Sample records for economic forecasting models

  1. An empirical investigation on different methods of economic growth rate forecast and its behavior from fifteen countries across five continents

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Hock-Eam, Lim

    2012-09-01

    Our empirical results show that we can predict GDP growth rate more accurately in continent with fewer large economies, compared to smaller economies like Malaysia. This difficulty is very likely positively correlated with subsidy or social security policies. The stage of economic development and level of competiveness also appears to have interactive effects on this forecast stability. These results are generally independent of the forecasting procedures. Countries with high stability in their economic growth, forecasting by model selection is better than model averaging. Overall forecast weight averaging (FWA) is a better forecasting procedure in most countries. FWA also outperforms simple model averaging (SMA) and has the same forecasting ability as Bayesian model averaging (BMA) in almost all countries.

  2. Robustness of disaggregate oil and gas discovery forecasting models

    USGS Publications Warehouse

    Attanasi, E.D.; Schuenemeyer, J.H.

    1989-01-01

    The trend in forecasting oil and gas discoveries has been to develop and use models that allow forecasts of the size distribution of future discoveries. From such forecasts, exploration and development costs can more readily be computed. Two classes of these forecasting models are the Arps-Roberts type models and the 'creaming method' models. This paper examines the robustness of the forecasts made by these models when the historical data on which the models are based have been subject to economic upheavals or when historical discovery data are aggregated from areas having widely differing economic structures. Model performance is examined in the context of forecasting discoveries for offshore Texas State and Federal areas. The analysis shows how the model forecasts are limited by information contained in the historical discovery data. Because the Arps-Roberts type models require more regularity in discovery sequence than the creaming models, prior information had to be introduced into the Arps-Roberts models to accommodate the influence of economic changes. The creaming methods captured the overall decline in discovery size but did not easily allow introduction of exogenous information to compensate for incomplete historical data. Moreover, the predictive log normal distribution associated with the creaming model methods appears to understate the importance of the potential contribution of small fields. ?? 1989.

  3. Value versus Accuracy: application of seasonal forecasts to a hydro-economic optimization model for the Sudanese Blue Nile

    NASA Astrophysics Data System (ADS)

    Satti, S.; Zaitchik, B. F.; Siddiqui, S.; Badr, H. S.; Shukla, S.; Peters-Lidard, C. D.

    2015-12-01

    The unpredictable nature of precipitation within the East African (EA) region makes it one of the most vulnerable, food insecure regions in the world. There is a vital need for forecasts to inform decision makers, both local and regional, and to help formulate the region's climate change adaptation strategies. Here, we present a suite of different seasonal forecast models, both statistical and dynamical, for the EA region. Objective regionalization is performed for EA on the basis of interannual variability in precipitation in both observations and models. This regionalization is applied as the basis for calculating a number of standard skill scores to evaluate each model's forecast accuracy. A dynamically linked Land Surface Model (LSM) is then applied to determine forecasted flows, which drive the Sudanese Hydroeconomic Optimization Model (SHOM). SHOM combines hydrologic, agronomic and economic inputs to determine the optimal decisions that maximize economic benefits along the Sudanese Blue Nile. This modeling sequence is designed to derive the potential added value of information of each forecasting model to agriculture and hydropower management. A rank of each model's forecasting skill score along with its added value of information is analyzed in order compare the performance of each forecast. This research aims to improve understanding of how characteristics of accuracy, lead time, and uncertainty of seasonal forecasts influence their utility to water resources decision makers who utilize them.

  4. Economic indicators selection for crime rates forecasting using cooperative feature selection

    NASA Astrophysics Data System (ADS)

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Salleh Sallehuddin, Roselina

    2013-04-01

    Features selection in multivariate forecasting model is very important to ensure that the model is accurate. The purpose of this study is to apply the Cooperative Feature Selection method for features selection. The features are economic indicators that will be used in crime rate forecasting model. The Cooperative Feature Selection combines grey relational analysis and artificial neural network to establish a cooperative model that can rank and select the significant economic indicators. Grey relational analysis is used to select the best data series to represent each economic indicator and is also used to rank the economic indicators according to its importance to the crime rate. After that, the artificial neural network is used to select the significant economic indicators for forecasting the crime rates. In this study, we used economic indicators of unemployment rate, consumer price index, gross domestic product and consumer sentiment index, as well as data rates of property crime and violent crime for the United States. Levenberg-Marquardt neural network is used in this study. From our experiments, we found that consumer price index is an important economic indicator that has a significant influence on the violent crime rate. While for property crime rate, the gross domestic product, unemployment rate and consumer price index are the influential economic indicators. The Cooperative Feature Selection is also found to produce smaller errors as compared to Multiple Linear Regression in forecasting property and violent crime rates.

  5. Medium-term electric power demand forecasting based on economic-electricity transmission model

    NASA Astrophysics Data System (ADS)

    Li, Wenfeng; Bao, Fangmin; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Mao, Yubin; Wang, Jiangbo; Liu, Junhui

    2018-06-01

    Electric demand forecasting is a basic work to ensure the safe operation of power system. Based on the theories of experimental economics and econometrics, this paper introduces Prognoz Platform 7.2 intelligent adaptive modeling platform, and constructs the economic electricity transmission model that considers the economic development scenarios and the dynamic adjustment of industrial structure to predict the region's annual electricity demand, and the accurate prediction of the whole society's electricity consumption is realized. Firstly, based on the theories of experimental economics and econometrics, this dissertation attempts to find the economic indicator variables that drive the most economical growth of electricity consumption and availability, and build an annual regional macroeconomic forecast model that takes into account the dynamic adjustment of industrial structure. Secondly, it innovatively put forward the economic electricity directed conduction theory and constructed the economic power transfer function to realize the group forecast of the primary industry + rural residents living electricity consumption, urban residents living electricity, the second industry electricity consumption, the tertiary industry electricity consumption; By comparing with the actual value of economy and electricity in Henan province in 2016, the validity of EETM model is proved, and the electricity consumption of the whole province from 2017 to 2018 is predicted finally.

  6. Integrating predictive information into an agro-economic model to guide agricultural management

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Block, P.

    2016-12-01

    Skillful season-ahead climate predictions linked with responsive agricultural planning and management have the potential to reduce losses, if adopted by farmers, particularly for rainfed-dominated agriculture such as in Ethiopia. Precipitation predictions during the growing season in major agricultural regions of Ethiopia are used to generate predicted climate yield factors, which reflect the influence of precipitation amounts on crop yields and serve as inputs into an agro-economic model. The adapted model, originally developed by the International Food Policy Research Institute, produces outputs of economic indices (GDP, poverty rates, etc.) at zonal and national levels. Forecast-based approaches, in which farmers' actions are in response to forecasted conditions, are compared with no-forecast approaches in which farmers follow business as usual practices, expecting "average" climate conditions. The effects of farmer adoption rates, including the potential for reduced uptake due to poor predictions, and increasing forecast lead-time on economic outputs are also explored. Preliminary results indicate superior gains under forecast-based approaches.

  7. A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run.

    PubMed

    Armeanu, Daniel; Andrei, Jean Vasile; Lache, Leonard; Panait, Mirela

    2017-01-01

    The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets.

  8. A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run

    PubMed Central

    Armeanu, Daniel; Lache, Leonard; Panait, Mirela

    2017-01-01

    The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets. PMID:28742100

  9. Is the economic value of hydrological forecasts related to their quality? Case study of the hydropower sector.

    NASA Astrophysics Data System (ADS)

    Cassagnole, Manon; Ramos, Maria-Helena; Thirel, Guillaume; Gailhard, Joël; Garçon, Rémy

    2017-04-01

    The improvement of a forecasting system and the evaluation of the quality of its forecasts are recurrent steps in operational practice. However, the evaluation of forecast value or forecast usefulness for better decision-making is, to our knowledge, less frequent, even if it might be essential in many sectors such as hydropower and flood warning. In the hydropower sector, forecast value can be quantified by the economic gain obtained with the optimization of operations or reservoir management rules. Several hydropower operational systems use medium-range forecasts (up to 7-10 days ahead) and energy price predictions to optimize hydropower production. Hence, the operation of hydropower systems, including the management of water in reservoirs, is impacted by weather, climate and hydrologic variability as well as extreme events. In order to assess how the quality of hydrometeorological forecasts impact operations, it is essential to first understand if and how operations and management rules are sensitive to input predictions of different quality. This study investigates how 7-day ahead deterministic and ensemble streamflow forecasts of different quality might impact the economic gains of energy production. It is based on a research model developed by Irstea and EDF to investigate issues relevant to the links between quality and value of forecasts in the optimisation of energy production at the short range. Based on streamflow forecasts and pre-defined management constraints, the model defines the best hours (i.e., the hours with high energy prices) to produce electricity. To highlight the link between forecasts quality and their economic value, we built several synthetic ensemble forecasts based on observed streamflow time series. These inputs are generated in a controlled environment in order to obtain forecasts of different quality in terms of accuracy and reliability. These forecasts are used to assess the sensitivity of the decision model to forecast quality. Relationships between forecast quality and economic value are discussed. This work is part of the IMPREX project, a research project supported by the European Commission under the Horizon 2020 Framework programme, with grant No. 641811 (http://www.imprex.eu)

  10. Forecast-based Interventions Can Reduce the Health and Economic Burden of Wildfires

    EPA Science Inventory

    We simulated public health forecast-based interventions during a wildfire smoke episode in rural North Carolina to show the potential for use of modeled smoke forecasts toward reducing the health burden and showed a significant economic benefit of reducing exposures. Daily and co...

  11. Socioeconomic Forecasting

    DOT National Transportation Integrated Search

    2012-05-01

    The role of the REMI Policy Insight+ model in socioeconomic forecasting and economic impact analysis of transportation projects was assessed. The REMI : PI+ model is consistent with the state of the practice in forecasting and impact analysis. REMI P...

  12. Socioeconomic forecasting.

    DOT National Transportation Integrated Search

    2012-05-01

    The role of the REMI Policy Insight+ model in socioeconomic forecasting and economic impact analysis of transportation projects was assessed. The REMI : PI+ model is consistent with the state of the practice in forecasting and impact analysis. REMI P...

  13. Moving beyond the cost-loss ratio: economic assessment of streamflow forecasts for a risk-averse decision maker

    NASA Astrophysics Data System (ADS)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier Filion, Thomas-Charles

    2017-06-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost-loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed deterministic forecasts, forecasts based on meteorological ensembles, and a variant of the latter that also includes an estimation of state variable uncertainty. This comparison takes place for the Montmorency River, a small flood-prone watershed in southern central Quebec, Canada. The assessment of forecasts is performed for lead times of 1 to 5 days, both in terms of forecasts' quality (relative to the corresponding record of observations) and in terms of economic value, using the new proposed framework based on the CARA utility function. It is found that the economic value of a forecast for a risk-averse decision maker is closely linked to the forecast reliability in predicting the upper tail of the streamflow distribution. Hence, post-processing forecasts to avoid over-forecasting could help improve both the quality and the value of forecasts.

  14. Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach.

    PubMed

    Boonen, Tim J; Li, Hong

    2017-10-01

    Research on mortality modeling of multiple populations focuses mainly on extrapolating past mortality trends and summarizing these trends by one or more common latent factors. This article proposes a multipopulation stochastic mortality model that uses the explanatory power of economic growth. In particular, we extend the Li and Lee model (Li and Lee 2005) by including economic growth, represented by the real gross domestic product (GDP) per capita, to capture the common mortality trend for a group of populations with similar socioeconomic conditions. We find that our proposed model provides a better in-sample fit and an out-of-sample forecast performance. Moreover, it generates lower (higher) forecasted period life expectancy for countries with high (low) GDP per capita than the Li and Lee model.

  15. Integrating predictive information into an agro-economic model to guide agricultural planning

    NASA Astrophysics Data System (ADS)

    Block, Paul; Zhang, Ying; You, Liangzhi

    2017-04-01

    Seasonal climate forecasts can inform long-range planning, including water resources utilization and allocation, however quantifying the value of this information on the economy is often challenging. For rain-fed farmers, skillful season-ahead predictions may lead to superior planning, as compared to business as usual strategies, resulting in additional benefits or reduced losses. In this study, regional-level probabilistic precipitation forecasts of the major rainy season in Ethiopia are fed into an agro-economic model, adapted from the International Food Policy Research Institute, to evaluate economic outcomes (GDP, poverty rates, etc.) as compared with a no-forecast approach. Based on forecasted conditions, farmers can select various actions: adjusting crop area and crop type, purchasing drought resistant seed, or applying additional fertilizer. Preliminary results favor the forecast-based approach, particularly through crop area reallocation.

  16. Application and evaluation of forecasting methods for municipal solid waste generation in an Eastern-European city.

    PubMed

    Rimaityte, Ingrida; Ruzgas, Tomas; Denafas, Gintaras; Racys, Viktoras; Martuzevicius, Dainius

    2012-01-01

    Forecasting of generation of municipal solid waste (MSW) in developing countries is often a challenging task due to the lack of data and selection of suitable forecasting method. This article aimed to select and evaluate several methods for MSW forecasting in a medium-scaled Eastern European city (Kaunas, Lithuania) with rapidly developing economics, with respect to affluence-related and seasonal impacts. The MSW generation was forecast with respect to the economic activity of the city (regression modelling) and using time series analysis. The modelling based on social-economic indicators (regression implemented in LCA-IWM model) showed particular sensitivity (deviation from actual data in the range from 2.2 to 20.6%) to external factors, such as the synergetic effects of affluence parameters or changes in MSW collection system. For the time series analysis, the combination of autoregressive integrated moving average (ARIMA) and seasonal exponential smoothing (SES) techniques were found to be the most accurate (mean absolute percentage error equalled to 6.5). Time series analysis method was very valuable for forecasting the weekly variation of waste generation data (r (2) > 0.87), but the forecast yearly increase should be verified against the data obtained by regression modelling. The methods and findings of this study may assist the experts, decision-makers and scientists performing forecasts of MSW generation, especially in developing countries.

  17. Evaluation and economic value of winter weather forecasts

    NASA Astrophysics Data System (ADS)

    Snyder, Derrick W.

    State and local highway agencies spend millions of dollars each year to deploy winter operation teams to plow snow and de-ice roadways. Accurate and timely weather forecast information is critical for effective decision making. Students from Purdue University partnered with the Indiana Department of Transportation to create an experimental winter weather forecast service for the 2012-2013 winter season in Indiana to assist in achieving these goals. One forecast product, an hourly timeline of winter weather hazards produced daily, was evaluated for quality and economic value. Verification of the forecasts was performed with data from the Rapid Refresh numerical weather model. Two objective verification criteria were developed to evaluate the performance of the timeline forecasts. Using both criteria, the timeline forecasts had issues with reliability and discrimination, systematically over-forecasting the amount of winter weather that was observed while also missing significant winter weather events. Despite these quality issues, the forecasts still showed significant, but varied, economic value compared to climatology. Economic value of the forecasts was estimated to be 29.5 million or 4.1 million, depending on the verification criteria used. Limitations of this valuation system are discussed and a framework is developed for more thorough studies in the future.

  18. Hydroclimate Forecasts in Ethiopia: Benefits, Impediments, and Ways Forward

    NASA Astrophysics Data System (ADS)

    Block, P. J.

    2014-12-01

    Numerous hydroclimate forecast models, tools, and guidance exist for application across Ethiopia and East Africa in the agricultural, water, energy, disasters, and economic sectors. This has resulted from concerted local and international interdisciplinary efforts, yet little evidence exists of rapid forecast uptake and use. We will review projected benefits and gains of seasonal forecast application, impediments, and options for the way forward. Specific case studies regarding floods, agricultural-economic links, and hydropower will be reviewed.

  19. Analysis and forecast of railway coal transportation volume based on BP neural network combined forecasting model

    NASA Astrophysics Data System (ADS)

    Xu, Yongbin; Xie, Haihong; Wu, Liuyi

    2018-05-01

    The share of coal transportation in the total railway freight volume is about 50%. As is widely acknowledged, coal industry is vulnerable to the economic situation and national policies. Coal transportation volume fluctuates significantly under the new economic normal. Grasp the overall development trend of railway coal transportation market, have important reference and guidance significance to the railway and coal industry decision-making. By analyzing the economic indicators and policy implications, this paper expounds the trend of the coal transportation volume, and further combines the economic indicators with the high correlation with the coal transportation volume with the traditional traffic prediction model to establish a combined forecasting model based on the back propagation neural network. The error of the prediction results is tested, which proves that the method has higher accuracy and has practical application.

  20. Economic Impact Forecast System (EIFS). Version 2.0. Users Manual. Supplement II. European Economic Impact Forecast System (EEIFS), Phase 1, (FRG/EIFS Pilot Model).

    DTIC Science & Technology

    1982-05-01

    Chmpip. tL : Construction engineering Research Laboratory ; available from NTIS. 1982. 71 p. (Technical report / Construction Engineering Researsh ...AD-Al17 661 CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN IL F/G 5/3 ECONOMIC IMPACT FORECAST SYSTEM (EIFS). VERSION 2.0. USERS MANU--ETC(u...CONSTRUCTION ENGINEERING RESEARCH LABORATORY 4A762720A896-C-004 P.O. BOX 4005, CHAMPAIGN, IL 61820 I. CONTROLLING OFFICE NAME AND ADDRESS It. REPORT

  1. Short-term electric power demand forecasting based on economic-electricity transmission model

    NASA Astrophysics Data System (ADS)

    Li, Wenfeng; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Wang, Yubin Mao; Wang, Jiangbo; He, Dandan

    2018-04-01

    Short-term electricity demand forecasting is the basic work to ensure safe operation of the power system. In this paper, a practical economic electricity transmission model (EETM) is built. With the intelligent adaptive modeling capabilities of Prognoz Platform 7.2, the econometric model consists of three industrial added value and income levels is firstly built, the electricity demand transmission model is also built. By multiple regression, moving averages and seasonal decomposition, the problem of multiple correlations between variables is effectively overcome in EETM. The validity of EETM is proved by comparison with the actual value of Henan Province. Finally, EETM model is used to forecast the electricity consumption of the 1-4 quarter of 2018.

  2. Added value of dynamical downscaling of winter seasonal forecasts over North America

    NASA Astrophysics Data System (ADS)

    Tefera Diro, Gulilat; Sushama, Laxmi

    2017-04-01

    Skillful seasonal forecasts have enormous potential benefits for socio-economic sectors that are sensitive to weather and climate conditions, as the early warning routines could reduce the vulnerability of such sectors. In this study, individual ensemble members of the ECMWF global ensemble seasonal forecasts are dynamically downscaled to produce ensemble of regional seasonal forecasts over North America using the fifth generation Canadian Regional Climate Model (CRCM5). CRCM5 forecasts are initialized on November 1st of each year and are integrated for four months for the 1991-2001 period at 0.22 degree resolution to produce a one-month lead-time forecast. The initial conditions for atmospheric variables are obtained from ERA-Interim reanalysis, whereas the initial conditions for land surface are obtained from a separate ERA-interim driven CRCM5 simulation with spectral nudging applied to the interior domain. The global and regional ensemble forecasts were then verified to investigate the skill and economic benefits of dynamical downscaling. Results indicate that both the global and regional climate models produce skillful precipitation forecast over the southern Great Plains and eastern coasts of the U.S and skillful temperature forecasts over the northern U.S. and most of Canada. In comparison to ECMWF forecasts, CRCM5 forecasts improved the temperature forecast skill over most part of the domain, but the improvements for precipitation is limited to regions with complex topography, where it improves the frequency of intense daily precipitation. CRCM5 forecast also yields a better economic value compared to ECMWF precipitation forecasts, for users whose cost to loss ratio is smaller than 0.5.

  3. Forecasting in the presence of expectations

    NASA Astrophysics Data System (ADS)

    Allen, R.; Zivin, J. G.; Shrader, J.

    2016-05-01

    Physical processes routinely influence economic outcomes, and actions by economic agents can, in turn, influence physical processes. This feedback creates challenges for forecasting and inference, creating the potential for complementarity between models from different academic disciplines. Using the example of prediction of water availability during a drought, we illustrate the potential biases in forecasts that only take part of a coupled system into account. In particular, we show that forecasts can alter the feedbacks between supply and demand, leading to inaccurate prediction about future states of the system. Although the example is specific to drought, the problem of feedback between expectations and forecast quality is not isolated to the particular model-it is relevant to areas as diverse as population assessments for conservation, balancing the electrical grid, and setting macroeconomic policy.

  4. Hybrid Support Vector Regression and Autoregressive Integrated Moving Average Models Improved by Particle Swarm Optimization for Property Crime Rates Forecasting with Economic Indicators

    PubMed Central

    Alwee, Razana; Hj Shamsuddin, Siti Mariyam; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models. PMID:23766729

  5. Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators.

    PubMed

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.

  6. Econometric Models for Forecasting of Macroeconomic Indices

    ERIC Educational Resources Information Center

    Sukhanova, Elena I.; Shirnaeva, Svetlana Y.; Mokronosov, Aleksandr G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices…

  7. Forecasted economic change and the self-fulfilling prophecy in economic decision-making

    PubMed Central

    2017-01-01

    This study addresses the self-fulfilling prophecy effect, in the domain of economic decision-making. We present experimental data in support of the hypothesis that speculative forecasts of economic change can impact individuals’ economic decision behavior, prior to any realized changes. In a within-subjects experiment, participants (N = 40) played 180 trials in a Balloon Analogue Risk Talk (BART) in which they could make actual profit. Simple messages about possible (positive and negative) changes in outcome probabilities of future trials had significant effects on measures of risk taking (number of inflations) and actual profits in the game. These effects were enduring, even though no systematic changes in actual outcome probabilities took place following any of the messages. Risk taking also found to be reflected in reaction times revealing increasing reaction times with riskier decisions. Positive and negative economic forecasts affected reaction times slopes differently, with negative forecasts resulting in increased reaction time slopes as a function of risk. These findings suggest that forecasted positive or negative economic change can bias people’s mental model of the economy and reduce or stimulate risk taking. Possible implications for media-fulfilling prophecies in the domain of the economy are considered. PMID:28334031

  8. Defining conservation priorities using fragmentation forecasts

    Treesearch

    David Wear; John Pye; Kurt H. Riitters

    2004-01-01

    Methods are developed for forecasting the effects of population and economic growth on the distribution of interior forest habitat. An application to the southeastern United States shows that models provide significant explanatory power with regard to the observed distribution of interior forest. Estimates for economic and biophysical variables are significant and...

  9. Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA.

    PubMed

    Zhao, Xin; Han, Meng; Ding, Lili; Calin, Adrian Cantemir

    2018-01-01

    The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.

  10. The Economic Value of Air Quality Forecasting

    NASA Astrophysics Data System (ADS)

    Anderson-Sumo, Tasha

    Both long-term and daily air quality forecasts provide an essential component to human health and impact costs. According the American Lung Association, the estimated current annual cost of air pollution related illness in the United States, adjusted for inflation (3% per year), is approximately $152 billion. Many of the risks such as hospital visits and morality are associated with poor air quality days (where the Air Quality Index is greater than 100). Groups such as sensitive groups become more susceptible to the resulting conditions and more accurate forecasts would help to take more appropriate precautions. This research focuses on evaluating the utility of air quality forecasting in terms of its potential impacts by building on air quality forecasting and economical metrics. Our analysis includes data collected during the summertime ozone seasons between 2010 and 2012 from air quality models for the Washington, DC/Baltimore, MD region. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our collection of data included available air quality model forecasts of ozone and particulate matter data from the U.S. Environmental Protection Agency (EPA)'s AIRNOW as well as observational data of ozone and particulate matter from Clean Air Partners. We evaluated the performance of the air quality forecasts with that of the observational data and found that the forecast models perform well for the Baltimore/Washington region and the time interval observed. We estimate the potential amount for the Baltimore/Washington region accrues to a savings of up to 5,905 lives and 5.9 billion dollars per year. This total assumes perfect compliance with bad air quality warning and forecast air quality forecasts. There is a difficulty presented with evaluating the economic utility of the forecasts. All may not comply and even with a low compliance rate of 5% and 72% as the average probability of detection of poor air quality days by the air quality models, we estimate that the forecasting program saves 412 lives or 412 million dollars per year for the region. The totals we found are great or greater than other typical yearly meteorological hazard programs such as tornado or hurricane forecasting and it is clear that the economic value of air quality forecasting in the Baltimore/Washington region is vital.

  11. Statistical Post-Processing of Wind Speed Forecasts to Estimate Relative Economic Value

    NASA Astrophysics Data System (ADS)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2013-04-01

    The objective of this research is to get the best possible wind speed forecasts for the wind energy industry by using an optimal combination of well-established forecasting and post-processing methods. We start with the ECMWF 51 member ensemble prediction system (EPS) which is underdispersive and hence uncalibrated. We aim to produce wind speed forecasts that are more accurate and calibrated than the EPS. The 51 members of the EPS are clustered to 8 weighted representative members (RMs), chosen to minimize the within-cluster spread, while maximizing the inter-cluster spread. The forecasts are then downscaled using two limited area models, WRF and COSMO, at two resolutions, 14km and 3km. This process creates four distinguishable ensembles which are used as input to statistical post-processes requiring multi-model forecasts. Two such processes are presented here. The first, Bayesian Model Averaging, has been proven to provide more calibrated and accurate wind speed forecasts than the ECMWF EPS using this multi-model input data. The second, heteroscedastic censored regression is indicating positive results also. We compare the two post-processing methods, applied to a year of hindcast wind speed data around Ireland, using an array of deterministic and probabilistic verification techniques, such as MAE, CRPS, probability transform integrals and verification rank histograms, to show which method provides the most accurate and calibrated forecasts. However, the value of a forecast to an end-user cannot be fully quantified by just the accuracy and calibration measurements mentioned, as the relationship between skill and value is complex. Capturing the full potential of the forecast benefits also requires detailed knowledge of the end-users' weather sensitive decision-making processes and most importantly the economic impact it will have on their income. Finally, we present the continuous relative economic value of both post-processing methods to identify which is more beneficial to the wind energy industry of Ireland.

  12. A Hybrid Approach on Tourism Demand Forecasting

    NASA Astrophysics Data System (ADS)

    Nor, M. E.; Nurul, A. I. M.; Rusiman, M. S.

    2018-04-01

    Tourism has become one of the important industries that contributes to the country’s economy. Tourism demand forecasting gives valuable information to policy makers, decision makers and organizations related to tourism industry in order to make crucial decision and planning. However, it is challenging to produce an accurate forecast since economic data such as the tourism data is affected by social, economic and environmental factors. In this study, an equally-weighted hybrid method, which is a combination of Box-Jenkins and Artificial Neural Networks, was applied to forecast Malaysia’s tourism demand. The forecasting performance was assessed by taking the each individual method as a benchmark. The results showed that this hybrid approach outperformed the other two models

  13. Limitations of JEDI Models | Jobs and Economic Development Impact Models |

    Science.gov Websites

    precise forecast. The Jobs and Economic Development Impact (JEDI) models are input-output based models for assessing economic impacts and jobs, including JEDI (see Chapter 5, pp. 136-142). The most not reflect many other economic impacts that could affect real-world impacts on jobs from the project

  14. Combining forecast weights: Why and how?

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim

    2012-09-01

    This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.

  15. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    NASA Technical Reports Server (NTRS)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  16. Assessing the Value of Frost Forecasts to Orchardists: A Dynamic Decision-Making Approach.

    NASA Astrophysics Data System (ADS)

    Katz, Richard W.; Murphy, Allan H.; Winkler, Robert L.

    1982-04-01

    The methodology of decision analysis is used to investigate the economic value of frost (i.e., minimum temperature) forecasts to orchardists. First, the fruit-frost situation and previous studies of the value of minimum temperature forecasts in this context are described. Then, after a brief overview of decision analysis, a decision-making model for the fruit-frost problem is presented. The model involves identifying the relevant actions and events (or outcomes), specifying the effect of taking protective action, and describing the relationships among temperature, bud loss, and yield loss. A bivariate normal distribution is used to model the relationship between forecast and observed temperatures, thereby characterizing the quality of different types of information. Since the orchardist wants to minimize expenses (or maximize payoffs) over the entire frost-protection season and since current actions and outcomes at any point in the season are related to both previous and future actions and outcomes, the decision-making problem is inherently dynamic in nature. As a result, a class of dynamic models known as Markov decision processes is considered. A computational technique called dynamic programming is used in conjunction with these models to determine the optimal actions and to estimate the value of meteorological information.Some results concerning the value of frost forecasts to orchardists in the Yakima Valley of central Washington are presented for the cases of red delicious apples, bartlett pears, and elberta peaches. Estimates of the parameter values in the Markov decision process are obtained from relevant physical and economic data. Twenty years of National Weather Service forecast and observed temperatures for the Yakima key station are used to estimate the quality of different types of information, including perfect forecasts, current forecasts, and climatological information. The orchardist's optimal actions over the frost-protection season and the expected expenses associated with the use of such information are determined using a dynamic programming algorithm. The value of meteorological information is defined as the difference between the expected expense for the information of interest and the expected expense for climatological information. Over the entire frost-protection season, the value estimates (in 1977 dollars) for current forecasts were $808 per acre for red delicious apples, $492 per acre for bartlett pears, and $270 per acre for elberta peaches. These amounts account for 66, 63, and 47%, respectively, of the economic value associated with decisions based on perfect forecasts. Varying the quality of the minimum temperature forecasts reveals that the relationship between the accuracy and value of such forecasts is nonlinear and that improvements in current forecasts would not be as significant in terms of economic value as were comparable improvements in the past.Several possible extensions of this study of the value of frost forecasts to orchardists are briefly described. Finally, the application of the dynamic model formulated in this paper to other decision-making problems involving the use of meteorological information is mentioned.

  17. FAA Aviation Forecast Conference Proceedings (16th)

    DTIC Science & Technology

    1991-02-01

    FORECASTS The FAA forecasting process is a continuous one which involves FAA Forecast Branch’s interaction with various FAA Offices and Services... process uses various economic and aviation data bases, the outputs of several econometric models and equations, and other analytical techniques. The FAA...workload measures, summarized numerically in the table on page 8, are the resultant forecasts of this process and are used annually by the agency for

  18. Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels

    EIA Publications

    2003-01-01

    This paper presents a short-term monthly forecasting model of West Texas Intermediate crude oil spot price using Organization for Economic Cooperation and Development (OECD) petroleum inventory levels.

  19. The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China.

    PubMed

    Pei, Ling-Ling; Li, Qin; Wang, Zheng-Xin

    2018-03-08

    The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China's pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N )) model based on the nonlinear least square (NLS) method. The Gauss-Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N ) model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N ) and the NLS-based TNGM (1, N ) models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC), and per capita emissions of SO₂ and dust, alongside GDP per capita in China during the period 1996-2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N ) model presents greater precision when forecasting WDPC, SO₂ emissions and dust emissions per capita, compared to the traditional GM (1, N ) model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO₂ and dust reduce accordingly.

  20. A gain-loss framework based on ensemble flow forecasts to switch the urban drainage-wastewater system management towards energy optimization during dry periods

    NASA Astrophysics Data System (ADS)

    Courdent, Vianney; Grum, Morten; Munk-Nielsen, Thomas; Mikkelsen, Peter S.

    2017-05-01

    Precipitation is the cause of major perturbation to the flow in urban drainage and wastewater systems. Flow forecasts, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimize the operation of integrated urban drainage-wastewater systems (IUDWSs) during both wet and dry weather periods. Numerical weather prediction (NWP) models have significantly improved in recent years, having increased their spatial and temporal resolution. Finer resolution NWP are suitable for urban-catchment-scale applications, providing longer lead time than radar extrapolation. However, forecasts are inevitably uncertain, and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with ensemble prediction systems (EPSs). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain and therefore errors will be made; decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run). This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial and how to handle the EPS. The relative economic value (REV) approach associates economic values with the potential outcomes and determines the preferential use of the EPS forecast. The envelope curve of the REV diagram combines the results from each probability forecast to provide the highest relative economic value for a given gain-loss ratio. This approach is traditionally used at larger scales to assess mitigation measures for adverse events (i.e. the actions are taken when events are forecast). The specificity of this study is to optimize the energy consumption in IUDWS during low-flow periods by exploiting the electrical smart grid market (i.e. the actions are taken when no events are forecast). Furthermore, the results demonstrate the benefit of NWP neighbourhood post-processing methods to enhance the forecast skill and increase the range of beneficial uses.

  1. Leverage effect, economic policy uncertainty and realized volatility with regime switching

    NASA Astrophysics Data System (ADS)

    Duan, Yinying; Chen, Wang; Zeng, Qing; Liu, Zhicao

    2018-03-01

    In this study, we first investigate the impacts of leverage effect and economic policy uncertainty (EPU) on future volatility in the framework of regime switching. Out-of-sample results show that the HAR-RV including the leverage effect and economic policy uncertainty with regimes can achieve higher forecast accuracy than RV-type and GARCH-class models. Our robustness results further imply that these factors in the framework of regime switching can substantially improve the HAR-RV's forecast performance.

  2. Effects of Forecasts on the Revisions of Concurrent Seasonally Adjusted Data Using the X-11 Seasonal Adjustment Procedure.

    ERIC Educational Resources Information Center

    Bobbitt, Larry; Otto, Mark

    Three Autoregressive Integrated Moving Averages (ARIMA) forecast procedures for Census Bureau X-11 concurrent seasonal adjustment were empirically tested. Forty time series from three Census Bureau economic divisions (business, construction, and industry) were analyzed. Forecasts were obtained from fitted seasonal ARIMA models augmented with…

  3. An empirical investigation on the forecasting ability of mallows model averaging in a macro economic environment

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Hock-Eam, Lim

    2012-09-01

    This paper investigates the forecasting ability of Mallows Model Averaging (MMA) by conducting an empirical analysis of five Asia countries, Malaysia, Thailand, Philippines, Indonesia and China's GDP growth rate. Results reveal that MMA has no noticeable differences in predictive ability compared to the general autoregressive fractional integrated moving average model (ARFIMA) and its predictive ability is sensitive to the effect of financial crisis. MMA could be an alternative forecasting method for samples without recent outliers such as financial crisis.

  4. Forecasting Austrian national elections: The Grand Coalition model

    PubMed Central

    Aichholzer, Julian; Willmann, Johanna

    2014-01-01

    Forecasting the outcomes of national elections has become established practice in several democracies. In the present paper, we develop an economic voting model for forecasting the future success of the Austrian ‘grand coalition’, i.e., the joint electoral success of the two mainstream parties SPOE and OEVP, at the 2013 Austrian Parliamentary Elections. Our main argument is that the success of both parties is strongly tied to the accomplishments of the Austrian system of corporatism, that is, the Social Partnership (Sozialpartnerschaft), in providing economic prosperity. Using data from Austrian national elections between 1953 and 2008 (n=18), we rely on the following predictors in our forecasting model: (1) unemployment rates, (2) previous incumbency of the two parties, and (3) dealignment over time. We conclude that, in general, the two mainstream parties benefit considerably from low unemployment rates, and are weakened whenever they have previously formed a coalition government. Further, we show that they have gradually been losing a good share of their voter basis over recent decades. PMID:26339109

  5. Linked population and economic models: some methodological issues in forecasting, analysis, and policy optimization.

    PubMed

    Madden, M; Batey Pwj

    1983-05-01

    Some problems associated with demographic-economic forecasting include finding models appropriate for a declining economy with unemployment, using a multiregional approach in an interregional model, finding a way to show differential consumption while endogenizing unemployment, and avoiding unemployment inconsistencies. The solution to these problems involves the construction of an activity-commodity framework, locating it within a group of forecasting models, and indicating possible ratios towards dynamization of the framework. The authors demonstrate the range of impact multipliers that can be derived from the framework and show how these multipliers relate to Leontief input-output multipliers. It is shown that desired population distribution may be obtained by selecting instruments from the economic sphere to produce, through the constraints vector of an activity-commodity framework, targets selected from demographic activities. The next step in this process, empirical exploitation, was carried out by the authors in the United Kingdom, linking an input-output model with a wide selection of demographic and demographic-economic variables. The generally tenuous control which government has over any variables in systems of this type, especially in market economies, makes application in the policy field of the optimization approach a partly conjectural exercise, although the analytic capacity of the approach can provide clear indications of policy directions.

  6. Forecast of future aviation fuels: The model

    NASA Technical Reports Server (NTRS)

    Ayati, M. B.; Liu, C. Y.; English, J. M.

    1981-01-01

    A conceptual models of the commercial air transportation industry is developed which can be used to predict trends in economics, demand, and consumption. The methodology is based on digraph theory, which considers the interaction of variables and propagation of changes. Air transportation economics are treated by examination of major variables, their relationships, historic trends, and calculation of regression coefficients. A description of the modeling technique and a compilation of historic airline industry statistics used to determine interaction coefficients are included. Results of model validations show negligible difference between actual and projected values over the twenty-eight year period of 1959 to 1976. A limited application of the method presents forecasts of air tranportation industry demand, growth, revenue, costs, and fuel consumption to 2020 for two scenarios of future economic growth and energy consumption.

  7. Research of Coal Resources Reserves Prediction Based on GM (1, 1) Model

    NASA Astrophysics Data System (ADS)

    Xiao, Jiancheng

    2018-01-01

    Based on the forecast of China’s coal reserves, this paper uses the GM (1, 1) gray forecasting theory to establish the gray forecasting model of China’s coal reserves based on the data of China’s coal reserves from 2002 to 2009, and obtained the trend of coal resources reserves with the current economic and social development situation, and the residual test model is established, so the prediction model is more accurate. The results show that China’s coal reserves can ensure the use of production at least 300 years of use. And the results are similar to the mainstream forecast results, and that are in line with objective reality.

  8. Neural networks and traditional time series methods: a synergistic combination in state economic forecasts.

    PubMed

    Hansen, J V; Nelson, R D

    1997-01-01

    Ever since the initial planning for the 1997 Utah legislative session, neural-network forecasting techniques have provided valuable insights for analysts forecasting tax revenues. These revenue estimates are critically important since agency budgets, support for education, and improvements to infrastructure all depend on their accuracy. Underforecasting generates windfalls that concern taxpayers, whereas overforecasting produces budget shortfalls that cause inadequately funded commitments. The pattern finding ability of neural networks gives insightful and alternative views of the seasonal and cyclical components commonly found in economic time series data. Two applications of neural networks to revenue forecasting clearly demonstrate how these models complement traditional time series techniques. In the first, preoccupation with a potential downturn in the economy distracts analysis based on traditional time series methods so that it overlooks an emerging new phenomenon in the data. In this case, neural networks identify the new pattern that then allows modification of the time series models and finally gives more accurate forecasts. In the second application, data structure found by traditional statistical tools allows analysts to provide neural networks with important information that the networks then use to create more accurate models. In summary, for the Utah revenue outlook, the insights that result from a portfolio of forecasts that includes neural networks exceeds the understanding generated from strictly statistical forecasting techniques. In this case, the synergy clearly results in the whole of the portfolio of forecasts being more accurate than the sum of the individual parts.

  9. Stationarity test with a direct test for heteroskedasticity in exchange rate forecasting models

    NASA Astrophysics Data System (ADS)

    Khin, Aye Aye; Chau, Wong Hong; Seong, Lim Chee; Bin, Raymond Ling Leh; Teng, Kevin Low Lock

    2017-05-01

    Global economic has been decreasing in the recent years, manifested by the greater exchange rates volatility on international commodity market. This study attempts to analyze some prominent exchange rate forecasting models on Malaysian commodity trading: univariate ARIMA, ARCH and GARCH models in conjunction with stationarity test on residual diagnosis direct testing of heteroskedasticity. All forecasting models utilized the monthly data from 1990 to 2015. Given a total of 312 observations, the data used to forecast both short-term and long-term exchange rate. The forecasting power statistics suggested that the forecasting performance of ARIMA (1, 1, 1) model is more efficient than the ARCH (1) and GARCH (1, 1) models. For ex-post forecast, exchange rate was increased from RM 3.50 per USD in January 2015 to RM 4.47 per USD in December 2015 based on the baseline data. For short-term ex-ante forecast, the analysis results indicate a decrease in exchange rate on 2016 June (RM 4.27 per USD) as compared with 2015 December. A more appropriate forecasting method of exchange rate is vital to aid the decision-making process and planning on the sustainable commodities' production in the world economy.

  10. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias

    With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less

  11. The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China

    PubMed Central

    Pei, Ling-Ling; Li, Qin

    2018-01-01

    The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China’s pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N)) model based on the nonlinear least square (NLS) method. The Gauss–Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N) model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N) and the NLS-based TNGM (1, N) models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC), and per capita emissions of SO2 and dust, alongside GDP per capita in China during the period 1996–2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N) model presents greater precision when forecasting WDPC, SO2 emissions and dust emissions per capita, compared to the traditional GM (1, N) model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO2 and dust reduce accordingly. PMID:29517985

  12. Comparison of the economic impact of different wind power forecast systems for producers

    NASA Astrophysics Data System (ADS)

    Alessandrini, S.; Davò, F.; Sperati, S.; Benini, M.; Delle Monache, L.

    2014-05-01

    Deterministic forecasts of wind production for the next 72 h at a single wind farm or at the regional level are among the main end-users requirement. However, for an optimal management of wind power production and distribution it is important to provide, together with a deterministic prediction, a probabilistic one. A deterministic forecast consists of a single value for each time in the future for the variable to be predicted, while probabilistic forecasting informs on probabilities for potential future events. This means providing information about uncertainty (i.e. a forecast of the PDF of power) in addition to the commonly provided single-valued power prediction. A significant probabilistic application is related to the trading of energy in day-ahead electricity markets. It has been shown that, when trading future wind energy production, using probabilistic wind power predictions can lead to higher benefits than those obtained by using deterministic forecasts alone. In fact, by using probabilistic forecasting it is possible to solve economic model equations trying to optimize the revenue for the producer depending, for example, on the specific penalties for forecast errors valid in that market. In this work we have applied a probabilistic wind power forecast systems based on the "analog ensemble" method for bidding wind energy during the day-ahead market in the case of a wind farm located in Italy. The actual hourly income for the plant is computed considering the actual selling energy prices and penalties proportional to the unbalancing, defined as the difference between the day-ahead offered energy and the actual production. The economic benefit of using a probabilistic approach for the day-ahead energy bidding are evaluated, resulting in an increase of 23% of the annual income for a wind farm owner in the case of knowing "a priori" the future energy prices. The uncertainty on price forecasting partly reduces the economic benefit gained by using a probabilistic energy forecast system.

  13. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia

    PubMed Central

    Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883

  14. Mathematical model comparing of the multi-level economics systems

    NASA Astrophysics Data System (ADS)

    Brykalov, S. M.; Kryanev, A. V.

    2017-12-01

    The mathematical model (scheme) of a multi-level comparison of the economic system, characterized by the system of indices, is worked out. In the mathematical model of the multi-level comparison of the economic systems, the indicators of peer review and forecasting of the economic system under consideration can be used. The model can take into account the uncertainty in the estimated values of the parameters or expert estimations. The model uses the multi-criteria approach based on the Pareto solutions.

  15. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate.

    PubMed

    Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Thorburn, Peter J; Castellano, Michael J; Moore, Kenneth J; VanLoocke, Andrew; Heaton, Emily A; Archontoulis, Sotirios V

    2018-01-01

    Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time ( R 2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity ( R 2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined ( n = 31) with an average error range of ±38 kg N ha -1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years to forecast (RRMSE was on average 3% lower). Overall, the proposed approach of using the crop model as a forecasting tool could improve year-to-year predictability of corn yields and optimum N rates. Further improvements in modeling and set-up protocols are needed toward more accurate forecast, especially for extreme weather years with the most significant economic and environmental cost.

  16. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate

    PubMed Central

    Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Thorburn, Peter J.; Castellano, Michael J.; Moore, Kenneth J.; VanLoocke, Andrew; Heaton, Emily A.; Archontoulis, Sotirios V.

    2018-01-01

    Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined (n = 31) with an average error range of ±38 kg N ha−1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years to forecast (RRMSE was on average 3% lower). Overall, the proposed approach of using the crop model as a forecasting tool could improve year-to-year predictability of corn yields and optimum N rates. Further improvements in modeling and set-up protocols are needed toward more accurate forecast, especially for extreme weather years with the most significant economic and environmental cost. PMID:29706974

  17. How to Support a One-Handed Economist: The Role of Modalisation in Economic Forecasting

    ERIC Educational Resources Information Center

    Donohue, James P.

    2006-01-01

    Economic forecasting in the world of international finance confronts economists with challenging cross-cultural writing tasks. Producing forecasts in English which convey confidence and credibility entails an understanding of linguistic conventions which typify the genre. A typical linguistic feature of commercial economic forecasts produced by…

  18. Examining lag effects between industrial land development and regional economic changes: The Netherlands experience.

    PubMed

    Ustaoglu, Eda; Lavalle, Carlo

    2017-01-01

    In most empirical applications, forecasting models for the analysis of industrial land focus on the relationship between current values of economic parameters and industrial land use. This paper aims to test this assumption by focusing on the dynamic relationship between current and lagged values of the 'economic fundamentals' and industrial land development. Not much effort has yet been attributed to develop land forecasting models to predict the demand for industrial land except those applying static regressions or other statistical measures. In this research, we estimated a dynamic panel data model across 40 regions from 2000 to 2008 for the Netherlands to uncover the relationship between current and lagged values of economic parameters and industrial land development. Land-use regulations such as land zoning policies, and other land-use restrictions like natural protection areas, geographical limitations in the form of water bodies or sludge areas are expected to affect supply of land, which will in turn be reflected in industrial land market outcomes. Our results suggest that gross domestic product (GDP), industrial employment, gross value added (GVA), property price, and other parameters representing demand and supply conditions in the industrial market explain industrial land developments with high significance levels. It is also shown that contrary to the current values, lagged values of the economic parameters have more sound relationships with the industrial developments in the Netherlands. The findings suggest use of lags between selected economic parameters and industrial land use in land forecasting applications.

  19. Examining lag effects between industrial land development and regional economic changes: The Netherlands experience

    PubMed Central

    Ustaoglu, Eda; Lavalle, Carlo

    2017-01-01

    In most empirical applications, forecasting models for the analysis of industrial land focus on the relationship between current values of economic parameters and industrial land use. This paper aims to test this assumption by focusing on the dynamic relationship between current and lagged values of the ‘economic fundamentals’ and industrial land development. Not much effort has yet been attributed to develop land forecasting models to predict the demand for industrial land except those applying static regressions or other statistical measures. In this research, we estimated a dynamic panel data model across 40 regions from 2000 to 2008 for the Netherlands to uncover the relationship between current and lagged values of economic parameters and industrial land development. Land-use regulations such as land zoning policies, and other land-use restrictions like natural protection areas, geographical limitations in the form of water bodies or sludge areas are expected to affect supply of land, which will in turn be reflected in industrial land market outcomes. Our results suggest that gross domestic product (GDP), industrial employment, gross value added (GVA), property price, and other parameters representing demand and supply conditions in the industrial market explain industrial land developments with high significance levels. It is also shown that contrary to the current values, lagged values of the economic parameters have more sound relationships with the industrial developments in the Netherlands. The findings suggest use of lags between selected economic parameters and industrial land use in land forecasting applications. PMID:28877204

  20. MULTIREGION: a simulation-forecasting model of BEA economic area population and employment. [Bureau of Economic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, R.J.; Westley, G.W.; Herzog, H.W. Jr.

    This report documents the development of MULTIREGION, a computer model of regional and interregional socio-economic development. The MULTIREGION model interprets the economy of each BEA economic area as a labor market, measures all activity in terms of people as members of the population (labor supply) or as employees (labor demand), and simultaneously simulates or forecasts the demands and supplies of labor in all BEA economic areas at five-year intervals. In general the outputs of MULTIREGION are intended to resemble those of the Water Resource Council's OBERS projections and to be put to similar planning and analysis purposes. This report hasmore » been written at two levels to serve the needs of multiple audiences. The body of the report serves as a fairly nontechnical overview of the entire MULTIREGION project; a series of technical appendixes provide detailed descriptions of the background empirical studies of births, deaths, migration, labor force participation, natural resource employment, manufacturing employment location, and local service employment used to construct the model.« less

  1. Hybrid model for forecasting time series with trend, seasonal and salendar variation patterns

    NASA Astrophysics Data System (ADS)

    Suhartono; Rahayu, S. P.; Prastyo, D. D.; Wijayanti, D. G. P.; Juliyanto

    2017-09-01

    Most of the monthly time series data in economics and business in Indonesia and other Moslem countries not only contain trend and seasonal, but also affected by two types of calendar variation effects, i.e. the effect of the number of working days or trading and holiday effects. The purpose of this research is to develop a hybrid model or a combination of several forecasting models to predict time series that contain trend, seasonal and calendar variation patterns. This hybrid model is a combination of classical models (namely time series regression and ARIMA model) and/or modern methods (artificial intelligence method, i.e. Artificial Neural Networks). A simulation study was used to show that the proposed procedure for building the hybrid model could work well for forecasting time series with trend, seasonal and calendar variation patterns. Furthermore, the proposed hybrid model is applied for forecasting real data, i.e. monthly data about inflow and outflow of currency at Bank Indonesia. The results show that the hybrid model tend to provide more accurate forecasts than individual forecasting models. Moreover, this result is also in line with the third results of the M3 competition, i.e. the hybrid model on average provides a more accurate forecast than the individual model.

  2. Daily Peak Load Forecasting of Next Day using Weather Distribution and Comparison Value of Each Nearby Date Data

    NASA Astrophysics Data System (ADS)

    Ito, Shigenobu; Yukita, Kazuto; Goto, Yasuyuki; Ichiyanagi, Katsuhiro; Nakano, Hiroyuki

    By the development of industry, in recent years; dependence to electric energy is growing year by year. Therefore, reliable electric power supply is in need. However, to stock a huge amount of electric energy is very difficult. Also, there is a necessity to keep balance between the demand and supply, which changes hour after hour. Consequently, to supply the high quality and highly dependable electric power supply, economically, and with high efficiency, there is a need to forecast the movement of the electric power demand carefully in advance. And using that forecast as the source, supply and demand management plan should be made. Thus load forecasting is said to be an important job among demand investment of electric power companies. So far, forecasting method using Fuzzy logic, Neural Net Work, Regression model has been suggested for the development of forecasting accuracy. Those forecasting accuracy is in a high level. But to invest electric power in higher accuracy more economically, a new forecasting method with higher accuracy is needed. In this paper, to develop the forecasting accuracy of the former methods, the daily peak load forecasting method using the weather distribution of highest and lowest temperatures, and comparison value of each nearby date data is suggested.

  3. An economic model of the manufacturers' aircraft production and airline earnings potential, volume 3

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.; Hill, R. M.

    1978-01-01

    A behavioral explanation of the process of technological change in the U. S. aircraft manufacturing and airline industries is presented. The model indicates the principal factors which influence the aircraft (airframe) manufacturers in researching, developing, constructing and promoting new aircraft technology; and the financial requirements which determine the delivery of new aircraft to the domestic trunk airlines. Following specification and calibration of the model, the types and numbers of new aircraft were estimated historically for each airline's fleet. Examples of possible applications of the model to forecasting an individual airline's future fleet also are provided. The functional form of the model is a composite which was derived from several preceding econometric models developed on the foundations of the economics of innovation, acquisition, and technological change and represents an important contribution to the improved understanding of the economic and financial requirements for aircraft selection and production. The model's primary application will be to forecast the future types and numbers of new aircraft required for each domestic airline's fleet.

  4. A Methodology for Forecasting Damage & Economic Consequences to Floods: Building on the National Flood Interoperability Experiment (NFIE)

    NASA Astrophysics Data System (ADS)

    Tootle, G. A.; Gutenson, J. L.; Zhu, L.; Ernest, A. N. S.; Oubeidillah, A.; Zhang, X.

    2015-12-01

    The National Flood Interoperability Experiment (NFIE) held June 3-July 17, 2015 at the National Water Center (NWC) in Tuscaloosa, Alabama sought to demonstrate an increase in flood predictive capacity for the coterminous United States (CONUS). Accordingly, NFIE-derived technologies and workflows offer the ability to forecast flood damage and economic consequence estimates that coincide with the hydrologic and hydraulic estimations these physics-based models generate. A model providing an accurate prediction of damage and economic consequences is a valuable asset when allocating funding for disaster response, recovery, and relief. Damage prediction and economic consequence assessment also offer an adaptation planning mechanism for defending particularly valuable or vulnerable structures. The NFIE, held at the NWC on The University of Alabama (UA) campus led to the development of this large scale flow and inundation forecasting framework. Currently, the system can produce 15-hour lead-time forecasts for the entire coterminous United States (CONUS). A concept which is anticipated to become operational as of May 2016 within the NWC. The processing of such a large-scale, fine resolution model is accomplished in a parallel computing environment using large supercomputing clusters. Traditionally, flood damage and economic consequence assessment is calculated in a desktop computing environment with a ménage of meteorology, hydrology, hydraulic, and damage assessment tools. In the United States, there are a range of these flood damage/ economic consequence assessment software's available to local, state, and federal emergency management agencies. Among the more commonly used and freely accessible models are the Hydrologic Engineering Center's Flood Damage Reduction Analysis (HEC-FDA), Flood Impact Assessment (HEC-FIA), and Federal Emergency Management Agency's (FEMA's) United States Multi-Hazard (Hazus-MH). All of which exist only in a desktop environment. With this, authors submit an initial framework for estimating damage and economic consequences to floods using flow and inundation products from the NFIE framework. This adaptive system utilizes existing nationwide datasets describing location and use of structures and can take assimilate a range of data resolutions.

  5. Entropy Econometrics for combining regional economic forecasts: A Data-Weighted Prior Estimator

    NASA Astrophysics Data System (ADS)

    Fernández-Vázquez, Esteban; Moreno, Blanca

    2017-10-01

    Forecast combination has been studied in econometrics for a long time, and the literature has shown the superior performance of forecast combination over individual predictions. However, there is still controversy on which is the best procedure to specify the forecast weights. This paper explores the possibility of using a procedure based on Entropy Econometrics, which allows setting the weights for the individual forecasts as a mixture of different alternatives. In particular, we examine the ability of the Data-Weighted Prior Estimator proposed by Golan (J Econom 101(1):165-193, 2001) to combine forecasting models in a context of small sample sizes, a relative common scenario when dealing with time series for regional economies. We test the validity of the proposed approach using a simulation exercise and a real-world example that aims at predicting gross regional product growth rates for a regional economy. The forecasting performance of the Data-Weighted Prior Estimator proposed is compared with other combining methods. The simulation results indicate that in scenarios of heavily ill-conditioned datasets the approach suggested dominates other forecast combination strategies. The empirical results are consistent with the conclusions found in the numerical experiment.

  6. Coupling Recruitment Forecasts with Economics in the Gulf of Maine's American Lobster Fishery

    NASA Astrophysics Data System (ADS)

    Wahle, R.; Oppenheim, N.; Brady, D. C.; Dayton, A.; Sun, C. H. J.

    2016-02-01

    Accurate predictions of fishery recruitment and landings represent an important goal of fisheries science and management, but linking environmental drivers of fish population dynamics to financial markets remains a challenge. A fundamental step in that process is understanding the environmental drivers of fishery recruitment. American lobster (Homarus americanus) populations of the northwest Atlantic have been undergoing a dramatic surge, mostly driven by increases the Gulf of Maine. Settler-recruit models that track cohorts after larvae settle to the sea bed are proving useful in predicting subsequent fishery recruitment some 5-7 years later. Here we describe new recruitment forecasting models for the lobster fishery at 11 management areas from Southern New England to Atlantic Canada. We use an annual survey of juvenile year-class strength and environmental indicators to parameterize growth and mortality terms in the model. As a consequence of a recent widespread multi-year downturn in larval settlement, our models suggest that the peak in lobster abundance in the Gulf of Maine will be passed in the near future. We also present initial steps in the coupling of forecast data with economic models for the fishery. We anticipate that these models will give stakeholders and policy makers time to consider their management choices for this most valuable of the region's fisheries. Our vision is to couple our forecast model outputs to an economic model that captures the dynamics of market forces in the New England and Canadian Maritime lobster fisheries. It will then be possible to estimate the financial status of the fishery several years in advance. This early warning system could mitigate the adverse effects of a fluctuating fishery on the coastal communities that are perilously dependent upon it.

  7. The Research of Regression Method for Forecasting Monthly Electricity Sales Considering Coupled Multi-factor

    NASA Astrophysics Data System (ADS)

    Wang, Jiangbo; Liu, Junhui; Li, Tiantian; Yin, Shuo; He, Xinhui

    2018-01-01

    The monthly electricity sales forecasting is a basic work to ensure the safety of the power system. This paper presented a monthly electricity sales forecasting method which comprehensively considers the coupled multi-factors of temperature, economic growth, electric power replacement and business expansion. The mathematical model is constructed by using regression method. The simulation results show that the proposed method is accurate and effective.

  8. Economic Value of Weather and Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Katz, Richard W.; Murphy, Allan H.

    1997-06-01

    Weather and climate extremes can significantly impact the economics of a region. This book examines how weather and climate forecasts can be used to mitigate the impact of the weather on the economy. Interdisciplinary in scope, it explores the meteorological, economic, psychological, and statistical aspects of weather prediction. Chapters by area specialists provide a comprehensive view of this timely topic. They encompass forecasts over a wide range of temporal scales, from weather over the next few hours to the climate months or seasons ahead, and address the impact of these forecasts on human behavior. Economic Value of Weather and Climate Forecasts seeks to determine the economic benefits of existing weather forecasting systems and the incremental benefits of improving these systems, and will be an interesting and essential text for economists, statisticians, and meteorologists.

  9. SEASAT economic assessment. Volume 9: Ports and harbors case study and generalization. [economic benefits of SEASAT satellites to harbors and shipping industries through improved weather forecasting

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This case study and generalization quantify benefits made possible through improved weather forecasting resulting from the integration of SEASAT data into local weather forecasts. The major source of avoidable economic losses to shipping from inadequate weather forecasting data is shown to be dependent on local precipitation forecasting. The ports of Philadelphia and Boston were selected for study.

  10. 76 FR 67403 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ..., making business decisions, developing economic models and forecasts, conducting economic research, and... of information under the provisions of the Paperwork Reduction Act (44 U.S.C. chapter 35). Agency: U.... Economic census statistics serve as part of the framework for the national accounts and provide essential...

