two drawbacks: (1) sugars are incapable of preventing agglomeration of drug nanoparticles (NPs) in the suspension state; and (2) the spray-dried sugars are usually amorphous and hygroscopic. This work aimed to apply a clay, montmorillonite (MMT) as an alternative matrix former for spray drying of drug nanosuspensions with fenofibrate (feno) as a model compound. Drug nanosuspensions were synthesized by liquid antisolvent precipitation with different amount of MMT followed by spray drying. It is found that MMT is able to reduce the agglomeration of drug nanoparticles in the suspension state, as observed from the gradual alleviation of the clogging with the increased clay during the spray drying. The spray-dried feno NPs/MMT powders exhibited a much lower moisture sorption than spray-dried feno NPs/lactose powders as evidenced by the dynamic vapor sorption (DVS) analysis. The dissolution within 5 min for the spray-dried feno NPs/MMT powders at drug:MMT weight ratio of 1:3 was 81.4 ± 1.8% and the total dissolution within 60 min was 93.4 ± 0.9%. Our results demonstrate that MMT is a useful matrix former for preservation of the high dissolution rate of nanosized drug particles after drying. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Improvement of Physico-mechanical Properties of Partially Amorphous Acetaminophen Developed from Hydroalcoholic Solution Using Spray Drying Technique

    PubMed Central

    Sadeghi, Fatemeh; Torab, Mansour; Khattab, Mostafa; Homayouni, Alireza; Afrasiabi Garekani, Hadi

    2013-01-01

    Objective(s): This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen. Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water) of acetaminophen (5% w/v) in the presence of small amounts of polyninylpyrrolidone K30 (PVP) (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight) was carried out. The properties of spray dried particles namely morphology, surface characteristics, particle size, crystallinity, dissolution rate and compactibility were evaluated. Results: Spray drying process significantly changed the morphology of acetaminophen crystals from acicular (rod shape) to spherical microparticle. Differential scanning calorimetery (DSC) and x-ray powder diffraction (XRPD) studies ruled out any polymorphism in spray dried samples, however, a major reduction in crystallinity up to 65%, especially for those containing 5% w/w PVP was observed. Spray dried acetaminophen particles especially those obtained in the presence of PVP exhibited an obvious improvement of the dissolution and compaction properties. Tablets produced from spray dried samples exhibited excellent crushing strengths and no tendency to cap. Conclusions: The findings of this study revealed that spray drying of acetaminophen from hydroalcoholic solution in the presence of small amount of PVP produced partially amorphous particles with improved dissolution and excellent compaction properties. PMID:24379968

  17. The effect of Piper aduncum Linn. (Family: Piperaceae) essential oil as aerosol spray against Aedes aegypti (L.) and Aedes albopictus Skuse.

    PubMed

    Misni, Norashiqin; Othman, Hidayatulfathi; Sulaiman, Sallehudin

    2011-08-01

    The bioefficacy of Piper aduncum L. essential oil formulated in aerosol cans was evaluated against Aedes aegypti and Aedes albopictus in a simulated room. The aerosol spray test was based on the Malaysian test standard for aerosol (MS 1221:1991UDC 632.982.2 modified from WHO 2009 methodology) and examined the knockdown effect within 20 minutes of exposure. Mortality rate after 24 hour of holding period was also determined. A commercial aerosol spray (0.09% prallethrin 0.05% d-phenothrin) was also tested as a comparison. Our results showed that the knockdown effect of the commercial aerosol spray and P. aduncum essential oil spray (8% and 10% concentrations) was significantly higher in Ae. albopictus adult females, when compared with that of Ae. aegypti adult females (P<0.05). There was a significant difference in knockdown between commercial aerosol spray and essential oil spray for both Aedes spp. (P<0.05). The essential oil induced significantly higher mortality in Ae. aegypti (80%) than in Ae. albopictus (71.6%) (P<0.05). The commercial aerosol spray caused 97.7% and 86.5% mortality against Ae. aegypti and Ae. albopictus respectively (P<0.05). Based on these data, P. aduncum essential oil has the potential to be used as an aerosol spray against Aedes spp.

  18. Clinical experience with THC:CBD oromucosal spray in patients with multiple sclerosis-related spasticity.

    PubMed

    Koehler, Jürgen; Feneberg, Wolfgang; Meier, Martin; Pöllmann, Walter

    2014-09-01

    This detailed medical charts' data collection study conducted at a multiple sclerosis (MS) clinic in Germany evaluated the effectiveness of tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray in patients with resistant MS spasticity. Over a 15-month timeframe, THC:CBD spray was initiated in 166 patients. Mean follow-up was 9 months. In all, 120 patients remained on treatment for a response rate of 72%. THC:CBD spray was used as add-on therapy in 95 patients and as monotherapy in 25 patients to achieve best-possible therapeutic results. Among responders, the mean spasticity 0-10 numerical rating scale (NRS) score decreased by 57%, from 7.0 before treatment to 3.0 within 10 days of starting THC:CBD spray. The mean dosage was 4 sprays/day. Most patients who withdrew from treatment (40/46) had been receiving THC:CBD spray for less than 60 days. Main reasons for treatment discontinuation were: adverse drug reactions, mainly dizziness, fatigue and oral discomfort (23 patients; 13.9%); lack of efficacy (14 patients; 8.4%); or need for a baclofen pump (9 patients; 5.4%). No new safety signals were noted with THC:CBD spray during the evaluation period. In this routine clinical practice setting at an MS clinic in Germany, THC:CBD spray was effective and well tolerated as add-on therapy or as monotherapy in a relevant proportion of patients with resistant MS spasticity.

  19. Classification of spray nozzles based on droplet size distributions and wind tunnel tests.

    PubMed

    De Schamphelerie, M; Spanoghe, P; Nuyttens, D; Baetens, K; Cornelis, W; Gabriels, D; Van der Meeren, P

    2006-01-01

    Droplet size distribution of a pesticide spray is recognised as a main factor affecting spray drift. As a first approximation, nozzles can be classified based on their droplet size spectrum. However, the risk of drift for a given droplet size distribution is also a function of spray structure, droplet velocities and entrained air conditions. Wind tunnel tests to determine actual drift potentials of the different nozzles have been proposed as a method of adding an indication of the risk of spray drift to the existing classification based on droplet size distributions (Miller et al, 1995). In this research wind tunnel tests were performed in the wind tunnel of the International Centre for Eremology (I.C.E.), Ghent University, to determine the drift potential of different types and sizes of nozzles at various spray pressures. Flat Fan (F) nozzles Hardi ISO 110 02, 110 03, 110 04, 110 06; Low-Drift (LD) nozzles Hardi ISO 110 02, 110 03, 110 04 and Injet Air Inclusion (AI) nozzles Hardi ISO 110 02, 110 03, 110 04 were tested at a spray pressures of 2, 3 and 4 bar. The droplet size spectra of the F and the LD nozzles were measured with a Malvern Mastersizer at spray pressures 2 bar, 3 bar and 4 bar. The Malvern spectra were used to calculate the Volume Median Diameters (VMD) of the sprays.

  20. The effect of operating and formulation variables on the morphology of spray-dried protein particles.

    PubMed

    Maa, Y F; Costantino, H R; Nguyen, P A; Hsu, C C

    1997-08-01

    The purpose of this research was to investigate the shape and morphology of various spray-dried protein powders as a function of spray-drying conditions and protein formulations. A benchtop spray dryer was used to spray dry three model proteins in formulation with a sugar or a surfactant. Physical characterizations of the powder included morphology (scanning electron microscopy), particle size, residual moisture, and X-ray powder diffraction analyses. A significant change in particle shape from irregular (e.g., "donut") to spherical was observed as the outlet temperature of the dryer was decreased. The drying air outlet temperature was shown to depend on various operating parameters and was found to correlate with the drying rate of atomized droplets in the drying chamber. The morphology of spray-dried protein particles was also affected by formulation. In protein:sugar formulations, spray-dried particles exhibited a smooth surface regardless of the protein-to-lactose ratio, whereas roughness was observed when mannitol was present at > 30% of total solids, due to recrystallization. Protein particles containing trehalose at concentrations > 50% were highly agglomerated. The presence of surfactant resulted in noticeably smoother, more spherical particles. The shape and the morphology of spray-dried powders are affected by spray drying conditions and protein formulation. This study provides information useful for development of dry proteins for fine powder (e.g., aerosol) applications.

  1. Microstructural Characteristics and Oxidation Behavior of Low-Pressure Cold-Sprayed CoNiCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Lin-wei; Lu, Lei; Wang, Lu; Ning, Xian-jin; Wang, Quan-sheng; Wang, Ri-xin

    2017-10-01

    CoNiCrAlY coatings were deposited by low-pressure cold spraying and subsequently heat-treated at 1050 °C for 4 h in a vacuum environment. The microstructural characteristics and oxidation behavior of CoNiCrAlY coatings were investigated. The as-sprayed coating exhibited low porosity and oxygen content. The high plastic deformation of the sprayed particles led to significant refinement of γ-matrix and dissolution of β-(Ni,Co)Al phase in the as-sprayed coating. After heat treatment, the single phase (γ) in the as-sprayed coating was converted into a γ/β microstructure, and a continuous single α-Al2O3 scale was formed on the coating surface. Vacuum heat treatment can postpone the formation of spinel oxides within 100 h. After being oxidized at 1050 °C for 400 h, the heat-treated coating exhibited better oxidation resistance than the as-sprayed coating. The reduced growth rate of the oxide scale and the suppression of the formation of spinel oxides can be attributed to the vacuum heat treatment, as well as the intrinsic microstructure of the cold-sprayed coating. Finally, the effects of the microstructural changes induced during the cold spraying process on the growth of the thermally grown oxide and the oxidation mechanisms of the CoNiCrAlY coatings were discussed.

  2. Hair spray poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  3. 40 CFR 63.5743 - What standards must I meet for aluminum recreational boat surface coating operations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... spray guns with solvents containing more than 5 percent organic HAP by weight. (1) Clean spray guns in an enclosed device. Keep the device closed except when you place spray guns in or remove them from the device. (2) Disassemble the spray gun and manually clean the components in a vat. Keep the vat...

  4. Propeller wash effects on spray drift

    Treesearch

    Steven J. Thompson; Alvin R. Womac; Joseph Mulrooney; Sidney Deck

    2005-01-01

    for aerial spray application, there is some question if off-target drift (both near and far) is influenced by which boom is spraying and the direction of propeller wash rotation. This information may be useful when switching off one boom close to a field boundary. The effect of alternate boom switching and propeller wash direction on aerial spray drift from a turbine-...

  5. 46 CFR 160.041-5 - Inspections and tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... light and subjected to a spray of water for about 30 seconds every 20 minutes for 100 hours at 120 °F... 130 °F. without the water spray. There shall be no evidence of warping or deterioration as a result of this test. (b) Salt spray. The container shall be exposed to a spray of 20% by weight of reagent grade...

  6. 46 CFR 160.041-5 - Inspections and tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... light and subjected to a spray of water for about 30 seconds every 20 minutes for 100 hours at 120 °F... 130 °F. without the water spray. There shall be no evidence of warping or deterioration as a result of this test. (b) Salt spray. The container shall be exposed to a spray of 20% by weight of reagent grade...

  7. 46 CFR 160.041-5 - Inspections and tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... light and subjected to a spray of water for about 30 seconds every 20 minutes for 100 hours at 120 °F... 130 °F. without the water spray. There shall be no evidence of warping or deterioration as a result of this test. (b) Salt spray. The container shall be exposed to a spray of 20% by weight of reagent grade...

  8. 46 CFR 160.041-5 - Inspections and tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... light and subjected to a spray of water for about 30 seconds every 20 minutes for 100 hours at 120 °F... 130 °F. without the water spray. There shall be no evidence of warping or deterioration as a result of this test. (b) Salt spray. The container shall be exposed to a spray of 20% by weight of reagent grade...

  9. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption, and biologic response.

