Science.gov

Sample records for economic forecasting models

  1. Value versus Accuracy: application of seasonal forecasts to a hydro-economic optimization model for the Sudanese Blue Nile

    NASA Astrophysics Data System (ADS)

    Satti, S.; Zaitchik, B. F.; Siddiqui, S.; Badr, H. S.; Shukla, S.; Peters-Lidard, C. D.

    2015-12-01

    The unpredictable nature of precipitation within the East African (EA) region makes it one of the most vulnerable, food insecure regions in the world. There is a vital need for forecasts to inform decision makers, both local and regional, and to help formulate the region's climate change adaptation strategies. Here, we present a suite of different seasonal forecast models, both statistical and dynamical, for the EA region. Objective regionalization is performed for EA on the basis of interannual variability in precipitation in both observations and models. This regionalization is applied as the basis for calculating a number of standard skill scores to evaluate each model's forecast accuracy. A dynamically linked Land Surface Model (LSM) is then applied to determine forecasted flows, which drive the Sudanese Hydroeconomic Optimization Model (SHOM). SHOM combines hydrologic, agronomic and economic inputs to determine the optimal decisions that maximize economic benefits along the Sudanese Blue Nile. This modeling sequence is designed to derive the potential added value of information of each forecasting model to agriculture and hydropower management. A rank of each model's forecasting skill score along with its added value of information is analyzed in order compare the performance of each forecast. This research aims to improve understanding of how characteristics of accuracy, lead time, and uncertainty of seasonal forecasts influence their utility to water resources decision makers who utilize them.

  2. The Economic Value of Air Quality Forecasting

    NASA Astrophysics Data System (ADS)

    Anderson-Sumo, Tasha

    Both long-term and daily air quality forecasts provide an essential component to human health and impact costs. According the American Lung Association, the estimated current annual cost of air pollution related illness in the United States, adjusted for inflation (3% per year), is approximately $152 billion. Many of the risks such as hospital visits and morality are associated with poor air quality days (where the Air Quality Index is greater than 100). Groups such as sensitive groups become more susceptible to the resulting conditions and more accurate forecasts would help to take more appropriate precautions. This research focuses on evaluating the utility of air quality forecasting in terms of its potential impacts by building on air quality forecasting and economical metrics. Our analysis includes data collected during the summertime ozone seasons between 2010 and 2012 from air quality models for the Washington, DC/Baltimore, MD region. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our collection of data included available air quality model forecasts of ozone and particulate matter data from the U.S. Environmental Protection Agency (EPA)'s AIRNOW as well as observational data of ozone and particulate matter from Clean Air Partners. We evaluated the performance of the air quality forecasts with that of the observational data and found that the forecast models perform well for the Baltimore/Washington region and the time interval observed. We estimate the potential amount for the Baltimore/Washington region accrues to a savings of up to 5,905 lives and 5.9 billion dollars per year. This total assumes perfect compliance with

  3. An empirical investigation on the forecasting ability of mallows model averaging in a macro economic environment

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Hock-Eam, Lim

    2012-09-01

    This paper investigates the forecasting ability of Mallows Model Averaging (MMA) by conducting an empirical analysis of five Asia countries, Malaysia, Thailand, Philippines, Indonesia and China's GDP growth rate. Results reveal that MMA has no noticeable differences in predictive ability compared to the general autoregressive fractional integrated moving average model (ARFIMA) and its predictive ability is sensitive to the effect of financial crisis. MMA could be an alternative forecasting method for samples without recent outliers such as financial crisis.

  4. A Course in Economic Forecasting: Rationale and Content.

    ERIC Educational Resources Information Center

    Loomis, David G.; Cox, James E., Jr.

    2000-01-01

    Discusses four reasons why economic forecasting courses are important: (1) forecasting skills are in demand by businesses; (2) forecasters are in demand; (3) forecasting courses have positive externalities; (4) and forecasting provides a real-world context. Describes what should be taught in an economic forecasting course. (CMK)

  5. Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators.

    PubMed

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.

  6. Aggregate vehicle travel forecasting model

    SciTech Connect

    Greene, D.L.; Chin, Shih-Miao; Gibson, R.

    1995-05-01

    This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

  7. Economic Value of Weather and Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Yohe, Gary W.

    Researchers who ponder the value of information work in the world of integrated assessment. They study the creation of scientific knowledge from models and data and view the processing and analysis of knowledge through the creation and distribution of information. They understand that the value of this information is derived fundamentally from how it is used. Therefore, such researchers must investigate how and where individuals (and the institutions and systems that individuals create) uncover information that they find credible and how and why those same individuals, institutions, and systems discard information that they find incredible. The essays presented in Economic Value of Weather and Climate Forecasts are a perfect example of how practicing researchers confront this integration process in an area in which just about everyone has an opinion—the weather.

  8. Econometric Models for Forecasting of Macroeconomic Indices

    ERIC Educational Resources Information Center

    Sukhanova, Elena I.; Shirnaeva, Svetlana Y.; Mokronosov, Aleksandr G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices…

  9. Future Economics of Liver Transplantation: A 20-Year Cost Modeling Forecast and the Prospect of Bioengineering Autologous Liver Grafts.

    PubMed

    Habka, Dany; Mann, David; Landes, Ronald; Soto-Gutierrez, Alejandro

    2015-01-01

    During the past 20 years liver transplantation has become the definitive treatment for most severe types of liver failure and hepatocellular carcinoma, in both children and adults. In the U.S., roughly 16,000 individuals are on the liver transplant waiting list. Only 38% of them will receive a transplant due to the organ shortage. This paper explores another option: bioengineering an autologous liver graft. We developed a 20-year model projecting future demand for liver transplants, along with costs based on current technology. We compared these cost projections against projected costs to bioengineer autologous liver grafts. The model was divided into: 1) the epidemiology model forecasting the number of wait-listed patients, operated patients and postoperative patients; and 2) the treatment model forecasting costs (pre-transplant-related costs; transplant (admission)-related costs; and 10-year post-transplant-related costs) during the simulation period. The patient population was categorized using the Model for End-Stage Liver Disease score. The number of patients on the waiting list was projected to increase 23% over 20 years while the weighted average treatment costs in the pre-liver transplantation phase were forecast to increase 83% in Year 20. Projected demand for livers will increase 10% in 10 years and 23% in 20 years. Total costs of liver transplantation are forecast to increase 33% in 10 years and 81% in 20 years. By comparison, the projected cost to bioengineer autologous liver grafts is $9.7M based on current catalog prices for iPS-derived liver cells. The model projects a persistent increase in need and cost of donor livers over the next 20 years that's constrained by a limited supply of donor livers. The number of patients who die while on the waiting list will reflect this ever-growing disparity. Currently, bioengineering autologous liver grafts is cost prohibitive. However, costs will decline rapidly with the introduction of new manufacturing

  10. Future Economics of Liver Transplantation: A 20-Year Cost Modeling Forecast and the Prospect of Bioengineering Autologous Liver Grafts

    PubMed Central

    Habka, Dany; Mann, David; Landes, Ronald; Soto-Gutierrez, Alejandro

    2015-01-01

    During the past 20 years liver transplantation has become the definitive treatment for most severe types of liver failure and hepatocellular carcinoma, in both children and adults. In the U.S., roughly 16,000 individuals are on the liver transplant waiting list. Only 38% of them will receive a transplant due to the organ shortage. This paper explores another option: bioengineering an autologous liver graft. We developed a 20-year model projecting future demand for liver transplants, along with costs based on current technology. We compared these cost projections against projected costs to bioengineer autologous liver grafts. The model was divided into: 1) the epidemiology model forecasting the number of wait-listed patients, operated patients and postoperative patients; and 2) the treatment model forecasting costs (pre-transplant-related costs; transplant (admission)-related costs; and 10-year post-transplant-related costs) during the simulation period. The patient population was categorized using the Model for End-Stage Liver Disease score. The number of patients on the waiting list was projected to increase 23% over 20 years while the weighted average treatment costs in the pre-liver transplantation phase were forecast to increase 83% in Year 20. Projected demand for livers will increase 10% in 10 years and 23% in 20 years. Total costs of liver transplantation are forecast to increase 33% in 10 years and 81% in 20 years. By comparison, the projected cost to bioengineer autologous liver grafts is $9.7M based on current catalog prices for iPS-derived liver cells. The model projects a persistent increase in need and cost of donor livers over the next 20 years that’s constrained by a limited supply of donor livers. The number of patients who die while on the waiting list will reflect this ever-growing disparity. Currently, bioengineering autologous liver grafts is cost prohibitive. However, costs will decline rapidly with the introduction of new manufacturing

  11. Ups and downs of economics and econophysics — Facebook forecast

    NASA Astrophysics Data System (ADS)

    Gajic, Nenad; Budinski-Petkovic, Ljuba

    2013-01-01

    What is econophysics and its relationship with economics? What is the state of economics after the global economic crisis, and is there a future for the paradigm of market equilibrium, with imaginary perfect competition and rational agents? Can the next paradigm of economics adopt important assumptions derived from econophysics models: that markets are chaotic systems, striving to extremes as bubbles and crashes show, with psychologically motivated, statistically predictable individual behaviors? Is the future of econophysics, as predicted here, to disappear and become a part of economics? A good test of the current state of econophysics and its methods is the valuation of Facebook immediately after the initial public offering - this forecast indicates that Facebook is highly overvalued, and its IPO valuation of 104 billion dollars is mostly the new financial bubble based on the expectations of unlimited growth, although it’s easy to prove that Facebook is close to the upper limit of its users.

  12. Forecasted economic change and the self-fulfilling prophecy in economic decision-making

    PubMed Central

    2017-01-01

    This study addresses the self-fulfilling prophecy effect, in the domain of economic decision-making. We present experimental data in support of the hypothesis that speculative forecasts of economic change can impact individuals’ economic decision behavior, prior to any realized changes. In a within-subjects experiment, participants (N = 40) played 180 trials in a Balloon Analogue Risk Talk (BART) in which they could make actual profit. Simple messages about possible (positive and negative) changes in outcome probabilities of future trials had significant effects on measures of risk taking (number of inflations) and actual profits in the game. These effects were enduring, even though no systematic changes in actual outcome probabilities took place following any of the messages. Risk taking also found to be reflected in reaction times revealing increasing reaction times with riskier decisions. Positive and negative economic forecasts affected reaction times slopes differently, with negative forecasts resulting in increased reaction time slopes as a function of risk. These findings suggest that forecasted positive or negative economic change can bias people’s mental model of the economy and reduce or stimulate risk taking. Possible implications for media-fulfilling prophecies in the domain of the economy are considered. PMID:28334031

  13. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  14. AVLIS: a technical and economic forecast

    SciTech Connect

    Davis, J.I.; Spaeth, M.L.

    1986-01-01

    The AVLIS process has intrinsically large isotopic selectivity and hence high separative capacity per module. The critical components essential to achieving the high production rates represent a small fraction (approx.10%) of the total capital cost of a production facility, and the reference production designs are based on frequent replacement of these components. The specifications for replacement frequencies in a plant are conservative with respect to our expectations; it is reasonable to expect that, as the plant is operated, the specifications will be exceeded and production costs will continue to fall. Major improvements in separator production rates and laser system efficiencies (approx.power) are expected to occur as a natural evolution in component improvements. With respect to the reference design, such improvements have only marginal economic value, but given the exigencies of moving from engineering demonstration to production operations, we continue to pursue these improvements in order to offset any unforeseen cost increases. Thus, our technical and economic forecasts for the AVLIS process remain very positive. The near-term challenge is to obtain stable funding and a commitment to bring the process to full production conditions within the next five years. If the funding and commitment are not maintained, the team will disperse and the know-how will be lost before it can be translated into production operations. The motivation to preserve the option for low-cost AVLIS SWU production is integrally tied to the motivation to maintain a competitive nuclear option. The US industry can certainly survive without AVLIS, but our tradition as technology leader in the industry will certainly be lost.

  15. Forecast-based Interventions Can Reduce the Health and Economic Burden of Wildfires

    EPA Science Inventory

    We simulated public health forecast-based interventions during a wildfire smoke episode in rural North Carolina to show the potential for use of modeled smoke forecasts toward reducing the health burden and showed a significant economic benefit of reducing exposures. Daily and co...

  16. Economic benefits of improved meteorological forecasts - The construction industry

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, R. K.; Greenberg, J. S.

    1976-01-01

    Estimates are made of the potential economic benefits accruing to particular industries from timely utilization of satellite-derived six-hour weather forecasts, and of economic penalties resulting from failure to utilize such forecasts in day-to-day planning. The cost estimate study is centered on the U.S. construction industry, with results simplified to yes/no 6-hr forecasts on thunderstorm activity and work/no work decisions. Effects of weather elements (thunderstorms, snow and sleet) on various construction operations are indicated. Potential dollar benefits for other industries, including air transportation and other forms of transportation, are diagrammed for comparison. Geosynchronous satellites such as STORMSAT, SEOS, and SMS/GOES are considered as sources of the forecast data.

  17. Robustness of disaggregate oil and gas discovery forecasting models

    USGS Publications Warehouse

    Attanasi, E.D.; Schuenemeyer, J.H.

    1989-01-01

    The trend in forecasting oil and gas discoveries has been to develop and use models that allow forecasts of the size distribution of future discoveries. From such forecasts, exploration and development costs can more readily be computed. Two classes of these forecasting models are the Arps-Roberts type models and the 'creaming method' models. This paper examines the robustness of the forecasts made by these models when the historical data on which the models are based have been subject to economic upheavals or when historical discovery data are aggregated from areas having widely differing economic structures. Model performance is examined in the context of forecasting discoveries for offshore Texas State and Federal areas. The analysis shows how the model forecasts are limited by information contained in the historical discovery data. Because the Arps-Roberts type models require more regularity in discovery sequence than the creaming models, prior information had to be introduced into the Arps-Roberts models to accommodate the influence of economic changes. The creaming methods captured the overall decline in discovery size but did not easily allow introduction of exogenous information to compensate for incomplete historical data. Moreover, the predictive log normal distribution associated with the creaming model methods appears to understate the importance of the potential contribution of small fields. ?? 1989.

  18. Economic indicators selection for crime rates forecasting using cooperative feature selection

    NASA Astrophysics Data System (ADS)

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Salleh Sallehuddin, Roselina

    2013-04-01

    Features selection in multivariate forecasting model is very important to ensure that the model is accurate. The purpose of this study is to apply the Cooperative Feature Selection method for features selection. The features are economic indicators that will be used in crime rate forecasting model. The Cooperative Feature Selection combines grey relational analysis and artificial neural network to establish a cooperative model that can rank and select the significant economic indicators. Grey relational analysis is used to select the best data series to represent each economic indicator and is also used to rank the economic indicators according to its importance to the crime rate. After that, the artificial neural network is used to select the significant economic indicators for forecasting the crime rates. In this study, we used economic indicators of unemployment rate, consumer price index, gross domestic product and consumer sentiment index, as well as data rates of property crime and violent crime for the United States. Levenberg-Marquardt neural network is used in this study. From our experiments, we found that consumer price index is an important economic indicator that has a significant influence on the violent crime rate. While for property crime rate, the gross domestic product, unemployment rate and consumer price index are the influential economic indicators. The Cooperative Feature Selection is also found to produce smaller errors as compared to Multiple Linear Regression in forecasting property and violent crime rates.

  19. Forecasting rates of hydrocarbon discoveries in a changing economic environment

    USGS Publications Warehouse

    Schuenemeyer, J.H.; Attanasi, E.D.

    1984-01-01

    A method is presented for the estimation of undiscovered oil and gas resources in partially explored areas where economic truncation has caused some discoveries to go unreported; therefore distorting the relationship between the observed discovery size distribution and the parent or ultimate field size distribution. The method is applied to the UK's northern and central North Sea provinces. A discovery process model is developed to estimate the number and size distribution of undiscovered fields in this area as of 1983. The model is also used to forecast the rate at which fields will be discovered in the future. The appraisal and forecasts pertain to fields in size classes as small as 24 million barrels of oil equivalent (BOE). Estimated undiscovered hydrocarbon resources of 11.79 billion BOE are expected to be contained in 170 remaining fields. Over the first 500 wildcat wells after 1 January 1983, the discovery rate in this areas is expected to decline by 60% from 15 million BOE per wildcat well to six million BOE per wildcat well. ?? 1984.

  20. A forecasting model of gaming revenues in Clark County, Nevada

    SciTech Connect

    Edwards, B.; Bando, A.; Basset, G.; Rosen, A.; Meenan, C.; Carlson, J.

    1992-11-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, and identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain.

  1. A forecasting model of gaming revenues in Clark County, Nevada

    SciTech Connect

    Edwards, B.; Bando, A.; Bassett, G.; Rosen, A.; Carlson, J.; Meenan, C.

    1992-04-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, an identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain.

  2. Forecast of future aviation fuels: The model

    NASA Technical Reports Server (NTRS)

    Ayati, M. B.; Liu, C. Y.; English, J. M.

    1981-01-01

    A conceptual models of the commercial air transportation industry is developed which can be used to predict trends in economics, demand, and consumption. The methodology is based on digraph theory, which considers the interaction of variables and propagation of changes. Air transportation economics are treated by examination of major variables, their relationships, historic trends, and calculation of regression coefficients. A description of the modeling technique and a compilation of historic airline industry statistics used to determine interaction coefficients are included. Results of model validations show negligible difference between actual and projected values over the twenty-eight year period of 1959 to 1976. A limited application of the method presents forecasts of air tranportation industry demand, growth, revenue, costs, and fuel consumption to 2020 for two scenarios of future economic growth and energy consumption.

  3. Short-Termed Integrated Forecasting System: 1993 Model documentation report

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the US Energy Department (DOE) developed the STIFS model to generate short-term (up to 8 quarters), monthly forecasts of US supplies, demands, imports exports, stocks, and prices of various forms of energy. The models that constitute STIFS generate forecasts for a wide range of possible scenarios, including the following ones done routinely on a quarterly basis: A base (mid) world oil price and medium economic growth. A low world oil price and high economic growth. A high world oil price and low economic growth. This report is written for persons who want to know how short-term energy markets forecasts are produced by EIA. The report is intended as a reference document for model analysts, users, and the public.

  4. Comparison of the economic impact of different wind power forecast systems for producers

    NASA Astrophysics Data System (ADS)

    Alessandrini, S.; Davò, F.; Sperati, S.; Benini, M.; Delle Monache, L.

    2014-05-01

    Deterministic forecasts of wind production for the next 72 h at a single wind farm or at the regional level are among the main end-users requirement. However, for an optimal management of wind power production and distribution it is important to provide, together with a deterministic prediction, a probabilistic one. A deterministic forecast consists of a single value for each time in the future for the variable to be predicted, while probabilistic forecasting informs on probabilities for potential future events. This means providing information about uncertainty (i.e. a forecast of the PDF of power) in addition to the commonly provided single-valued power prediction. A significant probabilistic application is related to the trading of energy in day-ahead electricity markets. It has been shown that, when trading future wind energy production, using probabilistic wind power predictions can lead to higher benefits than those obtained by using deterministic forecasts alone. In fact, by using probabilistic forecasting it is possible to solve economic model equations trying to optimize the revenue for the producer depending, for example, on the specific penalties for forecast errors valid in that market. In this work we have applied a probabilistic wind power forecast systems based on the "analog ensemble" method for bidding wind energy during the day-ahead market in the case of a wind farm located in Italy. The actual hourly income for the plant is computed considering the actual selling energy prices and penalties proportional to the unbalancing, defined as the difference between the day-ahead offered energy and the actual production. The economic benefit of using a probabilistic approach for the day-ahead energy bidding are evaluated, resulting in an increase of 23% of the annual income for a wind farm owner in the case of knowing "a priori" the future energy prices. The uncertainty on price forecasting partly reduces the economic benefit gained by using a

  5. Environmental forecasting and turbulence modeling

    NASA Astrophysics Data System (ADS)

    Hunt, J. C. R.

    This review describes the fundamental assumptions and current methodologies of the two main kinds of environmental forecast; the first is valid for a limited period of time into the future and over a limited space-time ‘target’, and is largely determined by the initial and preceding state of the environment, such as the weather or pollution levels, up to the time when the forecast is issued and by its state at the edges of the region being considered; the second kind provides statistical information over long periods of time and/or over large space-time targets, so that they only depend on the statistical averages of the initial and ‘edge’ conditions. Environmental forecasts depend on the various ways that models are constructed. These range from those based on the ‘reductionist’ methodology (i.e., the combination of separate, scientifically based, models for the relevant processes) to those based on statistical methodologies, using a mixture of data and scientifically based empirical modeling. These are, as a rule, focused on specific quantities required for the forecast. The persistence and predictability of events associated with environmental and turbulent flows and the reasons for variation in the accuracy of their forecasts (of the first and second kinds) are now better understood and better modeled. This has partly resulted from using analogous results of disordered chaotic systems, and using the techniques of calculating ensembles of realizations, ideally involving several different models, so as to incorporate in the probabilistic forecasts a wider range of possible events. The rationale for such an approach needs to be developed. However, other insights have resulted from the recognition of the ordered, though randomly occurring, nature of the persistent motions in these flows, whose scales range from those of synoptic weather patterns (whether storms or ‘blocked’ anticyclones) to small scale vortices. These eigen states can be predicted

  6. Economic Perspectives of Technological Progress: New Dimensions for Forecasting Technology

    ERIC Educational Resources Information Center

    Twiss, Brian

    1976-01-01

    Discusses the causal relationship between the allocation of financial resources and technological growth. Argues that economic constraints are becoming an important determinant of technological progress that must be incorporated into technology forecasting techniques. (Available from IPC (America) Inc., 205 East 42 Street, New York, NY 10017;…

  7. An empirical investigation on different methods of economic growth rate forecast and its behavior from fifteen countries across five continents

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Hock-Eam, Lim

    2012-09-01

    Our empirical results show that we can predict GDP growth rate more accurately in continent with fewer large economies, compared to smaller economies like Malaysia. This difficulty is very likely positively correlated with subsidy or social security policies. The stage of economic development and level of competiveness also appears to have interactive effects on this forecast stability. These results are generally independent of the forecasting procedures. Countries with high stability in their economic growth, forecasting by model selection is better than model averaging. Overall forecast weight averaging (FWA) is a better forecasting procedure in most countries. FWA also outperforms simple model averaging (SMA) and has the same forecasting ability as Bayesian model averaging (BMA) in almost all countries.

  8. Mental Models of Software Forecasting

    NASA Technical Reports Server (NTRS)

    Hihn, J.; Griesel, A.; Bruno, K.; Fouser, T.; Tausworthe, R.

    1993-01-01

    The majority of software engineers resist the use of the currently available cost models. One problem is that the mathematical and statistical models that are currently available do not correspond with the mental models of the software engineers. In an earlier JPL funded study (Hihn and Habib-agahi, 1991) it was found that software engineers prefer to use analogical or analogy-like techniques to derive size and cost estimates, whereas curren CER's hide any analogy in the regression equations. In addition, the currently available models depend upon information which is not available during early planning when the most important forecasts must be made.

  9. The Red Sea Modeling and Forecasting System

    NASA Astrophysics Data System (ADS)

    Hoteit, Ibrahim; Gopalakrishnan, Ganesh; Latif, Hatem; Toye, Habib; Zhan, Peng; Kartadikaria, Aditya R.; Viswanadhapalli, Yesubabu; Yao, Fengchao; Triantafyllou, George; Langodan, Sabique; Cavaleri, Luigi; Guo, Daquan; Johns, Burt

    2015-04-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  10. Mesoscale model forecast verification during monsoon 2008

    NASA Astrophysics Data System (ADS)

    Ashrit, Raghavendra; Mohandas, Saji

    2010-08-01

    There have been very few mesoscale modelling studies of the Indian monsoon, with focus on the verification and intercomparison of the operational real time forecasts. With the exception of Das et al (2008), most of the studies in the literature are either the case studies of tropical cyclones and thunderstorms or the sensitivity studies involving physical parameterization or climate simulation studies. Almost all the studies are based on either National Center for Environmental Prediction (NCEP), USA, final analysis fields (NCEP FNL) or the reanalysis data used as initial and lateral boundary conditions for driving the mesoscale model. Here we present a mesoscale model forecast verification and intercomparison study over India involving three mesoscale models: (i) the Weather Research and Forecast (WRF) model developed at the National Center for Atmospheric Research (NCAR), USA, (ii) the MM5 model developed by NCAR, and (iii) the Eta model of the NCEP, USA. The analysis is carried out for the monsoon season, June to September 2008. This study is unique since it is based entirely on the real time global model forecasts of the National Centre for Medium Range Weather Forecasting (NCMRWF) T254 global analysis and forecast system. Based on the evaluation and intercomparison of the mesoscale model forecasts, we recommend the best model for operational real-time forecasts over the Indian region. Although the forecast mean 850 hPa circulation shows realistic monsoon flow and the monsoon trough, the systematic errors over the Arabian Sea indicate an easterly bias to the north (of mean flow) and westerly bias to the south (of mean flow). This suggests that the forecasts feature a southward shift in the monsoon current. The systematic error in the 850 hPa temperature indicates that largely the WRF model forecasts feature warm bias and the MM5 model forecasts feature cold bias. Features common to all the three models include warm bias over northwest India and cold bias over

  11. Forecasting electricity usage using univariate time series models

    NASA Astrophysics Data System (ADS)

    Hock-Eam, Lim; Chee-Yin, Yip

    2014-12-01

    Electricity is one of the important energy sources. A sufficient supply of electricity is vital to support a country's development and growth. Due to the changing of socio-economic characteristics, increasing competition and deregulation of electricity supply industry, the electricity demand forecasting is even more important than before. It is imperative to evaluate and compare the predictive performance of various forecasting methods. This will provide further insights on the weakness and strengths of each method. In literature, there are mixed evidences on the best forecasting methods of electricity demand. This paper aims to compare the predictive performance of univariate time series models for forecasting the electricity demand using a monthly data of maximum electricity load in Malaysia from January 2003 to December 2013. Results reveal that the Box-Jenkins method produces the best out-of-sample predictive performance. On the other hand, Holt-Winters exponential smoothing method is a good forecasting method for in-sample predictive performance.

  12. Score Matrix for HWBI Forecast Model

    EPA Pesticide Factsheets

    2000-2010 Annual State-Scale Service and Domain scores used to support the approach for forecasting EPA's Human Well-Being Index. A modeling approach was developed based relationship function equations derived from select economic, social and ecosystem final goods and service scores and calculated human well-being index and related domain scores. These data are being used in a secondary capacity. The foundational data and scoring techniques were originally described in: a) U.S. EPA. 2012. Indicators and Methods for Constructing a U.S. Human Well-being Index (HWBI) for Ecosystem Services Research. Report. EPA/600/R-12/023. pp. 121; and b) U.S. EPA. 2014. Indicators and Methods for Evaluating Economic, Ecosystem and Social Services Provisioning. Report. EPA/600/R-14/184. pp. 174. Mode Smith, L. M., Harwell, L. C., Summers, J. K., Smith, H. M., Wade, C. M., Straub, K. R. and J.L. Case (2014).This dataset is associated with the following publication:Summers , K., L. Harwell , and L. Smith. A Model For Change: An Approach for Forecasting Well-Being From Service-Based Decisions. ECOLOGICAL INDICATORS. Elsevier Science Ltd, New York, NY, USA, 69: 295-309, (2016).

  13. How to Support a One-Handed Economist: The Role of Modalisation in Economic Forecasting

    ERIC Educational Resources Information Center

    Donohue, James P.

    2006-01-01

    Economic forecasting in the world of international finance confronts economists with challenging cross-cultural writing tasks. Producing forecasts in English which convey confidence and credibility entails an understanding of linguistic conventions which typify the genre. A typical linguistic feature of commercial economic forecasts produced by…

  14. Essays on forecasting stationary and nonstationary economic time series

    NASA Astrophysics Data System (ADS)

    Bachmeier, Lance Joseph

    This dissertation consists of three essays. Chapter II considers the question of whether M2 growth can be used to forecast inflation at horizons of up to ten years. A vector error correction (VEC) model serves as our benchmark model. We find that M2 growth does have marginal predictive content for inflation at horizons of more than two years, but only when allowing for cointegration and when the cointegrating rank and vector are specified a priori. When estimating the cointegration vector or failing to impose cointegration, there is no longer evidence of causality running from M2 growth to inflation at any forecast horizon. Finally, we present evidence that M2 needs to be redefined, as forecasts of the VEC model using data on M2 observed after 1993 are worse than the forecasts of an autoregressive model of inflation. Chapter III reconsiders the evidence for a "rockets and feathers" effect in gasoline markets. We estimate an error correction model of gasoline prices using daily data for the period 1985--1998 and fail to find any evidence of asymmetry. We show that previous work suffered from two problems. First, nonstationarity in some of the regressors was ignored, leading to invalid inference. Second, the weekly data used in previous work leads to a temporal aggregation problem, and thus biased estimates of impulse response functions. Chapter IV tests for a forecasting relationship between the volume of litigation and macroeconomic variables. We analyze annual data for the period 1960--2000 on the number of cases filed, real GDP, real consumption expenditures, inflation, unemployment, and interest rates. Bivariate Granger causality tests show that several of the macroeconomic variables can be used to forecast the volume of litigation, but show no evidence that the volume of litigation can be used to forecast any of the macroeconomic variables. The analysis is then extended to bivariate and multivariate regression models, and we find similar evidence to that of the

  15. Kp Forecast Model Using Unscented Kalman Filtering

    DTIC Science & Technology

    2010-09-01

    a simple persistence model that forecasts the next 3-hr value as being equal to the current value shows a linear correlation coefficient of r = 0.797... correlation coefficient and the RMSE between the forecast value and the actual value. A new skill score that assesses how well the model predicts the

  16. Demand forecast model based on CRM

    NASA Astrophysics Data System (ADS)

    Cai, Yuancui; Chen, Lichao

    2006-11-01

    With interiorizing day by day management thought that regarding customer as the centre, forecasting customer demand becomes more and more important. In the demand forecast of customer relationship management, the traditional forecast methods have very great limitation because much uncertainty of the demand, these all require new modeling to meet the demands of development. In this paper, the notion is that forecasting the demand according to characteristics of the potential customer, then modeling by it. The model first depicts customer adopting uniform multiple indexes. Secondly, the model acquires characteristic customers on the basis of data warehouse and the technology of data mining. The last, there get the most similar characteristic customer by their comparing and forecast the demands of new customer by the most similar characteristic customer.

  17. Economic consequences of improved temperature forecasts: An experiment with the Florida citrus growers (control group results). [weather forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A demonstration experiment is being planned to show that frost and freeze prediction improvements are possible utilizing timely Synchronous Meteorological Satellite temperature measurements and that this information can affect Florida citrus grower operations and decisions. An economic experiment was carried out which will monitor citrus growers' decisions, actions, costs and losses, and meteorological forecasts and actual weather events and will establish the economic benefits of improved temperature forecasts. A summary is given of the economic experiment, the results obtained to date, and the work which still remains to be done. Specifically, the experiment design is described in detail as are the developed data collection methodology and procedures, sampling plan, data reduction techniques, cost and loss models, establishment of frost severity measures, data obtained from citrus growers, National Weather Service, and Federal Crop Insurance Corp., resulting protection costs and crop losses for the control group sample, extrapolation of results of control group to the Florida citrus industry and the method for normalization of these results to a normal or average frost season so that results may be compared with anticipated similar results from test group measurements.

  18. Error models for official mortality forecasts.

    PubMed

    Alho, J M; Spencer, B D

    1990-09-01

    "The Office of the Actuary, U.S. Social Security Administration, produces alternative forecasts of mortality to reflect uncertainty about the future.... In this article we identify the components and assumptions of the official forecasts and approximate them by stochastic parametric models. We estimate parameters of the models from past data, derive statistical intervals for the forecasts, and compare them with the official high-low intervals. We use the models to evaluate the forecasts rather than to develop different predictions of the future. Analysis of data from 1972 to 1985 shows that the official intervals for mortality forecasts for males or females aged 45-70 have approximately a 95% chance of including the true mortality rate in any year. For other ages the chances are much less than 95%."

  19. Appraisal of artificial neural network for forecasting of economic parameters

    NASA Astrophysics Data System (ADS)

    Kordanuli, Bojana; Barjaktarović, Lidija; Jeremić, Ljiljana; Alizamir, Meysam

    2017-01-01

    The main aim of this research is to develop and apply artificial neural network (ANN) with extreme learning machine (ELM) and back propagation (BP) to forecast gross domestic product (GDP) and Hirschman-Herfindahl Index (HHI). GDP could be developed based on combination of different factors. In this investigation GDP forecasting based on the agriculture and industry added value in gross domestic product (GDP) was analysed separately. Other inputs are final consumption expenditure of general government, gross fixed capital formation (investments) and fertility rate. The relation between product market competition and corporate investment is contentious. On one hand, the relation can be positive, but on the other hand, the relation can be negative. Several methods have been proposed to monitor market power for the purpose of developing procedures to mitigate or eliminate the effects. The most widely used methods are based on indices such as the Hirschman-Herfindahl Index (HHI). The reliability of the ANN models were accessed based on simulation results and using several statistical indicators. Based upon simulation results, it was presented that ELM shows better performances than BP learning algorithm in applications of GDP and HHI forecasting.