  11. Effect of initial conditions of a catchment on seasonal streamflow prediction using ensemble streamflow prediction (ESP) technique for the Rangitata and Waitaki River basins on the South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Singh, Shailesh Kumar; Zammit, Christian; Hreinsson, Einar; Woods, Ross; Clark, Martyn; Hamlet, Alan

    2013-04-01

    Increased access to water is a key pillar of the New Zealand government plan for economic growths. Variable climatic conditions coupled with market drivers and increased demand on water resource result in critical decision made by water managers based on climate and streamflow forecast. Because many of these decisions have serious economic implications, accurate forecast of climate and streamflow are of paramount importance (eg irrigated agriculture and electricity generation). New Zealand currently does not have a centralized, comprehensive, and state-of-the-art system in place for providing operational seasonal to interannual streamflow forecasts to guide water resources management decisions. As a pilot effort, we implement and evaluate an experimental ensemble streamflow forecasting system for the Waitaki and Rangitata River basins on New Zealand's South Island using a hydrologic simulation model (TopNet) and the familiar ensemble streamflow prediction (ESP) paradigm for estimating forecast uncertainty. To provide a comprehensive database for evaluation of the forecasting system, first a set of retrospective model states simulated by the hydrologic model on the first day of each month were archived from 1972-2009. Then, using the hydrologic simulation model, each of these historical model states was paired with the retrospective temperature and precipitation time series from each historical water year to create a database of retrospective hindcasts. Using the resulting database, the relative importance of initial state variables (such as soil moisture and snowpack) as fundamental drivers of uncertainties in forecasts were evaluated for different seasons and lead times. The analysis indicate that the sensitivity of flow forecast to initial condition uncertainty is depend on the hydrological regime and season of forecast. However initial conditions do not have a large impact on seasonal flow uncertainties for snow dominated catchments. Further analysis indicates that this result is valid when the hindcast database is conditioned by ENSO classification. As a result hydrological forecasts based on ESP technique, where present initial conditions with histological forcing data are used may be plausible for New Zealand catchments.

  12. Economic consequences of improved temperature forecasts: An experiment with the Florida citrus growers (control group results). [weather forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A demonstration experiment is being planned to show that frost and freeze prediction improvements are possible utilizing timely Synchronous Meteorological Satellite temperature measurements and that this information can affect Florida citrus grower operations and decisions. An economic experiment was carried out which will monitor citrus growers' decisions, actions, costs and losses, and meteorological forecasts and actual weather events and will establish the economic benefits of improved temperature forecasts. A summary is given of the economic experiment, the results obtained to date, and the work which still remains to be done. Specifically, the experiment design is described in detail as are the developed data collection methodology and procedures, sampling plan, data reduction techniques, cost and loss models, establishment of frost severity measures, data obtained from citrus growers, National Weather Service, and Federal Crop Insurance Corp., resulting protection costs and crop losses for the control group sample, extrapolation of results of control group to the Florida citrus industry and the method for normalization of these results to a normal or average frost season so that results may be compared with anticipated similar results from test group measurements.

  13. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  14. Uncertainty estimation of long-range ensemble forecasts of snowmelt flood characteristics

    NASA Astrophysics Data System (ADS)

    Kuchment, L.

    2012-04-01

    Long-range forecasts of snowmelt flood characteristics with the lead time of 2-3 months have important significance for regulation of flood runoff and mitigation of flood damages at almost all large Russian rivers At the same time, the application of current forecasting techniques based on regression relationships between the runoff volume and the indexes of river basin conditions can lead to serious errors in forecasting resulted in large economic losses caused by wrong flood regulation. The forecast errors can be caused by complicated processes of soil freezing and soil moisture redistribution, too high rate of snow melt, large liquid precipitation before snow melt. or by large difference of meteorological conditions during the lead-time periods from climatologic ones. Analysis of economic losses had shown that the largest damages could, to a significant extent, be avoided if the decision makers had an opportunity to take into account predictive uncertainty and could use more cautious strategies in runoff regulation. Development of methodology of long-range ensemble forecasting of spring/summer floods which is based on distributed physically-based runoff generation models has created, in principle, a new basis for improving hydrological predictions as well as for estimating their uncertainty. This approach is illustrated by forecasting of the spring-summer floods at the Vyatka River and the Seim River basins. The application of the physically - based models of snowmelt runoff generation give a essential improving of statistical estimates of the deterministic forecasts of the flood volume in comparison with the forecasts obtained from the regression relationships. These models had been used also for the probabilistic forecasts assigning meteorological inputs during lead time periods from the available historical daily series, and from the series simulated by using a weather generator and the Monte Carlo procedure. The weather generator consists of the stochastic models of daily temperature and precipitation. The performance of the probabilistic forecasts were estimated by the ranked probability skill scores. The application of Monte Carlo simulations using weather generator has given better results then using the historical meteorological series.

  15. Small city synthesis of transportation planning and economic development : user's guide

    DOT National Transportation Integrated Search

    1999-10-01

    Using Alice, Texas, as a model, a template has been developed to increase the cooperation and communication between transportation planning and economic development groups. The template establishes a foundation for coordinating traffic forecasts with...

  16. Weather forecasts, users' economic expenses and decision strategies

    NASA Technical Reports Server (NTRS)

    Carter, G. M.

    1972-01-01

    Differing decision models and operational characteristics affecting the economic expenses (i.e., the costs of protection and losses suffered if no protective measures have been taken) associated with the use of predictive weather information have been examined.

  17. Modeling of Economy Considering Crisis

    NASA Astrophysics Data System (ADS)

    Petrov, Lev F.

    2009-09-01

    We discuss main modeling's problems of economy dynamic processes and the reason forecast's absence of economic crisis. We present a structure of complexity level of system and models and discuss expected results concerning crisis phenomena. We formulate the basic perspective directions of the mathematical modeling of economy, including possibility of the analysis of the pre crisis, crisis and post crisis phenomena in economic systems.

  18. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model

    PubMed Central

    Hughes, Barry B; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R

    2011-01-01

    Abstract Objective To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. Methods The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. Findings The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate−health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Conclusion Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements. PMID:21734761

  19. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model.

    PubMed

    Hughes, Barry B; Kuhn, Randall; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R

    2011-07-01

    To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate-health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements.

  20. Multi-step-ahead crude oil price forecasting using a hybrid grey wave model

    NASA Astrophysics Data System (ADS)

    Chen, Yanhui; Zhang, Chuan; He, Kaijian; Zheng, Aibing

    2018-07-01

    Crude oil is crucial to the operation and economic well-being of the modern society. Huge changes of crude oil price always cause panics to the global economy. There are many factors influencing crude oil price. Crude oil price prediction is still a difficult research problem widely discussed among researchers. Based on the researches on Heterogeneous Market Hypothesis and the relationship between crude oil price and macroeconomic factors, exchange market, stock market, this paper proposes a hybrid grey wave forecasting model, which combines Random Walk (RW)/ARMA to forecast multi-step-ahead crude oil price. More specifically, we use grey wave forecasting model to model the periodical characteristics of crude oil price and ARMA/RW to simulate the daily random movements. The innovation also comes from using the information of the time series graph to forecast crude oil price, since grey wave forecasting is a graphical prediction method. The empirical results demonstrate that based on the daily data of crude oil price, the hybrid grey wave forecasting model performs well in 15- to 20-step-ahead prediction and it always dominates ARMA and Random Walk in correct direction prediction.

  1. Modeling the Components of an Economy as a Complex Adaptive System

    DTIC Science & Technology

    principles of constrained optimization and fails to see economic variables as part of an interconnected network. While tools for forecasting economic...data sets such as the stock market . This research portrays the stock market as one component of a networked system of economic variables, with the

  2. Evaluation of trade influence on economic growth rate by computational intelligence approach

    NASA Astrophysics Data System (ADS)

    Sokolov-Mladenović, Svetlana; Milovančević, Milos; Mladenović, Igor

    2017-01-01

    In this study was analyzed the influence of trade parameters on the economic growth forecasting accuracy. Computational intelligence method was used for the analyzing since the method can handle highly nonlinear data. It is known that the economic growth could be modeled based on the different trade parameters. In this study five input parameters were considered. These input parameters were: trade in services, exports of goods and services, imports of goods and services, trade and merchandise trade. All these parameters were calculated as added percentages in gross domestic product (GDP). The main goal was to select which parameters are the most impactful on the economic growth percentage. GDP was used as economic growth indicator. Results show that the imports of goods and services has the highest influence on the economic growth forecasting accuracy.

  3. Research on WNN Modeling for Gold Price Forecasting Based on Improved Artificial Bee Colony Algorithm

    PubMed Central

    2014-01-01

    Gold price forecasting has been a hot issue in economics recently. In this work, wavelet neural network (WNN) combined with a novel artificial bee colony (ABC) algorithm is proposed for this gold price forecasting issue. In this improved algorithm, the conventional roulette selection strategy is discarded. Besides, the convergence statuses in a previous cycle of iteration are fully utilized as feedback messages to manipulate the searching intensity in a subsequent cycle. Experimental results confirm that this new algorithm converges faster than the conventional ABC when tested on some classical benchmark functions and is effective to improve modeling capacity of WNN regarding the gold price forecasting scheme. PMID:24744773

  4. Stochastic Multi-Timescale Power System Operations With Variable Wind Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hongyu; Krad, Ibrahim; Florita, Anthony

    This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less

  5. Forecasting electricity usage using univariate time series models

    NASA Astrophysics Data System (ADS)

    Hock-Eam, Lim; Chee-Yin, Yip

    2014-12-01

    Electricity is one of the important energy sources. A sufficient supply of electricity is vital to support a country's development and growth. Due to the changing of socio-economic characteristics, increasing competition and deregulation of electricity supply industry, the electricity demand forecasting is even more important than before. It is imperative to evaluate and compare the predictive performance of various forecasting methods. This will provide further insights on the weakness and strengths of each method. In literature, there are mixed evidences on the best forecasting methods of electricity demand. This paper aims to compare the predictive performance of univariate time series models for forecasting the electricity demand using a monthly data of maximum electricity load in Malaysia from January 2003 to December 2013. Results reveal that the Box-Jenkins method produces the best out-of-sample predictive performance. On the other hand, Holt-Winters exponential smoothing method is a good forecasting method for in-sample predictive performance.

  6. Does money matter in inflation forecasting?

    NASA Astrophysics Data System (ADS)

    Binner, J. M.; Tino, P.; Tepper, J.; Anderson, R.; Jones, B.; Kendall, G.

    2010-11-01

    This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two nonlinear techniques, namely, recurrent neural networks and kernel recursive least squares regression-techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naïve random walk model. The best models were nonlinear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. Beyond its economic findings, our study is in the tradition of physicists’ long-standing interest in the interconnections among statistical mechanics, neural networks, and related nonparametric statistical methods, and suggests potential avenues of extension for such studies.

  7. Enhanced seasonal forecast skill following stratospheric sudden warmings

    NASA Astrophysics Data System (ADS)

    Sigmond, M.; Scinocca, J. F.; Kharin, V. V.; Shepherd, T. G.

    2013-02-01

    Advances in seasonal forecasting have brought widespread socio-economic benefits. However, seasonal forecast skill in the extratropics is relatively modest, prompting the seasonal forecasting community to search for additional sources of predictability. For over a decade it has been suggested that knowledge of the state of the stratosphere can act as a source of enhanced seasonal predictability; long-lived circulation anomalies in the lower stratosphere that follow stratospheric sudden warmings are associated with circulation anomalies in the troposphere that can last up to two months. Here, we show by performing retrospective ensemble model forecasts that such enhanced predictability can be realized in a dynamical seasonal forecast system with a good representation of the stratosphere. When initialized at the onset date of stratospheric sudden warmings, the model forecasts faithfully reproduce the observed mean tropospheric conditions in the months following the stratospheric sudden warmings. Compared with an equivalent set of forecasts that are not initialized during stratospheric sudden warmings, we document enhanced forecast skill for atmospheric circulation patterns, surface temperatures over northern Russia and eastern Canada and North Atlantic precipitation. We suggest that seasonal forecast systems initialized during stratospheric sudden warmings are likely to yield significantly greater forecast skill in some regions.

  8. Ups and downs of economics and econophysics — Facebook forecast

    NASA Astrophysics Data System (ADS)

    Gajic, Nenad; Budinski-Petkovic, Ljuba

    2013-01-01

    What is econophysics and its relationship with economics? What is the state of economics after the global economic crisis, and is there a future for the paradigm of market equilibrium, with imaginary perfect competition and rational agents? Can the next paradigm of economics adopt important assumptions derived from econophysics models: that markets are chaotic systems, striving to extremes as bubbles and crashes show, with psychologically motivated, statistically predictable individual behaviors? Is the future of econophysics, as predicted here, to disappear and become a part of economics? A good test of the current state of econophysics and its methods is the valuation of Facebook immediately after the initial public offering - this forecast indicates that Facebook is highly overvalued, and its IPO valuation of 104 billion dollars is mostly the new financial bubble based on the expectations of unlimited growth, although it’s easy to prove that Facebook is close to the upper limit of its users.

  9. Forecasting Optimal Solar Energy Supply in Jiangsu Province (China): A Systematic Approach Using Hybrid of Weather and Energy Forecast Models

    PubMed Central

    Zhao, Xiuli; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor. PMID:24511292

  10. Forecasting optimal solar energy supply in Jiangsu Province (China): a systematic approach using hybrid of weather and energy forecast models.

    PubMed

    Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  11. Methodology for the Assessment of the Macroeconomic Impacts of Stricter CAFE Standards - Addendum

    EIA Publications

    2002-01-01

    This assessment of the economic impacts of Corporate Average Fuel Economy (CAFÉ) standards marks the first time the Energy Information Administration has used the new direct linkage of the DRI-WEFA Macroeconomic Model to the National Energy Modeling System (NEMS) in a policy setting. This methodology assures an internally consistent solution between the energy market concepts forecast by NEMS and the aggregate economy as forecast by the DRI-WEFA Macroeconomic Model of the U.S. Economy.

  12. Bayesian analyses of seasonal runoff forecasts

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, R.; Reese, S.

    1991-12-01

    Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.

  13. Documentation of volume 3 of the 1978 Energy Information Administration annual report to congress

    NASA Astrophysics Data System (ADS)

    1980-02-01

    In a preliminary overview of the projection process, the relationship between energy prices, supply, and demand is addressed. Topics treated in detail include a description of energy economic interactions, assumptions regarding world oil prices, and energy modeling in the long term beyond 1995. Subsequent sections present the general approach and methodology underlying the forecasts, and define and describe the alternative projection series and their associated assumptions. Short term forecasting, midterm forecasting, long term forecasting of petroleum, coal, and gas supplies are included. The role of nuclear power as an energy source is also discussed.

  14. What might we learn from climate forecasts?

    PubMed Central

    Smith, Leonard A.

    2002-01-01

    Most climate models are large dynamical systems involving a million (or more) variables on big computers. Given that they are nonlinear and not perfect, what can we expect to learn from them about the earth's climate? How can we determine which aspects of their output might be useful and which are noise? And how should we distribute resources between making them “better,” estimating variables of true social and economic interest, and quantifying how good they are at the moment? Just as “chaos” prevents accurate weather forecasts, so model error precludes accurate forecasts of the distributions that define climate, yielding uncertainty of the second kind. Can we estimate the uncertainty in our uncertainty estimates? These questions are discussed. Ultimately, all uncertainty is quantified within a given modeling paradigm; our forecasts need never reflect the uncertainty in a physical system. PMID:11875200

  15. The Canadian seasonal forecast and the APCC exchange.

    NASA Astrophysics Data System (ADS)

    Archambault, B.; Fontecilla, J.; Kharin, V.; Bourgouin, P.; Ashok, K.; Lee, D.

    2009-05-01

    In this talk, we will first describe the Canadian seasonal forecast system. This system uses a 4 model ensemble approach with each of these models generating a 10 members ensemble. Multi-model issues related to this system will be describes. Secondly, we will describe an international multi-system initiative. The Asia-Pacific Economic Cooperation (APEC) is a forum for 21 Pacific Rim countries or regions including Canada. The APEC Climate Center (APCC) provides seasonal forecasts to their regional climate centers with a Multi Model Ensemble (MME) approach. The APCC MME is based on 13 ensemble prediction systems from different institutions including MSC(Canada), NCEP(USA), COLA(USA), KMA(Korea), JMA(Japan), BOM(Australia) and others. In this presentation, we will describe the basics of this international cooperation.

  16. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    DOE PAGES

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; ...

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less

  17. Economic assessment of flood forecasts for a risk-averse decision-maker

    NASA Astrophysics Data System (ADS)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier-Filion, Thomas-Charles

    2017-04-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. It has also been suggested in past studies that ensemble forecasts might possess a greater economic value than deterministic forecasts. However, the vast majority of recent hydro-economic literature is based on the cost-loss ratio framework, which might be appealing for its simplicity and intuitiveness. One important drawback of the cost-loss ratio is that it implicitly assumes a risk-neutral decision maker. By definition, a risk-neutral individual is indifferent to forecasts' sharpness: as long as forecasts agree with observations on average, the risk-neutral individual is satisfied. A risk-averse individual, however, is sensitive to the level of precision (sharpness) of forecasts. This person is willing to pay to increase his or her certainty about future events. In fact, this is how insurance companies operate: the probability of seeing one's house burn down is relatively low, so the expected cost related to such event is also low. However, people are willing to buy insurance to avoid the risk, however small, of loosing everything. Similarly, in a context where people's safety and property is at stake, the typical decision maker is more risk-averse than risk-neutral. Consequently, the cost-loss ratio is not the most appropriate tool to assess the economic value of flood forecasts. This presentation describes a more realistic framework for assessing the economic value of such forecasts for flood mitigation purposes. Borrowing from economics, the Constant Absolute Risk Aversion utility function (CARA) is the central tool of this new framework. Utility functions allow explicitly accounting for the level of risk aversion of the decision maker and fully exploiting the information related to ensemble forecasts' uncertainty. Three concurrent ensemble streamflow forecasting systems are compared in terms of quality (comparison with observed values) and in terms of their economic value. This assessment is performed for lead times of one to five days. The three systems are: (1) simple statistically dressed deterministic forecasts, (2) forecasts based on meteorological ensembles and (3) a variant of the latter that also includes an estimation of state variables uncertainty. The comparison takes place on the Montmorency River, a small flood-prone watershed in south central Quebec, Canada. The results show that forecasts quality as assessed by well-known tools such as the Continuous Ranked Probability Score or the reliability diagram do not necessarily translate directly into economic value, especially if the decision maker is not risk-neutral. In addition, results show that the economic value of forecasts for a risk-averse decision maker is very much influenced by the most extreme members of ensemble forecasts (upper tail of the predictive distributions). This study provides a new basis for further improvement of our comprehension of the complex interactions between forecasts uncertainty, risk-aversion and decision-making.

  18. Using a Software Tool in Forecasting: a Case Study of Sales Forecasting Taking into Account Data Uncertainty

    NASA Astrophysics Data System (ADS)

    Fabianová, Jana; Kačmáry, Peter; Molnár, Vieroslav; Michalik, Peter

    2016-10-01

    Forecasting is one of the logistics activities and a sales forecast is the starting point for the elaboration of business plans. Forecast accuracy affects the business outcomes and ultimately may significantly affect the economic stability of the company. The accuracy of the prediction depends on the suitability of the use of forecasting methods, experience, quality of input data, time period and other factors. The input data are usually not deterministic but they are often of random nature. They are affected by uncertainties of the market environment, and many other factors. Taking into account the input data uncertainty, the forecast error can by reduced. This article deals with the use of the software tool for incorporating data uncertainty into forecasting. Proposals are presented of a forecasting approach and simulation of the impact of uncertain input parameters to the target forecasted value by this case study model. The statistical analysis and risk analysis of the forecast results is carried out including sensitivity analysis and variables impact analysis.

  19. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

    NASA Astrophysics Data System (ADS)

    Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim

    2017-07-01

    Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

  20. Regional economic forecasting models: Suitability for use in the National Acid Precipitation Assessment Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    South, D.W.; McDonald, J.F.; Oakland, W.H.

    1990-02-01

    In preparation for the Phase 1 test runs of the National Acid Precipitation Assessment Program Task Group B (TG-B) emissions model set, the need arose to provide regional economic data directly to the sector models in the model set and to the Argonne Regionalization Activity Module (ARAM). Candidate regional economic models were reviewed, and the Data Resources, Inc. (DRI), model was selected. This review of models, conducted during 1984--1985, is documented in this report. Even though considerable time has elapsed since then, the model descriptions and critique contained in this report are still fairly accurate and the recommendations should stillmore » be valid. There have been, however, some significant changes: (1) two of the economic consulting firms whose models were reviewed, Chase Econometrics and Wharton Econometric Forecasting Associates, have merged, (2) the DRI Regional Information System (DRI/RIS) now constructs a regional measure of industrial value of shipments, which will be used as the industrial activity variable (instead of employment) in the Phase 2 scenario analyses, and (3) based on recommendations from the third-party review of the TG-B model set, price-sensitive regional equations were developed to provide inputs, not already produced by the DRI/RIS model, directly to the sector models, thus eliminating the function served by ARAM. 44 refs., 12 figs., 44 tabs.« less

  1. Multicomponent ensemble models to forecast induced seismicity

    NASA Astrophysics Data System (ADS)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels of seismicity days before the occurrence of felt events.

  2. Economic Models for Projecting Industrial Capacity for Defense Production: A Review

    DTIC Science & Technology

    1983-02-01

    macroeconomic forecast to establish the level of civilian final demand; all use the DoD Bridge Table to allocate budget category outlays to industries. Civilian...output table.’ 3. Macroeconomic Assumptions and the Prediction of Final Demand All input-output models require as a starting point a prediction of final... macroeconomic fore- cast of GNP and its components and (2) a methodology to transform these forecast values of consumption, investment, exports, etc. into

  3. Forecasting skills of the ensemble hydro-meteorological system for the Po river floods

    NASA Astrophysics Data System (ADS)

    Ricciardi, Giuseppe; Montani, Andrea; Paccagnella, Tiziana; Pecora, Silvano; Tonelli, Fabrizio

    2013-04-01

    The Po basin is the largest and most economically important river-basin in Italy. Extreme hydrological events, including floods, flash floods and droughts, are expected to become more severe in the next future due to climate change, and related ground effects are linked both with environmental and social resilience. A Warning Operational Center (WOC) for hydrological event management was created in Emilia Romagna region. In the last years, the WOC faced challenges in legislation, organization, technology and economics, achieving improvements in forecasting skill and information dissemination. Since 2005, an operational forecasting and modelling system for flood modelling and forecasting has been implemented, aimed at supporting and coordinating flood control and emergency management on the whole Po basin. This system, referred to as FEWSPo, has also taken care of environmental aspects of flood forecast. The FEWSPo system has reached a very high level of complexity, due to the combination of three different hydrological-hydraulic chains (HEC-HMS/RAS - MIKE11 NAM/HD, Topkapi/Sobek), with several meteorological inputs (forecasted - COSMOI2, COSMOI7, COSMO-LEPS among others - and observed). In this hydrological and meteorological ensemble the management of the relative predictive uncertainties, which have to be established and communicated to decision makers, is a debated scientific and social challenge. Real time activities face professional, modelling and technological aspects but are also strongly interrelated with organization and human aspects. The authors will report a case study using the operational flood forecast hydro-meteorological ensemble, provided by the MIKE11 chain fed by COSMO_LEPS EQPF. The basic aim of the proposed approach is to analyse limits and opportunities of the long term forecast (with a lead time ranging from 3 to 5 days), for the implementation of low cost actions, also looking for a well informed decision making and the improvement of flood preparedness and crisis management for basins greater than 1.000 km2.

  4. Score Matrix for HWBI Forecast Model

    EPA Pesticide Factsheets

    2000-2010 Annual State-Scale Service and Domain scores used to support the approach for forecasting EPA's Human Well-Being Index. A modeling approach was developed based relationship function equations derived from select economic, social and ecosystem final goods and service scores and calculated human well-being index and related domain scores. These data are being used in a secondary capacity. The foundational data and scoring techniques were originally described in: a) U.S. EPA. 2012. Indicators and Methods for Constructing a U.S. Human Well-being Index (HWBI) for Ecosystem Services Research. Report. EPA/600/R-12/023. pp. 121; and b) U.S. EPA. 2014. Indicators and Methods for Evaluating Economic, Ecosystem and Social Services Provisioning. Report. EPA/600/R-14/184. pp. 174. Mode Smith, L. M., Harwell, L. C., Summers, J. K., Smith, H. M., Wade, C. M., Straub, K. R. and J.L. Case (2014).This dataset is associated with the following publication:Summers , K., L. Harwell , and L. Smith. A Model For Change: An Approach for Forecasting Well-Being From Service-Based Decisions. ECOLOGICAL INDICATORS. Elsevier Science Ltd, New York, NY, USA, 69: 295-309, (2016).

  5. Seasonal Drought Prediction in East Africa: Can National Multi-Model Ensemble Forecasts Help?

    NASA Technical Reports Server (NTRS)

    Shukla, Shraddhanand; Roberts, J. B.; Funk, Christopher; Robertson, F. R.; Hoell, Andrew

    2015-01-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. As recently as in 2011 part of this region underwent one of the worst famine events in its history. Timely and skillful drought forecasts at seasonal scale for this region can inform better water and agro-pastoral management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts. However seasonal drought prediction in this region faces several challenges. Lack of skillful seasonal rainfall forecasts; the focus of this presentation, is one of those major challenges. In the past few decades, major strides have been taken towards improvement of seasonal scale dynamical climate forecasts. The National Centers for Environmental Prediction's (NCEP) National Multi-model Ensemble (NMME) is one such state-of-the-art dynamical climate forecast system. The NMME incorporates climate forecasts from 6+ fully coupled dynamical models resulting in 100+ ensemble member forecasts. Recent studies have indicated that in general NMME offers improvement over forecasts from any single model. However thus far the skill of NMME for forecasting rainfall in a vulnerable region like the East Africa has been unexplored. In this presentation we report findings of a comprehensive analysis that examines the strength and weakness of NMME in forecasting rainfall at seasonal scale in East Africa for all three of the prominent seasons for the region. (i.e. March-April-May, July-August-September and October-November- December). Simultaneously we also describe hybrid approaches; that combine statistical approaches with NMME forecasts; to improve rainfall forecast skill in the region when raw NMME forecasts lack in skill.

  6. Seasonal Drought Prediction in East Africa: Can National Multi-Model Ensemble Forecasts Help?

    NASA Technical Reports Server (NTRS)

    Shukla, Shraddhanand; Roberts, J. B.; Funk, Christopher; Robertson, F. R.; Hoell, Andrew

    2014-01-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. As recently as in 2011 part of this region underwent one of the worst famine events in its history. Timely and skillful drought forecasts at seasonal scale for this region can inform better water and agro-pastoral management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts. However seasonal drought prediction in this region faces several challenges. Lack of skillful seasonal rainfall forecasts; the focus of this presentation, is one of those major challenges. In the past few decades, major strides have been taken towards improvement of seasonal scale dynamical climate forecasts. The National Centers for Environmental Prediction's (NCEP) National Multi-model Ensemble (NMME) is one such state-of-the-art dynamical climate forecast system. The NMME incorporates climate forecasts from 6+ fully coupled dynamical models resulting in 100+ ensemble member forecasts. Recent studies have indicated that in general NMME offers improvement over forecasts from any single model. However thus far the skill of NMME for forecasting rainfall in a vulnerable region like the East Africa has been unexplored. In this presentation we report findings of a comprehensive analysis that examines the strength and weakness of NMME in forecasting rainfall at seasonal scale in East Africa for all three of the prominent seasons for the region. (i.e. March-April-May, July-August-September and October-November- December). Simultaneously we also describe hybrid approaches; that combine statistical approaches with NMME forecasts; to improve rainfall forecast skill in the region when raw NMME forecasts lack in skill.

  7. Establishing NWP capabilities in African Small Island States (SIDs)

    NASA Astrophysics Data System (ADS)

    Rögnvaldsson, Ólafur

    2017-04-01

    Íslenskar orkurannsóknir (ÍSOR), in collaboration with Belgingur Ltd. and the United Nations Economic Commission for Africa (UNECA) signed a Letter of Agreement in 2015 regarding collaboration in the "Establishing Operational Capacity for Building, Deploying and Using Numerical Weather and Seasonal Prediction Systems in Small Island States in Africa (SIDs)" project. The specific objectives of the collaboration were the following: - Build capacity of National Meteorological and Hydrology Services (NMHS) staff on the use of the WRF atmospheric model for weather and seasonal forecasting, interpretation of model results, and the use of observations to verify and improve model simulations. - Establish a platform for integrating short to medium range weather forecasts, as well as seasonal forecasts, into already existing infrastructure at NMHS and Regional Climate Centres. - Improve understanding of existing model results and forecast verification, for improving decision-making on the time scale of days to weeks. To meet these challenges the operational Weather On Demand (WOD) forecasting system, developed by Belgingur, is being installed in a number of SIDs countries (Cabo Verde, Guinea-Bissau, and Seychelles), as well as being deployed for the Pan-Africa region, with forecasts being disseminated to collaborating NMHSs.

  8. A genetic-algorithm-based remnant grey prediction model for energy demand forecasting.

    PubMed

    Hu, Yi-Chung

    2017-01-01

    Energy demand is an important economic index, and demand forecasting has played a significant role in drawing up energy development plans for cities or countries. As the use of large datasets and statistical assumptions is often impractical to forecast energy demand, the GM(1,1) model is commonly used because of its simplicity and ability to characterize an unknown system by using a limited number of data points to construct a time series model. This paper proposes a genetic-algorithm-based remnant GM(1,1) (GARGM(1,1)) with sign estimation to further improve the forecasting accuracy of the original GM(1,1) model. The distinctive feature of GARGM(1,1) is that it simultaneously optimizes the parameter specifications of the original and its residual models by using the GA. The results of experiments pertaining to a real case of energy demand in China showed that the proposed GARGM(1,1) outperforms other remnant GM(1,1) variants.

  9. A genetic-algorithm-based remnant grey prediction model for energy demand forecasting

    PubMed Central

    2017-01-01

    Energy demand is an important economic index, and demand forecasting has played a significant role in drawing up energy development plans for cities or countries. As the use of large datasets and statistical assumptions is often impractical to forecast energy demand, the GM(1,1) model is commonly used because of its simplicity and ability to characterize an unknown system by using a limited number of data points to construct a time series model. This paper proposes a genetic-algorithm-based remnant GM(1,1) (GARGM(1,1)) with sign estimation to further improve the forecasting accuracy of the original GM(1,1) model. The distinctive feature of GARGM(1,1) is that it simultaneously optimizes the parameter specifications of the original and its residual models by using the GA. The results of experiments pertaining to a real case of energy demand in China showed that the proposed GARGM(1,1) outperforms other remnant GM(1,1) variants. PMID:28981548

  10. Analysis of forecasting and inventory control of raw material supplies in PT INDAC INT’L

    NASA Astrophysics Data System (ADS)

    Lesmana, E.; Subartini, B.; Riaman; Jabar, D. A.

    2018-03-01

    This study discusses the data forecasting sales of carbon electrodes at PT. INDAC INT L uses winters and double moving average methods, while for predicting the amount of inventory and cost required in ordering raw material of carbon electrode next period using Economic Order Quantity (EOQ) model. The result of error analysis shows that winters method for next period gives result of MAE, MSE, and MAPE, the winters method is a better forecasting method for forecasting sales of carbon electrode products. So that PT. INDAC INT L is advised to provide products that will be sold following the sales amount by the winters method.

  11. Forecasting daily patient volumes in the emergency department.

    PubMed

    Jones, Spencer S; Thomas, Alun; Evans, R Scott; Welch, Shari J; Haug, Peter J; Snow, Gregory L

    2008-02-01

    Shifts in the supply of and demand for emergency department (ED) resources make the efficient allocation of ED resources increasingly important. Forecasting is a vital activity that guides decision-making in many areas of economic, industrial, and scientific planning, but has gained little traction in the health care industry. There are few studies that explore the use of forecasting methods to predict patient volumes in the ED. The goals of this study are to explore and evaluate the use of several statistical forecasting methods to predict daily ED patient volumes at three diverse hospital EDs and to compare the accuracy of these methods to the accuracy of a previously proposed forecasting method. Daily patient arrivals at three hospital EDs were collected for the period January 1, 2005, through March 31, 2007. The authors evaluated the use of seasonal autoregressive integrated moving average, time series regression, exponential smoothing, and artificial neural network models to forecast daily patient volumes at each facility. Forecasts were made for horizons ranging from 1 to 30 days in advance. The forecast accuracy achieved by the various forecasting methods was compared to the forecast accuracy achieved when using a benchmark forecasting method already available in the emergency medicine literature. All time series methods considered in this analysis provided improved in-sample model goodness of fit. However, post-sample analysis revealed that time series regression models that augment linear regression models by accounting for serial autocorrelation offered only small improvements in terms of post-sample forecast accuracy, relative to multiple linear regression models, while seasonal autoregressive integrated moving average, exponential smoothing, and artificial neural network forecasting models did not provide consistently accurate forecasts of daily ED volumes. This study confirms the widely held belief that daily demand for ED services is characterized by seasonal and weekly patterns. The authors compared several time series forecasting methods to a benchmark multiple linear regression model. The results suggest that the existing methodology proposed in the literature, multiple linear regression based on calendar variables, is a reasonable approach to forecasting daily patient volumes in the ED. However, the authors conclude that regression-based models that incorporate calendar variables, account for site-specific special-day effects, and allow for residual autocorrelation provide a more appropriate, informative, and consistently accurate approach to forecasting daily ED patient volumes.

  12. Combination of synoptical-analogous and dynamical methods to increase skill score of monthly air temperature forecasts over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Khan, Valentina; Tscepelev, Valery; Vilfand, Roman; Kulikova, Irina; Kruglova, Ekaterina; Tischenko, Vladimir

    2016-04-01

    Long-range forecasts at monthly-seasonal time scale are in great demand of socio-economic sectors for exploiting climate-related risks and opportunities. At the same time, the quality of long-range forecasts is not fully responding to user application necessities. Different approaches, including combination of different prognostic models, are used in forecast centers to increase the prediction skill for specific regions and globally. In the present study, two forecasting methods are considered which are exploited in operational practice of Hydrometeorological Center of Russia. One of them is synoptical-analogous method of forecasting of surface air temperature at monthly scale. Another one is dynamical system based on the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia. The seasonal version of this model has been used to issue global and regional forecasts at monthly-seasonal time scales. This study presents results of the evaluation of surface air temperature forecasts generated with using above mentioned synoptical-statistical and dynamical models, and their combination to potentially increase skill score over Northern Eurasia. The test sample of operational forecasts is encompassing period from 2010 through 2015. The seasonal and interannual variability of skill scores of these methods has been discussed. It was noticed that the quality of all forecasts is highly dependent on the inertia of macro-circulation processes. The skill scores of forecasts are decreasing during significant alterations of synoptical fields for both dynamical and empirical schemes. Procedure of combination of forecasts from different methods, in some cases, has demonstrated its effectiveness. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  13. Chemical weather forecasting for the Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Xu, J.; Zhou, G.; Chang, L.; Chen, B.

    2016-12-01

    Shanghai is one of the largest megacities in the world. With rapid economic growth of the city and its surrounding areas in recent years, air pollution has posed adverse effects on public health and ecosystem. In winter heavy pollution episodes are often associated with PM exceedances under stagnant conditions or transport events, whereas in summer the region frequently experiences elevated O3 levels. Chemical weather prediction systems with the WRF-Chem and CMAQ models are being developed to support air quality and haze forecasting for Shanghai and the Yangtze River Delta region. We will present main components of the modeling system, forecasting products, as well as evaluation results. Evaluation of the WRF-Chem forecasts show the model has generally good ability to capture the temporal variations of O3 and PM2.5. Substantial regional differences exist, with the best performance in Shanghai. Meanwhile, the forecasts tend to degrade during highly polluted episodes and transitional time periods, which highlights the need to improve model representation of key process (e.g. meteorological fields and formation of secondary pollutants). Recent work includes using the ECMWF global model forecasts as chemical boundary conditions for our regional model. We investigate the impact of chemical downscaling, and also compare the results from different models participated in the PANDA (PArtnership with chiNa on space Data) project. Results from ongoing efforts (e.g. chemical weather forecasting driven by SMS regional high resolution NWP) will also be presented.

  14. The Health Equity and Effectiveness of Policy Options to Reduce Dietary Salt Intake in England: Policy Forecast.

    PubMed

    Gillespie, Duncan O S; Allen, Kirk; Guzman-Castillo, Maria; Bandosz, Piotr; Moreira, Patricia; McGill, Rory; Anwar, Elspeth; Lloyd-Williams, Ffion; Bromley, Helen; Diggle, Peter J; Capewell, Simon; O'Flaherty, Martin

    2015-01-01

    Public health action to reduce dietary salt intake has driven substantial reductions in coronary heart disease (CHD) over the past decade, but avoidable socio-economic differentials remain. We therefore forecast how further intervention to reduce dietary salt intake might affect the overall level and inequality of CHD mortality. We considered English adults, with socio-economic circumstances (SEC) stratified by quintiles of the Index of Multiple Deprivation. We used IMPACTSEC, a validated CHD policy model, to link policy implementation to salt intake, systolic blood pressure and CHD mortality. We forecast the effects of mandatory and voluntary product reformulation, nutrition labelling and social marketing (e.g., health promotion, education). To inform our forecasts, we elicited experts' predictions on further policy implementation up to 2020. We then modelled the effects on CHD mortality up to 2025 and simultaneously assessed the socio-economic differentials of effect. Mandatory reformulation might prevent or postpone 4,500 (2,900-6,100) CHD deaths in total, with the effect greater by 500 (300-700) deaths or 85% in the most deprived than in the most affluent. Further voluntary reformulation was predicted to be less effective and inequality-reducing, preventing or postponing 1,500 (200-5,000) CHD deaths in total, with the effect greater by 100 (-100-600) deaths or 49% in the most deprived than in the most affluent. Further social marketing and improvements to labelling might each prevent or postpone 400-500 CHD deaths, but minimally affect inequality. Mandatory engagement with industry to limit salt in processed-foods appears a promising and inequality-reducing option. For other policy options, our expert-driven forecast warns that future policy implementation might reach more deprived individuals less well, limiting inequality reduction. We therefore encourage planners to prioritise equity.

  15. Long-run evolution of the global economy: 2. Hindcasts of innovation and growth

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2015-03-01

    Long-range climate forecasts rely upon integrated assessment models that link the global economy to greenhouse gas emissions. This paper evaluates an alternative economic framework, outlined in Part 1, that is based on physical principles rather than explicitly resolved societal dynamics. Relative to a reference model of persistence in trends, model hindcasts that are initialized with data from 1950 to 1960 reproduce trends in global economic production and energy consumption between 2000 and 2010 with a skill score greater than 90%. In part, such high skill appears to be because civilization has responded to an impulse of fossil fuel discovery in the mid-twentieth century. Forecasting the coming century will be more of a challenge because the effect of the impulse appears to have nearly run its course. Nonetheless, the model offers physically constrained futures for the coupled evolution of civilization and climate during the Anthropocene.

  16. Long-run evolution of the global economy - Part 2: Hindcasts of innovation and growth

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2015-10-01

    Long-range climate forecasts use integrated assessment models to link the global economy to greenhouse gas emissions. This paper evaluates an alternative economic framework outlined in part 1 of this study (Garrett, 2014) that approaches the global economy using purely physical principles rather than explicitly resolved societal dynamics. If this model is initialized with economic data from the 1950s, it yields hindcasts for how fast global economic production and energy consumption grew between 2000 and 2010 with skill scores > 90 % relative to a model of persistence in trends. The model appears to attain high skill partly because there was a strong impulse of discovery of fossil fuel energy reserves in the mid-twentieth century that helped civilization to grow rapidly as a deterministic physical response. Forecasting the coming century may prove more of a challenge because the effect of the energy impulse appears to have nearly run its course. Nonetheless, an understanding of the external forces that drive civilization may help development of constrained futures for the coupled evolution of civilization and climate during the Anthropocene.

  17. A Wind Forecasting System for Energy Application

    NASA Astrophysics Data System (ADS)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated probabilistic wind forecasts which will be invaluable in wind energy management. In brief, this method turns the ensemble forecasts into a calibrated predictive probability distribution. Each ensemble member is provided with a 'weight' determined by its relative predictive skill over a training period of around 30 days. Verification of data is carried out using observed wind data from operational wind farms. These are then compared to existing forecasts produced by ECMWF and Met Eireann in relation to skill scores. We are developing decision-making models to show the benefits achieved using the data produced by our wind energy forecasting system. An energy trading model will be developed, based on the rules currently used by the Single Electricity Market Operator for energy trading in Ireland. This trading model will illustrate the potential for financial savings by using the forecast data generated by this research.

  18. Impact of Brexit on the forest products industry of the United Kingdom and the rest of the world

    Treesearch

    Craig M. T. Johnston; Joseph Buongiorno

    2016-01-01

    The Global Forest Products Model was applied to forecast the effect of Brexit on the global forest products industry to2003 under two scenarios; an optimistic and pessimistic future storyline regarding the potential economic effect of Brexit. The forecasts integrated a range of gross domestic product growth rates using an average of the optimistic and...

  19. Performance of fuzzy approach in Malaysia short-term electricity load forecasting

    NASA Astrophysics Data System (ADS)

    Mansor, Rosnalini; Zulkifli, Malina; Yusof, Muhammad Mat; Ismail, Mohd Isfahani; Ismail, Suzilah; Yin, Yip Chee

    2014-12-01

    Many activities such as economic, education and manafucturing would paralyse with limited supply of electricity but surplus contribute to high operating cost. Therefore electricity load forecasting is important in order to avoid shortage or excess. Previous finding showed festive celebration has effect on short-term electricity load forecasting. Being a multi culture country Malaysia has many major festive celebrations such as Eidul Fitri, Chinese New Year and Deepavali but they are moving holidays due to non-fixed dates on the Gregorian calendar. This study emphasis on the performance of fuzzy approach in forecasting electricity load when considering the presence of moving holidays. Autoregressive Distributed Lag model was estimated using simulated data by including model simplification concept (manual or automatic), day types (weekdays or weekend), public holidays and lags of electricity load. The result indicated that day types, public holidays and several lags of electricity load were significant in the model. Overall, model simplification improves fuzzy performance due to less variables and rules.

  20. Airfreight forecasting methodology and results

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A series of econometric behavioral equations was developed to explain and forecast the evolution of airfreight traffic demand for the total U.S. domestic airfreight system, the total U.S. international airfreight system, and the total scheduled international cargo traffic carried by the top 44 foreign airlines. The basic explanatory variables used in these macromodels were the real gross national products of the countries involved and a measure of relative transportation costs. The results of the econometric analysis reveal that the models explain more than 99 percent of the historical evolution of freight traffic. The long term traffic forecasts generated with these models are based on scenarios of the likely economic outlook in the United States and 31 major foreign countries.

  1. Economic benefits of improved meteorological forecasts - The construction industry

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, R. K.; Greenberg, J. S.

    1976-01-01

    Estimates are made of the potential economic benefits accruing to particular industries from timely utilization of satellite-derived six-hour weather forecasts, and of economic penalties resulting from failure to utilize such forecasts in day-to-day planning. The cost estimate study is centered on the U.S. construction industry, with results simplified to yes/no 6-hr forecasts on thunderstorm activity and work/no work decisions. Effects of weather elements (thunderstorms, snow and sleet) on various construction operations are indicated. Potential dollar benefits for other industries, including air transportation and other forms of transportation, are diagrammed for comparison. Geosynchronous satellites such as STORMSAT, SEOS, and SMS/GOES are considered as sources of the forecast data.

  2. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  3. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall is critical for end-of-season outcomes. Finally we show that, in terms of forecasting spatial patterns of SM anomalies, the skill of this agricultural drought forecast system is generally greater (> 0.8 correlation) during drought years. This means that this system might be particularity useful for identifying the events that present the greatest risk to the region.

  4. A Case Study of the Impact of AIRS Temperature Retrievals on Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Reale, O.; Atlas, R.; Jusem, J. C.

    2004-01-01

    Large errors in numerical weather prediction are often associated with explosive cyclogenesis. Most studes focus on the under-forecasting error, i.e. cases of rapidly developing cyclones which are poorly predicted in numerical models. However, the over-forecasting error (i.e., to predict an explosively developing cyclone which does not occur in reality) is a very common error that severely impacts the forecasting skill of all models and may also present economic costs if associated with operational forecasting. Unnecessary precautions taken by marine activities can result in severe economic loss. Moreover, frequent occurrence of over-forecasting can undermine the reliance on operational weather forecasting. Therefore, it is important to understand and reduce the prdctions of extreme weather associated with explosive cyclones which do not actually develop. In this study we choose a very prominent case of over-forecasting error in the northwestern Pacific. A 960 hPa cyclone develops in less than 24 hour in the 5-day forecast, with a deepening rate of about 30 hPa in one day. The cyclone is not versed in the analyses and is thus a case of severe over-forecasting. By assimilating AIRS data, the error is largely eliminated. By following the propagation of the anomaly that generates the spurious cyclone, it is found that a small mid-tropospheric geopotential height negative anomaly over the northern part of the Indian subcontinent in the initial conditions, propagates westward, is amplified by orography, and generates a very intense jet streak in the subtropical jet stream, with consequent explosive cyclogenesis over the Pacific. The AIRS assimilation eliminates this anomaly that may have been caused by erroneous upper-air data, and represents the jet stream more correctly. The energy associated with the jet is distributed over a much broader area and as a consequence a multiple, but much more moderate cyclogenesis is observed.

  5. A framework for improving a seasonal hydrological forecasting system using sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah

    2017-04-01

    Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of the forecasting chain (i.e., IHC or MF) could potentially lead to the highest increase in seasonal hydrological forecasting performance, after each forecast update.

  6. An ensemble-ANFIS based uncertainty assessment model for forecasting multi-scalar standardized precipitation index

    NASA Astrophysics Data System (ADS)

    Ali, Mumtaz; Deo, Ravinesh C.; Downs, Nathan J.; Maraseni, Tek

    2018-07-01

    Forecasting drought by means of the World Meteorological Organization-approved Standardized Precipitation Index (SPI) is considered to be a fundamental task to support socio-economic initiatives and effectively mitigating the climate-risk. This study aims to develop a robust drought modelling strategy to forecast multi-scalar SPI in drought-rich regions of Pakistan where statistically significant lagged combinations of antecedent SPI are used to forecast future SPI. With ensemble-Adaptive Neuro Fuzzy Inference System ('ensemble-ANFIS') executed via a 10-fold cross-validation procedure, a model is constructed by randomly partitioned input-target data. Resulting in 10-member ensemble-ANFIS outputs, judged by mean square error and correlation coefficient in the training period, the optimal forecasts are attained by the averaged simulations, and the model is benchmarked with M5 Model Tree and Minimax Probability Machine Regression (MPMR). The results show the proposed ensemble-ANFIS model's preciseness was notably better (in terms of the root mean square and mean absolute error including the Willmott's, Nash-Sutcliffe and Legates McCabe's index) for the 6- and 12- month compared to the 3-month forecasts as verified by the largest error proportions that registered in smallest error band. Applying 10-member simulations, ensemble-ANFIS model was validated for its ability to forecast severity (S), duration (D) and intensity (I) of drought (including the error bound). This enabled uncertainty between multi-models to be rationalized more efficiently, leading to a reduction in forecast error caused by stochasticity in drought behaviours. Through cross-validations at diverse sites, a geographic signature in modelled uncertainties was also calculated. Considering the superiority of ensemble-ANFIS approach and its ability to generate uncertainty-based information, the study advocates the versatility of a multi-model approach for drought-risk forecasting and its prime importance for estimating drought properties over confidence intervals to generate better information for strategic decision-making.

  7. Nowcasting of Low-Visibility Procedure States with Ordered Logistic Regression at Vienna International Airport

    NASA Astrophysics Data System (ADS)

    Kneringer, Philipp; Dietz, Sebastian; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Low-visibility conditions have a large impact on aviation safety and economic efficiency of airports and airlines. To support decision makers, we develop a statistical probabilistic nowcasting tool for the occurrence of capacity-reducing operations related to low visibility. The probabilities of four different low visibility classes are predicted with an ordered logistic regression model based on time series of meteorological point measurements. Potential predictor variables for the statistical models are visibility, humidity, temperature and wind measurements at several measurement sites. A stepwise variable selection method indicates that visibility and humidity measurements are the most important model inputs. The forecasts are tested with a 30 minute forecast interval up to two hours, which is a sufficient time span for tactical planning at Vienna Airport. The ordered logistic regression models outperform persistence and are competitive with human forecasters.

  8. Evolution-informed forecasting of seasonal influenza A (H3N2)

    PubMed Central

    Du, Xiangjun; King, Aaron A.; Woods, Robert J.; Pascual, Mercedes

    2018-01-01

    Inter-pandemic or seasonal influenza exacts an enormous annual burden both in terms of human health and economic impact. Incidence prediction ahead of season remains a challenge largely because of the virus’ antigenic evolution. We propose here a forecasting approach that incorporates evolutionary change into a mechanistic epidemiological model. The proposed models are simple enough that their parameters can be estimated from retrospective surveillance data. These models link amino-acid sequences of hemagglutinin epitopes with a transmission model for seasonal H3N2 influenza, also informed by H1N1 levels. With a monthly time series of H3N2 incidence in the United States over 10 years, we demonstrate the feasibility of prediction ahead of season and an accurate real-time forecast for the 2016/2017 influenza season. PMID:29070700

  9. Uncertainty in forecasts of long-run economic growth.

    PubMed

    Christensen, P; Gillingham, K; Nordhaus, W

    2018-05-22

    Forecasts of long-run economic growth are critical inputs into policy decisions being made today on the economy and the environment. Despite its importance, there is a sparse literature on long-run forecasts of economic growth and the uncertainty in such forecasts. This study presents comprehensive probabilistic long-run projections of global and regional per-capita economic growth rates, comparing estimates from an expert survey and a low-frequency econometric approach. Our primary results suggest a median 2010-2100 global growth rate in per-capita gross domestic product of 2.1% per year, with a standard deviation (SD) of 1.1 percentage points, indicating substantially higher uncertainty than is implied in existing forecasts. The larger range of growth rates implies a greater likelihood of extreme climate change outcomes than is currently assumed and has important implications for social insurance programs in the United States.

  10. Issues in midterm analysis and forecasting 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`smore » National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.« less

  11. Forecast-based interventions can reduce the health and economic burden of wildfires.

    PubMed

    Rappold, Ana G; Fann, Neal L; Crooks, James; Huang, Jin; Cascio, Wayne E; Devlin, Robert B; Diaz-Sanchez, David

    2014-09-16

    We simulated public health forecast-based interventions during a wildfire smoke episode in rural North Carolina to show the potential for use of modeled smoke forecasts toward reducing the health burden and showed a significant economic benefit of reducing exposures. Daily and county wide intervention advisories were designed to occur when fine particulate matter (PM2.5) from smoke, forecasted 24 or 48 h in advance, was expected to exceed a predetermined threshold. Three different thresholds were considered in simulations, each with three different levels of adherence to the advisories. Interventions were simulated in the adult population susceptible to health exacerbations related to the chronic conditions of asthma and congestive heart failure. Associations between Emergency Department (ED) visits for these conditions and daily PM2.5 concentrations under each intervention were evaluated. Triggering interventions at lower PM2.5 thresholds (≤ 20 μg/m(3)) with good compliance yielded the greatest risk reduction. At the highest threshold levels (50 μg/m(3)) interventions were ineffective in reducing health risks at any level of compliance. The economic benefit of effective interventions exceeded $1 M in excess ED visits for asthma and heart failure, $2 M in loss of productivity, $100 K in respiratory conditions in children, and $42 million due to excess mortality.

  12. Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns.

    PubMed

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.

  13. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    PubMed Central

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications. PMID:24977200

  14. Seasonal forecasting of groundwater levels in natural aquifers in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Mackay, Jonathan; Jackson, Christopher; Pachocka, Magdalena; Brookshaw, Anca; Scaife, Adam

    2014-05-01

    Groundwater aquifers comprise the world's largest freshwater resource and provide resilience to climate extremes which could become more frequent under future climate changes. Prolonged dry conditions can induce groundwater drought, often characterised by significantly low groundwater levels which may persist for months to years. In contrast, lasting wet conditions can result in anomalously high groundwater levels which result in flooding, potentially at large economic cost. Using computational models to produce groundwater level forecasts allows appropriate management strategies to be considered in advance of extreme events. The majority of groundwater level forecasting studies to date use data-based models, which exploit the long response time of groundwater levels to meteorological drivers and make forecasts based only on the current state of the system. Instead, seasonal meteorological forecasts can be used to drive hydrological models and simulate groundwater levels months into the future. Such approaches have not been used in the past due to a lack of skill in these long-range forecast products. However systems such as the latest version of the Met Office Global Seasonal Forecast System (GloSea5) are now showing increased skill up to a 3-month lead time. We demonstrate the first groundwater level ensemble forecasting system using a multi-member ensemble of hindcasts from GloSea5 between 1996 and 2009 to force 21 simple lumped conceptual groundwater models covering most of the UK's major aquifers. We present the results from this hindcasting study and demonstrate that the system can be used to forecast groundwater levels with some skill up to three months into the future.

  15. FAA (Federal Aviation Administration) Aviation Forecasts: Fiscal Years 1989-2000

    DTIC Science & Technology

    1989-03-01

    predict interim business cycles. FAA FORECAST ECONOMIC ASSUMPTIONS FISCAL YEARS 1989 - 2000 HISTORICAL FORECAST PERCENT AVERAGE ANNUAL GROWTH ECONOMIC ...During previous economic cycles, changes in the general aviation industry have generally paralleled changes in business activity. Empirical results have...FiFAA-APO 89- MARCH 198 US eat e T of 0rrs orci Fedra Aviatio Ad instato 0 NA II I1 Technical Report Documentation Page 1 ReotN.2. Government

  16. An interdisciplinary approach for earthquake modelling and forecasting

    NASA Astrophysics Data System (ADS)

    Han, P.; Zhuang, J.; Hattori, K.; Ogata, Y.

    2016-12-01

    Earthquake is one of the most serious disasters, which may cause heavy casualties and economic losses. Especially in the past two decades, huge/mega earthquakes have hit many countries. Effective earthquake forecasting (including time, location, and magnitude) becomes extremely important and urgent. To date, various heuristically derived algorithms have been developed for forecasting earthquakes. Generally, they can be classified into two types: catalog-based approaches and non-catalog-based approaches. Thanks to the rapid development of statistical seismology in the past 30 years, now we are able to evaluate the performances of these earthquake forecast approaches quantitatively. Although a certain amount of precursory information is available in both earthquake catalogs and non-catalog observations, the earthquake forecast is still far from satisfactory. In most case, the precursory phenomena were studied individually. An earthquake model that combines self-exciting and mutually exciting elements was developed by Ogata and Utsu from the Hawkes process. The core idea of this combined model is that the status of the event at present is controlled by the event itself (self-exciting) and all the external factors (mutually exciting) in the past. In essence, the conditional intensity function is a time-varying Poisson process with rate λ(t), which is composed of the background rate, the self-exciting term (the information from past seismic events), and the external excitation term (the information from past non-seismic observations). This model shows us a way to integrate the catalog-based forecast and non-catalog-based forecast. Against this background, we are trying to develop a new earthquake forecast model which combines catalog-based and non-catalog-based approaches.

  17. Vector autoregressive model approach for forecasting outflow cash in Central Java

    NASA Astrophysics Data System (ADS)

    hoyyi, Abdul; Tarno; Maruddani, Di Asih I.; Rahmawati, Rita

    2018-05-01

    Multivariate time series model is more applied in economic and business problems as well as in other fields. Applications in economic problems one of them is the forecasting of outflow cash. This problem can be viewed globally in the sense that there is no spatial effect between regions, so the model used is the Vector Autoregressive (VAR) model. The data used in this research is data on the money supply in Bank Indonesia Semarang, Solo, Purwokerto and Tegal. The model used in this research is VAR (1), VAR (2) and VAR (3) models. Ordinary Least Square (OLS) is used to estimate parameters. The best model selection criteria use the smallest Akaike Information Criterion (AIC). The result of data analysis shows that the AIC value of VAR (1) model is equal to 42.72292, VAR (2) equals 42.69119 and VAR (3) equals 42.87662. The difference in AIC values is not significant. Based on the smallest AIC value criteria, the best model is the VAR (2) model. This model has satisfied the white noise assumption.

  18. Operational value of ensemble streamflow forecasts for hydropower production: A Canadian case study

    NASA Astrophysics Data System (ADS)

    Boucher, Marie-Amélie; Tremblay, Denis; Luc, Perreault; François, Anctil

    2010-05-01

    Ensemble and probabilistic forecasts have many advantages over deterministic ones, both in meteorology and hydrology (e.g. Krzysztofowicz, 2001). Mainly, they inform the user on the uncertainty linked to the forecast. It has been brought to attention that such additional information could lead to improved decision making (e.g. Wilks and Hamill, 1995; Mylne, 2002; Roulin, 2007), but very few studies concentrate on operational situations involving the use of such forecasts. In addition, many authors have demonstrated that ensemble forecasts outperform deterministic forecasts in terms of performance (e.g. Jaun et al., 2005; Velazquez et al., 2009; Laio and Tamea, 2007). However, such performance is mostly assessed on the basis of numerical scoring rules, which compare the forecasts to the observations, and seldom in terms of management gains. The proposed case study adopts an operational point of view, on the basis that a novel forecasting system has value only if it leads to increase monetary and societal gains (e.g. Murphy, 1994; Laio and Tamea, 2007). More specifically, Environment Canada operational ensemble precipitation forecasts are used to drive the HYDROTEL distributed hydrological model (Fortin et al., 1995), calibrated on the Gatineau watershed located in Québec, Canada. The resulting hydrological ensemble forecasts are then incorporated into Hydro-Québec SOHO stochastic management optimization tool that automatically search for optimal operation decisions for the all reservoirs and hydropower plants located on the basin. The timeline of the study is the fall season of year 2003. This period is especially relevant because of high precipitations that nearly caused a major spill, and forced the preventive evacuation of a portion of the population located near one of the dams. We show that the use of the ensemble forecasts would have reduced the occurrence of spills and flooding, which is of particular importance for dams located in populous area, and increased hydropower production. The ensemble precipitation forecasts extend from March 1st of 2002 to December 31st of 2003. They were obtained using two atmospheric models, SEF (8 members plus the control deterministic forecast) and GEM (8 members). The corresponding deterministic precipitation forecast issued by SEF model is also used within HYDROTEL in order to compare ensemble streamflow forecasts with their deterministic counterparts. Although this study does not incorporate all the sources of uncertainty, precipitation is certainly the most important input for hydrological modeling and conveys a great portion of the total uncertainty. References: Fortin, J.P., Moussa, R., Bocquillon, C. and Villeneuve, J.P. 1995: HYDROTEL, un modèle hydrologique distribué pouvant bénéficier des données fournies par la télédétection et les systèmes d'information géographique, Revue des Sciences de l'Eau, 8(1), 94-124. Jaun, S., Ahrens, B., Walser, A., Ewen, T. and Schaer, C. 2008: A probabilistic view on the August 2005 floods in the upper Rhine catchment, Natural Hazards and Earth System Sciences, 8 (2), 281-291. Krzysztofowicz, R. 2001: The case for probabilistic forecasting in hydrology, Journal of Hydrology, 249, 2-9. Murphy, A.H. 1994: Assessing the economic value of weather forecasts: An overview of methods, results and issues, Meteorological Applications, 1, 69-73. Mylne, K.R. 2002: Decision-Making from probability forecasts based on forecast value, Meteorological Applications, 9, 307-315. Laio, F. and Tamea, S. 2007: Verification tools for probabilistic forecasts of continuous hydrological variables, Hydrology and Earth System Sciences, 11, 1267-1277. Roulin, E. 2007: Skill and relative economic value of medium-range hydrological ensemble predictions, Hydrology and Earth System Sciences, 11, 725-737. Velazquez, J.-A., Petit, T., Lavoie, A., Boucher, M.-A., Turcotte, R., Fortin, V. and Anctil, F. 2009: An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting, Hydrology and Earth System Sciences, 13(11), 2221-2231. Wilks, D.S. and Hamill, T.M. 1995: Potential economic value of ensemble-based surface weather forecasts, Monthly Weather Review, 123(12), 3565-3575.