    PubMed

    Suman, Julie D; Laube, Beth L; Dalby, Richard

    2006-01-01

    This research investigated the impact of the full range of in vitro spray characterization tests described in the FDA Draft Bioequivalence Guidance on nasal deposition pattern, pharmacokinetics, and biological response to nicotine administered by two aqueous nasal spray pumps in human volunteers. Nicotine was selected as a model drug (even though it is not locally acting) based on its ability to alter cardiac function and available plasma assay. Significant differences in pump performance-including mean volume diameters, spray angle, spray width, and ovality ratios-were observed between the two pumps. There were no significant differences in deposition pattern, or pharmacokinetic or pharmacodynamic response to the nasally administered nicotine. Although there were statistical differences in the in vitro tests between the two pumps, these differences did not result in significant alterations in the site of droplet deposition within the nose, the rate and extent of nicotine absorption, or the physiologic response it induced. These results suggest that current measures of in vitro performance, particularly spray angle and spray pattern (ovality), may not be clinically relevant. Additional research is needed to define what spray pump characteristics are likely to produce differences in deposition pattern and drug response.

  10. In Vitro Assessment of Spray Deposition Patterns in a Pediatric (12 Year-Old) Nasal Cavity Model.

    PubMed

    Sawant, Namita; Donovan, Maureen D

    2018-03-26

    Nasal sprays available for the treatment of cold and allergy symptoms currently use identical formulations and devices for adults as well as for children. Due to the obvious differences between the nasal airway dimensions of a child and those of an adult, the performance of nasal sprays in children was evaluated. Deposition patterns of nasal sprays administered to children were tested using a nasal cast based on MRI images obtained from a 12 year old child's nasal cavity. Test formulations emitting a range of spray patterns were investigated by actuating the device into the pediatric nasal cast under controlled conditions. The results showed that the nasal sprays impacted in the anterior region of the 12 year old child's nasal cavity, and only limited spray entered the turbinate region - the effect site for most topical drugs and the primary absorptive region for systemically absorbed drugs. Differences in deposition patterns following the administration of nasal sprays to adults and children may lead to differences in efficacy between these populations. Greater anterior deposition in children may result in decreased effectiveness, greater anterior dosage form loss, and the increased potential for patient non-compliance.

  11. A study of processing parameters in thermal-sprayed alumina and zircon mixtures

    NASA Astrophysics Data System (ADS)

    Li, Y.; Khor, K. A.

    2002-06-01

    A method of plasma spraying of alumina and zircon mixtures to form ZrO2-mullite composites has been proposed and developed. The feedstock is prepared by a combination of mechanical alloying, which allows formation of fine-grained, homogeneous solid-solution mixtures, followed by plasma spheroidization that yields rapid solidified microstructures and enhanced compositional homogeneity. The effects of ball-milling duration and milling media were studied. It was found that zirconia is a more efficient milling media and that increasing milling duration enhanced the dissociation of zircon. Flame spray and plasma spray processes were used to spheroidize the spray-dried powders. The temperature of the flame spray was found to be insufficient to melt the powders completely. The processing parameters of the plasma spray played an important role in zircon decomposition and mullite formation. Increasing the arc current or reducing secondary gas pressure caused more zircon to decompose and more mullite to form after heat treatment at 1200 °C for 3 h. Dissociation of zircon and the amount of mullite for med can be enhanced significantly when using the more efficient, computerized plasma-spraying system and increasing the ball-milling duration from 4 to 8 h.

  12. SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.

    SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISPmore » model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.« less

  13. Comparison of lidocaine spray and paracervical block application for pain relief during first-trimester surgical abortion: A randomised, double-blind, placebo-controlled trial.

    PubMed

    Aksoy, Huseyin; Aksoy, Ulku; Ozyurt, Sezin; Ozoglu, Nil; Acmaz, Gokhan; Aydın, Turgut; İdem Karadağ, Özge; Tayyar, Ahter Tanay

    2016-07-01

    Surgical abortion is one of the most frequently performed gynaecological procedures and its associated pain has always been a problem in gynaecology. Here we studied the analgesic efficacy of lidocaine spray and paracervical block (PCB) in patients undergoing first-trimester surgical abortion. A randomised double-blind placebo-controlled study was conducted on 108 women requesting pregnancy termination. The subjects were randomly assigned into four groups: Group 1 (PCB plus lidocaine spray) (n=27), Group 2 (PCB) (n=27), Group 3 (lidocaine spray) (n=27) and Group 4 (placebo) (n=27). Intra-procedural and post-procedural pain scores were measured with a standard visual analogue scale (VAS). The median VAS scores during procedure in placebo, lidocaine spray, PCB plus lidocaine spray and PCB groups were 8 (7-9), 5 (4-8), 4 (3-4) and 5 (3-5), respectively. The most effective method of pain relief during first-trimester abortion can be achieved through a combined use of PCB plus lidocaine spray. Therefore, lidocaine spray is a non-invasive complementary anaesthetic method versus traditional PCB for first-trimester surgical abortion.

  14. Use of Iba Techniques to Characterize High Velocity Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Trompetter, W.; Markwitz, A.; Hyland, M.

    Spray coatings are being used in an increasingly wide range of industries to improve the abrasive, erosive and sliding wear of machine components. Over the past decade industries have moved to the application of supersonic high velocity thermal spray techniques. These coating techniques produce superior coating quality in comparison to other traditional techniques such as plasma spraying. To date the knowledge of the bonding processes and the structure of the particles within thermal spray coatings is very subjective. The aim of this research is to improve our understanding of these materials through the use of IBA techniques in conjunction with other materials analysis techniques. Samples were prepared by spraying a widely used commercial NiCr powder onto substrates using a HVAF (high velocity air fuel) thermal spraying technique. Detailed analysis of the composition and structure of the power particles revealed two distinct types of particles. The majority was NiCr particles with a significant minority of particles composing of SiO2/CrO3. When the particles were investigated both as raw powder and in the sprayed coating, it was surprising to find that the composition of the coating meterial remained unchanged during the coating process despite the high velocity application.

  15. Source Areas of Water and Nitrate in a Peatland Catchment, Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.

    2017-12-01

    In nitrogen polluted forests, stream nitrate concentrations increase and some unprocessed atmospheric nitrate may be transported to streams during stormflow events. This understanding has emerged from forests with upland mineral soils. In contrast, catchments with northern peatlands may have both upland soils and lowlands with deep organic soils, each with unique effects on nitrate transport and processing. While annual budgets show nitrate yields to be relatively lower from peatland than upland-dominated catchments, little is known about particular runoff events when stream nitrate concentrations have been higher (despite long periods with little or no nitrate in outlet streams) or the reasons why. I used site knowledge and expansive/extensive monitoring at the Marcell Experimental Forest in Minnesota, along with a targeted 2-year study to determine landscape areas, water sources, and nitrate sources that affected stream nitrate variation in a peatland catchment. I combined streamflow, upland runoff, snow amount, and frost depth data from long-term monitoring with nitrate concentration, yield, and isotopic data to show that up to 65% of stream nitrate during snowmelt of 2009 and 2010 was unprocessed atmospheric nitrate. Up to 46% of subsurface runoff from upland soils during 2009 was unprocessed atmospheric nitrate, which shows the uplands to be a stream nitrate source during 2009, but not during 2010 when upland runoff concentrations were below the detection limit. Differences are attributable to variations in water and nitrate sources. Little snow (a nitrate source), less upland runoff relative to peatland runoff, and deeper soil frost in the peatland caused a relatively larger input of nitrate from the uplands to the stream during 2009 and the peatland to the stream during 2010. Despite the near-absence of stream nitrate during much of rest of the year, these findings show an important time when nitrate transport affected downstream aquatic ecosystems, reasons why nitrate was transported, and that atmospheric nitrate pollution had a direct effect on a stream in a peatland catchment. Furthermore, this work illustrates how long-term monitoring when coupled with shorter-duration studies allows contemporary questions to be addressed within legacy catchment studies.

  16. Pseudo-constitutivity of nitrate-responsive genes in nitrate reductase mutants

    PubMed Central

    Schinko, Thorsten; Gallmetzer, Andreas; Amillis, Sotiris; Strauss, Joseph

    2013-01-01

    In fungi, transcriptional activation of genes involved in NO3- assimilation requires the presence of an inducer (nitrate or nitrite) and low intracellular concentrations of the pathway products ammonium or glutamine. In Aspergillus nidulans, the two transcription factors NirA and AreA act synergistically to mediate nitrate/nitrite induction and nitrogen metabolite derepression, respectively. In all studied fungi and in plants, mutants lacking nitrate reductase (NR) activity express nitrate-metabolizing enzymes constitutively without the addition of inducer molecules. Based on their work in A. nidulans, Cove and Pateman proposed an “autoregulation control” model for the synthesis of nitrate metabolizing enzymes in which the functional nitrate reductase molecule would act as co-repressor in the absence and as co-inducer in the presence of nitrate. However, NR mutants could simply show “pseudo-constitutivity” due to induction by nitrate which accumulates over time in NR-deficient strains. Here we examined this possibility using strains which lack flavohemoglobins (fhbs), and are thus unable to generate nitrate internally, in combination with nitrate transporter mutations (nrtA, nrtB) and a GFP-labeled NirA protein. Using different combinations of genotypes we demonstrate that nitrate transporters are functional also in NR null mutants and show that the constitutive phenotype of NR mutants is not due to nitrate accumulation from intracellular sources but depends on the activity of nitrate transporters. However, these transporters are not required for nitrate signaling because addition of external nitrate (10 mM) leads to standard induction of nitrate assimilatory genes in the nitrate transporter double mutants. We finally show that NR does not regulate NirA localization and activity, and thus the autoregulation model, in which NR would act as a co-repressor of NirA in the absence of nitrate, is unlikely to be correct. Results from this study instead suggest that transporter-mediated NO3- accumulation in NR deficient mutants, originating from traces of nitrate in the media, is responsible for the constitutive expression of NirA-regulated genes, and the associated phenotype is thus termed “pseudo-constitutive”. PMID:23454548

  17. Serum nitrate/nitrite concentration correlates with gastric juice nitrate/nitrite: a possible marker for mutagenesis of the proximal stomach.

    PubMed

    Kishikawa, Hiroshi; Nishida, Jiro; Ichikawa, Hitoshi; Kaida, Shogo; Matsukubo, Takashi; Miura, Soichiro; Morishita, Tetsuo; Hibi, Toshifumi

    2011-01-01

    In the normal acid-secreting stomach, luminally generated nitric oxide, which contributes to carcinogenesis in the proximal stomach, is associated with the concentration of nitrate plus nitrite (nitrate/nitrite) in gastric juice. We investigated whether the serum nitrate/nitrite concentration is associated with that of gastric juice and whether it can be used as a serum marker. Serum and gastric juice nitrate/nitrite concentration, Helicobacter pylori antibody, and gastric pH were measured in 176 patients undergoing upper endoscopy. Multiple regression analysis revealed that serum nitrate/nitrite concentration was the best independent predictor of gastric juice nitrate/nitrite concentration. On single regression analysis, serum and gastric juice nitrate/nitrite concentration were significantly correlated, according to the following equation: gastric juice nitrate/nitrite concentration (μmol/l) = 3.93 - 0.54 × serum nitrate/nitrite concentration (μmol/l; correlation coefficient = 0.429, p < 0.001). In analyses confined to subjects with gastric pH less than 2.0, and in those with serum markers suggesting normal acid secretion (pepsinogen-I >30 ng/ml and negative H. pylori antibody), the serum nitrate/nitrite concentration was an independent predictor of the gastric juice nitrate/nitrite concentration (p < 0.001). Measuring the serum nitrate/nitrite concentration has potential in estimating the gastric juice nitrate/nitrite concentration. The serum nitrate/nitrite concentration could be useful as a marker for mutagenesis in the proximal stomach. Copyright © 2011 S. Karger AG, Basel.

  18. Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application

    NASA Astrophysics Data System (ADS)

    Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2014-12-01

    Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.