  20. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  1. Weather forecasting based on hybrid neural model

    NASA Astrophysics Data System (ADS)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-02-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  2. Pollen Forecast and Dispersion Modelling

    NASA Astrophysics Data System (ADS)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  3. Weather Forecaster Understanding of Climate Models

    NASA Astrophysics Data System (ADS)

    Bol, A.; Kiehl, J. T.; Abshire, W. E.

    2013-12-01

    Weather forecasters, particularly those in broadcasting, are the primary conduit to the public for information on climate and climate change. However, many weather forecasters remain skeptical of model-based climate projections. To address this issue, The COMET Program developed an hour-long online lesson of how climate models work, targeting an audience of weather forecasters. The module draws on forecasters' pre-existing knowledge of weather, climate, and numerical weather prediction (NWP) models. In order to measure learning outcomes, quizzes were given before and after the lesson. Preliminary results show large learning gains. For all people that took both pre and post-tests (n=238), scores improved from 48% to 80%. Similar pre/post improvement occurred for National Weather Service employees (51% to 87%, n=22 ) and college faculty (50% to 90%, n=7). We believe these results indicate a fundamental misunderstanding among many weather forecasters of (1) the difference between weather and climate models, (2) how researchers use climate models, and (3) how they interpret model results. The quiz results indicate that efforts to educate the public about climate change need to include weather forecasters, a vital link between the research community and the general public.

  4. Weather forecasts, users' economic expenses and decision strategies

    NASA Technical Reports Server (NTRS)

    Carter, G. M.

    1972-01-01

    Differing decision models and operational characteristics affecting the economic expenses (i.e., the costs of protection and losses suffered if no protective measures have been taken) associated with the use of predictive weather information have been examined.

  5. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    NASA Technical Reports Server (NTRS)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  6. Maintaining Realistic Uncertainty in Model and Forecast

    DTIC Science & Technology

    2000-09-30

    Maintaining Realistic Uncertainty in Model and Forecast Leonard Smith Pembroke College Oxford University St. Aldates Oxford OX1 1DW United Kingdom...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Pembroke College, Oxford University ,,St...evaluation: l-shadowing, probabilistic prediction and weather forecasting. D.Phil Thesis, Oxford University . Lorenz, E. (1995) Predictability-a Partially

  7. Quantifying the Economic and Grid Reliability Impacts of Improved Wind Power Forecasting

    SciTech Connect

    Wang, Qin; Martinez-Anido, Carlo Brancucci; Wu, Hongyu; Florita, Anthony R.; Hodge, Bri-Mathias

    2016-10-01

    Wind power forecasting is an important tool in power system operations to address variability and uncertainty. Accurately doing so is important to reducing the occurrence and length of curtailment, enhancing market efficiency, and improving the operational reliability of the bulk power system. This research quantifies the value of wind power forecasting improvements in the IEEE 118-bus test system as modified to emulate the generation mixes of Midcontinent, California, and New England independent system operator balancing authority areas. To measure the economic value, a commercially available production cost modeling tool was used to simulate the multi-timescale unit commitment (UC) and economic dispatch process for calculating the cost savings and curtailment reductions. To measure the reliability improvements, an in-house tool, FESTIV, was used to calculate the system's area control error and the North American Electric Reliability Corporation Control Performance Standard 2. The approach allowed scientific reproducibility of results and cross-validation of the tools. A total of 270 scenarios were evaluated to accommodate the variation of three factors: generation mix, wind penetration level, and wind fore-casting improvements. The modified IEEE 118-bus systems utilized 1 year of data at multiple timescales, including the day-ahead UC, 4-hour-ahead UC, and 5-min real-time dispatch. The value of improved wind power forecasting was found to be strongly tied to the conventional generation mix, existence of energy storage devices, and the penetration level of wind energy. The simulation results demonstrate that wind power forecasting brings clear benefits to power system operations.

  8. Forecast-based interventions can reduce the health and economic burden of wildfires.

    PubMed

    Rappold, Ana G; Fann, Neal L; Crooks, James; Huang, Jin; Cascio, Wayne E; Devlin, Robert B; Diaz-Sanchez, David

    2014-09-16

    We simulated public health forecast-based interventions during a wildfire smoke episode in rural North Carolina to show the potential for use of modeled smoke forecasts toward reducing the health burden and showed a significant economic benefit of reducing exposures. Daily and county wide intervention advisories were designed to occur when fine particulate matter (PM2.5) from smoke, forecasted 24 or 48 h in advance, was expected to exceed a predetermined threshold. Three different thresholds were considered in simulations, each with three different levels of adherence to the advisories. Interventions were simulated in the adult population susceptible to health exacerbations related to the chronic conditions of asthma and congestive heart failure. Associations between Emergency Department (ED) visits for these conditions and daily PM2.5 concentrations under each intervention were evaluated. Triggering interventions at lower PM2.5 thresholds (≤ 20 μg/m(3)) with good compliance yielded the greatest risk reduction. At the highest threshold levels (50 μg/m(3)) interventions were ineffective in reducing health risks at any level of compliance. The economic benefit of effective interventions exceeded $1 M in excess ED visits for asthma and heart failure, $2 M in loss of productivity, $100 K in respiratory conditions in children, and $42 million due to excess mortality.

  9. Linking seasonal climate forecasts with crop models in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Capa, Mirian; Ines, Amor; Baethgen, Walter; Rodriguez-Fonseca, Belen; Han, Eunjin; Ruiz-Ramos, Margarita

    2015-04-01

    Translating seasonal climate forecasts into agricultural production forecasts could help to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. In this study, we use seasonal rainfall forecasts and crop models to improve predictability of wheat yield in the Iberian Peninsula (IP). Additionally, we estimate economic margins and production risks associated with extreme scenarios of seasonal rainfall forecast. This study evaluates two methods for disaggregating seasonal climate forecasts into daily weather data: 1) a stochastic weather generator (CondWG), and 2) a forecast tercile resampler (FResampler). Both methods were used to generate 100 (with FResampler) and 110 (with CondWG) weather series/sequences for three scenarios of seasonal rainfall forecasts. Simulated wheat yield is computed with the crop model CERES-wheat (Ritchie and Otter, 1985), which is included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at two locations in northeastern Spain where the crop model was calibrated and validated with independent field data. Once simulated yields were obtained, an assessment of farmer's gross margin for different seasonal climate forecasts was accomplished to estimate production risks under different climate scenarios. This methodology allows farmers to assess the benefits and risks of a seasonal weather forecast in IP prior to the crop growing season. The results of this study may have important implications on both, public (agricultural planning) and private (decision support to farmers, insurance companies) sectors. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Hoogenboom, G. et al., 2010. The Decision

  10. The Hanford Site New Production Reactor (NPR) economic and demographic baseline forecasts

    SciTech Connect

    Cluett, C.; Clark, D.C. ); Pittenger, D.B. )

    1990-08-01

    The objective of this is to present baseline employment and population forecasts for Benton, Franklin, and Yakima Counties. These forecasts will be used in the socioeconomic analysis portion of the New Production Reactor Environmental Impact Statement. Aggregate population figures for the three counties in the study area were developed for high- and low-growth scenarios for the study period 1990 through 2040. Age-sex distributions for the three counties during the study period are also presented. The high and low scenarios were developed using high and low employment projections for the Hanford site. Hanford site employment figures were used as input for the HARC-REMI Economic and Demographic (HED) model to produced baseline employment forecasts for the three counties. These results, in turn, provided input to an integrated three-county demographic model. This model, a fairly standard cohort-component model, formalizes the relationship between employment and migration by using migration to equilibrate differences in labor supply and demand. In the resulting population estimates, age-sex distributions for 1981 show the relatively large work force age groups in Benton County while Yakima County reflects higher proportions of the population in the retirement ages. The 2040 forecasts for all three counties reflect the age effects of relatively constant and low fertility increased longevity, as well as the cumulative effects of the migration assumptions in the model. By 2040 the baby boom population will be 75 years and older, contributing to the higher proportion of population in the upper end age group. The low scenario age composition effects are similar. 13 refs., 5 figs., 9 tabs.

  11. An Econometric Model for Forecasting Income and Employment in Hawaii.

    ERIC Educational Resources Information Center

    Chau, Laurence C.

    This report presents the methodology for short-run forecasting of personal income and employment in Hawaii. The econometric model developed in the study is used to make actual forecasts through 1973 of income and employment, with major components forecasted separately. Several sets of forecasts are made, under different assumptions on external…

  12. SEASAT economic assessment. Volume 9: Ports and harbors case study and generalization. [economic benefits of SEASAT satellites to harbors and shipping industries through improved weather forecasting

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This case study and generalization quantify benefits made possible through improved weather forecasting resulting from the integration of SEASAT data into local weather forecasts. The major source of avoidable economic losses to shipping from inadequate weather forecasting data is shown to be dependent on local precipitation forecasting. The ports of Philadelphia and Boston were selected for study.

  13. A plan for the economic assessment of the benefits of improved meteorological forecasts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, R.; Greenberg, J.

    1975-01-01

    Benefit-cost relationships for the development of meteorological satellites are outlined. The weather forecast capabilities of the various weather satellites (Tiros, SEOS, Nimbus) are discussed, and the development of additional satellite systems is examined. A rational approach is development that leads to the establishment of the economic benefits which may result from the utilization of meteorological satellite data. The economic and social impacts of improved weather forecasting for industries and resources management are discussed, and significant weather sensitive industries are listed.

  14. On the dynamics of the world demographic transition and financial-economic crises forecasts

    NASA Astrophysics Data System (ADS)

    Akaev, A.; Sadovnichy, V.; Korotayev, A.

    2012-05-01

    The article considers dynamic processes involving non-linear power-law behavior in such apparently diverse spheres, as demographic dynamics and dynamics of prices of highly liquid commodities such as oil and gold. All the respective variables exhibit features of explosive growth containing precursors indicating approaching phase transitions/catastrophes/crises. The first part of the article analyzes mathematical models of demographic dynamics that describe various scenarios of demographic development in the post-phase-transition period, including a model that takes the limitedness of the Earth carrying capacity into account. This model points to a critical point in the early 2050s, when the world population, after reaching its maximum value may decrease afterward stabilizing then at a certain stationary level. The article presents an analysis of the influence of the demographic transition (directly connected with the hyperexponential growth of the world population) on the global socioeconomic and geopolitical development. The second part deals with the phenomenon of explosive growth of prices of such highly liquid commodities as oil and gold. It is demonstrated that at present the respective processes could be regarded as precursors of waves of the global financial-economic crisis that will demand the change of the current global economic and political system. It is also shown that the moments of the start of the first and second waves of the current global crisis could have been forecasted with a model of accelerating log-periodic fluctuations superimposed over a power-law trend with a finite singularity developed by Didier Sornette and collaborators. With respect to the oil prices, it is shown that it was possible to forecast the 2008 crisis with a precision up to a month already in 2007. The gold price dynamics was used to calculate the possible time of the start of the second wave of the global crisis (July-August 2011); note that this forecast has turned out

  15. Modeled Forecasts of Dengue Fever in San Juan, Puerto Rico Using NASA Satellite Enhanced Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.

    2015-12-01

    Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.

  16. Applications products of aviation forecast models

    NASA Technical Reports Server (NTRS)

    Garthner, John P.

    1988-01-01

    A service called the Optimum Path Aircraft Routing System (OPARS) supplies products based on output data from the Naval Oceanographic Global Atmospheric Prediction System (NOGAPS), a model run on a Cyber-205 computer. Temperatures and winds are extracted from the surface to 100 mb, approximately 55,000 ft. Forecast winds are available in six-hour time steps.

  17. Economic consequences of improved temperature forecasts: An experiment with the Florida citrus growers (control group results). Executive summary. [weather forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A demonstration experiment is being planned to show that frost and freeze prediction improvements are possible utilizing timely Synchronous Meteorological Satellite temperature measurements and that this information can affect Florida citrus grower operations and decisions so as to significantly reduce the cost for frost and freeze protection and crop losses. The design and implementation of the first phase of an economic experiment which will monitor citrus growers decisions, actions, costs and losses, and meteorological forecasts and actual weather events was carried out. The economic experiment was designed to measure the change in annual protection costs and crop losses which are the direct result of improved temperature forecasts. To estimate the benefits that may result from improved temperature forecasting capability, control and test groups were established with effective separation being accomplished temporally. The control group, utilizing current forecasting capability, was observed during the 1976-77 frost season and the results are reported. A brief overview is given of the economic experiment, the results obtained to date, and the work which still remains to be done.

  18. Modeling, Simulation, and Forecasting of Subseasonal Variability

    NASA Technical Reports Server (NTRS)

    Waliser, Duane; Schubert, Siegfried; Kumar, Arun; Weickmann, Klaus; Dole, Randall

    2003-01-01

    A planning workshop on "Modeling, Simulation and Forecasting of Subseasonal Variability" was held in June 2003. This workshop was the first of a number of meetings planned to follow the NASA-sponsored workshop entitled "Prospects For Improved Forecasts Of Weather And Short-Term Climate Variability On Sub-Seasonal Time Scales" that was held April 2002. The 2002 workshop highlighted a number of key sources of unrealized predictability on subseasonal time scales including tropical heating, soil wetness, the Madden Julian Oscillation (MJO) [a.k.a Intraseasonal Oscillation (ISO)], the Arctic Oscillation (AO) and the Pacific/North American (PNA) pattern. The overarching objective of the 2003 follow-up workshop was to proceed with a number of recommendations made from the 2002 workshop, as well as to set an agenda and collate efforts in the areas of modeling, simulation and forecasting intraseasonal and short-term climate variability. More specifically, the aims of the 2003 workshop were to: 1) develop a baseline of the "state of the art" in subseasonal prediction capabilities, 2) implement a program to carry out experimental subseasonal forecasts, and 3) develop strategies for tapping the above sources of predictability by focusing research, model development, and the development/acquisition of new observations on the subseasonal problem. The workshop was held over two days and was attended by over 80 scientists, modelers, forecasters and agency personnel. The agenda of the workshop focused on issues related to the MJO and tropicalextratropical interactions as they relate to the subseasonal simulation and prediction problem. This included the development of plans for a coordinated set of GCM hindcast experiments to assess current model subseasonal prediction capabilities and shortcomings, an emphasis on developing a strategy to rectify shortcomings associated with tropical intraseasonal variability, namely diabatic processes, and continuing the implementation of an

  19. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    DTIC Science & Technology

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  20. The forecasting Ocean assimilation model (FOAM) system

    NASA Astrophysics Data System (ADS)

    Bell, M. J.; Acreman, D.; Barciela, R.; Hines, A.; Martin, M. J.; Sellar, A.; Stark, J.; Storkey, D.

    The FOAM system is built around the ocean and sea-ice components of the Met Office's Unified Model (UM), developed by the Hadley Centre for coupled ocean-ice-atmosphere climate prediction. It is forced by 6-hourly surface fluxes from the Met Office's Numerical Weather Prediction (NWP) system, and assimilates temperature and salinity profiles from in situ instruments, surface temperature, sea-ice concentration and sea surface height data. A coarse resolution global configuration of FOAM on a 1 ° latitude-longitude grid with 20 vertical levels was implemented in the Met Office's operational suite in 1997. Nested models with grid spacings ranging from 30 km to 6 km are used to provide detailed forecasts for selected regions. The models are run each morning and typically produce 5-day forecasts. Real-time daily and archived analyses for the North Atlantic are freely available at http://nerc-essc.reading.ac.uk/las for research and developmentpurposes. We will present results from studies of the accuracy of the forecasts and how it depends on the data types assimilated and the assimilation scheme used. We will also briefly describe the developments being made to assimilate sea-ice concentration and velocity data and incorporate the HadOCC NPZD (nutrient-phytoplankton-zooplankton-detritus) model and assimilation of ocean colour data.

  1. Maintaining Realistic Uncertainty in Model and Forecast

    DTIC Science & Technology

    1999-09-30

    Maintaining Realistic Uncertainty in Model and Forecast Leonard Smith Pembroke College Oxford University St Aldates Oxford OX1 3LB England phone... Oxford University ,Pembroke College,St Aldates,Oxford OX1 3LB England, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S...in my group. REFERENCES Clarke, L. (1999) Rogue Thermocouple Detection. MSc Thesis, Mathematical Institute, Oxford University . Hansen J. and L. A

  2. Kalman filter estimation model in flood forecasting

    NASA Astrophysics Data System (ADS)

    Husain, Tahir

    Elementary precipitation and runoff estimation problems associated with hydrologic data collection networks are formulated in conjunction with the Kalman Filter Estimation Model. Examples involve the estimation of runoff using data from a single precipitation station and also from a number of precipitation stations. The formulations demonstrate the role of state-space, measurement, and estimation equations of the Kalman Filter Model in flood forecasting. To facilitate the formulation, the unit hydrograph concept and antecedent precipitation index is adopted in the estimation model. The methodology is then applied to estimate various flood events in the Carnation Creek of British Columbia.

  3. Real-time Social Internet Data to Guide Forecasting Models

    SciTech Connect

    Del Valle, Sara Y.

    2016-09-20

    Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematical approaches and heterogeneous data streams.

  4. Modeling and forecasting U.S. sex differentials in mortality.

    PubMed

    Carter, L R; Lee, R D

    1992-11-01

    "This paper examines differentials in observed and forecasted sex-specific life expectancies and longevity in the United States from 1900 to 2065. Mortality models are developed and used to generate long-run forecasts, with confidence intervals that extend recent work by Lee and Carter (1992). These results are compared for forecast accuracy with univariate naive forecasts of life expectancies and those prepared by the Actuary of the Social Security Administration."

  5. Flood forecasting for River Mekong with data-based models

    NASA Astrophysics Data System (ADS)

    Shahzad, Khurram M.; Plate, Erich J.

    2014-09-01

    In many regions of the world, the task of flood forecasting is made difficult because only a limited database is available for generating a suitable forecast model. This paper demonstrates that in such cases parsimonious data-based hydrological models for flood forecasting can be developed if the special conditions of climate and topography are used to advantage. As an example, the middle reach of River Mekong in South East Asia is considered, where a database of discharges from seven gaging stations on the river and 31 rainfall stations on the subcatchments between gaging stations is available for model calibration. Special conditions existing for River Mekong are identified and used in developing first a network connecting all discharge gages and then models for forecasting discharge increments between gaging stations. Our final forecast model (Model 3) is a linear combination of two structurally different basic models: a model (Model 1) using linear regressions for forecasting discharge increments, and a model (Model 2) using rainfall-runoff models. Although the model based on linear regressions works reasonably well for short times, better results are obtained with rainfall-runoff modeling. However, forecast accuracy of Model 2 is limited by the quality of rainfall forecasts. For best results, both models are combined by taking weighted averages to form Model 3. Model quality is assessed by means of both persistence index PI and standard deviation of forecast error.

  6. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.

    2016-10-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  7. Skill Assessment of National Multi-Model Ensemble Forecasts for Seasonal Drought Prediction in East Africa

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Hoell, A.; Roberts, J. B.; Funk, C. C.; Robertson, F. R.

    2014-12-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. As recently as 2011, part of this region underwent one of the worst famine events in its history. Timely and skillful drought forecasts at a seasonal scale for this region can inform better water and agro-pastoral management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts. However, seasonal drought prediction in this region faces several challenges including lack of skillful seasonal rainfall forecasts. The National Multi-model Ensemble (NMME); a state-of-the-art dynamical climate forecast system is potentially a promising tool for drought prediction in this region. The NMME incorporates climate forecasts from 6+ fully coupled dynamical models resulting in 100+ forecasts ensemble members. Recent studies have indicated that in general NMME offers improvement over forecasts from any of the individual model. However, thus far the skill of NMME for forecasting rainfall in a vulnerable region like East Africa has largely been unexplored. In this presentation we report findings of a comprehensive analysis that examines the strength and weakness of NMME in forecasting rainfall at seasonal scale in East Africa for all three of the prominent seasons of the region. (i.e. March-April-May, July-August-September, and October-November-December). Additionally we describe a hybrid approach that combines statistical method with NMME forecasts to improve rainfall forecast skill in the region when raw NMME forecasts skill is lacking. This approach uses constructed analog method to improve NMME's March-April-May rainfall forecast skill in East Africa.

  8. Seasonal Drought Prediction in East Africa: Can National Multi-Model Ensemble Forecasts Help?

    NASA Technical Reports Server (NTRS)

    Shukla, Shraddhanand; Roberts, J. B.; Funk, Christopher; Robertson, F. R.; Hoell, Andrew

    2015-01-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. As recently as in 2011 part of this region underwent one of the worst famine events in its history. Timely and skillful drought forecasts at seasonal scale for this region can inform better water and agro-pastoral management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts. However seasonal drought prediction in this region faces several challenges. Lack of skillful seasonal rainfall forecasts; the focus of this presentation, is one of those major challenges. In the past few decades, major strides have been taken towards improvement of seasonal scale dynamical climate forecasts. The National Centers for Environmental Prediction's (NCEP) National Multi-model Ensemble (NMME) is one such state-of-the-art dynamical climate forecast system. The NMME incorporates climate forecasts from 6+ fully coupled dynamical models resulting in 100+ ensemble member forecasts. Recent studies have indicated that in general NMME offers improvement over forecasts from any single model. However thus far the skill of NMME for forecasting rainfall in a vulnerable region like the East Africa has been unexplored. In this presentation we report findings of a comprehensive analysis that examines the strength and weakness of NMME in forecasting rainfall at seasonal scale in East Africa for all three of the prominent seasons for the region. (i.e. March-April-May, July-August-September and October-November- December). Simultaneously we also describe hybrid approaches; that combine statistical approaches with NMME forecasts; to improve rainfall forecast skill in the region when raw NMME forecasts lack in skill.

  9. Seasonal Drought Prediction in East Africa: Can National Multi-Model Ensemble Forecasts Help?

    NASA Technical Reports Server (NTRS)

    Shukla, Shraddhanand; Roberts, J. B.; Funk, Christopher; Robertson, F. R.; Hoell, Andrew

    2014-01-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. As recently as in 2011 part of this region underwent one of the worst famine events in its history. Timely and skillful drought forecasts at seasonal scale for this region can inform better water and agro-pastoral management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts. However seasonal drought prediction in this region faces several challenges. Lack of skillful seasonal rainfall forecasts; the focus of this presentation, is one of those major challenges. In the past few decades, major strides have been taken towards improvement of seasonal scale dynamical climate forecasts. The National Centers for Environmental Prediction's (NCEP) National Multi-model Ensemble (NMME) is one such state-of-the-art dynamical climate forecast system. The NMME incorporates climate forecasts from 6+ fully coupled dynamical models resulting in 100+ ensemble member forecasts. Recent studies have indicated that in general NMME offers improvement over forecasts from any single model. However thus far the skill of NMME for forecasting rainfall in a vulnerable region like the East Africa has been unexplored. In this presentation we report findings of a comprehensive analysis that examines the strength and weakness of NMME in forecasting rainfall at seasonal scale in East Africa for all three of the prominent seasons for the region. (i.e. March-April-May, July-August-September and October-November- December). Simultaneously we also describe hybrid approaches; that combine statistical approaches with NMME forecasts; to improve rainfall forecast skill in the region when raw NMME forecasts lack in skill.

  10. Hidden Markov Model and Forward-Backward Algorithm in Crude Oil Price Forecasting

    NASA Astrophysics Data System (ADS)

    Talib Bon, Abdul; Isah, Nuhu

    2016-11-01

    In light of the importance of crude oil to the world's economy, it is not surprising that economists have devoted great efforts towards developing methods to forecast price and volatility levels. Crude oil is an important energy commodity to mankind. Several causes have made crude oil prices to be volatile such as economic, political and social. Hence, forecasting the crude oil prices is essential to avoid unforeseen circumstances towards economic activity. In this study, daily crude oil prices data was obtained from WTI dated 2nd January to 29th May 2015. We used Hidden Markov Model (HMM) and Forward-Backward Algorithm to forecasting the crude oil prices. In this study, the analyses were done using Maple software. Based on the study, we concluded that model (0 3 0) is able to produce accurate forecast based on a description of history patterns in crude oil prices.

  11. Modeling, Forecasting and Mitigating Extreme Earthquakes

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  12. Enhancements to the Economic Impact Forecast System (EIFS).

    DTIC Science & Technology

    1984-04-01

    5 472.0 794.3 234.3 6 946.1 7,058.6 12,429.0 Source: Anderson, E. J1., T. BeckheLm, J. A. Chalmers, B. Meinke , Spacial Interaction and the Economic... Meinke , Spatial .5. .,Interaction and the Economic Hierarchy in the Western United States,Mountain West Research, Inc., for the Bureau of Reclamation

  13. Research on WNN modeling for gold price forecasting based on improved artificial bee colony algorithm.

    PubMed

    Li, Bai

    2014-01-01

    Gold price forecasting has been a hot issue in economics recently. In this work, wavelet neural network (WNN) combined with a novel artificial bee colony (ABC) algorithm is proposed for this gold price forecasting issue. In this improved algorithm, the conventional roulette selection strategy is discarded. Besides, the convergence statuses in a previous cycle of iteration are fully utilized as feedback messages to manipulate the searching intensity in a subsequent cycle. Experimental results confirm that this new algorithm converges faster than the conventional ABC when tested on some classical benchmark functions and is effective to improve modeling capacity of WNN regarding the gold price forecasting scheme.

  14. Electricity generation modeling and photovoltaic forecasts in China

    NASA Astrophysics Data System (ADS)

    Li, Shengnan

    With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979--2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.

  15. Modeling olive-crop forecasting in Tunisia

    NASA Astrophysics Data System (ADS)

    Ben Dhiab, Ali; Ben Mimoun, Mehdi; Oteros, Jose; Garcia-Mozo, Herminia; Domínguez-Vilches, Eugenio; Galán, Carmen; Abichou, Mounir; Msallem, Monji

    2016-01-01

    Tunisia is the world's second largest olive oil-producing region after the European Union. This paper reports on the use of models to forecast local olive crops, using data for Tunisia's five main olive-producing areas: Mornag, Jemmel, Menzel Mhiri, Chaal, and Zarzis. Airborne pollen counts were monitored over the period 1993-2011 using a Cour trap. Forecasting models were constructed using agricultural data (harvest size in tonnes of fruit/year) and data for several weather-related and phenoclimatic variables (rainfall, humidity, temperature, Growing Degree Days, and Chilling). Analysis of these data revealed that the amount of airborne pollen emitted over the pollen season as a whole (i.e., the Pollen Index) was the variable most influencing harvest size. Findings for all local models also indicated that the amount, timing, and distribution of rainfall (except during blooming) had a positive impact on final olive harvests. Air temperature also influenced final crop yield in three study provinces (Menzel Mhiri, Chaal, and Zarzis), but with varying consequences: in the model constructed for Chaal, cumulative maximum temperature from budbreak to start of flowering contributed positively to yield; in the Menzel Mhiri model, cumulative average temperatures during fruit development had a positive impact on output; in Zarzis, by contrast, cumulative maximum temperature during the period prior to flowering negatively influenced final crop yield. Data for agricultural and phenoclimatic variables can be used to construct valid models to predict annual variability in local olive-crop yields; here, models displayed an accuracy of 98, 93, 92, 91, and 88 % for Zarzis, Mornag, Jemmel, Chaal, and Menzel Mhiri, respectively.

  16. Brief Report: Forecasting the Economic Burden of Autism in 2015 and 2025 in the United States

    ERIC Educational Resources Information Center

    Leigh, J. Paul; Du, Juan

    2015-01-01

    Few US estimates of the economic burden of autism spectrum disorders (ASD) are available and none provide estimates for 2015 and 2025. We forecast annual direct medical, direct non-medical, and productivity costs combined will be $268 billion (range $162-$367 billion; 0.884-2.009% of GDP) for 2015 and $461 billion (range $276-$1011 billion;…

  17. Data Analysis, Modeling, and Ensemble Forecasting to Support NOWCAST and Forecast Activities at the Fallon Naval Air Station

    DTIC Science & Technology

    2008-09-30

    Weather and Research Forecasting model (WRF); 3) To include at a later stage the Coastal Oceanic and Atmospheric Modeling Prediction System ( COAMPS ...charts and animations, Other useful links, Ensemble forecasting (in construction), Forecast of transport and dispersion of dust and pollutants, Model...regional­ mesoscale multi-model ( COAMPS , WRF, and MM5) ensemble forecasting (Lewis 2005). In this initial phase of the development of the multi-model

  18. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    PubMed Central

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications. PMID:24977200

  19. Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns.

    PubMed

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.

  20. A Stochastic-Dynamic Model for Real Time Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Chow, K. C. A.; Watt, W. E.; Watts, D. G.

    1983-06-01

    A stochastic-dynamic model for real time flood forecasting was developed using Box-Jenkins modelling techniques. The purpose of the forecasting system is to forecast flood levels of the Saint John River at Fredericton, New Brunswick. The model consists of two submodels: an upstream model used to forecast the headpond level at the Mactaquac Dam and a downstream model to forecast the water level at Fredericton. Inputs to the system are recorded values of the water level at East Florenceville, the headpond level and gate position at Mactaquac, and the water level at Fredericton. The model was calibrated for the spring floods of 1973, 1974, 1977, and 1978, and its usefulness was verified for the 1979 flood. The forecasting results indicated that the stochastic-dynamic model produces reasonably accurate forecasts for lead times up to two days. These forecasts were then compared to those from the existing forecasting system and were found to be as reliable as those from the existing system.

  1. AFGWC (Air Force Global Weather Central) Cloud Forecast Models

    DTIC Science & Technology

    1987-04-01

    Weather Center, Offutt AFB, NE 68113. This document contains export- controlled technical data. USAF ETAC/DOL ltr, 9 Feb 1995 UNCLASSIFIED ::Am:tiiiiii...wmmmmm •..-111111111111 ?TWWT’ . " iwimni WC FILE COP* Lf> 5 I o < AFGWC CLOUD FORECAST MODELS EDITED BY MAJOR TIMOTHY D, CRUM SCm ’-■ It...5LAYBR model makes extra-tropical forecasts for periods up to 48 hours. Forecasts of layer and total cloud, cloud type, layer temperatures , and

  2. On-line economic optimization of energy systems using weather forecast information.

    SciTech Connect

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-01-01

    We establish an on-line optimization framework to exploit weather forecast information in the operation of energy systems. We argue that anticipating the weather conditions can lead to more proactive and cost-effective operations. The framework is based on the solution of a stochastic dynamic real-time optimization (D-RTO) problem incorporating forecasts generated from a state-of-the-art weather prediction model. The necessary uncertainty information is extracted from the weather model using an ensemble approach. The accuracy of the forecast trends and uncertainty bounds are validated using real meteorological data. We present a numerical simulation study in a building system to demonstrate the developments.

  3. Dynamically downscaled multi-model ensemble seasonal forecasts over Ethiopia

    NASA Astrophysics Data System (ADS)

    Asharaf, Shakeel; Fröhlich, Kristina; Fernandez, Jesus; Cardoso, Rita; Nikulin, Grigory; Früh, Barbara

    2016-04-01

    Truthful and reliable seasonal rainfall predictions have an important social and economic value for the east African countries as their economy is highly dependent on rain-fed agriculture and pastoral systems. Only June to September (JJAS) seasonal rainfall accounts to more than 80% crop production in Ethiopia. Hence, seasonal foresting is a crucial concern for the region. The European Provision of Regional Impact Assessment on a seasonal to decadal timescale (EUPORIAS) project offers a common framework to understand hindcast uncertainties through the use of multi-model and multi-member simulations over east Africa. Under this program, the participating regional climate models (RCMs) were driven by the atmospheric-only version of the ECEARTH global climate model, which provides hindcasts of a five-months period (May to September) from 1991-2012. In this study the RCMs downscaled rainfall is evaluated with respect to the observed JJAS rainfall over Ethiopia. Both deterministic and probabilistic based forecast skills are assessed. Our preliminary results show the potential usefulness of multi-model ensemble simulations in forecasting the seasonal rainfall over the region.

  4. Development of Ensemble Model Based Water Demand Forecasting Model

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; So, Byung-Jin; Kim, Seong-Hyeon; Kim, Byung-Seop

    2014-05-01

    In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and optimal pump operation and this has led to various studies regarding energy saving and improvement of water supply reliability. Existing water demand forecasting models are categorized into two groups in view of modeling and predicting their behavior in time series. One is to consider embedded patterns such as seasonality, periodicity and trends, and the other one is an autoregressive model that is using short memory Markovian processes (Emmanuel et al., 2012). The main disadvantage of the abovementioned model is that there is a limit to predictability of water demands of about sub-daily scale because the system is nonlinear. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The proposed model is consist of two parts. One is a multi-model scheme that is based on combination of independent prediction model. The other one is a cross validation scheme named Bagging approach introduced by Brieman (1996) to derive weighting factors corresponding to individual models. Individual forecasting models that used in this study are linear regression analysis model, polynomial regression, multivariate adaptive regression splines(MARS), SVM(support vector machine). The concepts are demonstrated through application to observed from water plant at several locations in the South Korea. Keywords: water demand, non-linear model, the ensemble forecasting model, uncertainty. Acknowledgements This subject is supported by Korea Ministry of Environment as "Projects for Developing Eco-Innovation Technologies (GT-11-G-02-001-6)

  5. Forecasting the Economic Impact of Future Space Station Operations

    NASA Technical Reports Server (NTRS)

    Summer, R. A.; Smolensky, S. M.; Muir, A. H.