  19. Forecasting conditional climate-change using a hybrid approach

    USGS Publications Warehouse

    Esfahani, Akbar Akbari; Friedel, Michael J.

    2014-01-01

    A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.

  20. A forecasting model for dengue incidence in the District of Gampaha, Sri Lanka.

    PubMed

    Withanage, Gayan P; Viswakula, Sameera D; Nilmini Silva Gunawardena, Y I; Hapugoda, Menaka D

    2018-04-24

    Dengue is one of the major health problems in Sri Lanka causing an enormous social and economic burden to the country. An accurate early warning system can enhance the efficiency of preventive measures. The aim of the study was to develop and validate a simple accurate forecasting model for the District of Gampaha, Sri Lanka. Three time-series regression models were developed using monthly rainfall, rainy days, temperature, humidity, wind speed and retrospective dengue incidences over the period January 2012 to November 2015 for the District of Gampaha, Sri Lanka. Various lag times were analyzed to identify optimum forecasting periods including interactions of multiple lags. The models were validated using epidemiological data from December 2015 to November 2017. Prepared models were compared based on Akaike's information criterion, Bayesian information criterion and residual analysis. The selected model forecasted correctly with mean absolute errors of 0.07 and 0.22, and root mean squared errors of 0.09 and 0.28, for training and validation periods, respectively. There were no dengue epidemics observed in the district during the training period and nine outbreaks occurred during the forecasting period. The proposed model captured five outbreaks and correctly rejected 14 within the testing period of 24 months. The Pierce skill score of the model was 0.49, with a receiver operating characteristic of 86% and 92% sensitivity. The developed weather based forecasting model allows warnings of impending dengue outbreaks and epidemics in advance of one month with high accuracy. Depending upon climatic factors, the previous month's dengue cases had a significant effect on the dengue incidences of the current month. The simple, precise and understandable forecasting model developed could be used to manage limited public health resources effectively for patient management, vector surveillance and intervention programmes in the district.

  1. Innovative Ideas in Introductory Economics. Volume 2. A Report Developed from the 1979-80 College and University Level Entries in the International Paper Company Foundation Awards Program for the Teaching of Economics.

    ERIC Educational Resources Information Center

    Nappi, Andrew T., Ed.; Suglia, Anthony F., Ed.

    Award winning projects in K-12 and college level economics are described in this publication. There are two major sections. Section I describes winning projects for 1979-80. A senior research seminar in economics offered undergraduate students a chance to build inexpensive, simplified forecasting models of the U.S. economy. Each student develops…

  2. A dynamic factor model of the evaluation of the financial crisis in Turkey.

    PubMed

    Sezgin, F; Kinay, B

    2010-01-01

    Factor analysis has been widely used in economics and finance in situations where a relatively large number of variables are believed to be driven by few common causes of variation. Dynamic factor analysis (DFA) which is a combination of factor and time series analysis, involves autocorrelation matrices calculated from multivariate time series. Dynamic factor models were traditionally used to construct economic indicators, macroeconomic analysis, business cycles and forecasting. In recent years, dynamic factor models have become more popular in empirical macroeconomics. They have more advantages than other methods in various respects. Factor models can for instance cope with many variables without running into scarce degrees of freedom problems often faced in regression-based analysis. In this study, a model which determines the effect of the global crisis on Turkey is proposed. The main aim of the paper is to analyze how several macroeconomic quantities show an alteration before the evolution of the crisis and to decide if a crisis can be forecasted or not.

  3. The Wind Forecast Improvement Project (WFIP). A Public-Private Partnership Addressing Wind Energy Forecast Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilczak, James M.; Finley, Cathy; Freedman, Jeff

    The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collectionmore » of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.« less

  4. Drought forecasting in Luanhe River basin involving climatic indices

    NASA Astrophysics Data System (ADS)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2017-11-01

    Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the three proposed models outperform the two traditional models and involving large-scale climatic indices can improve the forecasting accuracy.

  5. Economic consequences of improved temperature forecasts: An experiment with the Florida citrus growers (control group results). Executive summary. [weather forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A demonstration experiment is being planned to show that frost and freeze prediction improvements are possible utilizing timely Synchronous Meteorological Satellite temperature measurements and that this information can affect Florida citrus grower operations and decisions so as to significantly reduce the cost for frost and freeze protection and crop losses. The design and implementation of the first phase of an economic experiment which will monitor citrus growers decisions, actions, costs and losses, and meteorological forecasts and actual weather events was carried out. The economic experiment was designed to measure the change in annual protection costs and crop losses which are the direct result of improved temperature forecasts. To estimate the benefits that may result from improved temperature forecasting capability, control and test groups were established with effective separation being accomplished temporally. The control group, utilizing current forecasting capability, was observed during the 1976-77 frost season and the results are reported. A brief overview is given of the economic experiment, the results obtained to date, and the work which still remains to be done.

  6. A Gaussian Processes Technique for Short-term Load Forecasting with Considerations of Uncertainty

    NASA Astrophysics Data System (ADS)

    Ohmi, Masataro; Mori, Hiroyuki

    In this paper, an efficient method is proposed to deal with short-term load forecasting with the Gaussian Processes. Short-term load forecasting plays a key role to smooth power system operation such as economic load dispatching, unit commitment, etc. Recently, the deregulated and competitive power market increases the degree of uncertainty. As a result, it is more important to obtain better prediction results to save the cost. One of the most important aspects is that power system operator needs the upper and lower bounds of the predicted load to deal with the uncertainty while they require more accurate predicted values. The proposed method is based on the Bayes model in which output is expressed in a distribution rather than a point. To realize the model efficiently, this paper proposes the Gaussian Processes that consists of the Bayes linear model and kernel machine to obtain the distribution of the predicted value. The proposed method is successively applied to real data of daily maximum load forecasting.

  7. Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain

    PubMed Central

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market. PMID:24782659

  8. Probabilistic Nowcasting of Low-Visibility Procedure States at Vienna International Airport During Cold Season

    NASA Astrophysics Data System (ADS)

    Kneringer, Philipp; Dietz, Sebastian J.; Mayr, Georg J.; Zeileis, Achim

    2018-04-01

    Airport operations are sensitive to visibility conditions. Low-visibility events may lead to capacity reduction, delays and economic losses. Different levels of low-visibility procedures (lvp) are enacted to ensure aviation safety. A nowcast of the probabilities for each of the lvp categories helps decision makers to optimally schedule their operations. An ordered logistic regression (OLR) model is used to forecast these probabilities directly. It is applied to cold season forecasts at Vienna International Airport for lead times of 30-min out to 2 h. Model inputs are standard meteorological measurements. The skill of the forecasts is accessed by the ranked probability score. OLR outperforms persistence, which is a strong contender at the shortest lead times. The ranked probability score of the OLR is even better than the one of nowcasts from human forecasters. The OLR-based nowcasting system is computationally fast and can be updated instantaneously when new data become available.

  9. Production data from five major geothermal fields in Nevada analysed using a physiostatistical algorithm developed for oil and gas: temperature decline forecasts and type curves

    NASA Astrophysics Data System (ADS)

    Kuzma, H. A.; Golubkova, A.; Eklund, C.

    2015-12-01

    Nevada has the second largest output of geothermal energy in the United States (after California) with 14 major power plants producing over 425 megawatts of electricity meeting 7% of the state's total energy needs. A number of wells, particularly older ones, have shown significant temperature and pressure declines over their lifetimes, adversely affecting economic returns. Production declines are almost universal in the oil and gas (O&G) industry. BetaZi (BZ) is a proprietary algorithm which uses a physiostatistical model to forecast production from the past history of O&G wells and to generate "type curves" which are used to estimate the production of undrilled wells. Although BZ was designed and calibrated for O&G, it is a general purpose diffusion equation solver, capable of modeling complex fluid dynamics in multi-phase systems. In this pilot study, it is applied directly to the temperature data from five Nevada geothermal fields. With the data appropriately normalized, BZ is shown to accurately predict temperature declines. The figure shows several examples of BZ forecasts using historic data from Steamboat Hills field near Reno. BZ forecasts were made using temperature on a normalized scale (blue) with two years of data held out for blind testing (yellow). The forecast is returned in terms of percentiles of probability (red) with the median forecast marked (solid green). Actual production is expected to fall within the majority of the red bounds 80% of the time. Blind tests such as these are used to verify that the probabilistic forecast can be trusted. BZ is also used to compute and accurate type temperature profile for wells that have yet to be drilled. These forecasts can be combined with estimated costs to evaluate the economics and risks of a project or potential capital investment. It is remarkable that an algorithm developed for oil and gas can accurately predict temperature in geothermal wells without significant recasting.

  10. Using constructed analogs to improve the skill of National Multi-Model Ensemble March–April–May precipitation forecasts in equatorial East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; Funk, Christopher C.; Hoell, Andrew

    2014-01-01

    In this study we implement and evaluate a simple 'hybrid' forecast approach that uses constructed analogs (CA) to improve the National Multi-Model Ensemble's (NMME) March–April–May (MAM) precipitation forecasts over equatorial eastern Africa (hereafter referred to as EA, 2°S to 8°N and 36°E to 46°E). Due to recent declines in MAM rainfall, increases in population, land degradation, and limited technological advances, this region has become a recent epicenter of food insecurity. Timely and skillful precipitation forecasts for EA could help decision makers better manage their limited resources, mitigate socio-economic losses, and potentially save human lives. The 'hybrid approach' described in this study uses the CA method to translate dynamical precipitation and sea surface temperature (SST) forecasts over the Indian and Pacific Oceans (specifically 30°S to 30°N and 30°E to 270°E) into terrestrial MAM precipitation forecasts over the EA region. In doing so, this approach benefits from the post-1999 teleconnection that exists between precipitation and SSTs over the Indian and tropical Pacific Oceans (Indo-Pacific) and EA MAM rainfall. The coupled atmosphere-ocean dynamical forecasts used in this study were drawn from the NMME. We demonstrate that while the MAM precipitation forecasts (initialized in February) skill of the NMME models over the EA region itself is negligible, the ranked probability skill score of hybrid CA forecasts based on Indo-Pacific NMME precipitation and SST forecasts reach up to 0.45.

  11. Sensitivity of WRF precipitation field to assimilation sources in northeastern Spain

    NASA Astrophysics Data System (ADS)

    Lorenzana, Jesús; Merino, Andrés; García-Ortega, Eduardo; Fernández-González, Sergio; Gascón, Estíbaliz; Hermida, Lucía; Sánchez, José Luis; López, Laura; Marcos, José Luis

    2015-04-01

    Numerical weather prediction (NWP) of precipitation is a challenge. Models predict precipitation after solving many physical processes. In particular, mesoscale NWP models have different parameterizations, such as microphysics, cumulus or radiation schemes. These facilitate, according to required spatial and temporal resolutions, precipitation fields with increasing reliability. Nevertheless, large uncertainties are inherent to precipitation forecasting. Consequently, assimilation methods are very important. The Atmospheric Physics Group at the University of León in Spain and the Castile and León Supercomputing Center carry out daily weather prediction based on the Weather Research and Forecasting (WRF) model, covering the entire Iberian Peninsula. Forecasts of severe precipitation affecting the Ebro Valley, in the southern Pyrenees range of northeastern Spain, are crucial in the decision-making process for managing reservoirs or initializing runoff models. These actions can avert floods and ensure uninterrupted economic activity in the area. We investigated a set of cases corresponding to intense or severe precipitation patterns, using a rain gauge network. Simulations were performed with a dual objective, i.e., to analyze forecast improvement using a specific assimilation method, and to study the sensitivity of model outputs to different types of assimilation data. A WRF forecast model initialized by an NCEP SST analysis was used as the control run. The assimilation was based on the Meteorological Assimilation Data Ingest System (MADIS) developed by NOAA. The MADIS data used were METAR, maritime, ACARS, radiosonde, and satellite products. The results show forecast improvement using the suggested assimilation method, and differences in the accuracy of forecast precipitation patterns varied with the assimilation data source.

  12. Time series modelling of global mean temperature for managerial decision-making.

    PubMed

    Romilly, Peter

    2005-07-01

    Climate change has important implications for business and economic activity. Effective management of climate change impacts will depend on the availability of accurate and cost-effective forecasts. This paper uses univariate time series techniques to model the properties of a global mean temperature dataset in order to develop a parsimonious forecasting model for managerial decision-making over the short-term horizon. Although the model is estimated on global temperature data, the methodology could also be applied to temperature data at more localised levels. The statistical techniques include seasonal and non-seasonal unit root testing with and without structural breaks, as well as ARIMA and GARCH modelling. A forecasting evaluation shows that the chosen model performs well against rival models. The estimation results confirm the findings of a number of previous studies, namely that global mean temperatures increased significantly throughout the 20th century. The use of GARCH modelling also shows the presence of volatility clustering in the temperature data, and a positive association between volatility and global mean temperature.

  13. On the dynamics of the world demographic transition and financial-economic crises forecasts

    NASA Astrophysics Data System (ADS)

    Akaev, A.; Sadovnichy, V.; Korotayev, A.

    2012-05-01

    The article considers dynamic processes involving non-linear power-law behavior in such apparently diverse spheres, as demographic dynamics and dynamics of prices of highly liquid commodities such as oil and gold. All the respective variables exhibit features of explosive growth containing precursors indicating approaching phase transitions/catastrophes/crises. The first part of the article analyzes mathematical models of demographic dynamics that describe various scenarios of demographic development in the post-phase-transition period, including a model that takes the limitedness of the Earth carrying capacity into account. This model points to a critical point in the early 2050s, when the world population, after reaching its maximum value may decrease afterward stabilizing then at a certain stationary level. The article presents an analysis of the influence of the demographic transition (directly connected with the hyperexponential growth of the world population) on the global socioeconomic and geopolitical development. The second part deals with the phenomenon of explosive growth of prices of such highly liquid commodities as oil and gold. It is demonstrated that at present the respective processes could be regarded as precursors of waves of the global financial-economic crisis that will demand the change of the current global economic and political system. It is also shown that the moments of the start of the first and second waves of the current global crisis could have been forecasted with a model of accelerating log-periodic fluctuations superimposed over a power-law trend with a finite singularity developed by Didier Sornette and collaborators. With respect to the oil prices, it is shown that it was possible to forecast the 2008 crisis with a precision up to a month already in 2007. The gold price dynamics was used to calculate the possible time of the start of the second wave of the global crisis (July-August 2011); note that this forecast has turned out to be quite correct.

  14. Value of the GENS Forecast Ensemble as a Tool for Adaptation of Economic Activity to Climate Change

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Alpert, J. C.; Kordzakhia, M.

    2009-12-01

    In an atmosphere of uncertainty as to the magnitude and direction of climate change in upcoming decades, one adaptation mechanism has emerged with consensus support: the upgrade and dissemination of spatially-resolved, accurate forecasts tailored to the needs of users. Forecasting can facilitate the changeover from dependence on climatology that is increasingly out of date. The best forecasters are local, but local forecasters face great constraints in some countries. Indeed, it is no coincidence that some areas subject to great weather variability and strong processes of climate change are economically vulnerable: mountainous regions, for example, where heavy and erratic flooding can destroy the value built up by households over years. It follows that those best placed to benefit from forecasting upgrades may not be those who have invested in the greatest capacity to date. More-flexible use of the global forecasts may contribute to adaptation. NOAA anticipated several years ago that their forecasts could be used in new ways in the future, and accordingly prepared sockets for easy access to their archives. These could be used to empower various national and regional capacities. Verification to identify practical lead times for the economically important variables is a needed first step. This presentation presents the verification that our team has undertaken, a pilot effort in which we considered variables of interest to economic actors in several lower income countries, cf. shepherds in a remote area of Central Asia, and verified the ensemble forecasts of those variables.

  15. Jobs and Economic Development from New Transmission and Generation in Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, E.; Tegen, S.

    2011-03-01

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  16. Jobs and Economic Development from New Transmission and Generation in Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, Eric; Tegen, Suzanne

    2011-03-31

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  17. A plan for the economic assessment of the benefits of improved meteorological forecasts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, R.; Greenberg, J.

    1975-01-01

    Benefit-cost relationships for the development of meteorological satellites are outlined. The weather forecast capabilities of the various weather satellites (Tiros, SEOS, Nimbus) are discussed, and the development of additional satellite systems is examined. A rational approach is development that leads to the establishment of the economic benefits which may result from the utilization of meteorological satellite data. The economic and social impacts of improved weather forecasting for industries and resources management are discussed, and significant weather sensitive industries are listed.

  18. Development of Aspen: A microanalytic simulation model of the US economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, R.J.; Basu, N.; Quint, T.

    1996-02-01

    This report describes the development of an agent-based microanalytic simulation model of the US economy. The microsimulation model capitalizes on recent technological advances in evolutionary learning and parallel computing. Results are reported for a test problem that was run using the model. The test results demonstrate the model`s ability to predict business-like cycles in an economy where prices and inventories are allowed to vary. Since most economic forecasting models have difficulty predicting any kind of cyclic behavior. These results show the potential of microanalytic simulation models to improve economic policy analysis and to provide new insights into underlying economic principles.more » Work already has begun on a more detailed model.« less

  19. Forecasting the 2013–2014 influenza season using Wikipedia

    DOE PAGES

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; ...

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are appliedmore » to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.« less

  20. Forecasting the 2013–2014 Influenza Season Using Wikipedia

    PubMed Central

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.

    2015-01-01

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed. PMID:25974758

  1. Forecasting the 2013-2014 influenza season using Wikipedia.

    PubMed

    Hickmann, Kyle S; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M; Deshpande, Alina; Del Valle, Sara Y

    2015-05-01

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.

  2. Forecasting the 2013–2014 influenza season using Wikipedia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are appliedmore » to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.« less

  3. Seasonal forecasting of dolphinfish distribution in eastern Australia to aid recreational fishers and managers

    NASA Astrophysics Data System (ADS)

    Brodie, Stephanie; Hobday, Alistair J.; Smith, James A.; Spillman, Claire M.; Hartog, Jason R.; Everett, Jason D.; Taylor, Matthew D.; Gray, Charles A.; Suthers, Iain M.

    2017-06-01

    Seasonal forecasting of environmental conditions and marine species distribution has been used as a decision support tool in commercial and aquaculture fisheries. These tools may also be applicable to species targeted by the recreational fisheries sector, a sector that is increasing its use of marine resources, and making important economic and social contributions to coastal communities around the world. Here, a seasonal forecast of the habitat and density of dolphinfish (Coryphaena hippurus), based on sea surface temperatures, was developed for the east coast of New South Wales (NSW), Australia. Two prototype forecast products were created; geographic spatial forecasts of dolphinfish habitat and a latitudinal summary identifying the location of fish density peaks. The less detailed latitudinal summary was created to limit the resolution of habitat information to prevent potential resource over-exploitation by fishers in the absence of total catch controls. The forecast dolphinfish habitat model was accurate at the start of the annual dolphinfish migration in NSW (December) but other months (January - May) showed poor performance due to spatial and temporal variability in the catch data used in model validation. Habitat forecasts for December were useful up to five months ahead, with performance decreasing as forecast were made further into the future. The continued development and sound application of seasonal forecasts will help fishery industries cope with future uncertainty and promote dynamic and sustainable marine resource management.

  4. The probability forecast evaluation of hazard and storm wind over the territories of Russia and Europe

    NASA Astrophysics Data System (ADS)

    Perekhodtseva, E. V.

    2012-04-01

    The results of the probability forecast methods of summer storm and hazard wind over territories of Russia and Europe are submitted at this paper. These methods use the hydrodynamic-statistical model of these phenomena. The statistical model was developed for the recognition of the situation involving these phenomena. For this perhaps the samples of the values of atmospheric parameters (n=40) for the presence and for the absence of these phenomena of storm and hazard wind were accumulated. The compressing of the predictors space without the information losses was obtained by special algorithm (k=7<19m/s, the values of 65%24m/s, the values of 75%29m/s or the area of the tornado and strong squalls. The evaluation of this probability forecast was provided by criterion of Brayer. The estimation was successful and was equal for the European part of Russia B=0,37. The application of the probability forecast of storm and hazard winds allows to mitigate the economic losses when the errors of the first and second kinds of storm wind categorical forecast are not so small. A lot of examples of the storm wind probability forecast are submitted at this report.

  5. Forecasting the impact of transport improvements on commuting and residential choice

    NASA Astrophysics Data System (ADS)

    Elhorst, J. Paul; Oosterhaven, Jan

    2006-03-01

    This paper develops a probabilistic, competing-destinations, assignment model that predicts changes in the spatial pattern of the working population as a result of transport improvements. The choice of residence is explained by a new non-parametric model, which represents an alternative to the popular multinominal logit model. Travel times between zones are approximated by a normal distribution function with different mean and variance for each pair of zones, whereas previous models only use average travel times. The model’s forecast error of the spatial distribution of the Dutch working population is 7% when tested on 1998 base-year data. To incorporate endogenous changes in its causal variables, an almost ideal demand system is estimated to explain the choice of transport mode, and a new economic geography inter-industry model (RAEM) is estimated to explain the spatial distribution of employment. In the application, the model is used to forecast the impact of six mutually exclusive Dutch core-periphery railway proposals in the projection year 2020.

  6. The effects of carbon tax on the Oregon economy and state greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Rice, A. L.; Butenhoff, C. L.; Renfro, J.; Liu, J.

    2014-12-01

    Of the numerous mechanisms to mitigate greenhouse gas emissions on statewide, regional or national scales in the United States, a tax on carbon is perhaps one of the simplest. By taxing emissions directly, the costs of carbon emissions are incorporated into decision-making processes of market actors including consumers, energy suppliers and policy makers. A carbon tax also internalizes the social costs of climate impacts. In structuring carbon tax revenues to reduce corporate and personal income taxes, the negative incentives created by distortionary income taxes can be reduced or offset entirely. In 2008, the first carbon tax in North America across economic sectors was implemented in British Columbia through such a revenue-neutral program. In this work, we investigate the economic and environmental effects of a carbon tax in the state of Oregon with the goal of informing the state legislature, stakeholders and the public. The study investigates 70 different economic sectors in the Oregon economy and six geographical regions of the state. The economic model is built upon the Carbon Tax Analysis Model (C-TAM) to provide price changes in fuel with data from: the Energy Information Agency National Energy Modeling System (EIA-NEMS) Pacific Region Module which provides Oregon-specific energy forecasts; and fuel price increases imposed at different carbon fees based on fuel-specific carbon content and current and projected regional-specific electricity fuel mixes. CTAM output is incorporated into the Regional Economic Model (REMI) which is used to dynamically forecast economic impacts by region and industry sector including: economic output, employment, wages, fiscal effects and equity. Based on changes in economic output and fuel demand, we further project changes in greenhouse gas emissions resulting from economic activity and calculate revenue generated through a carbon fee. Here, we present results of this modeling effort under different scenarios of carbon fee and avenues for revenue repatriation.

  7. The Health Equity and Effectiveness of Policy Options to Reduce Dietary Salt Intake in England: Policy Forecast

    PubMed Central

    Gillespie, Duncan O. S.; Allen, Kirk; Guzman-Castillo, Maria; Bandosz, Piotr; Moreira, Patricia; McGill, Rory; Anwar, Elspeth; Lloyd-Williams, Ffion; Bromley, Helen; Diggle, Peter J.; Capewell, Simon; O’Flaherty, Martin

    2015-01-01

    Background Public health action to reduce dietary salt intake has driven substantial reductions in coronary heart disease (CHD) over the past decade, but avoidable socio-economic differentials remain. We therefore forecast how further intervention to reduce dietary salt intake might affect the overall level and inequality of CHD mortality. Methods We considered English adults, with socio-economic circumstances (SEC) stratified by quintiles of the Index of Multiple Deprivation. We used IMPACTSEC, a validated CHD policy model, to link policy implementation to salt intake, systolic blood pressure and CHD mortality. We forecast the effects of mandatory and voluntary product reformulation, nutrition labelling and social marketing (e.g., health promotion, education). To inform our forecasts, we elicited experts’ predictions on further policy implementation up to 2020. We then modelled the effects on CHD mortality up to 2025 and simultaneously assessed the socio-economic differentials of effect. Results Mandatory reformulation might prevent or postpone 4,500 (2,900–6,100) CHD deaths in total, with the effect greater by 500 (300–700) deaths or 85% in the most deprived than in the most affluent. Further voluntary reformulation was predicted to be less effective and inequality-reducing, preventing or postponing 1,500 (200–5,000) CHD deaths in total, with the effect greater by 100 (−100–600) deaths or 49% in the most deprived than in the most affluent. Further social marketing and improvements to labelling might each prevent or postpone 400–500 CHD deaths, but minimally affect inequality. Conclusions Mandatory engagement with industry to limit salt in processed-foods appears a promising and inequality-reducing option. For other policy options, our expert-driven forecast warns that future policy implementation might reach more deprived individuals less well, limiting inequality reduction. We therefore encourage planners to prioritise equity. PMID:26131981

  8. Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis

    NASA Astrophysics Data System (ADS)

    E, Jianwei; Bao, Yanling; Ye, Jimin

    2017-10-01

    As one of the most vital energy resources in the world, crude oil plays a significant role in international economic market. The fluctuation of crude oil price has attracted academic and commercial attention. There exist many methods in forecasting the trend of crude oil price. However, traditional models failed in predicting accurately. Based on this, a hybrid method will be proposed in this paper, which combines variational mode decomposition (VMD), independent component analysis (ICA) and autoregressive integrated moving average (ARIMA), called VMD-ICA-ARIMA. The purpose of this study is to analyze the influence factors of crude oil price and predict the future crude oil price. Major steps can be concluded as follows: Firstly, applying the VMD model on the original signal (crude oil price), the modes function can be decomposed adaptively. Secondly, independent components are separated by the ICA, and how the independent components affect the crude oil price is analyzed. Finally, forecasting the price of crude oil price by the ARIMA model, the forecasting trend demonstrates that crude oil price declines periodically. Comparing with benchmark ARIMA and EEMD-ICA-ARIMA, VMD-ICA-ARIMA can forecast the crude oil price more accurately.

  9. Understanding the Influence of Climate Forecasts on Farmer Decisions as Planned Behavior

    NASA Astrophysics Data System (ADS)

    Artikov, Ikrom; Hoffman, Stacey J.; Lynne, Gary D.; Pytlik Zillig, Lisa M.; Hu, Qi; Tomkins, Alan J.; Hubbard, Kenneth G.; Hayes, Michael J.; Waltman, William

    2006-09-01

    Results of a set of four regression models applied to recent survey data of farmers in eastern Nebraska suggest the causes that drive farmer intentions of using weather and climate information and forecasts in farming decisions. The model results quantify the relative importance of attitude, social norm, perceived behavioral control, and financial capability in explaining the influence of climate-conditions information and short-term and long-term forecasts on agronomic, crop insurance, and crop marketing decisions. Attitude, serving as a proxy for the utility gained from the use of such information, had the most profound positive influence on the outcome of all the decisions, followed by norms. The norms in the community, as a proxy for the utility gained from allowing oneself to be influenced by others, played a larger role in agronomic decisions than in insurance or marketing decisions. In addition, the interaction of controllability (accuracy, availability, reliability, timeliness of weather and climate information), self-efficacy (farmer ability and understanding), and general preference for control was shown to be a substantive cause. Yet control variables also have an economic side: The farm-sales variable as a measure of financial ability and motivation intensified and clarified the role of control while also enhancing the statistical robustness of the attitude and norms variables in better clarifying how they drive the influence. Overall, the integrated model of planned behavior from social psychology and derived demand from economics, that is, the “planned demand model,” is more powerful than models based on either of these approaches alone. Taken together, these results suggest that the “human dimension” needs to be better recognized so as to improve effective use of climate and weather forecasts and information for farming decision making.

  10. Markovian prediction of future values for food grains in the economic survey

    NASA Astrophysics Data System (ADS)

    Sathish, S.; Khadar Babu, S. K.

    2017-11-01

    Now-a-days prediction and forecasting are plays a vital role in research. For prediction, regression is useful to predict the future value and current value on production process. In this paper, we assume food grain production exhibit Markov chain dependency and time homogeneity. The economic generative performance evaluation the balance time artificial fertilization different level in Estrusdetection using a daily Markov chain model. Finally, Markov process prediction gives better performance compare with Regression model.

  11. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The resultsmore » show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.« less

  12. Medium- and long-term electric power demand forecasting based on the big data of smart city

    NASA Astrophysics Data System (ADS)

    Wei, Zhanmeng; Li, Xiyuan; Li, Xizhong; Hu, Qinghe; Zhang, Haiyang; Cui, Pengjie

    2017-08-01

    Based on the smart city, this paper proposed a new electric power demand forecasting model, which integrates external data such as meteorological information, geographic information, population information, enterprise information and economic information into the big database, and uses an improved algorithm to analyse the electric power demand and provide decision support for decision makers. The data mining technology is used to synthesize kinds of information, and the information of electric power customers is analysed optimally. The scientific forecasting is made based on the trend of electricity demand, and a smart city in north-eastern China is taken as a sample.

  13. Techniques for water demand analysis and forecasting: Puerto Rico, a case study

    USGS Publications Warehouse

    Attanasi, E.D.; Close, E.R.; Lopez, M.A.

    1975-01-01

    The rapid economic growth of the Commonwealth-of Puerto Rico since 1947 has brought public pressure on Government agencies for rapid development of public water supply and waste treatment facilities. Since 1945 the Puerto Rico Aqueduct and Sewer Authority has had the responsibility for planning, developing and operating water supply and waste treatment facilities on a municipal basis. The purpose of this study was to develop operational techniques whereby a planning agency, such as the Puerto Rico Aqueduct and Sewer Authority, could project the temporal and spatial distribution of .future water demands. This report is part of a 2-year cooperative study between the U.S. Geological Survey and the Environmental Quality Board of the Commonwealth of Puerto Rico, for the development of systems analysis techniques for use in water resources planning. While the Commonwealth was assisted in the development of techniques to facilitate ongoing planning, the U.S. Geological Survey attempted to gain insights in order to better interface its data collection efforts with the planning process. The report reviews the institutional structure associated with water resources planning for the Commonwealth. A brief description of alternative water demand forecasting procedures is presented and specific techniques and analyses of Puerto Rico demand data are discussed. Water demand models for a specific area of Puerto Rico are then developed. These models provide a framework for making several sets of water demand forecasts based on alternative economic and demographic assumptions. In the second part of this report, the historical impact of water resources investment on regional economic development is analyzed and related to water demand .forecasting. Conclusions and future data needs are in the last section.

  14. Studies in short haul air transportation in the California corridor: Effects of design runway length; community acceptance; impact of return on investment and fuel cost increases. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Shevell, R. S.; Jones, D. W., Jr.

    1973-01-01

    The development of a forecast model for short haul air transportation systems in the California Corridor is discussed. The factors which determine the level of air traffic demand are identified. A forecast equation for use in airport utilization analysis is developed. A mathematical model is submitted to show the relationship between population, employment, and income for indicating future air transportation utilization. Diagrams and tables of data are included to support the conclusions reached regarding air transportation economic factors.

  15. Economic evaluation of a solar hot-water-system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Analysis shows economic benefits at six representative sites using actual data from Tempe, Arizona and San Diego, California installations. Model is two-tank cascade water heater with flat-plate collector array for single-family residences. Performances are forecast for Albuquerque, New Mexico; Fort Worth, Texas; Madison, Wisconsin; and Washington, D.C. Costs are compared to net energy savings using variables for each site's environmental conditions, loads, fuel costs, and other economic factors; uncertainty analysis is included.

  16. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption.

    PubMed

    Wu, Hua'an; Zeng, Bo; Zhou, Meng

    2017-11-15

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.

  17. Skill of real-time operational forecasts with the APCC multi-model ensemble prediction system during the period 2008-2015

    NASA Astrophysics Data System (ADS)

    Min, Young-Mi; Kryjov, Vladimir N.; Oh, Sang Myeong; Lee, Hyun-Ju

    2017-12-01

    This paper assesses the real-time 1-month lead forecasts of 3-month (seasonal) mean temperature and precipitation on a monthly basis issued by the Asia-Pacific Economic Cooperation Climate Center (APCC) for 2008-2015 (8 years, 96 forecasts). It shows the current level of the APCC operational multi-model prediction system performance. The skill of the APCC forecasts strongly depends on seasons and regions that it is higher for the tropics and boreal winter than for the extratropics and boreal summer due to direct effects and remote teleconnections from boundary forcings. There is a negative relationship between the forecast skill and its interseasonal variability for both variables and the forecast skill for precipitation is more seasonally and regionally dependent than that for temperature. The APCC operational probabilistic forecasts during this period show a cold bias (underforecasting of above-normal temperature and overforecasting of below-normal temperature) underestimating a long-term warming trend. A wet bias is evident for precipitation, particularly in the extratropical regions. The skill of both temperature and precipitation forecasts strongly depends upon the ENSO strength. Particularly, the highest forecast skill noted in 2015/2016 boreal winter is associated with the strong forcing of an extreme El Nino event. Meanwhile, the relatively low skill is associated with the transition and/or continuous ENSO-neutral phases of 2012-2014. As a result the skill of real-time forecast for boreal winter season is higher than that of hindcast. However, on average, the level of forecast skill during the period 2008-2015 is similar to that of hindcast.

  18. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE PAGES

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...

    2017-07-11

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  19. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  20. Post-processing of a low-flow forecasting system in the Thur basin (Switzerland)

    NASA Astrophysics Data System (ADS)

    Bogner, Konrad; Joerg-Hess, Stefanie; Bernhard, Luzi; Zappa, Massimiliano

    2015-04-01

    Low-flows and droughts are natural hazards with potentially severe impacts and economic loss or damage in a number of environmental and socio-economic sectors. As droughts develop slowly there is time to prepare and pre-empt some of these impacts. Real-time information and forecasting of a drought situation can therefore be an effective component of drought management. Although Switzerland has traditionally been more concerned with problems related to floods, in recent years some unprecedented low-flow situations have been experienced. Driven by the climate change debate a drought information platform has been developed to guide water resources management during situations where water resources drop below critical low-flow levels characterised by the indices duration (time between onset and offset), severity (cumulative water deficit) and magnitude (severity/duration). However to gain maximum benefit from such an information system it is essential to remove the bias from the meteorological forecast, to derive optimal estimates of the initial conditions, and to post-process the stream-flow forecasts. Quantile mapping methods for pre-processing the meteorological forecasts and improved data assimilation methods of snow measurements, which accounts for much of the seasonal stream-flow predictability for the majority of the basins in Switzerland, have been tested previously. The objective of this study is the testing of post-processing methods in order to remove bias and dispersion errors and to derive the predictive uncertainty of a calibrated low-flow forecast system. Therefore various stream-flow error correction methods with different degrees of complexity have been applied and combined with the Hydrological Uncertainty Processor (HUP) in order to minimise the differences between the observations and model predictions and to derive posterior probabilities. The complexity of the analysed error correction methods ranges from simple AR(1) models to methods including wavelet transformations and support vector machines. These methods have been combined with forecasts driven by Numerical Weather Prediction (NWP) systems with different temporal and spatial resolutions, lead-times and different numbers of ensembles covering short to medium to extended range forecasts (COSMO-LEPS, 10-15 days, monthly and seasonal ENS) as well as climatological forecasts. Additionally the suitability of various skill scores and efficiency measures regarding low-flow predictions will be tested. Amongst others the novel 2afc (2 alternatives forced choices) score and the quantile skill score and its decompositions will be applied to evaluate the probabilistic forecasts and the effects of post-processing. First results of the performance of the low-flow predictions of the hydrological model PREVAH initialised with different NWP's will be shown.

  1. Drought Monitoring and Forecasting Using the Princeton/U Washington National Hydrologic Forecasting System

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Roundy, J. K.; Lettenmaier, D. P.; Mo, K. C.; Xia, Y.; Ek, M. B.

    2011-12-01

    Extreme hydrologic events in the form of droughts or floods are a significant source of social and economic damage in many parts of the world. Having sufficient warning of extreme events allows managers to prepare for and reduce the severity of their impacts. A hydrologic forecast system can give seasonal predictions that can be used by mangers to make better decisions; however there is still much uncertainty associated with such a system. Therefore it is important to understand the forecast skill of the system before transitioning to operational usage. Seasonal reforecasts (1982 - 2010) from the NCEP Climate Forecast System (both version 1 (CFS) and version 2 (CFSv2), Climate Prediction Center (CPC) outlooks and the European Seasonal Interannual Prediction (EUROSIP) system, are assessed for forecasting skill in drought prediction across the U.S., both singularly and as a multi-model system The Princeton/U Washington national hydrologic monitoring and forecast system is being implemented at NCEP/EMC via their Climate Test Bed as the experimental hydrological forecast system to support U.S. operational drought prediction. Using our system, the seasonal forecasts are biased corrected, downscaled and used to drive the Variable Infiltration Capacity (VIC) land surface model to give seasonal forecasts of hydrologic variables with lead times of up to six months. Results are presented for a number of events, with particular focus on the Apalachicola-Chattahoochee-Flint (ACF) River Basin in the South Eastern United States, which has experienced a number of severe droughts in recent years and is a pilot study basin for the National Integrated Drought Information System (NIDIS). The performance of the VIC land surface model is evaluated using observational forcing when compared to observed streamflow. The effectiveness of the forecast system to predict streamflow and soil moisture is evaluated when compared with observed streamflow and modeled soil moisture driven by observed atmospheric forcing. The forecast skills from the dynamical seasonal models (CFSv1, CFSv2, EUROSIP) and CPC are also compared with forecasts based on the Ensemble Streamflow Prediction (ESP) method, which uses initial conditions and historical forcings to generate seasonal forecasts. The skill of the system to predict drought, drought recovery and related hydrological conditions such as low-flows is assessed, along with quantified uncertainty.

  2. Short-term load forecasting of power system

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin

    2017-05-01

    In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.

  3. Forecasting model for Pea seed-borne mosaic virus epidemics in field pea crops in a Mediterranean-type environment.

    PubMed

    Congdon, B S; Coutts, B A; Jones, R A C; Renton, M

    2017-09-15

    An empirical model was developed to forecast Pea seed-borne mosaic virus (PSbMV) incidence at a critical phase of the annual growing season to predict yield loss in field pea crops sown under Mediterranean-type conditions. The model uses pre-growing season rainfall to calculate an index of aphid abundance in early-August which, in combination with PSbMV infection level in seed sown, is used to forecast virus crop incidence. Using predicted PSbMV crop incidence in early-August and day of sowing, PSbMV transmission from harvested seed was also predicted, albeit less accurately. The model was developed so it provides forecasts before sowing to allow sufficient time to implement control recommendations, such as having representative seed samples tested for PSbMV transmission rate to seedlings, obtaining seed with minimal PSbMV infection or of a PSbMV-resistant cultivar, and implementation of cultural management strategies. The model provides a disease forecast risk indication, taking into account predicted percentage yield loss to PSbMV infection and economic factors involved in field pea production. This disease risk forecast delivers location-specific recommendations regarding PSbMV management to end-users. These recommendations will be delivered directly to end-users via SMS alerts with links to web support that provide information on PSbMV management options. This modelling and decision support system approach would likely be suitable for use in other world regions where field pea is grown in similar Mediterranean-type environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A cost of living longer: Projections of the effects of prospective mortality improvement on economic support ratios for 14 advanced economies.

    PubMed

    Parr, Nick; Li, Jackie; Tickle, Leonie

    2016-07-01

    The economic implications of increasing life expectancy are important concerns for governments in developed countries. The aims of this study were as follows: (i) to forecast mortality for 14 developed countries from 2010 to 2050, using the Poisson Common Factor Model; (ii) to project the effects of the forecast mortality patterns on support ratios; and (iii) to calculate labour force participation increases which could offset these effects. The forecast gains in life expectancy correlate negatively with current fertility. Pre-2050 support ratios are projected to fall most in Japan and east-central and southern Europe, and least in Sweden and Australia. A post-2050 recovery is projected for most east-central and southern European countries. The increases in labour force participation needed to counterbalance the effects of mortality improvement are greatest for Japan, Poland, and the Czech Republic, and least for the USA, Canada, Netherlands, and Sweden. The policy implications are discussed.

  5. Seasonal forecasting of discharge for the Raccoon River, Iowa

    NASA Astrophysics Data System (ADS)

    Slater, Louise; Villarini, Gabriele; Bradley, Allen; Vecchi, Gabriel

    2016-04-01

    The state of Iowa (central United States) is regularly afflicted by severe natural hazards such as the 2008/2013 floods and the 2012 drought. To improve preparedness for these catastrophic events and allow Iowans to make more informed decisions about the most suitable water management strategies, we have developed a framework for medium to long range probabilistic seasonal streamflow forecasting for the Raccoon River at Van Meter, a 8900-km2 catchment located in central-western Iowa. Our flow forecasts use statistical models to predict seasonal discharge for low to high flows, with lead forecasting times ranging from one to ten months. Historical measurements of daily discharge are obtained from the U.S. Geological Survey (USGS) at the Van Meter stream gage, and used to compute quantile time series from minimum to maximum seasonal flow. The model is forced with basin-averaged total seasonal precipitation records from the PRISM Climate Group and annual row crop production acreage from the U.S. Department of Agriculture's National Agricultural Statistics Services database. For the forecasts, we use corn and soybean production from the previous year (persistence forecast) as a proxy for the impacts of agricultural practices on streamflow. The monthly precipitation forecasts are provided by eight Global Climate Models (GCMs) from the North American Multi-Model Ensemble (NMME), with lead times ranging from 0.5 to 11.5 months, and a resolution of 1 decimal degree. Additionally, precipitation from the month preceding each season is used to characterize antecedent soil moisture conditions. The accuracy of our modelled (1927-2015) and forecasted (2001-2015) discharge values is assessed by comparison with the observed USGS data. We explore the sensitivity of forecast skill over the full range of lead times, flow quantiles, forecast seasons, and with each GCM. Forecast skill is also examined using different formulations of the statistical models, as well as NMME forecast weighting procedures based on the computed potential skill (historical forecast accuracy) of the different GCMs. We find that the models describe the year-to-year variability in streamflow accurately, as well as the overall tendency towards increasing (and more variable) discharge over time. Surprisingly, forecast skill does not decrease markedly with lead time, and high flows tend to be well predicted, suggesting that these forecasts may have considerable practical applications. Further, the seasonal flow forecast accuracy is substantially improved by weighting the contribution of individual GCMs to the forecasts, and also by the inclusion of antecedent precipitation. Our results can provide critical information for adaptation strategies aiming to mitigate the costs and disruptions arising from flood and drought conditions, and allow us to determine how far in advance skillful forecasts can be issued. The availability of these discharge forecasts would have major societal and economic benefits for hydrology and water resources management, agriculture, disaster forecasts and prevention, energy, finance and insurance, food security, policy-making and public authorities, and transportation.

  6. Environmental predictors of stunting among children under-five in Somalia: cross-sectional studies from 2007 to 2010.

    PubMed

    Kinyoki, Damaris K; Berkley, James A; Moloney, Grainne M; Odundo, Elijah O; Kandala, Ngianga-Bakwin; Noor, Abdisalan M

    2016-07-28

    Stunting among children under five years old is associated with long-term effects on cognitive development, school achievement, economic productivity in adulthood and maternal reproductive outcomes. Accurate estimation of stunting and tools to forecast risk are key to planning interventions. We estimated the prevalence and distribution of stunting among children under five years in Somalia from 2007 to 2010 and explored the role of environmental covariates in its forecasting. Data from household nutritional surveys in Somalia from 2007 to 2010 with a total of 1,066 clusters covering 73,778 children were included. We developed a Bayesian hierarchical space-time model to forecast stunting by using the relationship between observed stunting and environmental covariates in the preceding years. We then applied the model coefficients to environmental covariates in subsequent years. To determine the accuracy of the forecasting, we compared this model with a model that used data from all the years with the corresponding environmental covariates. Rainfall (OR = 0.994, 95 % Credible interval (CrI): 0.993, 0.995) and vegetation cover (OR = 0.719, 95 % CrI: 0.603, 0.858) were significant in forecasting stunting. The difference in estimates of stunting using the two approaches was less than 3 % in all the regions for all forecast years. Stunting in Somalia is spatially and temporally heterogeneous. Rainfall and vegetation are major drivers of these variations. The use of environmental covariates for forecasting of stunting is a potentially useful and affordable tool for planning interventions to reduce the high burden of malnutrition in Somalia.

  7. Development of a monthly to seasonal forecast framework tailored to inland waterway transport in central Europe

    NASA Astrophysics Data System (ADS)

    Meißner, Dennis; Klein, Bastian; Ionita, Monica

    2017-12-01

    Traditionally, navigation-related forecasts in central Europe cover short- to medium-range lead times linked to the travel times of vessels to pass the main waterway bottlenecks leaving the loading ports. Without doubt, this aspect is still essential for navigational users, but in light of the growing political intention to use the free capacity of the inland waterway transport in Europe, additional lead time supporting strategic decisions is more and more in demand. However, no such predictions offering extended lead times of several weeks up to several months currently exist for considerable parts of the European waterway network. This paper describes the set-up of a monthly to seasonal forecasting system for the German stretches of the international waterways of the Rhine, Danube and Elbe rivers. Two competitive forecast approaches have been implemented: the dynamical set-up forces a hydrological model with post-processed outputs from ECMWF general circulation model System 4, whereas the statistical approach is based on the empirical relationship (teleconnection) of global oceanic, climate and regional hydro-meteorological data with river flows. The performance of both forecast methods is evaluated in relation to the climatological forecast (ensemble of historical streamflow) and the well-known ensemble streamflow prediction approach (ESP, ensemble based on historical meteorology) using common performance indicators (correlation coefficient; mean absolute error, skill score; mean squared error, skill score; and continuous ranked probability, skill score) and an impact-based evaluation quantifying the potential economic gain. The following four key findings result from this study: (1) as former studies for other regions of central Europe indicate, the accuracy and/or skill of the meteorological forcing used has a larger effect than the quality of initial hydrological conditions for relevant stations along the German waterways. (2) Despite the predictive limitations on longer lead times in central Europe, this study reveals the existence of a valuable predictability of streamflow on monthly up to seasonal timescales along the Rhine, upper Danube and Elbe waterways, and the Elbe achieves the highest skill and economic value. (3) The more physically based and the statistical approach are able to improve the predictive skills and economic value compared to climatology and the ESP approach. The specific forecast skill highly depends on the forecast location, the lead time and the season. (4) Currently, the statistical approach seems to be most skilful for the three waterways investigated. The lagged relationship between the monthly and/or seasonal streamflow and the climatic and/or oceanic variables vary between 1 month (e.g. local precipitation, temperature and soil moisture) up to 6 months (e.g. sea surface temperature). Besides focusing on improving the forecast methodology, especially by combining the individual approaches, the focus is on developing useful forecast products on monthly to seasonal timescales for waterway transport and to operationalize the related forecasting service.

  8. Forecast and analysis of the ratio of electric energy to terminal energy consumption for global energy internet

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhong, Ming; Cheng, Ling; Jin, Lu; Shen, Si

    2018-02-01

    In the background of building global energy internet, it has both theoretical and realistic significance for forecasting and analysing the ratio of electric energy to terminal energy consumption. This paper firstly analysed the influencing factors of the ratio of electric energy to terminal energy and then used combination method to forecast and analyse the global proportion of electric energy. And then, construct the cointegration model for the proportion of electric energy by using influence factor such as electricity price index, GDP, economic structure, energy use efficiency and total population level. At last, this paper got prediction map of the proportion of electric energy by using the combination-forecasting model based on multiple linear regression method, trend analysis method, and variance-covariance method. This map describes the development trend of the proportion of electric energy in 2017-2050 and the proportion of electric energy in 2050 was analysed in detail using scenario analysis.

  9. Forecasting the stochastic demand for inpatient care: the case of the Greek national health system.

    PubMed

    Boutsioli, Zoe

    2010-08-01

    The aim of this study is to estimate the unexpected demand of Greek public hospitals. A multivariate model with four explanatory variables is used. These are as follows: the weekend effect, the duty effect, the summer holiday and the official holiday. The method of the ordinary least squares is used to estimate the impact of these variables on the daily hospital emergency admissions series. The forecasted residuals of hospital regressions for each year give the estimated stochastic demand. Daily emergency admissions decline during weekends, summer months and official holidays, and increase on duty hospital days. Stochastic hospital demand varies both among hospitals and over the five-year time period under investigation. Variations among hospitals are larger than time variations. Hospital managers and health policy-makers can be availed by forecasting the future flows of emergent patients. The benefit can be both at managerial and economical level. More advanced models including additional daily variables such as the weather forecasts could provide more accurate estimations.

  10. Quantifying the Value of Satellite Imagery in Agriculture and other Sectors

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Abbott, P. C.; Escobar, V. M.

    2013-12-01

    This study focused on quantifying the commercial value of satellite remote sensing for agriculture. Commercial value from satellite imagery arises when improved information leads to better economic decisions. We identified five areas of application of remote sensing to agriculture where there is this potential: crop management (precision agriculture), insurance, real estate assessment, crop forecasting, and environmental monitoring. These applications can be divided between public information (crop forecasting) and those that may generate private commercial value (crop management), with both public and private information dimensions in some categories. Public information applications of remote sensing have been more successful in the past, and are likely to generate more economic value in the future. It was found that several issues have limited realization of the potential to generate private value from remote sensing in agriculture. The scale of use is small to the high cost of acquiring and interpreting large images has limited the cost effectiveness to individual farmers. Insurance, environmental monitoring, and crop management services by cooperatives or consultants may be cases overcoming this limitation. The greatest opportunities for potential commercial value from agriculture are probably in the crop forecasting area, especially where agricultural statistics services are not as well developed, since public market information benefits a broad range of economic actors, not limited to countries where forecasts are made. We estimate here the value from components of USDA's World Agricultural Supply and Demand Estimates (WASDE) forecasts for corn, indicating potential value increasing in the range of 60 to 240 million if improved satellite based information enhances those forecasts. The research was conducted by agricultural economists at Purdue University, and will be the basis for further evaluation of the use of satellite data within the NASA Carbon Monitoring System (CMS). A general evaluation framework to determine the usefulness of the CMS products to various users and to the broader community interested in managing carbon is shown in Figure 2. The first step in conducting such an analysis is to develop an understanding of the history, institutions, behaviors and other factors setting the context of an application which CMS data products inform. Decision makers are identified (who may become early adopters), and the alternative decisions they might take are elaborated. Economic models informed by biophysical models would then predict the outcome of the engagement. The new information must then be linked to a revised decision, and that decision in turn must lead to better economic or social outcomes on average. The value of the information is estimated as the predicted increase in economic surplus (profit, cost, consumer welfare) or social outcome that is a direct result of that revised decision. Alternative Monte Carlo simulations would estimate averages of key outcomes under alternative circumstances, such as differing regulations or better data, hence capturing consequences of the changes induced. These approaches will be described in the context of NASA and satellite data.

  11. A forecast of broadcast satellite communications

    NASA Technical Reports Server (NTRS)

    Martino, J. P.; Lenz, R. C., Jr.

    1977-01-01

    This paper presents forecasts of likely changes in broadcast satellite technology, the technology of ground terminals, and the technology of terrestrial communications competitive with satellites. The impacts of these changes in technology are then assessed, using a cross-impact model of U.S. domestic telecommunications, to determine the consequences of various possible changes in communications satellite technology. These consequences are discussed in terms of various possible services, for households, businesses, and specialized customers, which might become economically viable as a result of improvements in satellite technology.

  12. Energy demand forecasting

    NASA Astrophysics Data System (ADS)

    Energy demand forecasting and its connection with national energy policies and decisions is examined in light of recent, sharply revised estimates of future energy requirements. Techniques of economic projects are examined. Modeling of energy demands is discussed. Renewable energy sources are discussed. The shift away from reliance of domestic users on oil and natural gas toward electricity as a primary energy resource is examined in the context of the need to conserve energy and expand generating capacity in order to avoid a significant electricity shortfall.

  13. Improving Arctic Sea Ice Observations and Data Access to Support Advances in Sea Ice Forecasting

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.

    2017-12-01

    The economic and strategic importance of the Arctic region is becoming apparent. One of the most striking and widely publicized changes underway is the declining sea ice cover. Since sea ice is a key component of the climate system, its ongoing loss has serious, and wide-ranging, socio-economic implications. Increasing year-to-year variability in the geographic location, concentration, and thickness of the Arctic ice cover will pose both challenges and opportunities. The sea ice research community must be engaged in sustained Arctic Observing Network (AON) initiatives so as to deliver fit-for-purpose remote sensing data products to a variety of stakeholders including Arctic communities, the weather forecasting and climate modeling communities, industry, local, regional and national governments, and policy makers. An example of engagement is the work currently underway to improve research collaborations between scientists engaged in obtaining and assessing sea ice observational data and those conducting numerical modeling studies and forecasting ice conditions. As part of the US AON, in collaboration with the Interagency Arctic Research Policy Committee (IARPC), we are developing a strategic framework within which observers and modelers can work towards the common goal of improved sea ice forecasting. Here, we focus on sea ice thickness, a key varaible of the Arctic ice cover. We describe multi-sensor, and blended, sea ice thickness data products under development that can be leveraged to improve model initialization and validation, as well as support data assimilation exercises. We will also present the new PolarWatch initiative (polarwatch.noaa.gov) and discuss efforts to advance access to remote sensing satellite observations and improve communication with Arctic stakeholders, so as to deliver data products that best address societal needs.

  14. Forecasting monthly inflow discharge of the Iffezheim reservoir using data-driven models

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Aljoumani, Basem; Hillebrand, Gudrun; Hoffmann, Thomas; Hinkelmann, Reinhard

    2017-04-01

    River stream flow is an essential element in hydrology study fields, especially for reservoir management, since it defines input into reservoirs. Forecasting this stream flow plays an important role in short or long-term planning and management in the reservoir, e.g. optimized reservoir and hydroelectric operation or agricultural irrigation. Highly accurate flow forecasting can significantly reduce economic losses and is always pursued by reservoir operators. Therefore, hydrologic time series forecasting has received tremendous attention of researchers. Many models have been proposed to improve the hydrological forecasting. Due to the fact that most natural phenomena occurring in environmental systems appear to behave in random or probabilistic ways, different cases may need a different methods to forecast the inflow and even a unique treatment to improve the forecast accuracy. The purpose of this study is to determine an appropriate model for forecasting monthly inflow to the Iffezheim reservoir in Germany, which is the last of the barrages in the Upper Rhine. Monthly time series of discharges, measured from 1946 to 2001 at the Plittersdorf station, which is located 6 km downstream of the Iffezheim reservoir, were applied. The accuracies of the used stochastic models - Fiering model and Auto-Regressive Integrated Moving Average models (ARIMA) are compared with Artificial Intelligence (AI) models - single Artificial Neural Network (ANN) and Wavelet ANN models (WANN). The Fiering model is a linear stochastic model and used for generating synthetic monthly data. The basic idea in modeling time series using ARIMA is to identify a simple model with as few model parameters as possible in order to provide a good statistical fit to the data. To identify and fit the ARIMA models, four phase approaches were used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, is utilized to enhance this flexible approach to set up the model. As distinct from both stochastic models, the ANN and its related conjunction methods Wavelet-ANN (WANN) models are effective to handle non-linear systems and have been developed with antecedent flows as inputs to forecast up to 12-months lead-time for the Iffezheim reservoir. In the ANN and WANN models, the Feed Forward Back Propagation method (FFBP) is applied. The sigmoid activity and linear functions were used with several different neurons for the hidden layers and for the output layer, respectively. To compare the accuracy of the different models and identify the most suitable model for reliable forecasting, four quantitative standard statistical performance evaluation measures, the root mean square error (RMSE), the mean bias error (MAE) and the determination correlation coefficient (DC), are employed. The results reveal that the ARIMA (2, 1, 2) performs better than Fiering, ANN and WANN models. Further, the WANN model is found to be slightly better than the ANN model for forecasting monthly inflow of the Iffezheim reservoir. As a result, by using the ARIMA model, the predicted and observed values agree reasonably well.

  15. A VVWBO-BVO-based GM (1,1) and its parameter optimization by GRA-IGSA integration algorithm for annual power load forecasting

    PubMed Central

    Wang, Hongguang

    2018-01-01

    Annual power load forecasting is not only the premise of formulating reasonable macro power planning, but also an important guarantee for the safety and economic operation of power system. In view of the characteristics of annual power load forecasting, the grey model of GM (1,1) are widely applied. Introducing buffer operator into GM (1,1) to pre-process the historical annual power load data is an approach to improve the forecasting accuracy. To solve the problem of nonadjustable action intensity of traditional weakening buffer operator, variable-weight weakening buffer operator (VWWBO) and background value optimization (BVO) are used to dynamically pre-process the historical annual power load data and a VWWBO-BVO-based GM (1,1) is proposed. To find the optimal value of variable-weight buffer coefficient and background value weight generating coefficient of the proposed model, grey relational analysis (GRA) and improved gravitational search algorithm (IGSA) are integrated and a GRA-IGSA integration algorithm is constructed aiming to maximize the grey relativity between simulating value sequence and actual value sequence. By the adjustable action intensity of buffer operator, the proposed model optimized by GRA-IGSA integration algorithm can obtain a better forecasting accuracy which is demonstrated by the case studies and can provide an optimized solution for annual power load forecasting. PMID:29768450

  16. Mitigating randomness of consumer preferences under certain conditional choices

    NASA Astrophysics Data System (ADS)

    Bothos, John M. A.; Thanos, Konstantinos-Georgios; Papadopoulou, Eirini; Daveas, Stelios; Thomopoulos, Stelios C. A.

    2017-05-01

    Agent-based crowd behaviour consists a significant field of research that has drawn a lot of attention in recent years. Agent-based crowd simulation techniques have been used excessively to forecast the behaviour of larger or smaller crowds in terms of certain given conditions influenced by specific cognition models and behavioural rules and norms, imposed from the beginning. Our research employs conditional event algebra, statistical methodology and agent-based crowd simulation techniques in developing a behavioural econometric model about the selection of certain economic behaviour by a consumer that faces a spectre of potential choices when moving and acting in a multiplex mall. More specifically we try to analyse the influence of demographic, economic, social and cultural factors on the economic behaviour of a certain individual and then we try to link its behaviour with the general behaviour of the crowds of consumers in multiplex malls using agent-based crowd simulation techniques. We then run our model using Generalized Least Squares and Maximum Likelihood methods to come up with the most probable forecast estimations, regarding the agent's behaviour. Our model is indicative about the formation of consumers' spectre of choices in multiplex malls under the condition of predefined preferences and can be used as a guide for further research in this area.