  19. Preparation and Bond Properties of Thermal Barrier Coatings on Mg Alloy with Sprayed Al or Diffused Mg-Al Intermetallic Interlayer

    NASA Astrophysics Data System (ADS)

    Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang

    2014-02-01

    Sprayed Al or diffused Mg-Al layer was designed as interlayer between the thermal barrier coatings (TBCs) and Mg alloy substrate. The effects of the interlayer on the bond properties of the coats were investigated. Al layers were prepared by arc spraying and atmospheric plasma spraying (APS), respectively. Mg-Al diffused layer was obtained after the heat treatment of the sprayed sample (Mg alloy with APS Al coat) at 400 °C. The results show that sprayed Al interlayer does not improve the bond stability of TBCs. The failure of the TBCs on Mg alloy with Al interlayer occurs mainly due to the low strength of Al layer. Mg-Al diffused layer improves corrosion resistance of substrate and the bond interface. The TBCs on Mg alloy with Mg-Al diffused interlayer shows better bond stability than the sample of which the TBCs is directly sprayed on Mg alloy substrate by APS.

  20. [Ethyl chloride aerosol spray for local anesthesia before arterial puncture: randomized placebo-controlled trial].

    PubMed

    Ballesteros-Peña, Sendoa; Fernández-Aedo, Irrintzi; Vallejo-De la Hoz, Gorka

    2017-06-01

    To compare the efficacy of an ethyl chloride aerosol spray to a placebo spray applied in the emergency department to the skin to reduce pain from arterial puncture for blood gas analysis. Single-blind, randomized placebo-controlled trial in an emergency department of Hospital de Basurto in Bilbao, Spain. We included 126 patients for whom arterial blood gas analysis had been ordered. They were randomly assigned to receive application of the experimental ethyl chloride spray (n=66) or a placebo aerosol spray of a solution of alcohol in water (n=60). The assigned spray was applied just before arterial puncture. The main outcome variable was pain intensity reported on an 11-point numeric rating scale. The median (interquartile range) pain level was 2 (1-5) in the experimental arm and 2 (1-4.5) in the placebo arm (P=.72). Topical application of an ethyl chloride spray did not reduce pain caused by arterial puncture.

  1. The influence of pore formers on the microstructure of plasma-sprayed NiO-YSZ anodes

    NASA Astrophysics Data System (ADS)

    Poon, Michael; Kesler, Olivera

    2012-07-01

    Four types of pore formers: high-density polyethylene (HDPE), polyether-ether-ketone (PEEK), mesocarbon-microbead (MCMB) carbon powder, and baking flour, are processed and characterized, then incorporated with NiO-YSZ nano-agglomerate powder to produce plasma sprayed SOFC anode coatings. Scanning electron microscopy (SEM) of the coating microstructure, gas permeability measurements, and porosity determinations by image analysis are used to evaluate the effectiveness of each potential pore former powder. Under the spray conditions studied, the flour and MCMB pore former powders are effective as plasma sprayed pore formers, increasing the permeability of the coatings by factors of four and two, respectively, compared to a similarly sprayed NiO-YSZ coating without pore formers. The HDPE powder is unable to survive the plasma spray process and does not contribute to the final coating porosity. The PEEK pore former, though ineffective with the current powder characteristics and spray parameters, exhibits the highest relative deposition efficiency and the most favorable thermal characteristics.

  2. Spray drying of lipid-based systems loaded with Camellia sinensis polyphenols.

    PubMed

    Secolin, Vanessa A; Souza, Claudia R F; Oliveira, Wanderley P

    2017-03-01

    In this work, spray-dried lipid systems based on soy phosphatidylcholine, cholesterol and lauroyl polyoxylglycerides for entrapping Green tea polyphenols were produced. The aim was to study the effects of the encapsulating composition and spray drying conditions on the system performance and physicochemical product properties. The spray dryer powder production yield falls around 50.7 ± 2.8%, which is typical for lab scale spray dryers. Wrinkled and rounded particles, with low surface porosities were generated, independent of the drying carriers (trehalose or lactose) used. The product showed high encapsulation efficiency of Green tea polyphenols, which was promptly redispersible in water. It presented low density, and good compressive and flow properties. The results herein reported confirm the feasibility of the entrapment of Green tea polyphenols in lipid-based compositions by spray drying in presence of the drying carriers evaluated. The spray-dried microparticles show high potential to be used as additive in food, nutraceutical and pharmaceutical products.

  3. Probing a Spray Using Frequency-Analyzed Light Scattering

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard; Lee, Michael H.; Rhys, Noah O.

    2008-01-01

    Frequency-analyzed laser-light scattering (FALLS) is a relatively simple technique that can be used to measure principal characteristics of a sheet of sprayed liquid as it breaks up into ligaments and then the ligaments break up into droplets. In particular, through frequency analysis of laser light scattered from a spray, it is possible to determine whether the laser-illuminated portion of the spray is in the intact-sheet region, the ligament region, or the droplet region. By logical extension, it is possible to determine the intact length from the location of the laser beam at the transition between the intact-sheet and ligament regions and to determine a breakup frequency from the results of the frequency analysis. Hence, FALLS could likely be useful both as a means of performing research on sprays in general and as a means of diagnostic sensing in diverse applications in which liquid fuels are sprayed. Sprays are also used for drying and to deposit paints and other coating materials.

  4. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    NASA Astrophysics Data System (ADS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-03-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  5. Near-net-shape manufacturing: Spray-formed metal matrix composites and tooling

    NASA Technical Reports Server (NTRS)

    Mchugh, Kevin M.

    1994-01-01

    Spray forming is a materials processing technology in which a bulk liquid metal is converted to a spray of fine droplets and deposited onto a substrate or pattern to form a near-net-shape solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g. refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. The Idaho National Engineering Laboratory is developing a unique spray-forming method, the Controlled Aspiration Process (CAP), to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Results from two spray-accompanying technical and economic benefits. These programs involved spray forming aluminum strip reinforced with SiC particulate, and the production of tooling, such as injection molds and dies, using low-melting-point metals.

  6. A Method to Predict the Thickness of Poorly-Bonded Material Along Spray and Spray-Layer Boundaries in Cold Spray Deposition

    NASA Astrophysics Data System (ADS)

    Li, Yangfan; Hamada, Yukitaka; Otobe, Katsunori; Ando, Teiichi

    2017-02-01

    Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.

  7. Aminoethyl nitrate – the novel super nitrate?

    PubMed Central

    Bauersachs, Johann

    2009-01-01

    Long-term use of most organic nitrates is limited by development of tolerance, induction of oxidative stress and endothelial dysfunction. In this issue of the BJP, Schuhmacher et al. characterized a novel class of organic nitrates with amino moieties (aminoalkyl nitrates). Aminoethyl nitrate was identified as a novel organic mononitrate with high potency but devoid of induction of mitochondrial oxidative stress. Cross-tolerance to nitroglycerin or the endothelium-dependent agonist acetylcholine after in vivo treatment was not observed. Like all nitrates, aminoethyl nitrate induced vasorelaxation by activation of soluble guanylate cyclase. Thus, in contrast to the prevailing view, high potency in an organic nitrate is not necessarily accompanied by induction of oxidative stress or endothelial dysfunction. This work from Daiber's group is an important step forward in the understanding of nitrate bioactivation, tolerance phenomena and towards the development of better organic nitrates for clinical use. PMID:19732062

  8. The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone.

    PubMed

    Wang, L; Butcher, A S; Stuart, M E; Gooddy, D C; Bloomfield, J P

    2013-10-01

    Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the 'store' of nitrate and its potentially long travel time in the unsaturated and saturated zones. However, this time lag is rarely considered in current water nitrate management and policy development. The aim of this study was to develop a catchment-scale integrated numerical method to investigate the nitrate lag time in the groundwater system, and the Eden Valley, UK, was selected as a case study area. The method involves three models, namely the nitrate time bomb-a process-based model to simulate the nitrate transport in the unsaturated zone (USZ), GISGroundwater--a GISGroundwater flow model, and N-FM--a model to simulate the nitrate transport in the saturated zone. This study answers the scientific questions of when the nitrate currently in the groundwater was loaded into the unsaturated zones and eventually reached the water table; is the rising groundwater nitrate concentration in the study area caused by historic nitrate load; what caused the uneven distribution of groundwater nitrate concentration in the study area; and whether the historic peak nitrate loading has reached the water table in the area. The groundwater nitrate in the area was mainly from the 1980s to 2000s, whilst the groundwater nitrate in most of the source protection zones leached into the system during 1940s-1970s; the large and spatially variable thickness of the USZ is one of the major reasons for unevenly distributed groundwater nitrate concentrations in the study area; the peak nitrate loading around 1983 has affected most of the study area. For areas around the Bowscar, Beacon Edge, Low Plains, Nord Vue, Dale Springs, Gamblesby, Bankwood Springs, and Cliburn, the peak nitrate loading will arrive at the water table in the next 34 years; statistical analysis shows that 8.7 % of the Penrith Sandstone and 7.3 % of the St Bees Sandstone have not been affected by peak nitrate. This research can improve the scientific understanding of nitrate processes in the groundwater system and support the effective management of groundwater nitrate pollution for the study area. With a limited number of parameters, the method and models developed in this study are readily transferable to other areas.

  9. Reducing Pesticide Drift

    EPA Pesticide Factsheets

    Provides information about pesticide spray drift, including problems associated with drift, managing risks from drift and the voluntary Drift Reduction Technology program that seeks to reduce spray drift through improved spray equipment design.

  10. The Effect of Spray Strips on the Take-off Performance of a Model of a Flying-Boat Hull

    NASA Technical Reports Server (NTRS)

    Truscott, Starr

    1935-01-01

    The effect on the take-off performance of a model of the hull of a typical flying boat, Navy PH-1, of fitting spray strips of four different widths, each at three different angles, was determined by model tests in the NACA Tank. Spray strips of widths up to 3 percent of the beam improve the general performance at speeds near the hump and reduce the spray thrown. A downward angle of 30 degrees to 45 degrees in the neighborhood of the step seems most favorable for the reduction of the spray. The spray strips have a large effect in reducing the trimming moments at speeds near the hump speed, but have little effect on them at high speeds.

  11. Thermal Spraying of Bioactive Polymer Coatings for Orthopaedic Applications

    NASA Astrophysics Data System (ADS)

    Chebbi, A.; Stokes, J.

    2012-06-01

    Flame sprayed biocompatible polymer coatings, made of biodegradable and non-biodegradable polymers, were investigated as single coatings on titanium and as top coatings on plasma sprayed Hydroxyapatite. Biocompatible polymers can act as drug carriers for localized drug release following implantation. The polymer matrix consisted of a biodegradable polymer, polyhydroxybutyrate 98%/ polyhydroxyvalerate 2% (PHBV) and a non-biodegradable polymer, polymethylmethacrylate (PMMA). Screening tests were performed to determine the suitable range of spraying parameters, followed by a Design of Experiments study to determine the effects of spraying parameters on coating characteristics (thickness, roughness, adhesion, wettability), and to optimize the coating properties accordingly. Coatings characterization showed that optimized flame sprayed biocompatible polymers underwent little chemical degradation, did not produce acidic by-products in vitro, and that cells proliferated well on their surface.

  12. Flow rate and trajectory of water spray produced by an aircraft tire

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1986-01-01

    One of the risks associated with wet runway aircraft operation is the ingestion of water spray produced by an aircraft's tires into its engines. This problem can be especially dangerous at or near rotation speed on the takeoff roll. An experimental investigation was conducted in the NASA Langley Research Center Hydrodynamics Research Facility to measure the flow rate and trajectory of water spray produced by an aircraft nose tire operating on a flooded runway. The effects of various parameters on the spray patterns including distance aft of nosewheel, speed, load, and water depth were evaluated. Variations in the spray pattern caused by the airflow about primary structure such as the fuselage and wing are discussed. A discussion of events in and near the tire footprint concerning spray generation is included.

  13. Spray drying of fruit and vegetable juices--a review.

    PubMed

    Verma, Anjali; Singh, Satya Vir

    2015-01-01

    The main cause of spray drying is to increase the shelf life and easy handling of juices. In the present paper, the studies carried out so far on spray drying of various fruits and vegetables are reported. The major fruit juices dried are mango, banana, orange, guava, bayberry, watermelon, pineapple, etc. However, study on vegetable juices is limited. In spray drying, the major optimized parameters are inlet air temperature, relative humidity of air, outlet air temperature, and atomizer speed that are given for a particular study. The juices in spray drying require addition of drying agents that include matlodextrin, liquid glucose, etc. The drying agents are added to increase the glass transition temperature. Different approaches for spray dryer design have also been discussed in the present work.