    1967-01-01

    Recent manned and unmanned Earth-orbital operations have suggested great promise of improved knowledge and of substantial economic and associated benefits to be derived from services offered by a space station. Proposed application areas include agriculture, forestry, hydrology, public health, oceanography, natural disaster warning, and search/rescue operations. The need for reliable estimates of economic and related Earth-oriented benefits to be realized from Earth-orbital operations is discussed and recent work in this area is reviewed. Emphasis is given to those services based on remote sensing. Requirements for a uniform, comprehensive and flexible methodology are discussed. A brief review of the suggested methodology is presented. This methodology will be exercised through five case studies which were chosen from a gross inventory of almost 400 user candidates. The relationship of case study results to benefits in broader application areas is discussed, Some management implications of possible future program implementation are included.

  6. The potential economic benefits of improvements in weather forecasting

    NASA Technical Reports Server (NTRS)

    Thompson, J. C.

    1972-01-01

    The study was initiated as a consequence of the increased use of weather satellites, electronic computers and other technological developments which have become a virtual necessity for solving the complex problems of the earth's atmosphere. Neither the economic emphasis, nor the monetary results of the study, are intended to imply their sole use as criteria for making decisions concerning the intrinsic value of technological improvements in meteorology.

  7. Multi-model MJO forecasting during DYNAMO/CINDY period

    NASA Astrophysics Data System (ADS)

    Fu, Xiouhua; Lee, June-Yi; Hsu, Pang-Chi; Taniguchi, Hiroshi; Wang, Bin; Wang, Wanqiu; Weaver, Scott

    2013-08-01

    The present study assesses the forecast skill of the Madden-Julian Oscillation (MJO) observed during the period of DYNAMO (Dynamics of the MJO)/CINDY (Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011) field campaign in the GFS (NCEP Global Forecast System), CFSv2 (NCEP Climate Forecast System version 2) and UH (University of Hawaii) models, and revealed their strength and weakness in forecasting initiation and propagation of the MJO. Overall, the models forecast better the successive MJO which follows the preceding event than that with no preceding event (primary MJO). The common modeling problems include too slow eastward propagation, the Maritime Continent barrier and weak intensity. The forecasting skills of MJO major modes reach 13, 25 and 28 days, respectively, in the GFS atmosphere-only model, the CFSv2 and UH coupled models. An equal-weighted multi-model ensemble with the CFSv2 and UH models reaches 36 days. Air-sea coupling plays an important role for initiation and propagation of the MJO and largely accounts for the skill difference between the GFS and CFSv2. A series of forecasting experiments by forcing UH model with persistent, forecasted and observed daily SST further demonstrate that: (1) air-sea coupling extends MJO skill by about 1 week; (2) atmosphere-only forecasts driven by forecasted daily SST have a similar skill as the coupled forecasts, which suggests that if the high- resolution GFS is forced with CFSv2 forecasted daily SST, its forecast skill can be much higher than its current level as forced with persistent SST; (3) atmosphere-only forecasts driven by observed daily SST reaches beyond 40 days. It is also found that the MJO-TC (Tropical Cyclone) interactions have been much better represented in the UH and CFSv2 models than that in the GFS model. Both the CFSv2 and UH coupled models reasonably well capture the development of westerly wind bursts associated with November 2011 MJO and the cyclogenesis of TC05A in

  8. Multi-model ensemble forecasting of North Atlantic tropical cyclone activity

    NASA Astrophysics Data System (ADS)

    Villarini, Gabriele; Luitel, Beda; Vecchi, Gabriel A.; Ghosh, Joyee

    2016-09-01

    North Atlantic tropical cyclones (TCs) and hurricanes are responsible for a large number of fatalities and economic damage. Skillful seasonal predictions of the North Atlantic TC activity can provide basic information critical to our improved preparedness. This study focuses on the development of statistical-dynamical seasonal forecasting systems for different quantities related to the frequency and intensity of North Atlantic TCs. These models use only tropical Atlantic and tropical mean sea surface temperatures (SSTs) to describe the variability exhibited by the observational records because they reflect the importance of both local and non-local effects on the genesis and development of TCs in the North Atlantic basin. A set of retrospective forecasts of SSTs by six experimental seasonal-to-interannual prediction systems from the North American Multi-Model Ensemble are used as covariates. The retrospective forecasts are performed over the period 1982-2015. The skill of these statistical-dynamical models is quantified for different quantities (basin-wide number of tropical storms and hurricanes, power dissipation index and accumulated cyclone energy) for forecasts initialized as early as November of the year prior to the season to forecast. The results of this work show that it is possible to obtain skillful retrospective forecasts of North Atlantic TC activity with a long lead time. Moreover, probabilistic forecasts of North Atlantic TC activity for the 2016 season are provided.

  9. Forecasting Marine Corps Enlisted Attrition Through Parametric Modeling

    DTIC Science & Technology

    2009-03-01

    OF PAGES 85 14. SUBJECT TERMS Forecasting, Attrition, Marine Corps NEAS losses, Gompertz Model, Survival Analysis 16. PRICE CODE 17. SECURITY...18 1. Parametric Proportional Hazards Models ......................................18 2. Gompertz Models...19 a. Gompertz Hazard Function....................................................19 b. Gompertz Cumulative

  10. A recurrent support vector regression model in rainfall forecasting

    NASA Astrophysics Data System (ADS)

    Pai, Ping-Feng; Hong, Wei-Chiang

    2007-03-01

    To minimize potential loss of life and property caused by rainfall during typhoon seasons, precise rainfall forecasts have been one of the key subjects in hydrological research. However, rainfall forecast is made difficult by some very complicated and unforeseen physical factors associated with rainfall. Recently, support vector regression (SVR) models and recurrent SVR (RSVR) models have been successfully employed to solve time-series problems in some fields. Nevertheless, the use of RSVR models in rainfall forecasting has not been investigated widely. This study attempts to improve the forecasting accuracy of rainfall by taking advantage of the unique strength of the SVR model, genetic algorithms, and the recurrent network architecture. The performance of genetic algorithms with different mutation rates and crossover rates in SVR parameter selection is examined. Simulation results identify the RSVR with genetic algorithms model as being an effective means of forecasting rainfall amount. Copyright

  11. Regional Model Nesting Within GFS Daily Forecasts Over West Africa

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew; Lonergan, Patrick; Worrell, Ruben

    2010-01-01

    The study uses the RM3, the regional climate model at the Center for Climate Systems Research of Columbia University and the NASA/Goddard Institute for Space Studies (CCSR/GISS). The paper evaluates 30 48-hour RM3 weather forecasts over West Africa during September 2006 made on a 0.5 grid nested within 1 Global Forecast System (GFS) global forecasts. September 2006 was the Special Observing Period #3 of the African Monsoon Multidisciplinary Analysis (AMMA). Archived GFS initial conditions and lateral boundary conditions for the simulations from the US National Weather Service, National Oceanographic and Atmospheric Administration were interpolated four times daily. Results for precipitation forecasts are validated against Tropical Rainfall Measurement Mission (TRMM) satellite estimates and data from the Famine Early Warning System (FEWS), which includes rain gauge measurements, and forecasts of circulation are compared to reanalysis 2. Performance statistics for the precipitation forecasts include bias, root-mean-square errors and spatial correlation coefficients. The nested regional model forecasts are compared to GFS forecasts to gauge whether nesting provides additional realistic information. They are also compared to RM3 simulations driven by reanalysis 2, representing high potential skill forecasts, to gauge the sensitivity of results to lateral boundary conditions. Nested RM3/GFS forecasts generate excessive moisture advection toward West Africa, which in turn causes prodigious amounts of model precipitation. This problem is corrected by empirical adjustments in the preparation of lateral boundary conditions and initial conditions. The resulting modified simulations improve on the GFS precipitation forecasts, achieving time-space correlations with TRMM of 0.77 on the first day and 0.63 on the second day. One realtime RM3/GFS precipitation forecast made at and posted by the African Centre of Meteorological Application for Development (ACMAD) in Niamey, Niger

  12. Visibility Parameterization For Forecasting Model Applications

    NASA Astrophysics Data System (ADS)

    Gultepe, I.; Milbrandt, J.; Binbin, Z.

    2010-07-01

    In this study, the visibility parameterizations developed during Fog Remote Sensing And Modeling (FRAM) projects, conducted in central and eastern Canada, will be summarized and their use for forecasting/nowcasting applications will be discussed. Parameterizations developed for reductions in visibility due to 1) fog, 2) rain, 3) snow, and 4) relative humidity (RH) during FRAM will be given and uncertainties in the parameterizations will be discussed. Comparisons made between Canadian GEM NWP model (with 1 and 2.5 km horizontal grid spacing) and observations collected during the Science of Nowcasting Winter Weather for Vancouver 2010 (SNOW-V10) project and FRAM projects, using the new parameterizations, will be given Observations used in this study were obtained using a fog measuring device (FMD) for fog parameterization, a Vaisala all weather precipitation sensor called FD12P for rain and snow parameterizations and visibility measurements, and a total precipitation sensor (TPS), and distrometers called OTT ParSiVel and Laser Precipitation Measurement (LPM) for rain/snow particle spectra. The results from the three SNOW-V10 sites suggested that visibility values given by the GEM model using the new parameterizations were comparable with observed visibility values when model based input parameters such as liquid water content, RH, and precipitation rate for visibility parameterizations were predicted accurately.

  13. Wind-Farm Forecasting Using the HARMONIE Weather Forecast Model and Bayes Model Averaging for Bias Removal.

    NASA Astrophysics Data System (ADS)

    O'Brien, Enda; McKinstry, Alastair; Ralph, Adam

    2015-04-01

    Building on previous work presented at EGU 2013 (http://www.sciencedirect.com/science/article/pii/S1876610213016068 ), more results are available now from a different wind-farm in complex terrain in southwest Ireland. The basic approach is to interpolate wind-speed forecasts from an operational weather forecast model (i.e., HARMONIE in the case of Ireland) to the precise location of each wind-turbine, and then use Bayes Model Averaging (BMA; with statistical information collected from a prior training-period of e.g., 25 days) to remove systematic biases. Bias-corrected wind-speed forecasts (and associated power-generation forecasts) are then provided twice daily (at 5am and 5pm) out to 30 hours, with each forecast validation fed back to BMA for future learning. 30-hr forecasts from the operational Met Éireann HARMONIE model at 2.5km resolution have been validated against turbine SCADA observations since Jan. 2014. An extra high-resolution (0.5km grid-spacing) HARMONIE configuration has been run since Nov. 2014 as an extra member of the forecast "ensemble". A new version of HARMONIE with extra filters designed to stabilize high-resolution configurations has been run since Jan. 2015. Measures of forecast skill and forecast errors will be provided, and the contributions made by the various physical and computational enhancements to HARMONIE will be quantified.

  14. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  15. Multilayer stock forecasting model using fuzzy time series.

    PubMed

    Javedani Sadaei, Hossein; Lee, Muhammad Hisyam

    2014-01-01

    After reviewing the vast body of literature on using FTS in stock market forecasting, certain deficiencies are distinguished in the hybridization of findings. In addition, the lack of constructive systematic framework, which can be helpful to indicate direction of growth in entire FTS forecasting systems, is outstanding. In this study, we propose a multilayer model for stock market forecasting including five logical significant layers. Every single layer has its detailed concern to assist forecast development by reconciling certain problems exclusively. To verify the model, a set of huge data containing Taiwan Stock Index (TAIEX), National Association of Securities Dealers Automated Quotations (NASDAQ), Dow Jones Industrial Average (DJI), and S&P 500 have been chosen as experimental datasets. The results indicate that the proposed methodology has the potential to be accepted as a framework for model development in stock market forecasts using FTS.

  16. Multilayer Stock Forecasting Model Using Fuzzy Time Series

    PubMed Central

    Javedani Sadaei, Hossein; Lee, Muhammad Hisyam

    2014-01-01

    After reviewing the vast body of literature on using FTS in stock market forecasting, certain deficiencies are distinguished in the hybridization of findings. In addition, the lack of constructive systematic framework, which can be helpful to indicate direction of growth in entire FTS forecasting systems, is outstanding. In this study, we propose a multilayer model for stock market forecasting including five logical significant layers. Every single layer has its detailed concern to assist forecast development by reconciling certain problems exclusively. To verify the model, a set of huge data containing Taiwan Stock Index (TAIEX), National Association of Securities Dealers Automated Quotations (NASDAQ), Dow Jones Industrial Average (DJI), and S&P 500 have been chosen as experimental datasets. The results indicate that the proposed methodology has the potential to be accepted as a framework for model development in stock market forecasts using FTS. PMID:24605058

  17. A channel dynamics model for real-time flood forecasting

    USGS Publications Warehouse

    Hoos, A.B.; Koussis, A.D.; Beale, G.O.

    1989-01-01

    A new channel dynamics scheme ASPIRE (alternative system predictor in real time), designed specifically for real-time river flow forecasting, is introduced to reduce uncertainty in the forecast. ASPIRE is a storage routing model that limits the influence of catchment model forecast errors to the downstream station closest to the catchment. Comparisons with the Muskingum routing scheme in field tests suggest that the ASPIRE scheme can provide more accurate forecasts, probably because discharge observations are used to a maximum advantage and routing reaches (and model errors in each reach) are uncoupled. Using ASPIRE in conjunction with the Kalman filter did not improve forecast accuracy relative to a deterministic updating procedure. Theoretical analysis suggests that this is due to a large process noise to measurement noise ratio. -Authors

  18. With string model to time series forecasting

    NASA Astrophysics Data System (ADS)

    Pinčák, Richard; Bartoš, Erik

    2015-10-01

    Overwhelming majority of econometric models applied on a long term basis in the financial forex market do not work sufficiently well. The reason is that transaction costs and arbitrage opportunity are not included, as this does not simulate the real financial markets. Analyses are not conducted on the non equidistant date but rather on the aggregate date, which is also not a real financial case. In this paper, we would like to show a new way how to analyze and, moreover, forecast financial market. We utilize the projections of the real exchange rate dynamics onto the string-like topology in the OANDA market. The latter approach allows us to build the stable prediction models in trading in the financial forex market. The real application of the multi-string structures is provided to demonstrate our ideas for the solution of the problem of the robust portfolio selection. The comparison with the trend following strategies was performed, the stability of the algorithm on the transaction costs for long trade periods was confirmed.

  19. Sea Fog Forecasting with Lagrangian Models

    NASA Astrophysics Data System (ADS)

    Lewis, J. M.

    2014-12-01

    In 1913, G. I. Taylor introduced us to a Lagrangian view of sea fog formation. He conducted his study off the coast of Newfoundland in the aftermath of the Titanic disaster. We briefly review Taylor's classic work and then apply these same principles to a case of sea fog formation and dissipation off the coast of California. The resources used in this study consist of: 1) land-based surface and upper-air observations, 2) NDBC (National Data Buoy Center) observations from moored buoys equipped to measure dew point temperature as well as the standard surface observations at sea (wind, sea surface temperature, pressure, and air temperature), 3) satellite observations of cloud, and 4) a one-dimensional (vertically directed) boundary layer model that tracks with the surface air motion and makes use of sophisticated turbulence-radiation parameterizations. Results of the investigation indicate that delicate interplay and interaction between the radiation and turbulence processes makes accurate forecasts of sea fog onset unlikely in the near future. This pessimistic attitude stems from inadequacy of the existing network of observations and uncertainties in modeling dynamical processes within the boundary layer.

  20. Evaluation of statistical models for forecast errors from the HBV model

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur

    2010-04-01

    SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.

  1. A Methodology for Forecasting Damage & Economic Consequences to Floods: Building on the National Flood Interoperability Experiment (NFIE)

    NASA Astrophysics Data System (ADS)

    Tootle, G. A.; Gutenson, J. L.; Zhu, L.; Ernest, A. N. S.; Oubeidillah, A.; Zhang, X.

    2015-12-01

    The National Flood Interoperability Experiment (NFIE) held June 3-July 17, 2015 at the National Water Center (NWC) in Tuscaloosa, Alabama sought to demonstrate an increase in flood predictive capacity for the coterminous United States (CONUS). Accordingly, NFIE-derived technologies and workflows offer the ability to forecast flood damage and economic consequence estimates that coincide with the hydrologic and hydraulic estimations these physics-based models generate. A model providing an accurate prediction of damage and economic consequences is a valuable asset when allocating funding for disaster response, recovery, and relief. Damage prediction and economic consequence assessment also offer an adaptation planning mechanism for defending particularly valuable or vulnerable structures. The NFIE, held at the NWC on The University of Alabama (UA) campus led to the development of this large scale flow and inundation forecasting framework. Currently, the system can produce 15-hour lead-time forecasts for the entire coterminous United States (CONUS). A concept which is anticipated to become operational as of May 2016 within the NWC. The processing of such a large-scale, fine resolution model is accomplished in a parallel computing environment using large supercomputing clusters. Traditionally, flood damage and economic consequence assessment is calculated in a desktop computing environment with a ménage of meteorology, hydrology, hydraulic, and damage assessment tools. In the United States, there are a range of these flood damage/ economic consequence assessment software's available to local, state, and federal emergency management agencies. Among the more commonly used and freely accessible models are the Hydrologic Engineering Center's Flood Damage Reduction Analysis (HEC-FDA), Flood Impact Assessment (HEC-FIA), and Federal Emergency Management Agency's (FEMA's) United States Multi-Hazard (Hazus-MH). All of which exist only in a desktop environment. With this

  2. Verification of short lead time forecast models: applied to Kp and Dst forecasting

    NASA Astrophysics Data System (ADS)

    Wintoft, Peter; Wik, Magnus

    2016-04-01

    In the ongoing EU/H2020 project PROGRESS models that predicts Kp, Dst, and AE from L1 solar wind data will be used as inputs to radiation belt models. The possible lead times from L1 measurements are shorter (10s of minutes to hours) than the typical duration of the physical phenomena that should be forecast. Under these circumstances several metrics fail to single out trivial cases, such as persistence. In this work we explore metrics and approaches for short lead time forecasts. We apply these to current Kp and Dst forecast models. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

  3. Improving of local ozone forecasting by integrated models.

    PubMed

    Gradišar, Dejan; Grašič, Boštjan; Božnar, Marija Zlata; Mlakar, Primož; Kocijan, Juš

    2016-09-01

    This paper discuss the problem of forecasting the maximum ozone concentrations in urban microlocations, where reliable alerting of the local population when thresholds have been surpassed is necessary. To improve the forecast, the methodology of integrated models is proposed. The model is based on multilayer perceptron neural networks that use as inputs all available information from QualeAria air-quality model, WRF numerical weather prediction model and onsite measurements of meteorology and air pollution. While air-quality and meteorological models cover large geographical 3-dimensional space, their local resolution is often not satisfactory. On the other hand, empirical methods have the advantage of good local forecasts. In this paper, integrated models are used for improved 1-day-ahead forecasting of the maximum hourly value of ozone within each day for representative locations in Slovenia. The WRF meteorological model is used for forecasting meteorological variables and the QualeAria air-quality model for gas concentrations. Their predictions, together with measurements from ground stations, are used as inputs to a neural network. The model validation results show that integrated models noticeably improve ozone forecasts and provide better alert systems.

  4. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  5. Forecasting optimal solar energy supply in Jiangsu Province (China): a systematic approach using hybrid of weather and energy forecast models.

    PubMed

    Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  6. Forecasting Optimal Solar Energy Supply in Jiangsu Province (China): A Systematic Approach Using Hybrid of Weather and Energy Forecast Models

    PubMed Central

    Zhao, Xiuli; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor. PMID:24511292

  7. Forecasting unconventional resource productivity - A spatial Bayesian model

    NASA Astrophysics Data System (ADS)

    Montgomery, J.; O'sullivan, F.

    2015-12-01

    Today's low prices mean that unconventional oil and gas development requires ever greater efficiency and better development decision-making. Inter and intra-field variability in well productivity, which is a major contemporary driver of uncertainty regarding resource size and its economics is driven by factors including geological conditions, well and completion design (which companies vary as they seek to optimize their performance), and uncertainty about the nature of fracture propagation. Geological conditions are often not be well understood early on in development campaigns, but nevertheless critical assessments and decisions must be made regarding the value of drilling an area and the placement of wells. In these situations, location provides a reasonable proxy for geology and the "rock quality." We propose a spatial Bayesian model for forecasting acreage quality, which improves decision-making by leveraging available production data and provides a framework for statistically studying the influence of different parameters on well productivity. Our approach consists of subdividing a field into sections and forming prior distributions for productivity in each section based on knowledge about the overall field. Production data from wells is used to update these estimates in a Bayesian fashion, improving model accuracy far more rapidly and with less sensitivity to outliers than a model that simply establishes an "average" productivity in each section. Additionally, forecasts using this model capture the importance of uncertainty—either due to a lack of information or for areas that demonstrate greater geological risk. We demonstrate the forecasting utility of this method using public data and also provide examples of how information from this model can be combined with knowledge about a field's geology or changes in technology to better quantify development risk. This approach represents an important shift in the way that production data is used to guide

  8. A refined fuzzy time series model for stock market forecasting

    NASA Astrophysics Data System (ADS)

    Jilani, Tahseen Ahmed; Burney, Syed Muhammad Aqil

    2008-05-01

    Time series models have been used to make predictions of stock prices, academic enrollments, weather, road accident casualties, etc. In this paper we present a simple time-variant fuzzy time series forecasting method. The proposed method uses heuristic approach to define frequency-density-based partitions of the universe of discourse. We have proposed a fuzzy metric to use the frequency-density-based partitioning. The proposed fuzzy metric also uses a trend predictor to calculate the forecast. The new method is applied for forecasting TAIEX and enrollments’ forecasting of the University of Alabama. It is shown that the proposed method work with higher accuracy as compared to other fuzzy time series methods developed for forecasting TAIEX and enrollments of the University of Alabama.

  9. Forecasting natural aquifer discharge using a numerical model and convolution.

    PubMed

    Boggs, Kevin G; Johnson, Gary S; Van Kirk, Rob; Fairley, Jerry P

    2014-01-01

    If the nature of groundwater sources and sinks can be determined or predicted, the data can be used to forecast natural aquifer discharge. We present a procedure to forecast the relative contribution of individual aquifer sources and sinks to natural aquifer discharge. Using these individual aquifer recharge components, along with observed aquifer heads for each January, we generate a 1-year, monthly spring discharge forecast for the upcoming year with an existing numerical model and convolution. The results indicate that a forecast of natural aquifer discharge can be developed using only the dominant aquifer recharge sources combined with the effects of aquifer heads (initial conditions) at the time the forecast is generated. We also estimate how our forecast will perform in the future using a jackknife procedure, which indicates that the future performance of the forecast is good (Nash-Sutcliffe efficiency of 0.81). We develop a forecast and demonstrate important features of the procedure by presenting an application to the Eastern Snake Plain Aquifer in southern Idaho.

  10. Evaluating Rapid Models for High-Throughput Exposure Forecasting (SOT)

    EPA Science Inventory

    High throughput exposure screening models can provide quantitative predictions for thousands of chemicals; however these predictions must be systematically evaluated for predictive ability. Without the capability to make quantitative, albeit uncertain, forecasts of exposure, the ...

  11. Metropolitan and state economic regions (MASTER) model - overview

    SciTech Connect

    Adams, R.C.; Moe, R.J.; Scott, M.J.

    1983-05-01

    The Metropolitan and State Economic Regions (MASTER) model is a unique multi-regional economic model designed to forecast regional economic activity and assess the regional economic impacts caused by national and regional economic changes (e.g., interest rate fluctuations, energy price changes, construction and operation of a nuclear waste storage facility, shutdown of major industrial operations). MASTER can be applied to any or all of the 268 Standard Metropolitan Statistical Areas (SMSAs) and 48 non-SMSA rest-of-state-areas (ROSAs) in the continental US. The model can also be applied to any or all of the continental US counties and states. This report is divided into four sections: capabilities and applications of the MASTER model, development of the model, model simulation, and validation testing.

  12. Reliable long-range ensemble streamflow forecasts: Combining calibrated climate forecasts with a conceptual runoff model and a staged error model

    NASA Astrophysics Data System (ADS)

    Bennett, James C.; Wang, Q. J.; Li, Ming; Robertson, David E.; Schepen, Andrew

    2016-10-01

    We present a new streamflow forecasting system called forecast guided stochastic scenarios (FoGSS). FoGSS makes use of ensemble seasonal precipitation forecasts from a coupled ocean-atmosphere general circulation model (CGCM). The CGCM forecasts are post-processed with the method of calibration, bridging and merging (CBaM) to produce ensemble precipitation forecasts over river catchments. CBaM corrects biases and removes noise from the CGCM forecasts, and produces highly reliable ensemble precipitation forecasts. The post-processed CGCM forecasts are used to force the Wapaba monthly rainfall-runoff model. Uncertainty in the hydrological modeling is accounted for with a three-stage error model. Stage 1 applies the log-sinh transformation to normalize residuals and homogenize their variance; Stage 2 applies a conditional bias-correction to correct biases and help remove negative forecast skill; Stage 3 applies an autoregressive model to improve forecast accuracy at short lead-times and propagate uncertainty through the forecast. FoGSS generates ensemble forecasts in the form of time series for the coming 12 months. In a case study of two catchments, FoGSS produces reliable forecasts at all lead-times. Forecast skill with respect to climatology is evident to lead-times of about 3 months. At longer lead-times, forecast skill approximates that of climatology forecasts; that is, forecasts become like stochastic scenarios. Because forecast skill is virtually never negative at long lead-times, forecasts of accumulated volumes can be skillful. Forecasts of accumulated 12 month streamflow volumes are significantly skillful in several instances, and ensembles of accumulated volumes are reliable. We conclude that FoGSS forecasts could be highly useful to water managers.

  13. Spatio-temporal modeling for real-time ozone forecasting.

    PubMed

    Paci, Lucia; Gelfand, Alan E; Holland, David M

    2013-05-01

    The accurate assessment of exposure to ambient ozone concentrations is important for informing the public and pollution monitoring agencies about ozone levels that may lead to adverse health effects. High-resolution air quality information can offer significant health benefits by leading to improved environmental decisions. A practical challenge facing the U.S. Environmental Protection Agency (USEPA) is to provide real-time forecasting of current 8-hour average ozone exposure over the entire conterminous United States. Such real-time forecasting is now provided as spatial forecast maps of current 8-hour average ozone defined as the average of the previous four hours, current hour, and predictions for the next three hours. Current 8-hour average patterns are updated hourly throughout the day on the EPA-AIRNow web site. The contribution here is to show how we can substantially improve upon current real-time forecasting systems. To enable such forecasting, we introduce a downscaler fusion model based on first differences of real-time monitoring data and numerical model output. The model has a flexible coefficient structure and uses an efficient computational strategy to fit model parameters. Our hybrid computational strategy blends continuous background updated model fitting with real-time predictions. Model validation analyses show that we are achieving very accurate and precise ozone forecasts.

  14. Genetic programming model for forecast of short and noisy data

    NASA Astrophysics Data System (ADS)

    Sivapragasam, C.; Vincent, P.; Vasudevan, G.

    2007-01-01

    Though forecasting of river flow has received a great deal of attention from engineers and researchers throughout the world, this still continues to be a challenging task owing to the complexity of the process. In the last decade or so, artificial neural networks (ANNs) have been widely applied, and their ability to model complex phenomena has been clearly demonstrated. However, the success of ANNs depends very crucially on having representative records of sufficient length. Further, the forecast accuracy decreases rapidly with an increase in the forecast horizon. In this study, the use of the Darwinian theory-based recent evolutionary technique of genetic programming (GP) is suggested to forecast fortnightly flow up to 4-lead. It is demonstrated that short lead predictions can be significantly improved from a short and noisy time series if the stochastic (noise) component is appropriately filtered out. The deterministic component can then be easily modelled. Further, only the immediate antecedent exogenous and/or non-exogenous inputs can be assumed to control the process. With an increase in the forecast horizon, the stochastic components also play an important role in the forecast, besides the inherent difficulty in ascertaining the appropriate input variables which can be assumed to govern the underlying process. GP is found to be an efficient tool to identify the most appropriate input variables to achieve reasonable prediction accuracy for higher lead-period forecasts. A comparison with ANNs suggests that though there is no significant difference in the prediction accuracy, GP does offer some unique advantages. Copyright

  15. Attractor-based models for individual and groups’ forecasting

    NASA Astrophysics Data System (ADS)

    Astakhova, N. N.; Demidova, L. A.; Kuzovnikov, A. V.; Tishkin, R. V.

    2017-02-01

    In this paper the questions of the attractors’ application in case of the development of the forecasting models on the base of the strictly binary trees have been considered. Usually, these models use the short time series as the training data sequence. The application of the principles of the attractors’ forming on the base of the long time series will allow creating the training data sequence more reasonably. The offered approach to creation of the training data sequence for the forecasting models on the base of the strictly binary trees was applied for the individual and groups’ forecasting of time series. At the same time the problems of one-objective and multiobjective optimization on the base of the modified clonal selection algorithm have been considered. The reviewed examples confirm the efficiency of the attractors’ application in sense of minimization of the used quality indicators of the forecasting models, and also the forecasting errors on 1 – 5 steps forward. Besides, the minimization of time expenditures for the development of the forecasting models is provided.

  16. Modeling and computing of stock index forecasting based on neural network and Markov chain.

    PubMed

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market.

  17. Forecasting European Droughts using the North American Multi-Model Ensemble (NMME)

    NASA Astrophysics Data System (ADS)

    Thober, Stephan; Kumar, Rohini; Samaniego, Luis; Sheffield, Justin; Schäfer, David; Mai, Juliane

    2015-04-01

    Soil moisture droughts have the potential to diminish crop yields causing economic damage or even threatening the livelihood of societies. State-of-the-art drought forecasting systems incorporate seasonal meteorological forecasts to estimate future drought conditions. Meteorological forecasting skill (in particular that of precipitation), however, is limited to a few weeks because of the chaotic behaviour of the atmosphere. One of the most important challenges in drought forecasting is to understand how the uncertainty in the atmospheric forcings (e.g., precipitation and temperature) is further propagated into hydrologic variables such as soil moisture. The North American Multi-Model Ensemble (NMME) provides the latest collection of a multi-institutional seasonal forecasting ensemble for precipitation and temperature. In this study, we analyse the skill of NMME forecasts for predicting European drought events. The monthly NMME forecasts are downscaled to daily values to force the mesoscale hydrological model (mHM). The mHM soil moisture forecasts obtained with the forcings of the dynamical models are then compared against those obtained with the Ensemble Streamflow Prediction (ESP) approach. ESP recombines historical meteorological forcings to create a new ensemble forecast. Both forecasts are compared against reference soil moisture conditions obtained using observation based meteorological forcings. The study is conducted for the period from 1982 to 2009 and covers a large part of the Pan-European domain (10°W to 40°E and 35°N to 55°N). Results indicate that NMME forecasts are better at predicting the reference soil moisture variability as compared to ESP. For example, NMME explains 50% of the variability in contrast to only 31% by ESP at a six-month lead time. The Equitable Threat Skill Score (ETS), which combines the hit and false alarm rates, is analysed for drought events using a 0.2 threshold of a soil moisture percentile index. On average, the NMME

  18. Hydrological model calibration for enhancing global flood forecast skill

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera A.; Beck, Hylke E.; Salamon, Peter; Thielen-del Pozo, Jutta

    2016-04-01

    Early warning systems play a key role in flood risk reduction, and their effectiveness is directly linked to streamflow forecast skill. The skill of a streamflow forecast is affected by several factors; among them are (i) model errors due to incomplete representation of physical processes and inaccurate parameterization, (ii) uncertainty in the model initial conditions, and (iii) errors in the meteorological forcing. In macro scale (continental or global) modeling, it is a common practice to use a priori parameter estimates over large river basins or wider regions, resulting in suboptimal streamflow estimations. The aim of this work is to improve flood forecast skill of the Global Flood Awareness System (GloFAS; www.globalfloods.eu), a grid-based forecasting system that produces flood forecast unto 30 days lead, through calibration of the distributed hydrological model parameters. We use a combination of in-situ and satellite-based streamflow data for automatic calibration using a multi-objective genetic algorithm. We will present the calibrated global parameter maps and report the forecast skill improvements achieved. Furthermore, we discuss current challenges and future opportunities with regard to global-scale early flood warning systems.