  17. Application of the CloudSat and NEXRAD Radars Toward Improvements in High Resolution Operational Forecasts

    NASA Technical Reports Server (NTRS)

    Molthan, A. L.; Haynes, J. A.; Case, J. L.; Jedlovec, G. L.; Lapenta, W. M.

    2008-01-01

    As computational power increases, operational forecast models are performing simulations with higher spatial resolution allowing for the transition from sub-grid scale cloud parameterizations to an explicit forecast of cloud characteristics and precipitation through the use of single- or multi-moment bulk water microphysics schemes. investments in space-borne and terrestrial remote sensing have developed the NASA CloudSat Cloud Profiling Radar and the NOAA National Weather Service NEXRAD system, each providing observations related to the bulk properties of clouds and precipitation through measurements of reflectivity. CloudSat and NEXRAD system radars observed light to moderate snowfall in association with a cold-season, midlatitude cyclone traversing the Central United States in February 2007. These systems are responsible for widespread cloud cover and various types of precipitation, are of economic consequence, and pose a challenge to operational forecasters. This event is simulated with the Weather Research and Forecast (WRF) Model, utilizing the NASA Goddard Cumulus Ensemble microphysics scheme. Comparisons are made between WRF-simulated and observed reflectivity available from the CloudSat and NEXRAD systems. The application of CloudSat reflectivity is made possible through the QuickBeam radiative transfer model, with cautious application applied in light of single scattering characteristics and spherical target assumptions. Significant differences are noted within modeled and observed cloud profiles, based upon simulated reflectivity, and modifications to the single-moment scheme are tested through a supplemental WRF forecast that incorporates a temperature dependent snow crystal size distribution.

  18. Challenges for operational forecasting and early warning of rainfall induced landslides

    NASA Astrophysics Data System (ADS)

    Guzzetti, Fausto

    2017-04-01

    In many areas of the world, landslides occur every year, claiming lives and producing severe economic and environmental damage. Many of the landslides with human or economic consequences are the result of intense or prolonged rainfall. For this reason, in many areas the timely forecast of rainfall-induced landslides is of both scientific interest and social relevance. In the recent years, there has been a mounting interest and an increasing demand for operational landslide forecasting, and for associated landslide early warning systems. Despite the relevance of the problem, and the increasing interest and demand, only a few systems have been designed, and are currently operated. Inspection of the - limited - literature on operational landslide forecasting, and on the associated early warning systems, reveals that common criteria and standards for the design, the implementation, the operation, and the evaluation of the performances of the systems, are lacking. This limits the possibility to compare and to evaluate the systems critically, to identify their inherent strengths and weaknesses, and to improve the performance of the systems. Lack of common criteria and of established standards can also limit the credibility of the systems, and consequently their usefulness and potential practical impact. Landslides are very diversified phenomena, and the information and the modelling tools used to attempt landslide forecasting vary largely, depending on the type and size of the landslides, the extent of the geographical area considered, the timeframe of the forecasts, and the scope of the predictions. Consequently, systems for landslide forecasting and early warning can be designed and implemented at several different geographical scales, from the local (site or slope specific) to the regional, or even national scale. The talk focuses on regional to national scale landslide forecasting systems, and specifically on operational systems based on empirical rainfall threshold models. Building on the experience gained in designing, implementing, and operating national and regional landslide forecasting systems in Italy, and on a preliminary review of the existing literature on regional landslide early warning systems, the talk discusses concepts, limitations and challenges inherent to the design of reliable forecasting and early warning systems for rainfall-triggered landslides, the evaluation of the performances of the systems, and on problems related to the use of the forecasts and the issuing of landslide warnings. Several of the typical elements of an operational landslide forecasting system are considered, including: (i) the rainfall and landslide information used to establish the threshold models, (ii) the methods and tools used to define the empirical rainfall thresholds, and their associated uncertainty, (iii) the quality (e.g., the temporal and spatial resolution) of the rainfall information used for operational forecasting, including rain gauge and radar measurements, satellite estimates, and quantitative weather forecasts, (iv) the ancillary information used to prepare the forecasts, including e.g., the terrain subdivisions and the landslide susceptibility zonations, (v) the criteria used to transform the forecasts into landslide warnings and the methods used to communicate the warnings, and (vi) the criteria and strategies adopted to evaluate the performances of the systems, and to define minimum or optimal performance levels.

  19. Integrating seasonal climate prediction and agricultural models for insights into agricultural practice

    PubMed Central

    Hansen, James W

    2005-01-01

    Interest in integrating crop simulation models with dynamic seasonal climate forecast models is expanding in response to a perceived opportunity to add value to seasonal climate forecasts for agriculture. Integrated modelling may help to address some obstacles to effective agricultural use of climate information. First, modelling can address the mismatch between farmers' needs and available operational forecasts. Probabilistic crop yield forecasts are directly relevant to farmers' livelihood decisions and, at a different scale, to early warning and market applications. Second, credible ex ante evidence of livelihood benefits, using integrated climate–crop–economic modelling in a value-of-information framework, may assist in the challenge of obtaining institutional, financial and political support; and inform targeting for greatest benefit. Third, integrated modelling can reduce the risk and learning time associated with adaptation and adoption, and related uncertainty on the part of advisors and advocates. It can provide insights to advisors, and enhance site-specific interpretation of recommendations when driven by spatial data. Model-based ‘discussion support systems’ contribute to learning and farmer–researcher dialogue. Integrated climate–crop modelling may play a genuine, but limited role in efforts to support climate risk management in agriculture, but only if they are used appropriately, with understanding of their capabilities and limitations, and with cautious evaluation of model predictions and of the insights that arises from model-based decision analysis. PMID:16433092

  20. Solid waste forecasting using modified ANFIS modeling.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; K N A, Maulud

    2015-10-01

    Solid waste prediction is crucial for sustainable solid waste management. Usually, accurate waste generation record is challenge in developing countries which complicates the modelling process. Solid waste generation is related to demographic, economic, and social factors. However, these factors are highly varied due to population and economy growths. The objective of this research is to determine the most influencing demographic and economic factors that affect solid waste generation using systematic approach, and then develop a model to forecast solid waste generation using a modified Adaptive Neural Inference System (MANFIS). The model evaluation was performed using Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and the coefficient of determination (R²). The results show that the best input variables are people age groups 0-14, 15-64, and people above 65 years, and the best model structure is 3 triangular fuzzy membership functions and 27 fuzzy rules. The model has been validated using testing data and the resulted training RMSE, MAE and R² were 0.2678, 0.045 and 0.99, respectively, while for testing phase RMSE =3.986, MAE = 0.673 and R² = 0.98. To date, a few attempts have been made to predict the annual solid waste generation in developing countries. This paper presents modeling of annual solid waste generation using Modified ANFIS, it is a systematic approach to search for the most influencing factors and then modify the ANFIS structure to simplify the model. The proposed method can be used to forecast the waste generation in such developing countries where accurate reliable data is not always available. Moreover, annual solid waste prediction is essential for sustainable planning.

  1. Model documentation, Coal Market Module of the National Energy Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The internationalmore » area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.« less

  2. Configuring calendar variation based on time series regression method for forecasting of monthly currency inflow and outflow in Central Java

    NASA Astrophysics Data System (ADS)

    Setiawan, Suhartono, Ahmad, Imam Safawi; Rahmawati, Noorgam Ika

    2015-12-01

    Bank Indonesia (BI) as the central bank of Republic Indonesiahas a single overarching objective to establish and maintain rupiah stability. This objective could be achieved by monitoring traffic of inflow and outflow money currency. Inflow and outflow are related to stock and distribution of money currency around Indonesia territory. It will effect of economic activities. Economic activities of Indonesia,as one of Moslem country, absolutely related to Islamic Calendar (lunar calendar), that different with Gregorian calendar. This research aims to forecast the inflow and outflow money currency of Representative Office (RO) of BI Semarang Central Java region. The results of the analysis shows that the characteristics of inflow and outflow money currency influenced by the effects of the calendar variations, that is the day of Eid al-Fitr (moslem holyday) as well as seasonal patterns. In addition, the period of a certain week during Eid al-Fitr also affect the increase of inflow and outflow money currency. The best model based on the value of the smallestRoot Mean Square Error (RMSE) for inflow data is ARIMA model. While the best model for predicting the outflow data in RO of BI Semarang is ARIMAX model or Time Series Regression, because both of them have the same model. The results forecast in a period of 2015 shows an increase of inflow money currency happened in August, while the increase in outflow money currency happened in July.

  3. Climate Forecasts and Water Resource Management: Applications for a Developing Country

    NASA Astrophysics Data System (ADS)

    Brown, C.; Rogers, P.

    2002-05-01

    While the quantity of water on the planet earth is relatively constant, the demand for water is continuously increasing. Population growth leads to linear increases in water demand, and economic growth leads to further demand growth. Strzepek et al. calculate that with a United Nations mean population estimate of 8.5 billion people by 2025 and globally balanced economic growth, water use could increase by 70% over that time (Strzepek et al., 1995). For developing nations especially, supplying water for this growing demand requires the construction of new water supply infrastructure. The prospect of designing and constructing long life-span infrastructure is clouded by the uncertainty of future climate. The availability of future water resources is highly dependent on future climate. With realization of the nonstationarity of climate, responsible design emphasizes resiliency and robustness of water resource systems (IPCC, 1995; Gleick et al., 1999). Resilient systems feature multiple sources and complex transport and distribution systems, and so come at a high economic and environmental price. A less capital-intense alternative to creating resilient and robust water resource systems is the use of seasonal climate forecasts. Such forecasts provide adequate lead time and accuracy to allow water managers and water-based sectors such as agriculture or hydropower to optimize decisions for the expected water supply. This study will assess the use of seasonal climate forecasts from regional climate models as a method to improve water resource management in systems with limited water supply infrastructure

  4. Understanding the land-atmospheric interaction in drought forecast from CFSv2 for the 2011 Texas and 2012 Upper Midwest US droughts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Roundy, J. K.; Ek, M. B.; Wood, E. F.

    2015-12-01

    Prediction and thus preparedness in advance of hydrological extremes, such as drought and flood events, is crucial for proactively reducing their social and economic impacts. In the summers of 2011 Texas, and 2012 the Upper Midwest, experienced intense droughts that affected crops and the food market in the US. It is expected that seasonal forecasts with sufficient skill would reduce the negative impacts through planning and preparation. However, the forecast skill from models such as Climate Forecast System Version 2 (CFSv2) from National Centers for Environmental Prediction (NCEP) is low over the US, especially during the warm season (Jun - Sep), which restricts their practical use for drought prediction. This study analyzes the processes that lead to premature termination of 2011 and 2012 US summer droughts in CFSv2 forecast resulting in its low forecast skill. Using the North American Land Data Assimilation System version 2 (NLDAS2) and Climate Forecast System Reanalysis (CFSR) as references, this study investigates the forecast skills of CFSv2 initialized at 00, 06, 12, 18z from May 15 - 31 (leads out to September) for each event in terms of land-atmosphere interaction, through a recently developed Coupling Drought Index (CDI), which is based on the Convective Triggering Potential-Humidity Index-soil moisture (CTP-HI-SM) classification of four climate regimes: wet coupling, dry coupling, transitional and atmospherically controlled. A recycling model is used to trace the moisture sources in the CFSv2 forecasts of anomalous precipitation, which lead to the breakdown of drought conditions and a lack of drought forecasting skills. This is then compared with tracing the moisture source in CFSR with the same recycling model, which is used as the verification for the same periods. This helps to identify the parameterization that triggered precipitation in CFSv2 during 2011 and 2012 summer in the US thus has the potential to improve the forecast skill of CSFv2.

  5. Operational Forecasting and Warning systems for Coastal hazards in Korea

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon

    2017-04-01

    Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.

  6. Development of an integrated economic, land use & transportation forecasting model for the state of Alabama

    DOT National Transportation Integrated Search

    2010-08-31

    In 2007 the Alabama Department of Transportation (ALDOT) in cooperation with the Montgomery Area : Metropolitan Planning Organization (MPO) and Auburn University initiated a research project to explore : the potential of developing an integrated tran...

  7. How do I know if I’ve improved my continental scale flood early warning system?

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah L.; Pappenberger, Florian; Smith, Paul J.; Wetterhall, Fredrik

    2017-04-01

    Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value. The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems.

  8. Linking seasonal climate forecasts with crop models in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Capa, Mirian; Ines, Amor; Baethgen, Walter; Rodriguez-Fonseca, Belen; Han, Eunjin; Ruiz-Ramos, Margarita

    2015-04-01

    Translating seasonal climate forecasts into agricultural production forecasts could help to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. In this study, we use seasonal rainfall forecasts and crop models to improve predictability of wheat yield in the Iberian Peninsula (IP). Additionally, we estimate economic margins and production risks associated with extreme scenarios of seasonal rainfall forecast. This study evaluates two methods for disaggregating seasonal climate forecasts into daily weather data: 1) a stochastic weather generator (CondWG), and 2) a forecast tercile resampler (FResampler). Both methods were used to generate 100 (with FResampler) and 110 (with CondWG) weather series/sequences for three scenarios of seasonal rainfall forecasts. Simulated wheat yield is computed with the crop model CERES-wheat (Ritchie and Otter, 1985), which is included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at two locations in northeastern Spain where the crop model was calibrated and validated with independent field data. Once simulated yields were obtained, an assessment of farmer's gross margin for different seasonal climate forecasts was accomplished to estimate production risks under different climate scenarios. This methodology allows farmers to assess the benefits and risks of a seasonal weather forecast in IP prior to the crop growing season. The results of this study may have important implications on both, public (agricultural planning) and private (decision support to farmers, insurance companies) sectors. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Hoogenboom, G. et al., 2010. The Decision Support System for Agrotechnology Transfer (DSSAT).Version 4.5 [CD-ROM].University of Hawaii, Honolulu, Hawaii. Ritchie, J.T., Otter, S., 1985. Description and performanceof CERES-Wheat: a user-oriented wheat yield model. In: ARS Wheat Yield Project. ARS-38.Natl Tech Info Serv, Springfield, Missouri, pp. 159-175.

  9. Leveraging Past and Current Measurements to Probabilistically Nowcast Low Visibility Procedures at an Airport

    NASA Astrophysics Data System (ADS)

    Mayr, G. J.; Kneringer, P.; Dietz, S. J.; Zeileis, A.

    2016-12-01

    Low visibility or low cloud ceiling reduce the capacity of airports by requiring special low visibility procedures (LVP) for incoming/departing aircraft. Probabilistic forecasts when such procedures will become necessary help to mitigate delays and economic losses.We compare the performance of probabilistic nowcasts with two statistical methods: ordered logistic regression, and trees and random forests. These models harness historic and current meteorological measurements in the vicinity of the airport and LVP states, and incorporate diurnal and seasonal climatological information via generalized additive models (GAM). The methods are applied at Vienna International Airport (Austria). The performance is benchmarked against climatology, persistence and human forecasters.

  10. Thin-Slice Forecasts of Gubernatorial Elections

    PubMed Central

    Benjamin, Daniel J.; Shapiro, Jesse M.

    2010-01-01

    We showed 10-second, silent video clips of unfamiliar gubernatorial debates to a group of experimental participants and asked them to predict the election outcomes. The participants’ predictions explain more than 20 percent of the variation in the actual two-party vote share across the 58 elections in our study, and their importance survives a range of controls, including state fixed effects. In a horse race of alternative forecasting models, participants’ forecasts significantly outperform economic variables in predicting vote shares, and are comparable in predictive power to a measure of incumbency status. Participants’ forecasts seem to rest on judgments of candidates’ personal attributes (such as likeability), rather than inferences about candidates’ policy positions. Though conclusive causal inference is not possible in our context, our findings may be seen as suggestive evidence of a causal effect of candidate appeal on election outcomes. PMID:20431718

  11. National Freight Demand Modeling - Bridging the Gap between Freight Flow Statistics and U.S. Economic Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Shih-Miao; Hwang, Ho-Ling

    2007-01-01

    This paper describes a development of national freight demand models for 27 industry sectors covered by the 2002 Commodity Flow Survey. It postulates that the national freight demands are consistent with U.S. business patterns. Furthermore, the study hypothesizes that the flow of goods, which make up the national production processes of industries, is coherent with the information described in the 2002 Annual Input-Output Accounts developed by the Bureau of Economic Analysis. The model estimation framework hinges largely on the assumption that a relatively simple relationship exists between freight production/consumption and business patterns for each industry defined by the three-digit Northmore » American Industry Classification System industry codes (NAICS). The national freight demand model for each selected industry sector consists of two models; a freight generation model and a freight attraction model. Thus, a total of 54 simple regression models were estimated under this study. Preliminary results indicated promising freight generation and freight attraction models. Among all models, only four of them had a R2 value lower than 0.70. With additional modeling efforts, these freight demand models could be enhanced to allow transportation analysts to assess regional economic impacts associated with temporary lost of transportation services on U.S. transportation network infrastructures. Using such freight demand models and available U.S. business forecasts, future national freight demands could be forecasted within certain degrees of accuracy. These freight demand models could also enable transportation analysts to further disaggregate the CFS state-level origin-destination tables to county or zip code level.« less

  12. A Model For Rapid Estimation of Economic Loss

    NASA Astrophysics Data System (ADS)

    Holliday, J. R.; Rundle, J. B.

    2012-12-01

    One of the loftier goals in seismic hazard analysis is the creation of an end-to-end earthquake prediction system: a "rupture to rafters" work flow that takes a prediction of fault rupture, propagates it with a ground shaking model, and outputs a damage or loss profile at a given location. So far, the initial prediction of an earthquake rupture (either as a point source or a fault system) has proven to be the most difficult and least solved step in this chain. However, this may soon change. The Collaboratory for the Study of Earthquake Predictability (CSEP) has amassed a suite of earthquake source models for assorted testing regions worldwide. These models are capable of providing rate-based forecasts for earthquake (point) sources over a range of time horizons. Furthermore, these rate forecasts can be easily refined into probabilistic source forecasts. While it's still difficult to fully assess the "goodness" of each of these models, progress is being made: new evaluation procedures are being devised and earthquake statistics continue to accumulate. The scientific community appears to be heading towards a better understanding of rupture predictability. Ground shaking mechanics are better understood, and many different sophisticated models exists. While these models tend to be computationally expensive and often regionally specific, they do a good job at matching empirical data. It is perhaps time to start addressing the third step in the seismic hazard prediction system. We present a model for rapid economic loss estimation using ground motion (PGA or PGV) and socioeconomic measures as its input. We show that the model can be calibrated on a global scale and applied worldwide. We also suggest how the model can be improved and generalized to non-seismic natural disasters such as hurricane and severe wind storms.

  13. Time series ARIMA models for daily price of palm oil

    NASA Astrophysics Data System (ADS)

    Ariff, Noratiqah Mohd; Zamhawari, Nor Hashimah; Bakar, Mohd Aftar Abu

    2015-02-01

    Palm oil is deemed as one of the most important commodity that forms the economic backbone of Malaysia. Modeling and forecasting the daily price of palm oil is of great interest for Malaysia's economic growth. In this study, time series ARIMA models are used to fit the daily price of palm oil. The Akaike Infromation Criterion (AIC), Akaike Infromation Criterion with a correction for finite sample sizes (AICc) and Bayesian Information Criterion (BIC) are used to compare between different ARIMA models being considered. It is found that ARIMA(1,2,1) model is suitable for daily price of crude palm oil in Malaysia for the year 2010 to 2012.

  14. Forecasting the Effects of Higher Education Appropriations on Local Economies. AIR 1986 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Prewitt, Sidney A.; And Others

    An economic model of the effects of colleges on their communities was developed. The Texas Input-Output Model was modified into a higher education budgetary model. Included were the positive benefits of tax savings and estimates of the net effect on various communities in which state-supported colleges and universities are located. The output…

  15. Study on the influence of ground and satellite observations on the numerical air-quality for PM10 over Romanian territory

    NASA Astrophysics Data System (ADS)

    Dumitrache, Rodica Claudia; Iriza, Amalia; Maco, Bogdan Alexandru; Barbu, Cosmin Danut; Hirtl, Marcus; Mantovani, Simone; Nicola, Oana; Irimescu, Anisoara; Craciunescu, Vasile; Ristea, Alina; Diamandi, Andrei

    2016-10-01

    The numerical forecast of particulate matter concentrations in general, and PM10 in particular is a theme of high socio-economic relevance. The aim of this study was to investigate the impact of ground and satellite data assimilation of PM10 observations into the Weather Research and Forecasting model coupled with Chemistry (WRF-CHEM) numerical air quality model for Romanian territory. This is the first initiative of the kind for this domain of interest. Assimilation of satellite information - e.g. AOT's in air quality models is of interest due to the vast spatial coverage of the observations. Support Vector Regression (SVR) techniques are used to estimate the PM content from heterogeneous data sources, including EO products (Aerosol Optical Thickness), ground measurements and numerical model data (temperature, humidity, wind, etc.). In this study we describe the modeling framework employed and present the evaluation of the impact from the data assimilation of PM10 observations on the forecast of the WRF-CHEM model. Integrations of the WRF-CHEM model in data assimilation enabled/disabled configurations allowed the evaluation of satellite and ground data assimilation impact on the PM10 forecast performance for the Romanian territory. The model integration and evaluation were performed for two months, one in winter conditions (January 2013) and one in summer conditions (June 2013).

  16. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption

    PubMed Central

    Wu, Hua’an; Zhou, Meng

    2017-01-01

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy. PMID:29140266

  17. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme

    NASA Astrophysics Data System (ADS)

    Owens, Mathew J.; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  18. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme.

    PubMed

    Owens, Mathew J; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  19. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near‐Sun Conditions With a Simple One‐Dimensional “Upwind” Scheme

    PubMed Central

    Riley, Pete

    2017-01-01

    Abstract Long lead‐time space‐weather forecasting requires accurate prediction of the near‐Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near‐Sun solar wind and magnetic field conditions provide the inner boundary condition to three‐dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics‐based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near‐Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near‐Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near‐Sun solar wind speed at a range of latitudes about the sub‐Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun‐Earth line. Propagating these conditions to Earth by a three‐dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one‐dimensional “upwind” scheme is used. The variance in the resulting near‐Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996–2016, the upwind ensemble is found to provide a more “actionable” forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large). PMID:29398982

  20. Prospects for development of unified global flood observation and prediction systems (Invited)

    NASA Astrophysics Data System (ADS)

    Lettenmaier, D. P.

    2013-12-01

    Floods are among the most damaging of natural hazards, with global flood losses in 2011 alone estimated to have exceeded $100B. Historically, flood economic damages have been highest in the developed world (due in part to encroachment on historical flood plains), but loss of life, and human impacts have been greatest in the developing world. However, as the 2011 Thailand floods show, industrializing countries, many of which do not have well developed flood protection systems, are increasingly vulnerable to economic damages as they become more industrialized. At present, unified global flood observation and prediction systems are in their infancy; notwithstanding that global weather forecasting is a mature field. The summary for this session identifies two evolving capabilities that hold promise for development of more sophisticated global flood forecast systems: global hydrologic models and satellite remote sensing (primarily of precipitation, but also of flood inundation). To this I would add the increasing sophistication and accuracy of global precipitation analysis (and forecast) fields from numerical weather prediction models. In this brief overview, I will review progress in all three areas, and especially the evolution of hydrologic data assimilation which integrates modeling and data sources. I will also comment on inter-governmental and inter-agency cooperation, and related issues that have impeded progress in the development and utilization of global flood observation and prediction systems.

  1. Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany

    NASA Astrophysics Data System (ADS)

    Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike

    2017-11-01

    The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.

  2. Quantifying the Economic and Grid Reliability Impacts of Improved Wind Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Martinez-Anido, Carlo Brancucci; Wu, Hongyu

    Wind power forecasting is an important tool in power system operations to address variability and uncertainty. Accurately doing so is important to reducing the occurrence and length of curtailment, enhancing market efficiency, and improving the operational reliability of the bulk power system. This research quantifies the value of wind power forecasting improvements in the IEEE 118-bus test system as modified to emulate the generation mixes of Midcontinent, California, and New England independent system operator balancing authority areas. To measure the economic value, a commercially available production cost modeling tool was used to simulate the multi-timescale unit commitment (UC) and economicmore » dispatch process for calculating the cost savings and curtailment reductions. To measure the reliability improvements, an in-house tool, FESTIV, was used to calculate the system's area control error and the North American Electric Reliability Corporation Control Performance Standard 2. The approach allowed scientific reproducibility of results and cross-validation of the tools. A total of 270 scenarios were evaluated to accommodate the variation of three factors: generation mix, wind penetration level, and wind fore-casting improvements. The modified IEEE 118-bus systems utilized 1 year of data at multiple timescales, including the day-ahead UC, 4-hour-ahead UC, and 5-min real-time dispatch. The value of improved wind power forecasting was found to be strongly tied to the conventional generation mix, existence of energy storage devices, and the penetration level of wind energy. The simulation results demonstrate that wind power forecasting brings clear benefits to power system operations.« less

  3. Estimates of the long-term U.S. economic impacts of global climate change-induced drought.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlen, Mark Andrew; Loose, Verne W.; Warren, Drake E.

    2010-01-01

    While climate-change models have done a reasonable job of forecasting changes in global climate conditions over the past decades, recent data indicate that actual climate change may be much more severe. To better understand some of the potential economic impacts of these severe climate changes, Sandia economists estimated the impacts to the U.S. economy of climate change-induced impacts to U.S. precipitation over the 2010 to 2050 time period. The economists developed an impact methodology that converts changes in precipitation and water availability to changes in economic activity, and conducted simulations of economic impacts using a large-scale macroeconomic model of themore » U.S. economy.« less

  4. Forecasting of monthly inflow and outflow currency using time series regression and ARIMAX: The Idul Fitri effect

    NASA Astrophysics Data System (ADS)

    Ahmad, Imam Safawi; Setiawan, Suhartono, Masun, Nunun Hilyatul

    2015-12-01

    Currency plays an important role in economic transactions of Indonesian society. In order to guarantee the availability of currency, Bank Indonesia needs to develop demand and supply planning of currency. The purpose of this study is to get model and predict inflow and outflow of currency in KPW BI Region IV (East Java) with ARIMA method, time series regression and ARIMAX. The data of monthly inflow and outflow is used of currency in KPW BI Surabaya, Malang, Kediri and Jember.The observation period starting from January 2003 to December 2014. Based on the smallest values of out-sample RMSE and SMAPE, ARIMA is the best model to predict the outflow of currency in KPW BI Surabaya and ARIMAX for KPW BI Malang, Kediri and Jember. The best forecasting model for inflow of currency in KPW BI Surabaya, Malang, Kediri and Jember chronologically as follows are calendar variation model, transfer function, ARIMA, and time series regression. These results indicates that the more complex models may not necessarily produce a more accurate forecast as the result of M3-Competition.

  5. Experiences from coordinated national-level landslide and flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Krøgli, Ingeborg; Fleig, Anne; Glad, Per; Dahl, Mads-Peter; Devoli, Graziella; Colleuille, Hervé

    2015-04-01

    While flood forecasting at national level is quite well established and operational in many countries worldwide, landslide forecasting at national level is still seldom. Examples of coordinated flood and landslide forecasting are even rarer. Most of the time flood and landslide forecasters work separately (investigating, defining thresholds, and developing models) and most of the time without communication with each other. One example of coordinated operational early warning systems (EWS) for flooding and shallow landslides is found at the Norwegian Water Resources and Energy Directorate (NVE) in Norway. In this presentation we give an introduction to the two separate but tightly collaborative EWSs and to the coordination of these. The two EWSs are being operated from the same office, every day using similar hydro-meteorological prognosis and hydrological models. Prognosis and model outputs on e.g. discharge, snow melt, soil water content and exceeded landslide thresholds are evaluated in a web based decision-making tool (xgeo.no). The experts performing forecasts are hydrologists, geologists and physical geographers. A similar warning scale, based on colors (green, yellow, orange and red) is used for both EWSs, however thresholds for flood and landslide warning levels are defined differently. Also warning areas may not necessary be the same for both hazards and depending on the specific meteorological event, duration of the warning periods can differ. We present how knowledge, models and tools, but also human and economic resources are being shared between the two EWSs. Moreover, we discuss challenges faced in the communication of warning messages using recent flood and landslide events as examples.

  6. Evaluating the performance of real-time streamflow forecasting using multi-satellite precipitation products in the Upper Zambezi, Africa

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Valdes, J. B.; Wi, S.; Serrat-Capdevila, A.; Valdés-Pineda, R.; Durcik, M.

    2016-12-01

    In under-instrumented basins around the world, accurate and timely forecasts of river streamflows have the potential of assisting water and natural resource managers in their management decisions. The Upper Zambezi river basin is the largest basin in southern Africa and its water resources are critical to sustainable economic growth and poverty reduction in eight riparian countries. We present a real-time streamflow forecast for the basin using a multi-model-multi-satellite approach that allows accounting for model and input uncertainties. Three distributed hydrologic models with different levels of complexity: VIC, HYMOD_DS, and HBV_DS are setup at a daily time step and a 0.25 degree spatial resolution for the basin. The hydrologic models are calibrated against daily observed streamflows at the Katima-Mulilo station using a Genetic Algorithm. Three real-time satellite products: Climate Prediction Center's morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and Tropical Rainfall Measuring Mission (TRMM-3B42RT) are bias-corrected with daily CHIRPS estimates. Uncertainty bounds for predicted flows are estimated with the Inverse Variance Weighting method. Because concentration times in the basin range from a few days to more than a week, we include the use of precipitation forecasts from the Global Forecasting System (GFS) to predict daily streamflows in the basin with a 10-days lead time. The skill of GFS-predicted streamflows is evaluated and the usefulness of the forecasts for short term water allocations is presented.

  7. Development of modelling algorithm of technological systems by statistical tests

    NASA Astrophysics Data System (ADS)

    Shemshura, E. A.; Otrokov, A. V.; Chernyh, V. G.

    2018-03-01

    The paper tackles the problem of economic assessment of design efficiency regarding various technological systems at the stage of their operation. The modelling algorithm of a technological system was performed using statistical tests and with account of the reliability index allows estimating the level of machinery technical excellence and defining the efficiency of design reliability against its performance. Economic feasibility of its application shall be determined on the basis of service quality of a technological system with further forecasting of volumes and the range of spare parts supply.

  8. Developing a user-friendly Drought Monitoring and Forecasting Tool for Doctors without Borders

    NASA Astrophysics Data System (ADS)

    Enenkel, Markus

    2015-04-01

    Humanitarian aid organizations that focus on drought-related emergency response and disaster preparedness need to take decisions under high uncertainty. Satellite-derived and modelled information can help to decrease this uncertainty. However, in order to benefit from the provided knowledge it is crucial to adapt datasets and tools to actual user requirements and existing organizational capacities. Furthermore, socio-economic vulnerabilities (e. g. current rates of malnutrition) and coping capacities (e. g. access to drought-resistant seeds) of the affected population need to be assessed to link environmental conditions (drought risk) to potential impacts (food insecurity). Forecasts with lead times up to several months are desirable from a logistic point of view, but naturally less accurate than short-term predictions. As a consequence, careful calibration is required to identify and balance forecasts with an acceptable accuracy and the risk of possible false alarms. Therefore, we calibrate modelled predictions of rainfall, temperature and soil moisture via satellite-derived observations. Field tests with Doctors without Borders in Ethiopia help to define critical thresholds, to interpret the information under real conditions and to collect the necessary additional socio-economic data via a smartphone app. The final risk maps need to be visualized in a way that is easy to interpret, but not oversimplified.

  9. Forecasting economic gains from intensive plantation management using unrealistic yield over input curves

    Treesearch

    David B. South; Curtis L. VanderSchaaf; Larry D. Teeter

    2006-01-01

    Some researchers claim that continuously increasing intensive plantation management will increase profits and reduce the unit cost of wood production while others believe in the law of diminishing returns. We developed four hypothetical production models where yield is a function of silvicultural effort. Models that produced unrealistic results were (1) an exponential...

  10. Economic Perspectives of Technological Progress: New Dimensions for Forecasting Technology

    ERIC Educational Resources Information Center

    Twiss, Brian

    1976-01-01

    Discusses the causal relationship between the allocation of financial resources and technological growth. Argues that economic constraints are becoming an important determinant of technological progress that must be incorporated into technology forecasting techniques. (Available from IPC (America) Inc., 205 East 42 Street, New York, NY 10017;…

  11. Climate science and famine early warning

    USGS Publications Warehouse

    Verdin, James P.; Funk, Chris; Senay, Gabriel B.; Choularton, R.

    2005-01-01

    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised.

  12. Climate science and famine early warning.

    PubMed

    Verdin, James; Funk, Chris; Senay, Gabriel; Choularton, Richard

    2005-11-29

    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised.

  13. Climate science and famine early warning

    PubMed Central

    Verdin, James; Funk, Chris; Senay, Gabriel; Choularton, Richard

    2005-01-01

    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised. PMID:16433101

  14. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Economic Benefits of Improved Information on Worldwide Crop Production: An Optimal Decision Model of Production and Distribution with Application to Wheat, Corn, and Soybeans

    NASA Technical Reports Server (NTRS)

    Andrews, J.

    1977-01-01

    An optimal decision model of crop production, trade, and storage was developed for use in estimating the economic consequences of improved forecasts and estimates of worldwide crop production. The model extends earlier distribution benefits models to include production effects as well. Application to improved information systems meeting the goals set in the large area crop inventory experiment (LACIE) indicates annual benefits to the United States of $200 to $250 million for wheat, $50 to $100 million for corn, and $6 to $11 million for soybeans, using conservative assumptions on expected LANDSAT system performance.

  16. Forecasting European Droughts using the North American Multi-Model Ensemble (NMME)

    NASA Astrophysics Data System (ADS)

    Thober, Stephan; Kumar, Rohini; Samaniego, Luis; Sheffield, Justin; Schäfer, David; Mai, Juliane

    2015-04-01

    Soil moisture droughts have the potential to diminish crop yields causing economic damage or even threatening the livelihood of societies. State-of-the-art drought forecasting systems incorporate seasonal meteorological forecasts to estimate future drought conditions. Meteorological forecasting skill (in particular that of precipitation), however, is limited to a few weeks because of the chaotic behaviour of the atmosphere. One of the most important challenges in drought forecasting is to understand how the uncertainty in the atmospheric forcings (e.g., precipitation and temperature) is further propagated into hydrologic variables such as soil moisture. The North American Multi-Model Ensemble (NMME) provides the latest collection of a multi-institutional seasonal forecasting ensemble for precipitation and temperature. In this study, we analyse the skill of NMME forecasts for predicting European drought events. The monthly NMME forecasts are downscaled to daily values to force the mesoscale hydrological model (mHM). The mHM soil moisture forecasts obtained with the forcings of the dynamical models are then compared against those obtained with the Ensemble Streamflow Prediction (ESP) approach. ESP recombines historical meteorological forcings to create a new ensemble forecast. Both forecasts are compared against reference soil moisture conditions obtained using observation based meteorological forcings. The study is conducted for the period from 1982 to 2009 and covers a large part of the Pan-European domain (10°W to 40°E and 35°N to 55°N). Results indicate that NMME forecasts are better at predicting the reference soil moisture variability as compared to ESP. For example, NMME explains 50% of the variability in contrast to only 31% by ESP at a six-month lead time. The Equitable Threat Skill Score (ETS), which combines the hit and false alarm rates, is analysed for drought events using a 0.2 threshold of a soil moisture percentile index. On average, the NMME based ensemble forecasts have consistently higher skill than the ESP based ones (ETS of 13% as compared to 5% at a six-month lead time). Additionally, the ETS ensemble spread of NMME forecasts is considerably narrower than that of ESP; the lower boundary of the NMME ensemble spread coincides most of the time with the ensemble median of ESP. Among the NMME models, NCEP-CFSv2 outperforms the other models in terms of ETS most of the time. Removing the three worst performing models does not deteriorate the ensemble performance (neither in skill nor in spread), but would substantially reduce the computational resources required in an operational forecasting system. For major European drought events (e.g., 1990, 1992, 2003, and 2007), NMME forecasts tend to underestimate area under drought and drought magnitude during times of drought development. During drought recovery, this underestimation is weaker for area under drought or even reversed into an overestimation for drought magnitude. This indicates that the NMME models are too wet during drought development and too dry during drought recovery. In summary, soil moisture drought forecasts by NMME are more skillful than those of an ESP based approach. However, they still show systematic biases in reproducing the observed drought dynamics during drought development and recovery.

  17. A stochastic Forest Fire Model for future land cover scenarios assessment

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Fiorucci, P.; Holmes, T. P.

    2010-10-01

    Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM) produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary - each cell either contains a tree or it is empty - and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM), addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  18. Promoting inclusive water governance and forecasting the structure of water consumption based on compositional data: A case study of Beijing.

    PubMed

    Wei, Yigang; Wang, Zhichao; Wang, Huiwen; Yao, Tang; Li, Yan

    2018-09-01

    Water is centrally important for agricultural security, environment, people's livelihoods, and socio-economic development, particularly in the face of extreme climate changes. Due to water shortages in many cities, the conflicts between various stakeholders and sectors over water use and allocation are becoming more common and intense. Effective inclusive governance of water use is critical for relieving water use conflicts. In addition, reliable forecasting of the structure of water usage among different sectors is a basic need for effective water governance planning. Although a large number of studies have attempted to forecast water use, little is known about the forecasted structure and trends of water use in the future. This paper aims to develop a forecasting model for the structure of water usage based on compositional data. Compositional data analysis is an effective approach for investigating the internal structure of a system. A host of data transformation methods and forecasting models were adopted and compared in order to derive the best-performing model. According to mean absolute percent error for compositional data (CoMAPE), a hyperspherical-transformation-based vector autoregression model for compositional data (VAR-DRHT) is the best-performing model. The proportions of the agricultural, industrial, domestic and environmental water will be 6.11%, 5.01%, 37.48% and 51.4% by 2020. Several recommendations for water inclusive development are provided to give a better account for the optimization of the water use structure, alleviation of water shortages, and improving stake holders' wellbeing. Overall, although we focus on groundwater, this study presents a powerful framework broadly applicable to resource management. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Conjunctive use of groundwater and surface water for irrigated agriculture: Risk aversion

    USGS Publications Warehouse

    Bredehoeft, John D.; Young, Richard A.

    1983-01-01

    In examining the South Platte system in Colorado where surface water and groundwater are used conjunctively for irrigation, we find the actual installed well capacity is approximately sufficient to irrigate the entire area. This would appear to be an overinvestment in well capacity. In this paper we examine to what extent groundwater is being developed as insurance against periods of low streamflow. Using a simulation model which couples the hydrology of a conjunctive stream aquifer system to a behavioral-economic model which incorporates farmer behavior in such a system, we have investigated the economics of an area patterned after a reach of the South Platte Valley in Colorado. The results suggest that under current economic conditions the most reasonable groundwater pumping capacity is a total capacity capable of irrigating the available acreage with groundwater. Installing sufficient well capacity to irrigate all available acreage has two benefits: (1) this capacity maximizes the expected net benefits and (2) this capacity also minimizes the variation in annual income: it reduces the variance to essentially zero. As pumping capacity is installed in a conjunctive use system, the value of flow forecasts is diminished. Poor forecasts are compensated for by pumping groundwater.

  20. Attributing Predictable Signals at Subseasonal Timescales

    NASA Astrophysics Data System (ADS)

    Shelly, A.; Norton, W.; Rowlands, D.; Beech-Brandt, J.

    2016-12-01

    Subseasonal forecasts offer significant economic value in the management of energy infrastructure and through the associated financial markets. Models are now accurate enough to provide, for some occasions, good forecasts in the subseasonal range. However, it is often not clear what the drivers of these subseasonal signals are and if the forecasts could be more accurate with better representation of physical processes. Also what are the limits of predictability in the subseasonal range? To address these questions, we have run the ECMWF monthly forecast system over the 2015/16 winter with a set of 6 week ensemble integrations initialised every week over the period. In these experiments, we have relaxed the band 15N to 15S to reanalysis fields. Hence, we have a set of forecasts where the tropics is constrained to actual events and we can analyse the changes in predictability in middle latitudes - in particular in regions of high energy consumption like North America and Europe. Not surprisingly, the forecast of some periods are significantly improved while others show no improvement. We discuss events/patterns that have extended range predictability and also the tropical forecast errors which prevent the potential predictability in middle latitudes from being realised.

  1. Sensitivity analysis of a data assimilation technique for hindcasting and forecasting hydrodynamics of a complex coastal water body

    NASA Astrophysics Data System (ADS)

    Ren, Lei; Hartnett, Michael

    2017-02-01

    Accurate forecasting of coastal surface currents is of great economic importance due to marine activities such as marine renewable energy and fish farms in coastal regions in recent twenty years. Advanced oceanographic observation systems such as satellites and radars can provide many parameters of interest, such as surface currents and waves, with fine spatial resolution in near real time. To enhance modelling capability, data assimilation (DA) techniques which combine the available measurements with the hydrodynamic models have been used since the 1990s in oceanography. Assimilating measurements into hydrodynamic models makes the original model background states follow the observation trajectory, then uses it to provide more accurate forecasting information. Galway Bay is an open, wind dominated water body on which two coastal radars are deployed. An efficient and easy to implement sequential DA algorithm named Optimal Interpolation (OI) was used to blend radar surface current data into a three-dimensional Environmental Fluid Dynamics Code (EFDC) model. Two empirical parameters, horizontal correlation length and DA cycle length (CL), are inherent within OI. No guidance has previously been published regarding selection of appropriate values of these parameters or how sensitive OI DA is to variations in their values. Detailed sensitivity analysis has been performed on both of these parameters and results presented. Appropriate value of DA CL was examined and determined on producing the minimum Root-Mean-Square-Error (RMSE) between radar data and model background states. Analysis was performed to evaluate assimilation index (AI) of using an OI DA algorithm in the model. AI of the half-day forecasting mean vectors' directions was over 50% in the best assimilation model. The ability of using OI to improve model forecasts was also assessed and is reported upon.

  2. Interval forecasting of cyberattack intensity on informatization objects of industry using probability cluster model

    NASA Astrophysics Data System (ADS)

    Krakovsky, Y. M.; Luzgin, A. N.; Mikhailova, E. A.

    2018-05-01

    At present, cyber-security issues associated with the informatization objects of industry occupy one of the key niches in the state management system. As a result of functional disruption of these systems via cyberattacks, an emergency may arise related to loss of life, environmental disasters, major financial and economic damage, or disrupted activities of cities and settlements. When cyberattacks occur with high intensity, in these conditions there is the need to develop protection against them, based on machine learning methods. This paper examines interval forecasting and presents results with a pre-set intensity level. The interval forecasting is carried out based on a probabilistic cluster model. This method involves forecasting of one of the two predetermined intervals in which a future value of the indicator will be located; probability estimates are used for this purpose. A dividing bound of these intervals is determined by a calculation method based on statistical characteristics of the indicator. Source data are used that includes a number of hourly cyberattacks using a honeypot from March to September 2013.

  3. An operational procedure for rapid flood risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  4. Better Forecasting for Better Planning: A Systems Approach.

    ERIC Educational Resources Information Center

    Austin, W. Burnet

    Predictions and forecasts are the most critical features of rational planning as well as the most vulnerable to inaccuracy. Because plans are only as good as their forecasts, current planning procedures could be improved by greater forecasting accuracy. Economic factors explain and predict more than any other set of factors, making economic…

  5. Long-Term Economic and Labor Forecast Trends for Washington. 1996.

    ERIC Educational Resources Information Center

    Lefberg, Irv; And Others

    This publication provides actual historical and long-term forecast data on labor force, total wage and salary employment, industry employment, and personal income for the state of Washington. The data are based upon the Washington Office of Financial Management long-term population forecast. Chapter 1 presents long-term forecasts of Washington…

  6. The flood event of 10-12 November 2013 on the Tiber River basin (central Italy): real-time flood forecasting with uncertainty supporting risk management and decision-making

    NASA Astrophysics Data System (ADS)

    Berni, Nicola; Brocca, Luca; Barbetta, Silvia; Pandolfo, Claudia; Stelluti, Marco; Moramarco, Tommaso

    2014-05-01

    The Italian national hydro-meteorological early warning system is composed by 21 regional offices (Functional Centres, CF). Umbria Region (central Italy) CF provides early warning for floods and landslides, real-time monitoring and decision support systems (DSS) for the Civil Defence Authorities when significant events occur. The alert system is based on hydrometric and rainfall thresholds with detailed procedures for the management of critical events in which different roles of authorities and institutions involved are defined. The real-time flood forecasting system is based also on different hydrological and hydraulic forecasting models. Among these, the MISDc rainfall-runoff model ("Modello Idrologico SemiDistribuito in continuo"; Brocca et al., 2011) and the flood routing model named STAFOM-RCM (STAge Forecasting Model-Rating Curve Model; Barbetta et al., 2014) are continuously operative in real-time providing discharge and stage forecasts, respectively, with lead-times up to 24 hours (when quantitative precipitation forecasts are used) in several gauged river sections in the Upper-Middle Tiber River basin. Models results are published in real-time in the open source CF web platform: www.cfumbria.it. MISDc provides discharge and soil moisture forecasts for different sub-basins while STAFOM-RCM provides stage forecasts at hydrometric sections. Moreover, through STAFOM-RCM the uncertainty of the forecast stage hydrograph is provided in terms of 95% Confidence Interval (CI) assessed by analyzing the statistical properties of model output in terms of lateral. In the period 10th-12th November 2013, a severe flood event occurred in Umbria mainly affecting the north-eastern area and causing significant economic damages, but fortunately no casualties. The territory was interested by intense and persistent rainfall; the hydro-meteorological monitoring network recorded locally rainfall depth over 400 mm in 72 hours. In the most affected area, the recorded rainfall depths correspond approximately to a return period of 200 years. Most rivers in Umbria have been involved, exceeding hydrometric thresholds and causing flooding (e.g. Chiascio river). The flood event was continuously monitored at the Umbria Region CF and the possible evolution predicted and assessed on the basis of the model forecasts. The predictions provided by MISDc and STAFOM-RCM were found useful to support real-time decision-making addressed to flood risk management. Moreover, the quantification of the uncertainty affecting the deterministic forecast stages was found consistent with the level of confidence selected and had practical utility corroborating the need of coupling deterministic forecast and 'uncertainty' when the model output is used to support decisions about flood management. REFERENCES Barbetta, S., Moramarco, T., Brocca, L., Franchini, M., Melone, F. (2014). Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3), 729-743. Brocca, L., Melone, F., Moramarco, T. (2011). Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting. Hydrological Processes, 25 (18), 2801-2813

  7. An experimental system for flood risk forecasting and monitoring at global scale

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter

    2017-04-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.

  8. Agent Based Model of Livestock Movements

    NASA Astrophysics Data System (ADS)

    Miron, D. J.; Emelyanova, I. V.; Donald, G. E.; Garner, G. M.

    The modelling of livestock movements within Australia is of national importance for the purposes of the management and control of exotic disease spread, infrastructure development and the economic forecasting of livestock markets. In this paper an agent based model for the forecasting of livestock movements is presented. This models livestock movements from farm to farm through a saleyard. The decision of farmers to sell or buy cattle is often complex and involves many factors such as climate forecast, commodity prices, the type of farm enterprise, the number of animals available and associated off-shore effects. In this model the farm agent's intelligence is implemented using a fuzzy decision tree that utilises two of these factors. These two factors are the livestock price fetched at the last sale and the number of stock on the farm. On each iteration of the model farms choose either to buy, sell or abstain from the market thus creating an artificial supply and demand. The buyers and sellers then congregate at the saleyard where livestock are auctioned using a second price sealed bid. The price time series output by the model exhibits properties similar to those found in real livestock markets.

  9. Remote and Local Influences in Forecasting Pacific SST: a Linear Inverse Model and a Multimodel Ensemble Study

    NASA Astrophysics Data System (ADS)

    Faggiani Dias, D.; Subramanian, A. C.; Zanna, L.; Miller, A. J.

    2017-12-01

    Sea surface temperature (SST) in the Pacific sector is well known to vary on time scales from seasonal to decadal, and the ability to predict these SST fluctuations has many societal and economical benefits. Therefore, we use a suite of statistical linear inverse models (LIMs) to understand the remote and local SST variability that influences SST predictions over the North Pacific region and further improve our understanding on how the long-observed SST record can help better guide multi-model ensemble forecasts. Observed monthly SST anomalies in the Pacific sector (between 15oS and 60oN) are used to construct different regional LIMs for seasonal to decadal prediction. The forecast skills of the LIMs are compared to that from two operational forecast systems in the North American Multi-Model Ensemble (NMME) revealing that the LIM has better skill in the Northeastern Pacific than NMME models. The LIM is also found to have comparable forecast skill for SST in the Tropical Pacific with NMME models. This skill, however, is highly dependent on the initialization month, with forecasts initialized during the summer having better skill than those initialized during the winter. The forecast skill with LIM is also influenced by the verification period utilized to make the predictions, likely due to the changing character of El Niño in the 20th century. The North Pacific seems to be a source of predictability for the Tropics on seasonal to interannual time scales, while the Tropics act to worsen the skill for the forecast in the North Pacific. The data were also bandpassed into seasonal, interannual and decadal time scales to identify the relationships between time scales using the structure of the propagator matrix. For the decadal component, this coupling occurs the other way around: Tropics seem to be a source of predictability for the Extratropics, but the Extratropics don't improve the predictability for the Tropics. These results indicate the importance of temporal scale interactions in improving predictability on decadal timescales. Hence, we show that LIMs are not only useful as benchmarks for estimates of statistical skill, but also to isolate contributions to the forecast skills from different timescales, spatial scales or even model components.

  10. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of this thesis can be used for building cluster energy forecasting model development and model based control and operation optimization. The thesis concludes with a summary of the key outcomes of this research, as well as a list of recommendations for future work.

  11. From Negative to Positive Stability: How the Syrian Refugee Crisis Can Improve Jordan’s Outlook

    DTIC Science & Technology

    2015-01-01

    Syrian Refugees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Forecast: The Impact of Syrian Refugees on Jordan’s Economic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22...Syrians find economic stability , they will be less vulnerable to the loss of aid, and therefore less likely to present a drain on Jordanian society...with Syrian refugees, and presents a forecast of Syrian refugee impacts on Jordan’s economy and such economic stability factors as unem- ployment and

  12. Benefits to world agriculture through remote sensing

    NASA Technical Reports Server (NTRS)

    Buffalano, A. C.; Kochanowski, P.

    1976-01-01

    Remote sensing of agricultural land permits crop classification and mensuration which can lead to improved forecasts of production. This technique is particularly important for nations which do not already have an accurate agricultural reporting system. Better forecasts have important economic effects. International grain traders can make better decisions about when to store, buy, and sell. Farmers can make better planting decisions by taking advantage of production estimates for areas out of phase with their own agricultural calendar. World economic benefits will accrue to both buyers and sellers because of increased food supply and price stabilization. This paper reviews the econometric models used to establish this scenario and estimates the dollar value of benefits for world wheat as 200 million dollars annually for the United States and 300 to 400 million dollars annually for the rest of the world.

  13. Projecting county pulpwood production with historical production and macro-economic variables

    Treesearch

    Consuelo Brandeis; Dayton M. Lambert

    2014-01-01

    We explored forecasting of county roundwood pulpwood produc-tion with county-vector autoregressive (CVAR) and spatial panelvector autoregressive (SPVAR) methods. The analysis used timberproducts output data for the state of Florida, together with a set ofmacro-economic variables. Overall, we found the SPVAR specifica-tion produced forecasts with lower error rates...

  14. Crop Yield Predictions - High Resolution Statistical Model for Intra-season Forecasts Applied to Corn in the US

    NASA Astrophysics Data System (ADS)

    Cai, Y.

    2017-12-01

    Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.

  15. Evolution-informed forecasting of seasonal influenza A (H3N2).

    PubMed

    Du, Xiangjun; King, Aaron A; Woods, Robert J; Pascual, Mercedes

    2017-10-25

    Interpandemic or seasonal influenza A, currently subtypes H3N2 and H1N1, exacts an enormous annual burden both in terms of human health and economic impact. Incidence prediction ahead of season remains a challenge largely because of the virus' antigenic evolution. We propose a forecasting approach that incorporates evolutionary change into a mechanistic epidemiological model. The proposed models are simple enough that their parameters can be estimated from retrospective surveillance data. These models link amino acid sequences of hemagglutinin epitopes with a transmission model for seasonal H3N2 influenza, also informed by H1N1 levels. With a monthly time series of H3N2 incidence in the United States for more than 10 years, we demonstrate the feasibility of skillful prediction for total cases ahead of season, with a tendency to underpredict monthly peak epidemic size, and an accurate real-time forecast for the 2016/2017 influenza season. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Cui, Mingjian; Hodge, Bri-Mathias

    The large variability and uncertainty in wind power generation present a concern to power system operators, especially given the increasing amounts of wind power being integrated into the electric power system. Large ramps, one of the biggest concerns, can significantly influence system economics and reliability. The Wind Forecast Improvement Project (WFIP) was to improve the accuracy of forecasts and to evaluate the economic benefits of these improvements to grid operators. This paper evaluates the ramp forecasting accuracy gained by improving the performance of short-term wind power forecasting. This study focuses on the WFIP southern study region, which encompasses most ofmore » the Electric Reliability Council of Texas (ERCOT) territory, to compare the experimental WFIP forecasts to the existing short-term wind power forecasts (used at ERCOT) at multiple spatial and temporal scales. The study employs four significant wind power ramping definitions according to the power change magnitude, direction, and duration. The optimized swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental WFIP forecasts improve the accuracy of the wind power ramp forecasting. This improvement can result in substantial costs savings and power system reliability enhancements.« less

  17. Adequacy of satellite derived rainfall data for stream flow modeling

    USGS Publications Warehouse

    Artan, G.; Gadain, Hussein; Smith, Jodie; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.

    2007-01-01

    Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.

  18. The Impact of Implementing a Demand Forecasting System into a Low-Income Country’s Supply Chain

    PubMed Central

    Mueller, Leslie E.; Haidari, Leila A.; Wateska, Angela R.; Phillips, Roslyn J.; Schmitz, Michelle M.; Connor, Diana L.; Norman, Bryan A.; Brown, Shawn T.; Welling, Joel S.; Lee, Bruce Y.

    2016-01-01

    OBJECTIVE To evaluate the potential impact and value of applications (e.g., ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country’s vaccine supply chain with different levels of population change to urban areas. MATERIALS AND METHODS Using our software, HERMES, we generated a detailed discrete event simulation model of Niger’s entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. RESULTS Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. DISCUSSION The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. CONCLUSION Demand forecasting systems have the potential to greatly improve vaccine demand fulfillment, and decrease logistics cost/dose when implemented with storage and transportation increases direct vaccines. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. PMID:27219341

  19. The impact of implementing a demand forecasting system into a low-income country's supply chain.

    PubMed

    Mueller, Leslie E; Haidari, Leila A; Wateska, Angela R; Phillips, Roslyn J; Schmitz, Michelle M; Connor, Diana L; Norman, Bryan A; Brown, Shawn T; Welling, Joel S; Lee, Bruce Y

    2016-07-12

    To evaluate the potential impact and value of applications (e.g. adjusting ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country's vaccine supply chain with different levels of population change to urban areas. Using our software, HERMES, we generated a detailed discrete event simulation model of Niger's entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. Demand forecasting systems have the potential to greatly improve vaccine demand fulfilment, and decrease logistics cost/dose when implemented with storage and transportation increases. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Estimation efficiency of usage satellite derived and modelled biophysical products for yield forecasting

    NASA Astrophysics Data System (ADS)

    Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara

    2015-04-01

    Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.

  1. Influence of Forecast Accuracy of Photovoltaic Power Output on Facility Planning and Operation of Microgrid under 30 min Power Balancing Control

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Sone, Akihito; Shimakage, Toyonari; Suzuoki, Yasuo

    A microgrid (MG) is one of the measures for enhancing the high penetration of renewable energy (RE)-based distributed generators (DGs). For constructing a MG economically, the capacity optimization of controllable DGs against RE-based DGs is essential. By using a numerical simulation model developed based on the demonstrative studies on a MG using PAFC and NaS battery as controllable DGs and photovoltaic power generation system (PVS) as a RE-based DG, this study discusses the influence of forecast accuracy of PVS output on the capacity optimization and daily operation evaluated with the cost. The main results are as follows. The required capacity of NaS battery must be increased by 10-40% against the ideal situation without the forecast error of PVS power output. The influence of forecast error on the received grid electricity would not be so significant on annual basis because the positive and negative forecast error varies with days. The annual total cost of facility and operation increases by 2-7% due to the forecast error applied in this study. The impact of forecast error on the facility optimization and operation optimization is almost the same each other at a few percentages, implying that the forecast accuracy should be improved in terms of both the number of times with large forecast error and the average error.

  2. Coping with Changes in International Classifications of Sectors and Occupations: Application in Skills Forecasting. Research Paper No 43

    ERIC Educational Resources Information Center

    Kvetan, Vladimir, Ed.

    2014-01-01

    Reliable and consistent time series are essential to any kind of economic forecasting. Skills forecasting needs to combine data from national accounts and labour force surveys, with the pan-European dimension of Cedefop's skills supply and demand forecasts, relying on different international classification standards. Sectoral classification (NACE)…

  3. SEASAT economic assessment

    NASA Technical Reports Server (NTRS)

    Hicks, K.; Steele, W.

    1974-01-01

    The SEASAT program will provide scientific and economic benefits from global remote sensing of the ocean's dynamic and physical characteristics. The program as presently envisioned consists of: (1) SEASAT A; (2) SEASAT B; and (3) Operational SEASAT. This economic assessment was to identify, rationalize, quantify and validate the economic benefits evolving from SEASAT. These benefits will arise from improvements in the operating efficiency of systems that interface with the ocean. SEASAT data will be combined with data from other ocean and atmospheric sampling systems and then processed through analytical models of the interaction between oceans and atmosphere to yield accurate global measurements and global long range forecasts of ocean conditions and weather.

  4. Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique

    NASA Astrophysics Data System (ADS)

    Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad

    2015-11-01

    One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.

  5. Does NASA SMAP Improve the Accuracy of Power Outage Models?

    NASA Astrophysics Data System (ADS)

    Quiring, S. M.; McRoberts, D. B.; Toy, B.; Alvarado, B.