  14. Experimental study of cryogen spray properties for application in dermatologic laser surgery.

    PubMed

    Aguilar, Guillermo; Majaron, Boris; Karapetian, Emil; Lavernia, Enrique J; Nelson, J Stuart

    2003-07-01

    Cryogenic sprays are used for cooling human skin during laser dermatologic surgery. In this paper, six straight-tube nozzles are characterized by photographs of cryogenic spray shapes, as well as measurements of average droplet diameter, velocity, and temperature. A single-droplet evaporation model to predict average spray droplet diameter and temperature is tested using the experimental data presented here. The results show two distinct spray patterns--sprays for 1.4-mm-diameter nozzles (wide nozzles) show significantly larger average droplet diameters and higher temperatures as a function of distance from the nozzle compared with those for 0.5-0.8-mm-diameter nozzles (narrow nozzles). These results complement and support previously reported studies, indicating that wide nozzles induce more efficient heat extraction than the narrow nozzles.

  15. Thermal Spray Maps: Material Genomics of Processing Technologies

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Sanpo, Noppakun; Sesso, Mitchell L.; Kim, Sun Yung; Berndt, Christopher C.

    2013-10-01

    There is currently no method whereby material properties of thermal spray coatings may be predicted from fundamental processing inputs such as temperature-velocity correlations. The first step in such an important understanding would involve establishing a foundation that consolidates the thermal spray literature so that known relationships could be documented and any trends identified. This paper presents a method to classify and reorder thermal spray data so that relationships and correlations between competing processes and materials can be identified. Extensive data mining of published experimental work was performed to create thermal spray property-performance maps, known as "TS maps" in this work. Six TS maps will be presented. The maps are based on coating characteristics of major importance; i.e., porosity, microhardness, adhesion strength, and the elastic modulus of thermal spray coatings.

  16. Plasma spray processing of TiC-based coatings for sliding wear resistance

    NASA Astrophysics Data System (ADS)

    Mohanty, Mahesh

    Titanium carbide-reinforced metallic coatings, produced by plasma spraying, can be used for sliding wear resistant applications. The sliding wear properties of such coatings are governed to a large extent by the strength, structure and stability of the bond interface between the carbide and the metallic phases. In the present investigation, the microstructure and sliding wear properties of plasma sprayed metal-bonded TiC coatings containing up to 90 v/o carbide have been studied. It was shown that alloying of the metallic phase improved carbide retention in TiC cermets due to better interface bonding, and increased wear resistance and lowered sliding coefficient of friction. TiC-based coatings were produced from both physically blended and synthesized feed powders. It was observed that the precursor TiC-based powder morphology and structure greatly affected the plasma sprayed coating microstructures and the resultant physical and mechanical characteristics. Physical blending of powders induced segregation during spraying, leading to somewhat lower deposit efficiencies and coating uniformity, while synthesized and alloyed titanium carbide/metal composite powders reduced problems of segregation and reactions associated with plasma spraying of physically blended powders where the TiC was in direct contact with the plasma jet. To understand oxidation effects of the environment, Ti and TiC-based coatings were produced under low pressure (VPS), air plasma (APS) and shrouded plasma sprayed conditions. APS Ti and TiC-based powders with reactive matrices suffered severe oxidation decomposition during flight, leading to poor deposition efficiencies and oxidized microstructures. High particle temperatures and cold air plasma spraying. Coating oxidation due to reactions of the particles with the surrounding air during spraying reduced coating hardness and wear resistance. TiC-with Ti or Ti-alloy matrix coatings with the highest hardness, density and wear resistance was achieved by spraying under vacuum plasma spray conditions. VPS coating microstructures of synthesized 40, 60 and 80 v/o TiC in Ti10Ni10Cr5Al and 80 v/o TiC in Fe30Cr alloy matrices exhibited fine and uniform distributions of spheroidal carbides. High volume fraction carbides were also obtained with no segregation effects. It was also shown that coatings produced from mechanically blended powders of 50, 70 and 90 vol. % TiC and commercially pure (C.P.) Ti, using low pressure plasma spray process (VPS), had densities >98% and were well bonded to steel, aluminum alloy or titanium alloy substrates. Reductions in jet oxygen contents by the use of an inert gas shroud enabled Ti and TiC-based coatings to be produced which were cleaner and denser than air plasma sprayed and comparable to vacuum plasma sprayed coatings. Direct oxygen concentration measurements in shrouded plasma jets made using an enthalpy probe and a gas analyzer also showed significant reductions in the entrainment of atmospheric oxygen. VPS and shrouded plasma spraying minimized carbide-matrix interface oxidation and improved coating wear resistance. The sliding wear resistance of synthesized coatings was very high and comparable with standard HVOF sprayed WC/Co and Crsb3Csb2/NiCr coatings. Shrouded plasma spray deposits of Crsb3Csb2/NiCr also performed much better than similar air plasma sprayed coatings, as result of reduced oxidation.

  17. Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review

    NASA Astrophysics Data System (ADS)

    Fauchais, P.; Montavon, G.; Lima, R. S.; Marple, B. R.

    2011-03-01

    From the pioneering works of McPherson in 1973 who identified nanometre-sized features in thermal spray conventional alumina coatings (using sprayed particles in the tens of micrometres size range) to the most recent and most advanced work aimed at manufacturing nanostructured coatings from nanometre-sized feedstock particles, the thermal spray community has been involved with nanometre-sized features and feedstock for more than 30 years. Both the development of feedstock (especially through cryo-milling, and processes able to manufacture coatings structured at the sub-micrometre or nanometre sizes, such as micrometre-sized agglomerates made of nanometre-sized particles for feedstock) and the emergence of thermal spray processes such as suspension and liquid precursor thermal spray techniques have been driven by the need to manufacture coatings with enhanced properties. These techniques result in two different types of coatings: on the one hand, those with a so-called bimodal structure having nanometre-sized zones embedded within micrometre ones, for which the spray process is similar to that of conventional coatings and on the other hand, sub-micrometre or nanostructured coatings achieved by suspension or solution spraying. Compared with suspension spraying, solution precursor spraying uses molecularly mixed precursors as liquids, avoiding a separate processing route for the preparation of powders and enabling the synthesis of a wide range of oxide powders and coatings. Such coatings are intended for use in various applications ranging from improved thermal barrier layers and wear-resistant surfaces to thin solid electrolytes for solid oxide fuel cell systems, among other numerous applications. Meanwhile these processes are more complex to operate since they are more sensitive to parameter variations compared with conventional thermal spray processes. Progress in this area has resulted from the unique combination of modelling activities, the evolution of diagnostic tools and strategies, and experimental advances that have enabled the development of a wide range of coating structures exhibiting in numerous cases unique properties. Several examples are detailed. In this paper the following aspects are presented successively (i) the two spray techniques used for manufacturing such coatings: thermal plasma and HVOF, (ii) sensors developed for in-flight diagnostics of micrometre-sized particles and the interaction of a liquid and hot gas flow, (iii) three spray processes: conventional spraying using micrometre-sized agglomerates of nanometre-sized particles, suspension spraying and solution spraying and (iv) the emerging issues resulting from the specific structures of these materials, particularly the characterization of these coatings and (v) the potential industrial applications. Further advances require the scientific and industrial communities to undertake new research and development activities to address, understand and control the complex mechanisms occurring, in particular, thermal flow—liquid drops or stream interactions when considering suspension and liquid precursor thermal spray techniques. Work is still needed to develop new measurement devices to diagnose in-flight droplets or particles below 2 µm average diameter and to validate that the assumptions made for liquid-hot gas interactions. Efforts are also required to further develop some of the characterization protocols suitable to address the specificities of such nanostructured coatings, as some existing 'conventional' protocols usually implemented on thermal spray coatings are not suitable anymore, in particular to address the void network architectures from which numerous coatings properties are derived.

  18. Light-Dark Changes in Cytosolic Nitrate Pools Depend on Nitrate Reductase Activity in Arabidopsis Leaf Cells1[w

    PubMed Central

    Cookson, Sarah J.; Williams, Lorraine E.; Miller, Anthony J.

    2005-01-01

    Several different cellular processes determine the size of the metabolically available nitrate pool in the cytoplasm. These processes include not only ion fluxes across the plasma membrane and tonoplast but also assimilation by the activity of nitrate reductase (NR). In roots, the maintenance of cytosolic nitrate activity during periods of nitrate starvation and resupply (M. van der Leij, S.J. Smith, A.J. Miller [1998] Planta 205: 64–72; R.-G. Zhen, H.-W. Koyro, R.A. Leigh, A.D. Tomos, A.J. Miller [1991] Planta 185: 356–361) suggests that this pool is regulated. Under nitrate-replete conditions vacuolar nitrate is a membrane-bound store that can release nitrate to the cytoplasm; after depletion of cytosolic nitrate, tonoplast transporters would serve to restore this pool. To study the role of assimilation, specifically the activity of NR in regulating the size of the cytosolic nitrate pool, we have compared wild-type and mutant plants. In leaf mesophyll cells, light-to-dark transitions increase cytosolic nitrate activity (1.5–2.8 mm), and these changes were reversed by dark-to-light transitions. Such changes were not observed in nia1nia2 NR-deficient plants indicating that this change in cytosolic nitrate activity was dependent on the presence of functional NR. Furthermore, in the dark, the steady-state cytosolic nitrate activities were not statistically different between the two types of plant, indicating that NR has little role in determining resting levels of nitrate. Epidermal cells of both wild type and NR mutants had cytosolic nitrate activities that were not significantly different from mesophyll cells in the dark and were unaltered by dark-to-light transitions. We propose that the NR-dependent changes in cytosolic nitrate provide a cellular mechanism for the diurnal changes in vacuolar nitrate storage, and the results are discussed in terms of the possible signaling role of cytosolic nitrate. PMID:15908593

  19. Identifying source and formation altitudes of nitrates in drinking water from Réunion Island, France, using a multi-isotopic approach.

    PubMed

    Rogers, Karyne M; Nicolini, Eric; Gauthier, Virginie

    2012-09-01

    Nitrate concentrations, water isotopes (δ(2)H and δ(18)O(water)) and associated nitrate isotopes (δ(15)N(nitrate) and δ(18)O(nitrate)) from 10 drinking water wells, 5 fresh water springs and the discharge from 3 wastewater treatment stations in Réunion Island, located in the Indian Ocean, were analysed. We used a multi isotopic approach to investigate the extent of nitrate contamination, nitrate formation altitude and source of nitrates in Réunion Island's principal aquifer. Water from these study sites contained between 0.1 and 85.3 mg/L nitrate. δ(15)N(nitrate) values between +6 and +14‰ suggested the main sources of contamination were animal and/or human waste, rather than inorganic (synthetic) fertilisers, infiltrating through the subsurface into the saturated zone, due to rainfall leaching of the unsaturated zone at various altitudes of precipitation. Based on δ(15)N(nitrate) values alone, it was not possible to distinguish between animal and human activities responsible for the contamination of each specific catchment. However, using a multi isotope approach (δ(18)O(water) and δ(15)N(nitrate)), it was possible to relate the average altitude of rainfall infiltration (δ(18)O(water)) associated with the nitrate contamination (δ(18)O(nitrate)). This relationship between land use, rainfall recharge altitude and isotopic composition (δ(15)N(nitrate) and δ(18)O(water)) discriminated between the influences of human waste at lower (below 600 m elevation) or animal derived contamination (at elevations between 600 and 1300 m). By further comparing the theoretical altitude of nitrate formation calculated by the δ(18)O(nitrate), it was possible to determine that only 5 out of 15 fresh water wells and springs followed the conservative nitrate formation mechanism of 2/3δ(18)O(water)+1/3δ(18)O(air), to give nitrate formation altitudes which corresponded to land use activities. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Modeling the influence of nozzle-generated turbulence on diesel sprays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnotti, G M; Matusik, K E; Duke, D J