  19. Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling

    PubMed Central

    Ye, Hao; Beamish, Richard J.; Glaser, Sarah M.; Grant, Sue C. H.; Hsieh, Chih-hao; Richards, Laura J.; Schnute, Jon T.; Sugihara, George

    2015-01-01

    It is well known that current equilibrium-based models fall short as predictive descriptions of natural ecosystems, and particularly of fisheries systems that exhibit nonlinear dynamics. For example, model parameters assumed to be fixed constants may actually vary in time, models may fit well to existing data but lack out-of-sample predictive skill, and key driving variables may be misidentified due to transient (mirage) correlations that are common in nonlinear systems. With these frailties, it is somewhat surprising that static equilibrium models continue to be widely used. Here, we examine empirical dynamic modeling (EDM) as an alternative to imposed model equations and that accommodates both nonequilibrium dynamics and nonlinearity. Using time series from nine stocks of sockeye salmon (Oncorhynchus nerka) from the Fraser River system in British Columbia, Canada, we perform, for the the first time to our knowledge, real-data comparison of contemporary fisheries models with equivalent EDM formulations that explicitly use spawning stock and environmental variables to forecast recruitment. We find that EDM models produce more accurate and precise forecasts, and unlike extensions of the classic Ricker spawner–recruit equation, they show significant improvements when environmental factors are included. Our analysis demonstrates the strategic utility of EDM for incorporating environmental influences into fisheries forecasts and, more generally, for providing insight into how environmental factors can operate in forecast models, thus paving the way for equation-free mechanistic forecasting to be applied in management contexts. PMID:25733874

  20. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    NASA Astrophysics Data System (ADS)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  1. Using model derived regional climate forecasts to enhance the effectiveness and skill of selected application models in reducing negative impacts

    NASA Astrophysics Data System (ADS)

    Johnston, P. A.; Hewitson, B. C.

    2001-05-01

    A new approach to regional climate forecasting in Southern Africa is involving a cross section of researchers working to integrate the key elements of the global system that determine seasonal conditions. The aim is to produce seasonal forecasts of temperature and rainfall with a 1-3 month lead-time. These forecasts, reflecting climatic variation and inter-annual change, using a combination of global and regional climate models, can be used as input for a selection of crop-yield/ hydrological/ economic models to assess the impact and usefulness in specific application areas e.g. water resources, agriculture etc. The investigation focuses on the usefulness of the information content of the forecast output. The impacts of severe droughts and flooding associated with ENSO events can be prepared for and reduced. However, until recently (Vogel, 2000; Mukara, 2000) the value of these forecasts for farming, industry and commerce in South Africa has not been assessed. An essential part of the analysis is the collaboration with others working within the forecaster-user dynamic. This ensures that forecast/model output provides the most usable content for end-users whether in small scale pastoral or commercial farming, hydrological planning, industry or fishing. Input from the users informs the modellers with respect to the format and content of forecast outputs. The parameters most useful to user applications are identified and in consultation with the modellers, specified in the model output. Different model runs are compared and various hindcasts performed. The issue is to determine the level and scope of the accuracy of the identified parameters. A model's accuracy may be temporally substantial, but spatially unreliable. When submitting the seasonal forecast data into other models within a localised region, specific accuracy for that region, during the particular season and in the individual topography, is essential. If the accuracy is lower than a critical value, then

  2. A model for Long-term Industrial Energy Forecasting (LIEF)

    SciTech Connect

    Ross, M. ||; Hwang, R.

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  3. Weather Research and Forecasting Model with the Immersed Boundary Method

    SciTech Connect

    Lundquist, K. A.

    2012-05-01

    The Weather Research and Forecasting (WRF) Model with the immersed boundary method is an extension of the open-source WRF Model available for wwww.wrf-model.org. The new code modifies the gridding procedure and boundary conditions in the WRF model to improve WRF's ability to simutate the atmosphere in environments with steep terrain and additionally at high-resolutions.

  4. A model for Long-term Industrial Energy Forecasting (LIEF)

    SciTech Connect

    Ross, M. Michigan Univ., Ann Arbor, MI . Dept. of Physics Argonne National Lab., IL . Environmental Assessment and Information Sciences Div.); Hwang, R. )

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  5. Coercively Adjusted Auto Regression Model for Forecasting in Epilepsy EEG

    PubMed Central

    Kim, Sun-Hee; Faloutsos, Christos; Yang, Hyung-Jeong

    2013-01-01

    Recently, data with complex characteristics such as epilepsy electroencephalography (EEG) time series has emerged. Epilepsy EEG data has special characteristics including nonlinearity, nonnormality, and nonperiodicity. Therefore, it is important to find a suitable forecasting method that covers these special characteristics. In this paper, we propose a coercively adjusted autoregression (CA-AR) method that forecasts future values from a multivariable epilepsy EEG time series. We use the technique of random coefficients, which forcefully adjusts the coefficients with −1 and 1. The fractal dimension is used to determine the order of the CA-AR model. We applied the CA-AR method reflecting special characteristics of data to forecast the future value of epilepsy EEG data. Experimental results show that when compared to previous methods, the proposed method can forecast faster and accurately. PMID:23710252

  6. Energy demand forecasting by means of Statistical Modelling: Assessing Benefits of Climate Information

    NASA Astrophysics Data System (ADS)

    De Felice, M.; Alessandri, A.; Ruti, P. M.

    2012-04-01

    Energy demand forecasting is a critical task and it allows to anticipate any problems that might affect power systems operators, especially during periods with high demand peaks. The difficulties of this task are due to the complexity of the systems involved: energy usage patterns are particularly variable and influenced by many factors, such as weather conditions, social, economic and political aspects (i.e. national regulations, international relations). The strong influence of weather on electricity demand in Italy is due to the wide use of residential air-conditioning devices and, more in general, refrigeration and ventilation equipments. For this reasons, accurate climate information may help in obtaining precise energy demand forecasts, usually performed with statistical methods which show their effectiveness particularly where large amount of data is available. We present a study with the aim of assess the effects of the quality of weather data on statistical modelling performance on energy demand forecasting, using data provided by national transmission grid operator.

  7. FUSION++: A New Data Assimilative Model for Electron Density Forecasting

    NASA Astrophysics Data System (ADS)

    Bust, G. S.; Comberiate, J.; Paxton, L. J.; Kelly, M.; Datta-Barua, S.

    2014-12-01

    There is a continuing need within the operational space weather community, both civilian and military, for accurate, robust data assimilative specifications and forecasts of the global electron density field, as well as derived RF application product specifications and forecasts obtained from the electron density field. The spatial scales of interest range from a hundred to a few thousand kilometers horizontally (synoptic large scale structuring) and meters to kilometers (small scale structuring that cause scintillations). RF space weather applications affected by electron density variability on these scales include navigation, communication and geo-location of RF frequencies ranging from 100's of Hz to GHz. For many of these applications, the necessary forecast time periods range from nowcasts to 1-3 hours. For more "mission planning" applications, necessary forecast times can range from hours to days. In this paper we present a new ionosphere-thermosphere (IT) specification and forecast model being developed at JHU/APL based upon the well-known data assimilation algorithms Ionospheric Data Assimilation Four Dimensional (IDA4D) and Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). This new forecast model, "Forward Update Simple IONosphere model Plus IDA4D Plus EMPIRE (FUSION++), ingests data from observations related to electron density, winds, electric fields and neutral composition and provides improved specification and forecast of electron density. In addition, the new model provides improved specification of winds, electric fields and composition. We will present a short overview and derivation of the methodology behind FUSION++, some preliminary results using real observational sources, example derived RF application products such as HF bi-static propagation, and initial comparisons with independent data sources for validation.

  8. Improved forecasting of thermospheric densities using multi-model ensembles

    NASA Astrophysics Data System (ADS)

    Elvidge, Sean; Godinez, Humberto C.; Angling, Matthew J.

    2016-07-01

    This paper presents the first known application of multi-model ensembles to the forecasting of the thermosphere. A multi-model ensemble (MME) is a method for combining different, independent models. The main advantage of using an MME is to reduce the effect of model errors and bias, since it is expected that the model errors will, at least partly, cancel. The MME, with its reduced uncertainties, can then be used as the initial conditions in a physics-based thermosphere model for forecasting. This should increase the forecast skill since a reduction in the errors of the initial conditions of a model generally increases model skill. In this paper the Thermosphere-Ionosphere Electrodynamic General Circulation Model (TIE-GCM), the US Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Exosphere 2000 (NRLMSISE-00), and Global Ionosphere-Thermosphere Model (GITM) have been used to construct the MME. As well as comparisons between the MMEs and the "standard" runs of the model, the MME densities have been propagated forward in time using the TIE-GCM. It is shown that thermospheric forecasts of up to 6 h, using the MME, have a reduction in the root mean square error of greater than 60 %. The paper also highlights differences in model performance between times of solar minimum and maximum.

  9. A study for systematic errors of the GLA forecast model in tropical regions

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang; Baker, Wayman E.; Pfaendtner, James; Corrigan, Martin

    1988-01-01

    From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system.

  10. Forecasting Diffusion of Technology by using Bass Model

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hoi; Shin, Young-Geun; Park, Sang-Sung; Jang, Dong-Sik

    2009-08-01

    Generally, researching method of technology forecasting has been depended on intuition of expert until now. So there were many defects like consuming much time and money and so on. In this paper, we forecast diffusion of technology by using Bass model that is one of the quantitative analysis methods. We applied this model at technology market. And for input data of experiment, we use patent data that is representing each technology in technology market. We expect this research will be suggest new possibility that patent data can be applied in Bass model.

  11. Forecasting coconut production in the Philippines with ARIMA model

    NASA Astrophysics Data System (ADS)

    Lim, Cristina Teresa

    2015-02-01

    The study aimed to depict the situation of the coconut industry in the Philippines for the future years applying Autoregressive Integrated Moving Average (ARIMA) method. Data on coconut production, one of the major industrial crops of the country, for the period of 1990 to 2012 were analyzed using time-series methods. Autocorrelation (ACF) and partial autocorrelation functions (PACF) were calculated for the data. Appropriate Box-Jenkins autoregressive moving average model was fitted. Validity of the model was tested using standard statistical techniques. The forecasting power of autoregressive moving average (ARMA) model was used to forecast coconut production for the eight leading years.

  12. Study of Beijiang catchment flash-flood forecasting model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Huang, S.; Dong, Y.

    2015-05-01

    Beijiang catchment is a small catchment in southern China locating in the centre of the storm areas of the Pearl River Basin. Flash flooding in Beijiang catchment is a frequently observed disaster that caused direct damages to human beings and their properties. Flood forecasting is the most effective method for mitigating flash floods, the goal of this paper is to develop the flash flood forecasting model for Beijiang catchment. The catchment property data, including DEM, land cover types and soil types, which will be used for model construction and parameter determination, are downloaded from the website freely. Based on the Liuxihe Model, a physically based distributed hydrological model, a model for flash flood forecasting of Beijiang catchment is set up. The model derives the model parameters from the terrain properties, and further optimized with the observed flooding process, which improves the model performance. The model is validated with a few observed floods occurred in recent years, and the results show that the model is reliable and is promising for flash flood forecasting.

  13. Techno Economic Model

    SciTech Connect

    2010-04-01

    The Technoeconomic model is a computational model of a lignocellulosic biorefinery that can be used by industry to establish benchmarks of performance and risk-benefit analysis in order to assess the potential impact of cutting edge technologies. The model can be used to evaluate, guide, and optimize research efforts, biorefinery design, and process operation. The model will help to reduce the risk of commercial investment and development of biorefineries and help steer future research to those parts of the refining process in need of further developments for biofuels to be cost competitive. We have now aded modules for the following sections: feed handling, pretreatment, fermentation, product and water recovery, waste treatment, and steam/electricity generation. We have incorporated a kinetic model for microorganism growth and production of ethanol, inclouding toxin inhibition. For example, the feed handling section incorporates information regarding feedstock transport distance-dependent costs. The steam and electricity generation section now includes a turbogenerator that supplies power to be used by other unit operations and contains equations for efficiency calculations.

  14. Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model

    PubMed Central

    Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun

    2014-01-01

    Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586

  15. Fuzzy temporal logic based railway passenger flow forecast model.

    PubMed

    Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun

    2014-01-01

    Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models.

  16. Operational forecasting for the Rhine-Meuse Estuary - Modelling and Operating Storm Surge Barriers

    NASA Astrophysics Data System (ADS)

    Bogaard, Tom; van Dam, Theo; Twigt, Daniel; de Goederen, Sacha

    2016-04-01

    Large parts of the Netherlands are very vulnerable to extreme storm surges, due to its low lying, highly populated and economically valuable coastal areas. In this project the focus is on the low-lying Rhine-Meuse estuary in the south-western part of the Netherlands. The area is protected by a complex defence system, including dunes, dikes, large barriers and a retention basin. Hydrodynamics in this complex delta area are influenced by tide, storm surge, discharges of the rivers Rhine and Meuse and the operation of barriers. A forecasting system based on the generic operational platform software Delft-FEWS has been developed in order to produce timely and accurate water level forecasts for the Rhine-Meuse estuary. Barriers as well as their complex closing procedures are included in this operational system. A high resolution 1D hydrodynamic model, forced by Numerical Weather Prediction (NWP) product from the Dutch national weather service (KNMI) and hydrodynamic conditions from the Dutch Water Authority (Rijkswaterstaat), runs every six-hours with a forecast horizon of seven days. The system is operated at Rijkswaterstaat, who is responsible for hydrodynamic forecasting and the operation of the main storm surge barriers of the Netherlands. By running the hydrodynamic model in an automated way the system is able to provide accurate forecasts at all times: during calm weather conditions or when severe storm situations might require closing of the barriers. Especially when storm and peak discharge events coincide, careful operation of the barriers is required. Within the Delft-FEWS platform tools have been developed to test different closing procedures instantly, in case of an event. Expert forecasters will be able to examine effects of multiple closing procedures as well as (partial) failure of the barriers on water levels in the estuary. Apart from forecasting, the system can be used offline to mimic storm events for training purposes. Forecasters at Dutch Water

  17. Representing Hurricanes with a Nested Global Forecast Model

    NASA Astrophysics Data System (ADS)

    Otte, M. J.; Walko, R. L.; Avissar, R.

    2007-12-01

    A global forecast model is essential for predicting hurricane tracks beyond a period of ~2 days since global processes that may influence the longer-term storm tracks can be represented explicitly and there are no errors from the lateral boundary conditions that can propagate into the model domain and diminish the accuracy of the track forecasts. However, global models usually do not have enough horizontal and vertical resolution to produce meaningful hurricane intensity forecasts. Most current operational global forecast models represent the atmosphere horizontally using spherical harmonic basis functions with an equivalent resolution of ~40-50 km. The NOAA Science Advisory Board Hurricane Intensity Research Working Group recommends approximately 1-km-resolution hurricane forecasts in order to represent the important physical processes in the core region of hurricanes that are important to accurately predict hurricane intensity. Even with state-of-the-art computers, it will be many years before global forecasts with 1-km horizontal resolution are practical. To predict both hurricane tracks and intensity well, a nested global model is necessary. Large-scale processes are represented on a coarser, computationally-efficient grid while features such as hurricanes are represented on a high-resolution nest. The global model used in this study is the Ocean-Land-Atmosphere Model (OLAM) being developed at Duke University. OLAM is the global successor to the Regional Atmospheric Modeling System (RAMS), which originated at Colorado State University in 1986. OLAM uses the same physics parameterizations as RAMS, but it solves the governing equations by discretizing the atmosphere on an unstructured triangular finite-volume grid. The triangular grid uses the Arakawa-C staggering and is fully mass conservative. Since the triangular mesh is unstructured, the mesh can be refined to produce much higher horizontal resolution in areas of interest such as near hurricanes. Here, we

  18. Lake Michigan lake trout PCB model forecast post audit

    EPA Science Inventory

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  19. Estimation efficiency of usage satellite derived and modelled biophysical products for yield forecasting

    NASA Astrophysics Data System (ADS)

    Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara

    2015-04-01

    Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.

  20. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia.

    PubMed

    Strager, Michael P; Strager, Jacquelyn M; Evans, Jeffrey S; Dunscomb, Judy K; Kreps, Brad J; Maxwell, Aaron E

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts.

  1. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia

    PubMed Central

    Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883

  2. Probabilistic Forecasting of Life and Economic Losses due to Natural Disasters

    NASA Astrophysics Data System (ADS)

    Barton, C. C.; Tebbens, S. F.

    2014-12-01

    The magnitude of natural hazard events such as hurricanes, tornadoes, earthquakes, and floods are traditionally measured by wind speed, energy release, or discharge. In this study we investigate the scaling of the magnitude of individual events of the 20th and 21stcentury in terms of economic and life losses in the United States and worldwide. Economic losses are subdivided into insured and total losses. Some data sets are inflation or population adjusted. Forecasts associated with these events are of interest to insurance, reinsurance, and emergency management agencies. Plots of cumulative size-frequency distributions of economic and life loss are well-fit by power functions and thus exhibit self-similar scaling. This self-similar scaling property permits use of frequent small events to estimate the rate of occurrence of less frequent larger events. Examining the power scaling behavior of loss data for disasters permits: forecasting the probability of occurrence of a disaster over a wide range of years (1 to 10 to 1,000 years); comparing losses associated with one type of disaster to another; comparing disasters in one region to similar disasters in another region; and, measuring the effectiveness of planning and mitigation strategies. In the United States, life losses due to flood and tornado cumulative-frequency distributions have steeper slopes, indicating that frequent smaller events contribute the majority of losses. In contrast, life losses due to hurricanes and earthquakes have shallower slopes, indicating that the few larger events contribute the majority of losses. Disaster planning and mitigation strategies should incorporate these differences.

  3. Evaluation Of Statistical Models For Forecast Errors From The HBV-Model

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Kolberg, S.; Renard, B.; Stensland, I.

    2009-04-01

    Three statistical models for the forecast errors for inflow to the Langvatn reservoir in Northern Norway have been constructed and tested according to how well the distribution and median values of the forecasts errors fit to the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order autoregressive model was constructed for the forecast errors. The parameters were conditioned on climatic conditions. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order autoregressive model was constructed for the forecast errors. For the last model positive and negative errors were modeled separately. The errors were first NQT-transformed before a model where the mean values were conditioned on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: We wanted a) the median values to be close to the observed values; b) the forecast intervals to be narrow; c) the distribution to be correct. The results showed that it is difficult to obtain a correct model for the forecast errors, and that the main challenge is to account for the auto-correlation in the errors. Model 1 and 2 gave similar results, and the main drawback is that the distributions are not correct. The 95% forecast intervals were well identified, but smaller forecast intervals were over-estimated, and larger intervals were under-estimated. Model 3 gave a distribution that fits better, but the median values do not fit well since the auto-correlation is not properly accounted for. If the 95% forecast interval is of interest, Model 2 is recommended. If the whole distribution is of interest, Model 3 is recommended.

  4. An updated subgrid orographic parameterization for global atmospheric forecast models

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Joo; Hong, Song-You

    2015-12-01

    A subgrid orographic parameterization (SOP) is updated by including the effects of orographic anisotropy and flow-blocking drag (FBD). The impact of the updated SOP on short-range forecasts is investigated using a global atmospheric forecast model applied to a heavy snowfall event over Korea on 4 January 2010. When the SOP is updated, the orographic drag in the lower troposphere noticeably increases owing to the additional FBD over mountainous regions. The enhanced drag directly weakens the excessive wind speed in the low troposphere and indirectly improves the temperature and mass fields over East Asia. In addition, the snowfall overestimation over Korea is improved by the reduced heat fluxes from the surface. The forecast improvements are robust regardless of the horizontal resolution of the model between T126 and T510. The parameterization is statistically evaluated based on the skill of the medium-range forecasts for February 2014. For the medium-range forecasts, the skill improvements of the wind speed and temperature in the low troposphere are observed globally and for East Asia while both positive and negative effects appear indirectly in the middle-upper troposphere. The statistical skill for the precipitation is mostly improved due to the improvements in the synoptic fields. The improvements are also found for seasonal simulation throughout the troposphere and stratosphere during boreal winter.

  5. A model for statistical forecasting of menu item demand.

    PubMed

    Wood, S D

    1977-03-01

    Foodservice planning necessarily begins with a forecast of demand. Menu item demand forecasts are needed to make food item production decisions, work force and facility acquisition plans, and resource allocation and scheduling decisions. As these forecasts become more accurate, the tasks of adjusting original plans are minimized. Forecasting menu item demand need no longer be the tedious and inaccurate chore which is so prevalent in hospital food management systems today. In most instances, data may be easily collected as a by-product of existing activities to support accurate statistical time series predictions. Forecasts of meal tray count, based on a rather sophisticated model, multiplied by average menu item preference percentages can provide accurate predictions of demand. Once the forecasting models for tray count have been developed, simple worksheets can be prepared to facilitate manual generation of the forecasts on a continuing basis. These forecasts can then be recorded on a worksheet that reflects average patient preference percentages (of tray count), so that the product of the percentages with the tray count prediction produces menu item predictions on the same worksheet. As the patient preference percentages stabilize, data collection can be reduced to the daily recording of tray count and one-step-ahead forecase errors for each meal with a periodic gathering of patient preference percentages to update and/or verify the existing date. The author is more thoroughly investigating the cost/benefit relationship of such a system through the analysis of new empirical data. It is clear that the system offers potential for reducing costs at the diet category or total tray count levels. It is felt that these benefits transfer down to the meal item level as well as offer ways of generating more accurate predictions, with perhaps only minor (if any) labor time increments. Research in progress will delineate expected savings more explicitly. The approach

  6. Short-Term Energy Outlook Model Documentation: Macro Bridge Procedure to Update Regional Macroeconomic Forecasts with National Macroeconomic Forecasts

    EIA Publications

    2010-01-01

    The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.

  7. Seasonal Scale Water Deficit Forecasting in East Africa and the Middle East Region Using the NMME Models Forecasts

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Funk, C. C.; Zaitchik, B. F.; Narapusetty, B.; Arsenault, K. R.; Peters-Lidard, C. D.

    2015-12-01

    In this presentation we report on our ongoing efforts to provide seasonal scale water deficit forecasts in East Africa and the Middle East regions. First, we report on the skill of the seasonal climate forecasts from the North American Multimodel Ensemble (NMME) models over this region. We evaluated deterministic (anomaly correlation), categorical (the equitable threat score) and probabilistic (the ranked probabilistic skill score) skill of the NMME models forecasts over the hindcast period of 1982-2010, focusing on the primary rainy seasons of March-May (MAM), July-September (JAS) and October-December (OND). We also examined the potential predictability of the NMME models using the anomaly correlation between the ensemble mean forecasts from a given model against a single ensemble member of the same model (homogenous predictability) and rest of the models (heterogeneous predictability), and observations (forecast skill). Overall, we found precipitation forecast skill in this region to be sparse and limited (up to three month of lead) to some locations and seasons, and temperature forecast skill to be much more skillful than the precipitation forecast skill. Highest level of skill exists over equatorial East Africa (OND season) and over parts of northern Ethiopia and southern Sudan (JAS season). Categorical and probabilistic forecast skills are also higher in those regions. We found the homogeneous predictability to be greater than the forecast skill indicating potential for forecast skill improvement. In the rest of the presentation we describe implementation and evaluation of a hybrid approach (that combines statistical and dynamical approaches) of downscaling climate forecasts to improve the precipitation forecast skill in this region. For this part of the analysis we mainly focus on two of the NMME models (NASA's GMAO and NCEP's CFSv2). Past research on a hybrid approach focusing only over equatorial East Africa has shown promising results. We found that MAM

  8. Using Bayes Model Averaging for Wind Power Forecasts

    NASA Astrophysics Data System (ADS)

    Preede Revheim, Pål; Beyer, Hans Georg

    2014-05-01

    For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data

  9. Selecting single model in combination forecasting based on cointegration test and encompassing test.

    PubMed

    Jiang, Chuanjin; Zhang, Jing; Song, Fugen

    2014-01-01

    Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability.

  10. Selecting Single Model in Combination Forecasting Based on Cointegration Test and Encompassing Test

    PubMed Central

    Jiang, Chuanjin; Zhang, Jing; Song, Fugen

    2014-01-01

    Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability. PMID:24892061

  11. Optimization of Evaporative Demand Models for Seasonal Drought Forecasting

    NASA Astrophysics Data System (ADS)

    McEvoy, D.; Huntington, J. L.; Hobbins, M.

    2015-12-01

    Providing reliable seasonal drought forecasts continues to pose a major challenge for scientists, end-users, and the water resources and agricultural communities. Precipitation (Prcp) forecasts beyond weather time scales are largely unreliable, so exploring new avenues to improve seasonal drought prediction is necessary to move towards applications and decision-making based on seasonal forecasts. A recent study has shown that evaporative demand (E0) anomaly forecasts from the Climate Forecast System Version 2 (CFSv2) are consistently more skillful than Prcp anomaly forecasts during drought events over CONUS, and E0 drought forecasts may be particularly useful during the growing season in the farming belts of the central and Midwestern CONUS. For this recent study, we used CFSv2 reforecasts to assess the skill of E0 and of its individual drivers (temperature, humidity, wind speed, and solar radiation), using the American Society for Civil Engineers Standardized Reference Evapotranspiration (ET0) Equation. Moderate skill was found in ET0, temperature, and humidity, with lesser skill in solar radiation, and no skill in wind. Therefore, forecasts of E0 based on models with no wind or solar radiation inputs may prove to be more skillful than the ASCE ET0. For this presentation we evaluate CFSv2 E0 reforecasts (1982-2009) from three different E0 models: (1) ASCE ET0; (2) Hargreaves and Samani (ET-HS), which is estimated from maximum and minimum temperature alone; and (3) Valiantzas (ET-V), which is a modified version of the Penman method for use when wind speed data are not available (or of poor quality) and is driven only by temperature, humidity, and solar radiation. The University of Idaho's gridded meteorological data (METDATA) were used as observations to evaluate CFSv2 and also to determine if ET0, ET-HS, and ET-V identify similar historical drought periods. We focus specifically on CFSv2 lead times of one, two, and three months, and season one forecasts; which are

  12. Climate model forecast biases assessed with a perturbed physics ensemble

    NASA Astrophysics Data System (ADS)

    Mulholland, David P.; Haines, Keith; Sparrow, Sarah N.; Wallom, David

    2016-10-01

    Perturbed physics ensembles have often been used to analyse long-timescale climate model behaviour, but have been used less often to study model processes on shorter timescales. We combine a transient perturbed physics ensemble with a set of initialised forecasts to deduce regional process errors present in the standard HadCM3 model, which cause the model to drift in the early stages of the forecast. First, it is shown that the transient drifts in the perturbed physics ensembles can be used to recover quantitatively the parameters that were perturbed. The parameters which exert most influence on the drifts vary regionally, but upper ocean mixing and atmospheric convective processes are particularly important on the 1-month timescale. Drifts in the initialised forecasts are then used to recover the `equivalent parameter perturbations', which allow identification of the physical processes that may be at fault in the HadCM3 representation of the real world. Most parameters show positive and negative adjustments in different regions, indicating that standard HadCM3 values represent a global compromise. The method is verified by correcting an unusually widespread positive bias in the strength of wind-driven ocean mixing, with forecast drifts reduced in a large number of areas as a result. This method could therefore be used to improve the skill of initialised climate model forecasts by reducing model biases through regional adjustments to physical processes, either by tuning or targeted parametrisation refinement. Further, such regionally tuned models might also significantly outperform standard climate models, with global parameter configurations, in longer-term climate studies.

  13. A Dynamic Model for Forecasting New Cloud Development

    DTIC Science & Technology

    1988-12-19

    dispersal 9. Urban circulations 10. Lake effect storms 11. Tropical and mid-latitude convective systems ENGINEERING ASPECTS Because of the large number of...March 2, 1989 1 Introduction The primary goal of this research is to develop a macscale model capable of predicting regions of convective outbreak. The...model fields. The model should be capable of producing forecasts of convective P on mini-computer system. The model should cover a 100 km by 100 km

  14. An experimental seasonal hydrological forecasting system over the Yellow River basin - Part 2: The added value from climate forecast models

    NASA Astrophysics Data System (ADS)

    Yuan, Xing

    2016-06-01

    This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast skill in terms of anomaly correlation (AC) for 2 m air temperature and precipitation does not necessarily decrease over leads but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME ensemble mean forecast has consistently higher skill than the best single model up to 6 months for the temperature but up to 2 months for the precipitation. The NMME climate predictions are downscaled to drive the variable infiltration capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982-2010. As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, with an increase of the average AC by 0.08-0.2. To compare with the observed

  15. Time series modelling and forecasting of emergency department overcrowding.

    PubMed

    Kadri, Farid; Harrou, Fouzi; Chaabane, Sondès; Tahon, Christian

    2014-09-01

    Efficient management of patient flow (demand) in emergency departments (EDs) has become an urgent issue for many hospital administrations. Today, more and more attention is being paid to hospital management systems to optimally manage patient flow and to improve management strategies, efficiency and safety in such establishments. To this end, EDs require significant human and material resources, but unfortunately these are limited. Within such a framework, the ability to accurately forecast demand in emergency departments has considerable implications for hospitals to improve resource allocation and strategic planning. The aim of this study was to develop models for forecasting daily attendances at the hospital emergency department in Lille, France. The study demonstrates how time-series analysis can be used to forecast, at least in the short term, demand for emergency services in a hospital emergency department. The forecasts were based on daily patient attendances at the paediatric emergency department in Lille regional hospital centre, France, from January 2012 to December 2012. An autoregressive integrated moving average (ARIMA) method was applied separately to each of the two GEMSA categories and total patient attendances. Time-series analysis was shown to provide a useful, readily available tool for forecasting emergency department demand.

  16. A multivariate heuristic model for fuzzy time-series forecasting.

    PubMed

    Huarng, Kun-Huang; Yu, Tiffany Hui-Kuang; Hsu, Yu Wei

    2007-08-01

    Fuzzy time-series models have been widely applied due to their ability to handle nonlinear data directly and because no rigid assumptions for the data are needed. In addition, many such models have been shown to provide better forecasting results than their conventional counterparts. However, since most of these models require complicated matrix computations, this paper proposes the adoption of a multivariate heuristic function that can be integrated with univariate fuzzy time-series models into multivariate models. Such a multivariate heuristic function can easily be extended and integrated with various univariate models. Furthermore, the integrated model can handle multiple variables to improve forecasting results and, at the same time, avoid complicated computations due to the inclusion of multiple variables.

  17. Earthquake and failure forecasting in real-time: A Forecasting Model Testing Centre

    NASA Astrophysics Data System (ADS)

    Filgueira, Rosa; Atkinson, Malcolm; Bell, Andrew; Main, Ian; Boon, Steven; Meredith, Philip

    2013-04-01

    Across Europe there are a large number of rock deformation laboratories, each of which runs many experiments. Similarly there are a large number of theoretical rock physicists who develop constitutive and computational models both for rock deformation and changes in geophysical properties. Here we consider how to open up opportunities for sharing experimental data in a way that is integrated with multiple hypothesis testing. We present a prototype for a new forecasting model testing centre based on e-infrastructures for capturing and sharing data and models to accelerate the Rock Physicist (RP) research. This proposal is triggered by our work on data assimilation in the NERC EFFORT (Earthquake and Failure Forecasting in Real Time) project, using data provided by the NERC CREEP 2 experimental project as a test case. EFFORT is a multi-disciplinary collaboration between Geoscientists, Rock Physicists and Computer Scientist. Brittle failure of the crust is likely to play a key role in controlling the timing of a range of geophysical hazards, such as volcanic eruptions, yet the predictability of brittle failure is unknown. Our aim is to provide a facility for developing and testing models to forecast brittle failure in experimental and natural data. Model testing is performed in real-time, verifiably prospective mode, in order to avoid selection biases that are possible in retrospective analyses. The project will ultimately quantify the predictability of brittle failure, and how this predictability scales from simple, controlled laboratory conditions to the complex, uncontrolled real world. Experimental data are collected from controlled laboratory experiments which includes data from the UCL Laboratory and from Creep2 project which will undertake experiments in a deep-sea laboratory. We illustrate the properties of the prototype testing centre by streaming and analysing realistically noisy synthetic data, as an aid to generating and improving testing methodologies in

  18. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer

    Klein, Stephen

    2008-01-15

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  19. Adaptation of Mesoscale Weather Models to Local Forecasting

    NASA Technical Reports Server (NTRS)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  20. 1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast. Technical Appendix: Volume 1.

    SciTech Connect

    1994-02-01

    This publication documents the load forecast scenarios and assumptions used to prepare BPA's Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

  1. Forecast and virtual weather driven plant disease risk modeling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe a system in use and development that leverages public weather station data, several spatialized weather forecast types, leaf wetness estimation, generic plant disease models, and online statistical evaluation. Convergent technological developments in all these areas allow, with funding f...