    2016-12-01

    Electric power utilities make critical decisions in the days prior to hurricane landfall that are primarily based on the estimated impact to their service area. For example, utilities must determine how many repair crews to request from other utilities, the amount of material and equipment they will need to make repairs, and where in their geographically expansive service area to station crews and materials. Accurate forecasts of the impact of an approaching hurricane within their service area are critical for utilities in balancing the costs and benefits of different levels of resources. The Hurricane Outage Prediction Model (HOPM) are a family of statistical models that utilize predictions of tropical cyclone windspeed and duration of strong winds, along with power system and environmental variables (e.g., soil moisture, long-term precipitation), to forecast the number and location of power outages. This project assesses whether using NASA SMAP soil moisture improves the accuracy of power outage forecasts as compared to using model-derived soil moisture from NLDAS-2. A sensitivity analysis is employed since there have been very few tropical cyclones making landfall in the United States since SMAP was launched. The HOPM is used to predict power outages for 13 historical tropical cyclones and the model is run using twice, once with NLDAS soil moisture and once with SMAP soil moisture. Our results demonstrate that using SMAP soil moisture can have a significant impact on power outage predictions. SMAP has the potential to enhance the accuracy of power outage forecasts. Improved outage forecasts reduce the duration of power outages which reduces economic losses and accelerates recovery.

  6. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.

    PubMed

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2015-09-01

    Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.

  7. A framework for probabilistic pluvial flood nowcasting for urban areas

    NASA Astrophysics Data System (ADS)

    Ntegeka, Victor; Murla, Damian; Wang, Lipen; Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent; Van Herk, Kristine; Van Ootegem, Luc; Willems, Patrick

    2016-04-01

    Pluvial flood nowcasting is gaining ground not least because of the advancements in rainfall forecasting schemes. Short-term forecasts and applications have benefited from the availability of such forecasts with high resolution in space (~1km) and time (~5min). In this regard, it is vital to evaluate the potential of nowcasting products for urban inundation applications. One of the most advanced Quantitative Precipitation Forecasting (QPF) techniques is the Short-Term Ensemble Prediction System, which was originally co-developed by the UK Met Office and Australian Bureau of Meteorology. The scheme was further tuned to better estimate extreme and moderate events for the Belgian area (STEPS-BE). Against this backdrop, a probabilistic framework has been developed that consists of: (1) rainfall nowcasts; (2) sewer hydraulic model; (3) flood damage estimation; and (4) urban inundation risk mapping. STEPS-BE forecasts are provided at high resolution (1km/5min) with 20 ensemble members with a lead time of up to 2 hours using a 4 C-band radar composite as input. Forecasts' verification was performed over the cities of Leuven and Ghent and biases were found to be small. The hydraulic model consists of the 1D sewer network and an innovative 'nested' 2D surface model to model 2D urban surface inundations at high resolution. The surface components are categorized into three groups and each group is modelled using triangular meshes at different resolutions; these include streets (3.75 - 15 m2), high flood hazard areas (12.5 - 50 m2) and low flood hazard areas (75 - 300 m2). Functions describing urban flood damage and social consequences were empirically derived based on questionnaires to people in the region that were recently affected by sewer floods. Probabilistic urban flood risk maps were prepared based on spatial interpolation techniques of flood inundation. The method has been implemented and tested for the villages Oostakker and Sint-Amandsberg, which are part of the larger city of Gent, Belgium. After each of the different above-mentioned components were evaluated, they were combined and tested for recent historical flood events. The rainfall nowcasting, hydraulic sewer and 2D inundation modelling and socio-economical flood risk results each could be partly evaluated: the rainfall nowcasting results based on radar data and rain gauges; the hydraulic sewer model results based on water level and discharge data at pumping stations; the 2D inundation modelling results based on limited data on some recent flood locations and inundation depths; the results for the socio-economical flood consequences of the most extreme events based on claims in the database of the national disaster agency. Different methods for visualization of the probabilistic inundation results are proposed and tested.

  8. Methods and Techniques of Revenue Forecasting.

    ERIC Educational Resources Information Center

    Caruthers, J. Kent; Wentworth, Cathi L.

    1997-01-01

    Revenue forecasting is the critical first step in most college and university budget-planning processes. While it seems a straightforward exercise, effective forecasting requires consideration of a number of interacting internal and external variables, including demographic trends, economic conditions, and broad social priorities. The challenge…

  9. Development of energy consumption and energy efficiency potential in the Brazilian industrial sector according to the Integrated Energy Planning Model (IEPM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolmasquim, M.T.; Szklo, A.S.; Cohen, C.

    This paper presents the development of energy consumption in the Brazilian industrial sector and energy efficiency potential based on the analysis undertaken through a model developed in the Energy Planning Program at COPPE/UFRJ, known as the Integrated Energy Planning Model (IEPM). The study starts by presenting the IEPM, which is a technical and economic parameter-based model designed to forecast energy supplies and consumption for all economic sectors in Brazil, within three scenarios. Outlines of all three scenarios are presented, as they were constructed according to certain specific assumptions. The industrial sector was broken down into eleven sub-sectors: food and beverages,more » ceramics, cement, iron and steel, mining and pelletizing, ferroalloys, non-ferrous metals and others (metallurgy), chemicals, pulp and paper, textiles and other industries (MME, 1998). All these sub-sectors will also be presented as well as the results of the scenario forecasts. Results deriving from these forecasts come from very specific studies that analyze all process steps in each sub-sector in order to propose energy replacements, efficiency improvements of structural production alterations that result in major potential energy consumption reductions. Last but not least, this paper gives the development forecasts deriving from the three scenarios over ten years, with their contributions to energy efficiency in the Brazilian industrial sector, showing that the authors can reduce energy consumption in the Brazilian industrial sector by: substituting less efficient processes by more efficient ones, through the conversion of final energy into usable energy, basically, in the cement and aluminum industries; replacing equipment and energy sources; modifying product mix of several industries (pulp and paper), assigning top priority to producing goods with higher added value that are less energy intensive, and, finally, reducing the share held by some energy intensive sectors in the industrial output.« less

  10. Improving the long-lead predictability of El Niño using a novel forecasting scheme based on a dynamic components model

    NASA Astrophysics Data System (ADS)

    Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodó, Xavier

    2017-02-01

    El Niño (EN) is a dominant feature of climate variability on inter-annual time scales driving changes in the climate throughout the globe, and having wide-spread natural and socio-economic consequences. In this sense, its forecast is an important task, and predictions are issued on a regular basis by a wide array of prediction schemes and climate centres around the world. This study explores a novel method for EN forecasting. In the state-of-the-art the advantageous statistical technique of unobserved components time series modeling, also known as structural time series modeling, has not been applied. Therefore, we have developed such a model where the statistical analysis, including parameter estimation and forecasting, is based on state space methods, and includes the celebrated Kalman filter. The distinguishing feature of this dynamic model is the decomposition of a time series into a range of stochastically time-varying components such as level (or trend), seasonal, cycles of different frequencies, irregular, and regression effects incorporated as explanatory covariates. These components are modeled separately and ultimately combined in a single forecasting scheme. Customary statistical models for EN prediction essentially use SST and wind stress in the equatorial Pacific. In addition to these, we introduce a new domain of regression variables accounting for the state of the subsurface ocean temperature in the western and central equatorial Pacific, motivated by our analysis, as well as by recent and classical research, showing that subsurface processes and heat accumulation there are fundamental for the genesis of EN. An important feature of the scheme is that different regression predictors are used at different lead months, thus capturing the dynamical evolution of the system and rendering more efficient forecasts. The new model has been tested with the prediction of all warm events that occurred in the period 1996-2015. Retrospective forecasts of these events were made for long lead times of at least two and a half years. Hence, the present study demonstrates that the theoretical limit of ENSO prediction should be sought much longer than the commonly accepted "Spring Barrier". The high correspondence between the forecasts and observations indicates that the proposed model outperforms all current operational statistical models, and behaves comparably to the best dynamical models used for EN prediction. Thus, the novel way in which the modeling scheme has been structured could also be used for improving other statistical and dynamical modeling systems.

  11. The method of planning the energy consumption for electricity market

    NASA Astrophysics Data System (ADS)

    Russkov, O. V.; Saradgishvili, S. E.

    2017-10-01

    The limitations of existing forecast models are defined. The offered method is based on game theory, probabilities theory and forecasting the energy prices relations. New method is the basis for planning the uneven energy consumption of industrial enterprise. Ecological side of the offered method is disclosed. The program module performed the algorithm of the method is described. Positive method tests at the industrial enterprise are shown. The offered method allows optimizing the difference between planned and factual consumption of energy every hour of a day. The conclusion about applicability of the method for addressing economic and ecological challenges is made.

  12. Some economic benefits of a synchronous earth observatory satellite

    NASA Technical Reports Server (NTRS)

    Battacharyya, R. K.; Greenberg, J. S.; Lowe, D. S.; Sattinger, I. J.

    1974-01-01

    An analysis was made of the economic benefits which might be derived from reduced forecasting errors made possible by data obtained from a synchronous satellite system which can collect earth observation and meteorological data continuously and on demand. User costs directly associated with achieving benefits are included. In the analysis, benefits were evaluated which might be obtained as a result of improved thunderstorm forecasting, frost warning, and grain harvest forecasting capabilities. The anticipated system capabilities were used to arrive at realistic estimates of system performance on which to base the benefit analysis. Emphasis was placed on the benefits which result from system forecasting accuracies. Benefits from improved thunderstorm forecasts are indicated for the construction, air transportation, and agricultural industries. The effects of improved frost warning capability on the citrus crop are determined. The benefits from improved grain forecasting capability are evaluated in terms of both U.S. benefits resulting from domestic grain distribution and U.S. benefits from international grain distribution.

  13. Municipal water consumption forecast accuracy

    NASA Astrophysics Data System (ADS)

    Fullerton, Thomas M.; Molina, Angel L.

    2010-06-01

    Municipal water consumption planning is an active area of research because of infrastructure construction and maintenance costs, supply constraints, and water quality assurance. In spite of that, relatively few water forecast accuracy assessments have been completed to date, although some internal documentation may exist as part of the proprietary "grey literature." This study utilizes a data set of previously published municipal consumption forecasts to partially fill that gap in the empirical water economics literature. Previously published municipal water econometric forecasts for three public utilities are examined for predictive accuracy against two random walk benchmarks commonly used in regional analyses. Descriptive metrics used to quantify forecast accuracy include root-mean-square error and Theil inequality statistics. Formal statistical assessments are completed using four-pronged error differential regression F tests. Similar to studies for other metropolitan econometric forecasts in areas with similar demographic and labor market characteristics, model predictive performances for the municipal water aggregates in this effort are mixed for each of the municipalities included in the sample. Given the competitiveness of the benchmarks, analysts should employ care when utilizing econometric forecasts of municipal water consumption for planning purposes, comparing them to recent historical observations and trends to insure reliability. Comparative results using data from other markets, including regions facing differing labor and demographic conditions, would also be helpful.

  14. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin

    PubMed Central

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976

  15. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.

    PubMed

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.

  16. Optimization modeling of U.S. renewable electricity deployment using local input variables

    NASA Astrophysics Data System (ADS)

    Bernstein, Adam

    For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter variances.

  17. Regional Development Impacts Multi-Regional - Multi-Industry Model (MRMI) Users Manual,

    DTIC Science & Technology

    1982-09-01

    indicators, described in Chapter 2, are estimated as well. Finally, MRMI is flexible, as it can incorporate alternative macroeconomic , national inter...national and regional economic contexts and data sources for estimating macroeconomic and direct impacts data. Considerations for ensuring consistency...Chapter 4 is devoted to model execution and the interpretation of its output. As MRMI forecasts are based upon macroeconomic , national inter-industry

  18. Effect of climate variables on cocoa black pod incidence in Sabah using ARIMAX model

    NASA Astrophysics Data System (ADS)

    Ling Sheng Chang, Albert; Ramba, Haya; Mohd. Jaaffar, Ahmad Kamil; Kim Phin, Chong; Chong Mun, Ho

    2016-06-01

    Cocoa black pod disease is one of the major diseases affecting the cocoa production in Malaysia and also around the world. Studies have shown that the climate variables have influenced the cocoa black pod disease incidence and it is important to quantify the black pod disease variation due to the effect of climate variables. Application of time series analysis especially auto-regressive moving average (ARIMA) model has been widely used in economics study and can be used to quantify the effect of climate variables on black pod incidence to forecast the right time to control the incidence. However, ARIMA model does not capture some turning points in cocoa black pod incidence. In order to improve forecasting performance, other explanatory variables such as climate variables should be included into ARIMA model as ARIMAX model. Therefore, this paper is to study the effect of climate variables on the cocoa black pod disease incidence using ARIMAX model. The findings of the study showed ARIMAX model using MA(1) and relative humidity at lag 7 days, RHt - 7 gave better R square value compared to ARIMA model using MA(1) which could be used to forecast the black pod incidence to assist the farmers determine timely application of fungicide spraying and culture practices to control the black pod incidence.

  19. Calibration of decadal ensemble predictions

    NASA Astrophysics Data System (ADS)

    Pasternack, Alexander; Rust, Henning W.; Bhend, Jonas; Liniger, Mark; Grieger, Jens; Müller, Wolfgang; Ulbrich, Uwe

    2017-04-01

    Decadal climate predictions are of great socio-economic interest due to the corresponding planning horizons of several political and economic decisions. Due to uncertainties of weather and climate, forecasts (e.g. due to initial condition uncertainty), they are issued in a probabilistic way. One issue frequently observed for probabilistic forecasts is that they tend to be not reliable, i.e. the forecasted probabilities are not consistent with the relative frequency of the associated observed events. Thus, these kind of forecasts need to be re-calibrated. While re-calibration methods for seasonal time scales are available and frequently applied, these methods still have to be adapted for decadal time scales and its characteristic problems like climate trend and lead time dependent bias. Regarding this, we propose a method to re-calibrate decadal ensemble predictions that takes the above mentioned characteristics into account. Finally, this method will be applied and validated to decadal forecasts from the MiKlip system (Germany's initiative for decadal prediction).

  20. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Shukla, Shraddhanand; Arsenault, Kristi R.; Getirana, Augusto; Kumar, Sujay V.; Roningen, Jeanne; Zaitchik, Ben; McNally, Amy; Koster, Randal D.; Peters-Lidard, Christa

    2017-04-01

    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. A seamless and effective monitoring and early warning system is needed by regional/national stakeholders. Such system should support a proactive drought management approach and mitigate the socio-economic losses up to the extent possible. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of the LIS models used for drought and water availability monitoring in the region. The second part will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the monitoring and forecasting products through NASA's web-services. The water deficit forecasting system thus far incorporates NOAA's Noah land surface model (LSM), version 3.3, the Variable Infiltration Capacity (VIC) model, version 4.12, NASA GMAO's Catchment LSM, and the Noah Multi-Physics (MP) LSM (the latter two incorporate prognostic water table schemes). In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. The LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. The LIS software framework integrates these forcing datasets and drives the four LSMs and HyMAP. The Land Verification Toolkit (LVT) is used for the evaluation of the LSMs, as it provides model ensemble metrics and the ability to compare against a variety of remotely sensed measurements, like different evapotranspiration (ET) and soil moisture products, and other reanalysis datasets that are available for this region. Comparison of the models' energy and hydrological budgets will be shown for this region (and sub-basin level, e.g., Blue Nile River) and time period (1981-2015), along with evaluating ET, streamflow, groundwater storage and soil moisture, using evaluation metrics (e.g., anomaly correlation, RMSE, etc.). The system uses seasonal climate forecasts from NASA's GMAO (the Goddard Earth Observing System Model, version 5) and NCEP's Climate Forecast System, version 2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region.

  1. Financial Risk Reduction and Management of Water Reservoirs Using Forecasts: A Case for Pernambuco, Brazil

    NASA Astrophysics Data System (ADS)

    Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.

    2017-12-01

    The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced currently.

  2. Assessment of extreme flood events in a changing climate for a long-term planning of socio-economic infrastructure in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Shevnina, Elena; Kourzeneva, Ekaterina; Kovalenko, Viktor; Vihma, Timo

    2017-05-01

    Climate warming has been more acute in the Arctic than at lower latitudes and this tendency is expected to continue. This generates major challenges for economic activity in the region. Among other issues is the long-term planning and development of socio-economic infrastructure (dams, bridges, roads, etc.), which require climate-based forecasts of the frequency and magnitude of detrimental flood events. To estimate the cost of the infrastructure and operational risk, a probabilistic form of long-term forecasting is preferable. In this study, a probabilistic model to simulate the parameters of the probability density function (PDF) for multi-year runoff based on a projected climatology is applied to evaluate changes in extreme floods for the territory of the Russian Arctic. The model is validated by cross-comparison of the modelled and empirical PDFs using observations from 23 sites located in northern Russia. The mean values and coefficients of variation (CVs) of the spring flood depth of runoff are evaluated under four climate scenarios, using simulations of six climate models for the period 2010-2039. Regions with substantial expected changes in the means and CVs of spring flood depth of runoff are outlined. For the sites located within such regions, it is suggested to account for the future climate change in calculating the maximal discharges of rare occurrence. An example of engineering calculations for maximal discharges with 1 % exceedance probability is provided for the Nadym River at Nadym.

  3. Enhancements to the Economic Impact Forecast System (EIFS).

    DTIC Science & Technology

    1984-04-01

    IU U .. A ILC.. Meww 4 """ Economia c. .- brmodc ’ The economic submodel is appropriately classified as an export base model that jointly determines...9 yes 3 Washington - 1963 State of Washington 27 no 4 Utah - 1963 State of Utah 39 yes 5 New Mexico - 1960 State of New Mexico 42 yes 6 Kansas - 1965... Mexico .311 .627 -.017 .360 .635 (13.266) (1.381) (8.507) Kansas .556 427 -.022 .616 .433 (11.270) (.854) (7156) Clinton .229 .681 -.005 .247 .677

  4. Influence of Forecast Accuracy of Photovoltaic Power Output on Capacity Optimization of Microgrid Composition under 30 min Power Balancing Control

    NASA Astrophysics Data System (ADS)

    Sone, Akihito; Kato, Takeyoshi; Shimakage, Toyonari; Suzuoki, Yasuo

    A microgrid (MG) is one of the measures for enhancing the high penetration of renewable energy (RE)-based distributed generators (DGs). If a number of MGs are controlled to maintain the predetermined electricity demand including RE-based DGs as negative demand, they would contribute to supply-demand balancing of whole electric power system. For constructing a MG economically, the capacity optimization of controllable DGs against RE-based DGs is essential. By using a numerical simulation model developed based on a demonstrative study on a MG using PAFC and NaS battery as controllable DGs and photovoltaic power generation system (PVS) as a RE-based DG, this study discusses the influence of forecast accuracy of PVS output on the capacity optimization. Three forecast cases with different accuracy are compared. The main results are as follows. Even with no forecast error during every 30 min. as the ideal forecast method, the required capacity of NaS battery reaches about 40% of PVS capacity for mitigating the instantaneous forecast error within 30 min. The required capacity to compensate for the forecast error is doubled with the actual forecast method. The influence of forecast error can be reduced by adjusting the scheduled power output of controllable DGs according to the weather forecast. Besides, the required capacity can be reduced significantly if the error of balancing control in a MG is acceptable for a few percentages of periods, because the total periods of large forecast error is not so often.

  5. When Brain Beats Behavior: Neuroforecasting Crowdfunding Outcomes

    PubMed Central

    Yoon, Carolyn

    2017-01-01

    Although traditional economic and psychological theories imply that individual choice best scales to aggregate choice, primary components of choice reflected in neural activity may support even more generalizable forecasts. Crowdfunding represents a significant and growing platform for funding new and unique projects, causes, and products. To test whether neural activity could forecast market-level crowdfunding outcomes weeks later, 30 human subjects (14 female) decided whether to fund proposed projects described on an Internet crowdfunding website while undergoing scanning with functional magnetic resonance imaging. Although activity in both the nucleus accumbens (NAcc) and medial prefrontal cortex predicted individual choices to fund on a trial-to-trial basis in the neuroimaging sample, only NAcc activity generalized to forecast market funding outcomes weeks later on the Internet. Behavioral measures from the neuroimaging sample, however, did not forecast market funding outcomes. This pattern of associations was replicated in a second study. These findings demonstrate that a subset of the neural predictors of individual choice can generalize to forecast market-level crowdfunding outcomes—even better than choice itself. SIGNIFICANCE STATEMENT Forecasting aggregate behavior with individual neural data has proven elusive; even when successful, neural forecasts have not historically supplanted behavioral forecasts. In the current research, we find that neural responses can forecast market-level choice and outperform behavioral measures in a novel Internet crowdfunding context. Targeted as well as model-free analyses convergently indicated that nucleus accumbens activity can support aggregate forecasts. Beyond providing initial evidence for neuropsychological processes implicated in crowdfunding choices, these findings highlight the ability of neural features to forecast aggregate choice, which could inform applications relevant to business and policy. PMID:28821681

  6. An experimental system for flood risk forecasting at global scale

    NASA Astrophysics Data System (ADS)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  7. Economic and environmental costs of regulatory uncertainty for coal-fired power plants.

    PubMed

    Patiño-Echeverri, Dalia; Fischbeck, Paul; Kriegler, Elmar

    2009-02-01

    Uncertainty about the extent and timing of CO2 emissions regulations for the electricity-generating sector exacerbates the difficulty of selecting investment strategies for retrofitting or alternatively replacing existent coal-fired power plants. This may result in inefficient investments imposing economic and environmental costs to society. In this paper, we construct a multiperiod decision model with an embedded multistage stochastic dynamic program minimizing the expected total costs of plant operation, installations, and pollution allowances. We use the model to forecast optimal sequential investment decisions of a power plant operator with and without uncertainty about future CO2 allowance prices. The comparison of the two cases demonstrates that uncertainty on future CO2 emissions regulations might cause significant economic costs and higher air emissions.

  8. Global Disease Monitoring and Forecasting with Wikipedia

    PubMed Central

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid

    2014-01-01

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art. PMID:25392913

  9. Global disease monitoring and forecasting with Wikipedia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore » logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  10. Global disease monitoring and forecasting with Wikipedia.

    PubMed

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y; Priedhorsky, Reid

    2014-11-01

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with r2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  11. Global disease monitoring and forecasting with Wikipedia

    DOE PAGES

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; ...

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore » logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  12. Barents-Kara sea ice and the winter NAO in the DePreSys3 Met Office Seasonal forecast model

    NASA Astrophysics Data System (ADS)

    Warner, J.; Screen, J.

    2017-12-01

    Accurate seasonal forecasting leads to a wide range of socio-economic benefits and increases resilience to prolonged bouts of extreme weather. This work looks at how November Barents-Kara sea ice may affect the winter northern hemisphere atmospheric circulation, using various compositing methods in the DePreSys3 ensemble model, with lag to argue better a relationship between the two. In particular, the NAO (North Atlantic Oscillation) is focused on given its implications on European weather. Using this large hindcast dataset comprised of 35 years with 30 available ensemble members, it is found that low Barents-Kara sea ice leads to a negative NAO tendency in all composite methods, with increased mean sea level pressure in higher latitudes. The significance of this varies between composites. This is preliminary analysis of a larger PhD project to further understand how Arctic Sea ice may play a role in seasonal forecasting skill through its connection/influence on mid-latitude weather.

  13. A study of the economic benefits of meteorological satellite data

    NASA Technical Reports Server (NTRS)

    Suchman, D.; Auvine, B. A.; Hinton, B. H.

    1980-01-01

    Satellite data, while most useful in data poor areas, serves to fine tune forecasts in data rich areas. It consequently has a resulting significant economic benefit because, as previously stated, even one improved forecast per client per year can save each client thousands of dollars. Multiply this by several hundred clients and the dollar savings are sizeable. The great educational value which experience with satellite data gives undoubtedly leads to improved forecasts. Any type of future satellite data delivery system should take into account the needs and facilities of the user community to make it most useful.

  14. Automated system for smoke dispersion prediction due to wild fires in Alaska

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.

    2007-12-01

    Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger Rating System (NFDRS) fuel maps Calculate smoke emission components using a first order fire emission model Model the smoke plume rise yielding a vertically distribution that accounts for one-dimensional (vertical) concentrations of smoke constituents in the atmosphere above the fire Run WRF/Chem at high resolution for the forecast Use standard graphical tools to provide accessible smoke dispersion The system run twice each day at ARSC. The results will be freely available from a dedicated wildfire smoke web portal at ARSC.

  15. Optimal Wind Power Uncertainty Intervals for Electricity Market Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying; Zhou, Zhi; Botterud, Audun

    It is important to select an appropriate uncertainty level of the wind power forecast for power system scheduling and electricity market operation. Traditional methods hedge against a predefined level of wind power uncertainty, such as a specific confidence interval or uncertainty set, which leaves the questions of how to best select the appropriate uncertainty levels. To bridge this gap, this paper proposes a model to optimize the forecast uncertainty intervals of wind power for power system scheduling problems, with the aim of achieving the best trade-off between economics and reliability. Then we reformulate and linearize the models into a mixedmore » integer linear programming (MILP) without strong assumptions on the shape of the probability distribution. In order to invest the impacts on cost, reliability, and prices in a electricity market, we apply the proposed model on a twosettlement electricity market based on a six-bus test system and on a power system representing the U.S. state of Illinois. The results show that the proposed method can not only help to balance the economics and reliability of the power system scheduling, but also help to stabilize the energy prices in electricity market operation.« less

  16. Assessment of the Charging Policy in Energy Efficiency of the Enterprise

    NASA Astrophysics Data System (ADS)

    Shutov, E. A.; E Turukina, T.; Anisimov, T. S.

    2017-04-01

    The forecasting problem for energy facilities with a power exceeding 670 kW is currently one of the main. In connection with rules of the retail electricity market such customers also pay for actual energy consumption deviations from plan value. In compliance with the hierarchical stages of the electricity market a guaranteeing supplier is to respect the interests of distribution and generation companies that require load leveling. The answer to this question for industrial enterprise is possible only within technological process through implementation of energy-efficient processing chains with the adaptive function and forecasting tool. In such a circumstance the primary objective of a forecasting is reduce the energy consumption costs by taking account of the energy cost correlation for 24 hours for forming of pumping unit work schedule. The pumping unit virtual model with the variable frequency drive is considered. The forecasting tool and the optimizer are integrated into typical control circuit. Economic assessment of the optimization method was estimated.

  17. Operational Monitoring and Forecasting in Regional Seas: the Aegean Sea example

    NASA Astrophysics Data System (ADS)

    Nittis, K.; Perivoliotis, L.; Zervakis, V.; Papadopoulos, A.; Tziavos, C.

    2003-04-01

    The increasing economic activities in the coastal zone and the associated pressure on the marine environment have raised the interest on monitoring systems able to provide supporting information for its effective management and protection. Such an integrated monitoring, forecasting and information system is being developed during the past years in the Aegean Sea. Its main component is the POSEIDON network that provides real-time data for meteorological and surface oceanographic parameters (waves, currents, hydrological and biochemical data) from 11 fixed oceanographic buoys. The numerical forecasting system is composed by an ETA atmospheric model, a WAM wave model and a POM hydrodynamic model that provide every day 72 hours forecasts. The system is operational since May 2000 and its products are published through Internet while a sub-set is also available through cellular telephony. New type of observing platforms will be available in the near future through a number of EU funded research projects. The Mediterranean Moored Multi-sensor Array (M3A) that was developed for the needs of the Mediterranean Forecasting System and was tested during 2000-2001 will be operational in 2004 during the MFSTEP project. The M3A system incorporates sensors for optical and chemical measurements (Oxygen, Turbidity, Chlorophyll-a, Nutrients and PAR) in the euphotic zone (0-100m) together with sensors for physical parameters (Temperature, Salinity, Current speed and direction) at the 0-500m layer. A Ferry-Box system will also operate during 2004 in the southern Aegean Sea, providing surface data for physical and bio-chemical properties. The ongoing modeling efforts include coupling with larger scale circulation models of the Mediterranean, high-resolution downscaling to coastal areas of the Aegean Sea and development of multi-variate data assimilation methods.

  18. Enhancing Community Based Early Warning Systems in Nepal with Flood Forecasting Using Local and Global Models

    NASA Astrophysics Data System (ADS)

    Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab

    2017-04-01

    Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53% probability of exceeding the Medium Level Alert in two days. Rainfall stations upstream of the West Rapti catchment recorded heavy rainfall on 26 July, and localized forecasts from the probabilistic model at 8 am suggested that the water level would cross a pre-determined warning level in the next 3 hours. The Flood Forecasting Section at DHM issued a flood advisory, and disseminated SMS flood alerts to more than 13,000 at-risk people residing along the floodplains. Water levels crossed the danger threshold (5.4 meters) at 11 am, peaking at 8.15 meters at 10 pm. Extension of the warning lead time from probabilistic forecasts was significant in minimising the risk to lives and livelihoods as communities gained extra time to prepare, evacuate and respond. Likewise, longer timescale forecasts from GLoFAS could be potentially linked with no-regret early actions leading to improved preparedness and emergency response. These forecasting tools have contributed to enhance the effectiveness and efficiency of existing community based systems, increasing the lead time for response. Nevertheless, extensive work is required on appropriate ways to interpret and disseminate probabilistic forecasts having longer (2-14 days) and shorter (3-5 hours) time horizon for operational deployment as there are numerous uncertainties associated with predictions.

  19. Coastal Marsh Monitoring for Persistent Saltwater Intrusion

    NASA Technical Reports Server (NTRS)

    Hall, Callie M.

    2008-01-01

    This viewgraph presentation reviews NASA's work on the project that supports the Gulf of Mexico Alliance (GOMA) Governors Action Plan to monitor the coastal wetlands for saltwater intrusion. The action items that relate to the task are: (1) Obtain information on projected relative sea level rise, subsidence, and storm vulnerability to help prioritize conservation projects, including restoration, enhancement, and acquisition, and (2) Develop and apply ecosystem models to forecast the habitat structure and succession following hurricane disturbance and changes in ecological functions and services that impact vital socio-economic aspects of coastal systems. The objectives of the program are to provide resource managers with remote sensing products that support ecosystem forecasting models requiring salinity and inundation data. Specifically, the proposed work supports the habitat-switching modules in the Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) model, which provides scientific evaluation for restoration management.

  20. Modeling Influenza Transmission Using Environmental Parameters

    NASA Technical Reports Server (NTRS)

    Soebiyanto, Radina P.; Kiang, Richard K.

    2010-01-01

    Influenza is an acute viral respiratory disease that has significant mortality, morbidity and economic burden worldwide. It infects approximately 5-15% of the world population, and causes 250,000 500,000 deaths each year. The role of environments on influenza is often drawn upon the latitude variability of influenza seasonality pattern. In regions with temperate climate, influenza epidemics exhibit clear seasonal pattern that peak during winter months, but it is not as evident in the tropics. Toward this end, we developed mathematical model and forecasting capabilities for influenza in regions characterized by warm climate Hong Kong (China) and Maricopa County (Arizona, USA). The best model for Hong Kong uses Land Surface Temperature (LST), precipitation and relative humidity as its covariates. Whereas for Maricopa County, we found that weekly influenza cases can be best modelled using mean air temperature as its covariates. Our forecasts can further guides public health organizations in targeting influenza prevention and control measures such as vaccination.

  1. Brief Report: Forecasting the Economic Burden of Autism in 2015 and 2025 in the United States

    ERIC Educational Resources Information Center

    Leigh, J. Paul; Du, Juan

    2015-01-01

    Few US estimates of the economic burden of autism spectrum disorders (ASD) are available and none provide estimates for 2015 and 2025. We forecast annual direct medical, direct non-medical, and productivity costs combined will be $268 billion (range $162-$367 billion; 0.884-2.009% of GDP) for 2015 and $461 billion (range $276-$1011 billion;…

  2. Reference evapotranspiration forecasting based on local meteorological and global climate information screened by partial mutual information

    NASA Astrophysics Data System (ADS)

    Fang, Wei; Huang, Shengzhi; Huang, Qiang; Huang, Guohe; Meng, Erhao; Luan, Jinkai

    2018-06-01

    In this study, reference evapotranspiration (ET0) forecasting models are developed for the least economically developed regions subject to meteorological data scarcity. Firstly, the partial mutual information (PMI) capable of capturing the linear and nonlinear dependence is investigated regarding its utility to identify relevant predictors and exclude those that are redundant through the comparison with partial linear correlation. An efficient input selection technique is crucial for decreasing model data requirements. Then, the interconnection between global climate indices and regional ET0 is identified. Relevant climatic indices are introduced as additional predictors to comprise information regarding ET0, which ought to be provided by meteorological data unavailable. The case study in the Jing River and Beiluo River basins, China, reveals that PMI outperforms the partial linear correlation in excluding the redundant information, favouring the yield of smaller predictor sets. The teleconnection analysis identifies the correlation between Nino 1 + 2 and regional ET0, indicating influences of ENSO events on the evapotranspiration process in the study area. Furthermore, introducing Nino 1 + 2 as predictors helps to yield more accurate ET0 forecasts. A model performance comparison also shows that non-linear stochastic models (SVR or RF with input selection through PMI) do not always outperform linear models (MLR with inputs screen by linear correlation). However, the former can offer quite comparable performance depending on smaller predictor sets. Therefore, efforts such as screening model inputs through PMI and incorporating global climatic indices interconnected with ET0 can benefit the development of ET0 forecasting models suitable for data-scarce regions.

  3. Microgrid optimal scheduling considering impact of high penetration wind generation

    NASA Astrophysics Data System (ADS)

    Alanazi, Abdulaziz

    The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations.

  4. Analysis of recurrent neural networks for short-term energy load forecasting

    NASA Astrophysics Data System (ADS)

    Di Persio, Luca; Honchar, Oleksandr

    2017-11-01

    Short-term forecasts have recently gained an increasing attention because of the rise of competitive electricity markets. In fact, short-terms forecast of possible future loads turn out to be fundamental to build efficient energy management strategies as well as to avoid energy wastage. Such type of challenges are difficult to tackle both from a theoretical and applied point of view. Latter tasks require sophisticated methods to manage multidimensional time series related to stochastic phenomena which are often highly interconnected. In the present work we first review novel approaches to energy load forecasting based on recurrent neural network, focusing our attention on long/short term memory architectures (LSTMs). Such type of artificial neural networks have been widely applied to problems dealing with sequential data such it happens, e.g., in socio-economics settings, for text recognition purposes, concerning video signals, etc., always showing their effectiveness to model complex temporal data. Moreover, we consider different novel variations of basic LSTMs, such as sequence-to-sequence approach and bidirectional LSTMs, aiming at providing effective models for energy load data. Last but not least, we test all the described algorithms on real energy load data showing not only that deep recurrent networks can be successfully applied to energy load forecasting, but also that this approach can be extended to other problems based on time series prediction.

  5. The Economic Effects of Reduced Defense Spending

    DTIC Science & Technology

    1992-02-01

    Macroeconomics Annual 1987 (Cambridge, Mass.: MIT Press), pp. 263-315; and Leonardo Leiderman and Mario Blejer, " Modeling and Testing Ricardian ... model ), converting LIFT’s 78-sector forecasts of final demand by product to estimates for some 420 producing sectors. Unlike LIFT, DOM does not...24s in production in Fort Worth, Texas, during World War II. Photo is courtesy of Gen- eral Dynamics Corporation. Preface The past three years

  6. Forecasting the future risk of Barmah Forest virus disease under climate change scenarios in Queensland, Australia.

    PubMed

    Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu

    2013-01-01

    Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.

  7. Work-related accidents among the Iranian population: a time series analysis, 2000–2011

    PubMed Central

    Karimlou, Masoud; Imani, Mehdi; Hosseini, Agha-Fatemeh; Dehnad, Afsaneh; Vahabi, Nasim; Bakhtiyari, Mahmood

    2015-01-01

    Background Work-related accidents result in human suffering and economic losses and are considered as a major health problem worldwide, especially in the economically developing world. Objectives To introduce seasonal autoregressive moving average (ARIMA) models for time series analysis of work-related accident data for workers insured by the Iranian Social Security Organization (ISSO) between 2000 and 2011. Methods In this retrospective study, all insured people experiencing at least one work-related accident during a 10-year period were included in the analyses. We used Box–Jenkins modeling to develop a time series model of the total number of accidents. Results There was an average of 1476 accidents per month (1476·05±458·77, mean±SD). The final ARIMA (p,d,q) (P,D,Q)s model for fitting to data was: ARIMA(1,1,1)×(0,1,1)12 consisting of the first ordering of the autoregressive, moving average and seasonal moving average parameters with 20·942 mean absolute percentage error (MAPE). Conclusions The final model showed that time series analysis of ARIMA models was useful for forecasting the number of work-related accidents in Iran. In addition, the forecasted number of work-related accidents for 2011 explained the stability of occurrence of these accidents in recent years, indicating a need for preventive occupational health and safety policies such as safety inspection. PMID:26119774

  8. Work-related accidents among the Iranian population: a time series analysis, 2000-2011.

    PubMed

    Karimlou, Masoud; Salehi, Masoud; Imani, Mehdi; Hosseini, Agha-Fatemeh; Dehnad, Afsaneh; Vahabi, Nasim; Bakhtiyari, Mahmood

    2015-01-01

    Work-related accidents result in human suffering and economic losses and are considered as a major health problem worldwide, especially in the economically developing world. To introduce seasonal autoregressive moving average (ARIMA) models for time series analysis of work-related accident data for workers insured by the Iranian Social Security Organization (ISSO) between 2000 and 2011. In this retrospective study, all insured people experiencing at least one work-related accident during a 10-year period were included in the analyses. We used Box-Jenkins modeling to develop a time series model of the total number of accidents. There was an average of 1476 accidents per month (1476·05±458·77, mean±SD). The final ARIMA (p,d,q) (P,D,Q)s model for fitting to data was: ARIMA(1,1,1)×(0,1,1)12 consisting of the first ordering of the autoregressive, moving average and seasonal moving average parameters with 20·942 mean absolute percentage error (MAPE). The final model showed that time series analysis of ARIMA models was useful for forecasting the number of work-related accidents in Iran. In addition, the forecasted number of work-related accidents for 2011 explained the stability of occurrence of these accidents in recent years, indicating a need for preventive occupational health and safety policies such as safety inspection.

  9. Forecasting system predicts presence of sea nettles in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Brown, Christopher W.; Hood, Raleigh R.; Li, Zhen; Decker, Mary Beth; Gross, Thomas F.; Purcell, Jennifer E.; Wang, Harry V.

    Outbreaks of noxious biota, which occur in both aquatic and terrestrial systems, can have considerable negative economic impacts. For example, an increasing frequency of harmful algal blooms worldwide has negatively affected the tourism industry in many regions. Such impacts could be mitigated if the conditions that give rise to these outbreaks were known and could be monitored. Recent advances in technology and communications allow us to continuously measure and model many environmental factors that are responsible for outbreaks of certain noxious organisms. A new prototype ecological forecasting system predicts the likelihood of occurrence of the sea nettle (Chrysaora quinquecirrha), a stinging jellyfish, in the Chesapeake Bay.

  10. When Brain Beats Behavior: Neuroforecasting Crowdfunding Outcomes.

    PubMed

    Genevsky, Alexander; Yoon, Carolyn; Knutson, Brian

    2017-09-06

    Although traditional economic and psychological theories imply that individual choice best scales to aggregate choice, primary components of choice reflected in neural activity may support even more generalizable forecasts. Crowdfunding represents a significant and growing platform for funding new and unique projects, causes, and products. To test whether neural activity could forecast market-level crowdfunding outcomes weeks later, 30 human subjects (14 female) decided whether to fund proposed projects described on an Internet crowdfunding website while undergoing scanning with functional magnetic resonance imaging. Although activity in both the nucleus accumbens (NAcc) and medial prefrontal cortex predicted individual choices to fund on a trial-to-trial basis in the neuroimaging sample, only NAcc activity generalized to forecast market funding outcomes weeks later on the Internet. Behavioral measures from the neuroimaging sample, however, did not forecast market funding outcomes. This pattern of associations was replicated in a second study. These findings demonstrate that a subset of the neural predictors of individual choice can generalize to forecast market-level crowdfunding outcomes-even better than choice itself. SIGNIFICANCE STATEMENT Forecasting aggregate behavior with individual neural data has proven elusive; even when successful, neural forecasts have not historically supplanted behavioral forecasts. In the current research, we find that neural responses can forecast market-level choice and outperform behavioral measures in a novel Internet crowdfunding context. Targeted as well as model-free analyses convergently indicated that nucleus accumbens activity can support aggregate forecasts. Beyond providing initial evidence for neuropsychological processes implicated in crowdfunding choices, these findings highlight the ability of neural features to forecast aggregate choice, which could inform applications relevant to business and policy. Copyright © 2017 Genevsky et al.

  11. A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter Concentration Forecasting: A Case Study of Kunming and Yuxi, China.

    PubMed

    Li, Weide; Kong, Demeng; Wu, Jinran

    2017-01-01

    Air pollution in China is becoming more serious especially for the particular matter (PM) because of rapid economic growth and fast expansion of urbanization. To solve the growing environment problems, daily PM2.5 and PM10 concentration data form January 1, 2015, to August 23, 2016, in Kunming and Yuxi (two important cities in Yunnan Province, China) are used to present a new hybrid model CI-FPA-SVM to forecast air PM2.5 and PM10 concentration in this paper. The proposed model involves two parts. Firstly, due to its deficiency to assess the possible correlation between different variables, the cointegration theory is introduced to get the input-output relationship and then obtain the nonlinear dynamical system with support vector machine (SVM), in which the parameters c and g are optimized by flower pollination algorithm (FPA). Six benchmark models, including FPA-SVM, CI-SVM, CI-GA-SVM, CI-PSO-SVM, CI-FPA-NN, and multiple linear regression model, are considered to verify the superiority of the proposed hybrid model. The empirical study results demonstrate that the proposed model CI-FPA-SVM is remarkably superior to all considered benchmark models for its high prediction accuracy, and the application of the model for forecasting can give effective monitoring and management of further air quality.

  12. A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter Concentration Forecasting: A Case Study of Kunming and Yuxi, China

    PubMed Central

    Wu, Jinran

    2017-01-01

    Air pollution in China is becoming more serious especially for the particular matter (PM) because of rapid economic growth and fast expansion of urbanization. To solve the growing environment problems, daily PM2.5 and PM10 concentration data form January 1, 2015, to August 23, 2016, in Kunming and Yuxi (two important cities in Yunnan Province, China) are used to present a new hybrid model CI-FPA-SVM to forecast air PM2.5 and PM10 concentration in this paper. The proposed model involves two parts. Firstly, due to its deficiency to assess the possible correlation between different variables, the cointegration theory is introduced to get the input-output relationship and then obtain the nonlinear dynamical system with support vector machine (SVM), in which the parameters c and g are optimized by flower pollination algorithm (FPA). Six benchmark models, including FPA-SVM, CI-SVM, CI-GA-SVM, CI-PSO-SVM, CI-FPA-NN, and multiple linear regression model, are considered to verify the superiority of the proposed hybrid model. The empirical study results demonstrate that the proposed model CI-FPA-SVM is remarkably superior to all considered benchmark models for its high prediction accuracy, and the application of the model for forecasting can give effective monitoring and management of further air quality. PMID:28932237

  13. Observed Impacts. Chapter 19

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia

    1999-01-01

    Agricultural applications of El Nino forecasts are already underway in some countries and need to be evaluated or re-evaluated. For example, in Peru, El Nino forecasts have been incorporated into national planning for the agricultural sector, and areas planted with rice and cotton (cotton being the more drought-tolerant crop) are adjusted accordingly. How well are this and other such programs working? Such evaluations will contribute to the governmental and intergovernmental institutions, including the Inter-American Institute for Global Change Research and the US National Ocean and Atmospheric Agency that are fostering programs to aid the effective use of forecasts. This research involves expanding, deepening, and applying the understanding of physical climate to the fields of agronomy and social science; and the reciprocal understanding of crop growth and farm economics to climatology. Delivery of a regional climate forecast with no information about how the climate forecast was derived limits its effectiveness. Explanation of a region's major climate driving forces helps to place a seasonal forecast in context. Then, a useful approach is to show historical responses to previous El Nino events, and projections, with uncertainty intervals, of crop response from dynamic process crop growth models. Regional forecasts should be updated with real-time weather conditions. Since every El Nino event is different, it is important to track, report and advise on each new event as it unfolds.

  14. SEASAT economic assessment. Volume 8: Ocean fishing case study. [economic benefits of SEASAT satellites to ocean fishing industries in the United States and Canada

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The potential application of SEASAT data with regard to ocean fisheries is discussed. Tracking fish populations, indirect assistance in forecasting expected populations and assistance to fishing fleets in avoiding costs incurred due to adverse weather through improved ocean conditions forecasts were investigated. Case studies on fisheries in the United States and Canada are cited.

  15. Toward Seasonal Forecasting of Global Droughts: Evaluation over USA and Africa

    NASA Astrophysics Data System (ADS)

    Wood, Eric; Yuan, Xing; Roundy, Joshua; Sheffield, Justin; Pan, Ming

    2013-04-01

    Extreme hydrologic events in the form of droughts are significant sources of social and economic damage. In the United States according to the National Climatic Data Center, the losses from drought exceed US210 billion during 1980-2011, and account for about 24% of all losses from major weather disasters. Internationally, especially for the developing world, drought has had devastating impacts on local populations through food insecurity and famine. Providing reliable drought forecasts with sufficient early warning will help the governments to move from the management of drought crises to the management of drought risk. After working on drought monitoring and forecasting over the USA for over 10 years, the Princeton land surface hydrology group is now developing a global drought monitoring and forecasting system using a dynamical seasonal climate-hydrologic LSM-model (CHM) approach. Currently there is an active debate on the merits of the CHM-based seasonal hydrologic forecasts as compared to Ensemble Streamflow Prediction (ESP). We use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2) and its previous version CFSv1, to investigate the value of seasonal climate model forecasts by conducting a set of 27-year seasonal hydrologic hindcasts over the USA. Through Bayesian downscaling, climate models have higher squared correlation (R2) and smaller error than ESP for monthly precipitation averaged over major river basins across the USA, and the forecasts conditional on ENSO show further improvements (out to four months) over river basins in the southern USA. All three approaches have plausible predictions of soil moisture drought frequency over central USA out to six months because of strong soil moisture memory, and seasonal climate models provide better results over central and eastern USA. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur in different seasons for different basins. The R2 of drought severity accumulated over USA is higher during winter, and climate models present added value especially at long leads. For countries with sparse networks and weak reporting systems, remote sensing observations can provide the realtime data for the monitoring of drought. More importantly, these datasets are now available for at least a decade, which allows for estimating a climatology against which current conditions can be compared. Based on our established experimental African Drought Monitor (ADM) (see http://hydrology.princeton.edu/~nchaney/ADM_ML), we use the downscaled CFSv2 climate forcings to drive the re-calibrated VIC model and produce 6-month, 20-member ensemble hydrologic forecasts over Africa starting on the 1st of each calendar month during 1982-2007. Our CHM-based seasonal hydrologic forecasts are now being analyzed for its skill in predicting short-term soil moisture droughts over Africa. Besides relying on a single seasonal climate model or a single drought index, preliminary forecast results will be presented using multiple seasonal climate models based on the NOAA-supported National Multi-Model Ensemble (NMME) project, and with multiple drought indices. Results will be presented for the USA NIDIS test beds such as Southeast US and Colorado NIDIS (National Integrated Drought Information System) test beds, and potentially for other regions of the globe.

  16. Impact of the Assimilation of Hyperspectral Infrared Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.

  17. The impact of sea surface currents in wave power potential modeling

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  18. I PASS: an interactive policy analysis simulation system.

    Treesearch

    Doug Olson; Con Schallau; Wilbur Maki

    1984-01-01

    This paper describes an interactive policy analysis simulation system(IPASS) that can be used to analyze the long-term economic and demographic effects of alternative forest resource management policies. The IPASS model is a dynamic analytical tool that forecasts growth and development of an economy. It allows the user to introduce changes in selected parameters based...

  19. A Model For Change: An Approach for Forecasting Well-Being ...

    EPA Pesticide Factsheets

    Every community decision incorporates a "forecasting" strategy (whether formal or implicit) to help visualize expected results and evaluate the potential “feelings” that people living in that community may have about those results. With more communities seeking to make decisions based on sustainable alternatives, forecasting efforts that examine potential impacts of decisions on overall community well-being may prove to be valuable for not only gaging future benefits and trade-offs, but also for recognizing a community’s affective response to the outcomes of those decisions. This paper describes a forecasting approach based on concepts introduced in the development of the U.S. Environmental Protection Agency’s (US EPA) Human Well-Being Index (HWBI) (Smith, et. al. 2014; Summers et al. 2014). The approach examines the relationships among selected economic, environmental and social services that can be directly impacted by community decisions and eight domains of human well-being. Using models developed from constructed- or fixed-effect step-wise and multiple regressions and eleven years of data (2000-2010), these relationship functions may be used to characterize likely direct impacts of decisions on future well-being as well as the possible intended and unintended secondary and tertiary effects relative to any main decision effects. This paper describes an approach to using HWBI in decision making models to characterize likely impacts of decisions on fut

  20. Operational flash flood forecasting platform based on grid technology

    NASA Astrophysics Data System (ADS)

    Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.

    2009-04-01

    Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.

  1. Future Economics of Liver Transplantation: A 20-Year Cost Modeling Forecast and the Prospect of Bioengineering Autologous Liver Grafts

    PubMed Central

    Habka, Dany; Mann, David; Landes, Ronald; Soto-Gutierrez, Alejandro

    2015-01-01

    During the past 20 years liver transplantation has become the definitive treatment for most severe types of liver failure and hepatocellular carcinoma, in both children and adults. In the U.S., roughly 16,000 individuals are on the liver transplant waiting list. Only 38% of them will receive a transplant due to the organ shortage. This paper explores another option: bioengineering an autologous liver graft. We developed a 20-year model projecting future demand for liver transplants, along with costs based on current technology. We compared these cost projections against projected costs to bioengineer autologous liver grafts. The model was divided into: 1) the epidemiology model forecasting the number of wait-listed patients, operated patients and postoperative patients; and 2) the treatment model forecasting costs (pre-transplant-related costs; transplant (admission)-related costs; and 10-year post-transplant-related costs) during the simulation period. The patient population was categorized using the Model for End-Stage Liver Disease score. The number of patients on the waiting list was projected to increase 23% over 20 years while the weighted average treatment costs in the pre-liver transplantation phase were forecast to increase 83% in Year 20. Projected demand for livers will increase 10% in 10 years and 23% in 20 years. Total costs of liver transplantation are forecast to increase 33% in 10 years and 81% in 20 years. By comparison, the projected cost to bioengineer autologous liver grafts is $9.7M based on current catalog prices for iPS-derived liver cells. The model projects a persistent increase in need and cost of donor livers over the next 20 years that’s constrained by a limited supply of donor livers. The number of patients who die while on the waiting list will reflect this ever-growing disparity. Currently, bioengineering autologous liver grafts is cost prohibitive. However, costs will decline rapidly with the introduction of new manufacturing strategies and economies of scale. PMID:26177505

  2. Future Economics of Liver Transplantation: A 20-Year Cost Modeling Forecast and the Prospect of Bioengineering Autologous Liver Grafts.

    PubMed

    Habka, Dany; Mann, David; Landes, Ronald; Soto-Gutierrez, Alejandro

    2015-01-01

    During the past 20 years liver transplantation has become the definitive treatment for most severe types of liver failure and hepatocellular carcinoma, in both children and adults. In the U.S., roughly 16,000 individuals are on the liver transplant waiting list. Only 38% of them will receive a transplant due to the organ shortage. This paper explores another option: bioengineering an autologous liver graft. We developed a 20-year model projecting future demand for liver transplants, along with costs based on current technology. We compared these cost projections against projected costs to bioengineer autologous liver grafts. The model was divided into: 1) the epidemiology model forecasting the number of wait-listed patients, operated patients and postoperative patients; and 2) the treatment model forecasting costs (pre-transplant-related costs; transplant (admission)-related costs; and 10-year post-transplant-related costs) during the simulation period. The patient population was categorized using the Model for End-Stage Liver Disease score. The number of patients on the waiting list was projected to increase 23% over 20 years while the weighted average treatment costs in the pre-liver transplantation phase were forecast to increase 83% in Year 20. Projected demand for livers will increase 10% in 10 years and 23% in 20 years. Total costs of liver transplantation are forecast to increase 33% in 10 years and 81% in 20 years. By comparison, the projected cost to bioengineer autologous liver grafts is $9.7M based on current catalog prices for iPS-derived liver cells. The model projects a persistent increase in need and cost of donor livers over the next 20 years that's constrained by a limited supply of donor livers. The number of patients who die while on the waiting list will reflect this ever-growing disparity. Currently, bioengineering autologous liver grafts is cost prohibitive. However, costs will decline rapidly with the introduction of new manufacturing strategies and economies of scale.

  3. The Practice of Manpower Forecasting: A Collection of Case Studies. Studies on Education; Vol. 1.

    ERIC Educational Resources Information Center

    Ahamad, Bashir; And Others

    In the 1960's academics, politicians, administrators and industrialists became convinced of the importance of education for economic development. The forecasting of qualified manpower needs was able to turn this new idea into practice. During the decade hundreds of manpower forecasts were made, and innumerable international conferenceses were held…

  4. The Global Economic Prospect: New Sources of Economic Stress. Worldwatch Paper 20.

    ERIC Educational Resources Information Center

    Brown, Lester R.

    American economic analysts will better understand current economic trends if they investigate economic problems in light of the expanding global economy. Reasons for the failure of economists to explain the simultaneous existence of rapid inflation and high unemployment include preoccupation with economic indicators, short-term forecasts, and…

  5. Probabilistic drought intensification forecasts using temporal patterns of satellite-derived drought indicators

    NASA Astrophysics Data System (ADS)

    Park, Sumin; Im, Jungho; Park, Seonyeong

    2016-04-01

    A drought occurs when the condition of below-average precipitation in a region continues, resulting in prolonged water deficiency. A drought can last for weeks, months or even years, so can have a great influence on various ecosystems including human society. In order to effectively reduce agricultural and economic damage caused by droughts, drought monitoring and forecasts are crucial. Drought forecast research is typically conducted using in situ observations (or derived indices such as Standardized Precipitation Index (SPI)) and physical models. Recently, satellite remote sensing has been used for short term drought forecasts in combination with physical models. In this research, drought intensification was predicted using satellite-derived drought indices such as Normalized Difference Drought Index (NDDI), Normalized Multi-band Drought Index (NMDI), and Scaled Drought Condition Index (SDCI) generated from Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM) products over the Korean Peninsula. Time series of each drought index at the 8 day interval was investigated to identify drought intensification patterns. Drought condition at the previous time step (i.e., 8 days before) and change in drought conditions between two previous time steps (e.g., between 16 days and 8 days before the time step to forecast) Results show that among three drought indices, SDCI provided the best performance to predict drought intensification compared to NDDI and NMDI through qualitative assessment. When quantitatively compared with SPI, SDCI showed a potential to be used for forecasting short term drought intensification. Finally this research provided a SDCI-based equation to predict short term drought intensification optimized over the Korean Peninsula.

  6. Impact of seasonal forecast use on agricultural income in a system with varying crop costs and returns: an empirically-grounded simulation

    NASA Astrophysics Data System (ADS)

    Gunda, T.; Bazuin, J. T.; Nay, J.; Yeung, K. L.

    2017-03-01

    Access to seasonal climate forecasts can benefit farmers by allowing them to make more informed decisions about their farming practices. However, it is unclear whether farmers realize these benefits when crop choices available to farmers have different and variable costs and returns; multiple countries have programs that incentivize production of certain crops while other crops are subject to market fluctuations. We hypothesize that the benefits of forecasts on farmer livelihoods will be moderated by the combined impact of differing crop economics and changing climate. Drawing upon methods and insights from both physical and social sciences, we develop a model of farmer decision-making to evaluate this hypothesis. The model dynamics are explored using empirical data from Sri Lanka; primary sources include survey and interview information as well as game-based experiments conducted with farmers in the field. Our simulations show that a farmer using seasonal forecasts has more diversified crop selections, which drive increases in average agricultural income. Increases in income are particularly notable under a drier climate scenario, when a farmer using seasonal forecasts is more likely to plant onions, a crop with higher possible returns. Our results indicate that, when water resources are scarce (i.e. drier climate scenario), farmer incomes could become stratified, potentially compounding existing disparities in farmers’ financial and technical abilities to use forecasts to inform their crop selections. This analysis highlights that while programs that promote production of certain crops may ensure food security in the short-term, the long-term implications of these dynamics need careful evaluation.

  7. A coupled human-natural system to assess the operational value of weather and climate services for agriculture

    NASA Astrophysics Data System (ADS)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea

    2017-09-01

    Recent advances in weather and climate (W&C) services are showing increasing forecast skills over seasonal and longer timescales, potentially providing valuable support in informing decisions in a variety of economic sectors. Quantifying this value, however, might not be straightforward as better forecast quality does not necessarily imply better decisions by the end users, especially when forecasts do not reach their final users, when providers are not trusted, or when forecasts are not appropriately understood. In this study, we contribute an assessment framework to evaluate the operational value of W&C services for informing agricultural practices by complementing traditional forecast quality assessments with a coupled human-natural system behavioural model which reproduces farmers' decisions. This allows a more critical assessment of the forecast value mediated by the end users' perspective, including farmers' risk attitudes and behavioural factors. The application to an agricultural area in northern Italy shows that the quality of state-of-the-art W&C services is still limited in predicting the weather and the crop yield of the incoming agricultural season, with ECMWF annual products simulated by the IFS/HOPE model resulting in the most skillful product in the study area. However, we also show that the accuracy of estimating crop yield and the probability of making optimal decisions are not necessarily linearly correlated, with the overall assessment procedure being strongly impacted by the behavioural attitudes of farmers, which can produce rank reversals in the quantification of the W&C services operational value depending on the different perceptions of risk and uncertainty.