    The physical mechanisms governing spray breakup in direct injection engines, such as aerodynamic induced instabilities and nozzle-generated cavitation and turbulence, are not well understood due to the experimental and computational limitations in resolving these processes. Recent x-ray and visible extinction measurements have been con-ducted with a targeted interest in the spray formation region in order to characterize the distribution of droplet sizes throughout the spray. Detailed analysis of these measurements shows promise of yielding insight into likely mechanisms governing atomization, which can inform the improvement of spray models for engine computational fluid dynamic (CFD) codes. In order to investigate potentialmore » atomization mechanisms, we employ a joint experimental and computational approach to characterize the structure of the spray formation region using the Engine Combustion Network Spray D injector. X-ray tomography, radiography and ultra-small angle x-ray scattering measurements conducted at the Advanced Photon Source at Argonne National Laboratory quantify the injector geometry, liquid fuel mass and Sauter mean diameter (SMD) distributions under non-vaporizing conditions. Diffused back-illumination imaging measurements, conducted at the Georgia Institute of Technology, characterize the asymmetry of the spray structure. The selected range of injection pressures (50 – 150 MPa) and ambient densities (1.2 – 22.8 kg/m3) allow for the influence of aerodynamic forces on the spray to be studied in a controlled and systematic manner, while isolating the atomization process from the effects of vaporization. In comparison to high ambient density conditions, the spray is observed to be more asymmetric at low ambient density conditions. Although several mechanisms may cause asymmetries in the nozzle exit flow conditions and ultimately the spray distribution, irregularities in the internal nozzle geometry were identified, suggesting an increased sensitivity of the spray structure to internal nozzle surface finish imperfections at such conditions. The presence of these asymmetries may influence the ability to interpret line-of-sight measurements and their derived SMD values and trends from a single viewing angle of the spray. With this consideration in mind, the measured local sensitivities to ambient density suggest that for ambient densities less than 2.4 kg/m3, aerodynamic effects are likely suppressed, allowing the influence of turbulent-induced breakup to be isolated. In concert with the experimental measurements, we utilize three-dimensional, CFD Lagrangian-Eulerian spray simulations in CONVERGE to evaluate the details of the predicted spray structure. In particular, we compare measured and predicted sensitivities of the SMD distribution to changes in injection and ambient conditions from three different atomization models, namely Kelvin Helmholtz (KH), KH Aerodynamics Cavitation Turbulence (KH-ACT), and the newly developed KH-Faeth hybrid model. While none of the existing hybrid spray models were able to replicate the experimentally observed sensitivities, it was found that the scales characterizing the KH-Faeth model show promise of capturing the experimentally observed trends if the effects of secondary droplet breakup are neglected. These results inform recommendations for future experiments and computational studies that can guide the development of an improved spray breakup model.« less

  1. Health of tree swallows (Tachycineta bicolor) nesting in pesticide-sprayed apple orchards in Ontario, Canada. II. Sex and thyroid hormone concentrations and testes development.

    PubMed

    Bishop, C A; Van Der Kraak, G J; Ng, P; Smits, J E; Hontela, A

    1998-12-25

    To investigate the effects of pesticides on wild birds, sex (17beta-estradiol; testosterone) and thyroid (triiodothyronine (T3) hormone concentrations, body mass, and testes mass were measured and the development of testes was evaluated in wild tree swallows (Tachycineta bicolor) nesting in four sprayed apple orchards and three nonsprayed sites in southern Ontario, Canada, in 1995-1996. In orchards, birds were exposed to asmany as 11 individual spray events and five sprays of mixtures of chemicals. Residues of organochlorine pesticides, PCBs, lead, and arsenic concentrations were low and not variable among sites except p,p'-DDE concentrations, which ranged from 0.36 to 2.23 microg/g wet weight in eggs. These persistent compounds were not correlated with any endocrine response measured in tree swallows. In 16-d-old male tree swallow chicks, body mass and concentrations of 17beta-estradiol (estradiol), testosterone, and T3 in plasma showed no significant differences between sprayed and nonsprayed groups and among sites within those groups. However, T3 concentrations were slightly elevated in the sprayed group compared to the nonsprayed group, and there was a significant and positive correlation between T3 and the number of mixtures of sprays applied during egg incubation through chick rearing. In 16-d-old female chicks, there were no significant differences among spray treatments or sites and no correlations with spray exposure for testosterone, estradiol, or T3 in plasma. Body mass was correlated positively with T3 and negatively with estradiol but showed no differences among spray exposure groups or sites. Histology of testes of 16-d-old male chicks indicated there were no significant differences among sprayed and nonsprayed birds in testes mass, area, or diameter, or the presence of Leydig cells in the interstitium, the distribution of the Sertoli cells, or the occurrence of heterophils in the testicular interstitium. For the percentage of spermatogonia present on the basement membrane, there were significant differences among sites, but these differences were not specifically associated with spray exposure. However, there was a marginally significant trend between increasing occurrence of a disrupted Sertoli cell population on the seminiferous tubular basement membranes as the number of mixtures of pesticides sprayed during chick rearing increased. In adult male and female parent tree swallows, there were no differences in hormone concentrations between birds from sprayed and nonsprayed sites. Nor were there any significant correlations between the concentration of any hormone and collection date, body mass, or any type of spray exposure for adults. The correlations between increasing pesticide exposure and abnormal thyroid hormone and testes development in male chicks indicate that further reductions of pesticide use in orchards may benefit the health of birds that nest there. However, it is unclear which of these pesticides or spray mixtures are responsible for these effects, and this needs to be examined in future studies.

  2. Spray nozzle designs for agricultural aviation applications. [relation of drop size to spray characteristics and nozzle efficiency

    NASA Technical Reports Server (NTRS)

    Lee, K. W.; Putnam, A. A.; Gieseke, J. A.; Golovin, M. N.; Hale, J. A.

    1979-01-01

    Techniques of generating monodisperse sprays and information concerning chemical liquids used in agricultural aviation are surveyed. The periodic dispersion of liquid jet, the spinning disk method, and ultrasonic atomization are the techniques discussed. Conceptually designed spray nozzles for generating monodisperse sprays are assessed. These are based on the classification of the drops using centrifugal force, on using two opposing liquid laden air jets, and on operating a spinning disk at an overloaded flow. Performance requirements for the designs are described and estimates of the operational characteristics are presented.

  3. [A microbiological investigation of the effectiveness of Micro Megas E-spray].

    PubMed

    Kardel, K; Hegna, I K; Kardel, M

    1976-06-01

    The disinfecting effect of Micro Megas E-spray was tested using a microbiological technique which also included a practical test. Contra-angels and straight handpieces which were sprayed after being used for treatment on patients, and then dried and incubated in a liquid medium, showed a marked growth of microorganisms. The spray had a weak and barely significant growth inhibiting effect on contaminated, simulated instrument surfaces. using Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as test bacteria. It is concluded that the spray is not suitable for distinfection of contra-angels and straight handpieces.

  4. Process for forming exoergic structures with the use of a plasma

    DOEpatents

    Kelly, Michael D.

    1989-02-21

    A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten, without chemically reacting in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.

  5. Imaging of high-pressure fuel sprays in the near-nozzle region with supercontinuum illumination

    NASA Astrophysics Data System (ADS)

    Zheng, Yipeng; Si, Jinhai; Tan, Wenjiang; Wang, Mingxin; Yang, Bo; Hou, Xun

    2018-04-01

    We employ a supercontinuum (SC) illumination to image the high-pressure fuel sprays in the near-nozzle region. The effect of speckles in the images is significantly mitigated using the SC illumination to improve the identifiability of the microstructures in the spray. The microstructures in the near-nozzle region, i.e., lobes, holes, ligaments, and bridges, are clearly imaged for different fuel pressures and nozzle orifice diameters. The shadowgraphs captured in the experiments also show the spray cone angle of spray is strongly dependent on the injection pressures and nozzle orifice diameters.

  6. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  7. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  8. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  9. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  10. Water-soluble ions measured in fine particulate matter next to cement works

    NASA Astrophysics Data System (ADS)

    Galindo, N.; Yubero, E.; Nicolás, J. F.; Crespo, J.; Pastor, C.; Carratalá, A.; Santacatalina, M.

    2011-04-01

    PM2.5 samples were collected for one year in a suburban area close to an industrial complex formed by two cement factories and some quarries in southeastern Spain. Samples were analyzed by ion chromatography to determine the concentrations of major inorganic ions: Cl -, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+. The average PM2.5 concentration (17.6 μg m -3) was within the interval reported for other Mediterranean suburban environments. Concentration peaks were registered during both winter and summer, concurrently with maxima levels of nitrate and sulfate, due to stagnation conditions and African dust episodes, respectively. Sulfate was found to be a main contributor to PM2.5 aerosol mass (4.2 μg m -3, 24%), followed by nitrate and ammonium (1.5 μg m -3, 9% each one). Correlation analyses demonstrated that fine sulfate was present as (NH 4) 2SO 4, CaSO 4 and Na 2SO 4 since ammonium concentrations were not high enough to neutralize both anions. The mean concentration of calcium (1.0 μg m -3), an element commonly found in the coarse fraction, was higher than those found in other locations of the Mediterranean basin. Additionally, the lowest levels were registered during summer, in contrast with previous findings. This was attributed to resuspension and transport of mineral dust from the neighboring quarries and cement plants during fall and winter, which was supported by the results of the CPF analysis. Atmospheric levels of potassium and chloride (0.28 and 0.51 μg m -3 annual average, respectively) also seemed to be affected by cement works, as suggested by correlation and CPF analyses. In the case of Cl -, a marked seasonality was observed, with mean winter concentrations considerably higher than summer ones, indicating a clear prevalence of anthropogenic sources over sea spray emissions.

  11. Herbicide and nitrate distribution in central Iowa rainfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatfield, J.L.; Prueger, J.H.; Pfeiffer, R.L.

    Herbicides are detected in rainfall; however, these are a small fraction of the total applied. This study was designed to evaluate monthly and annual variation in atrazine (6-chloro-N-ethyl-N{prime}-(1-methylethyl)-1,3,5-triazine-2,4-diamine), alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide), metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide), and NO{sub 3}-N concentrations in rainfall over Walnut Creek watershed south of Ames, IA. The study began in 1991 and continued through 1994. Within the watershed, two wet/dry precipitation samplers were positioned 4 km apart. Detections varied during the year with >90% of the herbicide detections occurring in April through early July. Concentrations varied among events from nondetectable amounts to concentrations of 154 {mu}g L{sup {minus}1}, which occurredmore » when atrazine was applied during an extremely humid day immediately followed by rainfall of <10 mm that washed spray drift from the atmosphere. This was a local scale phenomenon, because the other collector had a more typical concentration of 1.7 {mu}g L{sup {minus}1} with an 8-mm rainfall. VAriation between the two collectors suggests that local scale meteorological processes affect herbicide movement. Yearly atrazine deposition totals were >100 {mu}g m{sup {minus}2} representing <0.1% of the amount applied. Nitrate-N concentrations in precipitation were uniformly distributed throughout the year and without annual variation in the concentrations. Deposition rates of NO{sub 3}-N were about 1.2 g m{sup {minus}2}. Annual loading onto the watershed was about 25% of the amount applied from all forms of N fertilizers. Movement and rates of deposition provide an understanding of the processes and magnitude of the impact of agriculture on the environment. 7 refs., 5 figs., 3 tabs.« less

  12. Biomonitoring of genotoxic risk in agricultural workers from five colombian regions: association to occupational exposure to glyphosate.