  2. Temperature sensitivity of a numerical pollen forecast model

    NASA Astrophysics Data System (ADS)

    Scheifinger, Helfried; Meran, Ingrid; Szabo, Barbara; Gallaun, Heinz; Natali, Stefano; Mantovani, Simone

    2016-04-01

    Allergic rhinitis has become a global health problem especially affecting children and adolescence. Timely and reliable warning before an increase of the atmospheric pollen concentration means a substantial support for physicians and allergy suffers. Recently developed numerical pollen forecast models have become means to support the pollen forecast service, which however still require refinement. One of the problem areas concerns the correct timing of the beginning and end of the flowering period of the species under consideration, which is identical with the period of possible pollen emission. Both are governed essentially by the temperature accumulated before the entry of flowering and during flowering. Phenological models are sensitive to a bias of the temperature. A mean bias of -1°C of the input temperature can shift the entry date of a phenological phase for about a week into the future. A bias of such an order of magnitude is still possible in case of numerical weather forecast models. If the assimilation of additional temperature information (e.g. ground measurements as well as satellite-retrieved air / surface temperature fields) is able to reduce such systematic temperature deviations, the precision of the timing of phenological entry dates might be enhanced. With a number of sensitivity experiments the effect of a possible temperature bias on the modelled phenology and the pollen concentration in the atmosphere is determined. The actual bias of the ECMWF IFS 2 m temperature will also be calculated and its effect on the numerical pollen forecast procedure presented.

  3. Model confirmation in climate economics.

    PubMed

    Millner, Antony; McDermott, Thomas K J

    2016-08-02

    Benefit-cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth-one of its most important economic components-had questionable predictive power over the 20th century.

  4. Model confirmation in climate economics

    PubMed Central

    Millner, Antony; McDermott, Thomas K. J.

    2016-01-01

    Benefit–cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth—one of its most important economic components—had questionable predictive power over the 20th century. PMID:27432964

  5. Performance assessment of models to forecast induced seismicity

    NASA Astrophysics Data System (ADS)

    Wiemer, Stefan; Karvounis, Dimitrios; Zechar, Jeremy; Király, Eszter; Kraft, Toni; Pio Rinaldi, Antonio; Catalli, Flaminia; Mignan, Arnaud

    2015-04-01

    Managing and mitigating induced seismicity during reservoir stimulation and operation is a critical prerequisite for many GeoEnergy applications. We are currently developing and validating so called 'Adaptive Traffic Light Systems' (ATLS), fully probabilistic forecast models that integrate all relevant data on the fly into a time-dependent hazard and risk model. The combined model intrinsically considers both aleatory and model-uncertainties, the robustness of the forecast is maximized by using a dynamically update ensemble weighting. At the heart of the ATLS approach are a variety of forecast models that range from purely statistical models, such as flow-controlled Epidemic Type Aftershock Sequence (ETAS) models, to models that consider various physical interaction mechanism (e.g., pore pressure changes, dynamic and static stress transfer, volumetric strain changes). The automated re-calibration of these models on the fly given data imperfection, degrees of freedom, and time-constraints is a sizable challenge, as is the validation of the models for applications outside of their calibrated range (different settings, larger magnitudes, changes in physical processes etc.). Here we present an overview of the status of the model development, calibration and validation. We also demonstrate how such systems can contribute to a quantitative risk assessment and mitigation of induced seismicity in a wide range of applications and time scales.

  6. Development of Parallel Code for the Alaska Tsunami Forecast Model

    NASA Astrophysics Data System (ADS)

    Bahng, B.; Knight, W. R.; Whitmore, P.

    2014-12-01

    The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes and other means in both the Pacific and Atlantic Oceans. At the U.S. National Tsunami Warning Center (NTWC), the model is mainly used in a pre-computed fashion. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves get closer to coastal waters. Even with the pre-computation the task becomes non-trivial as sub-grid resolution gets finer. Currently, the finest resolution Digital Elevation Models (DEM) used by ATFM are 1/3 arc-seconds. With a serial code, large or multiple areas of very high resolution can produce run-times that are unrealistic even in a pre-computed approach. One way to increase the model performance is code parallelization used in conjunction with a multi-processor computing environment. NTWC developers have undertaken an ATFM code-parallelization effort to streamline the creation of the pre-computed database of results with the long term aim of tsunami forecasts from source to high resolution shoreline grids in real time. Parallelization will also permit timely regeneration of the forecast model database with new DEMs; and, will make possible future inclusion of new physics such as the non-hydrostatic treatment of tsunami propagation. The purpose of our presentation is to elaborate on the parallelization approach and to show the compute speed increase on various multi-processor systems.

  7. Improving Global Forecast System of extreme precipitation events with regional statistical model: Application of quantile-based probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Shastri, Hiteshri; Ghosh, Subimal; Karmakar, Subhankar

    2017-02-01

    Forecasting of extreme precipitation events at a regional scale is of high importance due to their severe impacts on society. The impacts are stronger in urban regions due to high flood potential as well high population density leading to high vulnerability. Although significant scientific improvements took place in the global models for weather forecasting, they are still not adequate at a regional scale (e.g., for an urban region) with high false alarms and low detection. There has been a need to improve the weather forecast skill at a local scale with probabilistic outcome. Here we develop a methodology with quantile regression, where the reliably simulated variables from Global Forecast System are used as predictors and different quantiles of rainfall are generated corresponding to that set of predictors. We apply this method to a flood-prone coastal city of India, Mumbai, which has experienced severe floods in recent years. We find significant improvements in the forecast with high detection and skill scores. We apply the methodology to 10 ensemble members of Global Ensemble Forecast System and find a reduction in ensemble uncertainty of precipitation across realizations with respect to that of original precipitation forecasts. We validate our model for the monsoon season of 2006 and 2007, which are independent of the training/calibration data set used in the study. We find promising results and emphasize to implement such data-driven methods for a better probabilistic forecast at an urban scale primarily for an early flood warning.

  8. A New Hybrid STEP/Coulomb model for Aftershock Forecasting

    NASA Astrophysics Data System (ADS)

    Steacy, S.; Jimenez, A.; Gerstenberger, M.

    2014-12-01

    Aftershock forecasting models tend to fall into two classes - purely statistical approaches based on clustering, b-value, and the Omori-Utsu law; and Coulomb rate-state models which relate the forecast increase in rate to the magnitude of the Coulomb stress change. Recently, hybrid models combining physical and statistical forecasts have begun to be developed, for example by Bach and Hainzl (2012) and Steacy et al. (2013). The latter approach combined Coulomb stress patterns with the STEP (short-term earthquake probability) model by redistributing expected rate from areas with decreased stress to regions where the stress had increased. The chosen 'Coulomb Redistribution Parameter' (CRP) was 0.93, based on California earthquakes, which meant that 93% of the total rate was expected to occur where the stress had increased. The model was tested against the Canterbury sequence and the main result was that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. The authors suggested that the major reason for this discrepancy was uncertainty in the slip models and, particularly, in the geometries of the faults involved in each complex major event. Here we develop a variant of the STEP/Coulomb model in which the CRP varies based on the percentage of aftershocks that occur in the positively stressed areas during the forecast learning period. We find that this variant significantly outperforms both STEP and the previous hybrid model in almost all cases, even when the input Coulomb model is quite poor. Our results suggest that this approach might be more useful than Coulomb rate-state when the underlying slip model is not well constrained due to the dependence of that method on the magnitude of the Coulomb stress change.

  9. Assessment of Quantitative Precipitation Forecasts from Operational NWP Models (Invited)

    NASA Astrophysics Data System (ADS)

    Sapiano, M. R.

    2010-12-01

    Previous work has shown that satellite and numerical model estimates of precipitation have complimentary strengths, with satellites having greater skill at detecting convective precipitation events and model estimates having greater skill at detecting stratiform precipitation. This is due in part to the challenges associated with retrieving stratiform precipitation from satellites and the difficulty in resolving sub-grid scale processes in models. These complimentary strengths can be exploited to obtain new merged satellite/model datasets, and several such datasets have been constructed using reanalysis data. Whilst reanalysis data are stable in a climate sense, they also have relatively coarse resolution compared to the satellite estimates (many of which are now commonly available at quarter degree resolution) and they necessarily use fixed forecast systems that are not state-of-the-art. An alternative to reanalysis data is to use Operational Numerical Weather Prediction (NWP) model estimates, which routinely produce precipitation with higher resolution and using the most modern techniques. Such estimates have not been combined with satellite precipitation and their relative skill has not been sufficiently assessed beyond model validation. The aim of this work is to assess the information content of the models relative to satellite estimates with the goal of improving techniques for merging these data types. To that end, several operational NWP precipitation forecasts have been compared to satellite and in situ data and their relative skill in forecasting precipitation has been assessed. In particular, the relationship between precipitation forecast skill and other model variables will be explored to see if these other model variables can be used to estimate the skill of the model at a particular time. Such relationships would be provide a basis for determining weights and errors of any merged products.

  10. Volcanic ash forecast transport and dispersion (VAFTAD) model

    SciTech Connect

    Heffter, J.L.; Stunder, B.J.B.

    1993-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has developed a Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model for emergency response use focusing on hazards to aircraft flight operations. The model is run on a workstation at ARL. Meteorological input for the model is automatically downloaded from the NOAA National Meteorological Center (NMC) twice-daily forecast model runs to ARL. Additional input for VAFTAD ragarding the volcanic eruption is supplied by the user guided by monitor prompts. The model calculates transport and dispersion of volcanic ash from an initial ash cloud that has reached its maximum height within 3 h of eruption time. The model assumes that spherical ash particles of diameters ranging from 0.3 to 30 micrometers are distributed throughout the initial cloud with a particle number distribution based on Mount St. Helens and Redoubt Volcano eruptions. Particles are advected horizontally and vertically by the winds and fall according to Stoke`s law with a slip correction. A bivariate-normal distribution is used for horizontally diffusing the cloud and determining ash concentrations. Model output gives maps with symbols representing relative concentrations in three flight layers, and throughout the entire ash cloud, for sequential 6- and 12-h time intervals. A verification program for VAFTAD has been started. Results subjectively comparing model ash cloud forecasts with satellite imagery for three separate 1992 eruptions of Mount Spurr in Alaska have been most encouraging.

  11. Systematic uncertainty reduction strategies for developing streamflow forecasts utilizing multiple climate models and hydrologic models

    NASA Astrophysics Data System (ADS)

    Singh, Harminder; Sankarasubramanian, A.

    2014-02-01

    Recent studies show that multimodel combinations improve hydroclimatic predictions by reducing model uncertainty. Given that climate forecasts are available from multiple climate models, which could be ingested with multiple watershed models, what is the best strategy to reduce the uncertainty in streamflow forecasts? To address this question, we consider three possible strategies: (1) reduce the input uncertainty first by combining climate models and then use the multimodel climate forecasts with multiple watershed models (MM-P), (2) ingest the individual climate forecasts (without multimodel combination) with various watershed models and then combine the streamflow predictions that arise from all possible combinations of climate and watershed models (MM-Q), (3) combine the streamflow forecasts obtained from multiple watershed models based on strategy (1) to develop a single streamflow prediction that reduces uncertainty in both climate forecasts and watershed models (MM-PQ). For this purpose, we consider synthetic schemes that generate streamflow and climate forecasts, for comparing the performance of three strategies with the true streamflow generated by a given hydrologic model. Results from the synthetic study show that reducing input uncertainty first (MM-P) by combining climate forecasts results in reduced error in predicting the true streamflow compared to the error of multimodel streamflow forecasts obtained by combining streamflow forecasts from all-possible combination of individual climate model with various hydrologic models (MM-Q). Since the true hydrologic model structure is unknown, it is desirable to consider MM-PQ as an alternate choice that reduces both input uncertainty and hydrologic model uncertainty. Application on two watersheds in NC also indicates that reducing the input uncertainty first is critical before reducing the hydrologic model uncertainty.

  12. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  13. New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.

    ERIC Educational Resources Information Center

    Song, Qiang; Chissom, Brad S.

    Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…

  14. Forecasting the duration of volcanic eruptions: an empirical probabilistic model

    NASA Astrophysics Data System (ADS)

    Gunn, L. S.; Blake, S.; Jones, M. C.; Rymer, H.

    2014-01-01

    The ability to forecast future volcanic eruption durations would greatly benefit emergency response planning prior to and during a volcanic crises. This paper introduces a probabilistic model to forecast the duration of future and on-going eruptions. The model fits theoretical distributions to observed duration data and relies on past eruptions being a good indicator of future activity. A dataset of historical Mt. Etna flank eruptions is presented and used to demonstrate the model. The data have been compiled through critical examination of existing literature along with careful consideration of uncertainties on reported eruption start and end dates between the years 1300 AD and 2010. Data following 1600 is considered to be reliable and free of reporting biases. The distribution of eruption duration between the years 1600 and 1669 is found to be statistically different from that following it and the forecasting model is run on two datasets of Mt. Etna flank eruption durations: 1600-2010 and 1670-2010. Each dataset is modelled using a log-logistic distribution with parameter values found by maximum likelihood estimation. Survivor function statistics are applied to the model distributions to forecast (a) the probability of an eruption exceeding a given duration, (b) the probability of an eruption that has already lasted a particular number of days exceeding a given total duration and (c) the duration with a given probability of being exceeded. Results show that excluding the 1600-1670 data has little effect on the forecasting model result, especially where short durations are involved. By assigning the terms `likely' and `unlikely' to probabilities of 66 % or more and 33 % or less, respectively, the forecasting model based on the 1600-2010 dataset indicates that a future flank eruption on Mt. Etna would be likely to exceed 20 days (± 7 days) but unlikely to exceed 86 days (± 29 days). This approach can easily be adapted for use on other highly active, well

  15. operational modelling and forecasting of the Iberian shelves ecosystem

    NASA Astrophysics Data System (ADS)

    Marta-Almeida, M.; Reboreda, R.; Rocha, C.; Dubert, J.; Nolasco, R.; Cordeiro, N.; Luna, T.; Rocha, A.; Silva, J. Lencart e.; Queiroga, H.; Peliz, A.; Ruiz-Villarreal, M.

    2012-04-01

    There is a growing interest on physical and biogeochemical oceanic hindcasts and forecasts from a wide range of users and businesses. In this contribution we present an operational biogeochemical forecast system for the Portuguese and Galician oceanographic regions, where atmospheric, hydrodynamic and biogeochemical variables are integrated. The ocean model ROMS, with a horizontal resolution of 3 km, is forced by the atmospheric model WRF and includes a NPZD biogeochemical module. In addition to oceanographic variables, the system predicts the concentration of nitrate, phytoplankton, zooplankton and detritus (mmolN m-3). Model results are compared against radar currents and remote sensed SST and chlorophyll. Quantitative skill assessment during a summer upwelling period shows that our modelling system adequately represents the surface circulation over the shelf including the observed spatial variability and trends of temperature and chlorophyll concentration. Additionally, the skill assessment also shows some deficiencies like the overestimation of upwelling circulation and consequently, of the duration and intensity of the phytoplankton blooms. These and other departures from the observations are discussed, their origins identified and future improvements suggested. The forecast system is the first of its kind in the region and provides free online distribution of model input and output, as well as comparisons of model results with satellite imagery for qualitative operational assessment of model skill.

  16. Towards operational modeling and forecasting of the Iberian shelves ecosystem.

    PubMed

    Marta-Almeida, Martinho; Reboreda, Rosa; Rocha, Carlos; Dubert, Jesus; Nolasco, Rita; Cordeiro, Nuno; Luna, Tiago; Rocha, Alfredo; Lencart E Silva, João D; Queiroga, Henrique; Peliz, Alvaro; Ruiz-Villarreal, Manuel

    2012-01-01

    There is a growing interest on physical and biogeochemical oceanic hindcasts and forecasts from a wide range of users and businesses. In this contribution we present an operational biogeochemical forecast system for the Portuguese and Galician oceanographic regions, where atmospheric, hydrodynamic and biogeochemical variables are integrated. The ocean model ROMS, with a horizontal resolution of 3 km, is forced by the atmospheric model WRF and includes a Nutrients-Phytoplankton-Zooplankton-Detritus biogeochemical module (NPZD). In addition to oceanographic variables, the system predicts the concentration of nitrate, phytoplankton, zooplankton and detritus (mmol N m(-3)). Model results are compared against radar currents and remote sensed SST and chlorophyll. Quantitative skill assessment during a summer upwelling period shows that our modelling system adequately represents the surface circulation over the shelf including the observed spatial variability and trends of temperature and chlorophyll concentration. Additionally, the skill assessment also shows some deficiencies like the overestimation of upwelling circulation and consequently, of the duration and intensity of the phytoplankton blooms. These and other departures from the observations are discussed, their origins identified and future improvements suggested. The forecast system is the first of its kind in the region and provides free online distribution of model input and output, as well as comparisons of model results with satellite imagery for qualitative operational assessment of model skill.

  17. Towards Operational Modeling and Forecasting of the Iberian Shelves Ecosystem

    PubMed Central

    Marta-Almeida, Martinho; Reboreda, Rosa; Rocha, Carlos; Dubert, Jesus; Nolasco, Rita; Cordeiro, Nuno; Luna, Tiago; Rocha, Alfredo; Lencart e Silva, João D.; Queiroga, Henrique; Peliz, Alvaro; Ruiz-Villarreal, Manuel

    2012-01-01

    There is a growing interest on physical and biogeochemical oceanic hindcasts and forecasts from a wide range of users and businesses. In this contribution we present an operational biogeochemical forecast system for the Portuguese and Galician oceanographic regions, where atmospheric, hydrodynamic and biogeochemical variables are integrated. The ocean model ROMS, with a horizontal resolution of 3 km, is forced by the atmospheric model WRF and includes a Nutrients-Phytoplankton-Zooplankton-Detritus biogeochemical module (NPZD). In addition to oceanographic variables, the system predicts the concentration of nitrate, phytoplankton, zooplankton and detritus (mmol N m−3). Model results are compared against radar currents and remote sensed SST and chlorophyll. Quantitative skill assessment during a summer upwelling period shows that our modelling system adequately represents the surface circulation over the shelf including the observed spatial variability and trends of temperature and chlorophyll concentration. Additionally, the skill assessment also shows some deficiencies like the overestimation of upwelling circulation and consequently, of the duration and intensity of the phytoplankton blooms. These and other departures from the observations are discussed, their origins identified and future improvements suggested. The forecast system is the first of its kind in the region and provides free online distribution of model input and output, as well as comparisons of model results with satellite imagery for qualitative operational assessment of model skill. PMID:22666349

  18. A flood routing Muskingum type simulation and forecasting model based on level data alone

    NASA Astrophysics Data System (ADS)

    Franchini, Marco; Lamberti, Paolo

    1994-07-01

    While the use of remote hydrometers for measuring the level in water courses is both economical and widespread, the same cannot be said for cross section and channel profile measurements and, even less, for rating curves at the measuring cross sections, all of which are more often than not incomplete, out of date, and unreliable. The mass of data involved in level measurements alone induces a degree of perplexity in those who try to use them, for example, for flood event simulations or the construction of forecasting models which are not purely statistical. This paper proposes a method which uses recorded level data alone to construct a simulation model and a forecasting model, both of them characterized by an extremely simple structure that can be used on any pocket calculator. These models, referring to a river reach bounded by two measuring sections, furnish the downstream levels, where the upstream levels are known, and the downstream level at time t + Δt*, where the upstream and downstream levels are known at time t, respectively. The numerical applications performed show that while the simulation model is somewhat penalized by the simplifications adopted, giving not consistently satisfactory results on validation, the forecasting model generated good results in all the cases examined and seems reliable.

  19. Long-Term Economic and Labor Forecast Trends for Washington. 1996.

    ERIC Educational Resources Information Center

    Lefberg, Irv; And Others

    This publication provides actual historical and long-term forecast data on labor force, total wage and salary employment, industry employment, and personal income for the state of Washington. The data are based upon the Washington Office of Financial Management long-term population forecast. Chapter 1 presents long-term forecasts of Washington…

  20. Critique of the mid-range energy forecasting, system oil and gas supply models

    SciTech Connect

    Patton, W.P.

    1980-10-01

    The Mid-Range Energy Forecasting System (MEFS) is a model used by the Department of Energy to forecast domestic production, consumption and price for conventional energy sources on a regional basis over a period of 5 to 15 years. Among the energy sources included in the model are oil, gas and other petroleum fuels, coal, uranium, and electricity. Final consumption of alternative energy sources is broken into end-use categories, such as residential, commercial and industrial uses. Regional prices for all energy sources are calculated by iteratively equating domestic supply and demand. The purpose of this paper is to assess the ability of the Oil and Gas Supply Submodels of MEFS to reliably and accurately project oil and gas supply curves, which are used in the integrating model, along with fuel demand curves to estimate market price. The reliability and accuracy of the oil and gas model cannot be judged by comparing its predictions against actual observations because those observations have not yet occurred. The reliability and reasonableness of the oil and gas supply model can be judged, however, by analyzing how well its assumptions and predictions correspond to accepted economic principles. This is the approach taken in this critique. The remainder of this paper describes the general structure of the oil and gas supply model and how it functions to project the quantity of oil and gas forthcoming at given prices in a particular year, then discusses the economic soundness of the model, and finally suggests model changes to improve its performance.

  1. Improved solar irradiance forecast with Weather Research and Forecasting model: A Sensitivity test of shallow cumulus clouds to the turbulence process

    NASA Astrophysics Data System (ADS)

    Kim, C. K.; Betterton, E. A.; Leuthold, M.; Holmgren, W.; Cronin, A.

    2014-12-01

    Accurate forecasts of solar irradiance are required for electric utilities to economically integrate substantial amounts of solar power into their power generation portfolios. A common failing of numerical weather models is the prediction of shallow cumulus clouds which are generally difficult to be resolved due to complicated processes in the planetary boundary layer. The present study carried out the sensitivity test of turbulence parameterization for better predicting solar irradiance during the shallow cumulus events near the state of Arizona by using the Weather Research and Forecasting model. The results from the simulations show that increasing the exchange coefficient leads to enhanced vertical mixing and a deeper mixed layer. At the top of mixed layer, an adiabatically ascending air parcel achieved the water vapour saturation and finally shallow cumulus is generated. A detailed analysis will be discussed in the upcoming conference.

  2. Toward Improved Solar Irradiance Forecasts: a Simulation of Deep Planetary Boundary Layer with Scattered Clouds Using the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang Ki; Leuthold, Michael; Holmgren, William F.; Cronin, Alexander D.; Betterton, Eric A.

    2016-02-01

    Accurate forecasts of solar irradiance are required for electric utilities to economically integrate substantial amounts of solar power into their power generation portfolios. A common failing of numerical weather models is the prediction of scattered clouds at the top of deep PBL which are generally difficult to be resolved due to complicated processes in the planetary boundary layer. We improved turbulence parameterization for better predicting solar irradiance during the scattered clouds' events using the Weather Research and Forecasting model. Sensitivity tests show that increasing the exchange coefficient leads to enhanced vertical mixing and a deeper mixed layer. At the top of mixed layer, an adiabatically ascending air parcel achieved the water vapor saturation and finally scattered cloud is generated.

  3. Ensemble forecasting of sub-seasonal to seasonal streamflow by a Bayesian joint probability modelling approach

    NASA Astrophysics Data System (ADS)

    Zhao, Tongtiegang; Schepen, Andrew; Wang, Q. J.

    2016-10-01

    The Bayesian joint probability (BJP) modelling approach is used operationally to produce seasonal (three-month-total) ensemble streamflow forecasts in Australia. However, water resource managers are calling for more informative sub-seasonal forecasts. Taking advantage of BJP's capability of handling multiple predictands, ensemble forecasting of sub-seasonal to seasonal streamflows is investigated for 23 catchments around Australia. Using antecedent streamflow and climate indices as predictors, monthly forecasts are developed for the three-month period ahead. Forecast reliability and skill are evaluated for the period 1982-2011 using a rigorous leave-five-years-out cross validation strategy. BJP ensemble forecasts of monthly streamflow volumes are generally reliable in ensemble spread. Forecast skill, relative to climatology, is positive in 74% of cases in the first month, decreasing to 57% and 46% respectively for streamflow forecasts for the final two months of the season. As forecast skill diminishes with increasing lead time, the monthly forecasts approach climatology. Seasonal forecasts accumulated from monthly forecasts are found to be similarly skilful to forecasts from BJP models based on seasonal totals directly. The BJP modelling approach is demonstrated to be a viable option for producing ensemble time-series sub-seasonal to seasonal streamflow forecasts.

  4. Model space of economic events

    NASA Astrophysics Data System (ADS)

    Romanovsky, M. Yu.

    A method for constructing the model or virtual space of economic events when economic objects can be considered as material ones is suggested. We describe change of share rates in time at stock markets as the potential difference of attracted bodies in time in this virtual space. Each share of each enterprise is displayed by a single particle with a unit “charge”. It is shown that the random value of potential difference at the origin of coordinates measured at a definite time interval has the probability density coinciding with the known distribution of “Levy flights” or “Levy walks”. A distribution of alteration in time of the “Standard and Poor” index value obtained by Mantegna and Stanley (they shown that it is the “Levy walks” distribution too) (Mantegna and Stanley, Nature 376 (1995) 46) is used for determination of the introduced potential dependence on coordinates in the model space. A simple phenomenological model of interaction potential is introduced. The potential law of each particle turns out to be closed to r-2.14 in the minimum possible three-dimensional model space. This model permits calculation of time of random potential correlations at a certain point of the model space. These correlations could characterize the time period of making a decision by an investor at stock exchange. It is shown that this time is notably shorter in unstable periods (1987). A “microscopical” model of interaction in the virtual space is also discussed.

  5. An Integrated Enrollment Forecast Model. IR Applications, Volume 15, January 18, 2008

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2008-01-01

    Enrollment forecasting is the central component of effective budget and program planning. The integrated enrollment forecast model is developed to achieve a better understanding of the variables affecting student enrollment and, ultimately, to perform accurate forecasts. The transfer function model of the autoregressive integrated moving average…

  6. Intercomparison of mesoscale meteorological models for precipitation forecasting

    NASA Astrophysics Data System (ADS)

    Richard, E.; Cosma, S.; Benoit, R.; Binder, P.; Buzzi, A.; Kaufmann, P.

    In the framework of the RAPHAEL EU project, a series of past heavy precipitation events has been simulated with different meteorological models. Rainfall hindcasts and forecasts have been produced by four models in use at various meteorological services or research centres of Italy, Canada, France and Switzerland. The paper is focused on the comparison of the computed precipitation fields with the available surface observations. The comparison is carried out for three meteorological situations which lead to severe flashflood over the Toce-Ticino catchment in Italy (6599 km2) or the Ammer catchment (709 km2) in Germany. The results show that all four models reproduced the occurrence of these heavy precipitation events. The accuracy of the computed precipitation appears to be more case-dependent than model-dependent. The sensitivity of the computed rainfall to the boundary conditions (hindcast v. forecast) was found to be rather weak, indicating that a flood forecasting system based upon a numerical meteo-hydrological simulation could be feasible in an operational context.

  7. Assessing model state and forecasts variation in hydrologic data assimilation

    NASA Astrophysics Data System (ADS)

    Samuel, Jos; Coulibaly, Paulin; Dumedah, Gift; Moradkhani, Hamid

    2014-05-01

    Data assimilation (DA) has been widely used in hydrological models to improve model state and subsequent streamflow estimates. However, for poor or non-existent state observations, the state estimation in hydrological DA can be problematic, leading to inaccurate streamflow updates. This study evaluates the soil moisture and flow variations and forecasts by assimilating streamflow and soil moisture. Three approaches of Ensemble Kalman Filter (EnKF) with dual state-parameter estimation are applied: (1) streamflow assimilation, (2) soil moistue assimilation, and (3) combined assimilation of soil moisture and streamflow. The assimilation approaches are evaluated using the Sacramento Soil Moisture Accounting (SAC-SMA) model in the Spencer Creek catchment in southern Ontario, Canada. The results show that there are significant differences in soil moisture variations and streamflow estimates when the three assimilation approaches were applied. In the streamflow assimilation, soil moisture states were markedly distorted, particularly soil moisture of lower soil layer; whereas, in the soil moisture assimilation, streamflow estimates are inaccurate. The combined assimilation of streamflow and soil moisture provides more accurate forecasts of both soil moisture and streamflow, particularly for shorter lead times. The combined approach has the flexibility to account for model adjustment through the time variation of parameters together with state variables when soil moisture and streamflow observations are integrated into the assimilation procedure. This evaluation is important for the application of DA methods to simultaneously estimate soil moisture states and watershed response and forecasts.

  8. Parallelism and optimization of numerical ocean forecasting model

    NASA Astrophysics Data System (ADS)

    Xu, Jianliang; Pang, Renbo; Teng, Junhua; Liang, Hongtao; Yang, Dandan

    2016-10-01

    According to the characteristics of Chinese marginal seas, the Marginal Sea Model of China (MSMC) has been developed independently in China. Because the model requires long simulation time, as a routine forecasting model, the parallelism of MSMC becomes necessary to be introduced to improve the performance of it. However, some methods used in MSMC, such as Successive Over Relaxation (SOR) algorithm, are not suitable for parallelism. In this paper, methods are developedto solve the parallel problem of the SOR algorithm following the steps as below. First, based on a 3D computing grid system, an automatic data partition method is implemented to dynamically divide the computing grid according to computing resources. Next, based on the characteristics of the numerical forecasting model, a parallel method is designed to solve the parallel problem of the SOR algorithm. Lastly, a communication optimization method is provided to avoid the cost of communication. In the communication optimization method, the non-blocking communication of Message Passing Interface (MPI) is used to implement the parallelism of MSMC with complex physical equations, and the process of communication is overlapped with the computations for improving the performance of parallel MSMC. The experiments show that the parallel MSMC runs 97.2 times faster than the serial MSMC, and root mean square error between the parallel MSMC and the serial MSMC is less than 0.01 for a 30-day simulation (172800 time steps), which meets the requirements of timeliness and accuracy for numerical ocean forecasting products.

  9. Forecasting Groundwater Temperature with Linear Regression Models Using Historical Data.

    PubMed

    Figura, Simon; Livingstone, David M; Kipfer, Rolf

    2015-01-01

    Although temperature is an important determinant of many biogeochemical processes in groundwater, very few studies have attempted to forecast the response of groundwater temperature to future climate warming. Using a composite linear regression model based on the lagged relationship between historical groundwater and regional air temperature data, empirical forecasts were made of groundwater temperature in several aquifers in Switzerland up to the end of the current century. The model was fed with regional air temperature projections calculated for greenhouse-gas emissions scenarios A2, A1B, and RCP3PD. Model evaluation revealed that the approach taken is adequate only when the data used to calibrate the models are sufficiently long and contain sufficient variability. These conditions were satisfied for three aquifers, all fed by riverbank infiltration. The forecasts suggest that with respect to the reference period 1980 to 2009, groundwater temperature in these aquifers will most likely increase by 1.1 to 3.8 K by the end of the current century, depending on the greenhouse-gas emissions scenario employed.

  10. Forecast improvement by interactive ensemble of atmospheric models

    NASA Astrophysics Data System (ADS)

    Basnarkov, L.; Duane, G. S.; Kocarev, L.

    2013-12-01

    The advances in weather forecast traditionally have been based on two lines of improvement: 1 - deepening the understanding of physical phenomena that underlies the atmospheric dynamics; and 2 - steady increase in computer power that enables use of finer grid resolution. The meteorological centers model dynamics of the atmosphere with the same basic physical laws, but sometimes take different approaches in capturing small-scale phenomena and generally use different grid sizes. As a result there are dozens operational models around the globe with various parameterizations of the unresolved processes. Newest attempts in forecast improvements are based on using ensemble prediction. Multiple outputs are taken from runs with perturbed initial conditions, or perturbed parameter values. A novel paradigm is exploiting dynamical exchange of variables between simultaneously running models. There are already simulations of models exchanging fluxes between ocean and atmospheric models, but examples with direct coupling of different atmospheric models are rather new. Within this approach the coupling schemes can be different, but as simplest appear those that combine corresponding dynamical variables or tendency components. In this work we present results with an artificial toy model-Lorenz 96 model. To make more faithful example as reality (the atmosphere) is considered one Lorenz 96 class III system, while as its imperfect models are taken three class II systems that have different forcing terms. These resemble the models used in three different meteorological centers. The interactive ensemble has tendency that is weighted combination of the individual models' tendencies. The weights are obtained with statistical techniques based on past observations that target to minimize the mismatch between the truth's and interactive ensemble's tendencies. By means of anomaly correlation it is numerically verified that this ensemble has longer range of forecast than the individual models.

  11. A model for forecasting intermittent skilled home nursing needs.

    PubMed

    Johansen, S; Bowles, S; Haney, G

    1988-12-01

    The problem of forecasting the need and the cost for post-discharge skilled home nursing services is addressed by a simple statistical model. The model, assumptions, and simple calculations are described. Use of the model is illustrated with 7598 cancer patients and 2337 myocardial infarction patients. Simulation of the impact of changes in the health care delivery system toward greater and lesser severity of hospitalized patients is carried out. Two key projections illustrating the model's output are the number of patients with these diseases who will need care and the cost of that care.

  12. Comparative verification between GEM model and official aviation terminal forecasts

    NASA Technical Reports Server (NTRS)

    Miller, Robert G.