  8. Transitioning a Chesapeake Bay Ecological Prediction System to Operations

    NASA Astrophysics Data System (ADS)

    Brown, C.; Green, D. S.; Eco Forecasters

    2011-12-01

    Ecological prediction of the impacts of physical, chemical, biological, and human-induced change on ecosystems and their components, encompass a wide range of space and time scales, and subject matter. They vary from predicting the occurrence and/or transport of certain species, such harmful algal blooms, or biogeochemical constituents, such as dissolved oxygen concentrations, to large-scale ecosystem responses and higher trophic levels. The timescales of ecological prediction, including guidance and forecasts, range from nowcasts and short-term forecasts (days), to intraseasonal and interannual outlooks (weeks to months), to decadal and century projections in climate change scenarios. The spatial scales range from small coastal inlets to basin and global scale biogeochemical and ecological forecasts. The types of models that have been used include conceptual, empirical, mechanistic, and hybrid approaches. This presentation will identify the challenges and progress toward transitioning experimental model-based ecological prediction into operational guidance and forecasting. Recent efforts are targeting integration of regional ocean, hydrodynamic and hydrological models and leveraging weather and water service infrastructure to enable the prototyping of an operational ecological forecast capability for the Chesapeake Bay and its tidal tributaries. A path finder demonstration predicts the probability of encountering sea nettles (Chrysaora quinquecirrha), a stinging jellyfish. These jellyfish can negatively impact safety and economic activities in the bay and an impact-based forecast that predicts where and when this biotic nuisance occurs may help management effects. The issuance of bay-wide nowcasts and three-day forecasts of sea nettle probability are generated daily by forcing an empirical habitat model (that predicts the probability of sea nettles) with real-time and 3-day forecasts of sea-surface temperature (SST) and salinity (SSS). In the first demonstration phase, the sea surface temperature (SST) and sea surface salinity (SSS) fields are generated by the Chesapeake Bay Operational Forecast System (CBOFS2), a 3-dimensional hydrodynamic model developed and operated by NOAA's National Ocean Service and run operationally at the National Weather Service National Centers for Environmental Prediction (NCEP). Importantly, this system is readily modified to predict the probability of other important target organisms, such as harmful algal blooms, biogeochemical constituents, such as dissolved oxygen concentration, and water-borne pathogens. Extending this initial effort includes advancement of a regional coastal ocean modeling testbed and proving ground. Such formal collaboration is intended to accelerate transition to operations and increase confidence and use of forecast guidance. The outcome will be improved decision making by emergency and resource managers, scientific researchers and the general public. The presentation will describe partnership plans for this testbed as well as the potential implications for the services and research community.

  9. Ecosystem Model Skill Assessment. Yes We Can!

    PubMed

    Olsen, Erik; Fay, Gavin; Gaichas, Sarah; Gamble, Robert; Lucey, Sean; Link, Jason S

    2016-01-01

    Accelerated changes to global ecosystems call for holistic and integrated analyses of past, present and future states under various pressures to adequately understand current and projected future system states. Ecosystem models can inform management of human activities in a complex and changing environment, but are these models reliable? Ensuring that models are reliable for addressing management questions requires evaluating their skill in representing real-world processes and dynamics. Skill has been evaluated for just a limited set of some biophysical models. A range of skill assessment methods have been reviewed but skill assessment of full marine ecosystem models has not yet been attempted. We assessed the skill of the Northeast U.S. (NEUS) Atlantis marine ecosystem model by comparing 10-year model forecasts with observed data. Model forecast performance was compared to that obtained from a 40-year hindcast. Multiple metrics (average absolute error, root mean squared error, modeling efficiency, and Spearman rank correlation), and a suite of time-series (species biomass, fisheries landings, and ecosystem indicators) were used to adequately measure model skill. Overall, the NEUS model performed above average and thus better than expected for the key species that had been the focus of the model tuning. Model forecast skill was comparable to the hindcast skill, showing that model performance does not degenerate in a 10-year forecast mode, an important characteristic for an end-to-end ecosystem model to be useful for strategic management purposes. We identify best-practice approaches for end-to-end ecosystem model skill assessment that would improve both operational use of other ecosystem models and future model development. We show that it is possible to not only assess the skill of a complicated marine ecosystem model, but that it is necessary do so to instill confidence in model results and encourage their use for strategic management. Our methods are applicable to any type of predictive model, and should be considered for use in fields outside ecology (e.g. economics, climate change, and risk assessment).

  10. A Public-Private-Acadmic Partnership to Advance Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen

    The National Center for Atmospheric Research (NCAR) is pleased to have led a partnership to advance the state-of-the-science of solar power forecasting by designing, developing, building, deploying, testing, and assessing the SunCast™ Solar Power Forecasting System. The project has included cutting edge research, testing in several geographically- and climatologically-diverse high penetration solar utilities and Independent System Operators (ISOs), and wide dissemination of the research results to raise the bar on solar power forecasting technology. The partners include three other national laboratories, six universities, and industry partners. This public-private-academic team has worked in concert to perform use-inspired research to advance solarmore » power forecasting through cutting-edge research to advance both the necessary forecasting technologies and the metrics for evaluating them. The project has culminated in a year-long, full-scale demonstration of provide irradiance and power forecasts to utilities and ISOs to use in their operations. The project focused on providing elements of a value chain, beginning with the weather that causes a deviation from clear sky irradiance and progresses through monitoring and observations, modeling, forecasting, dissemination and communication of the forecasts, interpretation of the forecast, and through decision-making, which produces outcomes that have an economic value. The system has been evaluated using metrics developed specifically for this project, which has provided rich information on model and system performance. Research was accomplished on the very short range (0-6 hours) Nowcasting system as well as on the longer term (6-72 hour) forecasting system. The shortest range forecasts are based on observations in the field. The shortest range system, built by Brookhaven National Laboratory (BNL) and based on Total Sky Imagers (TSIs) is TSICast, which operates on the shortest time scale with a latency of only a few minutes and forecasts that currently go out to about 15 min. This project has facilitated research in improving the hardware and software so that the new high definition cameras deployed at multiple nearby locations allow discernment of the clouds at varying levels and advection according to the winds observed at those levels. Improvements over “smart persistence” are about 29% for even these very short forecasts. StatCast is based on pyranometer data measured at the site as well as concurrent meteorological observations and forecasts. StatCast is based on regime-dependent artificial intelligence forecasting techniques and has been shown to improve on “smart persistence” forecasts by 15-50%. A second category of short-range forecasting systems employ satellite imagery and use that information to discern clouds and their motion, allowing them to project the clouds, and the resulting blockage of irradiance, in time. CIRACast (the system produced by the Cooperative Institute for Atmospheric Research [CIRA] at Colorado State University) was already one of the more advanced cloud motion systems, which is the reason that team was brought to this project. During the project timeframe, the CIRA team was able to advance cloud shadowing, parallax removal, and implementation of better advecting winds at different altitudes. CIRACast shows generally a 25-40% improvement over Smart Persistence between sunrise and approximately 1600 UTC (Coordinated Universal Time) . A second satellite-based system, MADCast (Multi-sensor Advective Diffusive foreCast system), assimilates data from multiple satellite imagers and profilers to assimilate a fully three-dimensional picture of the cloud into the dynamic core of WRF. During 2015, MADCast (provided at least 70% improvement over Smart Persistence, with most of that skill being derived during partly cloudy conditions. That allows advection of the clouds via the Weather Research and Forecasting (WRF) model dynamics directly. After WRF-Solar™ showed initial success, it was also deployed in nowcasting mode with coarser runs out to 6 hours made hourly. It provided improvements on the order of 50-60% over Smart Persistence for forecasts up to 1600 UTC. The advantages of WRF-Solar-Nowcasting and MADCast were then blended to develop the new MAD-WRF model that incorporates the most important features of each of those models, both assimilating satellite cloud fields and using WRF-So far physics to develop and dissipate clouds. MAE improvements for MAD-WRF for forecasts from 3-6 hours are improved over WRF-Solar-Now by 20%. While all the Nowcasting system components by themselves provide improvement over Smart Persistence, the largest benefit is derived when they are smartly blended together by the Nowcasting Integrator to produce an integrated forecast. The development of WRF-Solar™ under this project has provided the first numerical weather prediction (NWP) model specifically designed to meet the needs of irradiance forecasting. The first augmentation improved the solar tracking algorithm to account for deviations associated with the eccentricity of the Earth’s orbit and the obliquity of the Earth. Second, WRF-Solar™ added the direct normal irradiance (DNI) and diffuse (DIF) components from the radiation parameterization to the model output. Third, efficient parameterizations were implemented to either interpolate the irradiance in between calls to the expensive radiative transfer parameterization, or to use a fast radiative transfer code that avoids computing three-dimensional heating rates but provides the surface irradiance. Fourth, a new parameterization was developed to improve the representation of absorption and scattering of radiation by aerosols (aerosol direct effect). A fifth advance is that the aerosols now interact with the cloud microphysics, altering the cloud evolution and radiative properties, an effect that has been traditionally only implemented in atmospheric computationally costly chemistry models. A sixth development accounts for the feedbacks that sub-grid scale clouds produce in shortwave irradiance as implemented in a shallow cumulus parameterization Finally, WRF-Solar™ also allows assimilation of infrared irradiances from satellites to determine the three dimensional cloud field, allowing for an improved initialization of the cloud field that increases the performance of short-range forecasts. We find that WRF-Solar™ can improve clear sky irradiance prediction by 15-80% over a standard version of WRF, depending on location and cloud conditions. In a formal comparison to the NAM baseline, WRF-Solar™ showed improvements in the Day-Ahead forecast of 22-42%. The SunCast™ system requires substantial software engineering to blend all of the new model components as well as existing publically available NWP model runs. To do this we use an expert system for the Nowcasting blender and the Dynamic Integrated foreCast (DICast®) system for the NWP models. These two systems are then blended, we use an empirical power conversion method to convert the irradiance predictions to power, then apply an analog ensemble (AnEn) approach to further tune the forecast as well as to estimate its uncertainty. The AnEn module decreased RMSE (root mean squared error) by 17% over the blended SunCast™ power forecasts and provided skill in the probabilistic forecast with a Brier Skill Score of 0.55. In addition, we have also developed a Gridded Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share funds. An economic evaluation based on Production Cost Modeling in the Public Service Company of Colorado showed that the observed 50% improvement in forecast accuracy will save their customers $819,200 with the projected MW deployment for 2024. Using econometrics, NCAR has scaled this savings to a national level and shown that an annual expected savings for this 50% forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased solar deployment. This amounts to a $455M discounted savings over the 26 year period of analysis.« less

  11. The case for probabilistic forecasting in hydrology

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, Roman

    2001-08-01

    That forecasts should be stated in probabilistic, rather than deterministic, terms has been argued from common sense and decision-theoretic perspectives for almost a century. Yet most operational hydrological forecasting systems produce deterministic forecasts and most research in operational hydrology has been devoted to finding the 'best' estimates rather than quantifying the predictive uncertainty. This essay presents a compendium of reasons for probabilistic forecasting of hydrological variates. Probabilistic forecasts are scientifically more honest, enable risk-based warnings of floods, enable rational decision making, and offer additional economic benefits. The growing demand for information about risk and the rising capability to quantify predictive uncertainties create an unparalleled opportunity for the hydrological profession to dramatically enhance the forecasting paradigm.

  12. Chaos and Forecasting - Proceedings of the Royal Society Discussion Meeting

    NASA Astrophysics Data System (ADS)

    Tong, Howell

    1995-04-01

    The Table of Contents for the full book PDF is as follows: * Preface * Orthogonal Projection, Embedding Dimension and Sample Size in Chaotic Time Series from a Statistical Perspective * A Theory of Correlation Dimension for Stationary Time Series * On Prediction and Chaos in Stochastic Systems * Locally Optimized Prediction of Nonlinear Systems: Stochastic and Deterministic * A Poisson Distribution for the BDS Test Statistic for Independence in a Time Series * Chaos and Nonlinear Forecastability in Economics and Finance * Paradigm Change in Prediction * Predicting Nonuniform Chaotic Attractors in an Enzyme Reaction * Chaos in Geophysical Fluids * Chaotic Modulation of the Solar Cycle * Fractal Nature in Earthquake Phenomena and its Simple Models * Singular Vectors and the Predictability of Weather and Climate * Prediction as a Criterion for Classifying Natural Time Series * Measuring and Characterising Spatial Patterns, Dynamics and Chaos in Spatially-Extended Dynamical Systems and Ecologies * Non-Linear Forecasting and Chaos in Ecology and Epidemiology: Measles as a Case Study

  13. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projectedmore » costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.« less

  14. Estimating predictive hydrological uncertainty by dressing deterministic and ensemble forecasts; a comparison, with application to Meuse and Rhine

    NASA Astrophysics Data System (ADS)

    Verkade, J. S.; Brown, J. D.; Davids, F.; Reggiani, P.; Weerts, A. H.

    2017-12-01

    Two statistical post-processing approaches for estimation of predictive hydrological uncertainty are compared: (i) 'dressing' of a deterministic forecast by adding a single, combined estimate of both hydrological and meteorological uncertainty and (ii) 'dressing' of an ensemble streamflow forecast by adding an estimate of hydrological uncertainty to each individual streamflow ensemble member. Both approaches aim to produce an estimate of the 'total uncertainty' that captures both the meteorological and hydrological uncertainties. They differ in the degree to which they make use of statistical post-processing techniques. In the 'lumped' approach, both sources of uncertainty are lumped by post-processing deterministic forecasts using their verifying observations. In the 'source-specific' approach, the meteorological uncertainties are estimated by an ensemble of weather forecasts. These ensemble members are routed through a hydrological model and a realization of the probability distribution of hydrological uncertainties (only) is then added to each ensemble member to arrive at an estimate of the total uncertainty. The techniques are applied to one location in the Meuse basin and three locations in the Rhine basin. Resulting forecasts are assessed for their reliability and sharpness, as well as compared in terms of multiple verification scores including the relative mean error, Brier Skill Score, Mean Continuous Ranked Probability Skill Score, Relative Operating Characteristic Score and Relative Economic Value. The dressed deterministic forecasts are generally more reliable than the dressed ensemble forecasts, but the latter are sharper. On balance, however, they show similar quality across a range of verification metrics, with the dressed ensembles coming out slightly better. Some additional analyses are suggested. Notably, these include statistical post-processing of the meteorological forecasts in order to increase their reliability, thus increasing the reliability of the streamflow forecasts produced with ensemble meteorological forcings.

  15. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang

    PubMed Central

    Liu, Bing-Chun; Binaykia, Arihant; Chang, Pei-Chann; Tiwari, Manoj Kumar; Tsao, Cheng-Chin

    2017-01-01

    Today, China is facing a very serious issue of Air Pollution due to its dreadful impact on the human health as well as the environment. The urban cities in China are the most affected due to their rapid industrial and economic growth. Therefore, it is of extreme importance to come up with new, better and more reliable forecasting models to accurately predict the air quality. This paper selected Beijing, Tianjin and Shijiazhuang as three cities from the Jingjinji Region for the study to come up with a new model of collaborative forecasting using Support Vector Regression (SVR) for Urban Air Quality Index (AQI) prediction in China. The present study is aimed to improve the forecasting results by minimizing the prediction error of present machine learning algorithms by taking into account multiple city multi-dimensional air quality information and weather conditions as input. The results show that there is a decrease in MAPE in case of multiple city multi-dimensional regression when there is a strong interaction and correlation of the air quality characteristic attributes with AQI. Also, the geographical location is found to play a significant role in Beijing, Tianjin and Shijiazhuang AQI prediction. PMID:28708836

  16. Monitoring and Predicting the African Climate for Food Security

    NASA Astrophysics Data System (ADS)

    Thiaw, W. M.

    2015-12-01

    Drought is one of the greatest challenges in Africa due to its impact on access to sanitary water and food. In response to this challenge, the international community has mobilized to develop famine early warning systems (FEWS) to bring safe food and water to populations in need. Over the past several decades, much attention has focused on advance risk planning in agriculture and water. This requires frequent updates of weather and climate outlooks. This paper describes the active role of NOAA's African Desk in FEWS. Emphasis is on the operational products from short and medium range weather forecasts to subseasonal and seasonal outlooks in support of humanitarian relief programs. Tools to provide access to real time weather and climate information to the public are described. These include the downscaling of the U.S. National Multi-model Ensemble (NMME) to improve seasonal forecasts in support of Regional Climate Outlook Forums (RCOFs). The subseasonal time scale has emerged as extremely important to many socio-economic sectors. Drawing from advances in numerical models that can now provide a better representation of the MJO, operational subseasonal forecasts are included in the African Desk product suite. These along with forecasts skill assessment and verifications are discussed. The presentation will also highlight regional hazards outlooks basis for FEWSNET food security outlooks.

  17. The Impact of Weather Forecasts of Various Lead Times on Snowmaking Decisions Made for the 2010 Vancouver Olympic Winter Games

    NASA Astrophysics Data System (ADS)

    Doyle, Chris

    2014-01-01

    The Vancouver 2010 Winter Olympics were held from 12 to 28 February 2010, and the Paralympic events followed 2 weeks later. During the Games, the weather posed a grave threat to the viability of one venue and created significant complications for the event schedule at others. Forecasts of weather with lead times ranging from minutes to days helped organizers minimize disruptions to sporting events and helped ensure all medal events were successfully completed. Of comparable importance, however, were the scenarios and forecasts of probable weather for the winter in advance of the Games. Forecasts of mild conditions at the time of the Games helped the Games' organizers mitigate what would have been very serious potential consequences for at least one venue. Snowmaking was one strategy employed well in advance of the Games to prepare for the expected conditions. This short study will focus on how operational decisions were made by the Games' organizers on the basis of both climatological and snowmaking forecasts during the pre-Games winter. An attempt will be made to quantify, economically, the value of some of the snowmaking forecasts made for the Games' operators. The results obtained indicate that although the economic value of the snowmaking forecast was difficult to determine, the Games' organizers valued the forecast information greatly. This suggests that further development of probabilistic forecasts for applications like pre-Games snowmaking would be worthwhile.

  18. Biospheric Monitoring and Ecological Forecasting using EOS/MODIS data, ecosystem modeling, planning and scheduling technologies

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Votava, P.; Golden, K.; Hashimoto, H.; Jolly, M.; White, M.; Running, S.; Coughlan, J.

    2003-12-01

    The latest generation of NASA Earth Observing System satellites has brought a new dimension to continuous monitoring of the living part of the Earth System, the Biosphere. EOS data can now provide weekly global measures of vegetation productivity and ocean chlorophyll, and many related biophysical factors such as land cover changes or snowmelt rates. However, information with the highest economic value would be forecasting impending conditions of the biosphere that would allow advanced decision-making to mitigate dangers, or exploit positive trends. We have developed a software system called the Terrestrial Observation and Prediction System (TOPS) to facilitate rapid analysis of ecosystem states/functions by integrating EOS data with ecosystem models, surface weather observations and weather/climate forecasts. Land products from MODIS (Moderate Resolution Imaging Spectroradiometer) including land cover, albedo, snow, surface temperature, leaf area index are ingested into TOPS for parameterization of models and for verifying model outputs such as snow cover and vegetation phenology. TOPS is programmed to gather data from observing networks such as USDA soil moisture, AMERIFLUX, SNOWTEL to further enhance model predictions. Key technologies enabling TOPS implementation include the ability to understand and process heterogeneous-distributed data sets, automated planning and execution of ecosystem models, causation analysis for understanding model outputs. Current TOPS implementations at local (vineyard) to global scales (global net primary production) can be found at http://www.ntsg.umt.edu/tops.

  19. Day-Ahead Crude Oil Price Forecasting Using a Novel Morphological Component Analysis Based Model

    PubMed Central

    Zhu, Qing; Zou, Yingchao; Lai, Kin Keung

    2014-01-01

    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations. PMID:25061614

  20. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    PubMed Central

    Jensen, Tue V.; Pinson, Pierre

    2017-01-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation. PMID:29182600

  1. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system.

    PubMed

    Jensen, Tue V; Pinson, Pierre

    2017-11-28

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  2. A novel application of artificial neural network for wind speed estimation

    NASA Astrophysics Data System (ADS)

    Fang, Da; Wang, Jianzhou

    2017-05-01

    Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation.

  3. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    NASA Astrophysics Data System (ADS)

    Jensen, Tue V.; Pinson, Pierre

    2017-11-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  4. Day-ahead crude oil price forecasting using a novel morphological component analysis based model.

    PubMed

    Zhu, Qing; He, Kaijian; Zou, Yingchao; Lai, Kin Keung

    2014-01-01

    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations.

  5. HEPS4Power - Extended-range Hydrometeorological Ensemble Predictions for Improved Hydropower Operations and Revenues

    NASA Astrophysics Data System (ADS)

    Bogner, Konrad; Monhart, Samuel; Liniger, Mark; Spririg, Christoph; Jordan, Fred; Zappa, Massimiliano

    2015-04-01

    In recent years large progresses have been achieved in the operational prediction of floods and hydrological drought with up to ten days lead time. Both the public and the private sectors are currently using probabilistic runoff forecast in order to monitoring water resources and take actions when critical conditions are to be expected. The use of extended-range predictions with lead times exceeding 10 days is not yet established. The hydropower sector in particular might have large benefits from using hydro meteorological forecasts for the next 15 to 60 days in order to optimize the operations and the revenues from their watersheds, dams, captions, turbines and pumps. The new Swiss Competence Centers in Energy Research (SCCER) targets at boosting research related to energy issues in Switzerland. The objective of HEPS4POWER is to demonstrate that operational extended-range hydro meteorological forecasts have the potential to become very valuable tools for fine tuning the production of energy from hydropower systems. The project team covers a specific system-oriented value chain starting from the collection and forecast of meteorological data (MeteoSwiss), leading to the operational application of state-of-the-art hydrological models (WSL) and terminating with the experience in data presentation and power production forecasts for end-users (e-dric.ch). The first task of the HEPS4POWER will be the downscaling and post-processing of ensemble extended-range meteorological forecasts (EPS). The goal is to provide well-tailored forecasts of probabilistic nature that should be reliable in statistical and localized at catchment or even station level. The hydrology related task will consist in feeding the post-processed meteorological forecasts into a HEPS using a multi-model approach by implementing models with different complexity. Also in the case of the hydrological ensemble predictions, post-processing techniques need to be tested in order to improve the quality of the forecasts against observed discharge. Analysis should be specifically oriented to the maximisation of hydroelectricity production. Thus, verification metrics should include economic measures like cost loss approaches. The final step will include the transfer of the HEPS system to several hydropower systems, the connection with the energy market prices and the development of probabilistic multi-reservoir production and management optimizations guidelines. The baseline model chain yielding three-days forecasts established for a hydropower system in southern-Switzerland will be presented alongside with the work-plan to achieve seasonal ensemble predictions.

  6. PM(10) emission forecasting using artificial neural networks and genetic algorithm input variable optimization.

    PubMed

    Antanasijević, Davor Z; Pocajt, Viktor V; Povrenović, Dragan S; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A

    2013-01-15

    This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM(10) emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs. The inputs for the model were selected and optimized using a genetic algorithm and the ANN was trained using the following variables: gross domestic product, gross inland energy consumption, incineration of wood, motorization rate, production of paper and paperboard, sawn wood production, production of refined copper, production of aluminum, production of pig iron and production of crude steel. The wide availability of the input parameters used in this model can overcome a lack of data and basic environmental indicators in many countries, which can prevent or seriously impede PM emission forecasting. The model was trained and validated with the data for 26 EU countries for the period from 1999 to 2006. PM(10) emission data, collected through the Convention on Long-range Transboundary Air Pollution - CLRTAP and the EMEP Programme or as emission estimations by the Regional Air Pollution Information and Simulation (RAINS) model, were obtained from Eurostat. The ANN model has shown very good performance and demonstrated that the forecast of PM(10) emission up to two years can be made successfully and accurately. The mean absolute error for two-year PM(10) emission prediction was only 10%, which is more than three times better than the predictions obtained from the conventional multi-linear regression and principal component regression models that were trained and tested using the same datasets and input variables. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Metric optimisation for analogue forecasting by simulated annealing

    NASA Astrophysics Data System (ADS)

    Bliefernicht, J.; Bárdossy, A.

    2009-04-01

    It is well known that weather patterns tend to recur from time to time. This property of the atmosphere is used by analogue forecasting techniques. They have a long history in weather forecasting and there are many applications predicting hydrological variables at the local scale for different lead times. The basic idea of the technique is to identify past weather situations which are similar (analogue) to the predicted one and to take the local conditions of the analogues as forecast. But the forecast performance of the analogue method depends on user-defined criteria like the choice of the distance function and the size of the predictor domain. In this study we propose a new methodology of optimising both criteria by minimising the forecast error with simulated annealing. The performance of the methodology is demonstrated for the probability forecast of daily areal precipitation. It is compared with a traditional analogue forecasting algorithm, which is used operational as an element of a hydrological forecasting system. The study is performed for several meso-scale catchments located in the Rhine basin in Germany. The methodology is validated by a jack-knife method in a perfect prognosis framework for a period of 48 years (1958-2005). The predictor variables are derived from the NCEP/NCAR reanalysis data set. The Brier skill score and the economic value are determined to evaluate the forecast skill and value of the technique. In this presentation we will present the concept of the optimisation algorithm and the outcome of the comparison. It will be also demonstrated how a decision maker should apply a probability forecast to maximise the economic benefit from it.

  8. Performance assessment of deterministic and probabilistic weather predictions for the short-term optimization of a tropical hydropower reservoir

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Schwanenberg, Dirk; Alvarado, Rodolfo; Assis dos Reis, Alberto; Naumann, Steffi; Collischonn, Walter

    2016-04-01

    Hydropower is the most important electricity source in Brazil. During recent years, it accounted for 60% to 70% of the total electric power supply. Marginal costs of hydropower are lower than for thermal power plants, therefore, there is a strong economic motivation to maximize its share. On the other hand, hydropower depends on the availability of water, which has a natural variability. Its extremes lead to the risks of power production deficits during droughts and safety issues in the reservoir and downstream river reaches during flood events. One building block of the proper management of hydropower assets is the short-term forecast of reservoir inflows as input for an online, event-based optimization of its release strategy. While deterministic forecasts and optimization schemes are the established techniques for the short-term reservoir management, the use of probabilistic ensemble forecasts and stochastic optimization techniques receives growing attention and a number of researches have shown its benefit. The present work shows one of the first hindcasting and closed-loop control experiments for a multi-purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower project (HPP) Três Marias, located in southeast Brazil. The HPP reservoir is operated with two main objectives: (i) hydroelectricity generation and (ii) flood control at Pirapora City located 120 km downstream of the dam. In the experiments, precipitation forecasts based on observed data, deterministic and probabilistic forecasts with 50 ensemble members of the ECMWF are used as forcing of the MGB-IPH hydrological model to generate streamflow forecasts over a period of 2 years. The online optimization depends on a deterministic and multi-stage stochastic version of a model predictive control scheme. Results for the perfect forecasts show the potential benefit of the online optimization and indicate a desired forecast lead time of 30 days. In comparison, the use of actual forecasts with shorter lead times of up to 15 days shows the practical benefit of actual operational data. It appears that the use of stochastic optimization combined with ensemble forecasts leads to a significant higher level of flood protection without compromising the HPP's energy production.

  9. Undecidability in macroeconomics

    NASA Technical Reports Server (NTRS)

    Chandra, Siddharth; Chandra, Tushar Deepak

    1993-01-01

    In this paper we study the difficulty of solving problems in economics. For this purpose, we adopt the notion of undecidability from recursion theory. We show that certain problems in economics are undecidable, i.e., cannot be solved by a Turing Machine, a device that is at least as powerful as any computational device that can be constructed. In particular, we prove that even in finite closed economies subject to a variable initial condition, in which a social planner knows the behavior of every agent in the economy, certain important social planning problems are undecidable. Thus, it may be impossible to make effective policy decisions. Philosophically, this result formally brings into question the Rational Expectations Hypothesis which assumes that each agent is able to determine what it should do if it wishes to maximize its utility. We show that even when an optimal rational forecast exists for each agency (based on the information currently available to it), agents may lack the ability to make these forecasts. For example, Lucas describes economic models as 'mechanical, artificial world(s), populated by ... interacting robots'. Since any mechanical robot can be at most as computationally powerful as a Turing Machine, such economies are vulnerable to the phenomenon of undecidability.

  10. Forecasting the Revenues of Local Public Health Departments in the Shadows of the ‘Great Recession’

    PubMed Central

    Reschovsky, Andrew; Zahner, Susan J.

    2015-01-01

    Context The ability of local health departments (LHD) to provide core public health services depends on a reliable stream of revenue from federal, state, and local governments. This study investigates the impact of the “Great Recession” on major sources of LHD revenues and develops a fiscal forecasting model to predict revenues to LHDs in one state over the period 2012 to 2014. Economic forecasting offers a new financial planning tool for LHD administrators and local government policy-makers. This study represents a novel research application for these econometric methods. Methods Detailed data on revenues by source for each LHD in Wisconsin were taken from annual surveys conducted by the Wisconsin Department of Health Services over an eight year period (2002-2009). A forecasting strategy appropriate for each revenue source was developed resulting in “base case” estimates. An analysis of the sensitivity of these revenue forecasts to a set of alternative fiscal policies by the federal, state, and local governments was carried out. Findings The model forecasts total LHD revenues in 2012 of $170.5 million (in 2010 dollars). By 2014 inflation-adjusted revenues will decline by $8 million, a reduction of 4.7 percent. Because of population growth, per capita real revenues of LHDs are forecast to decline by 6.6 percent between 2012 and 2014. There is a great deal of uncertainty about the future of federal funding in support of local public health. A doubling of the reductions in federal grants scheduled under current law would result in an additional $4.4 million decline in LHD revenues in 2014. Conclusions The impact of the Great Recession continues to haunt LHDs. Multi-year revenue forecasting offers a new financial tool to help LHDs better plan for an environment of declining resources. New revenue sources are needed if sharp drops in public health service delivery are to be avoided. PMID:23531611

  11. Forecasting the Revenues of Local Public Health Departments in the Shadows of the "Great Recession".

    PubMed

    Reschovsky, Andrew; Zahner, Susan J

    2016-01-01

    The ability of local health departments (LHD) to provide core public health services depends on a reliable stream of revenue from federal, state, and local governments. This study investigates the impact of the "Great Recession" on major sources of LHD revenues and develops a fiscal forecasting model to predict revenues to LHDs in one state over the period 2012 to 2014. Economic forecasting offers a new financial planning tool for LHD administrators and local government policy makers. This study represents a novel research application for these econometric methods. Detailed data on revenues by source for each LHD in Wisconsin were taken from annual surveys conducted by the Wisconsin Department of Health Services over an 8-year period (2002-2009). A forecasting strategy appropriate for each revenue source was developed resulting in "base case" estimates. An analysis of the sensitivity of these revenue forecasts to a set of alternative fiscal policies by the federal, state, and local governments was carried out. The model forecasts total LHD revenues in 2012 of $170.5 million (in 2010 dollars). By 2014, inflation-adjusted revenues will decline by $8 million, a reduction of 4.7%. Because of population growth, per capita real revenues of LHDs are forecast to decline by 6.6% between 2012 and 2014. There is a great deal of uncertainty about the future of federal funding in support of local public health. A doubling of the reductions in federal grants scheduled under current law would result in an additional $4.4 million decline in LHD revenues in 2014. The impact of the Great Recession continues to haunt LHDs. Multiyear revenue forecasting offers a new financial tool to help LHDs better plan for an environment of declining resources. New revenue sources are needed if sharp drops in public health service delivery are to be avoided.

  12. The MIT Integrated Global System Model: A facility for Assessing and Communicating Climate Change Uncertainty (Invited)

    NASA Astrophysics Data System (ADS)

    Prinn, R. G.

    2013-12-01

    The world is facing major challenges that create tensions between human development and environmental sustenance. In facing these challenges, computer models are invaluable tools for addressing the need for probabilistic approaches to forecasting. To illustrate this, I use the MIT Integrated Global System Model framework (IGSM; http://globalchange.mit.edu ). The IGSM consists of a set of coupled sub-models of global economic and technological development and resultant emissions, and physical, dynamical and chemical processes in the atmosphere, land, ocean and ecosystems (natural and managed). Some of the sub-models have both complex and simplified versions available, with the choice of which version to use being guided by the questions being addressed. Some sub-models (e.g.urban air pollution) are reduced forms of complex ones created by probabilistic collocation with polynomial chaos bases. Given the significant uncertainties in the model components, it is highly desirable that forecasts be probabilistic. We achieve this by running 400-member ensembles (Latin hypercube sampling) with different choices for key uncertain variables and processes within the human and natural system model components (pdfs of inputs estimated by model-observation comparisons, literature surveys, or expert elicitation). The IGSM has recently been used for probabilistic forecasts of climate, each using 400-member ensembles: one ensemble assumes no explicit climate mitigation policy and others assume increasingly stringent policies involving stabilization of greenhouse gases at various levels. These forecasts indicate clearly that the greatest effect of these policies is to lower the probability of extreme changes. The value of such probability analyses for policy decision-making lies in their ability to compare relative (not just absolute) risks of various policies, which are less affected by the earth system model uncertainties. Given the uncertainties in forecasts, it is also clear that we need to evaluate policies based on their ability to lower risk, and to re-evaluate decisions over time as new knowledge is gained. Reference: R. G. Prinn, Development and Application of Earth System Models, Proceedings, National Academy of Science, June 15, 2012, http://www.pnas.org/cgi/doi/10.1073/pnas.1107470109.

  13. Appraisal of artificial neural network for forecasting of economic parameters

    NASA Astrophysics Data System (ADS)

    Kordanuli, Bojana; Barjaktarović, Lidija; Jeremić, Ljiljana; Alizamir, Meysam

    2017-01-01

    The main aim of this research is to develop and apply artificial neural network (ANN) with extreme learning machine (ELM) and back propagation (BP) to forecast gross domestic product (GDP) and Hirschman-Herfindahl Index (HHI). GDP could be developed based on combination of different factors. In this investigation GDP forecasting based on the agriculture and industry added value in gross domestic product (GDP) was analysed separately. Other inputs are final consumption expenditure of general government, gross fixed capital formation (investments) and fertility rate. The relation between product market competition and corporate investment is contentious. On one hand, the relation can be positive, but on the other hand, the relation can be negative. Several methods have been proposed to monitor market power for the purpose of developing procedures to mitigate or eliminate the effects. The most widely used methods are based on indices such as the Hirschman-Herfindahl Index (HHI). The reliability of the ANN models were accessed based on simulation results and using several statistical indicators. Based upon simulation results, it was presented that ELM shows better performances than BP learning algorithm in applications of GDP and HHI forecasting.

  14. Recreational fishing in the Southeast United States: a demand project analysis

    Treesearch

    Neelam C. Poudyal; J.M. Bowker

    2008-01-01

    The objective of this paper is to first develop an economic model of demand for recreational fishing in the Southeastern United States, and then project the demand for fishing in the region during the next few decades. The findings from this study will be useful to understand the factors behind declining people's participation and also to forecast the license...

  15. [Macro-economic calculation of spending versus micro-economic follow-up of costs of breast cancer].

    PubMed

    Borella, L; Paraponaris, A

    2002-12-01

    In the healthcare field, the ability to make economic forecasts requires knowledge of the costs of caring for major diseases. In the case of a semi-chronic condition like cancer, this cost covers all the episodes of care associated with a patient. An evaluation of a macro-economic method of calculating costs for treating non-metastatic cancer, covering all hospital episodes, is proposed. This method is based entirely on the use of annual hospital activity databases, linked to data concerning the incidence of cancer. It allows us to obtain the global cost of care for a neoplasm of a particular site, without the need to reconstruct the whole care pathway of the patients. The model was assessed by comparing it's own results, in the particular case of breast cancer to those issuing from a micro-economic follow-up of 115 patients. Data for macro-economic calculation are extracted from the national French hospital database for the year 1999 and from cancer incidence data. The prospective study was done in 1995, in a comprehensive cancer centre. Macro-economic calculation leads to a cost of 14,555 Euro, for primary breast cancer. Prospective follow-up showed a cost of 14,350 Euro (data corrected, 1999 value). With a difference of 1%, there was a clear cohesion of the two results, while a higher level of divergence was noticed (from 1 to 15%) in the comparison between therapeutic techniques. Accuracy and reliability of results were evaluated. This method may be extended to all types of neoplasms. This method cannot be used instead of follow-up studies, for cost-efficacy or cost-severity analysis, but may be interesting beyond economic forecasts, in the field of payment per pathology.

  16. Air Traffic Forecasting at the Port Authority of New York and New Jersey

    NASA Technical Reports Server (NTRS)

    Augustine, J. G.

    1972-01-01

    Procedures for conducting air traffic forecasts with specific application to the Port Authority of New York and New Jersey are discussed. The procedure relates air travel growth to detailed socio-economic and demographic characteristics of the U.S. population rather than to aggregate economic data such as Gross National Product, personal income, and industrial production. Charts are presented to show the relationship between various selected characteristics and the use of air transportation facilities.

  17. Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon-Hurtado, Juan; Solomatine, Dimitri

    2015-09-01

    Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing observations, within water models. Current hydrologic and hydraulic research works consider assimilation of observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile communication devices are becoming also increasingly available. The main goal and innovation of this study is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space and intermittent in time in the context of two different semi-distributed hydrological model structures. The developed method is applied to the Brue basin, where the dynamic observations are imitated by the synthetic observations of discharge. The results of this study show how model structures and sensors locations affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation of such uncertain observations from dynamic sensors can provide model improvements similar to those of streamflow observations coming from a non-optimal network of static physical sensors. This can be a potential application of recent efforts to build citizen observatories of water, which can make the citizens an active part in information capturing, evaluation and communication, helping simultaneously to improvement of model-based flood forecasting.

  18. Wave ensemble forecast in the Western Mediterranean Sea, application to an early warning system.

    NASA Astrophysics Data System (ADS)

    Pallares, Elena; Hernandez, Hector; Moré, Jordi; Espino, Manuel; Sairouni, Abdel

    2015-04-01

    The Western Mediterranean Sea is a highly heterogeneous and variable area, as is reflected on the wind field, the current field, and the waves, mainly in the first kilometers offshore. As a result of this variability, the wave forecast in these regions is quite complicated to perform, usually with some accuracy problems during energetic storm events. Moreover, is in these areas where most of the economic activities take part, including fisheries, sailing, tourism, coastal management and offshore renewal energy platforms. In order to introduce an indicator of the probability of occurrence of the different sea states and give more detailed information of the forecast to the end users, an ensemble wave forecast system is considered. The ensemble prediction systems have already been used in the last decades for the meteorological forecast; to deal with the uncertainties of the initial conditions and the different parametrizations used in the models, which may introduce some errors in the forecast, a bunch of different perturbed meteorological simulations are considered as possible future scenarios and compared with the deterministic forecast. In the present work, the SWAN wave model (v41.01) has been implemented for the Western Mediterranean sea, forced with wind fields produced by the deterministic Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS). The wind fields includes a deterministic forecast (also named control), between 11 and 21 ensemble members, and some intelligent member obtained from the ensemble, as the mean of all the members. Four buoys located in the study area, moored in coastal waters, have been used to validate the results. The outputs include all the time series, with a forecast horizon of 8 days and represented in spaghetti diagrams, the spread of the system and the probability at different thresholds. The main goal of this exercise is to be able to determine the degree of the uncertainty of the wave forecast, meaningful between the 5th and the 8th day of the prediction. The information obtained is then included in an early warning system, designed in the framework of the European project iCoast (ECHO/SUB/2013/661009) with the aim of set alarms in coastal areas depending on the wave conditions, the sea level, the flooding and the run up in the coast.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Braeton J.; Starks, Shirley J.; Loose, Verne W.

    Pandemic influenza has become a serious global health concern; in response, governments around the world have allocated increasing funds to containment of public health threats from this disease. Pandemic influenza is also recognized to have serious economic implications, causing illness and absence that reduces worker productivity and economic output and, through mortality, robs nations of their most valuable assets - human resources. This paper reports two studies that investigate both the short- and long-term economic implications of a pandemic flu outbreak. Policy makers can use the growing number of economic impact estimates to decide how much to spend to combatmore » the pandemic influenza outbreaks. Experts recognize that pandemic influenza has serious global economic implications. The illness causes absenteeism, reduced worker productivity, and therefore reduced economic output. This, combined with the associated mortality rate, robs nations of valuable human resources. Policy makers can use economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. In this paper economists examine two studies which investigate both the short- and long-term economic implications of a pandemic influenza outbreak. Resulting policy implications are also discussed. The research uses the Regional Economic Modeling, Inc. (REMI) Policy Insight + Model. This model provides a dynamic, regional, North America Industrial Classification System (NAICS) industry-structured framework for forecasting. It is supported by a population dynamics model that is well-adapted to investigating macro-economic implications of pandemic influenza, including possible demand side effects. The studies reported in this paper exercise all of these capabilities.« less

  20. Forecasting the Future Risk of Barmah Forest Virus Disease under Climate Change Scenarios in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu

    2013-01-01

    Background Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. Methods/Principal Findings We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000–2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. Conclusions/Significance We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland. PMID:23690959

  1. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  2. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  3. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  4. Diabatic forcing and initialization with assimilation of cloud and rain water in a forecast model: Methodology

    NASA Technical Reports Server (NTRS)

    Raymond, William H.; Olson, William S.; Callan, Geary

    1990-01-01

    The focus of this part of the investigation is to find one or more general modeling techniques that will help reduce the time taken by numerical forecast models to initiate or spin-up precipitation processes and enhance storm intensity. If the conventional data base could explain the atmospheric mesoscale flow in detail, then much of our problem would be eliminated. But the data base is primarily synoptic scale, requiring that a solution must be sought either in nonconventional data, in methods to initialize mesoscale circulations, or in ways of retaining between forecasts the model generated mesoscale dynamics and precipitation fields. All three methods are investigated. The initialization and assimilation of explicit cloud and rainwater quantities computed from conservation equations in a mesoscale regional model are examined. The physical processes include condensation, evaporation, autoconversion, accretion, and the removal of rainwater by fallout. The question of how to initialize the explicit liquid water calculations in numerical models and how to retain information about precipitation processes during the 4-D assimilation cycle are important issues that are addressed. The explicit cloud calculations were purposely kept simple so that different initialization techniques can be easily and economically tested. Precipitation spin-up processes associated with three different types of weather phenomena are examined. Our findings show that diabatic initialization, or diabatic initialization in combination with a new diabatic forcing procedure, work effectively to enhance the spin-up of precipitation in a mesoscale numerical weather prediction forecast. Also, the retention of cloud and rain water during the analysis phase of the 4-D data assimilation procedure is shown to be valuable. Without detailed observations, the vertical placement of the diabatic heating remains a critical problem.

  5. Streamflow characterization using functional data analysis of the Potomac River

    NASA Astrophysics Data System (ADS)

    Zelmanow, A.; Maslova, I.; Ticlavilca, A. M.; McKee, M.

    2013-12-01

    Flooding and droughts are extreme hydrological events that affect the United States economically and socially. The severity and unpredictability of flooding has caused billions of dollars in damage and the loss of lives in the eastern United States. In this context, there is an urgent need to build a firm scientific basis for adaptation by developing and applying new modeling techniques for accurate streamflow characterization and reliable hydrological forecasting. The goal of this analysis is to use numerical streamflow characteristics in order to classify, model, and estimate the likelihood of extreme events in the eastern United States, mainly the Potomac River. Functional data analysis techniques are used to study yearly streamflow patterns, with the extreme streamflow events characterized via functional principal component analysis. These methods are merged with more classical techniques such as cluster analysis, classification analysis, and time series modeling. The developed functional data analysis approach is used to model continuous streamflow hydrographs. The forecasting potential of this technique is explored by incorporating climate factors to produce a yearly streamflow outlook.

  6. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    PubMed Central

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423

  7. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.

    PubMed

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  8. Flexible Modeling of Epidemics with an Empirical Bayes Framework

    PubMed Central

    Brooks, Logan C.; Farrow, David C.; Hyun, Sangwon; Tibshirani, Ryan J.; Rosenfeld, Roni

    2015-01-01

    Seasonal influenza epidemics cause consistent, considerable, widespread loss annually in terms of economic burden, morbidity, and mortality. With access to accurate and reliable forecasts of a current or upcoming influenza epidemic’s behavior, policy makers can design and implement more effective countermeasures. This past year, the Centers for Disease Control and Prevention hosted the “Predict the Influenza Season Challenge”, with the task of predicting key epidemiological measures for the 2013–2014 U.S. influenza season with the help of digital surveillance data. We developed a framework for in-season forecasts of epidemics using a semiparametric Empirical Bayes framework, and applied it to predict the weekly percentage of outpatient doctors visits for influenza-like illness, and the season onset, duration, peak time, and peak height, with and without using Google Flu Trends data. Previous work on epidemic modeling has focused on developing mechanistic models of disease behavior and applying time series tools to explain historical data. However, tailoring these models to certain types of surveillance data can be challenging, and overly complex models with many parameters can compromise forecasting ability. Our approach instead produces possibilities for the epidemic curve of the season of interest using modified versions of data from previous seasons, allowing for reasonable variations in the timing, pace, and intensity of the seasonal epidemics, as well as noise in observations. Since the framework does not make strict domain-specific assumptions, it can easily be applied to some other diseases with seasonal epidemics. This method produces a complete posterior distribution over epidemic curves, rather than, for example, solely point predictions of forecasting targets. We report prospective influenza-like-illness forecasts made for the 2013–2014 U.S. influenza season, and compare the framework’s cross-validated prediction error on historical data to that of a variety of simpler baseline predictors. PMID:26317693

  9. Design of Field Experiments for Adaptive Sampling of the Ocean with Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Ooi, B. H.; Cho, W.; Dao, M. H.; Tkalich, P.; Patrikalakis, N. M.

    2010-05-01

    Due to the highly non-linear and dynamical nature of oceanic phenomena, the predictive capability of various ocean models depends on the availability of operational data. A practical method to improve the accuracy of the ocean forecast is to use a data assimilation methodology to combine in-situ measured and remotely acquired data with numerical forecast models of the physical environment. Autonomous surface and underwater vehicles with various sensors are economic and efficient tools for exploring and sampling the ocean for data assimilation; however there is an energy limitation to such vehicles, and thus effective resource allocation for adaptive sampling is required to optimize the efficiency of exploration. In this paper, we use physical oceanography forecasts of the coastal zone of Singapore for the design of a set of field experiments to acquire useful data for model calibration and data assimilation. The design process of our experiments relied on the oceanography forecast including the current speed, its gradient, and vorticity in a given region of interest for which permits for field experiments could be obtained and for time intervals that correspond to strong tidal currents. Based on these maps, resources available to our experimental team, including Autonomous Surface Craft (ASC) are allocated so as to capture the oceanic features that result from jets and vortices behind bluff bodies (e.g., islands) in the tidal current. Results are summarized from this resource allocation process and field experiments conducted in January 2009.

  10. Forecasting the demand for privatized transport : what economic regulators should know and why

    DOT National Transportation Integrated Search

    2001-09-01

    While public-private partnerships in the delivery of transport infrastructures and services is expanding, there is also growing evidence of the lack of appreciation of the importance of demand forecasting in preparing and monitoring these partnership...

  11. Assessing air quality and climate impacts of future ground freight choice in United States

    NASA Astrophysics Data System (ADS)

    Liu, L.; Bond, T. C.; Smith, S.; Lee, B.; Ouyang, Y.; Hwang, T.; Barkan, C.; Lee, S.; Daenzer, K.

    2013-12-01

    The demand for freight transportation has continued to increase due to the growth of domestic and international trade. Emissions from ground freight (truck and railways) account for around 7% of the greenhouse gas emissions, 4% of the primary particulate matter emission and 25% of the NOx emissions in the U.S. Freight railways are generally more fuel efficient than trucks and cause less congestion. Freight demand and emissions are affected by many factors, including economic activity, the spatial distribution of demand, freight modal choice and routing decision, and the technology used in each modal type. This work links these four critical aspects of freight emission system to project the spatial distribution of emissions and pollutant concentration from ground freight transport in the U.S. between 2010 and 2050. Macroeconomic scenarios are used to forecast economic activities. Future spatial structure of employment and commodity demand in major metropolitan areas are estimated using spatial models and a shift-share model, respectively. Freight flow concentration and congestion patterns in inter-regional transportation networks are predicted from a four-step freight demand forecasting model. An asymptotic vehicle routing model is also developed to estimate delivery ton-miles for intra-regional freight shipment in metropolitan areas. Projected freight activities are then converted into impacts on air quality and climate. CO2 emissions are determined using a simple model of freight activity and fuel efficiency, and compared with the projected CO2 emissions from the Second Generation Model. Emissions of air pollutants including PM, NOx and CO are calculated with a vehicle fleet model SPEW-Trend, which incorporates the dynamic change of technologies. Emissions are projected under three economic scenarios to represent different plausible futures. Pollutant concentrations are then estimated using tagged chemical tracers in an atmospheric model with the emissions serving as input.

  12. The economic impact of NASA R and D spending Appendices

    NASA Technical Reports Server (NTRS)

    Evans, M. K.

    1976-01-01

    Seven appendices related to a previous report on the economic impact of NASA R and D spending were presented. They dealt with: (1) theoretical and empirical development of aggregate production functions, (2) the calculation of the time series for the rate of technological progress, (3) the calculation of the industry mix variable, (4) the estimation of distributed lags, (5) the estimation of the equations for gamma, (6) a ten-year forecast of the U.S. economy, (7) simulations of the macroeconomic model for increases in NASA R and D spending of $1.0, $.0.5, and 0.1 billions.

  13. Skillful seasonal predictions of winter precipitation over southern China

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Scaife, Adam A.; Dunstone, Nick; Smith, Doug; Ren, Hong-Li; Liu, Ying; Eade, Rosie

    2017-07-01

    Southern China experiences large year-to-year variability in the amount of winter precipitation, which can result in severe social and economic impacts. In this study, we demonstrate prediction skill of southern China winter precipitation by three operational seasonal prediction models: the operational Global seasonal forecasting system version 5 (GloSea5), the NCEP Climate Forecast System (CFSv2) and the Beijing Climate Center Climate System Model (BCC-CSM1.1m). The correlation scores reach 0.76 and 0.67 in GloSea5 and CFSv2, respectively; and the amplitude of the ensemble mean forecast signal is comparable to the observed variations. The skilful predictions in GloSea5 and CFSv2 mainly benefit from the successful representation of the observed ENSO teleconnection. El Niño weakens the Walker circulation and leads to the strengthening of the subtropical high over the northwestern Pacific. The anti-cyclone then induces anomalous northward flow over the South China Sea and brings water vapor to southern China, resulting in more precipitation. This teleconnection pattern is too weak in BCC-CSM1.1m, which explains its low skill (0.13). Whereas the most skilful forecast system is also able to simulate the influence of the Indian Ocean on southern China precipitation via changes in southwesterly winds over the Bay of Bengal. Finally, we examine the real-time forecast for 2015/16 winter when a strong El Niño event led to the highest rainfall over southern China in recent decades. We find that the GloSea5 system gave good advice as it produced the third wettest southern China in the hindcast, but underestimated the observed amplitude. This is likely due to the underestimation of the Siberian High strength in 2015/2016 winter, which has driven strong convergence over southern China. We conclude that some current seasonal forecast systems can give useful warning of impending extremes. However, there is still need for further model improvement to fully represent the complex dynamics of the region.

  14. Extending to seasonal scales the current usage of short range weather forecasts and climate projections for water management in Spain

    NASA Astrophysics Data System (ADS)

    Rodriguez-Camino, Ernesto; Voces, José; Sánchez, Eroteida; Navascues, Beatriz; Pouget, Laurent; Roldan, Tamara; Gómez, Manuel; Cabello, Angels; Comas, Pau; Pastor, Fernando; Concepción García-Gómez, M.°; José Gil, Juan; Gil, Delfina; Galván, Rogelio; Solera, Abel

    2016-04-01

    This presentation, first, briefly describes the current use of weather forecasts and climate projections delivered by AEMET for water management in Spain. The potential use of seasonal climate predictions for water -in particular dams- management is then discussed more in-depth, using a pilot experience carried out by a multidisciplinary group coordinated by AEMET and DG for Water of Spain. This initiative is being developed in the framework of the national implementation of the GFCS and the European project, EUPORIAS. Among the main components of this experience there are meteorological and hydrological observations, and an empirical seasonal forecasting technique that provides an ensemble of water reservoir inflows. These forecasted inflows feed a prediction model for the dam state that has been adapted for this purpose. The full system is being tested retrospectively, over several decades, for selected water reservoirs located in different Spanish river basins. The assessment includes an objective verification of the probabilistic seasonal forecasts using standard metrics, and the evaluation of the potential social and economic benefits, with special attention to drought and flooding conditions. The methodology of implementation of these seasonal predictions in the decision making process is being developed in close collaboration with final users participating in this pilot experience.

  15. Advancing solar energy forecasting through the underlying physics

    NASA Astrophysics Data System (ADS)

    Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.

    2017-12-01

    As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.

  16. Integrating Solar Power onto the Electric Grid - Bridging the Gap between Atmospheric Science, Engineering and Economics

    NASA Astrophysics Data System (ADS)

    Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.

    2015-12-01

    One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term forecasts (0-20 min ahead) to improve optimization and control of equipment on distribution feeders with high penetration of solar. Leveraging such tools that have seen extensive use in the atmospheric sciences supports the development of accurate physics-based solar forecast models. Directions for future research are also provided.

  17. Integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Mosimann, Markus; Weingartner, Rolf

    2016-04-01

    A key aspect of disaster prevention is flood discharge forecasting which is used for early warning and therefore as a decision support for intervention forces. Hereby, the phase between the issued forecast and the time when the expected flood occurs is crucial for an optimal planning of the intervention. Typically, river discharge forecasts cover the regional level only, i.e. larger catchments. However, it is important to note that these forecasts are not useable directly for specific target groups on local level because these forecasts say nothing about the consequences of the predicted flood in terms of affected areas, number of exposed residents and houses. For this, on one hand simulations of the flooding processes and on the other hand data of vulnerable objects are needed. Furthermore, flood modelling in a high spatial and temporal resolution is required for robust flood loss estimation. This is a resource-intensive task from a computing time point of view. Therefore, in real-time applications flood modelling in 2D is not suited. Thus, forecasting flood losses in the short-term (6h-24h in advance) requires a different approach. Here, we propose a method to downscale the river discharge forecast to a spatially-explicit flood loss forecast. The principal procedure is to generate as many flood scenarios as needed in advance to represent the flooded areas for all possible flood hydrographs, e.g. very high peak discharges of short duration vs. high peak discharges with high volumes. For this, synthetic flood hydrographs were derived from the hydrologic time series. Then, the flooded areas of each scenario were modelled with a 2D flood simulation model. All scenarios were intersected with the dataset of vulnerable objects, in our case residential, agricultural and industrial buildings with information about the number of residents, the object-specific vulnerability, and the monetary value of the objects. This dataset was prepared by a data-mining approach. For each flood scenario, the resulting number of affected residents, houses and therefore the losses are computed. This integral assessment leads to a hydro-economical characterisation of each floodplain. Based on that, a transfer function between discharge forecast and damages can be elaborated. This transfer function describes the relationship between predicted peak discharge, flood volume and the number of exposed houses, residents and the related losses. It also can be used to downscale the regional discharge forecast to a local level loss forecast. In addition, a dynamic map delimiting the probable flooded areas on the basis of the forecasted discharge can be prepared. The predicted losses and the delimited flooded areas provide a complementary information for assessing the need of preventive measures on one hand on the long-term timescale and on the other hand 6h-24h in advance of a predicted flood. To conclude, we can state that the transfer function offers the possibility for an integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts. The procedure has been developed and tested in the alpine and pre-alpine environment of the Aare river catchment upstream of Bern, Switzerland.

  18. Modelling tourists arrival using time varying parameter

    NASA Astrophysics Data System (ADS)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  19. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  20. Development of an Impact-Oriented Quantitative Coastal Inundation forecasting and early warning system with social and economic assessment

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S. H. M.; Babel, Mukand S.; Kawasaki, Akiyuki

    2014-05-01

    Coastal inundations are an increasing threat to the lives and livelihoods of people living in low-lying, highly-populated coastal areas. According to a World Bank Report in 2005, at least 2.6 million people may have drowned due to coastal inundation, particularly caused by storm surges, over the last 200 years. Forecasting and prediction of natural events, such as tropical and extra-tropical cyclones, inland flooding, and severe winter weather, provide critical guidance to emergency managers and decision-makers from the local to the national level, with the goal of minimizing both human and economic losses. This guidance is used to facilitate evacuation route planning, post-disaster response and resource deployment, and critical infrastructure protection and securing, and it must be available within a time window in which decision makers can take appropriate action. Recognizing this extreme vulnerability of coastal areas to inundation/flooding, and with a view to improve safety-related services for the community, research should strongly enhance today's forecasting, prediction and early warning capabilities in order to improve the assessment of coastal vulnerability and risks and develop adequate prevention, mitigation and preparedness measures. This paper tries to develop an impact-oriented quantitative coastal inundation forecasting and early warning system with social and economic assessment to address the challenges faced by coastal communities to enhance their safety and to support sustainable development, through the improvement of coastal inundation forecasting and warning systems.

  1. Developing a robust methodology for assessing the value of weather/climate services

    NASA Astrophysics Data System (ADS)

    Krijnen, Justin; Golding, Nicola; Buontempo, Carlo

    2016-04-01

    Increasingly, scientists involved in providing weather and climate services are expected to demonstrate the value of their work for end users in order to justify the costs of developing and delivering these services. This talk will outline different approaches that can be used to assess the socio-economic benefits of weather and climate services, including, among others, willingness to pay and avoided costs. The advantages and limitations of these methods will be discussed and relevant case-studies will be used to illustrate each approach. The choice of valuation method may be influenced by different factors, such as resource and time constraints and the end purposes of the study. In addition, there are important methodological differences which will affect the value assessed. For instance the ultimate value of a weather/climate forecast to a decision-maker will not only depend on forecast accuracy but also on other factors, such as how the forecast is communicated to and consequently interpreted by the end-user. Thus, excluding these additional factors may result in inaccurate socio-economic value estimates. In order to reduce the inaccuracies in this valuation process we propose an approach that assesses how the initial weather/climate forecast information can be incorporated within the value chain of a given sector, taking into account value gains and losses at each stage of the delivery process. By this we aim to more accurately depict the socio-economic benefits of a weather/climate forecast to decision-makers.

  2. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2016-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  3. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2017-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  4. Impacts of invasive plants on Sandhill Crane (Grus canadensis) roosting habitat

    USGS Publications Warehouse

    Kessler, Andrew C.; Merchant, James W.; Allen, Craig R.; Shultz, Steven D.

    2011-01-01

    Invasive plants continue to spread in riparian ecosystems, causing both ecological and economic damage. This research investigated the impacts of common reed, purple loosestrife, riparian shrubland, and riparian woodlands on the quality and quantity of sandhill crane roosting habitat in the central Platte River, Nebraska, using a discrete choice model. A more detailed investigation of the impacts of common reed on sandhill crane roosting habitat was performed by forecasting a spread or contraction of this invasive plant. The discrete choice model indicates that riparian woodlands had the largest negative impact on sandhill crane roosting habitat. The forecasting results predict that a contraction of common reed could increase sandhill crane habitat availability by 50%, whereas an expansion could reduce the availability by as much as 250%. This suggests that if the distribution of common reed continues to expand in the central Platte River the availability of sandhill crane roosting habitat would likely be greatly reduced.