    PubMed

    Bolognesi, C; Carrasquilla, G; Volpi, S; Solomon, K R; Marshall, E J P

    2009-01-01

    In order to assess possible human effects associated with glyphosate formulations used in the Colombian aerial spray program for control of illicit crops, a cytogenetic biomonitoring study was carried out in subjects from five Colombian regions, characterized by different exposure to glyphosate and other pesticides. Women of reproductive age (137 persons 15-49 yr old) and their spouses (137 persons) were interviewed to obtain data on current health status, history, lifestyle, including past and current occupational exposure to pesticides, and factors including those known to be associated with increased frequency of micronuclei (MN). In regions where glyphosate was being sprayed, blood samples were taken prior to spraying (indicative of baseline exposure), 5 d after spraying, and 4 mo after spraying. Lymphocytes were cultured and a cytokinesis-block micronucleus cytome assay was applied to evaluate chromosomal damage and cytotoxicity. Compared with Santa Marta, where organic coffee is grown without pesticides, the baseline frequency of binucleated cells with micronuclei (BNMN) was significantly greater in subjects from the other four regions. The highest frequency of BNMN was in Boyaca, where no aerial eradication spraying of glyphosate was conducted, and in Valle del Cauca, where glyphosate was used for maturation of sugar cane. Region, gender, and older age (> or =35 yr) were the only variables associated with the frequency of BNMN measured before spraying. A significant increase in frequency of BNMN between first and second sampling was observed in Narino, Putumayo, and Valle immediately (<5 d) after spraying. In the post-spray sample, those who reported direct contact with the eradication spray showed a higher quantitative frequency of BNMN compared to those without glyphosate exposure. The increase in frequency of BNMN observed immediately after the glyphosate spraying was not consistent with the rates of application used in the regions and there was no association between self-reported direct contact with eradication sprays and frequency of BNMN. Four months after spraying, a statistically significant decrease in the mean frequency of BNMN compared with the second sampling was observed in Narino, but not in Putumayo and Valle del Cauca. Overall, data suggest that genotoxic damage associated with glyphosate spraying for control of illicit crops as evidenced by MN test is small and appears to be transient. Evidence indicates that the genotoxic risk potentially associated with exposure to glyphosate in the areas where the herbicide is applied for coca and poppy eradication is low.

  13. California GAMA Special Study: An isotopic and dissolved gas investigation of nitrate source and transport to a public supply well in California's Central Valley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, M J; Moran, J E; Esser, B K

    2010-04-14

    This study investigates nitrate contamination of a deep municipal drinking water production well in Ripon, CA to demonstrate the utility of natural groundwater tracers in constraining the sources and transport of nitrate to deep aquifers in the Central Valley. The goal of the study was to investigate the origin (source) of elevated nitrate and the potential for the deep aquifer to attenuate anthropogenic nitrate. The site is ideal for such an investigation. The production well is screened from 165-325 feet below ground surface and a number of nearby shallow and deep monitoring wells were available for sampling. Furthermore, potential sourcesmore » of nitrate contamination to the well had been identified, including a fertilizer supply plant located approximately 1000 feet to the east and local almond groves. A variety of natural isotopic and dissolved gas tracers including {sup 3}H-{sup 3}He groundwater age and the isotopic composition of nitrate are applied to identify nitrate sources and to characterize nitrate transport. An advanced method for sampling production wells is employed to help identify contaminant contributions from specific screen intervals. Nitrate transport: Groundwater nitrate at this field site is not being actively denitrified. Groundwater parameters indicate oxic conditions, the dissolved gas data shows no evidence for excess nitrogen as the result of denitrification, and nitrate-N and -O isotope compositions do not display patterns typical of denitrification. Contaminant nitrate source: The ambient nitrate concentration in shallow groundwater at the Ripon site ({approx}12 mg/L as nitrate) is typical of shallow groundwaters affected by recharge from agricultural and urban areas. Nitrate concentrations in Ripon City Well 12 (50-58 mg/L as nitrate) are significantly higher than these ambient concentrations, indicating an additional source of anthropogenic nitrate is affecting groundwater in the capture zone of this municipal drinking water well. This study provides two new pieces of evidence that the Ripon Farm Services Plant is the source of elevated nitrate in Ripon City Well 12. (1) Chemical mass balance calculations using nitrate concentration, nitrate isotopic composition, and initial tritium activity all indicate that that the source water for elevated nitrate to Ripon City Well 12 is a very small component of the water produced by City Well 12 and thus must have extremely high nitrate concentration. The high source water nitrate concentration ({approx}1500 mg/L as nitrate) required by these mass balance calculations precludes common sources of nitrate such as irrigated agriculture, dairy wastewater, and septic discharge. Shallow groundwater under the Ripon Farm Services RFS plant does contain extremely high concentrations of nitrate (>1700 mg/L as nitrate). (2) Nitrogen and oxygen isotope compositions of nitrate indicate that the additional anthropogenic nitrate source to Ripon City Well 12 is significantly enriched in {delta}{sup 18}O-NO{sub 3}, an isotopic signature consistent with synthetic nitrate fertilizer, and not with human or animal wastewater discharge (i.e. dairy operations, septic system discharge, or municipal wastewater discharge), or with organic fertilizer. Monitoring wells on and near the RFS plant also have high {delta}{sup 18}O-NO{sub 3}, and the plant has handled and stored synthetic nitrate fertilizer that will have this isotopic signature. The results described here highlight the complexity of attributing nitrate found in long screened, high capacity wells to specific sources. In this case, the presence of a very high concentration source near the well site combined with sampling using multiple isotopic tracer techniques and specialized depth-specific techniques allowed fingerprinting of the source in the mixed-age samples drawn from the production well.« less

  14. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.

    PubMed

    Gikanga, Benson; Turok, Robert; Hui, Ada; Bowen, Mayumi; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Spray-dried monoclonal antibody (mAb) powders may offer applications more versatile than the freeze-dried cake, including preparing high-concentration formulations for subcutaneous administration. Published studies on this topic, however, are generally scarce. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple mAbs in consideration of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. Under similar conditions, both dryers produced powders of similar properties-for example, water content, particle size and morphology, and mAb stability profile-despite a 4-fold faster output by the pilot-scale unit. All formulations containing arginine salt or a combination of arginine salt and trehalose were able to be spray-dried with high powder collection efficiency (>95%), but yield was adversely affected in formulations with high trehalose content due to powder sticking to the drying chamber. Spray-drying production output was dictated by the size of the dryer operated at an optimal liquid feed rate. Spray-dried powders could be reconstituted to high-viscosity liquids, >300 cP, substantially beyond what an ultrafiltration process can achieve. The molar ratio of trehalose to mAb needed to be reduced to 50:1 in consideration of isotonicity of the formulation with mAb concentration at 250 mg/mL. Even with this low level of sugar protection, long-term stability of spray-dried formulations remained superior to their liquid counterparts based on size variant and potency data. This study offers a commercially viable spray-drying process for biological bulk storage and an option for high-concentration mAb manufacturing. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple monoclonal antibodies (mAbs) from the perspective of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. The data demonstrated that there is no process limitation in solution viscosity when high-concentration mAb formulations are prepared from spray-dried powder reconstitution compared with concentration via the conventional ultrafiltration process. This study offers a commercially viable spray-drying process for biological bulk storage and a high-concentration mAb manufacturing option for subcutaneous administration. The outcomes of this study will benefit scientists and engineers who develop high-concentration mAb products by providing a viable manufacturing alternative. © PDA, Inc. 2015.

  15. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-03-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared, the former showed higher antifouling properties generally. Aluminium-zinc alloy spray coated films had higher antifouling property. And the anti-property decreased in this order: Al-Zn alloy spray coating > Zinc spray coating > Aluminium spray coating > Stacked chromium/nickel spray coating. Aluminium and zinc spray coating has been evaluated high conventionally for anti-biofouling in marine environment. However, the Cr/Ni spray coating showed pretty high anti-fouling property.

  16. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia.

    PubMed

    Hewitt, Andrew J; Solomon, Keith R; Marshall, E J P

    2009-01-01

    A wind tunnel atomization study was conducted to measure the emission droplet size spectra for water and Glyphos (a glyphosate formulation sold in Colombia) + Cosmo-flux sprays for aerial application to control coca and poppy crops in Colombia. The droplet size spectra were measured in a wind tunnel for an Accu-Flo nozzle (with 16 size 0.085 [2.16 mm] orifices), under appropriate simulated aircraft speeds (up to 333 km/h), using a laser diffraction instrument covering a dynamic size range for droplets of 0.5 to 3,500 microm. The spray drift potential of the glyphosate was modeled using the AGDISP spray application and drift model, using input parameters representative of those occurring in Colombia for typical aerial application operations. The droplet size spectra for tank mixes containing glyphosate and Cosmo-Flux were considerably finer than water and became finer with higher aircraft speeds. The tank mix with 44% glyphosate had a D(v0.5) of 128 microm, while the value at the 4.9% glyphosate rate was 140 microm. These are classified as very fine to fine sprays. Despite being relatively fine, modeling showed that the droplets would not evaporate as rapidly as most similarly sized agricultural sprays because the nonvolatile proportion of the tank mix (active and inert adjuvant ingredients) was large. Thus, longer range drift is small and most drift that does occur will deposit relatively close to the application area. Drift will only occur downwind and, with winds of velocity less than the modeled maximum of 9 km/h, the drift distance would be substantially reduced. Spray drift potential might be additionally reduced through various practices such as the selection of nozzles, tank mix adjuvants, aircraft speeds, and spray pressures that would produce coarser sprays. Species sensitivity distributions to glyphosate were constructed for plants and amphibians. Based on modeled drift and 5th centile concentrations, appropriate no-spray buffer zones (distance from the end of the spray boom as recorded electronically +/-5%) for protection of sensitive plants were 50-120 m for coca spray scenarios and considerably lower for poppy spray scenarios. The equivalent buffer zone for amphibia was 5 m. The low toxicity of glyphosate to humans suggests that these aerial applications are not a concern for human health.

  17. Spray combustion model improvement study, 1

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-01-01

    This study involves the development of numerical and physical modeling in spray combustion. These modeling efforts are mainly motivated to improve the physical submodels of turbulence, combustion, atomization, dense spray effects, and group vaporization. The present mathematical formulation can be easily implemented in any time-marching multiple pressure correction methodologies such as MAST code. A sequence of validation cases includes the nonevaporating, evaporating and_burnin dense_sprays.

  18. Technology Insertion for Recapitalization of Legacy Systems

    DTIC Science & Technology

    2015-09-30

    peened, and 4) an Abcite coating will be flame sprayed on the component. The ALCM program (B) has 1) evaluated data provided, 2) gathered questions...Report Technology Insertion for the Recapitalization of Legacy Systems Laser sintering, thermal spray and cold spray are additive manufacturing methods... coatings Need an experienced operator Requires a special spray booth to limit overspray and protect operator Requires primer or surface treatment

  19. Spray Deposition: A Fundamental Study of Droplet Impingement, Spreading and Consolidation

    DTIC Science & Technology

    1989-12-01

    low alloy (HSLA) steel. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened HSLA steel...manufacturing process. Specifically, HSLA-100, a copper precipitation strengthened high-strength, low - alloy steel was spray cast via the Osprey’ m process...by spray casting. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened steel, were spray cast under differing conditions

  20. Optimization of the bake-on siliconization of cartridges. Part I: Optimization of the spray-on parameters.

    PubMed

    Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2016-07-01

    Biopharmaceutical products are increasingly commercialized as drug/device combinations to enable self-administration. Siliconization of the inner syringe/cartridge glass barrel for adequate functionality is either performed at the supplier or drug product manufacturing site. Yet, siliconization processes are often insufficiently investigated. In this study, an optimized bake-on siliconization process for cartridges using a pilot-scale siliconization unit was developed. The following process parameters were investigated: spray quantity, nozzle position, spray pressure, time for pump dosing and the silicone emulsion concentration. A spray quantity of 4mg emulsion showed best, immediate atomization into a fine spray. 16 and 29mg of emulsion, hence 4-7-times the spray volume, first generated an emulsion jet before atomization was achieved. Poor atomization of higher quantities correlated with an increased spray loss and inhomogeneous silicone distribution, e.g., due to runlets forming build-ups at the cartridge lower edge and depositing on the star wheel. A prolonged time for pump dosing of 175ms led to a more intensive, long-lasting spray compared to 60ms as anticipated from a higher air-to-liquid ratio. A higher spray pressure of 2.5bar did not improve atomization but led to an increased spray loss. At a 20mm nozzle-to-flange distance the spray cone exactly reached the cartridge flange, which was optimal for thicker silicone layers at the flange to ease piston break-loose. Initially, 10μg silicone was sufficient for adequate extrusion in filled cartridges. However, both maximum break-loose and gliding forces in filled cartridges gradually increased from 5-8N to 21-22N upon 80weeks storage at room temperature. The increase for a 30μg silicone level from 3-6N to 10-12N was moderate. Overall, the study provides a comprehensive insight into critical process parameters during the initial spray-on process and the impact of these parameters on the characteristics of the silicone layer, also in context of long-term product storage. The presented experimental toolbox may be utilized for development or evaluation of siliconization processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Pneumotoxicity and pulmonary clearance of different welding fumes after intratracheal instillation in the rat.