    1988-01-01

    The Generalized Exponential Markov (GEM) model uses the local standard airways observation (SAO) to predict hour-by-hour the following elements: temperature, pressure, dew point depression, first and second cloud-layer height and amount, ceiling, total cloud amount, visibility, wind, and present weather conditions. GEM is superior to persistence at all projections for all elements in a large independent sample. A minute-by-minute GEM forecasting system utilizing the Automated Weather Observation System (AWOS) is under development.

  13. An Analysis of Models for Forecasting Repairable Carcass Returns.

    DTIC Science & Technology

    1982-10-01

    8217,-Tm4his thesis evaluates techniques for forecasting the return of failed repairable spare parts (known as carcasses) within the U. S. Navy supply...regression analysis. Each model is then synthesized with actual U. S. Navy supply system data and its performance measured by a set of evaluation criteria...Commander, Supply Corps, United States Navy B.S., Ohio State University, 1971 Submitted in partial fulfillment of the requirements for the degree of MASTER

  14. Models for forecasting the flowering of Cornicabra olive groves.

    PubMed

    Rojo, Jesús; Pérez-Badia, Rosa

    2015-11-01

    This study examined the impact of weather-related variables on flowering phenology in the Cornicabra olive tree and constructed models based on linear and Poisson regression to forecast the onset and length of the pre-flowering and flowering phenophases. Spain is the world's leading olive oil producer, and the Cornicabra variety is the second largest Spanish variety in terms of surface area. However, there has been little phenological research into this variety. Phenological observations were made over a 5-year period (2009-2013) at four sampling sites in the province of Toledo (central Spain). Results showed that the onset of the pre-flowering phase is governed largely by temperature, which displayed a positive correlation with the temperature in the start of dormancy (November) and a negative correlation during the months prior to budburst (January, February and March). A similar relationship was recorded for the onset of flowering. Other weather-related variables, including solar radiation and rainfall, also influenced the succession of olive flowering phenophases. Linear models proved the most suitable for forecasting the onset and length of the pre-flowering period and the onset of flowering. The onset and length of pre-flowering can be predicted up to 1 or 2 months prior to budburst, whilst the onset of flowering can be forecast up to 3 months beforehand. By contrast, a nonlinear model using Poisson regression was best suited to predict the length of the flowering period.

  15. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    PubMed

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg.

  16. Models for forecasting the flowering of Cornicabra olive groves

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Pérez-Badia, Rosa

    2015-11-01

    This study examined the impact of weather-related variables on flowering phenology in the Cornicabra olive tree and constructed models based on linear and Poisson regression to forecast the onset and length of the pre-flowering and flowering phenophases. Spain is the world's leading olive oil producer, and the Cornicabra variety is the second largest Spanish variety in terms of surface area. However, there has been little phenological research into this variety. Phenological observations were made over a 5-year period (2009-2013) at four sampling sites in the province of Toledo (central Spain). Results showed that the onset of the pre-flowering phase is governed largely by temperature, which displayed a positive correlation with the temperature in the start of dormancy (November) and a negative correlation during the months prior to budburst (January, February and March). A similar relationship was recorded for the onset of flowering. Other weather-related variables, including solar radiation and rainfall, also influenced the succession of olive flowering phenophases. Linear models proved the most suitable for forecasting the onset and length of the pre-flowering period and the onset of flowering. The onset and length of pre-flowering can be predicted up to 1 or 2 months prior to budburst, whilst the onset of flowering can be forecast up to 3 months beforehand. By contrast, a nonlinear model using Poisson regression was best suited to predict the length of the flowering period.

  17. Comparison of modelling techniques for milk-production forecasting.

    PubMed

    Murphy, M D; O'Mahony, M J; Shalloo, L; French, P; Upton, J

    2014-01-01

    The objective of this study was to assess the suitability of 3 different modeling techniques for the prediction of total daily herd milk yield from a herd of 140 lactating pasture-based dairy cows over varying forecast horizons. A nonlinear auto-regressive model with exogenous input, a static artificial neural network, and a multiple linear regression model were developed using 3 yr of historical milk-production data. The models predicted the total daily herd milk yield over a full season using a 305-d forecast horizon and 50-, 30-, and 10-d moving piecewise horizons to test the accuracy of the models over long- and short-term periods. All 3 models predicted the daily production levels for a full lactation of 305 d with a percentage root mean square error (RMSE) of ≤ 12.03%. However, the nonlinear auto-regressive model with exogenous input was capable of increasing its prediction accuracy as the horizon was shortened from 305 to 50, 30, and 10 d [RMSE (%)=8.59, 8.1, 6.77, 5.84], whereas the static artificial neural network [RMSE (%)=12.03, 12.15, 11.74, 10.7] and the multiple linear regression model [RMSE (%)=10.62, 10.68, 10.62, 10.54] were not able to reduce their forecast error over the same horizons to the same extent. For this particular application the nonlinear auto-regressive model with exogenous input can be presented as a more accurate alternative to conventional regression modeling techniques, especially for short-term milk-yield predictions.

  18. A first large-scale flood inundation forecasting model

    SciTech Connect

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode

  19. FORECAST MODEL FOR MODERATE EARTHQUAKES NEAR PARKFIELD, CALIFORNIA.

    USGS Publications Warehouse

    Stuart, William D.; Archuleta, Ralph J.; Lindh, Allan G.

    1985-01-01

    The paper outlines a procedure for using an earthquake instability model and repeated geodetic measurements to attempt an earthquake forecast. The procedure differs from other prediction methods, such as recognizing trends in data or assuming failure at a critical stress level, by using a self-contained instability model that simulates both preseismic and coseismic faulting in a natural way. In short, physical theory supplies a family of curves, and the field data select the member curves whose continuation into the future constitutes a prediction. Model inaccuracy and resolving power of the data determine the uncertainty of the selected curves and hence the uncertainty of the earthquake time.

  20. Trend time-series modeling and forecasting with neural networks.

    PubMed

    Qi, Min; Zhang, G Peter

    2008-05-01

    Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.

  1. Identification and Forecasting in Mortality Models

    PubMed Central

    Nielsen, Jens P.

    2014-01-01

    Mortality models often have inbuilt identification issues challenging the statistician. The statistician can choose to work with well-defined freely varying parameters, derived as maximal invariants in this paper, or with ad hoc identified parameters which at first glance seem more intuitive, but which can introduce a number of unnecessary challenges. In this paper we describe the methodological advantages from using the maximal invariant parameterisation and we go through the extra methodological challenges a statistician has to deal with when insisting on working with ad hoc identifications. These challenges are broadly similar in frequentist and in Bayesian setups. We also go through a number of examples from the literature where ad hoc identifications have been preferred in the statistical analyses. PMID:24987729

  2. Sol-Terra - AN Operational Space Weather Forecasting Model Framework

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Lawrence, G.; Pidgeon, A.; Reid, S.; Hapgood, M. A.; Bogdanova, Y.; Byrne, J.; Marsh, M. S.; Jackson, D.; Gibbs, M.

    2015-12-01

    The SOL-TERRA project is a collaboration between RHEA Tech, the Met Office, and RAL Space funded by the UK Space Agency. The goal of the SOL-TERRA project is to produce a Roadmap for a future coupled Sun-to-Earth operational space weather forecasting system covering domains from the Sun down to the magnetosphere-ionosphere-thermosphere and neutral atmosphere. The first stage of SOL-TERRA is underway and involves reviewing current models that could potentially contribute to such a system. Within a given domain, the various space weather models will be assessed how they could contribute to such a coupled system. This will be done both by reviewing peer reviewed papers, and via direct input from the model developers to provide further insight. Once the models have been reviewed then the optimal set of models for use in support of forecast-based SWE modelling will be selected, and a Roadmap for the implementation of an operational forecast-based SWE modelling framework will be prepared. The Roadmap will address the current modelling capability, knowledge gaps and further work required, and also the implementation and maintenance of the overall architecture and environment that the models will operate within. The SOL-TERRA project will engage with external stakeholders in order to ensure independently that the project remains on track to meet its original objectives. A group of key external stakeholders have been invited to provide their domain-specific expertise in reviewing the SOL-TERRA project at critical stages of Roadmap preparation; namely at the Mid-Term Review, and prior to submission of the Final Report. This stakeholder input will ensure that the SOL-TERRA Roadmap will be enhanced directly through the input of modellers and end-users. The overall goal of the SOL-TERRA project is to develop a Roadmap for an operational forecast-based SWE modelling framework with can be implemented within a larger subsequent activity. The SOL-TERRA project is supported within

  3. Generation of ensemble streamflow forecasts using an enhanced version of the snowmelt runoff model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As water demand increases in the western United States, so does the need for accurate streamflow forecasts. We describe a method for generating ensemble streamflow forecasts (1-15 days) using an enhanced version of the snowmelt runoff model (SRM). Forecasts are produced for three snowmelt-dominated ...

  4. Accuracy of short‐term sea ice drift forecasts using a coupled ice‐ocean model

    PubMed Central

    Zhang, Jinlun

    2015-01-01

    Abstract Arctic sea ice drift forecasts of 6 h–9 days for the summer of 2014 are generated using the Marginal Ice Zone Modeling and Assimilation System (MIZMAS); the model is driven by 6 h atmospheric forecasts from the Climate Forecast System (CFSv2). Forecast ice drift speed is compared to drifting buoys and other observational platforms. Forecast positions are compared with actual positions 24 h–8 days since forecast. Forecast results are further compared to those from the forecasts generated using an ice velocity climatology driven by multiyear integrations of the same model. The results are presented in the context of scheduling the acquisition of high‐resolution images that need to follow buoys or scientific research platforms. RMS errors for ice speed are on the order of 5 km/d for 24–48 h since forecast using the sea ice model compared with 9 km/d using climatology. Predicted buoy position RMS errors are 6.3 km for 24 h and 14 km for 72 h since forecast. Model biases in ice speed and direction can be reduced by adjusting the air drag coefficient and water turning angle, but the adjustments do not affect verification statistics. This suggests that improved atmospheric forecast forcing may further reduce the forecast errors. The model remains skillful for 8 days. Using the forecast model increases the probability of tracking a target drifting in sea ice with a 10 km × 10 km image from 60 to 95% for a 24 h forecast and from 27 to 73% for a 48 h forecast. PMID:27818852

  5. Drift dynamics in a coupled model initialized for decadal forecasts

    NASA Astrophysics Data System (ADS)

    Sanchez-Gomez, Emilia; Cassou, Christophe; Ruprich-Robert, Yohan; Fernandez, Elodie; Terray, Laurent

    2016-03-01

    Drifts are always present in models when initialized from observed conditions because of intrinsic model errors; those potentially affect any type of climate predictions based on numerical experiments. Model drifts are usually removed through more or less sophisticated techniques for skill assessment, but they are rarely analysed. In this study, we provide a detailed physical and dynamical description of the drifts in the CNRM-CM5 coupled model using a set of decadal retrospective forecasts produced within CMIP5. The scope of the paper is to give some physical insights and lines of approach to, on one hand, implement more appropriate techniques of initialisation that minimize the drift in forecast mode, and on the other hand, eventually reduce the systematic biases of the models. We first document a novel protocol for ocean initialization adopted by the CNRM-CERFACS group for forecasting purpose in CMIP5. Initial states for starting dates of the predictions are obtained from a preliminary integration of the coupled model where full-field ocean surface temperature and salinity are restored everywhere to observations through flux derivative terms and full-field subsurface fields (below the prognostic ocean mixed layer) are nudged towards NEMOVAR reanalyses. Nudging is applied only outside the 15°S-15°N band allowing for dynamical balance between the depth and tilt of the tropical thermocline and the model intrinsic biased wind. A sensitivity experiment to the latitudinal extension of no-nudging zone (1°S-1°N instead of 15°, hereafter referred to as NOEQ) has been carried out. In this paper, we concentrate our analyses on two specific regions: the tropical Pacific and the North Atlantic basins. In the Pacific, we show that the first year of the forecasts is characterized by a quasi-systematic excitation of El Niño-Southern Oscillation (ENSO) warm events whatever the starting dates. This, through ocean-to-atmosphere heat transfer materialized by diabatic heating

  6. A Feature Fusion Based Forecasting Model for Financial Time Series

    PubMed Central

    Guo, Zhiqiang; Wang, Huaiqing; Liu, Quan; Yang, Jie

    2014-01-01

    Predicting the stock market has become an increasingly interesting research area for both researchers and investors, and many prediction models have been proposed. In these models, feature selection techniques are used to pre-process the raw data and remove noise. In this paper, a prediction model is constructed to forecast stock market behavior with the aid of independent component analysis, canonical correlation analysis, and a support vector machine. First, two types of features are extracted from the historical closing prices and 39 technical variables obtained by independent component analysis. Second, a canonical correlation analysis method is utilized to combine the two types of features and extract intrinsic features to improve the performance of the prediction model. Finally, a support vector machine is applied to forecast the next day's closing price. The proposed model is applied to the Shanghai stock market index and the Dow Jones index, and experimental results show that the proposed model performs better in the area of prediction than other two similar models. PMID:24971455

  7. A feature fusion based forecasting model for financial time series.

    PubMed

    Guo, Zhiqiang; Wang, Huaiqing; Liu, Quan; Yang, Jie

    2014-01-01

    Predicting the stock market has become an increasingly interesting research area for both researchers and investors, and many prediction models have been proposed. In these models, feature selection techniques are used to pre-process the raw data and remove noise. In this paper, a prediction model is constructed to forecast stock market behavior with the aid of independent component analysis, canonical correlation analysis, and a support vector machine. First, two types of features are extracted from the historical closing prices and 39 technical variables obtained by independent component analysis. Second, a canonical correlation analysis method is utilized to combine the two types of features and extract intrinsic features to improve the performance of the prediction model. Finally, a support vector machine is applied to forecast the next day's closing price. The proposed model is applied to the Shanghai stock market index and the Dow Jones index, and experimental results show that the proposed model performs better in the area of prediction than other two similar models.

  8. Application of artificial intelligence models in water quality forecasting.

    PubMed

    Yeon, I S; Kim, J H; Jun, K W

    2008-06-01

    The real-time data of the continuous water quality monitoring station at the Pyeongchang river was analyzed separately during the rainy period and non-rainy period. Total organic carbon data observed during the rainy period showed a greater mean value, maximum value and standard deviation than the data observed during the non-rainy period. Dissolved oxygen values during the rainy period were lower than those observed during the non-rainy period. It was analyzed that the discharge due to rain fall from the basin affects the change of the water quality. A model for the forecasting of water quality was constructed and applied using the neural network model and the adaptive neuro-fuzzy inference system. Regarding the models of levenberg-marquardt neural network, modular neural network and adaptive neuro-fuzzy inference system, all three models showed good results for the simulation of total organic carbon. The levenberg-marquardt neural network and modular neural network models showed better results than the adaptive neuro-fuzzy inference system model in the forecasting of dissolved oxygen. The modular neural network model, which was applied with the qualitative data of time in addition to quantitative data, showed the least error.

  9. Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain

    PubMed Central

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market. PMID:24782659

  10. Traffic congestion forecasting model for the INFORM System. Final report

    SciTech Connect

    Azarm, A.; Mughabghab, S.; Stock, D.

    1995-05-01

    This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.

  11. Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2016-02-01

    Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sparse and short span. To address this problem we propose and develop an adaptive two-stage forecasting approach for modeling multivariate, irregularly sampled clinical time series of varying lengths. The proposed model (1) learns the population trend from a collection of time series for past patients; (2) captures individual-specific short-term multivariate variability; and (3) adapts by automatically adjusting its predictions based on new observations. The proposed forecasting model is evaluated on a real-world clinical time series dataset. The results demonstrate the benefits of our approach on the prediction tasks for multivariate, irregularly sampled clinical time series, and show that it can outperform both the population based and patient-specific time series prediction models in terms of prediction accuracy.

  12. Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data

    PubMed Central

    Liu, Zitao; Hauskrecht, Milos

    2016-01-01

    Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sparse and short span. To address this problem we propose and develop an adaptive two-stage forecasting approach for modeling multivariate, irregularly sampled clinical time series of varying lengths. The proposed model (1) learns the population trend from a collection of time series for past patients; (2) captures individual-specific short-term multivariate variability; and (3) adapts by automatically adjusting its predictions based on new observations. The proposed forecasting model is evaluated on a real-world clinical time series dataset. The results demonstrate the benefits of our approach on the prediction tasks for multivariate, irregularly sampled clinical time series, and show that it can outperform both the population based and patient-specific time series prediction models in terms of prediction accuracy. PMID:27525189

  13. Forecasting Lightning Threat using Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Goodman, Steven J.; LaCasse, Katherine M.; Cecil, Daniel J.

    2008-01-01

    Two new approaches are proposed and developed for making time and space dependent, quantitative short-term forecasts of lightning threat, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the WRF model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed phase region at the-15 C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash rate proxy fields against domain-wide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. Our blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Exploratory tests for selected North Alabama cases show that, because WRF can distinguish the general character of most convective events, our methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single

  14. HOMER Economic Models - US Navy

    SciTech Connect

    Bush, Jason William; Myers, Kurt Steven

    2016-02-01

    This LETTER REPORT has been prepared by Idaho National Laboratory for US Navy NAVFAC EXWC to support in testing pre-commercial SIREN (Simulated Integration of Renewable Energy Networks) computer software models. In the logistics mode SIREN software simulates the combination of renewable power sources (solar arrays, wind turbines, and energy storage systems) in supplying an electrical demand. NAVFAC EXWC will create SIREN software logistics models of existing or planned renewable energy projects at five Navy locations (San Nicolas Island, AUTEC, New London, & China Lake), and INL will deliver additional HOMER computer models for comparative analysis. In the transient mode SIREN simulates the short time-scale variation of electrical parameters when a power outage or other destabilizing event occurs. In the HOMER model, a variety of inputs are entered such as location coordinates, Generators, PV arrays, Wind Turbines, Batteries, Converters, Grid costs/usage, Solar resources, Wind resources, Temperatures, Fuels, and Electric Loads. HOMER's optimization and sensitivity analysis algorithms then evaluate the economic and technical feasibility of these technology options and account for variations in technology costs, electric load, and energy resource availability. The Navy can then use HOMER’s optimization and sensitivity results to compare to those of the SIREN model. The U.S. Department of Energy (DOE) Idaho National Laboratory (INL) possesses unique expertise and experience in the software, hardware, and systems design for the integration of renewable energy into the electrical grid. NAVFAC EXWC will draw upon this expertise to complete mission requirements.

  15. Teaching Economics: A Cooperative Learning Model.

    ERIC Educational Resources Information Center

    Caropreso, Edward J.; Haggerty, Mark

    2000-01-01

    Describes an alternative approach to introductory economics based on a cooperative learning model, "Learning Together." Discussion of issues in economics education and cooperative learning in higher education leads to explanation of how to adapt the Learning Together Model to lesson planning in economics. A flow chart illustrates the process for a…

  16. Paleoclimate Data Assimilation with and without a Forecast Model

    NASA Astrophysics Data System (ADS)

    Perkins, W. A.; Hakim, G. J.

    2015-12-01

    Data assimilation (DA) has emerged as a promising technique for combining information from paleoclimate proxy data and climate models. Research on this topic has progressed to the point where an operational grid reconstruction project is underway using an ensemble approach (the Last Millennium Reanalysis; LMR). For problems on weather timescales, ensemble DA typically utilizes a "cycling" process, where an ensemble of forecasts provides the prior estimate to be combined with observational information. For the paleoclimate problem, cycling faces dual challenges of very large computational cost, and weak predictive skill on annual-decadal timescales. As a result, recent work in this area has used a "no cycling" approach where the prior ensemble is instead drawn randomly from a long climate simulation. Here we investigate the viability of adding cycling by means of a low-cost alternative for climate forecasting known as a linear inverse model (LIM). LIMs have been shown to have forecast skill comparable to coupled global climate models on annual time scales and due to their simplicity have low computational expense. In this study, we assess the reconstruction skill of ensemble DA with cycling relative to a control no-cycling reconstruction. Each reconstruction uses a random draw from a pre-industrial climate simulation as its initial (cycling) or annual (no-cycling) prior estimate, and assimilates observations from the PAGES 2k proxy dataset. Reconstructions for the period from 1000-2000 CE are performed, and both the correlation and coefficient of efficiency (CE) values for global averages and spatial fields are calculated against observational datasets during the instrumental record. Preliminary results for global mean temperature show that while correlations are high with the cycling approach (>0.8), they are slightly lower than results for the no-cycling reconstruction.

  17. Snow: A New Model Diagnostic and Seasonal Forecast Influences

    NASA Astrophysics Data System (ADS)

    Slater, A. G.; Lawrence, D. M.; Koven, C.

    2015-12-01

    Snow is the most variable of terrestrial surface condition on the planet with the seasonal extent of snow cover varying by about 48% of land area in the Northern Hemisphere. Physical properties of snow such as high albedo, high insulation along with its ability to store moisture make it an integral component of mid- and high-latitude climates and it is therefore important that models capture these properties and associated processes. In this work we explore two items associated with snow and their role in the climate system. Firstly, a diagnostic measure of snow insulation that is rooted in the physics of heat transfer is introduced. Insulation of the ground during cold Arctic winters heavily influences the rate and depth of ground freezing (or thawing), which can then influence hydrologic and biogeochemical fluxes. The ability of models to simulate snow insulation varies widely. Secondly, the role of snow upon seasonal forecasts is demonstrated within a currently operational modeling system. Due to model system biases, mass and longevity of snow can vary with forecasts. In turn, a longer lasting and greater moisture store can have impacts upon the surface temperature. These impacts can linger for over two months after all snow has melted. The cause of the biases is identified and a solution posed.

  18. Fuzzy logic-based analogue forecasting and hybrid modelling of horizontal visibility

    NASA Astrophysics Data System (ADS)

    Tuba, Zoltán; Bottyán, Zsolt

    2017-02-01

    Forecasting visibility is one of the greatest challenges in aviation meteorology. At the same time, high accuracy visibility forecasts can significantly reduce or make avoidable weather-related risk in aviation as well. To improve forecasting visibility, this research links fuzzy logic-based analogue forecasting and post-processed numerical weather prediction model outputs in hybrid forecast. Performance of analogue forecasting model was improved by the application of Analytic Hierarchy Process. Then, linear combination of the mentioned outputs was applied to create ultra-short term hybrid visibility prediction which gradually shifts the focus from statistical to numerical products taking their advantages during the forecast period. It gives the opportunity to bring closer the numerical visibility forecast to the observations even it is wrong initially. Complete verification of categorical forecasts was carried out; results are available for persistence and terminal aerodrome forecasts (TAF) as well in order to compare. The average value of Heidke Skill Score (HSS) of examined airports of analogue and hybrid forecasts shows very similar results even at the end of forecast period where the rate of analogue prediction in the final hybrid output is 0.1-0.2 only. However, in case of poor visibility (1000-2500 m), hybrid (0.65) and analogue forecasts (0.64) have similar average of HSS in the first 6 h of forecast period, and have better performance than persistence (0.60) or TAF (0.56). Important achievement that hybrid model takes into consideration physics and dynamics of the atmosphere due to the increasing part of the numerical weather prediction. In spite of this, its performance is similar to the most effective visibility forecasting methods and does not follow the poor verification results of clearly numerical outputs.

  19. Stochastic modeling of plasma mode forecasting in tokamak

    NASA Astrophysics Data System (ADS)

    Saadat, Sh.; Salem, M.; Ghoranneviss, M.; Khorshid, P.

    2012-04-01

    The structure of magnetohydrodynamic (MHD) modes has always been an interesting study in tokamaks. The mode number of tokamak plasma is the most important parameter, which plays a vital role in MHD instabilities. If it could be predicted, then the time of exerting external fields, such as feedback fields and Resonance Helical Field, could be obtained. Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving Average are useful models to predict stochastic processes. In this paper, we suggest using ARIMA model to forecast mode number. The ARIMA model shows correct mode number (m = 4) about 0.5 ms in IR-T1 tokamak and equations of Mirnov coil fluctuations are obtained. It is found that the recursive estimates of the ARIMA model parameters change as the plasma mode changes. A discriminator function has been proposed to determine plasma mode based on the recursive estimates of model parameters.

  20. Use of observational and model-derived fields and regime model output statistics in mesoscale forecasting

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.; Pielke, R. A.

    1985-01-01

    Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.

  1. Middle Atlantic Bight Marine Ecosystem: A Regional Forecast Model Study

    NASA Astrophysics Data System (ADS)

    Kim, H.; Coles, V. J.; Garraffo, Z. D.

    2011-12-01

    Changes in basin scale climate patterns can drive changes in mesoscale physical oceanographic processes and subsequent alterations of ecosystem states. Climatic variability can be induced in the northeastern shelfbreak large marine ecosystem by climate oscillations, such as North Atlantic Oscillation, Atlantic Multidecadal Oscillation; and long-term trends, such as a warming pattern. Short term variability can be induced by changes in the water masses in the northern and southern boundaries, by Gulf Stream path and transport variations, and by local mesoscale and submesoscale features. A coupled bio-physical model (HYbrid Coordinate Ocean Model) is being used to forecast the evolution of the frontal and current systems of the shelf and Gulf Stream, and subsequent changes in thermal conditions and ecosystem structure over the Middle Atlantic Bight (MAB). This study aims to forecast the ocean state and nutrients in the MAB, and to investigate how cross-shelf exchanges of different water masses could affect nutrient budgets, primary and secondary production, and fish populations in coastal and shelf marine ecosystems. Preliminary results are shown for a regional MAB model nested to the global 1/12o HYCOM run at NOAA/NCEP/EMC using Naval Oceanographic Office (NAVO) daily initialization. Elements of this simulation are nutrient influx condition at the northern and southern boundaries through regression to ocean thermodynamic variables, and nutrient input at the river mouths.

  2. COP21 climate negotiators' responses to climate model forecasts

    NASA Astrophysics Data System (ADS)

    Bosetti, Valentina; Weber, Elke; Berger, Loïc; Budescu, David V.; Liu, Ning; Tavoni, Massimo

    2017-02-01

    Policymakers involved in climate change negotiations are key users of climate science. It is therefore vital to understand how to communicate scientific information most effectively to this group. We tested how a unique sample of policymakers and negotiators at the Paris COP21 conference update their beliefs on year 2100 global mean temperature increases in response to a statistical summary of climate models' forecasts. We randomized the way information was provided across participants using three different formats similar to those used in Intergovernmental Panel on Climate Change reports. In spite of having received all available relevant scientific information, policymakers adopted such information very conservatively, assigning it less weight than their own prior beliefs. However, providing individual model estimates in addition to the statistical range was more effective in mitigating such inertia. The experiment was repeated with a population of European MBA students who, despite starting from similar priors, reported conditional probabilities closer to the provided models' forecasts than policymakers. There was also no effect of presentation format in the MBA sample. These results highlight the importance of testing visualization tools directly on the population of interest.

  3. Pharmaceutical expenditure forecast model to support health policy decision making

    PubMed Central

    Rémuzat, Cécile; Urbinati, Duccio; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and objective With constant incentives for healthcare payers to contain their pharmaceutical budgets, modelling policy decision impact became critical. The objective of this project was to test the impact of various policy decisions on pharmaceutical budget (developed for the European Commission for the project ‘European Union (EU) Pharmaceutical expenditure forecast’ – http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). Methods A model was built to assess policy scenarios’ impact on the pharmaceutical budgets of seven member states of the EU, namely France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. The following scenarios were tested: expanding the UK policies to EU, changing time to market access, modifying generic price and penetration, shifting the distribution chain of biosimilars (retail/hospital). Results Applying the UK policy resulted in dramatic savings for Germany (10 times the base case forecast) and substantial additional savings for France and Portugal (2 and 4 times the base case forecast, respectively). Delaying time to market was found be to a very powerful tool to reduce pharmaceutical expenditure. Applying the EU transparency directive (6-month process for pricing and reimbursement) increased pharmaceutical expenditure for all countries (from 1.1 to 4 times the base case forecast), except in Germany (additional savings). Decreasing the price of generics and boosting the penetration rate, as well as shifting distribution of biosimilars through hospital chain were also key methods to reduce pharmaceutical expenditure. Change in the level of reimbursement rate to 100% in all countries led to an important increase in the pharmaceutical budget. Conclusions Forecasting pharmaceutical expenditure is a critical exercise to inform policy decision makers. The most important leverages identified by the model on pharmaceutical budget were driven by generic and biosimilar prices, penetration rate

  4. Weather Research and Forecasting Model with Vertical Nesting Capability

    SciTech Connect

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improves WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundary conditions to be provided through the nesting procedure.

  5. River water temperature and fish growth forecasting models

    NASA Astrophysics Data System (ADS)

    Danner, E.; Pike, A.; Lindley, S.; Mendelssohn, R.; Dewitt, L.; Melton, F. S.; Nemani, R. R.; Hashimoto, H.

    2010-12-01

    Water is a valuable, limited, and highly regulated resource throughout the United States. When making decisions about water allocations, state and federal water project managers must consider the short-term and long-term needs of agriculture, urban users, hydroelectric production, flood control, and the ecosystems downstream. In the Central Valley of California, river water temperature is a critical indicator of habitat quality for endangered salmonid species and affects re-licensing of major water projects and dam operations worth billions of dollars. There is consequently strong interest in modeling water temperature dynamics and the subsequent impacts on fish growth in such regulated rivers. However, the accuracy of current stream temperature models is limited by the lack of spatially detailed meteorological forecasts. To address these issues, we developed a high-resolution deterministic 1-dimensional stream temperature model (sub-hourly time step, sub-kilometer spatial resolution) in a state-space framework, and applied this model to Upper Sacramento River. We then adapted salmon bioenergetics models to incorporate the temperature data at sub-hourly time steps to provide more realistic estimates of salmon growth. The temperature model uses physically-based heat budgets to calculate the rate of heat transfer to/from the river. We use variables provided by the TOPS-WRF (Terrestrial Observation and Prediction System - Weather Research and Forecasting) model—a high-resolution assimilation of satellite-derived meteorological observations and numerical weather simulations—as inputs. The TOPS-WRF framework allows us to improve the spatial and temporal resolution of stream temperature predictions. The salmon growth models are adapted from the Wisconsin bioenergetics model. We have made the output from both models available on an interactive website so that water and fisheries managers can determine the past, current and three day forecasted water temperatures at

  6. River Flow Forecasting: a Hybrid Model of Self Organizing Maps and Least Square Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Ismail, S.; Samsudin, R.; Shabri, A.

    2010-10-01

    Successful river flow time series forecasting is a major goal and an essential procedure that is necessary in water resources planning and management. This study introduced a new hybrid model based on a combination of two familiar non-linear method of mathematical modeling: Self Organizing Map (SOM) and Least Square Support Vector Machine (LSSVM) model referred as SOM-LSSVM model. The hybrid model uses the SOM algorithm to cluster the training data into several disjointed clusters and the individual LSSVM is used to forecast the river flow. The feasibility of this proposed model is evaluated to actual river flow data from Bernam River located in Selangor, Malaysia. Their results have been compared to those obtained using LSSVM and artificial neural networks (ANN) models. The experiment results show that the SOM-LSSVM model outperforms other models for forecasting river flow. It also indicates that the proposed model can forecast more precisely and provides a promising alternative technique in river flow forecasting.

  7. A Capacity Forecast Model for Volatile Data in Maintenance Logistics

    NASA Astrophysics Data System (ADS)

    Berkholz, Daniel

    2009-05-01

    Maintenance, repair and overhaul processes (MRO processes) are elaborate and complex. Rising demands on these after sales services require reliable production planning and control methods particularly for maintaining valuable capital goods. Downtimes lead to high costs and an inability to meet delivery due dates results in severe contract penalties. Predicting the required capacities for maintenance orders in advance is often difficult due to unknown part conditions unless the goods are actually inspected. This planning uncertainty results in extensive capital tie-up by rising stock levels within the whole MRO network. The article outlines an approach to planning capacities when maintenance data forecasting is volatile. It focuses on the development of prerequisites for a reliable capacity planning model. This enables a quick response to maintenance orders by employing appropriate measures. The information gained through the model is then systematically applied to forecast both personnel capacities and the demand for spare parts. The improved planning reliability can support MRO service providers in shortening delivery times and reducing stock levels in order to enhance the performance of their maintenance logistics.