  5. The impact of vertical resolution in mesoscale model AROME forecasting of radiation fog

    NASA Astrophysics Data System (ADS)

    Philip, Alexandre; Bergot, Thierry; Bouteloup, Yves; Bouyssel, François

    2015-04-01

    Airports short-term forecasting of fog has a security and economic impact. Numerical simulations have been performed with the mesoscale model AROME (Application of Research to Operations at Mesoscale) (Seity et al. 2011). Three vertical resolutions (60, 90 and 156 levels) are used to show the impact of radiation fog on numerical forecasting. Observations at Roissy Charles De Gaulle airport are compared to simulations. Significant differences in the onset, evolution and dissipation of fog were found. The high resolution simulation is in better agreement with observations than a coarser one. The surface boundary layer and incoming long-wave radiations are better represented. A more realistic behaviour of liquid water content evolution allows a better anticipation of low visibility procedures (ceiling < 60m and/or visibility < 600m). The case study of radiation fog shows that it is necessary to have a well defined vertical grid to better represent local phenomena. A statistical study over 6 months (October 2011 - March 2012 ) using different configurations was carried out. Statistically, results were the same as in the case study of radiation fog. Seity Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, V. Masson, 2011: The AROME-France convective scale operational model. Mon.Wea.Rev., 139, 976-991.

  6. Probabilistic flood forecasting tool for Andalusia (Spain). Application to September 2012 disaster event in Vera Playa.

    NASA Astrophysics Data System (ADS)

    García, Darío; Baquerizo, Asunción; Ortega, Miguel; Herrero, Javier; Ángel Losada, Miguel

    2013-04-01

    Torrential and heavy rains are frequent in Andalusia (Southern Spain) due to the characteristic Mediterranean climate (semi-arid areas). This, in combination with a massive occupation of floodable (river sides) and coastal areas, produces severe problems of management and damage to the population and social and economical activities when extreme events occur. Some of the most important problems are being produced during last years in Almería (Southeastern Andalusia). Between 27 and 28 September 2012 rainstorms characterized by 240mm in 24h (exceeding precipitation for a return period of 500 years) occurred. Antas River and Jático creek, that are normally dry, became raging torrents. The massive flooding of occupied areas resulted in eleven deaths and two missing in Andalucía, with a total estimated cost of all claims for compensation on the order of 197 million euros. This study presents a probabilistic flood forecasting tool including the effect of river and marine forcings. It is based on a distributed, physically-based hydrological model (WiMMed). For Almería the model has been calibrated with the largest event recorded in Cantoria gauging station (data since 1965) on 19 October 1973. It was then validated with the second strongest event (26 October 1977). Among the different results of the model, it can provide probability floods scenarios in Andalusia with up 10 days weather forecasts. The tool has been applied to Vera, a 15.000 inhabitants town located in the east of Almería along the Antas River at an altitude of 95 meters. Its main economic resource is the "beach and sun" based-tourism, which has experienced an enormous growth during last decades. Its coastal stretch has been completely built in these years, occupying floodable areas and constricting the channel and rivers mouths. Simulations of the model in this area for the 1973 event and published in March 2011 on the internet event already announced that the floods of September 2012 may occur.

  7. Ecosystem Model Skill Assessment. Yes We Can!

    PubMed Central

    Olsen, Erik; Fay, Gavin; Gaichas, Sarah; Gamble, Robert; Lucey, Sean; Link, Jason S.

    2016-01-01

    Need to Assess the Skill of Ecosystem Models Accelerated changes to global ecosystems call for holistic and integrated analyses of past, present and future states under various pressures to adequately understand current and projected future system states. Ecosystem models can inform management of human activities in a complex and changing environment, but are these models reliable? Ensuring that models are reliable for addressing management questions requires evaluating their skill in representing real-world processes and dynamics. Skill has been evaluated for just a limited set of some biophysical models. A range of skill assessment methods have been reviewed but skill assessment of full marine ecosystem models has not yet been attempted. Northeast US Atlantis Marine Ecosystem Model We assessed the skill of the Northeast U.S. (NEUS) Atlantis marine ecosystem model by comparing 10-year model forecasts with observed data. Model forecast performance was compared to that obtained from a 40-year hindcast. Multiple metrics (average absolute error, root mean squared error, modeling efficiency, and Spearman rank correlation), and a suite of time-series (species biomass, fisheries landings, and ecosystem indicators) were used to adequately measure model skill. Overall, the NEUS model performed above average and thus better than expected for the key species that had been the focus of the model tuning. Model forecast skill was comparable to the hindcast skill, showing that model performance does not degenerate in a 10-year forecast mode, an important characteristic for an end-to-end ecosystem model to be useful for strategic management purposes. Skill Assessment Is Both Possible and Advisable We identify best-practice approaches for end-to-end ecosystem model skill assessment that would improve both operational use of other ecosystem models and future model development. We show that it is possible to not only assess the skill of a complicated marine ecosystem model, but that it is necessary do so to instill confidence in model results and encourage their use for strategic management. Our methods are applicable to any type of predictive model, and should be considered for use in fields outside ecology (e.g. economics, climate change, and risk assessment). PMID:26731540

  8. Lognormal field size distributions as a consequence of economic truncation

    USGS Publications Warehouse

    Attanasi, E.D.; Drew, L.J.

    1985-01-01

    The assumption of lognormal (parent) field size distributions has for a long time been applied to resource appraisal and evaluation of exploration strategy by the petroleum industry. However, frequency distributions estimated with observed data and used to justify this hypotheses are conditional. Examination of various observed field size distributions across basins and over time shows that such distributions should be regarded as the end result of an economic filtering process. Commercial discoveries depend on oil and gas prices and field development costs. Some new fields are eliminated due to location, depths, or water depths. This filtering process is called economic truncation. Economic truncation may occur when predictions of a discovery process are passed through an economic appraisal model. We demonstrate that (1) economic resource appraisals, (2) forecasts of levels of petroleum industry activity, and (3) expected benefits of developing and implementing cost reducing technology are sensitive to assumptions made about the nature of that portion of (parent) field size distribution subject to economic truncation. ?? 1985 Plenum Publishing Corporation.

  9. Project 1990: Educational Planning at the Metropolitan Level.

    ERIC Educational Resources Information Center

    Swanson, Austin D.; Lamitie, Robert E.

    This paper describes a project designed to provide educational decisionmakers with projections of and forecasts about future metropolitan conditions and problems, and information about the implications of alternative ways of solving metropolitan problems. Project components included (1) population and economic projections and forecasts, (2)…

  10. Ocean modelling and Early-Warning System for the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    de Lima Rego, Joao; Yan, Kun; Sisomphon, Piyamarn; Thanathanphon, Watin; Twigt, Daniel; Irazoqui Apecechea, Maialen

    2017-04-01

    Storm surges associated with severe tropical cyclones are among the most hazardous and damaging natural disasters to coastal areas. The Gulf of Thailand (GoT) has been periodically affected by typhoon induced storm surges in the past (e.g. storm Harriet in 1962, storm Gay in 1989 and storm Linda in 1997). Due to increased touristic / economic development and increased population density in the coastal zone, the combined effect and risk of high water level and increased rainfall / river discharge has dramatically increased and are expected to increase in future due to climate change effects. This presentation describes the development and implementation of the first real-time operational storm surge, wave and wave setup forecasting system in the GoT, a joint applied research initiative by Deltares in The Netherlands and the Hydro and Agro Informatics Institute (HAII) in Thailand. The modelling part includes a new hydrodynamic model to simulate tides and storm surges and two wave models (regional and local). The hydrodynamic model is based on Delft3D Flexible Mesh, capable of simulating water levels and detailed flows. The regional and the recently-developed local wave model are based on the SWAN model, a third-generation wave model. The operational platform is based on Delft-FEWS software, which coordinates all the data inputs, the modelling tasks and the automatic forecast exports including overland inundation in the upper Gulf of Thailand. The main objective of the Gulf of Thailand EWS is to provide daily accurate storm surge, wave and wave setup estimates automatically with various data exports possibilities to support this task. It adds a coastal component to HAII's existing practice of providing daily reports on fluvial flood forecasts, used for decision-support in issuing flood warnings for inland water systems in Thailand. Every day, three-day coastal forecasts are now produced based on the latest regional meteorological predictions. Examples are given to illustrate the system's development and main features, with a focus on decision-support products.

  11. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less

  12. Policy implications of trends in Turkey's meat sector with respect to 2023 vision.

    PubMed

    Yavuz, Fahri; Bilgic, Abdulbaki; Terin, Mustafa; Guler, Irfan O

    2013-12-01

    Turkey has become one of the leading emerging economies in the world being second after China as the highest economically growing country with 8.9% economic growth rate in 2010. Forecasting impacts of this development in coming 10 years might have very important policy implications for the meat sector in the framework of 2013 vision of Turkey. In this study, annual time series data which contain several key variables of meat sector in last 26 years (1987-2012) are used to forecast the variables of the coming twelve years (2013-2024) to drive policy implications by considering the impacts of high economic growths, crises and major policy changes. Forecasted future values of the variables for 2023 in the sector are assessed and compared with recent national and international values to drive policy implications. The results show that the economic growth results in the increase in per capita income and thus increased demand for meat seemed to foster the meat sector. Therefore, these macroeconomic indicators need to be better in addition to improvements at micro level for establishing competitive meat sector and thus reaching aimed consumption level of meat. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Evaluation of statistical models for forecast errors from the HBV model

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur

    2010-04-01

    SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.

  14. Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power

    NASA Astrophysics Data System (ADS)

    Bracale, Antonio; Carpinelli, Guido; Di Fazio, Annarita; Khormali, Shahab

    2014-01-01

    Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems' losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.

  15. Modelling the costs of care of hypertension in patients with metabolic syndrome and its consequences, in Germany, Spain and Italy.

    PubMed

    Wille, Eberhard; Scholze, Jürgen; Alegria, Eduardo; Ferri, Claudio; Langham, Sue; Stevens, Warren; Jeffries, David; Uhl-Hochgraeber, Kerstin

    2011-06-01

    The presence of metabolic syndrome in patients with hypertension significantly increases the risk of cardiovascular disease, type 2 diabetes and mortality. Our aim is to estimate the economic burden to the health service of metabolic syndrome (MetS) in patients with hypertension and its consequences, in three European countries in 2008, and to forecast future economic burden in 2020 using projected demographic estimates and assumptions around the growth of MetS. An age-, sex- and risk group-structured prevalence-based cost of illness model was developed using the United States Adult Treatment Panel III of the National Cholesterol Education Program criteria to define MetS. Data sources included published information and public use databases on disease prevalence, incidence of cardiovascular events, prevalence of type 2 diabetes, treatment patterns and cost of management in Germany, Spain and Italy. The economic burden to the health service of MetS in patients with hypertension has been estimated at 24,427 euro, 1,900 euro and 4,877 euro million in Germany, Spain and Italy, and is forecast to rise by 59, 179 and 157%, respectively, by 2020. The largest components of costs included the management of prevalent type 2 diabetes and incident cardiovascular events. Mean annual costs per hypertensive patient were around three-fold higher in subjects with MetS compared to those without and rose incrementally with the additional number of MetS components present. In conclusion, the presence of MetS in patients with hypertension significantly inflates economic burden, and costs are likely to increase in the future due to an aging population and an increase in the prevalence of components of MetS.

  16. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.

    2017-08-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  17. Skilful Seasonal Predictions of Summer European Rainfall

    NASA Astrophysics Data System (ADS)

    Dunstone, Nick; Smith, Doug; Scaife, Adam; Hermanson, Leon; Fereday, David; O'Reilly, Chris; Stirling, Alison; Eade, Rosie; Gordon, Margaret; MacLachlan, Craig; Woollings, Tim; Sheen, Katy; Belcher, Stephen

    2018-04-01

    Year-to-year variability in Northern European summer rainfall has profound societal and economic impacts; however, current seasonal forecast systems show no significant forecast skill. Here we show that skillful predictions are possible (r 0.5, p < 0.001) using the latest high-resolution Met Office near-term prediction system over 1960-2017. The model predictions capture both low-frequency changes (e.g., wet summers 2007-2012) and some of the large individual events (e.g., dry summer 1976). Skill is linked to predictable North Atlantic sea surface temperature variability changing the supply of water vapor into Northern Europe and so modulating convective rainfall. However, dynamical circulation variability is not well predicted in general—although some interannual skill is found. Due to the weak amplitude of the forced model signal (likely caused by missing or weak model responses), very large ensembles (>80 members) are required for skillful predictions. This work is promising for the development of European summer rainfall climate services.

  18. Economic impact of large public programs: The NASA experience

    NASA Technical Reports Server (NTRS)

    Ginzburg, E.; Kuhn, J. W.; Schnee, J.; Yavitz, B.

    1976-01-01

    The economic impact of NASA programs on weather forecasting and the computer and semiconductor industries is discussed. Contributions to the advancement of the science of astronomy are also considered.

  19. Asymmetric affective forecasting errors and their correlation with subjective well-being

    PubMed Central

    2018-01-01

    Aims Social scientists have postulated that the discrepancy between achievements and expectations affects individuals' subjective well-being. Still, little has been done to qualify and quantify such a psychological effect. Our empirical analysis assesses the consequences of positive and negative affective forecasting errors—the difference between realized and expected subjective well-being—on the subsequent level of subjective well-being. Data We use longitudinal data on a representative sample of 13,431 individuals from the German Socio-Economic Panel. In our sample, 52% of individuals are females, average age is 43 years, average years of education is 11.4 and 27% of our sample lives in East Germany. Subjective well-being (measured by self-reported life satisfaction) is assessed on a 0–10 discrete scale and its sample average is equal to 6.75 points. Methods We develop a simple theoretical framework to assess the consequences of positive and negative affective forecasting errors—the difference between realized and expected subjective well-being—on the subsequent level of subjective well-being, properly accounting for the endogenous adjustment of expectations to positive and negative affective forecasting errors, and use it to derive testable predictions. Given the theoretical framework, we estimate two panel-data equations, the first depicting the association between positive and negative affective forecasting errors and the successive level of subjective well-being and the second describing the correlation between subjective well-being expectations for the future and hedonic failures and successes. Our models control for individual fixed effects and a large battery of time-varying demographic characteristics, health and socio-economic status. Results and conclusions While surpassing expectations is uncorrelated with subjective well-being, failing to match expectations is negatively associated with subsequent realizations of subjective well-being. Expectations are positively (negatively) correlated to positive (negative) forecasting errors. We speculate that in the first case the positive adjustment in expectations is strong enough to cancel out the potential positive effects on subjective well-being of beaten expectations, while in the second case it is not, and individuals persistently bear the negative emotional consequences of not achieving expectations. PMID:29513685

  20. Forecasting international tourism demand from the US, Japan and South Korea to Malaysia: A SARIMA approach

    NASA Astrophysics Data System (ADS)

    Borhan, Nurbaizura; Arsad, Zainudin

    2014-07-01

    One of the major contributing sectors for Malaysia's economic growth is tourism. The number of international tourist arrivals to Malaysia has been showing an upward trend as a result of several programs and promotion introduced by the Malaysian government to attract international tourists to the country. This study attempts to model and to forecast tourism demand for Malaysia by three selected countries: the US, Japan and South Korea. This study utilized monthly time series data for the period from January 1999 to December 2012 and employed the well-known Box-Jenkins seasonal ARIMA modeling procedures. Not surprisingly the results show the number of tourist arrivals from the three countries contain strong seasonal component as the arrivals strongly dependent on the season in the country of origin. The findings of the study also show that the number of tourist arrivals from the US and South Korea will continue to increase in the near future. Meanwhile the arrivals from Japan is forecasted to show a drop in the near future and as such tourism authorities in Malaysia need to enhance the promotional effort to attract more tourists from Japan to visit Malaysia.

  1. Weighing costs and losses: A decision making game using probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Werner, Micha; Ramos, Maria-Helena; Wetterhall, Frederik; Cranston, Michael; van Andel, Schalk-Jan; Pappenberger, Florian; Verkade, Jan

    2017-04-01

    Probabilistic forecasts are increasingly recognised as an effective and reliable tool to communicate uncertainties. The economic value of probabilistic forecasts has been demonstrated by several authors, showing the benefit to using probabilistic forecasts over deterministic forecasts in several sectors, including flood and drought warning, hydropower, and agriculture. Probabilistic forecasting is also central to the emerging concept of risk-based decision making, and underlies emerging paradigms such as impact-based forecasting. Although the economic value of probabilistic forecasts is easily demonstrated in academic works, its evaluation in practice is more complex. The practical use of probabilistic forecasts requires decision makers to weigh the cost of an appropriate response to a probabilistic warning against the projected loss that would occur if the event forecast becomes reality. In this paper, we present the results of a simple game that aims to explore how decision makers are influenced by the costs required for taking a response and the potential losses they face in case the forecast flood event occurs. Participants play the role of one of three possible different shop owners. Each type of shop has losses of quite different magnitude, should a flood event occur. The shop owners are presented with several forecasts, each with a probability of a flood event occurring, which would inundate their shop and lead to those losses. In response, they have to decide if they want to do nothing, raise temporary defences, or relocate their inventory. Each action comes at a cost; and the different shop owners therefore have quite different cost/loss ratios. The game was played on four occasions. Players were attendees of the ensemble hydro-meteorological forecasting session of the 2016 EGU Assembly, professionals participating at two other conferences related to hydrometeorology, and a group of students. All audiences were familiar with the principles of forecasting and water-related risks, and one of the audiences comprised a group of experts in probabilistic forecasting. Results show that the different shop owners do take the costs of taking action and the potential losses into account in their decisions. Shop owners with a low cost/loss ratio were found to be more inclined to take actions based on the forecasts, though the absolute value of the losses also increased the willingness to take action. Little differentiation was found between the different groups of players.

  2. Quantifying model uncertainty in seasonal Arctic sea-ice forecasts

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, Edward; Barthélemy, Antoine; Chevallier, Matthieu; Cullather, Richard; Fučkar, Neven; Massonnet, François; Posey, Pamela; Wang, Wanqiu; Zhang, Jinlun; Ardilouze, Constantin; Bitz, Cecilia; Vernieres, Guillaume; Wallcraft, Alan; Wang, Muyin

    2017-04-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or post-processing techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  3. The Assessment of Climatological Impacts on Agricultural Production and Residential Energy Demand

    NASA Astrophysics Data System (ADS)

    Cooter, Ellen Jean

    The assessment of climatological impacts on selected economic activities is presented as a multi-step, inter -disciplinary problem. The assessment process which is addressed explicitly in this report focuses on (1) user identification, (2) direct impact model selection, (3) methodological development, (4) product development and (5) product communication. Two user groups of major economic importance were selected for study; agriculture and gas utilities. The broad agricultural sector is further defined as U.S.A. corn production. The general category of utilities is narrowed to Oklahoma residential gas heating demand. The CERES physiological growth model was selected as the process model for corn production. The statistical analysis for corn production suggests that (1) although this is a statistically complex model, it can yield useful impact information, (2) as a result of output distributional biases, traditional statistical techniques are not adequate analytical tools, (3) the model yield distribution as a whole is probably non-Gausian, particularly in the tails and (4) there appears to be identifiable weekly patterns of forecasted yields throughout the growing season. Agricultural quantities developed include point yield impact estimates and distributional characteristics, geographic corn weather distributions, return period estimates, decision making criteria (confidence limits) and time series of indices. These products were communicated in economic terms through the use of a Bayesian decision example and an econometric model. The NBSLD energy load model was selected to represent residential gas heating consumption. A cursory statistical analysis suggests relationships among weather variables across the Oklahoma study sites. No linear trend in "technology -free" modeled energy demand or input weather variables which would correspond to that contained in observed state -level residential energy use was detected. It is suggested that this trend is largely the result of non-weather factors such as population and home usage patterns rather than regional climate change. Year-to-year changes in modeled residential heating demand on the order of 10('6) Btu's per household were determined and later related to state -level components of the Oklahoma economy. Products developed include the definition of regional forecast areas, likelihood estimates of extreme seasonal conditions and an energy/climate index. This information is communicated in economic terms through an input/output model which is used to estimate changes in Gross State Product and Household income attributable to weather variability.

  4. Monthly to seasonal low flow prediction: statistical versus dynamical models

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Klein, Bastian; Meissner, Dennis; Rademacher, Silke

    2016-04-01

    While the societal and economical impacts of floods are well documented and assessable, the impacts of lows flows are less studied and sometimes overlooked. For example, over the western part of Europe, due to intense inland waterway transportation, the economical loses due to low flows are often similar compared to the ones due to floods. In general, the low flow aspect has the tendency to be underestimated by the scientific community. One of the best examples in this respect is the facts that at European level most of the countries have an (early) flood alert system, but in many cases no real information regarding the development, evolution and impacts of droughts. Low flows, occurring during dry periods, may result in several types of problems to society and economy: e.g. lack of water for drinking, irrigation, industrial use and power production, deterioration of water quality, inland waterway transport, agriculture, tourism, issuing and renewing waste disposal permits, and for assessing the impact of prolonged drought on aquatic ecosystems. As such, the ever-increasing demand on water resources calls for better a management, understanding and prediction of the water deficit situation and for more reliable and extended studies regarding the evolution of the low flow situations. In order to find an optimized monthly to seasonal forecast procedure for the German waterways, the Federal Institute of Hydrology (BfG) is exploring multiple approaches at the moment. On the one hand, based on the operational short- to medium-range forecasting chain, existing hydrological models are forced with two different hydro-meteorological inputs: (i) resampled historical meteorology generated by the Ensemble Streamflow Prediction approach and (ii) ensemble (re-) forecasts of ECMWF's global coupled ocean-atmosphere general circulation model, which have to be downscaled and bias corrected before feeding the hydrological models. As a second approach BfG evaluates in cooperation with the Alfred Wegener Institute a purely statistical scheme to generate streamflow forecasts for several months ahead. Instead of directly using teleconnection indices (e.g. NAO, AO) the idea is to identify regions with stable teleconnections between different global climate information (e.g. sea surface temperature, geopotential height etc.) and streamflow at different gauges relevant for inland waterway transport. So-called stability (correlation) maps are generated showing regions where streamflow and climate variable from previous months are significantly correlated in a 21 (31) years moving window. Finally, the optimal forecast model is established based on a multiple regression analysis of the stable predictors. We will present current results of the aforementioned approaches with focus on the River Rhine (being one of the world's most frequented waterways and the backbone of the European inland waterway network) and the Elbe River. Overall, our analysis reveals the existence of a valuable predictability of the low flows at monthly and seasonal time scales, a result that may be useful to water resources management. Given that all predictors used in the models are available at the end of each month, the forecast scheme can be used operationally to predict extreme events and to provide early warnings for upcoming low flows.

  5. Optimizing Tsunami Forecast Model Accuracy

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Nyland, D. L.; Huang, P. Y.

    2015-12-01

    Recent tsunamis provide a means to determine the accuracy that can be expected of real-time tsunami forecast models. Forecast accuracy using two different tsunami forecast models are compared for seven events since 2006 based on both real-time application and optimized, after-the-fact "forecasts". Lessons learned by comparing the forecast accuracy determined during an event to modified applications of the models after-the-fact provide improved methods for real-time forecasting for future events. Variables such as source definition, data assimilation, and model scaling factors are examined to optimize forecast accuracy. Forecast accuracy is also compared for direct forward modeling based on earthquake source parameters versus accuracy obtained by assimilating sea level data into the forecast model. Results show that including assimilated sea level data into the models increases accuracy by approximately 15% for the events examined.

  6. 12 CFR 380.8 - Predominantly engaged in activities that are financial or incidental thereto.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (iii) Providing financial, investment, or economic advisory services, including advising an investment... managing a closed-end investment company; (2) Furnishing general economic information and advice, general economic statistical forecasting services, and industry studies; (3) Providing advice in connection with...

  7. Jump-Diffusion models and structural changes for asset forecasting in hydrology

    NASA Astrophysics Data System (ADS)

    Tranquille Temgoua, André Guy; Martel, Richard; Chang, Philippe J. J.; Rivera, Alfonso

    2017-04-01

    Impacts of climate change on surface water and groundwater are of concern in many regions of the world since water is an essential natural resource. Jump-Diffusion models are generally used in economics and other related fields but not in hydrology. The potential application could be made for hydrologic data series analysis and forecast. The present study uses Jump-Diffusion models by adding structural changes to detect fluctuations in hydrologic processes in relationship with climate change. The model implicitly assumes that modifications in rivers' flowrates can be divided into three categories: (a) normal changes due to irregular precipitation events especially in tropical regions causing major disturbance in hydrologic processes (this component is modelled by a discrete Brownian motion); (b) abnormal, sudden and non-persistent modifications in hydrologic proceedings are handled by Poisson processes; (c) the persistence of hydrologic fluctuations characterized by structural changes in hydrological data related to climate variability. The objective of this paper is to add structural changes in diffusion models with jumps, in order to capture the persistence of hydrologic fluctuations. Indirectly, the idea is to observe if there are structural changes of discharge/recharge over the study area, and to find an efficient and flexible model able of capturing a wide variety of hydrologic processes. Structural changes in hydrological data are estimated using the method of nonlinear discrete filters via Method of Simulated Moments (MSM). An application is given using sensitive parameters such as baseflow index and recession coefficient to capture discharge/recharge. Historical dataset are examined by the Volume Spread Analysis (VSA) to detect real time and random perturbations in hydrologic processes. The application of the method allows establishing more accurate hydrologic parameters. The impact of this study is perceptible in forecasting floods and groundwater recession. Keywords: hydrologic processes, Jump-Diffusion models, structural changes, forecast, climate change

  8. SEASAT economic assessment. Volume 3: Offshore oil and natural gas industry case study and generalization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The economic benefits of improved ocean condition, weather and ice forecasts by SEASAT satellites to the exploration, development and production of oil and natural gas in the offshore regions are considered. The results of case studies which investigate the effects of forecast accuracy on offshore operations in the North Sea, the Celtic Sea, and the Gulf of Mexico are reported. A methodology for generalizing the results to other geographic regions of offshore oil and natural gas exploration and development is described.

  9. A short-term ensemble wind speed forecasting system for wind power applications

    NASA Astrophysics Data System (ADS)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  10. Development of web-based services for an ensemble flood forecasting and risk assessment system

    NASA Astrophysics Data System (ADS)

    Yaw Manful, Desmond; He, Yi; Cloke, Hannah; Pappenberger, Florian; Li, Zhijia; Wetterhall, Fredrik; Huang, Yingchun; Hu, Yuzhong

    2010-05-01

    Flooding is a wide spread and devastating natural disaster worldwide. Floods that took place in the last decade in China were ranked the worst amongst recorded floods worldwide in terms of the number of human fatalities and economic losses (Munich Re-Insurance). Rapid economic development and population expansion into low lying flood plains has worsened the situation. Current conventional flood prediction systems in China are neither suited to the perceptible climate variability nor the rapid pace of urbanization sweeping the country. Flood prediction, from short-term (a few hours) to medium-term (a few days), needs to be revisited and adapted to changing socio-economic and hydro-climatic realities. The latest technology requires implementation of multiple numerical weather prediction systems. The availability of twelve global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a good opportunity for an effective state-of-the-art early forecasting system. A prototype of a Novel Flood Early Warning System (NEWS) using the TIGGE database is tested in the Huai River basin in east-central China. It is the first early flood warning system in China that uses the massive TIGGE database cascaded with river catchment models, the Xinanjiang hydrologic model and a 1-D hydraulic model, to predict river discharge and flood inundation. The NEWS algorithm is also designed to provide web-based services to a broad spectrum of end-users. The latter presents challenges as both databases and proprietary codes reside in different locations and converge at dissimilar times. NEWS will thus make use of a ready-to-run grid system that makes distributed computing and data resources available in a seamless and secure way. An ability to run or function on different operating systems and provide an interface or front that is accessible to broad spectrum of end-users is additional requirement. The aim is to achieve robust interoperability through strong security and workflow capabilities. A physical network diagram and a work flow scheme of all the models, codes and databases used to achieve the NEWS algorithm are presented. They constitute a first step in the development of a platform for providing real time flood forecasting services on the web to mitigate 21st century weather phenomena.

  11. Stochastic Simulations of Long-Range Forecasting Models. Volume 3. Technical Appendix

    DTIC Science & Technology

    1975-10-31

    short-term stress in the society; and the balance of coercive capabilities between regimes and dissidents. Of course, the particular measures...and complements the more simple measure of strain, the ratio DEFX/GDP. The concept stress refers to shortages or relative declines in the supply of...valued social, economic, or political goods. Stress was measured by Gurr and Duvall (1972) with, among others, the operational variable DEFX/ GDP

  12. Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Mingjian; Zhang, Jie; Wu, Hongyu

    With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less

  13. Simulation System for Making Political and Macroeconomical Decisions and Its Development

    NASA Astrophysics Data System (ADS)

    Vnukov, A. A.; Blinov, A. E.

    2018-01-01

    Object of this research are macroeconomic indicators, which are important to descript economic situation in a country. Purpose of this work is to identify these indicators and to analyze how the state can affect these figures with available instruments. Here was constructed a model where the targets can be calculated from raw data - tools in the field of economic policy. Software code that implements all relations among the indicators and allows to analyze with high accuracy, sufficiently successful economic policies and with the help of some tools, you can achieve better results. This model can be used to forecast macroeconomic scenarios. The corresponding values of the objective (outcome) variables are set as a consequence of the configuration data of the previous period, subject to external influences and depend on the instrumental variables. The results may be useful in economical predictions. The results were successfully checked on real scenarios of Russian, European and Chinese economics. Moreover, the results can be applied in the field of education. Program is available to use as “economical game” the educational process of the University, in which you can virtually implement various macroeconomic scenarios, draw conclusions about their success.

  14. Global Economic Burden of Diabetes in Adults: Projections From 2015 to 2030.

    PubMed

    Bommer, Christian; Sagalova, Vera; Heesemann, Esther; Manne-Goehler, Jennifer; Atun, Rifat; Bärnighausen, Till; Davies, Justine; Vollmer, Sebastian

    2018-05-01

    Despite the importance of diabetes for global health, the future economic consequences of the disease remain opaque. We forecast the full global costs of diabetes in adults through the year 2030 and predict the economic consequences of diabetes if global targets under the Sustainable Development Goals (SDG) and World Health Organization Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013-2020 are met. We modeled the absolute and gross domestic product (GDP)-relative economic burden of diabetes in individuals aged 20-79 years using epidemiological and demographic data, as well as recent GDP forecasts for 180 countries. We assumed three scenarios: prevalence and mortality 1 ) increased only with urbanization and population aging (baseline scenario), 2 ) increased in line with previous trends (past trends scenario), and 3 ) achieved global targets (target scenario). The absolute global economic burden will increase from U.S. $1.3 trillion (95% CI 1.3-1.4) in 2015 to $2.2 trillion (2.2-2.3) in the baseline, $2.5 trillion (2.4-2.6) in the past trends, and $2.1 trillion (2.1-2.2) in the target scenarios by 2030. This translates to an increase in costs as a share of global GDP from 1.8% (1.7-1.9) in 2015 to a maximum of 2.2% (2.1-2.2). The global costs of diabetes and its consequences are large and will substantially increase by 2030. Even if countries meet international targets, the global economic burden will not decrease. Policy makers need to take urgent action to prepare health and social security systems to mitigate the effects of diabetes. © 2018 by the American Diabetes Association.

  15. Improving precipitation forecast with hybrid 3DVar and time-lagged ensembles in a heavy rainfall event

    NASA Astrophysics Data System (ADS)

    Wang, Yuanbing; Min, Jinzhong; Chen, Yaodeng; Huang, Xiang-Yu; Zeng, Mingjian; Li, Xin

    2017-01-01

    This study evaluates the performance of three-dimensional variational (3DVar) and a hybrid data assimilation system using time-lagged ensembles in a heavy rainfall event. The time-lagged ensembles are constructed by sampling from a moving time window of 3 h along a model trajectory, which is economical and easy to implement. The proposed hybrid data assimilation system introduces flow-dependent error covariance derived from time-lagged ensemble into variational cost function without significantly increasing computational cost. Single observation tests are performed to document characteristic of the hybrid system. The sensitivity of precipitation forecasts to ensemble covariance weight and localization scale is investigated. Additionally, the TLEn-Var is evaluated and compared to the ETKF(ensemble transformed Kalman filter)-based hybrid assimilation within a continuously cycling framework, through which new hybrid analyses are produced every 3 h over 10 days. The 24 h accumulated precipitation, moisture, wind are analyzed between 3DVar and the hybrid assimilation using time-lagged ensembles. Results show that model states and precipitation forecast skill are improved by the hybrid assimilation using time-lagged ensembles compared with 3DVar. Simulation of the precipitable water and structure of the wind are also improved. Cyclonic wind increments are generated near the rainfall center, leading to an improved precipitation forecast. This study indicates that the hybrid data assimilation using time-lagged ensembles seems like a viable alternative or supplement in the complex models for some weather service agencies that have limited computing resources to conduct large size of ensembles.

  16. 7 CFR 1710.206 - Approval requirements for load forecasts prepared pursuant to approved load forecast work plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... effects on electric revenues caused by competition from alternative energy sources or other electric... uncertainty or alternative futures that may determine the borrower's actual loads. Examples of economic... basis. Include alternative futures, as applicable. This summary shall be designed to accommodate the...

  17. 7 CFR 1710.206 - Approval requirements for load forecasts prepared pursuant to approved load forecast work plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... effects on electric revenues caused by competition from alternative energy sources or other electric... uncertainty or alternative futures that may determine the borrower's actual loads. Examples of economic... basis. Include alternative futures, as applicable. This summary shall be designed to accommodate the...

  18. 7 CFR 1710.206 - Approval requirements for load forecasts prepared pursuant to approved load forecast work plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... effects on electric revenues caused by competition from alternative energy sources or other electric... uncertainty or alternative futures that may determine the borrower's actual loads. Examples of economic... basis. Include alternative futures, as applicable. This summary shall be designed to accommodate the...

  19. 7 CFR 1710.206 - Approval requirements for load forecasts prepared pursuant to approved load forecast work plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... effects on electric revenues caused by competition from alternative energy sources or other electric... uncertainty or alternative futures that may determine the borrower's actual loads. Examples of economic... basis. Include alternative futures, as applicable. This summary shall be designed to accommodate the...

  20. Establishing an Environmental Scanning/Forecasting System to Augment College and University Planning.

    ERIC Educational Resources Information Center

    Morrison, James L.

    1987-01-01

    The major benefit of an environmental scanning/forecasting system is in providing critical information for strategic planning. Such a system allows the institution to detect social, technological, economic, and political trends and potential events. The environmental scanning database developed by United Way of America is described. (MLW)

  1. 77 FR 1761 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Granting Approval of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... quantitative research and evaluation process that forecasts economic excess sector returns (over/under the... proprietary SectorSAM quantitative research and evaluation process. \\8\\ The following convictions constitute... Allocation Methodology'' (``SectorSAM''), which is a proprietary quantitative analysis, to forecast each...

  2. Grand European and Asian-Pacific multi-model seasonal forecasts: maximization of skill and of potential economical value to end-users

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Felice, Matteo De; Catalano, Franco; Lee, June-Yi; Wang, Bin; Lee, Doo Young; Yoo, Jin-Ho; Weisheimer, Antije

    2018-04-01

    Multi-model ensembles (MMEs) are powerful tools in dynamical climate prediction as they account for the overconfidence and the uncertainties related to single-model ensembles. Previous works suggested that the potential benefit that can be expected by using a MME amplifies with the increase of the independence of the contributing Seasonal Prediction Systems. In this work we combine the two MME Seasonal Prediction Systems (SPSs) independently developed by the European (ENSEMBLES) and by the Asian-Pacific (APCC/CliPAS) communities. To this aim, all the possible multi-model combinations obtained by putting together the 5 models from ENSEMBLES and the 11 models from APCC/CliPAS have been evaluated. The grand ENSEMBLES-APCC/CliPAS MME enhances significantly the skill in predicting 2m temperature and precipitation compared to previous estimates from the contributing MMEs. Our results show that, in general, the better combinations of SPSs are obtained by mixing ENSEMBLES and APCC/CliPAS models and that only a limited number of SPSs is required to obtain the maximum performance. The number and selection of models that perform better is usually different depending on the region/phenomenon under consideration so that all models are useful in some cases. It is shown that the incremental performance contribution tends to be higher when adding one model from ENSEMBLES to APCC/CliPAS MMEs and vice versa, confirming that the benefit of using MMEs amplifies with the increase of the independence the contributing models. To verify the above results for a real world application, the Grand ENSEMBLES-APCC/CliPAS MME is used to predict retrospective energy demand over Italy as provided by TERNA (Italian Transmission System Operator) for the period 1990-2007. The results demonstrate the useful application of MME seasonal predictions for energy demand forecasting over Italy. It is shown a significant enhancement of the potential economic value of forecasting energy demand when using the better combinations from the Grand MME by comparison to the maximum value obtained from the better combinations of each of the two contributing MMEs. The above results demonstrate for the first time the potential of the Grand MME to significantly contribute in obtaining useful predictions at the seasonal time-scale.

  3. Implications of Water Budget Deficits on Socio-Economic Stability and Food Security in the Arabian Peninsula and in North Africa

    NASA Astrophysics Data System (ADS)

    Mazzoni, A.; Heggy, E.; Scabbia, G.

    2017-12-01

    Water scarcity in the Arabian Peninsula and North Africa is accentuated by forecasted climatic variability, decreasing precipitation volumes and projected population growth, urbanization and economic development, increasing water demand. These factors impose uncertainties on food security and socio-economic stability in the region. We develop a water-budget model combining hydrologic, climatic and economic data to quantify water deficit volumes and groundwater depletion rates for the main aquifer systems in the area, taking into account three different climatic scenarios, and calculated from the precipitation forecast elaborated in the CSIRO, ECHAM4 and HADCM3 global circulation models from 2016 to 2050 over 1-year intervals. Water demand comprises water requirements for each economic sector, derived from data such as population, GDP, cropland cover and electricity production, and is based upon the five different SSPs. Conventional and non-conventional water resource supply data are retrieved from FAO Aquastat and institutional databases. Our results suggest that in the next 35 years, in North Africa, only Egypt and Libya will exhibit severe water deficits with respectively 44% and 89.7% of their current water budgets by 2050 (SSP2-AVG climatic scenario), while all the countries in the Arabian Peninsula will be subjected to water stress; the majority of small-size aquifers in the Arabian Peninsula will reach full depletion by 2050. In North Africa, the fossil aquifers' volume loss will be 1-15% by 2050, and total depletion within 200-300 years. Our study suggests that (1) anthropogenic drivers on water resources are harsher than projected climatic variability; (2) the estimated water deficit will induce substantial rise in domestic food production's costs, causing higher dependency on food imports; and (3) projected water deficits will most strongly impact the nations with the lowest GDPP, namely Egypt, Yemen and Libya.

  4. The Economics of Industrial Preparedness Planning and Raw Materials Stockpiling

    DTIC Science & Technology

    1982-05-01

    concepts are sketched on page 6. Chapter II 1. Marshall, Alfred, Principles of Economics , Guillebaud ed., pages 330, 465, 366, 372, 374, and 377. 2... Principles of Economics , Guillebaud Edition, Vol. 1. New York: The MacMillan Co, 1961. Martino, Joseph P., Technological Forecasting For Decision- making

  5. Grand European and Asian-Pacific multi-model seasonal forecasts: maximization of skill and of potential economical value to end-users

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; De Felice, M.; Catalano, F.; Lee, J. Y.; Wang, B.; Lee, D. Y.; Yoo, J. H.; Weisheimer, A.

    2017-12-01

    By initiating a novel cooperation between the European and the Asian-Pacific climate-prediction communities, this work demonstrates the potential of gathering together their Multi-Model Ensembles (MMEs) to obtain useful climate predictions at seasonal time-scale.MMEs are powerful tools in dynamical climate prediction as they account for the overconfidence and the uncertainties related to single-model ensembles and increasing benefit is expected with the increase of the independence of the contributing Seasonal Prediction Systems (SPSs). In this work we combine the two MME SPSs independently developed by the European (ENSEMBLES) and by the Asian-Pacific (APCC/CliPAS) communities by establishing an unprecedented partnerships. To this aim, all the possible MME combinations obtained by putting together the 5 models from ENSEMBLES and the 11 models from APCC/CliPAS have been evaluated. The Grand ENSEMBLES-APCC/CliPAS MME enhances significantly the skill in predicting 2m temperature and precipitation. Our results show that, in general, the better combinations of SPSs are obtained by mixing ENSEMBLES and APCC/CliPAS models and that only a limited number of SPSs is required to obtain the maximum performance. The selection of models that perform better is usually different depending on the region/phenomenon under consideration so that all models are useful in some cases. It is shown that the incremental performance contribution tends to be higher when adding one model from ENSEMBLES to APCC/CliPAS MMEs and vice versa, confirming that the benefit of using MMEs amplifies with the increase of the independence the contributing models.To verify the above results for a real world application, the Grand MME is used to predict energy demand over Italy as provided by TERNA (Italian Transmission System Operator) for the period 1990-2007. The results demonstrate the useful application of MME seasonal predictions for energy demand forecasting over Italy. It is shown a significant enhancement of the potential economic value of forecasting energy demand when using the better combinations from the Grand MME by comparison to the maximum value obtained from the better combinations of each of the two contributing MMEs. Above results are discussed in a Clim Dyn paper (Alessandri et al., 2017; doi:10.1007/s00382-016-3372-4).

  6. High-resolution visibility and air quality forecasting using multi-layer urban canopy model for highly urbanized Hong Kong and the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Piu NG, Chak; HAO, Song; Fat LAM, Yun

    2015-04-01

    Visibility is a universally critical element which affects the public in many aspects, including economic activities, health of local citizens and safety of marine transportation and aviation. The Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility equation, an empirical equation developed by USEPA, has been modified by various studies to fit into the application upon the Asian continent including Hong Kong and China. Often these studies focused on the improvement of the existing IMPROVE equation by modifying its particulate speciation using local observation data. In this study, we developed an Integrated Forecast System (IFS) to predict the next-day air quality and visibility using Weather Research and Forecasting model with Building Energy Parameterization and Building Energy Model (WRF-BEP+BEM) and Community Multi-scale Air Quality Model (CMAQ). Unlike the other studies, the core of this study is to include detailed urbanization impacts with calibrated "IMPROVE equation for PRD" into the modeling system for Hong Kong's environs. The ultra-high resolution land cover information (~1km x 1km) from Google images, was digitized into the Geographic Information System (GIS) for preparing the model-ready input for IFS. The NCEP FNL (Final) Operation Global Analysis (FNL) and the Global Forecasting System (GFS) datasets were tested for both hind-cast and forecast cases, in order to calibrate the input of urban parameters in the WRF-BEP+BEM model. The evaluation of model performance with sensitivity cases was performed on sea surface temperature (SST), surface temperature (T), wind speed/direction with the major pollutants (i.e., PM10, PM2.5, NOx, SO2 and O3) using local observation and will be presented/discussed in this paper. References: 1. Y. L. Lee, R. Sequeira, Visibility degradation across Hong Kong its components and their relative contribution. Atmospheric Environment 2001, 35, 5861-5872. doi:10.1016/S1352-2310(01)00395-8 2. R. Zhang, Q. Bian, J. C. H. Fung, A. K. H. Lau, Mathematical modeling of seasonal variations in visibility in Hong Kong and the Pearl River Delta region. Atmospheric Environment 2013, 77, 803-816. http://dx.doi.org/10.1016/j.atmosenv.2013.05.048

  7. A methodology for long range prediction of air transportation

    NASA Technical Reports Server (NTRS)

    Ayati, M. B.; English, J. M.

    1980-01-01

    The paper describes the methodology for long-time projection of aircraft fuel requirements. A new concept of social and economic factors for future aviation industry which provides an estimate of predicted fuel usage is presented; it includes air traffic forecasts and lead times for producing new engines and aircraft types. An air transportation model is then developed in terms of an abstracted set of variables which represent the entire aircraft industry on a macroscale. This model was evaluated by testing the required output variables from a model based on historical data over the past decades.

  8. Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Medina, Hanoi; Tian, Di; Srivastava, Puneet; Pelosi, Anna; Chirico, Giovanni B.

    2018-07-01

    Reference evapotranspiration (ET0) plays a fundamental role in agronomic, forestry, and water resources management. Estimating and forecasting ET0 have long been recognized as a major challenge for researchers and practitioners in these communities. This work explored the potential of multiple leading numerical weather predictions (NWPs) for estimating and forecasting summer ET0 at 101 U.S. Regional Climate Reference Network stations over nine climate regions across the contiguous United States (CONUS). Three leading global NWP model forecasts from THORPEX Interactive Grand Global Ensemble (TIGGE) dataset were used in this study, including the single model ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (EC), the National Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office forecasts (MO), as well as multi-model ensemble forecasts from the combinations of these NWP models. A regression calibration was employed to bias correct the ET0 forecasts. Impact of individual forecast variables on ET0 forecasts were also evaluated. The results showed that the EC forecasts provided the least error and highest skill and reliability, followed by the MO and NCEP forecasts. The multi-model ensembles constructed from the combination of EC and MO forecasts provided slightly better performance than the single model EC forecasts. The regression process greatly improved ET0 forecast performances, particularly for the regions involving stations near the coast, or with a complex orography. The performance of EC forecasts was only slightly influenced by the size of the ensemble members, particularly at short lead times. Even with less ensemble members, EC still performed better than the other two NWPs. Errors in the radiation forecasts, followed by those in the wind, had the most detrimental effects on the ET0 forecast performances.

  9. Seasonal forecasts of impact-relevant climate information indices developed as part of the EUPORIAS project

    NASA Astrophysics Data System (ADS)

    Spirig, Christoph; Bhend, Jonas

    2015-04-01

    Climate information indices (CIIs) represent a way to communicate climate conditions to specific sectors and the public. As such, CIIs provide actionable information to stakeholders in an efficient way. Due to their non-linear nature, such CIIs can behave differently than the underlying variables, such as temperature. At the same time, CIIs do not involve impact models with different sources of uncertainties. As part of the EU project EUPORIAS (EUropean Provision Of Regional Impact Assessment on a Seasonal-to-decadal timescale) we have developed examples of seasonal forecasts of CIIs. We present forecasts and analyses of the skill of seasonal forecasts for CIIs that are relevant to a variety of economic sectors and a range of stakeholders: heating and cooling degree days as proxies for energy demand, various precipitation and drought-related measures relevant to agriculture and hydrology, a wild fire index, a climate-driven mortality index and wind-related indices tailored to renewable energy producers. Common to all examples is the finding of limited forecast skill over Europe, highlighting the challenge for providing added-value services to stakeholders operating in Europe. The reasons for the lack of forecast skill vary: often we find little skill in the underlying variable(s) precisely in those areas that are relevant for the CII, in other cases the nature of the CII is particularly demanding for predictions, as seen in the case of counting measures such as frost days or cool nights. On the other hand, several results suggest there may be some predictability in sub-regions for certain indices. Several of the exemplary analyses show potential for skillful forecasts and prospect for improvements by investing in post-processing. Furthermore, those cases for which CII forecasts showed similar skill values as those of the underlying meteorological variables, forecasts of CIIs provide added value from a user perspective.

  10. Development and Evaluation of Season-ahead Precipitation and Streamflow Predictions for Sectoral Management in Western Ethiopia

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Alexander, S.; WU, S.

    2017-12-01

    Skillful season-ahead predictions conditioned on local and large-scale hydro-climate variables can provide valuable knowledge to farmers and reservoir operators, enabling informed water resource allocation and management decisions. In Ethiopia, the potential for advancing agriculture and hydropower management, and subsequently economic growth, is substantial, yet evidence suggests a weak adoption of prediction information by sectoral audiences. To address common critiques, including skill, scale, and uncertainty, probabilistic forecasts are developed at various scales - temporally and spatially - for the Finchaa hydropower dam and the Koga agricultural scheme in an attempt to promote uptake and application. Significant prediction skill is evident across scales, particularly for statistical models. This raises questions regarding other potential barriers to forecast utilization at community scales, which are also addressed.

  11. Multi-Year Revenue and Expenditure Forecasting for Small Municipal Governments.

    DTIC Science & Technology

    1981-03-01

    Management Audit Econometric Revenue Forecast Gap and Impact Analysis Deterministic Expenditure Forecast Municipal Forecasting Municipal Budget Formlto...together with a multi-year revenue and expenditure forecasting model for the City of Monterey, California. The Monterey model includes an econometric ...65 5 D. FORECAST BASED ON THE ECONOMETRIC MODEL ------- 67 E. FORECAST BASED ON EXPERT JUDGMENT AND TREND ANALYSIS

  12. Selecting Single Model in Combination Forecasting Based on Cointegration Test and Encompassing Test

    PubMed Central

    Jiang, Chuanjin; Zhang, Jing; Song, Fugen

    2014-01-01

    Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability. PMID:24892061

  13. Selecting single model in combination forecasting based on cointegration test and encompassing test.

    PubMed

    Jiang, Chuanjin; Zhang, Jing; Song, Fugen

    2014-01-01

    Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability.

  14. Civil Tiltrotor Feasibility Study for the New York and Washington Terminal Areas

    NASA Technical Reports Server (NTRS)

    Stouffer, Virginia; Johnson, Jesse; Gribko, Joana; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    NASA tasked LMI to assess the potential contributions of a yet-undeveloped Civil Tiltrotor aircraft (CTR) in improving capacity in the National Airspace System in all weather conditions. The CTRs studied have assumed operating parameters beyond current CTR capabilities. LMI analyzed CTRs three ways: in fast-time terminal area modeling simulations of New York and Washington to determine delay and throughput impacts; in the Integrated Noise Model, to determine local environmental impact; and with an economic model, to determine the price viability of a CTR. The fast-time models encompassed a 250 nmi range and included traffic interactions from local airports. Both the fast-time simulation and the noise model assessed impacts from traffic levels projected for 1999, 2007, and 2017. Results: CTRs can reduce terminal area delays due to concrete congestion in all time frames. The maximum effect, the ratio of CTRs to jets and turboprop aircraft at a subject airport should be optimized. The economic model considered US traffic only and forecasted CTR sales beginning in 2010.

  15. GPACC program cost work breakdown structure-dictionary. General purpose aft cargo carrier study, volume 3

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The results of detailed cost estimates and economic analysis performed on the updated Model 101 configuration of the general purpose Aft Cargo Carrier (ACC) are given. The objective of this economic analysis is to provide the National Aeronautics and Space Administration (NASA) with information on the economics of using the ACC on the Space Transportation System (STS). The detailed cost estimates for the ACC are presented by a work breakdown structure (WBS) to ensure that all elements of cost are considered in the economic analysis and related subsystem trades. Costs reported by WBS provide NASA with a basis for comparing competing designs and provide detailed cost information that can be used to forecast phase C/D planning for new projects or programs derived from preliminary conceptual design studies. The scope covers all STS and STS/ACC launch vehicle cost impacts for delivering payloads to a 160 NM low Earth orbit (LEO).

  16. Water balance models in one-month-ahead streamflow forecasting

    USGS Publications Warehouse

    Alley, William M.

    1985-01-01

    Techniques are tested that incorporate information from water balance models in making 1-month-ahead streamflow forecasts in New Jersey. The results are compared to those based on simple autoregressive time series models. The relative performance of the models is dependent on the month of the year in question. The water balance models are most useful for forecasts of April and May flows. For the stations in northern New Jersey, the April and May forecasts were made in order of decreasing reliability using the water-balance-based approaches, using the historical monthly means, and using simple autoregressive models. The water balance models were useful to a lesser extent for forecasts during the fall months. For the rest of the year the improvements in forecasts over those obtained using the simpler autoregressive models were either very small or the simpler models provided better forecasts. When using the water balance models, monthly corrections for bias are found to improve minimum mean-square-error forecasts as well as to improve estimates of the forecast conditional distributions.

  17. Evaluation Of Statistical Models For Forecast Errors From The HBV-Model

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Kolberg, S.; Renard, B.; Stensland, I.

    2009-04-01

    Three statistical models for the forecast errors for inflow to the Langvatn reservoir in Northern Norway have been constructed and tested according to how well the distribution and median values of the forecasts errors fit to the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order autoregressive model was constructed for the forecast errors. The parameters were conditioned on climatic conditions. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order autoregressive model was constructed for the forecast errors. For the last model positive and negative errors were modeled separately. The errors were first NQT-transformed before a model where the mean values were conditioned on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: We wanted a) the median values to be close to the observed values; b) the forecast intervals to be narrow; c) the distribution to be correct. The results showed that it is difficult to obtain a correct model for the forecast errors, and that the main challenge is to account for the auto-correlation in the errors. Model 1 and 2 gave similar results, and the main drawback is that the distributions are not correct. The 95% forecast intervals were well identified, but smaller forecast intervals were over-estimated, and larger intervals were under-estimated. Model 3 gave a distribution that fits better, but the median values do not fit well since the auto-correlation is not properly accounted for. If the 95% forecast interval is of interest, Model 2 is recommended. If the whole distribution is of interest, Model 3 is recommended.

  18. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?

    PubMed

    Liu, Mei; Lu, Jun

    2014-09-01

    Water quality forecasting in agricultural drainage river basins is difficult because of the complicated nonpoint source (NPS) pollution transport processes and river self-purification processes involved in highly nonlinear problems. Artificial neural network (ANN) and support vector model (SVM) were developed to predict total nitrogen (TN) and total phosphorus (TP) concentrations for any location of the river polluted by agricultural NPS pollution in eastern China. River flow, water temperature, flow travel time, rainfall, dissolved oxygen, and upstream TN or TP concentrations were selected as initial inputs of the two models. Monthly, bimonthly, and trimonthly datasets were selected to train the two models, respectively, and the same monthly dataset which had not been used for training was chosen to test the models in order to compare their generalization performance. Trial and error analysis and genetic algorisms (GA) were employed to optimize the parameters of ANN and SVM models, respectively. The results indicated that the proposed SVM models performed better generalization ability due to avoiding the occurrence of overtraining and optimizing fewer parameters based on structural risk minimization (SRM) principle. Furthermore, both TN and TP SVM models trained by trimonthly datasets achieved greater forecasting accuracy than corresponding ANN models. Thus, SVM models will be a powerful alternative method because it is an efficient and economic tool to accurately predict water quality with low risk. The sensitivity analyses of two models indicated that decreasing upstream input concentrations during the dry season and NPS emission along the reach during average or flood season should be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data and even trimonthly data are available, the SVM methodology developed here can easily be applied to other NPS-polluted rivers.

  19. Accuracy of short‐term sea ice drift forecasts using a coupled ice‐ocean model

    PubMed Central

    Zhang, Jinlun

    2015-01-01

    Abstract Arctic sea ice drift forecasts of 6 h–9 days for the summer of 2014 are generated using the Marginal Ice Zone Modeling and Assimilation System (MIZMAS); the model is driven by 6 h atmospheric forecasts from the Climate Forecast System (CFSv2). Forecast ice drift speed is compared to drifting buoys and other observational platforms. Forecast positions are compared with actual positions 24 h–8 days since forecast. Forecast results are further compared to those from the forecasts generated using an ice velocity climatology driven by multiyear integrations of the same model. The results are presented in the context of scheduling the acquisition of high‐resolution images that need to follow buoys or scientific research platforms. RMS errors for ice speed are on the order of 5 km/d for 24–48 h since forecast using the sea ice model compared with 9 km/d using climatology. Predicted buoy position RMS errors are 6.3 km for 24 h and 14 km for 72 h since forecast. Model biases in ice speed and direction can be reduced by adjusting the air drag coefficient and water turning angle, but the adjustments do not affect verification statistics. This suggests that improved atmospheric forecast forcing may further reduce the forecast errors. The model remains skillful for 8 days. Using the forecast model increases the probability of tracking a target drifting in sea ice with a 10 km × 10 km image from 60 to 95% for a 24 h forecast and from 27 to 73% for a 48 h forecast. PMID:27818852

  20. Assessment of economic vulnerability to infectious disease crises.

    PubMed

    Sands, Peter; El Turabi, Anas; Saynisch, Philip A; Dzau, Victor J

    2016-11-12

    Infectious disease crises have substantial economic impact. Yet mainstream macroeconomic forecasting rarely takes account of the risk of potential pandemics. This oversight contributes to persistent underestimation of infectious disease risk and consequent underinvestment in preparedness and response to infectious disease crises. One reason why economists fail to include economic vulnerability to infectious disease threats in their assessments is the absence of readily available and digestible input data to inform such analysis. In this Viewpoint we suggest an approach by which the global health community can help to generate such inputs, and a framework to use these inputs to assess the economic vulnerability to infectious disease crises of individual countries and regions. We argue that incorporation of these risks in influential macroeconomic analyses such as the reports from the International Monetary Fund's Article IV consultations, rating agencies and risk consultancies would simultaneously improve the quality of economic risk forecasting and reinforce individual government and donor incentives to mitigate infectious disease risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, DPSF, and ESF. Schematic diagram of the increase in forecast uncertainty with forecast lead-time and the dynamic updating property of real-time streamflow forecast

  2. Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc

    2016-04-01

    The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.

  3. Impacts of Short-Term Solar Power Forecasts in System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibanez, Eduardo; Krad, Ibrahim; Hodge, Bri-Mathias

    2016-05-05

    Solar generation is experiencing an exponential growth in power systems worldwide and, along with wind power, is posing new challenges to power system operations. Those challenges are characterized by an increase of system variability and uncertainty across many time scales: from days, down to hours, minutes, and seconds. Much of the research in the area has focused on the effect of solar forecasting across hours or days. This paper presents a methodology to capture the effect of short-term forecasting strategies and analyzes the economic and reliability implications of utilizing a simple, yet effective forecasting method for solar PV in intra-daymore » operations.« less

  4. Enhanced outage prediction modeling for strong extratropical storms and hurricanes in the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Cerrai, D.; Anagnostou, E. N.; Wanik, D. W.; Bhuiyan, M. A. E.; Zhang, X.; Yang, J.; Astitha, M.; Frediani, M. E.; Schwartz, C. S.; Pardakhti, M.

    2016-12-01

    The overwhelming majority of human activities need reliable electric power. Severe weather events can cause power outages, resulting in substantial economic losses and a temporary worsening of living conditions. Accurate prediction of these events and the communication of forecasted impacts to the affected utilities is necessary for efficient emergency preparedness and mitigation. The University of Connecticut Outage Prediction Model (OPM) uses regression tree models, high-resolution weather reanalysis and real-time weather forecasts (WRF and NCAR ensemble), airport station data, vegetation and electric grid characteristics and historical outage data to forecast the number and spatial distribution of outages in the power distribution grid located within dense vegetation. Recent OPM improvements consist of improved storm classification and addition of new predictive weather-related variables and are demonstrated using a leave-one-storm-out cross-validation based on 130 severe extratropical storms and two hurricanes (Sandy and Irene) in the Northeast US. We show that it is possible to predict the number of trouble spots causing outages in the electric grid with a median absolute percentage error as low as 27% for some storm types, and at most around 40%, in a scale that varies between four orders of magnitude, from few outages to tens of thousands. This outage information can be communicated to the electric utility to manage allocation of crews and equipment and minimize the recovery time for an upcoming storm hazard.