    PubMed

    Antonini, J M; Krishna Murthy, G G; Rogers, R A; Albert, R; Ulrich, G D; Brain, J D

    1996-09-01

    The objectives of this study were to compare different welding fumes in regard to their potential to elicit lung inflammation or injury and to examine possible mechanisms whereby welding fumes may damage the lungs. Fume was collected on filters from conventional spray [mild steel (MS-SPRAY) or stainless steel (SS-SPRAY) electrode wire] or pulsed current [mild steel (MS-PULSE) electrode wire] gas-shielded metal arc welding. Rats were given one of the three welding fume samples by intratracheal instillation (1.0 mg/100 g body wt). Other rats received a relatively inert dust (iron oxide), a pneumotoxic dust (crystalline silica), or a vehicle control (saline). Bronchoalveolar lavage (BAL) was performed 1, 7, 14, and 35 days postinstillation, and indicators of pulmonary damage [cellular differential, albumin, as well as, tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), lactate dehydrogenase, and beta-n-acetyl glucosaminidase release] were assessed. One day postinstillation, some evidence of lung inflammation (more neutrophils) was observed for all particle groups, while increased BAL TNF-alpha and IL-1 beta were observed only in the SS-SPRAY and silica groups. By 14 days, lungs appeared normal among the MS-SPRAY, MS-PULSE, and iron oxide groups. At 14 and 35 days postinstillation, elevated pulmonary responses persisted for the animals exposed to silica and the SS-SPRAY welding fume. By 35 days, however, the SS-SPRAY group approached control levels, while the injury induced by silica increased. Using magnetometric estimates of welding fumes, we observed that MS-SPRAY fume was cleared from the lungs at a faster rate than the SS-SPRAY particles. We have demonstrated that the SS-SPRAY fume has more pneumotoxicity than MS fumes. This difference may reflect a greater retention of the SS-SPRAY particles in the lungs and different elemental composition of the fume. The SS-SPRAY fume also had enhanced release of TNF-alpha and IL-1 beta from lung cells soon after fume instillation. In contrast, we saw no influence of the power supply on particle size, composition, or toxicity.

  2. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics.

    PubMed

    Johnson, Jeremy R; Lossignol, Dominique; Burnell-Nugent, Mary; Fallon, Marie T

    2013-08-01

    Chronic pain in patients with advanced cancer poses a serious clinical challenge. The Δ9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray (U.S. Adopted Name, nabiximols; Sativex(®)) is a novel cannabinoid formulation currently undergoing investigation as an adjuvant therapy for this treatment group. This follow-up study investigated the long-term safety and tolerability of THC/CBD spray and THC spray in relieving pain in patients with advanced cancer. In total, 43 patients with cancer-related pain experiencing inadequate analgesia despite chronic opioid dosing, who had participated in a previous three-arm (THC/CBD spray, THC spray, or placebo), two-week parent randomized controlled trial, entered this open-label, multicenter, follow-up study. Patients self-titrated THC/CBD spray (n=39) or THC spray (n=4) to symptom relief or maximum dose and were regularly reviewed for safety, tolerability, and evidence of clinical benefit. The efficacy end point of change from baseline in mean Brief Pain Inventory-Short Form scores for "pain severity" and "worst pain" domains showed a decrease (i.e., improvement) at each visit in the THC/CBD spray patients. Similarly, the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30 scores showed a decrease (i.e., improvement) from baseline in the domains of insomnia, pain, and fatigue. No new safety concerns associated with the extended use of THC/CBD spray arose from this study. This study showed that the long-term use of THC/CBD spray was generally well tolerated, with no evidence of a loss of effect for the relief of cancer-related pain with long-term use. Furthermore, patients who kept using the study medication did not seek to increase their dose of this or other pain-relieving medication over time, suggesting that the adjuvant use of cannabinoids in cancer-related pain could provide useful benefit. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  3. Effect of Post-spray Shot Peening Treatment on the Corrosion Behavior of NiCr-Mo Coating by Plasma Spraying of the Shell-Core-Structured Powders

    NASA Astrophysics Data System (ADS)

    Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2018-01-01

    Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.

  4. Food sources of nitrates and nitrites: the physiologic context for potential health benefits.

    PubMed

    Hord, Norman G; Tang, Yaoping; Bryan, Nathan S

    2009-07-01

    The presence of nitrates and nitrites in food is associated with an increased risk of gastrointestinal cancer and, in infants, methemoglobinemia. Despite the physiologic roles for nitrate and nitrite in vascular and immune function, consideration of food sources of nitrates and nitrites as healthful dietary components has received little attention. Approximately 80% of dietary nitrates are derived from vegetable consumption; sources of nitrites include vegetables, fruit, and processed meats. Nitrites are produced endogenously through the oxidation of nitric oxide and through a reduction of nitrate by commensal bacteria in the mouth and gastrointestinal tract. As such, the dietary provision of nitrates and nitrites from vegetables and fruit may contribute to the blood pressure-lowering effects of the Dietary Approaches to Stop Hypertension (DASH) diet. We quantified nitrate and nitrite concentrations by HPLC in a convenience sample of foods. Incorporating these values into 2 hypothetical dietary patterns that emphasize high-nitrate or low-nitrate vegetable and fruit choices based on the DASH diet, we found that nitrate concentrations in these 2 patterns vary from 174 to 1222 mg. The hypothetical high-nitrate DASH diet pattern exceeds the World Health Organization's Acceptable Daily Intake for nitrate by 550% for a 60-kg adult. These data call into question the rationale for recommendations to limit nitrate and nitrite consumption from plant foods; a comprehensive reevaluation of the health effects of food sources of nitrates and nitrites is appropriate. The strength of the evidence linking the consumption of nitrate- and nitrite-containing plant foods to beneficial health effects supports the consideration of these compounds as nutrients.

  5. Studies on corrosion resistance and bio-activity of plasma spray deposited hydroxylapatite (HA) based TiO2 and ZrO2 dispersed composite coatings on titanium alloy (Ti-6Al-4V) and the same after post spray heat treatment

    NASA Astrophysics Data System (ADS)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-10-01

    In the present study, the effect of plasma spray deposited hydroxylapatite (HA) based TiO2 dispersed (HA + 50 wt.% TiO2), coating and post spray heat treatment to be referred as HA-TiO2 (heat treated at 650 °C for 2 h) and ZrO2 dispersed (HA + 10 wt.% ZrO2), to be referred as HA-ZrO2 coating (heat treated at 750 °C for 2 h) on corrosion resistance and bioactivity of Ti-6Al-4V substrate has been undertaken. There is partial decomposition of HA to tri-calcium-phosphate (Ca3(PO4)2) and formation of CaTiO3 phase in HA-TiO2 coating and CaZrO3 phase in the HA-ZrO2 coating. Corrosion study in Hank's solution shows that there is shifting of corrosion potential (Ecorr) towards active potential (-1.1 V(SCE) for as-sprayed and post spray heat treated HA-TiO2 coating, -1.1 V(SCE) for as-sprayed HA-ZrO2 coating and -1 V(SCE) for HA-ZO2 coating after post spray heat treatment), and deterioration in pitting corrosion (Epit) resistance in as-sprayed coatings and the same after heat treatment (-0.7 V(SCE) for both HA-TiO2 and HA-ZrO2 coating as compared to as received substrate (-0.3 V(SCE)). The corrosion rate was increased for both the coatings with a maximum increase in HA-ZrO2 coating. Bioactivity test shows a higher degree of apatite deposition in as-sprayed coating and the same after heat treatment as compared to as received Ti-6Al-4V though the as-sprayed one showed a superior behavior.

  6. A phase I study to assess the single and multiple dose pharmacokinetics of THC/CBD oromucosal spray.

    PubMed

    Stott, C G; White, L; Wright, S; Wilbraham, D; Guy, G W

    2013-05-01

    A Phase I study to assess the single and multipledose pharmacokinetics (PKs) and safety and tolerability of oromucosally administered Δ(9)-tetrahydrocannabinol (THC)/cannabidiol (CBD) spray, an endocannabinoid system modulator, in healthy male subjects. Subjects received either single doses of THC/CBD spray as multiple sprays [2 (5.4 mg THC and 5.0 mg CBD), 4 (10.8 mg THC and 10.0 mg CBD) or 8 (21.6 mg THC and 20.0 mg CBD) daily sprays] or multiple doses of THC/CBD spray (2, 4 or 8 sprays once daily) for nine consecutive days, following fasting for a minimum of 10 h overnight prior to each dosing. Plasma samples were analyzed by gas chromatography-mass spectrometry for CBD, THC, and its primary metabolite 11-hydroxy-THC, and various PK parameters were investigated. Δ(9)-Tetrahydrocannabinol and CBD were rapidly absorbed following single-dose administration. With increasing single and multiple doses of THC/CBD spray, the mean peak plasma concentration (Cmax) increased for all analytes. There was evidence of dose-proportionality in the single but not the multiple dosing data sets. The bioavailability of THC was greater than CBD at single and multiple doses, and there was no evidence of accumulation for any analyte with multiple dosing. Inter-subject variability ranged from moderate to high for all PK parameters in this study. The time to peak plasma concentration (Tmax) was longest for all analytes in the eight spray group, but was similar in the two and four spray groups. THC/CBD spray was well-tolerated in this study and no serious adverse events were reported. The mean Cmax values (<12 ng/mL) recorded in this study were well below those reported in patients who smoked/inhaled cannabis, which is reassuring since elevated Cmax values are linked to significant psychoactivity. There was also no evidence of accumulation on repeated dosing.

  7. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  8. Micrometeorological measurements during the Blackmo 88 spray trials

    Treesearch

    D. E. Anderson; D. R. Miller; Y. S. Wang; W. E. Yendol; M. L. McManus

    1991-01-01

    Instrumentation was arrayed on a 120 foot tower to detail the local atmospheric conditions during the Blackmo 88 spray experiment. Measurements were continuous for 30 minute periods encompassing each spray pass.

  9. 75 FR 49487 - Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Study: Nanoscale Silver in Disinfectant Spray AGENCY: Environmental Protection Agency (EPA). ACTION... document ``Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray'' (EPA/600/R-10/081). The... 49488

  10. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... Solids), Class 5 (Oxidizers and Organic Peroxides), and Division 1.5 Materials § 176.415 Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as...

  11. Effect of Pressurized Metered Dose Inhaler Spray Characteristics and Particle Size Distribution on Drug Delivery Efficiency.

    PubMed

    Yousefi, Morteza; Inthavong, Kiao; Tu, Jiyuan

    2017-10-01

    A key issue in pulmonary drug delivery is improvement of the delivery device for effective and targeted treatment. Pressurized metered dose inhalers (pMDIs) are the most popular aerosol therapy device for treating lung diseases. This article studies the effect of spray characteristics: injection velocity, spray cone angle, particle size distribution (PSD), and its mass median aerodynamic diameter (MMAD) on drug delivery. An idealized oral airway geometry, extending from mouth to the main bronchus, was connected to a pMDI device. Inhalation flow rates of 15, 30, and 60 L/min were used and drug particle tracking was a one-way coupled Lagrangian model. The results showed that most particles deposited in the pharynx, where the airway has a reduced cross-sectional area. Particle deposition generally decreased with initial spray velocity and with increased spray cone angle for 30 and 60 L/min flow rates. However, for 15 L/min flow rate, the deposition increased slightly with an increase in the spray velocity and cone angle. The effect of spray cone angle was more significant than the initial spray velocity on particle deposition. When the MMAD of a PSD was reduced, the deposition efficiency also reduces, suggesting greater rates of particle entry into the lung. The deposition rate showed negligible change when the MMAD was more than 8 μm. Spray injection angle and velocity change the drug delivery efficacy; however, the efficiency shows more sensitivity to the injection angle. The 30 L/min airflow rate delivers spray particles to the lung more efficiently than 15 and 60 L/min airflow rate, and reducing MMAD can help increase drug delivery to the lung.