  8. A high resolution WRF model for wind energy forecasting

    NASA Astrophysics Data System (ADS)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  9. Diabatic forcing and initialization with assimilation of cloud and rain water in a forecast model: Methodology

    NASA Technical Reports Server (NTRS)

    Raymond, William H.; Olson, William S.; Callan, Geary

    1990-01-01

    The focus of this part of the investigation is to find one or more general modeling techniques that will help reduce the time taken by numerical forecast models to initiate or spin-up precipitation processes and enhance storm intensity. If the conventional data base could explain the atmospheric mesoscale flow in detail, then much of our problem would be eliminated. But the data base is primarily synoptic scale, requiring that a solution must be sought either in nonconventional data, in methods to initialize mesoscale circulations, or in ways of retaining between forecasts the model generated mesoscale dynamics and precipitation fields. All three methods are investigated. The initialization and assimilation of explicit cloud and rainwater quantities computed from conservation equations in a mesoscale regional model are examined. The physical processes include condensation, evaporation, autoconversion, accretion, and the removal of rainwater by fallout. The question of how to initialize the explicit liquid water calculations in numerical models and how to retain information about precipitation processes during the 4-D assimilation cycle are important issues that are addressed. The explicit cloud calculations were purposely kept simple so that different initialization techniques can be easily and economically tested. Precipitation spin-up processes associated with three different types of weather phenomena are examined. Our findings show that diabatic initialization, or diabatic initialization in combination with a new diabatic forcing procedure, work effectively to enhance the spin-up of precipitation in a mesoscale numerical weather prediction forecast. Also, the retention of cloud and rain water during the analysis phase of the 4-D data assimilation procedure is shown to be valuable. Without detailed observations, the vertical placement of the diabatic heating remains a critical problem.

  10. A Forecasting Model for Feed Grain Demand Based on Combined Dynamic Model.

    PubMed

    Yang, Tiejun; Yang, Na; Zhu, Chunhua

    2016-01-01

    In order to improve the long-term prediction accuracy of feed grain demand, a dynamic forecast model of long-term feed grain demand is realized with joint multivariate regression model, of which the correlation between the feed grain demand and its influence factors is analyzed firstly; then the change trend of various factors that affect the feed grain demand is predicted by using ARIMA model. The simulation results show that the accuracy of proposed combined dynamic forecasting model is obviously higher than that of the grey system model. Thus, it indicates that the proposed algorithm is effective.

  11. Comparison of Dst Forecast Models for Intense Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Ji, Eun-Young; Moon, Y.-J.; Gopalswamy, N.; Lee, D.-H.

    2012-01-01

    We have compared six disturbance storm time (Dst) forecast models using 63 intense geomagnetic storms (Dst <=100 nT) that occurred from 1998 to 2006. For comparison, we estimated linear correlation coefficients and RMS errors between the observed Dst data and the predicted Dst during the geomagnetic storm period as well as the difference of the value of minimum Dst (Delta Dst(sub min)) and the difference in the absolute value of Dst minimum time (Delta t(sub Dst)) between the observed and the predicted. As a result, we found that the model by Temerin and Li gives the best prediction for all parameters when all 63 events are considered. The model gives the average values: the linear correlation coefficient of 0.94, the RMS error of 14.8 nT, the Delta Dst(sub min) of 7.7 nT, and the absolute value of Delta t(sub Dst) of 1.5 hour. For further comparison, we classified the storm events into two groups according to the magnitude of Dst. We found that the model of Temerin and Lee is better than the other models for the events having 100 <= Dst < 200 nT, and three recent models (the model of Wang et al., the model of Temerin and Li, and the model of Boynton et al.) are better than the other three models for the events having Dst <= 200 nT.

  12. Multi-model ensemble-based probabilistic prediction of tropical cyclogenesis using TIGGE model forecasts

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeru; Kishtawal, C. M.; Bhomia, Swati; Pal, P. K.

    2016-10-01

    An extended range tropical cyclogenesis forecast model has been developed using the forecasts of global models available from TIGGE portal. A scheme has been developed to detect the signatures of cyclogenesis in the global model forecast fields [i.e., the mean sea level pressure and surface winds (10 m horizontal winds)]. For this, a wind matching index was determined between the synthetic cyclonic wind fields and the forecast wind fields. The thresholds of 0.4 for wind matching index and 1005 hpa for pressure were determined to detect the cyclonic systems. These detected cyclonic systems in the study region are classified into different cyclone categories based on their intensity (maximum wind speed). The forecasts of up to 15 days from three global models viz., ECMWF, NCEP and UKMO have been used to predict cyclogenesis based on multi-model ensemble approach. The occurrence of cyclonic events of different categories in all the forecast steps in the grided region (10 × 10 km2) was used to estimate the probability of the formation of cyclogenesis. The probability of cyclogenesis was estimated by computing the grid score using the wind matching index by each model and at each forecast step and convolving it with Gaussian filter. The proposed method is used to predict the cyclogenesis of five named tropical cyclones formed during the year 2013 in the north Indian Ocean. The 6-8 days advance cyclogenesis of theses systems were predicted using the above approach. The mean lead prediction time for the cyclogenesis event of the proposed model has been found as 7 days.

  13. Three essays on resource economics. Demand systems for energy forecasting: Practical considerations for estimating a generalized logit model, To borrow or not to borrow: A variation on the MacDougal-Kemp theme, and, Valuing reduced risk for households with children or the retired

    NASA Astrophysics Data System (ADS)

    Weng, Weifeng

    This thesis presents papers on three areas of study within resource and environmental economics. "Demand Systems For Energy Forecasting" provides some practical considerations for estimating a Generalized Logit model. The main reason for using this demand system for energy and other factors is that the derived price elasticities are robust when expenditure shares are small. The primary objective of the paper is to determine the best form of the cross-price weights, and a simple inverse function of the expenditure share is selected. A second objective is to demonstrate that the estimated elasticities are sensitive to the units specified for the prices, and to show how price scales can be estimated as part of the model. "To Borrow or Not to Borrow: A Variation on the MacDougal-Kemp Theme" studies the impact of international capital movements on the conditional convergence of economies differing from each other only in initial wealth. We found that in assets, income, consumption and utility, convergence obtains, with and only with, the absence of international capital movement. When a rich country invests in a poor country, the balance of debt increases forever. Asset ownership is increased in all periods for the lender, and asset ownership of the borrower is deceased. Also, capital investment decreases the lender's utility for early periods, but increases it forever after a cross-over point. In contrast, the borrower's utility increases for early periods, but then decreases forever. "Valuing Reduced Risk for Households with Children or the Retired" presents a theoretical model of how families value risk and then exams family automobile purchases to impute the average Value of a Statistical Life (VSL) for each type of family. Data for fatal accidents are used to estimate survival rates for individuals in different types of accidents, and the probabilities of having accidents for different types of vehicle. These models are used to determine standardized risks for

  14. Evaluation of Nocturnal Temperature Forecasts Provided by the Weather Research and Forecast Model for Different Stability Regimes and Terrain Characteristics

    NASA Astrophysics Data System (ADS)

    Battisti, Adriano; Acevedo, Otávio C.; Costa, Felipe D.; Puhales, Franciano S.; Anabor, Vagner; Degrazia, Gervásio A.

    2017-03-01

    The quality of nocturnal temperature forecasts made by the Weather Research and Forecast (WRF) numerical model is evaluated. The model was run for all July 2012 nights, and temperature fields compared to hourly observations made at 26 weather stations in southern Brazil. Four different planetary boundary-layer (PBL) schemes are considered: Bougeault-Lacarrere (BouLac), Quasi-Normal Scale Elimination (QNSE), Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ). Additional simulations to assess the role of higher horizontal and vertical resolutions were performed using the MYJ scheme. All schemes, except BouLac, underestimated the 2-m temperature, and in all cases the temperature bias is dependent on wind speed. At high wind speeds, all schemes exhibit a cold bias, which is greater for those that yield lower nocturnal surface-layer turbulent intensity. The elevation difference between each station and the model nearest grid point H_{it{station}} -H_{it{gridpoint}} is highly correlated with the temperature simulation error. We found that a consistent cold bias is restricted to conditions with low-level clouds. We concluded that one possible means of improving nocturnal temperature forecast is to use parametrization schemes that allow for higher turbulent intensity in near-neutral conditions. The results indicate that this improvement would partially counteract the misrepresentation of the low-level cloud cover. In most stable cases, a post-processing algorithm based on terrain characteristics may improve the forecasts.

  15. Evaluation of Nocturnal Temperature Forecasts Provided by the Weather Research and Forecast Model for Different Stability Regimes and Terrain Characteristics

    NASA Astrophysics Data System (ADS)

    Battisti, Adriano; Acevedo, Otávio C.; Costa, Felipe D.; Puhales, Franciano S.; Anabor, Vagner; Degrazia, Gervásio A.

    2016-10-01

    The quality of nocturnal temperature forecasts made by the Weather Research and Forecast (WRF) numerical model is evaluated. The model was run for all July 2012 nights, and temperature fields compared to hourly observations made at 26 weather stations in southern Brazil. Four different planetary boundary-layer (PBL) schemes are considered: Bougeault-Lacarrere (BouLac), Quasi-Normal Scale Elimination (QNSE), Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ). Additional simulations to assess the role of higher horizontal and vertical resolutions were performed using the MYJ scheme. All schemes, except BouLac, underestimated the 2-m temperature, and in all cases the temperature bias is dependent on wind speed. At high wind speeds, all schemes exhibit a cold bias, which is greater for those that yield lower nocturnal surface-layer turbulent intensity. The elevation difference between each station and the model nearest grid point H_{station} -H_{gridpoint} is highly correlated with the temperature simulation error. We found that a consistent cold bias is restricted to conditions with low-level clouds. We concluded that one possible means of improving nocturnal temperature forecast is to use parametrization schemes that allow for higher turbulent intensity in near-neutral conditions. The results indicate that this improvement would partially counteract the misrepresentation of the low-level cloud cover. In most stable cases, a post-processing algorithm based on terrain characteristics may improve the forecasts.

  16. Toward Submesocale Ocean Modelling and Observations for Global Ocean Forecast.

    NASA Astrophysics Data System (ADS)

    Drillet, Y.

    2014-12-01

    Mercator Ocean is the French oceanographic operational center involved in the development an operation of global high resolution ocean forecasting systems; it is part of the European Copernicus Marine service initiated during MyOcean project. Mercator Ocean currently delivers daily 1/12° global ocean forecast based on the NEMO model which allows for a good representation of mesoscale structures in main areas of the global ocean. Data assimilation of altimetry provides a precise initialization of the mesoscale structures while in situ observations, mainly based on the ARGO network, and satellite Sea Surface Temperature constrain water mass properties from the surface to intermediate depths. One of the main improvements scheduled in the coming years is the transitioning towards submesoscale permitting horizontal resolution (1/36°). On the basis of numerical simulations in selected areas and standard diagnostics developed to validate operational systems, we will discuss : i) The impact of the resolution increase at the basin scale. ii) Adequacy of numerical schemes, vertical resolution and physical parameterization. iii) Adequacy of currently implemented data assimilation procedures in particular with respect to new high resolution data set such as SWOT.

  17. Data on photovoltaic power forecasting models for Mediterranean climate.

    PubMed

    Malvoni, M; De Giorgi, M G; Congedo, P M

    2016-06-01

    The weather data have a relevant impact on the photovoltaic (PV) power forecast, furthermore the PV power prediction methods need the historical data as input. The data presented in this article concern measured values of ambient temperature, module temperature, solar radiation in a Mediterranean climate. Hourly samples of the PV output power of 960kWP system located in Southern Italy were supplied for more 500 days. The data sets, given in , were used in DOI: 10.1016/j.enconman.2015.04.078, M.G. De Giorgi, P.M. Congedo, M. Malvoni, D. Laforgia (2015) [1] to compare Artificial Neural Networks and Least Square Support Vector Machines. It was found that LS-SVM with Wavelet Decomposition (WD) outperforms ANN method. In DOI: 10.1016/j.energy.2016.04.020, M.G. De Giorgi, P.M. Congedo, M. Malvoni (2016) [2] the same data were used for comparing different strategies for multi-step ahead forecast based on the hybrid Group Method of Data Handling networks and Least Square Support Vector Machine. The predicted PV power values by three models were reported in .

  18. A stochastic HMM-based forecasting model for fuzzy time series.

    PubMed

    Li, Sheng-Tun; Cheng, Yi-Chung

    2010-10-01

    Recently, fuzzy time series have attracted more academic attention than traditional time series due to their capability of dealing with the uncertainty and vagueness inherent in the data collected. The formulation of fuzzy relations is one of the key issues affecting forecasting results. Most of the present works adopt IF-THEN rules for relationship representation, which leads to higher computational overhead and rule redundancy. Sullivan and Woodall proposed a Markov-based formulation and a forecasting model to reduce computational overhead; however, its applicability is limited to handling one-factor problems. In this paper, we propose a novel forecasting model based on the hidden Markov model by enhancing Sullivan and Woodall's work to allow handling of two-factor forecasting problems. Moreover, in order to make the nature of conjecture and randomness of forecasting more realistic, the Monte Carlo method is adopted to estimate the outcome. To test the effectiveness of the resulting stochastic model, we conduct two experiments and compare the results with those from other models. The first experiment consists of forecasting the daily average temperature and cloud density in Taipei, Taiwan, and the second experiment is based on the Taiwan Weighted Stock Index by forecasting the exchange rate of the New Taiwan dollar against the U.S. dollar. In addition to improving forecasting accuracy, the proposed model adheres to the central limit theorem, and thus, the result statistically approximates to the real mean of the target value being forecast.

  19. Forecasting Ability of a Multi-Renewal Seismicity Model

    NASA Astrophysics Data System (ADS)

    Molchan, George; Romashkova, Leontina

    2014-09-01

    The inter-event time (IET) is sometimes used as a basis for prediction of large earthquakes. It is the case when theoretical analysis of prediction is possible. Quite recently, a specific IET model was suggested for dynamic probabilistic prediction of events in Italy (http://earthquake.bo.ingv.it). In this study we analyze some aspects of the statistical estimation of the model and its predictive ability. We find that more or less effective prediction is possible within four out of 34 seismotectonic zones where seismicity rate or clustering of events is relatively high. We show that, in the framework of the model, one can suggest a simple zone-independent strategy, which practically optimizes the relative number of non-accidental successes, or the Hanssen-Kuiper (HK) skill score. This quasi-optimal strategy declares alarm in a zone for the first 2.67 years just after the occurrence of each large event in the zone. The optimal HK skill score values are about 26 % for the three most active zones, and 2-10 % for the 26 least active zones. However, the number of false alarm time intervals per one event in each of the zones is unusually high: about 0.7 and 0.8-0.95, respectively. Both these theoretical estimations are important because any prospective testing of the model is unrealistic in most of the zones during a reasonable time. This particular analysis requires a discussion of the following issues of general interest: a specific approach to the analysis of predictions vs. the standard CSEP testing approach; prediction vs. forecasting; HK skill score vs. probability gain; the total forecast error diagram and connected false alarms.

  20. Assimilation of microwave, infrared, and radio occultation satellite observations with a weather research and forecasting model for heavy rainfall forecasting

    NASA Astrophysics Data System (ADS)

    Boonyuen, Pakornpop; Wu, Falin; Phunthirawuth, Parwapath; Zhao, Yan

    2016-10-01

    In this research, satellite observation data were assimilated into Weather Research and Forecasting Model (WRF) by using Three-dimensional Variational Data Assimilation System (3DVAR) to analyze its impacts on heavy rainfall forecasts. The weather case for this research was during 13-18 September 2015. Tropical cyclone VAMCO, forming in South China Sea near with Vietnam, moved on west direction to the Northeast of Thailand. After passed through Vietnam, the tropical cyclone was become to depression and there was heavy rainfall throughout the area of Thailand. Observation data, used in this research, included microwave radiance observations from the Advanced Microwave Sounding Unit-A (AMSU-A), infrared radiance observations from Infrared Atmospheric Sounding Interferometer (IASI), and GPS radio occultation (RO) from the COSMIC and CHAMP missions. The experiments were designed in five cases, namely, 1) without data assimilation (CTRL); 2) with only RO data (RO); 3) with only AMSU-A data (AMSUA); 4) with only IASI data (IASI); and 5) with all of RO, AMSU-A and IASI data assimilation (ALL). Then all experiment results would be compared with both NCEP FNL (Final) Operational Global Analysis and the observation data from Thai Meteorological Department weather stations. The experiments result demonstrated that with microwave (AMSU-A), infrared (IASI) and GPS radio occultation (RO) data assimilation can produce the positive impact on analyses and forecast. All of satellite data assimilations have corresponding positive effects in term of temperature and humidity forecasting, and the GPS-RO assimilation produces the best of temperature and humidity forecast biases. The satellite data assimilation has a good impact on temperature and humidity in lower troposphere and vertical distribution that very helpful for heavy rainfall forecast improvement.

  1. eWaterCycle: A global operational hydrological forecasting model

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  2. Improving groundwater predictions utilizing seasonal precipitation forecasts from general circulation models forced with sea surface temperature forecasts

    USGS Publications Warehouse

    Almanaseer, Naser; Sankarasubramanian, A.; Bales, Jerad

    2014-01-01

    Recent studies have found a significant association between climatic variability and basin hydroclimatology, particularly groundwater levels, over the southeast United States. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater-level forecasts based on the precipitation forecasts from ECHAM 4.5 General Circulation Model Forced with Sea Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater Climate Response Network and Hydro-Climatic Data Network were selected to represent groundwater and surface water flows, respectively, having minimal anthropogenic influences within the Flint River Basin in Georgia, United States. The writers employ two low-dimensional models [principle component regression (PCR) and canonical correlation analysis (CCA)] for predicting groundwater and streamflow at both seasonal and monthly timescales. Three modeling schemes are considered at the beginning of January to predict winter (January, February, and March) and spring (April, May, and June) streamflow and groundwater for the selected sites within the Flint River Basin. The first scheme (model 1) is a null model and is developed using PCR for every streamflow and groundwater site using previous 3-month observations (October, November, and December) available at that particular site as predictors. Modeling schemes 2 and 3 are developed using PCR and CCA, respectively, to evaluate the role of precipitation forecasts in improving monthly and seasonal groundwater predictions. Modeling scheme 3, which employs a CCA approach, is developed for each site by considering observed groundwater levels from nearby sites as predictands. The performance of these three schemes is evaluated using two metrics (correlation coefficient and relative RMS error) by developing groundwater-level forecasts based on leave-five-out cross-validation. Results from the research reported in this paper show that using

  3. Gary Becker: Model Economic Scientist

    PubMed Central

    2015-01-01

    This paper presents Gary Becker’s approach to conducting creative, empirically fruitful economic research. It describes the traits and methodology that made him such a productive and influential scholar. PMID:26705367

  4. Model Forecast Skill and Sensitivity to Initial Conditions in the Seasonal Sea Ice Outlook

    NASA Technical Reports Server (NTRS)

    Blanchard-Wrigglesworth, E.; Cullather, R. I.; Wang, W.; Zhang, J.; Bitz, C. M.

    2015-01-01

    We explore the skill of predictions of September Arctic sea ice extent from dynamical models participating in the Sea Ice Outlook (SIO). Forecasts submitted in August, at roughly 2 month lead times, are skillful. However, skill is lower in forecasts submitted to SIO, which began in 2008, than in hindcasts (retrospective forecasts) of the last few decades. The multimodel mean SIO predictions offer slightly higher skill than the single-model SIO predictions, but neither beats a damped persistence forecast at longer than 2 month lead times. The models are largely unsuccessful at predicting each other, indicating a large difference in model physics and/or initial conditions. Motivated by this, we perform an initial condition sensitivity experiment with four SIO models, applying a fixed -1 m perturbation to the initial sea ice thickness. The significant range of the response among the models suggests that different model physics make a significant contribution to forecast uncertainty.

  5. Model forecast skill and sensitivity to initial conditions in the seasonal Sea Ice Outlook

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, E.; Cullather, R. I.; Wang, W.; Zhang, J.; Bitz, C. M.

    2015-10-01

    We explore the skill of predictions of September Arctic sea ice extent from dynamical models participating in the Sea Ice Outlook (SIO). Forecasts submitted in August, at roughly 2 month lead times, are skillful. However, skill is lower in forecasts submitted to SIO, which began in 2008, than in hindcasts (retrospective forecasts) of the last few decades. The multimodel mean SIO predictions offer slightly higher skill than the single-model SIO predictions, but neither beats a damped persistence forecast at longer than 2 month lead times. The models are largely unsuccessful at predicting each other, indicating a large difference in model physics and/or initial conditions. Motivated by this, we perform an initial condition sensitivity experiment with four SIO models, applying a fixed -1 m perturbation to the initial sea ice thickness. The significant range of the response among the models suggests that different model physics make a significant contribution to forecast uncertainty.

  6. Use of medium-range numerical weather prediction model output to produce forecasts of streamflow

    USGS Publications Warehouse

    Clark, M.P.; Hay, L.E.

    2004-01-01

    This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases

  7. Time Series Models Adoptable for Forecasting Nile Floods and Ethiopian Rainfalls.

    NASA Astrophysics Data System (ADS)

    El-Fandy, M. G.; Taiel, S. M. M.; Ashour, Z. H.

    1994-01-01

    Long-term rainfall forecasting is used in making economic and agricultural decisions in many countries. It may also be a tool in minimizing the devastation resulting from recurrent droughts. To be able to forecast the total annual rainfall or the levels of seasonal floods, a class of models has first been chosen. The model parameters have then been estimated with an appropriate parameter estimation algorithm. Finally, diagnostic tests have been performed to verify the adequacy of the model. These are the general principles of system identification, which is the most crucial part of the forecasting procedure. In this paper several sets of data have been studied using different statistical procedures. The examined data include a historical 835-year record representing the levels of the seasonal Nile floods in Cairo, Egypt, during the period A.D. 622-1457. These readings were originally carried out by the Arabsto a great degree of accuracy in order to be used in estimating yearly taxes or Zacat (islamic duties). The observations also comprise recent total annual rainfall data over Addis Ababa (Ethiopia) (1907-1984), the total annual discharges of Ethiopian rivers (including the river Sobat discharges at Hillet Doleib, Blue Nile discharge at Roseris, river Dinder, river Rahar, and river Atbara), equatorial lake plateau supply as contributed at Aswan during the period 1912-1982, and the total annual discharges at Aswan during the period 1871-1982. Periodograms have been used to uncover possible peridodicities. Trends of rainfall and discharges of some rivers of east and central Africa have been also estimated.Using the first half of the available record, two autoregressive integrated moving average (ARIMA) time series models have been identified, one for the levels of the seasonal Nile floods in Cairo, the second to model the annual rainfall over Ethiopia. The time series models have been applied in 1-year-ahead forecasting to the other hall of the available record and

  8. Impact of ECMWF, NCEP, and NCMRWF global model analysis on the WRF model forecast over Indian Region

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Kishtawal, C. M.; Pal, P. K.

    2017-01-01

    The global model analysis has significant impact on the mesoscale model forecast as global model provides initial condition (IC) and lateral boundary conditions (LBC) for the mesoscale model. With this objective, four operational global model analyses prepared from the European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS), NCEP Global Forecasting System (GFS), and National Centre for Medium Range Weather Forecasting (NCMRWF) are used daily to generate IC and LBC of the mesoscale model during 13th December 2012 to 13th January 2013. The Weather Research and Forecasting (WRF) model version 3.4, broadly used for short-range weather forecast, is adopted in this study as mesoscale model. After initial comparison of global model analyses with Atmospheric Infrared Sounder (AIRS) retrieved temperature and moisture profiles, daily WRF model forecasts initialized from global model analyses are compared with in situ observations and AIRS profiles. Results demonstrated that forecasts initialized from the ECMWF analysis are closer to AIRS-retrieved profiles and in situ observations compared to other global model analyses. No major differences are occurred in the WRF model forecasts when initialized from the NCEP GDAS and GFS analyses, whereas these two analyses have different spatial resolutions and observations used for assimilation. Maximum RMSD is seen in the NCMRWF analysis-based experiments when compared with AIRS-retrieved profiles. The rainfall prediction is also improved when WRF model is initialized from the ECMWF analysis compared to the NCEP and NCMRWF analyses.

  9. Forecasting rain events - Meteorological models or collective intelligence?

    NASA Astrophysics Data System (ADS)

    Arazy, Ofer; Halfon, Noam; Malkinson, Dan

    2015-04-01

    Collective intelligence is shared (or group) intelligence that emerges from the collective efforts of many individuals. Collective intelligence is the aggregate of individual contributions: from simple collective decision making to more sophisticated aggregations such as in crowdsourcing and peer-production systems. In particular, collective intelligence could be used in making predictions about future events, for example by using prediction markets to forecast election results, stock prices, or the outcomes of sport events. To date, there is little research regarding the use of collective intelligence for prediction of weather forecasting. The objective of this study is to investigate the extent to which collective intelligence could be utilized to accurately predict weather events, and in particular rainfall. Our analyses employ metrics of group intelligence, as well as compare the accuracy of groups' predictions against the predictions of the standard model used by the National Meteorological Services. We report on preliminary results from a study conducted over the 2013-2014 and 2014-2015 winters. We have built a web site that allows people to make predictions on precipitation levels on certain locations. During each competition participants were allowed to enter their precipitation forecasts (i.e. 'bets') at three locations and these locations changed between competitions. A precipitation competition was defined as a 48-96 hour period (depending on the expected weather conditions), bets were open 24-48 hours prior to the competition, and during betting period participants were allowed to change their bets with no limitation. In order to explore the effect of transparency, betting mechanisms varied across study's sites: full transparency (participants able to see each other's bets); partial transparency (participants see the group's average bet); and no transparency (no information of others' bets is made available). Several interesting findings emerged from

  10. Retrospective forecast of ETAS model with daily parameters estimate

    NASA Astrophysics Data System (ADS)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  11. Data Analysis, Modeling, and Ensemble Forecasting to Support NOWCAST and Forecast Activities at the Fallon Naval Station

    DTIC Science & Technology

    2009-09-01

    lived intense dust storm over the Fallon NAS is also being conducted as a preliminary to an ensemble forecast that emphasizes operational prediction...identify sources of error in dynamical prediction, and (2) analysis and prediction of dust storms over western U.S. Both projects are supported by...interdisciplinary project linking dust emission modeling, atmospheric predictions and Lagrangian Random Particle Dispersion modeling. Dr. Koracin is a Lead

  12. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  13. Flood forecasting with DDD-application of a parsimonious hydrological model in operational flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Haddeland, Ingjerd

    2014-05-01

    A new parameter-parsimonious rainfall-runoff model, DDD (Distance Distribution Dynamics) has been run operationally at the Norwegian Flood Forecasting Service for approximately a year. DDD has been calibrated for, altogether, 104 catchments throughout Norway, and provide runoff forecasts 8 days ahead on a daily temporal resolution driven by precipitation and temperature from the meteorological forecast models AROME (48 hrs) and EC (192 hrs). The current version of DDD differs from the standard model used for flood forecasting in Norway, the HBV model, in its description of the subsurface and runoff dynamics. In DDD, the capacity of the subsurface water reservoir M, is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than the HBV model. Experiences using DDD show that especially the timing of flood peaks has improved considerably and in a comparison between DDD and HBV, when assessing timeseries of 64 years for 75 catchments, DDD had a higher hit rate and a lower false alarm rate than HBV. For flood peaks higher than the mean annual flood the median hit rate is 0.45 and 0.41 for the DDD and HBV models respectively. Corresponding number for the false alarm rate is 0.62 and 0.75 For floods over the five year return interval, the median hit rate is 0.29 and 0.28 for the DDD and HBV models, respectively with false alarm rates equal to 0.67 and 0.80. During 2014 the Norwegian flood forecasting service will run DDD operationally at a 3h temporal

  14. How informative are slip models for aftershock forecasting?

    NASA Astrophysics Data System (ADS)

    Bach, Christoph; Hainzl, Sebastian

    2013-04-01

    Coulomb stress changes (ΔCFS) have been recognized as a major trigger mechanism for earthquakes, in particular aftershock distributions and the spatial patterns of ΔCFS are often found to be correlated. However, the Coulomb stress calculations are based on slip inversions and the receiver fault mechanisms which both contain large uncertainties. In particular, slip inversions are usually non-unique and often differ strongly for the same earthquakes. Here we want to address the information content of those inversions with respect to aftershock forecasting. Therefore we compare the slip models to randomized fractal slip models which are only constrained by fault information and moment magnitude. The uncertainty of the aftershock mechanisms is considered by using many receiver fault orientations, and by calculating ΔCFS at several depth layers. The stress change is then converted into an aftershock probability map utilizing a clock advance model. To estimate the information content of the slip models, we use an Epidemic Type Aftershock Sequence (ETAS) model approach introduced by Bach and Hainzl (2012), where the spatial probability density of direct aftershocks is related to the ΔCFS calculations. Besides the directly triggered aftershocks, this approach also takes secondary aftershock triggering into account. We quantify our results by calculating the information gain of the randomized slip models relative to the corresponding published slip model. As case studies, we investigate the aftershock sequences of several well-known main shocks such as 1992 Landers, 1999 Hector Mine, 2004 Parkfield, 2002 Denali. First results show a huge difference in the information content of slip models. For some of the cases up to 90% of the random slip models are found to perform better than the originally published model, for some other cases only few random models are found performing better than the published slip model.

  15. Establishment of numerical beach-litter hindcast/forecast models: an application to Goto Islands, Japan.

    PubMed

    Kako, Shin'ichiro; Isobe, Atsuhiko; Magome, Shinya; Hinata, Hirofumi; Seino, Satoquo; Kojima, Azusa

    2011-02-01

    This study attempts to establish a system for hindcasting/forecasting the quantity of litter reaching a beach using an ocean circulation model, a two-way particle tracking model (PTM) to find litter sources, and an inverse method to compute litter outflows at each source. Twelve actual beach survey results, and satellite and forecasted wind data were also used. The quantity of beach litter was hindcasted/forecasted using a forward in-time PTM with the surface currents computed in the ocean circulation model driven by satellite-derived/forecasted wind data. Outflows obtained using the inverse method was given for each source in the model. The time series of the hindcasted/forecasted quantity of beach litter were found consistent with the quantity of beach litter determined from sequential webcam images of the actual beach. The accuracy of the model, however, is reduced drastically by intense winds such as typhoons which disturb drifting litter motion.

  16. Design and development of surface rainfall forecast products on GRAPES_MESO model

    NASA Astrophysics Data System (ADS)

    Zhili, Liu

    2016-04-01

    In this paper, we designed and developed the surface rainfall forecast products using medium scale GRAPES_MESO model precipitation forecast products. The horizontal resolution of GRAPES_MESO model is 10km*10km, the number of Grids points is 751*501, vertical levels is 26, the range is 70°E-145.15°E, 15°N-64.35 °N. We divided the basin into 7 major watersheds. Each watersheds was divided into a number of sub regions. There were 95 sub regions in all. Tyson polygon method is adopted in the calculation of surface rainfall. We used 24 hours forecast precipitation data of GRAPES_MESO model to calculate the surface rainfall. According to the site of information and boundary information of the 95 sub regions, the forecast surface rainfall of each sub regions was calculated. We can provide real-time surface rainfall forecast products every day. We used the method of fuzzy evaluation to carry out a preliminary test and verify about the surface rainfall forecast product. Results shows that the fuzzy score of heavy rain, rainstorm and downpour level forecast rainfall were higher, the fuzzy score of light rain level was lower. The forecast effect of heavy rain, rainstorm and downpour level surface rainfall were better. The rate of missing and empty forecast of light rainfall level surface rainfall were higher, so it's fuzzy score were lower.

  17. The impact of vertical resolution in mesoscale model AROME forecasting of radiation fog

    NASA Astrophysics Data System (ADS)

    Philip, Alexandre; Bergot, Thierry; Bouteloup, Yves; Bouyssel, François

    2015-04-01

    Airports short-term forecasting of fog has a security and economic impact. Numerical simulations have been performed with the mesoscale model AROME (Application of Research to Operations at Mesoscale) (Seity et al. 2011). Three vertical resolutions (60, 90 and 156 levels) are used to show the impact of radiation fog on numerical forecasting. Observations at Roissy Charles De Gaulle airport are compared to simulations. Significant differences in the onset, evolution and dissipation of fog were found. The high resolution simulation is in better agreement with observations than a coarser one. The surface boundary layer and incoming long-wave radiations are better represented. A more realistic behaviour of liquid water content evolution allows a better anticipation of low visibility procedures (ceiling < 60m and/or visibility < 600m). The case study of radiation fog shows that it is necessary to have a well defined vertical grid to better represent local phenomena. A statistical study over 6 months (October 2011 - March 2012 ) using different configurations was carried out. Statistically, results were the same as in the case study of radiation fog. Seity Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, V. Masson, 2011: The AROME-France convective scale operational model. Mon.Wea.Rev., 139, 976-991.

  18. Adapting a weather forecast model for greenhouse gas simulation

    NASA Astrophysics Data System (ADS)

    Polavarapu, S. M.; Neish, M.; Tanguay, M.; Girard, C.; de Grandpré, J.; Gravel, S.; Semeniuk, K.; Chan, D.

    2015-12-01

    The ability to simulate greenhouse gases on the global domain is useful for providing boundary conditions for regional flux inversions, as well as for providing reference data for bias correction of satellite measurements. Given the existence of operational weather and environmental prediction models and assimilation systems at Environment Canada, it makes sense to use these tools for greenhouse gas simulations. In this work, we describe the adaptations needed to reasonably simulate CO2 with a weather forecast model. The main challenges were the implementation of a mass conserving advection scheme, and the careful implementation of a mixing ratio defined with respect to dry air. The transport of tracers through convection was also added, and the vertical mixing through the boundary layer was slightly modified. With all these changes, the model conserves CO2 mass well on the annual time scale, and the high resolution (0.9 degree grid spacing) permits a good description of synoptic scale transport. The use of a coupled meteorological/tracer transport model also permits an assessment of approximations needed in offline transport model approaches, such as the neglect of water vapour mass when computing a tracer mixing ratio with respect to dry air.