  5. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, Thomas Hoff; Kankiewicz, Adam

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP)more » forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest uncertainties. This work culminated in a GO decision being made by the California ISO to include zonal BTM forecasts into its operational load forecasting system. The California ISO’s Manager of Short Term Forecasting, Jim Blatchford, summarized the research performed in this project with the following quote: “The behind-the-meter (BTM) California ISO region forecasting research performed by Clean Power Research and sponsored by the Department of Energy’s SUNRISE program was an opportunity to verify value and demonstrate improved load forecast capability. In 2016, the California ISO will be incorporating the BTM forecast into the Hour Ahead and Day Ahead load models to look for improvements in the overall load forecast accuracy as BTM PV capacity continues to grow.”« less

  6. Using Socioeconomic Data to Calibrate Loss Estimates

    NASA Astrophysics Data System (ADS)

    Holliday, J. R.; Rundle, J. B.

    2013-12-01

    One of the loftier goals in seismic hazard analysis is the creation of an end-to-end earthquake prediction system: a "rupture to rafters" work flow that takes a prediction of fault rupture, propagates it with a ground shaking model, and outputs a damage or loss profile at a given location. So far, the initial prediction of an earthquake rupture (either as a point source or a fault system) has proven to be the most difficult and least solved step in this chain. However, this may soon change. The Collaboratory for the Study of Earthquake Predictability (CSEP) has amassed a suite of earthquake source models for assorted testing regions worldwide. These models are capable of providing rate-based forecasts for earthquake (point) sources over a range of time horizons. Furthermore, these rate forecasts can be easily refined into probabilistic source forecasts. While it's still difficult to fully assess the "goodness" of each of these models, progress is being made: new evaluation procedures are being devised and earthquake statistics continue to accumulate. The scientific community appears to be heading towards a better understanding of rupture predictability. Ground shaking mechanics are better understood, and many different sophisticated models exists. While these models tend to be computationally expensive and often regionally specific, they do a good job at matching empirical data. It is perhaps time to start addressing the third step in the seismic hazard prediction system. We present a model for rapid economic loss estimation using ground motion (PGA or PGV) and socioeconomic measures as its input. We show that the model can be calibrated on a global scale and applied worldwide. We also suggest how the model can be improved and generalized to non-seismic natural disasters such as hurricane and severe wind storms.

  7. 12 CFR Appendix A to Part 242 - Financial Activities for Purposes of Title I of the Dodd-Frank Act

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... broker for purposes of the foregoing, in any state. (c) Providing financial, investment, or economic..., organizing, and managing a closed-end investment company; (ii) Furnishing general economic information and advice, general economic statistical forecasting services, and industry studies; (iii) Providing advice...

  8. Forecasting biodiversity in breeding birds using best practices

    PubMed Central

    Taylor, Shawn D.; White, Ethan P.

    2018-01-01

    Biodiversity forecasts are important for conservation, management, and evaluating how well current models characterize natural systems. While the number of forecasts for biodiversity is increasing, there is little information available on how well these forecasts work. Most biodiversity forecasts are not evaluated to determine how well they predict future diversity, fail to account for uncertainty, and do not use time-series data that captures the actual dynamics being studied. We addressed these limitations by using best practices to explore our ability to forecast the species richness of breeding birds in North America. We used hindcasting to evaluate six different modeling approaches for predicting richness. Hindcasts for each method were evaluated annually for a decade at 1,237 sites distributed throughout the continental United States. All models explained more than 50% of the variance in richness, but none of them consistently outperformed a baseline model that predicted constant richness at each site. The best practices implemented in this study directly influenced the forecasts and evaluations. Stacked species distribution models and “naive” forecasts produced poor estimates of uncertainty and accounting for this resulted in these models dropping in the relative performance compared to other models. Accounting for observer effects improved model performance overall, but also changed the rank ordering of models because it did not improve the accuracy of the “naive” model. Considering the forecast horizon revealed that the prediction accuracy decreased across all models as the time horizon of the forecast increased. To facilitate the rapid improvement of biodiversity forecasts, we emphasize the value of specific best practices in making forecasts and evaluating forecasting methods. PMID:29441230

  9. Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)

    NASA Astrophysics Data System (ADS)

    OConnor, A.; Kirtman, B. P.; Harrison, S.; Gorman, J.

    2016-02-01

    Current US Navy forecasting systems cannot easily incorporate extended-range forecasts that can improve mission readiness and effectiveness; ensure safety; and reduce cost, labor, and resource requirements. If Navy operational planners had systems that incorporated these forecasts, they could plan missions using more reliable and longer-term weather and climate predictions. Further, using multi-model forecast ensembles instead of single forecasts would produce higher predictive performance. Extended-range multi-model forecast ensembles, such as those available in the North American Multi-Model Ensemble (NMME), are ideal for system integration because of their high skill predictions; however, even higher skill predictions can be produced if forecast model ensembles are combined correctly. While many methods for weighting models exist, the best method in a given environment requires expert knowledge of the models and combination methods.We present an innovative approach that uses machine learning to combine extended-range predictions from multi-model forecast ensembles and generate a probabilistic forecast for any region of the globe up to 12 months in advance. Our machine-learning approach uses 30 years of hindcast predictions to learn patterns of forecast model successes and failures. Each model is assigned a weight for each environmental condition, 100 km2 region, and day given any expected environmental information. These weights are then applied to the respective predictions for the region and time of interest to effectively stitch together a single, coherent probabilistic forecast. Our experimental results demonstrate the benefits of our approach to produce extended-range probabilistic forecasts for regions and time periods of interest that are superior, in terms of skill, to individual NMME forecast models and commonly weighted models. The probabilistic forecast leverages the strengths of three NMME forecast models to predict environmental conditions for an area spanning from San Diego, CA to Honolulu, HI, seven months in-advance. Key findings include: weighted combinations of models are strictly better than individual models; machine-learned combinations are especially better; and forecasts produced using our approach have the highest rank probability skill score most often.

  10. Transportation economics and energy

    NASA Astrophysics Data System (ADS)

    Soltani Sobh, Ali

    The overall objective of this research is to study the impacts of technology improvement including fuel efficiency increment, extending the use of natural gas vehicle and electric vehicles on key parameters of transportation. In the first chapter, a simple economic analysis is used in order to demonstrate the adoption rate of natural gas vehicles as an alternative fuel vehicle. The effect of different factors on adoption rate of commuters is calculated in sensitivity analysis. In second chapter the VMT is modeled and forecasted under influence of CNG vehicles in different scenarios. The VMT modeling is based on the time series data for Washington State. In order to investigate the effect of population growth on VMT, the per capita model is also developed. In third chapter the effect of fuel efficiency improvement on fuel tax revenue and greenhouse emission is examined. The model is developed based on time series data of Washington State. The rebound effect resulted from fuel efficiency improvement is estimated and is considered in fuel consumption forecasting. The reduction in fuel tax revenue and greenhouse gas (GHG) emissions as two outcomes of lower fuel consumption are computed. In addition, the proper fuel tax rate to restitute the revenue is suggested. In the fourth chapter effective factors on electric vehicles (EV) adoption is discussed. The constructed model is aggregated binomial logit share model that estimates the modal split between EV and conventional vehicles for different states over time. Various factors are incorporated in the utility function as explanatory variables in order to quantify their effect on EV adoption choices. The explanatory variables include income, VMT, electricity price, gasoline price, urban area and number of EV stations.

  11. Research on water shortage risks and countermeasures in North China

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiang; Fang, Wenxuan; Wu, Ziqin

    2017-05-01

    In the paper, a grey forecasting model and a population growth model are established for forecasting water resources supply and demand situation in the region, and evaluating the scarcity of water resources thereof in order to solve the problem of water shortage in North China. A concrete plan for alleviating water resources pressure is proposed with AHP as basis, thereby discussing the feasibility of the plan. Firstly, water resources supply and demand in the future 15 years are predicted. There are four sources for the demand of water resources mainly: industry, agriculture, ecology and resident living. Main supply sources include surface water and underground water resources. A grey forecasting method is adopted for predicting in the paper aiming at water resources demands since industrial, agricultural and ecological water consumption data have excessive decision factors and the correlation is relatively fuzzy. Since residents' water consumption is determined by per capita water consumption and local population, a logistic growth model is adopted to forecast the population. The grey forecasting method is used for predicting per capita water consumption, and total water demand can be obtained finally. International calculation standards are adopted as reference aiming at water supply. The grey forecasting method is adopted for forecasting surface water quantity and underground water quantity, and water resources supply is obtained finally. Per capita water availability in the region is calculated by comparing the water resources supply and demand. Results show that per capita water availability in the region is only 283 cubic meters this year, people live in serious water shortage region, who will suffer from water shortage state for long time. Then, sensitivity analysis is applied for model test. The test result is excellent, and the prediction results are more accurate. In the paper, the following measures are proposed for improving water resources condition in the region according to prediction results, such as construction of reservoirs, sewage treatment, water diversion project and other measures. A detailed water supply plan is formulated. Water supply weights of all measures are determined according to the AHP model. Solution is sought after original models are improved. Results show that water resources quantity per capita will be up to 2170 cubic meters or so this year, people suffer from moderate water shortage in the region, which can meet people's life needs and economic development needs basically. In addition, water resources quantity per capita is increased year by year, and it can reach mild water shortage level after 2030. In a word, local water resources dilemma can be effectively solved by the plan actually, and thoughts can be provided for decision makers.

  12. The weather roulette: assessing the economic value of seasonal wind speed predictions

    NASA Astrophysics Data System (ADS)

    Christel, Isadora; Cortesi, Nicola; Torralba-Fernandez, Veronica; Soret, Albert; Gonzalez-Reviriego, Nube; Doblas-Reyes, Francisco

    2016-04-01

    Climate prediction is an emerging and highly innovative research area. For the wind energy sector, predicting the future variability of wind resources over the coming weeks or seasons is especially relevant to quantify operation and maintenance logistic costs or to inform energy trading decision with potential cost savings and/or economic benefits. Recent advances in climate predictions have already shown that probabilistic forecasting can improve the current prediction practices, which are based in the use of retrospective climatology and the assumption that what happened in the past is the best estimation of future conditions. Energy decision makers now have this new set of climate services but, are they willing to use them? Our aim is to properly explain the potential economic benefits of adopting probabilistic predictions, compared with the current practice, by using the weather roulette methodology (Hagedorn & Smith, 2009). This methodology is a diagnostic tool created to inform in a more intuitive and relevant way about the skill and usefulness of a forecast in the decision making process, by providing an economic and financial oriented assessment of the benefits of using a particular forecast system. We have selected a region relevant to the energy stakeholders where the predictions of the EUPORIAS climate service prototype for the energy sector (RESILIENCE) are skillful. In this region, we have applied the weather roulette to compare the overall prediction success of RESILIENCE's predictions and climatology illustrating it as an effective interest rate, an economic term that is easier to understand for energy stakeholders.

  13. Diversity modelling for electrical power system simulation

    NASA Astrophysics Data System (ADS)

    Sharip, R. M.; Abu Zarim, M. A. U. A.

    2013-12-01

    This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios.

  14. Predicting economic growth with stock networks

    NASA Astrophysics Data System (ADS)

    Heiberger, Raphael H.

    2018-01-01

    Networks derived from stock prices are often used to model developments on financial markets and are tightly intertwined with crises. Yet, the influence of changing market topologies on the broader economy (i.e. GDP) is unclear. In this paper, we propose a Bayesian approach that utilizes individual-level network measures of companies as lagged probabilistic features to predict national economic growth. We use a comprehensive data set consisting of Standard and Poor's 500 corporations from January 1988 until October 2016. The final model forecasts correctly all major recession and prosperity phases of the U.S. economy up to one year ahead. By employing different network measures on the level of corporations, we can also identify which companies' stocks possess a key role in a changing economic environment and may be used as indication of critical (and prosperous) developments. More generally, the proposed approach allows to predict probabilities for different overall states of social entities by using local network positions and could be applied on various phenomena.

  15. Beyond Climate and Weather Science: Expanding the Forecasting Family to Serve Societal Needs

    NASA Astrophysics Data System (ADS)

    Barron, E. J.

    2009-05-01

    The ability to "anticipate" the future is what makes information from the Earth sciences valuable to society - whether it is the prediction of severe weather or the future availability of water resources in response to climate change. An improved ability to anticipate or forecast has the potential to serve society by simultaneously improving our ability to (1) promote economic vitality, (2) enable environmental stewardship, (3) protect life and property, as well as (4) improve our fundamental knowledge of the earth system. The potential is enormous, yet many appear ready to move quickly toward specific mitigation and adaptation strategies assuming that the science is settled. Five important weakness must be addressed first: (1) the formation of a true "climate services" function and capability, (2) the deliberate investment in expanding the family of forecasting elements to incorporate a broader array of environmental factors and impacts, (3) the investment in the sciences that connect climate to society, (4) a deliberate focus on the problems associated with scale, in particular the difference between the scale of predictive models and the scale associated with societal decisions, and (5) the evolution from climate services and model predictions to the equivalent of "environmental intelligence centers." The objective is to bring the discipline of forecasting to a broader array of environmental challenges. Assessments of the potential impacts of global climate change on societal sectors such as water, human health, and agriculture provide good examples of this challenge. We have the potential to move from a largely reactive mode in addressing adverse health outcomes, for example, to one in which the ties between climate, land cover, infectious disease vectors, and human health are used to forecast and predict adverse human health conditions. The potential exists for a revolution in forecasting, that entrains a much broader set of societal needs and solutions. The argument is made that (for example) the current capabilities in the prediction of environmental health is similar to the capabilities (and potential) of weather forecasting in the 1960's.

  16. Software forecasting as it is really done: A study of JPL software engineers

    NASA Technical Reports Server (NTRS)

    Griesel, Martha Ann; Hihn, Jairus M.; Bruno, Kristin J.; Fouser, Thomas J.; Tausworthe, Robert C.

    1993-01-01

    This paper presents a summary of the results to date of a Jet Propulsion Laboratory internally funded research task to study the costing process and parameters used by internally recognized software cost estimating experts. Protocol Analysis and Markov process modeling were used to capture software engineer's forecasting mental models. While there is significant variation between the mental models that were studied, it was nevertheless possible to identify a core set of cost forecasting activities, and it was also found that the mental models cluster around three forecasting techniques. Further partitioning of the mental models revealed clustering of activities, that is very suggestive of a forecasting lifecycle. The different forecasting methods identified were based on the use of multiple-decomposition steps or multiple forecasting steps. The multiple forecasting steps involved either forecasting software size or an additional effort forecast. Virtually no subject used risk reduction steps in combination. The results of the analysis include: the identification of a core set of well defined costing activities, a proposed software forecasting life cycle, and the identification of several basic software forecasting mental models. The paper concludes with a discussion of the implications of the results for current individual and institutional practices.

  17. Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market

    PubMed Central

    2017-01-01

    Load information plays an important role in deregulated electricity markets, since it is the primary factor to make critical decisions on production planning, day-to-day operations, unit commitment and economic dispatch. Being able to predict the load for a short term, which covers one hour to a few days, equips power generation facilities and traders with an advantage. With the deregulation of electricity markets, a variety of short term load forecasting models are developed. Deregulation in Turkish Electricity Market has started in 2001 and liberalization is still in progress with rules being effective in its predefined schedule. However, there is a very limited number of studies for Turkish Market. In this study, we introduce two different models for current Turkish Market using Seasonal Autoregressive Integrated Moving Average (SARIMA) and Artificial Neural Network (ANN) and present their comparative performances. Building models that cope with the dynamic nature of deregulated market and are able to run in real-time is the main contribution of this study. We also use our ANN based model to evaluate the effect of several factors, which are claimed to have effect on electrical load. PMID:28426739

  18. Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market.

    PubMed

    Bozkurt, Ömer Özgür; Biricik, Göksel; Tayşi, Ziya Cihan

    2017-01-01

    Load information plays an important role in deregulated electricity markets, since it is the primary factor to make critical decisions on production planning, day-to-day operations, unit commitment and economic dispatch. Being able to predict the load for a short term, which covers one hour to a few days, equips power generation facilities and traders with an advantage. With the deregulation of electricity markets, a variety of short term load forecasting models are developed. Deregulation in Turkish Electricity Market has started in 2001 and liberalization is still in progress with rules being effective in its predefined schedule. However, there is a very limited number of studies for Turkish Market. In this study, we introduce two different models for current Turkish Market using Seasonal Autoregressive Integrated Moving Average (SARIMA) and Artificial Neural Network (ANN) and present their comparative performances. Building models that cope with the dynamic nature of deregulated market and are able to run in real-time is the main contribution of this study. We also use our ANN based model to evaluate the effect of several factors, which are claimed to have effect on electrical load.

  19. On Winning the Race for Predicting the Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Goswami, Bhupendra

    2013-03-01

    Skillful prediction of Indian summer monsoon rainfall (ISMR) one season in advance remains a ``grand challenge'' for the climate science community even though such forecasts have tremendous socio-economic implications over the region. Continued poor skill of the ocean-atmosphere coupled models in predicting ISMR is an enigma in the backdrop when these models have high skill in predicting seasonal mean rainfall over the rest of the Tropics. Here, I provide an overview of the fundamental processes responsible for limited skill of climate models and outline a framework for achieving the limit on potential predictability within a reasonable time frame. I also show that monsoon intra-seasonal oscillations (MISO) act as building blocks of the Asian monsoon and provide a bridge between the two problems, the potential predictability limit and the simulation of seasonal mean climate. The correlation between observed ISMR and ensemble mean of predicted ISMR (R) can still be used as a metric for forecast verification. Estimate of potential limit of predictability of Asian monsoon indicates that the highest achievable R is about 0.75. Improvements in climate models and data assimilation over the past one decade has slowly improved R from near zero a decade ago to about 0.4 currently. The race for achieving useful prediction can be won, if we can push this skill up to about 0.7. It requires focused research in improving simulations of MISO, monsoon seasonal cycle and ENSO-monsoon relationship by the climate models. In order to achieve this goal by 2015-16 timeframe, IITM is leading a Program called Monsoon Mission supported by the Ministry of Earth Sciences, Govt. of India (MoES). As improvement in skill of forecasts can come only if R & D is carried out on an operational modeling system, the Climate Forecast System of National Centre for Environmental Prediction (NCEP) of NOAA, U.S.A has been selected as our base system. The Mission envisages building partnership between operational forecasting agency and National and International R & D Organizations to work on improving modeling system. MoES has provided substantial funding to the Mission to fund proposals from International R & D Organizations to work with Indian Organizations in this Mission to achieve this goal. The conceptual framework and the roadmap for the Mission will be highlighted. Indian Institute of Tropical Meteorology is funded by Ministry of Earth Sciences, Govt. of India.

  20. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    PubMed

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  1. Looking Forward: Visions of the Future of the South. The 1984 Report of the Committee on Southern Trends of the Southern Growth Policies Board.

    ERIC Educational Resources Information Center

    Rosenfeld, Stuart A., Ed.

    Written for Southern policymakers, this report forecasts economic changes in the South. It addresses demographic factors, traditional economic concerns, and emerging economic realities which already influence, or are likely to influence, economic life in the South. Trends and issues include: (1) the aging of the population largely due to retirees…

  2. Economic Impact of Fire Weather Forecasts

    Treesearch

    Don Gunasekera; Graham Mills; Mark Williams

    2006-01-01

    Southeastern Australia, where the State of Victoria is located is regarded as one of the most fire prone areas in the world. The Australian Bureau of Meteorology provides fire weather services in Victoria as part of a national framework for the provision of such services. These services range from fire weather warnings to special forecasts for hazard reduction burns....

  3. Futures Research and the Strategic Planning Process: Implications for Higher Education. ASHE-ERIC Higher Education Research Report No. 9, 1984.

    ERIC Educational Resources Information Center

    Morrison, James L.; And Others

    The use of futures research to improve a college's ability to deal with changes brought about by social, economic, political, and technological developments is discussed, with attention to new planning strategies and forecasting methods. While traditional long-range planning tracks and forecasts the institution's internal development, strategic…

  4. q-Gaussian distributions of leverage returns, first stopping times, and default risk valuations

    NASA Astrophysics Data System (ADS)

    Katz, Yuri A.; Tian, Li

    2013-10-01

    We study the probability distributions of daily leverage returns of 520 North American industrial companies that survive de-listing during the financial crisis, 2006-2012. We provide evidence that distributions of unbiased leverage returns of all individual firms belong to the class of q-Gaussian distributions with the Tsallis entropic parameter within the interval 1

  5. Adaptive time-variant models for fuzzy-time-series forecasting.

    PubMed

    Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching

    2010-12-01

    A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.

  6. Two approaches to forecast Ebola synthetic epidemics.

    PubMed

    Champredon, David; Li, Michael; Bolker, Benjamin M; Dushoff, Jonathan

    2018-03-01

    We use two modelling approaches to forecast synthetic Ebola epidemics in the context of the RAPIDD Ebola Forecasting Challenge. The first approach is a standard stochastic compartmental model that aims to forecast incidence, hospitalization and deaths among both the general population and health care workers. The second is a model based on the renewal equation with latent variables that forecasts incidence in the whole population only. We describe fitting and forecasting procedures for each model and discuss their advantages and drawbacks. We did not find that one model was consistently better in forecasting than the other. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Hydro-economic assessment of hydrological forecasting systems

    NASA Astrophysics Data System (ADS)

    Boucher, M.-A.; Tremblay, D.; Delorme, L.; Perreault, L.; Anctil, F.

    2012-01-01

    SummaryAn increasing number of publications show that ensemble hydrological forecasts exhibit good performance when compared to observed streamflow. Many studies also conclude that ensemble forecasts lead to a better performance than deterministic ones. This investigation takes one step further by not only comparing ensemble and deterministic forecasts to observed values, but by employing the forecasts in a stochastic decision-making assistance tool for hydroelectricity production, during a flood event on the Gatineau River in Canada. This allows the comparison between different types of forecasts according to their value in terms of energy, spillage and storage in a reservoir. The motivation for this is to adopt the point of view of an end-user, here a hydroelectricity production society. We show that ensemble forecasts exhibit excellent performances when compared to observations and are also satisfying when involved in operation management for electricity production. Further improvement in terms of productivity can be reached through the use of a simple post-processing method.

  8. Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas

    NASA Astrophysics Data System (ADS)

    Rogelis, María Carolina; Werner, Micha

    2018-02-01

    Numerical weather prediction (NWP) models are fundamental to extend forecast lead times beyond the concentration time of a watershed. Particularly for flash flood forecasting in tropical mountainous watersheds, forecast precipitation is required to provide timely warnings. This paper aims to assess the potential of NWP for flood early warning purposes, and the possible improvement that bias correction can provide, in a tropical mountainous area. The paper focuses on the comparison of streamflows obtained from the post-processed precipitation forecasts, particularly the comparison of ensemble forecasts and their potential in providing skilful flood forecasts. The Weather Research and Forecasting (WRF) model is used to produce precipitation forecasts that are post-processed and used to drive a hydrologic model. Discharge forecasts obtained from the hydrological model are used to assess the skill of the WRF model. The results show that post-processed WRF precipitation adds value to the flood early warning system when compared to zero-precipitation forecasts, although the precipitation forecast used in this analysis showed little added value when compared to climatology. However, the reduction of biases obtained from the post-processed ensembles show the potential of this method and model to provide usable precipitation forecasts in tropical mountainous watersheds. The need for more detailed evaluation of the WRF model in the study area is highlighted, particularly the identification of the most suitable parameterisation, due to the inability of the model to adequately represent the convective precipitation found in the study area.

  9. A Local Forecast of Land Surface Wetness Conditions, Drought, and St. Louis Encephalitis Virus Transmission Derived from Seasonal Climate Predictions

    NASA Astrophysics Data System (ADS)

    Shaman, J.; Stieglitz, M.; Zebiak, S.; Cane, M.; Day, J. F.

    2002-12-01

    We present an ensemble local hydrologic forecast derived from the seasonal forecasts of the International Research Institute (IRI) for Climate Prediction. Three- month seasonal forecasts were used to resample historical meteorological conditions and generate ensemble forcing datasets for a TOPMODEL-based hydrology model. Eleven retrospective forecasts were run at a Florida and New York site. Forecast skill was assessed for mean area modeled water table depth (WTD), i.e. near surface soil wetness conditions, and compared with WTD simulated with observed data. Hydrology model forecast skill was evident at the Florida site but not at the New York site. At the Florida site, persistence of hydrologic conditions and local skill of the IRI seasonal forecast contributed to the local hydrologic forecast skill. This forecast will permit probabilistic prediction of future hydrologic conditions. At the Florida site, we have also quantified the link between modeled WTD (i.e. drought) and the amplification and transmission of St. Louis Encephalitis virus (SLEV). We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission associated with human clinical cases. We then combine the seasonal forecasts of local, modeled WTD with this empirical relationship and produce retrospective probabilistic seasonal forecasts of epidemic SLEV transmission in Florida. Epidemic SLEV transmission forecast skill is demonstrated. These findings will permit real-time forecast of drought and resultant SLEV transmission in Florida.

  10. Matching-centrality decomposition and the forecasting of new links in networks.

    PubMed

    Rohr, Rudolf P; Naisbit, Russell E; Mazza, Christian; Bersier, Louis-Félix

    2016-02-10

    Networks play a prominent role in the study of complex systems of interacting entities in biology, sociology, and economics. Despite this diversity, we demonstrate here that a statistical model decomposing networks into matching and centrality components provides a comprehensive and unifying quantification of their architecture. The matching term quantifies the assortative structure in which node makes links with which other node, whereas the centrality term quantifies the number of links that nodes make. We show, for a diverse set of networks, that this decomposition can provide a tight fit to observed networks. Then we provide three applications. First, we show that the model allows very accurate prediction of missing links in partially known networks. Second, when node characteristics are known, we show how the matching-centrality decomposition can be related to this external information. Consequently, it offers us a simple and versatile tool to explore how node characteristics explain network architecture. Finally, we demonstrate the efficiency and flexibility of the model to forecast the links that a novel node would create if it were to join an existing network. © 2016 The Author(s).

  11. Matching–centrality decomposition and the forecasting of new links in networks

    PubMed Central

    Rohr, Rudolf P.; Naisbit, Russell E.; Mazza, Christian; Bersier, Louis-Félix

    2016-01-01

    Networks play a prominent role in the study of complex systems of interacting entities in biology, sociology, and economics. Despite this diversity, we demonstrate here that a statistical model decomposing networks into matching and centrality components provides a comprehensive and unifying quantification of their architecture. The matching term quantifies the assortative structure in which node makes links with which other node, whereas the centrality term quantifies the number of links that nodes make. We show, for a diverse set of networks, that this decomposition can provide a tight fit to observed networks. Then we provide three applications. First, we show that the model allows very accurate prediction of missing links in partially known networks. Second, when node characteristics are known, we show how the matching–centrality decomposition can be related to this external information. Consequently, it offers us a simple and versatile tool to explore how node characteristics explain network architecture. Finally, we demonstrate the efficiency and flexibility of the model to forecast the links that a novel node would create if it were to join an existing network. PMID:26842568

  12. SEASAT economic assessment. Volume 2: The SEASAT system description and performance. [performance prediction and systems analysis for seasat satellites

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Results are presented of preliminary trade-off studies of operational SEASAT systems. The trade-off studies were used as the basis for the estimation of costs and net benefits of the operational SEASAT system. Also presented are the preliminary results of simulation studies that were designed to lead to a measure of the impact of SEASAT data through the use of numerical weather forecast models.

  13. The new Kuznets cycle: a test of the Easterlin-Wachter-Wachter hypothesis.

    PubMed

    Ahlburg, D A

    1982-01-01

    The aim of this paper is to evaluate the Easterlin-Wachter-Wachter model of the effect of the size of one generation on the size of the succeeding generation. An attempt is made "to identify and test empirically each component of the Easterlin-Wachter-Wachter model..., to show how the components collapse to give a closed demographic model of generation size, and to investigate the impacts of relative cohort size on the economic performance of a cohort." The models derived are then used to generate forecasts of the U.S. birth rate to the year 2050. The results provide support for the major components of the original model. excerpt

  14. Improving medium-range and seasonal hydroclimate forecasts in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, Di

    Accurate hydro-climate forecasts are important for decision making by water managers, agricultural producers, and other stake holders. Numerical weather prediction models and general circulation models may have potential for improving hydro-climate forecasts at different scales. In this study, forecast analogs of the Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) based on different approaches were evaluated for medium-range reference evapotranspiration (ETo), irrigation scheduling, and urban water demand forecasts in the southeast United States; the Climate Forecast System version 2 (CFSv2) and the North American national multi-model ensemble (NMME) were statistically downscaled for seasonal forecasts of ETo, precipitation (P) and 2-m temperature (T2M) at the regional level. The GFS mean temperature (Tmean), relative humidity, and wind speed (Wind) reforecasts combined with the climatology of Reanalysis 2 solar radiation (Rs) produced higher skill than using the direct GFS output only. Constructed analogs showed slightly higher skill than natural analogs for deterministic forecasts. Both irrigation scheduling driven by the GEFS-based ETo forecasts and GEFS-based ETo forecast skill were generally positive up to one week throughout the year. The GEFS improved ETo forecast skill compared to the GFS. The GEFS-based analog forecasts for the input variables of an operational urban water demand model were skillful when applied in the Tampa Bay area. The modified operational models driven by GEFS analog forecasts showed higher forecast skill than the operational model based on persistence. The results for CFSv2 seasonal forecasts showed maximum temperature (Tmax) and Rs had the greatest influence on ETo. The downscaled Tmax showed the highest predictability, followed by Tmean, Tmin, Rs, and Wind. The CFSv2 model could better predict ETo in cold seasons during El Nino Southern Oscillation (ENSO) events only when the forecast initial condition was in ENSO. Downscaled P and T2M forecasts were produced by directly downscaling the NMME P and T2M output or indirectly using the NMME forecasts of Nino3.4 sea surface temperatures to predict local-scale P and T2M. The indirect method generally showed the highest forecast skill which occurs in cold seasons. The bias-corrected NMME ensemble forecast skill did not outperform the best single model.

  15. The Norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides

    NASA Astrophysics Data System (ADS)

    Krøgli, Ingeborg K.; Devoli, Graziella; Colleuille, Hervé; Boje, Søren; Sund, Monica; Engen, Inger Karin

    2018-05-01

    The Norwegian Water Resources and Energy Directorate (NVE) have run a national flood forecasting and warning service since 1989. In 2009, the directorate was given the responsibility of also initiating a national forecasting service for rainfall-induced landslides. Both services are part of a political effort to improve flood and landslide risk prevention. The Landslide Forecasting and Warning Service was officially launched in 2013 and is developed as a joint initiative across public agencies between NVE, the Norwegian Meteorological Institute (MET), the Norwegian Public Road Administration (NPRA) and the Norwegian Rail Administration (Bane NOR). The main goal of the service is to reduce economic and human losses caused by landslides. The service performs daily a national landslide hazard assessment describing the expected awareness level at a regional level (i.e. for a county and/or group of municipalities). The service is operative 7 days a week throughout the year. Assessments and updates are published at the warning portal http://www.varsom.no/ at least twice a day, for the three coming days. The service delivers continuous updates on the current situation and future development to national and regional stakeholders and to the general public. The service is run in close cooperation with the flood forecasting service. Both services are based on the five pillars: automatic hydrological and meteorological stations, landslide and flood historical database, hydro-meteorological forecasting models, thresholds or return periods, and a trained group of forecasters. The main components of the service are herein described. A recent evaluation, conducted on the 4 years of operation, shows a rate of over 95 % correct daily assessments. In addition positive feedbacks have been received from users through a questionnaire. The capability of the service to forecast landslides by following the hydro-meteorological conditions is illustrated by an example from autumn 2017. The case shows how the landslide service has developed into a well-functioning system providing useful information, effectively and on time.

  16. Forecasting Container Throughput at the Doraleh Port in Djibouti through Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Mohamed Ismael, Hawa; Vandyck, George Kobina

    The Doraleh Container Terminal (DCT) located in Djibouti has been noted as the most technologically advanced container terminal on the African continent. DCT's strategic location at the crossroads of the main shipping lanes connecting Asia, Africa and Europe put it in a unique position to provide important shipping services to vessels plying that route. This paper aims to forecast container throughput through the Doraleh Container Port in Djibouti by Time Series Analysis. A selection of univariate forecasting models has been used, namely Triple Exponential Smoothing Model, Grey Model and Linear Regression Model. By utilizing the above three models and their combination, the forecast of container throughput through the Doraleh port was realized. A comparison of the different forecasting results of the three models, in addition to the combination forecast is then undertaken, based on commonly used evaluation criteria Mean Absolute Deviation (MAD) and Mean Absolute Percentage Error (MAPE). The study found that the Linear Regression forecasting Model was the best prediction method for forecasting the container throughput, since its forecast error was the least. Based on the regression model, a ten (10) year forecast for container throughput at DCT has been made.

  17. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model

    USGS Publications Warehouse

    Jantz, Claire A.; Goetz, Scott J.; Donato, David I.; Claggett, Peter

    2010-01-01

    This paper presents a fine-scale (30 meter resolution) regional land cover modeling system, based on the SLEUTH cellular automata model, that was developed for a 257000 km2 area comprising the Chesapeake Bay drainage basin in the eastern United States. As part of this effort, we developed a new version of the SLEUTH model (SLEUTH-3r), which introduces new functionality and fit metrics that substantially increase the performance and applicability of the model. In addition, we developed methods that expand the capability of SLEUTH to incorporate economic, cultural and policy information, opening up new avenues for the integration of SLEUTH with other land-change models. SLEUTH-3r is also more computationally efficient (by a factor of 5) and uses less memory (reduced 65%) than the original software. With the new version of SLEUTH, we were able to achieve high accuracies at both the aggregate level of 15 sub-regional modeling units and at finer scales. We present forecasts to 2030 of urban development under a current trends scenario across the entire Chesapeake Bay drainage basin, and three alternative scenarios for a sub-region within the Chesapeake Bay watershed to illustrate the new ability of SLEUTH-3r to generate forecasts across a broad range of conditions.

  18. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.

  19. Forecasting Dust Storms Using the CARMA-Dust Model and MM5 Weather Data

    NASA Astrophysics Data System (ADS)

    Barnum, B. H.; Winstead, N. S.; Wesely, J.; Hakola, A.; Colarco, P.; Toon, O. B.; Ginoux, P.; Brooks, G.; Hasselbarth, L. M.; Toth, B.; Sterner, R.

    2002-12-01

    An operational model for the forecast of dust storms in Northern Africa, the Middle East and Southwest Asia has been developed for the United States Air Force Weather Agency (AFWA). The dust forecast model uses the 5th generation Penn State Mesoscale Meteorology Model (MM5), and a modified version of the Colorado Aerosol and Radiation Model for Atmospheres (CARMA). AFWA conducted a 60 day evaluation of the dust model to look at the model's ability to forecast dust storms for short, medium and long range (72 hour) forecast periods. The study used satellite and ground observations of dust storms to verify the model's effectiveness. Each of the main mesoscale forecast theaters was broken down into smaller sub-regions for detailed analysis. The study found the forecast model was able to forecast dust storms in Saharan Africa and the Sahel region with an average Probability of Detection (POD)exceeding 68%, with a 16% False Alarm Rate (FAR). The Southwest Asian theater had average POD's of 61% with FAR's averaging 10%.

  20. Providing Real-time Sea Ice Modeling Support to the U.S. Coast Guard

    NASA Astrophysics Data System (ADS)

    Allard, Richard; Dykes, James; Hebert, David; Posey, Pamela; Rogers, Erick; Wallcraft, Alan; Phelps, Michael; Smedstad, Ole Martin; Wang, Shouping; Geiszler, Dan

    2016-04-01

    The Naval Research Laboratory (NRL) supported the U.S. Coast Guard Research Development Center (RDC) through a demonstration project during the summer and autumn of 2015. Specifically, a modeling system composed of a mesoscale atmospheric model, regional sea ice model, and regional wave model were loosely coupled to provide real-time 72-hr forecasts of environmental conditions for the Beaufort/Chukchi Seas. The system components included a 2-km regional Community Ice CodE (CICE) sea ice model, 15-km Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model, and a 5-km regional WAVEWATCH III wave model. The wave model utilized modeled sea ice concentration fields to incorporate the effects of sea ice on waves. The other modeling components assimilated atmosphere, ocean, and ice observations available from satellite and in situ sources. The modeling system generated daily 72-hr forecasts of synoptic weather (including visibility), ice drift, ice thickness, ice concentration and ice strength for missions within the economic exclusion zone off the coast of Alaska and a transit to the North Pole in support of the National Science Foundation GEOTRACES cruise. Model forecasts graphics were shared on a common web page with selected graphical products made available via ftp for bandwidth limited users. Model ice thickness and ice drift show very good agreement compared with Cold Regions Research and Engineering Laboratory (CRREL) Ice Mass Balance buoys. This demonstration served as a precursor to a fully coupled atmosphere-ocean-wave-ice modeling system under development. National Ice Center (NIC) analysts used these model data products (CICE and COAMPS) along with other existing model and satellite data to produce the predicted 48-hr position of the ice edge. The NIC served as a liaison with the RDC and NRL to provide feedback on the model predictions. This evaluation provides a baseline analysis of the current models for future comparison studies with the fully coupled modeling system.

  1. An early warning system for flash floods in Egypt

    NASA Astrophysics Data System (ADS)

    Cools, J.; Abdelkhalek, A.; El Sammany, M.; Fahmi, A. H.; Bauwens, W.; Huygens, M.

    2009-09-01

    This paper describes the development of the Flash Flood Manager, abbreviated as FlaFloM. The Flash Flood Manager is an early warning system for flash floods which is developed under the EU LIFE project FlaFloM. It is applied to Wadi Watier located in the Sinai peninsula (Egypt) and discharges in the Red Sea at the local economic and tourist hub of Nuweiba city. FlaFloM consists of a chain of four modules: 1) Data gathering module, 2) Forecasting module, 3) Decision support module or DSS and 4) Warning module. Each module processes input data and consequently send the output to the following module. In case of a flash flood emergency, the final outcome of FlaFloM is a flood warning which is sent out to decision-makers. The ‘data gathering module’ collects input data from different sources, validates the input, visualise data and exports it to other modules. Input data is provided ideally as water stage (h), discharge (Q) and rainfall (R) through real-time field measurements and external forecasts. This project, however, as occurs in many arid flash flood prone areas, was confronted with a scarcity of data, and insufficient insight in the characteristics that release a flash flood. Hence, discharge and water stage data were not available. Although rainfall measurements are available through classical off line rain gauges, the sparse rain gauges network couldn’t catch the spatial and temporal characteristics of rainfall events. To overcome this bottleneck, we developed rainfall intensity raster maps (mm/hr) with an hourly time step and raster cell of 1*1km. These maps are derived through downscaling from two sources of global instruments: the weather research and forecasting model (WRF) and satellite estimates from the Tropical Rainfall Measuring Mission (TRMM). The ‘forecast module’ comprises three numerical models that, using data from the gathering module performs simulations on command: a rainfall-runoff model, a river flow model, and a flood model. A rainfall-runoff model transforms the (forecasted) rainfall into a runoff volume (m³) and consequently a time-dependent discharge (m³/s) for each of the subwadis which is then routed through the main channel. The flood model then converts the discharges into water stages and generates a spatially-distributed flood map. The rainfall-runoff model is developed in Matlab-Simulink. The latter two models are implemented in Infoworks and Floodworks (both Wallingford Software), which allows an automatic feed into the warning module. The ‘warning module’ has two tasks: 1) to generate specific flags when modelling results exceed pre-established thresholds for rainfall, discharge, water stage, volumes, etc… 2) to communicate the given flags as warning signals to operators and/or stakeholders. The ‘decision support module’ or DSS finally gives to the user the capability of performing alternative analysis in order to have a better idea of the reliability of the forecasts by means of the comparison of already made forecasts with new data and a sensitivity analysis. Although FlaFloM is now able to send out warnings, the forecasts of this first version are expected to be insufficiently accurate which may lead to false warnings and loss of trust with decision-makers if not communicated well. When new insights and data are available, the model will be updated which improves the forecast accuracy. At this moment, we see two major fields of improvement: 1) better rainfall forecasts and 2) better insights of the response of an arid area to storm events. Firstly, the rainfall maps provided better insights in the spatial and temporal extent of a rainfall event, though absolute rainfall values are not considered accurate. The major reason behind is the fact that both global systems are insufficiently parameterized for arid areas. New data from an improved rain gauge network is expected to add value. Secondly, better insights need to be gained on the response of the Wadi to rainfall. The calibration of the hydrological models is currently based on literature and a geological surface map from which we derived infiltration rates. Modelled discharges or flood volumes can only be assessed qualitatively based on the field knowledge of local Bedouins inhabitants. To reduce uncertainty on forecasts and to guide on new data to be collected, a sensitivity analysis with rainfall scenarios is performed.

  2. Research on light rail electric load forecasting based on ARMA model

    NASA Astrophysics Data System (ADS)

    Huang, Yifan

    2018-04-01

    The article compares a variety of time series models and combines the characteristics of power load forecasting. Then, a light load forecasting model based on ARMA model is established. Based on this model, a light rail system is forecasted. The prediction results show that the accuracy of the model prediction is high.

  3. The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia

    NASA Astrophysics Data System (ADS)

    Pokhrel, Prafulla; Wang, Q. J.; Robertson, David E.

    2013-10-01

    Seasonal streamflow forecasts are valuable for planning and allocation of water resources. In Australia, the Bureau of Meteorology employs a statistical method to forecast seasonal streamflows. The method uses predictors that are related to catchment wetness at the start of a forecast period and to climate during the forecast period. For the latter, a predictor is selected among a number of lagged climate indices as candidates to give the "best" model in terms of model performance in cross validation. This study investigates two strategies for further improvement in seasonal streamflow forecasts. The first is to combine, through Bayesian model averaging, multiple candidate models with different lagged climate indices as predictors, to take advantage of different predictive strengths of the multiple models. The second strategy is to introduce additional candidate models, using rainfall and sea surface temperature predictions from a global climate model as predictors. This is to take advantage of the direct simulations of various dynamic processes. The results show that combining forecasts from multiple statistical models generally yields more skillful forecasts than using only the best model and appears to moderate the worst forecast errors. The use of rainfall predictions from the dynamical climate model marginally improves the streamflow forecasts when viewed over all the study catchments and seasons, but the use of sea surface temperature predictions provide little additional benefit.

  4. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan.

    PubMed

    Wangdi, Kinley; Singhasivanon, Pratap; Silawan, Tassanee; Lawpoolsri, Saranath; White, Nicholas J; Kaewkungwal, Jaranit

    2010-09-03

    Malaria still remains a public health problem in some districts of Bhutan despite marked reduction of cases in last few years. To strengthen the country's prevention and control measures, this study was carried out to develop forecasting and prediction models of malaria incidence in the endemic districts of Bhutan using time series and ARIMAX. This study was carried out retrospectively using the monthly reported malaria cases from the health centres to Vector-borne Disease Control Programme (VDCP) and the meteorological data from Meteorological Unit, Department of Energy, Ministry of Economic Affairs. Time series analysis was performed on monthly malaria cases, from 1994 to 2008, in seven malaria endemic districts. The time series models derived from a multiplicative seasonal autoregressive integrated moving average (ARIMA) was deployed to identify the best model using data from 1994 to 2006. The best-fit model was selected for each individual district and for the overall endemic area was developed and the monthly cases from January to December 2009 and 2010 were forecasted. In developing the prediction model, the monthly reported malaria cases and the meteorological factors from 1996 to 2008 of the seven districts were analysed. The method of ARIMAX modelling was employed to determine predictors of malaria of the subsequent month. It was found that the ARIMA (p, d, q) (P, D, Q)s model (p and P representing the auto regressive and seasonal autoregressive; d and D representing the non-seasonal differences and seasonal differencing; and q and Q the moving average parameters and seasonal moving average parameters, respectively and s representing the length of the seasonal period) for the overall endemic districts was (2,1,1)(0,1,1)12; the modelling data from each district revealed two most common ARIMA models including (2,1,1)(0,1,1)12 and (1,1,1)(0,1,1)12. The forecasted monthly malaria cases from January to December 2009 and 2010 varied from 15 to 82 cases in 2009 and 67 to 149 cases in 2010, where population in 2009 was 285,375 and the expected population of 2010 to be 289,085. The ARIMAX model of monthly cases and climatic factors showed considerable variations among the different districts. In general, the mean maximum temperature lagged at one month was a strong positive predictor of an increased malaria cases for four districts. The monthly number of cases of the previous month was also a significant predictor in one district, whereas no variable could predict malaria cases for two districts. The ARIMA models of time-series analysis were useful in forecasting the number of cases in the endemic areas of Bhutan. There was no consistency in the predictors of malaria cases when using ARIMAX model with selected lag times and climatic predictors. The ARIMA forecasting models could be employed for planning and managing malaria prevention and control programme in Bhutan.

  5. Forecasting Electricity Prices in an Optimization Hydrothermal Problem

    NASA Astrophysics Data System (ADS)

    Matías, J. M.; Bayón, L.; Suárez, P.; Argüelles, A.; Taboada, J.

    2007-12-01

    This paper presents an economic dispatch algorithm in a hydrothermal system within the framework of a competitive and deregulated electricity market. The optimization problem of one firm is described, whose objective function can be defined as its profit maximization. Since next-day price forecasting is an aspect crucial, this paper proposes an efficient yet highly accurate next-day price new forecasting method using a functional time series approach trying to exploit the daily seasonal structure of the series of prices. For the optimization problem, an optimal control technique is applied and Pontryagin's theorem is employed.

  6. Section on Observed Impacts on El Nino

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia

    2000-01-01

    Agricultural applications of El Nino forecasts are already underway in some countries and need to be evaluated or re-evaluated. For example, in Peru, El Nino forecasts have been incorporated into national planning for the agricultural sector, and areas planted with rice and cotton (cotton being the more drought-tolerant crop) are adjusted accordingly. How well are this and other such programs working? Such evaluations will contribute to the governmental and intergovernmental institutions, including the Inter-American Institute for Global Change Research and the US National Ocean and Atmospheric Agency that are fostering programs to aid the effective use of forecasts. As El Nino climate forecasting grows out of the research mode into operational mode, the research focus shifts to include the design of appropriate modes of utilization. Awareness of and sensitivity to the costs of prediction errors also grow. For example, one major forecasting model failed to predict the very large El Nino event of 1997, when Pacific sea-surface temperatures were the highest on record. Although simple correlations between El Nino events and crop yields may be suggestive, more sophisticated work is needed to understand the subtleties of the interplay among the global climate system, regional climate patterns, and local agricultural systems. Honesty about the limitations of an forecast is essential, especially when human livelihoods are at stake. An end-to-end analysis links tools and expertise from the full sequence of ENSO cause-and-effect processes. Representatives from many disciplines are needed to achieve insights, e.g, oceanographers and atmospheric scientists who predict El Nino events, climatologists who drive global climate models with sea-surface temperature predictions, agronomists who translate regional climate connections in to crop yield forecasts, and economists who analyze market adjustments to the vagaries of climate and determine the value of climate forecasts. Methods include historical studies to understand past patterns and to test hindcasts of the prediction tools, crop modeling, spatial analysis and remote sensing. This research involves expanding, deepening, and applying the understanding of physical climate to the fields of agronomy and social science; and the reciprocal understanding of crop growth and farm economics to climatology. Delivery of a regional climate forecast with no information about how the climate forecast was derived limits its effectiveness. Explanation of a region's major climate driving forces helps to place a seasonal forecast in context. Then, a useful approach is to show historical responses to previous El Nino events, and projections, with uncertainty intervals, of crop response from dynamic process crop growth models. Regional ID forecasts should be updated with real-time weather conditions. Since every El Nino event is different, it is important to track, report and advise on each new event as it unfolds. The stability of human enterprises depends on understanding both the potentialities and the limits of predictability. Farmers rely on past experience to anticipate and respond to fluctuations in the biophysical systems on which their livelihoods depend. Now scientists are improving their ability to predict some major elements of climate variability. The improvements in the reliability of El Nino forecasts are encouraging, but seasonal forecasts for agriculture are not, and will probably never be completely infallible, due to the chaotic nature of the climate system. Uncertainties proliferate as we extend beyond Pacific sea-surface temperatures to climate teleconnections and agricultural outcomes. The goal of this research is to shed as a clear light as possible on these inherent uncertainties and thus to contribute to the development of appropriate responses to El Nino and other seasonal forecasts for a range of stakeholders, which, ultimately, includes food consumers everywhere.

  7. Forecasting in foodservice: model development, testing, and evaluation.

    PubMed

    Miller, J L; Thompson, P A; Orabella, M M

    1991-05-01

    This study was designed to develop, test, and evaluate mathematical models appropriate for forecasting menu-item production demand in foodservice. Data were collected from residence and dining hall foodservices at Ohio State University. Objectives of the study were to collect, code, and analyze the data; develop and test models using actual operation data; and compare forecasting results with current methods in use. Customer count was forecast using deseasonalized simple exponential smoothing. Menu-item demand was forecast by multiplying the count forecast by a predicted preference statistic. Forecasting models were evaluated using mean squared error, mean absolute deviation, and mean absolute percentage error techniques. All models were more accurate than current methods. A broad spectrum of forecasting techniques could be used by foodservice managers with access to a personal computer and spread-sheet and database-management software. The findings indicate that mathematical forecasting techniques may be effective in foodservice operations to control costs, increase productivity, and maximize profits.

  8. Potential economic value of drought information to support early warning in Africa

    NASA Astrophysics Data System (ADS)

    Quiroga, S.; Iglesias, A.; Diz, A.; Garrote, L.

    2012-04-01

    We present a methodology to estimate the economic value of advanced climate information for food production in Africa under climate change scenarios. The results aim to facilitate better choices in water resources management. The methodology includes 4 sequential steps. First two contrasting management strategies (with and without early warning) are defined. Second, the associated impacts of the management actions are estimated by calculating the effect of drought in crop productivity under climate change scenarios. Third, the optimal management option is calculated as a function of the drought information and risk aversion of potential information users. Finally we use these optimal management simulations to compute the economic value of enhanced water allocation rules to support stable food production in Africa. Our results show how a timely response to climate variations can help reduce loses in food production. The proposed framework is developed within the Dewfora project (Early warning and forecasting systems to predict climate related drought vulnerability and risk in Africa) that aims to improve the knowledge on drought forecasting, warning and mitigation, and advance the understanding of climate related vulnerability to drought and to develop a prototype operational forecasting.

  9. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-12-18

    This paper presents four algorithms to generate random forecast error time series, including a truncated-normal distribution model, a state-space based Markov model, a seasonal autoregressive moving average (ARMA) model, and a stochastic-optimization based model. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets, used for variable generation integration studies. A comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics. This paper discusses and comparesmore » the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  10. Modeled Forecasts of Dengue Fever in San Juan, Puerto Rico Using NASA Satellite Enhanced Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.

    2015-12-01

    Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.

  11. Ionosphere monitoring and forecast activities within the IAG working group "Ionosphere Prediction"

    NASA Astrophysics Data System (ADS)

    Hoque, Mainul; Garcia-Rigo, Alberto; Erdogan, Eren; Cueto Santamaría, Marta; Jakowski, Norbert; Berdermann, Jens; Hernandez-Pajares, Manuel; Schmidt, Michael; Wilken, Volker

    2017-04-01

    Ionospheric disturbances can affect technologies in space and on Earth disrupting satellite and airline operations, communications networks, navigation systems. As the world becomes ever more dependent on these technologies, ionospheric disturbances as part of space weather pose an increasing risk to the economic vitality and national security. Therefore, having the knowledge of ionospheric state in advance during space weather events is becoming more and more important. To promote scientific cooperation we recently formed a Working Group (WG) called "Ionosphere Predictions" within the International Association of Geodesy (IAG) under Sub-Commission 4.3 "Atmosphere Remote Sensing" of the Commission 4 "Positioning and Applications". The general objective of the WG is to promote the development of ionosphere prediction algorithm/models based on the dependence of ionospheric characteristics on solar and magnetic conditions combining data from different sensors to improve the spatial and temporal resolution and sensitivity taking advantage of different sounding geometries and latency. Our presented work enables the possibility to compare total electron content (TEC) prediction approaches/results from different centers contributing to this WG such as German Aerospace Center (DLR), Universitat Politècnica de Catalunya (UPC), Technische Universität München (TUM) and GMV. DLR developed a model-assisted TEC forecast algorithm taking benefit from actual trends of the TEC behavior at each grid point. Since during perturbations, characterized by large TEC fluctuations or ionization fronts, this approach may fail, the trend information is merged with the current background model which provides a stable climatological TEC behavior. The presented solution is a first step to regularly provide forecasted TEC services via SWACI/IMPC by DLR. UPC forecast model is based on applying linear regression to a temporal window of TEC maps in the Discrete Cosine Transform (DCT) domain. Performance tests are being conducted at the moment in order to improve UPC predicted products for 1-, 2-days ahead. In addition, UPC is working to enable short-term predictions based on UPC real-time GIMs (labelled URTG) and implementing an improved prediction approach. TUM developed a forecast method based on a time series analysis of TEC products which are either B-spline coefficients estimated by a Kalman filter or TEC grid maps derived from the B-spline coefficients. The forecast method uses a Fourier series expansion to extract the trend functions from the estimated TEC product. Then the trend functions are carried out to provide predicted TEC products. The forecast algorithm developed by GMV is based on the ionospheric delay estimation from previous epochs using GNSS data and the main dependence of ionospheric delays on solar and magnetic conditions. Since the ionospheric behavior is highly dependent on the region of the Earth, different region-based algorithmic modifications have been implemented in GMV's magicSBAS ionospheric algorithms to be able to estimate and forecast ionospheric delays worldwide. Different TEC prediction approaches outlined here will certainly help to learn about forecasting ionospheric ionization.

  12. Complex Dynamics in Nonequilibrium Economics and Chemistry

    NASA Astrophysics Data System (ADS)

    Wen, Kehong

    Complex dynamics provides a new approach in dealing with economic complexity. We study interactively the empirical and theoretical aspects of business cycles. The way of exploring complexity is similar to that in the study of an oscillatory chemical system (BZ system)--a model for modeling complex behavior. We contribute in simulating qualitatively the complex periodic patterns observed from the controlled BZ experiments to narrow the gap between modeling and experiment. The gap between theory and reality is much wider in economics, which involves studies of human expectations and decisions, the essential difference from natural sciences. Our empirical and theoretical studies make substantial progress in closing this gap. With the help from the new development in nonequilibrium physics, i.e., the complex spectral theory, we advance our technique in detecting characteristic time scales from empirical economic data. We obtain correlation resonances, which give oscillating modes with decays for correlation decomposition, from different time series including S&P 500, M2, crude oil spot prices, and GNP. The time scales found are strikingly compatible with business experiences and other studies in business cycles. They reveal the non-Markovian nature of coherent markets. The resonances enhance the evidence of economic chaos obtained by using other tests. The evolving multi-humped distributions produced by the moving-time -window technique reveal the nonequilibrium nature of economic behavior. They reproduce the American economic history of booms and busts. The studies seem to provide a way out of the debate on chaos versus noise and unify the cyclical and stochastic approaches in explaining business fluctuations. Based on these findings and new expectation formulation, we construct a business cycle model which gives qualitatively compatible patterns to those found empirically. The soft-bouncing oscillator model provides a better alternative than the harmonic oscillator or the random walk model as the building block in business cycle theory. The mathematical structure of the model (delay differential equation) is studied analytically and numerically. The research pave the way toward sensible economic forecasting.

  13. Travel Demand Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southworth, Frank; Garrow, Dr. Laurie

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming,more » and agent-based microsimulation.« less

  14. Markov model of the loan portfolio dynamics considering influence of management and external economic factors

    NASA Astrophysics Data System (ADS)

    Bozhalkina, Yana; Timofeeva, Galina

    2016-12-01

    Mathematical model of loan portfolio in the form of a controlled Markov chain with discrete time is considered. It is assumed that coefficients of migration matrix depend on corrective actions and external factors. Corrective actions include process of receiving applications, interaction with existing solvent and insolvent clients. External factors are macroeconomic indicators, such as inflation and unemployment rates, exchange rates, consumer price indices, etc. Changes in corrective actions adjust the intensity of transitions in the migration matrix. The mathematical model for forecasting the credit portfolio structure taking into account a cumulative impact of internal and external changes is obtained.

  15. Advanced Daily Prediction Model for National Suicide Numbers with Social Media Data.

    PubMed

    Lee, Kyung Sang; Lee, Hyewon; Myung, Woojae; Song, Gil-Young; Lee, Kihwang; Kim, Ho; Carroll, Bernard J; Kim, Doh Kwan

    2018-04-01

    Suicide is a significant public health concern worldwide. Social media data have a potential role in identifying high suicide risk individuals and also in predicting suicide rate at the population level. In this study, we report an advanced daily suicide prediction model using social media data combined with economic/meteorological variables along with observed suicide data lagged by 1 week. The social media data were drawn from weblog posts. We examined a total of 10,035 social media keywords for suicide prediction. We made predictions of national suicide numbers 7 days in advance daily for 2 years, based on a daily moving 5-year prediction modeling period. Our model predicted the likely range of daily national suicide numbers with 82.9% accuracy. Among the social media variables, words denoting economic issues and mood status showed high predictive strength. Observed number of suicides one week previously, recent celebrity suicide, and day of week followed by stock index, consumer price index, and sunlight duration 7 days before the target date were notable predictors along with the social media variables. These results strengthen the case for social media data to supplement classical social/economic/climatic data in forecasting national suicide events.

  16. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay.

    PubMed

    Oribe-Garcia, Iraia; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M; Alonso-Vicario, Ainhoa

    2015-05-01

    The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The analysis of factors of management of safety of critical information infrastructure with use of dynamic models

    NASA Astrophysics Data System (ADS)

    Trostyansky, S. N.; Kalach, A. V.; Lavlinsky, V. V.; Lankin, O. V.

    2018-03-01

    Based on the analysis of the dynamic model of panel data by region, including fire statistics for surveillance sites and statistics of a set of regional socio-economic indicators, as well as the time of rapid response of the state fire service to fires, the probability of fires in the surveillance sites and the risk of human death in The result of such fires from the values of the corresponding indicators for the previous year, a set of regional social-economics factors, as well as regional indicators time rapid response of the state fire service in the fire. The results obtained are consistent with the results of the application to the fire risks of the model of a rational offender. Estimation of the economic equivalent of human life from data on surveillance objects for Russia, calculated on the basis of the analysis of the presented dynamic model of fire risks, correctly agrees with the known literary data. The results obtained on the basis of the econometric approach to fire risks allow us to forecast fire risks at the supervisory sites in the regions of Russia and to develop management solutions to minimize such risks.

  18. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    PubMed

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  19. SEASAT economic assessment. Volume 5: Coastal zones case study and generalization. [economic benefits of weather forecasting by SEASAT satellites to the coastal plains of the United States

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The economic losses sustained in the U.S. coastal zones were studied for the purpose of quantitatively establishing economic benefits as a consequence of improving the predictive quality of destructive phenomena in U.S. coastal zones. Improved prediction of hurricane landfall and improved experimental knowledge of hurricane seeding are discussed.

  20. An assessment of a North American Multi-Model Ensemble (NMME) based global drought early warning forecast system

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.

    2013-12-01

    One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.

Top