  12. Spray dried plasma as an alternative to antibiotics in piglet feeds, mode of action and biosafety.

    PubMed

    Pérez-Bosque, Anna; Polo, Javier; Torrallardona, David

    2016-01-01

    The use of growth promoting and therapeutic antibiotics in piglet feed has been a concerning subject over the last few decades because of the risk of generating antimicrobial resistance that could be transferred to humans. As a result, many products have been proposed as potential alternatives to the use of antibiotics, and among these, spray dried plasma is considered one of the most promising. However, there have been concerns about its biosafety, particularly during periods of emergence or re-emergence of swine diseases in different regions of the world, such as the recent porcine epidemic diarrhea virus outbreak in North America. The objectives of this paper are to review recent publications about the use of spray dried plasma as an alternative to antibiotics in weaned pig diets, the possible mechanisms of action of spray dried plasma, and the existing evidence related to the biosafety of spray dried animal plasma. Particular attention is given to studies in which spray dried plasma has been directly compared to antibiotics or other alternative antimicrobial products. Several studies on the possible modes of action for spray dried plasma, such as preservation of gut barrier function or modulation of the immune response, are also reviewed. Finally, the paper focuses on the review of the existing studies on the risks of disease transmission with the use of spray dried plasma from porcine origin. Overall, spray dried plasma is a promising alternative to in-feed antimicrobials for piglets, particularly during the early stages of the post-weaning phase. Additionally, there is enough evidence to support that commercial spray dried porcine plasma is a safe product for pigs.

  13. Skin sterility after application of ethyl chloride spray.

    PubMed

    Polishchuk, Daniil; Gehrmann, Robin; Tan, Virak

    2012-01-18

    Ethyl chloride topical anesthetic spray is labeled as nonsterile, yet it is widely used during injection procedures performed in an outpatient setting. The purpose of this study was to investigate the sterility of ethyl chloride topical anesthetic spray applied before an injection. Our a priori hypothesis was that application of the spray after the skin has been prepared would not alter the sterility of the injection site. We conducted a prospective, blinded, controlled study to assess the effect of ethyl chloride spray on skin sterility. Fifteen healthy adult subjects (age, twenty-three to sixty-one years) were prepared for mock injections into both shoulders and both knees, although no injection was actually performed. Three culture samples were obtained from each site on the skin: one before skin preparation with isopropyl alcohol, one after skin preparation and before application of ethyl chloride, and one after ethyl chloride had been sprayed on the site. In addition, the sterility of the ethyl chloride was tested directly by inoculating cultures with spray from the bottles. Growth occurred in 70% of the samples obtained before skin preparation, 3% of the samples obtained after skin preparation but before application of ethyl chloride, and 5% of the samples obtained after the injection site had been sprayed with ethyl chloride. The percentage of positive cultures did not increase significantly after application of ethyl chloride (p = 0.65). Spraying of ethyl chloride directly on agar plates resulted in growth on 13% of these plates compared with 11% of the control plates; this difference was also not significant (p = 0.80). Although ethyl chloride spray is not sterile, its application did not alter the sterility of the injection sites in the shoulder and knee.

  14. Physicochemical characterization and water vapor sorption of organic solution advanced spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery.

    PubMed

    Li, Xiaojian; Mansour, Heidi M

    2011-12-01

    Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. Hot-stage microscopy was used to visualize the presence/absence of birefringency before and following particle engineering design pharmaceutical processing, as well as phase transition behavior upon heating. Water content in the solid state was quantified by Karl Fisher (KF) coulometric titration. Solid-state phase transitions and degree of molecular order were examined by differential scanning calorimetry (DSC) and powder X-ray diffraction, respectively. Scanning electron microscopy showed a correlation between particle morphology, surface morphology, and spray drying pump rate. All advanced spray-dried microparticulate/nanoparticulate trehalose powders were in the respirable size range and exhibited a unimodal distribution. All spray-dried powders had very low water content, as quantified by KF. The absence of crystallinity in spray-dried particles was reflected in the powder X-ray diffractograms and confirmed by thermal analysis. DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.

  15. Formation of high heat resistant coatings by using gas tunnel type plasma spraying.

    PubMed

    Kobayashi, A; Ando, Y; Kurokawa, K

    2012-06-01

    Zirconia sprayed coatings are widely used as thermal barrier coatings (TBC) for high temperature protection of metallic structures. However, their use in diesel engine combustion chamber components has the long run durability problems, such as the spallation at the interface between the coating and substrate due to the interface oxidation. Although zirconia coatings have been used in many applications, the interface spallation problem is still waiting to be solved under the critical conditions such as high temperature and high corrosion environment. The gas tunnel type plasma spraying developed by the author can make high quality ceramic coatings such as Al2O3 and ZrO2 coating compared to other plasma spraying method. A high hardness ceramic coating such as Al2O3 coating by the gas tunnel type plasma spraying, were investigated in the previous study. The Vickers hardness of the zirconia (ZrO2) coating increased with decreasing spraying distance, and a higher Vickers hardness of about Hv = 1200 could be obtained at a shorter spraying distance of L = 30 mm. ZrO2 coating formed has a high hardness layer at the surface side, which shows the graded functionality of hardness. In this study, ZrO2 composite coatings (TBCs) with Al2O3 were deposited on SS304 substrates by gas tunnel type plasma spraying. The performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the functionally graded TBCs was investigated and discussed. The resultant coating samples with different spraying powders and thickness are compared in their corrosion resistance with coating thickness as variables. Corrosion potential was measured and analyzed corresponding to the microstructure of the coatings. High Heat Resistant Coatings, Gas Tunnel Type Plasma Spraying, Hardness,

  16. Mammalian Nitrate Biosynthesis: Incorporation of 15NH3 into Nitrate is Enhanced by Endotoxin Treatment

    NASA Astrophysics Data System (ADS)

    Wagner, David A.; Young, Vernon R.; Tannenbaum, Steven R.

    1983-07-01

    Incorporation of an oral dose of [15N]ammonium acetate into urinary [15N]nitrate has been demonstrated in the rat. Investigation of the regulation of nitrate synthesis has shown that Escherichia coli lipopolysaccharide potently stimulates urinary nitrate excretion (9-fold increase). It was further shown that the enhanced rate of nitrate excretion by lipopolysaccharide was due not to a reduction in nitrate metabolic loss but rather to an increased rate of synthesis. This conclusion was based on finding a proportionally increased incorporation of [15N]ammonium into nitrate nitrogen with lipopolysaccharide treatment. Nitrate biosynthesis was also increased by intraperitoneal injection of carrageenan and subcutaneous injection of turpentine. It is proposed that the pathway of nitrate biosynthesis may be the result of oxidation of reduced nitrogen compounds by oxygen radicals generated by an activated reticuloendothelial system.

  17. The Arabidopsis NRG2 Protein Mediates Nitrate Signaling and Interacts with and Regulates Key Nitrate Regulators[OPEN

    PubMed Central

    Zhao, Lufei; Zhang, Chengfei; Li, Zehui; Lei, Zhao; Liu, Fei; Guan, Peizhu; Crawford, Nigel M.

    2016-01-01

    We show that NITRATE REGULATORY GENE2 (NRG2), which we identified using forward genetics, mediates nitrate signaling in Arabidopsis thaliana. A mutation in NRG2 disrupted the induction of nitrate-responsive genes after nitrate treatment by an ammonium-independent mechanism. The nitrate content in roots was lower in the mutants than in the wild type, which may have resulted from reduced expression of NRT1.1 (also called NPF6.3, encoding a nitrate transporter/receptor) and upregulation of NRT1.8 (also called NPF7.2, encoding a xylem nitrate transporter). Genetic and molecular data suggest that NRG2 functions upstream of NRT1.1 in nitrate signaling. Furthermore, NRG2 directly interacts with the nitrate regulator NLP7 in the nucleus, but nuclear retention of NLP7 in response to nitrate is not dependent on NRG2. Transcriptomic analysis revealed that genes involved in four nitrogen-related clusters including nitrate transport and response to nitrate were differentially expressed in the nrg2 mutants. A nitrogen compound transport cluster containing some members of the NRT/PTR family was regulated by both NRG2 and NRT1.1, while no nitrogen-related clusters showed regulation by both NRG2 and NLP7. Thus, NRG2 plays a key role in nitrate regulation in part through modulating NRT1.1 expression and may function with NLP7 via their physical interaction. PMID:26744214

  18. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development

    PubMed Central

    Li, Yuge; Ouyang, Jie; Wang, Ya-Yun; Hu, Rui; Xia, Kuaifei; Duan, Jun; Wang, Yaqin; Tsay, Yi-Fang; Zhang, Mingyong

    2015-01-01

    Plants have evolved to express some members of the nitrate transporter 1/peptide transporter family (NPF) to uptake and transport nitrate. However, little is known of the physiological and functional roles of this family in rice (Oryza sativa L.). Here, we characterized the vascular specific transporter OsNPF2.2. Functional analysis using cDNA-injected Xenopus laevis oocytes revealed that OsNPF2.2 is a low-affinity, pH-dependent nitrate transporter. Use of a green fluorescent protein tagged OsNPF2.2 showed that the transporter is located in the plasma membrane in the rice protoplast. Expression analysis showed that OsNPF2.2 is nitrate inducible and is mainly expressed in parenchyma cells around the xylem. Disruption of OsNPF2.2 increased nitrate concentration in the shoot xylem exudate when nitrate was supplied after a deprivation period; this result suggests that OsNPF2.2 may participate in unloading nitrate from the xylem. Under steady-state nitrate supply, the osnpf2.2 mutants maintained high levels of nitrate in the roots and low shoot:root nitrate ratios; this observation suggests that OsNPF2.2 is involved in root-to-shoot nitrate transport. Mutation of OsNPF2.2 also caused abnormal vasculature and retarded plant growth and development. Our findings demonstrate that OsNPF2.2 can unload nitrate from the xylem to affect the root-to-shoot nitrate transport and plant development. PMID:25923512

  19. Profound differences between humans and rodents in the ability to concentrate salivary nitrate: Implications for translational research.

    PubMed

    Montenegro, Marcelo F; Sundqvist, Michaela L; Nihlén, Carina; Hezel, Michael; Carlström, Mattias; Weitzberg, Eddie; Lundberg, Jon O

    2016-12-01

    In humans dietary circulating nitrate accumulates rapidly in saliva through active transport in the salivary glands. By this mechanism resulting salivary nitrate concentrations are 10-20 times higher than in plasma. In the oral cavity nitrate is reduced by commensal bacteria to nitrite, which is subsequently swallowed and further metabolized to nitric oxide (NO) and other bioactive nitrogen oxides in blood and tissues. This entero-salivary circulation of nitrate is central in the various NO-like effects observed after ingestion of inorganic nitrate. The very same system has also been the focus of toxicologists studying potential carcinogenic effects of nitrite-dependent nitrosamine formation. Whether active transport of nitrate and accumulation in saliva occurs also in rodents is not entirely clear. Here we measured salivary and plasma levels of nitrate and nitrite in humans, rats and mice after administration of a standardized dose of nitrate. After oral (humans) or intraperitoneal (rodents) sodium nitrate administration (0.1mmol/kg), plasma nitrate levels increased markedly reaching ~300µM in all three species. In humans ingestion of nitrate was followed by a rapid increase in salivary nitrate to >6000µM, ie 20 times higher than those found in plasma. In contrast, in rats and mice salivary nitrate concentrations never exceeded the levels in plasma. Nitrite levels in saliva and plasma followed a similar pattern, ie marked increases in humans but modest elevations in rodents. In mice there was also no accumulation of nitrate in the salivary glands as measured directly in whole glands obtained after acute administration of nitrate. This study suggests that in contrast to humans, rats and mice do not actively concentrate circulating nitrate in saliva. These apparent species differences should be taken into consideration when studying the nitrate-nitrite-nitric oxide pathway in rodents, when calculating doses, exploring physiological, therapeutic and toxicological effects and comparing with human data. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. 40 CFR 60.546 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... solvent-based sprays are used, each Michelin-A operation, each Michelin-B operation, and each Michelin-C... spraying operation where organic solvent-based sprays are used, or Michelin-B operation who seeks to comply...

Top