  19. Model-free forecasting outperforms the correct mechanistic model for simulated and experimental data

    PubMed Central

    Perretti, Charles T.; Munch, Stephan B.; Sugihara, George

    2013-01-01

    Accurate predictions of species abundance remain one of the most vexing challenges in ecology. This observation is perhaps unsurprising, because population dynamics are often strongly forced and highly nonlinear. Recently, however, numerous statistical techniques have been proposed for fitting highly parameterized mechanistic models to complex time series, potentially providing the machinery necessary for generating useful predictions. Alternatively, there is a wide variety of comparatively simple model-free forecasting methods that could be used to predict abundance. Here we pose a rather conservative challenge and ask whether a correctly specified mechanistic model, fit with commonly used statistical techniques, can provide better forecasts than simple model-free methods for ecological systems with noisy nonlinear dynamics. Using four different control models and seven experimental time series of flour beetles, we found that Markov chain Monte Carlo procedures for fitting mechanistic models often converged on best-fit parameterizations far different from the known parameters. As a result, the correctly specified models provided inaccurate forecasts and incorrect inferences. In contrast, a model-free method based on state-space reconstruction gave the most accurate short-term forecasts, even while using only a single time series from the multivariate system. Considering the recent push for ecosystem-based management and the increasing call for ecological predictions, our results suggest that a flexible model-free approach may be the most promising way forward. PMID:23440207

  20. Adaptive time-variant models for fuzzy-time-series forecasting.

    PubMed

    Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching

    2010-12-01

    A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.

  1. Estimating Demand for Industrial and Commercial Land Use Given Economic Forecasts

    PubMed Central

    Batista e Silva, Filipe; Koomen, Eric; Diogo, Vasco; Lavalle, Carlo

    2014-01-01

    Current developments in the field of land use modelling point towards greater level of spatial and thematic resolution and the possibility to model large geographical extents. Improvements are taking place as computational capabilities increase and socioeconomic and environmental data are produced with sufficient detail. Integrated approaches to land use modelling rely on the development of interfaces with specialized models from fields like economy, hydrology, and agriculture. Impact assessment of scenarios/policies at various geographical scales can particularly benefit from these advances. A comprehensive land use modelling framework includes necessarily both the estimation of the quantity and the spatial allocation of land uses within a given timeframe. In this paper, we seek to establish straightforward methods to estimate demand for industrial and commercial land uses that can be used in the context of land use modelling, in particular for applications at continental scale, where the unavailability of data is often a major constraint. We propose a set of approaches based on ‘land use intensity’ measures indicating the amount of economic output per existing areal unit of land use. A base model was designed to estimate land demand based on regional-specific land use intensities; in addition, variants accounting for sectoral differences in land use intensity were introduced. A validation was carried out for a set of European countries by estimating land use for 2006 and comparing it to observations. The models’ results were compared with estimations generated using the ‘null model’ (no land use change) and simple trend extrapolations. Results indicate that the proposed approaches clearly outperformed the ‘null model’, but did not consistently outperform the linear extrapolation. An uncertainty analysis further revealed that the models’ performances are particularly sensitive to the quality of the input land use data. In addition, unknown future

  2. Short period forecasting of catchment-scale precipitation. Part II: a water-balance storm model for short-term rainfall and flood forecasting

    NASA Astrophysics Data System (ADS)

    Bell, V. A.; Moore, R. J.

    A simple two-dimensional rainfall model, based on advection and conservation of mass in a vertical cloud column, is investigated for use in short-term rainfall and flood forecasting at the catchment scale under UK conditions. The model is capable of assimilating weather radar, satellite infra-red and surface weather observations, together with forecasts from a mesoscale numerical weather prediction model, to obtain frequently updated forecasts of rainfall fields. Such data assimilation helps compensate for the simplified model dynamics and, taken together, provides a practical real-time forecasting scheme for catchment scale applications. Various ways are explored for using information from a numerical weather prediction model (16.8 km grid) within the higher resolution model (5 km grid). A number of model variants is considered, ranging from simple persistence and advection methods used as a baseline, to different forms of the dynamic rainfall model. Model performance is assessed using data from the Wardon Hill radar in Dorset for two convective events, on 10 June 1993 and 16 July 1995, when thunderstorms occurred over southern Britain. The results show that (i) a simple advection-type forecast may be improved upon by using multiscan radar data in place of data from the lowest scan, and (ii) advected, steady-state predictions from the dynamic model, using "inferred updraughts", provides the best performance overall. Updraught velocity is inferred at the forecast origin from the last two radar fields, using the mass-balance equation and associated data and is held constant over the forecast period. This inference model proves superior to the buoyancy parameterisation of updraught employed in the original formulation. A selection of the different rainfall forecasts is used as input to a catchment flow forecasting model, the IH PDM (Probability Distributed Moisture) model, to assess their effect on flow forecast accuracy for the 135 km2 Brue catchment in Somerset.

  3. Improving High-resolution Weather Forecasts using the Weather Research and Forecasting (WRF) Model with Upgraded Kain-Fritsch Cumulus Scheme

    EPA Science Inventory

    High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...

  4. An application of ensemble/multi model approach for wind power production forecast.

    NASA Astrophysics Data System (ADS)

    Alessandrini, S.; Decimi, G.; Hagedorn, R.; Sperati, S.

    2010-09-01

    The wind power forecast of the 3 days ahead period are becoming always more useful and important in reducing the problem of grid integration and energy price trading due to the increasing wind power penetration. Therefore it's clear that the accuracy of this forecast is one of the most important requirements for a successful application. The wind power forecast is based on a mesoscale meteorological models that provides the 3 days ahead wind data. A Model Output Statistic correction is then performed to reduce systematic error caused, for instance, by a wrong representation of surface roughness or topography in the meteorological models. The corrected wind data are then used as input in the wind farm power curve to obtain the power forecast. These computations require historical time series of wind measured data (by an anemometer located in the wind farm or on the nacelle) and power data in order to be able to perform the statistical analysis on the past. For this purpose a Neural Network (NN) is trained on the past data and then applied in the forecast task. Considering that the anemometer measurements are not always available in a wind farm a different approach has also been adopted. A training of the NN to link directly the forecasted meteorological data and the power data has also been performed. The normalized RMSE forecast error seems to be lower in most cases by following the second approach. We have examined two wind farms, one located in Denmark on flat terrain and one located in a mountain area in the south of Italy (Sicily). In both cases we compare the performances of a prediction based on meteorological data coming from a single model with those obtained by using two or more models (RAMS, ECMWF deterministic, LAMI, HIRLAM). It is shown that the multi models approach reduces the day-ahead normalized RMSE forecast error of at least 1% compared to the singles models approach. Moreover the use of a deterministic global model, (e.g. ECMWF deterministic

  5. Forecasting gaming revenues in Clark County, Nevada: Issues and methods

    SciTech Connect

    Edwards, B.K.; Bando, A.

    1992-07-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. Is is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry. The model is meant to forecast Clark County gaming revenues and identifies the exogenous variables that affect gaming revenues. It will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming-related economic activity resulting from changes in regional economic activity and tourism.

  6. Forecasting gaming revenues in Clark County, Nevada: Issues and methods

    SciTech Connect

    Edwards, B.K.; Bando, A.

    1992-01-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. Is is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry. The model is meant to forecast Clark County gaming revenues and identifies the exogenous variables that affect gaming revenues. It will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming-related economic activity resulting from changes in regional economic activity and tourism.

  7. Modelling dinoflagellates as an approach to the seasonal forecasting of bioluminescence in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Marcinko, Charlotte L. J.; Martin, Adrian P.; Allen, John T.

    2014-11-01

    Bioluminescence within ocean surface waters is of significant interest because it can enhance the study of subsurface movement and organisms. Little is known about how bioluminescence potential (BPOT) varies spatially and temporally in the open ocean. However, light emitted from dinoflagellates often dominates the stimulated bioluminescence field. As a first step towards forecasting surface ocean bioluminescence in the open ocean, a simple ecological model is developed which simulates seasonal changes in dinoflagellate abundance. How forecasting seasonal changes in BPOT may be achieved through combining such a model with relationships derived from observations is discussed and an example is given. The study illustrates a potential new approach to forecasting BPOT through explicitly modelling the population dynamics of a prolific bioluminescent phylum. The model developed here offers a promising platform for the future operational forecasting of the broad temporal changes in bioluminescence within the North Atlantic. Such forecasting of seasonal patterns could provide valuable information for the targeting of scientific field campaigns.

  8. Forecasting--A Systematic Modeling Methodology. Paper No. 489.

    ERIC Educational Resources Information Center

    Mabert, Vincent A.; Radcliffe, Robert C.

    In an attempt to bridge the gap between academic understanding and practical business use, the Box-Jenkins technique of time series analysis for forecasting future events is presented with a minimum of mathematical notation. The method is presented in three stages: a discussion of traditional forecasting techniques, focusing on traditional…

  9. Cone Model for Halo CMEs: Application to Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Xie, Hong; Ofman, Leon; Lawrence, Gareth

    2004-01-01

    In this study, we present an innovative analytical method to determine the angular width and propagation orientation of halo Coronal Mass Ejections (CMEs). The relation of CME actual speed with apparent speed and its components measured at different position angle has been investigated. The present work is based on the cone model proposed by Zhao et al. We have improved this model by: (1) eliminating the ambiguity via a new analytical approach, (2) using direct measurements of projection onto the plane of the sky (POS), and (3) determining the actual radial speeds from projection speeds at different position angles to clarify the uncertainty of projection speeds in previous empirical models. Our analytical approach allows us to use coronagraph data to determine accurately the geometrical features of POS projections, such as major axis, minor axis, and the displacement of the center of its projection, and to determine the angular width and orientation of a given halo CME. Our approach allows for the first time the determination of the actual CME speed, width, and source location by using coronagraph data quantitatively and consistently. The method greatly enhances the accuracy of the derived geometrical and kinematical properties of halo CMEs, and can be used to optimize Space Weather forecasts. The applied model predications are in good agreement with observations.

  10. A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts

    PubMed Central

    Bal, Guillaume; Rivot, Etienne; Baglinière, Jean-Luc; White, Jonathan; Prévost, Etienne

    2014-01-01

    Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i) an emotive simulated example, ii) application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife. PMID:25541732

  11. A Wind Forecasting System for Energy Application

    NASA Astrophysics Data System (ADS)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated

  12. Comparing complementary NWP model performance for hydrologic forecasting for the river Rhine in an operational setting

    NASA Astrophysics Data System (ADS)

    Davids, Femke; den Toom, Matthijs

    2016-04-01

    This paper investigates the performance of complementary NWP models for hydrologic forecasting for the river Rhine, a large river catchment in Central Europe. An operational forecasting system, RWsOS-Rivieren, produces daily forecasts of discharges and water levels at the Water Management Centre Netherlands. A combination of HBV (rainfall-runoff) and SOBEK (hydrodynamic routing) models is used to produce simulations and forecasts for the catchment. Data assimilation is applied both to the model state of SOBEK and to model outputs. The primary function of the operational forecasting system is to provide reliable and accurate forecasts during periods of high water. The secondary main function is producing daily predictions for water management and water transport in The Netherlands. In addition, predicting water levels during drought periods is becoming increasingly important as well. At this moment several complementary deterministic and ensemble NWP models are used to provide the forecasters with predictions with varied initial conditions, such as ICON, ICON-EU Nest, ECMWF-DET, ECMWF-EPS, HiRLAM, COSMO-LEPS and GLAMEPS. ICON and ICON-EU have recently replaced DWD-GME and DWD COSMO-EU. These models provide weather forecasts with different lengths of lead times and also different periods of operational usage. A direct and quantitative comparison is therefore challenging. Nevertheless, it is important to investigate the suitability of the different NWP models for certain lead times and certain weather situations to help support the hydrological forecasters make an informed forecast during an operational crisis. A hindcast study will investigate the performance of these models in the operational system for different lead times and focusing on periods of both high and low water for Lobith, the location of entry of the river Rhine into The Netherlands.

  13. HTGR Application Economic Model Users' Manual

    SciTech Connect

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  14. A Kp forecast model based on neural network

    NASA Astrophysics Data System (ADS)

    Gong, J.; Liu, Y.; Luo, B.; Liu, S.

    2013-12-01

    As an important global geomagnetic disturbance index, Kp is difficult to predict, especially when Kp reaches 5 which means that the disturbance has reached the scales of geomagnetic storm and can cause spacecraft and power system anomaly. Statistical results showed that there exists high correlation between solar wind-magnetosphere coupling function and Kp index, and a linear combination of two solar wind-magnetosphere coupling terms, merging term and viscous term, proved to be good in predicting the Kp index. In this study, using the upstream solar wind parameters by the ACE satellite since 1998 and the two derived coupling terms mentioned above, a Kp forecast model based on artificial neural network is developed. For the operational need of predicting the geomagnetic disturbance as soon as possible, we construct the solar wind data and develop the model in an innovative way. For each Kp value at time t (the universal times of 8 Kp values in each day are noted as t=3, 6, 9, ..., 18, 21, 24), the model gives 6 predicted values every half an hour at t-3.5, t-3.0, t-2.5, t-2.0, t-1.5, t-1.0, based on the half-hour averaged model inputs (solar wind parameters and derived solar wind-magnetosphere coupling terms). The last predicted value at t-1.0 provides the final prediction. Evaluated with the test set data including years 1998, 2002 and 2006, the model yields the linear correlation coefficient (LC) of 0.88 and the root mean square error (RMSE) of 0.65 between the modeled and observed Kp values. Furthermore, if the nowcast Kp is available and included in the model input, the model can be improved and gives an LC of 0.90 and an RMSE of 0.62.

  15. A Global Aerosol Model Forecast for the ACE-Asia Field Experiment

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Lucchesi, Robert; Huebert, Barry; Weber, Rodney; Anderson, Tad; Masonis, Sarah; Blomquist, Byron; Bandy, Alan; Thornton, Donald

    2003-01-01

    We present the results of aerosol forecast during the Aerosol Characterization Experiment (ACE-Asia) field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The aerosol model forecast provides direct information on aerosol optical thickness and concentrations, enabling effective flight planning, while feedbacks from measurements constantly evaluate the model, making successful model improvements. We verify the model forecast skill by comparing model predicted total aerosol extinction, dust, sulfate, and SO2 concentrations with those quantities measured by the C-130 aircraft during the ACE-Asia intensive operation period. The GEOS DAS meteorological forecast system shows excellent skills in predicting winds, relative humidity, and temperature for the ACE-Asia experiment area as well as for each individual flight, with skill scores usually above 0.7. The model is also skillful in forecast of pollution aerosols, with most scores above 0.5. The model correctly predicted the dust outbreak events and their trans-Pacific transport, but it constantly missed the high dust concentrations observed in the boundary layer. We attribute this missing dust source to the desertification regions in the Inner Mongolia Province in China, which have developed in recent years but were not included in the model during forecasting. After incorporating the desertification sources, the model is able to reproduce the observed high dust concentrations at low altitudes over the Yellow Sea. Two key elements for a successful aerosol model forecast are correct source locations that determine where the emissions take place, and realistic forecast winds and convection that determine where the aerosols are transported. We demonstrate that our global model can not only account for the large

  16. Skill of real-time operational forecasts with the APCC multi-model ensemble prediction system during the period 2008-2015

    NASA Astrophysics Data System (ADS)

    Min, Young-Mi; Kryjov, Vladimir N.; Oh, Sang Myeong; Lee, Hyun-Ju

    2017-02-01

    This paper assesses the real-time 1-month lead forecasts of 3-month (seasonal) mean temperature and precipitation on a monthly basis issued by the Asia-Pacific Economic Cooperation Climate Center (APCC) for 2008-2015 (8 years, 96 forecasts). It shows the current level of the APCC operational multi-model prediction system performance. The skill of the APCC forecasts strongly depends on seasons and regions that it is higher for the tropics and boreal winter than for the extratropics and boreal summer due to direct effects and remote teleconnections from boundary forcings. There is a negative relationship between the forecast skill and its interseasonal variability for both variables and the forecast skill for precipitation is more seasonally and regionally dependent than that for temperature. The APCC operational probabilistic forecasts during this period show a cold bias (underforecasting of above-normal temperature and overforecasting of below-normal temperature) underestimating a long-term warming trend. A wet bias is evident for precipitation, particularly in the extratropical regions. The skill of both temperature and precipitation forecasts strongly depends upon the ENSO strength. Particularly, the highest forecast skill noted in 2015/2016 boreal winter is associated with the strong forcing of an extreme El Nino event. Meanwhile, the relatively low skill is associated with the transition and/or continuous ENSO-neutral phases of 2012-2014. As a result the skill of real-time forecast for boreal winter season is higher than that of hindcast. However, on average, the level of forecast skill during the period 2008-2015 is similar to that of hindcast.

  17. Multidisciplinary Approach to Flood Forecasting on the Base of Earth Observation Data and Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Zelentsov, Viacheslav; Potryasaev, Semen; Sokolov, Boris

    2016-08-01

    In this paper a new approach to the creation of short- term forecasting systems of river flooding is being further developed. It provides highly accurate forecasting results due to operative obtaining and integrated processing of the remote sensing and ground- based water flow data in real time. Forecasting of flood areas and depths is performed on a time interval of 12 to 48 hours to be able to perform the necessary steps to alert and evacuate the population. Forecast results are available as web services. The proposed system extends traditional separate methods based on satellite monitoring or modeling of a river's physical processes, by using an interdisciplinary approach, integration of different models and technologies, and through intelligent choice of the most suitable models for a flood forecasting.

  18. A model to forecast data centre infrastructure costs.

    NASA Astrophysics Data System (ADS)

    Vernet, R.

    2015-12-01

    The computing needs in the HEP community are increasing steadily, but the current funding situation in many countries is tight. As a consequence experiments, data centres, and funding agencies have to rationalize resource usage and expenditures. CC-IN2P3 (Lyon, France) provides computing resources to many experiments including LHC, and is a major partner for astroparticle projects like LSST, CTA or Euclid. The financial cost to accommodate all these experiments is substantial and has to be planned well in advance for funding and strategic reasons. In that perspective, leveraging infrastructure expenses, electric power cost and hardware performance observed in our site over the last years, we have built a model that integrates these data and provides estimates of the investments that would be required to cater to the experiments for the mid-term future. We present how our model is built and the expenditure forecast it produces, taking into account the experiment roadmaps. We also examine the resource growth predicted by our model over the next years assuming a flat-budget scenario.

  19. Forecasting Dust Storms Using the CARMA-Dust Model and MM5 Weather Data

    NASA Astrophysics Data System (ADS)

    Barnum, B. H.; Winstead, N. S.; Wesely, J.; Hakola, A.; Colarco, P.; Toon, O. B.; Ginoux, P.; Brooks, G.; Hasselbarth, L. M.; Toth, B.; Sterner, R.

    2002-12-01

    An operational model for the forecast of dust storms in Northern Africa, the Middle East and Southwest Asia has been developed for the United States Air Force Weather Agency (AFWA). The dust forecast model uses the 5th generation Penn State Mesoscale Meteorology Model (MM5), and a modified version of the Colorado Aerosol and Radiation Model for Atmospheres (CARMA). AFWA conducted a 60 day evaluation of the dust model to look at the model's ability to forecast dust storms for short, medium and long range (72 hour) forecast periods. The study used satellite and ground observations of dust storms to verify the model's effectiveness. Each of the main mesoscale forecast theaters was broken down into smaller sub-regions for detailed analysis. The study found the forecast model was able to forecast dust storms in Saharan Africa and the Sahel region with an average Probability of Detection (POD)exceeding 68%, with a 16% False Alarm Rate (FAR). The Southwest Asian theater had average POD's of 61% with FAR's averaging 10%.

  20. Modeling the wind-fields of accidental releases by mesoscale forecasting

    SciTech Connect

    Albritton, J.R.; Lee, R.L.; Mobley, R.L.; Pace, J.C.; Hodur, R.A.; Lion, C.S.

    1997-07-01

    Modeling atmospheric releases even during fair weather can present a sever challenge to diagnostic, observed-data-driven, models. Such schemes are often handicapped by sparse input data from meteorological surface stations and soundings. Forecasting by persistence is only acceptable for a few hours and cannot predict important changes in the diurnal cycle or from synoptic evolution. Many accident scenarios are data-sparse in space and/or time. Here we describe the potential value of limited-area, mesoscale, forecast models for real-time emergency response. Simulated wind-fields will be passed to ARAC`s operational models to produce improved forecasts of dispersion following accidents.

  1. The Generalized FLaIR Model (GFM) for landslide forecasting

    NASA Astrophysics Data System (ADS)

    De Luca, Davide Luciano; Versace, Pasquale

    2015-04-01

    A new version of the hydrological model named FLaIR (Forecasting of Landslides Induced by Rainfall, Capparelli and Versace 2011) is proposed, named as GFM (Generalized FLaIR Model). Non stationary rainfall thresholds, depending on antecedent precipitation, are introduced in this new release, which allow for a better prediction of landslide occurrences. It is possible to demonstrate that GFM reproduces all the Antecedent Precipitation models (AP) proposed in technical literature as particular cases, besides Intensity-Duration schemes (ID) and more conceptual approaches, whose reconstruction with the first release of FlaIR model, which adopts only stationary thresholds, was already discussed in Capparelli and Versace (2011). GFM is extremely flexible, and the main advantage of the model is represented by the possibility of using well-established procedures for the choice of the most appropriate configuration for the selected case study, and of facilitating the comparison between several options, through the use of a mobility function. Gimigliano municipality, located in Calabria region (southern Italy) was chosen as case study, where a consistent number of landslides occurred in the past years; in particular, during the period 2008-2010 this area (like the whole Calabria region) was affected by persistent rainfall events, which induced several damages related to infrastructures and buildings. For the selected case study GFM allows to obtain significant improvements in landslide prediction; in details a substantial reduction of False Alarms is obtained with respect to application of classical ID and AP schemes. REFERENCES Capparelli G, Versace P (2011). FLaIR and SUSHI: Two mathematical models for Early Warning Systems for rainfall induced landslides. Landslides 8:67-79. doi: 10.1007/s10346-010-0228-6

  2. Systemic change increases forecast uncertainty of land use change models

    NASA Astrophysics Data System (ADS)

    Verstegen, J. A.; Karssenberg, D.; van der Hilst, F.; Faaij, A.

    2013-12-01

    Cellular Automaton (CA) models of land use change are based on the assumption that the relationship between land use change and its explanatory processes is stationary. This means that model structure and parameterization are usually kept constant over time, ignoring potential systemic changes in this relationship resulting from societal changes, thereby overlooking a source of uncertainty. Evaluation of the stationarity of the relationship between land use and a set of spatial attributes has been done by others (e.g., Bakker and Veldkamp, 2012). These studies, however, use logistic regression, separate from the land use change model. Therefore, they do not gain information on how to implement the spatial attributes into the model. In addition, they often compare observations for only two points in time and do not check whether the change is statistically significant. To overcome these restrictions, we assimilate a time series of observations of real land use into a land use change CA (Verstegen et al., 2012), using a Bayesian data assimilation technique, the particle filter. The particle filter was used to update the prior knowledge about the parameterization and model structure, i.e. the selection and relative importance of the drivers of location of land use change. In a case study of sugar cane expansion in Brazil, optimal model structure and parameterization were determined for each point in time for which observations were available (all years from 2004 to 2012). A systemic change, i.e. a statistically significant deviation in model structure, was detected for the period 2006 to 2008. In this period the influence on the location of sugar cane expansion of the driver sugar cane in the neighborhood doubled, while the influence of slope and potential yield decreased by 75% and 25% respectively. Allowing these systemic changes to occur in our CA in the future (up to 2022) resulted in an increase in model forecast uncertainty by a factor two compared to the

  3. Improving inflow forecasting into hydropower reservoirs through a complementary modelling framework

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2014-10-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead-time is considered within the day-ahead (Elspot) market of the Nordic exchange market. We present here a new approach for issuing hourly reservoir inflow forecasts that aims to improve on existing forecasting models that are in place operationally, without needing to modify the pre-existing approach, but instead formulating an additive or complementary model that is independent and captures the structure the existing model may be missing. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. The procedure presented comprises an error model added on top of an un-alterable constant parameter conceptual model, the models being demonstrated with reference to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead-times up to 17 h. Season based evaluations indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts in autumn and spring are less successful with the 95% prediction interval bracketing less than 95% of the observations for lead-times beyond 17 h.

  4. Improving real-time inflow forecasting into hydropower reservoirs through a complementary modelling framework

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2015-08-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead time is considered within the day-ahead (Elspot) market of the Nordic exchange market. A complementary modelling framework presents an approach for improving real-time forecasting without needing to modify the pre-existing forecasting model, but instead formulating an independent additive or complementary model that captures the structure the existing operational model may be missing. We present here the application of this principle for issuing improved hourly inflow forecasts into hydropower reservoirs over extended lead times, and the parameter estimation procedure reformulated to deal with bias, persistence and heteroscedasticity. The procedure presented comprises an error model added on top of an unalterable constant parameter conceptual model. This procedure is applied in the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead times up to 17 h. Evaluation of the percentage of observations bracketed in the forecasted 95 % confidence interval indicated that the degree of success in containing 95 % of the observations varies across seasons and hydrologic years.

  5. A Review of Real-Time Markov Model ENSO Forecast in 1996-2015: Why did it Forecast a Strong El Nino since March 2015?

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2015-12-01

    The Markov model for real time ENSO forecast at Climate Prediction Center of National Centers for Environmental Prediction (NCEP) is based on observed sea surface temperature, sea level from the NCEP ocean reanalysis, and pseudo wind stress from the Florida State University in 1980-1995. The Markov model is constructed in a reduced multivariate EOF (MEOF) space with 3 MEOFs. The cross-validated hindcast skill of NINO3.4 in 1980-1995 is competitive among dynamical and statistical models. The model was implemented into operation at CPC in early 2000s since it successfully forecasted the El Nino in winter 1997/98 starting from November 1996 initial conditions (I.C.). In this study, we assessed the real time forecast skill of ENSO by the Markov model in 1996-2015 and compared it with that of other operational forecast models. It is found that the Markov model has lower forecast skill of ENSO in the 2000s than that in the 1980s and 1990s, which is common among ENSO forecast models. The lower forecast skill of the Markov model in the 2000s can be attributed to weak precursor of positive heat content anomaly in the equatorial Pacific and a shorter lead time of the precursor relative to NINO3.4, both of which is related to the decadal change of ENSO. However, out of surprise, the Markov model successfully forecasted the El Nino in winter 2014/15 starting from February 2014 I.C.. In addition, the Markov model forecasted the continuation of the El Nino into the spring/summer/fall of 2015. Starting from March 2015 I.C., the Markov model forecasted a strong El Nino in winter 2015/16. This surprising long-lead forecast skill can be attributed to the positive second principal component (PC) of MEOF that leads NINO3.4 by 6-9 months, a precursor commonly seen in the 1980s and 1990s. This provided us confidence in the model forecast of a strong El Nino in winter 2015/16 that is highly consistent with the ensemble forecast of dynamical models.

  6. Uncertainty quantification and reliability assessment in operational oil spill forecast modeling system.

    PubMed

    Hou, Xianlong; Hodges, Ben R; Feng, Dongyu; Liu, Qixiao

    2017-03-15

    As oil transport increasing in the Texas bays, greater risks of ship collisions will become a challenge, yielding oil spill accidents as a consequence. To minimize the ecological damage and optimize rapid response, emergency managers need to be informed with how fast and where oil will spread as soon as possible after a spill. The state-of-the-art operational oil spill forecast modeling system improves the oil spill response into a new stage. However uncertainty due to predicted data inputs often elicits compromise on the reliability of the forecast result, leading to misdirection in contingency planning. Thus understanding the forecast uncertainty and reliability become significant. In this paper, Monte Carlo simulation is implemented to provide parameters to generate forecast probability maps. The oil spill forecast uncertainty is thus quantified by comparing the forecast probability map and the associated hindcast simulation. A HyosPy-based simple statistic model is developed to assess the reliability of an oil spill forecast in term of belief degree. The technologies developed in this study create a prototype for uncertainty and reliability analysis in numerical oil spill forecast modeling system, providing emergency managers to improve the capability of real time operational oil spill response and impact assessment.

  7. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  8. Modeling and forecasting of KLCI weekly return using WT-ANN integrated model

    NASA Astrophysics Data System (ADS)

    Liew, Wei-Thong; Liong, Choong-Yeun; Hussain, Saiful Izzuan; Isa, Zaidi

    2013-04-01

    The forecasting of weekly return is one of the most challenging tasks in investment since the time series are volatile and non-stationary. In this study, an integrated model of wavelet transform and artificial neural network, WT-ANN is studied for modeling and forecasting of KLCI weekly return. First, the WT is applied to decompose the weekly return time series in order to eliminate noise. Then, a mathematical model of the time series is constructed using the ANN. The performance of the suggested model will be evaluated by root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE). The result shows that the WT-ANN model can be considered as a feasible and powerful model for time series modeling and prediction.

  9. Forecasting exposure to volcanic ash based on ash dispersion modeling

    NASA Astrophysics Data System (ADS)

    Peterson, Rorik A.; Dean, Ken G.

    2008-03-01

    A technique has been developed that uses Puff, a volcanic ash transport and dispersion (VATD) model, to forecast the relative exposure of aircraft and ground facilities to ash from a volcanic eruption. VATD models couple numerical weather prediction (NWP) data with physical descriptions of the initial eruptive plume, atmospheric dispersion, and settling of ash particles. Three distinct examples of variations on the technique are given using ERA-40 archived reanalysis NWP data. The Feb. 2000 NASA DC-8 event involving an eruption of Hekla volcano, Iceland is first used for analyzing a single flight. Results corroborate previous analyses that conclude the aircraft did encounter a diffuse cloud of volcanic origin, and indicate exposure within a factor of 10 compared to measurements made on the flight. The sensitivity of the technique to dispersion physics is demonstrated. The Feb. 2001 eruption of Mt. Cleveland, Alaska is used as a second example to demonstrate how this technique can be utilized to quickly assess the potential exposure of a multitude of aircraft during and soon after an event. Using flight tracking data from over 40,000 routes over three days, several flights that may have encountered low concentrations of ash were identified, and the exposure calculated. Relative changes in the quantity of exposure when the eruption duration is varied are discussed, and no clear trend is evident as the exposure increased for some flights and decreased for others. A third application of this technique is demonstrated by forecasting the near-surface airborne concentrations of ash that the cities of Yakima Washington, Boise Idaho, and Kelowna British Columbia might have experienced from an eruption of Mt. St. Helens anytime during the year 2000. Results indicate that proximity to the source does not accurately determine the potential hazard. Although an eruption did not occur during this time, the results serve as a demonstration of how existing cities or potential

  10. Increasing Foresight and Forecast Quality with Skillful Low-Cost Empirical Models

    NASA Astrophysics Data System (ADS)

    Du, H.; Smith, L. A.; Suckling, E.; Thompson, E. L.

    2014-12-01

    Simulation models are widely employed to make probability forecasts on seasonal to annual time-scales and increasingly on decadal scales. While simulation models based on physical principles are often expected, in principle, to outperform purely empirical models, that claim must be established empirically for any given generation of models; direct comparison of the forecast skill of simulation models and empirical models provides information on progress toward that goal which is not available in model-model intercomparisons. More importantly, the blending of forecasts from both sources can lead to better operational forecasts. Direct comparison can also reveal the space and time scales on which simulation models exploit their physical basis effectively, perhaps indicating the origins of their weaknesses. The skill of seasonal and decadal probabilistic hindcasts for global and regional mean temperatures from the ENSEMBLES project and CMIP5 are interpreted in this context. Physically inspired empirical models are shown to display probabilistic skill comparable to that of today's state-of-the-art simulation models as well as to that of the multi-model ensemble. The inclusion of empirical models (blending) with simulation models is shown to significantly improve forecasts. Inasmuch as the cost of building or running empirical models is negligible comparing to large simulation models, it is suggested that the direct comparison of simulation models with empirical models become a regular component of large model forecast evaluations, that rank order evaluations include empirical models whenever the timescales allow, and that blending simulation models with empirical models becomes a regular component of seasonal and decadal forecasting.

  11. Modelled seasonal forecasts of snow water equivalent and runoff in alpine catchments

    NASA Astrophysics Data System (ADS)

    Förster, Kristian; Hanzer, Florian; Schöber, Johannes; Huttenlau, Matthias; Achleitner, Stefan; Strasser, Ulrich

    2016-04-01

    Seasonal forecasts of water balance components are becoming increasingly important for hydrological applications. These forecasts are typically derived from coupled atmosphere-ocean climate models, which enable physically based seasonal forecasts. In mountainous regions, however, topography is complex whilst typical spatial resolutions of the climate models are still comparably coarse, i.e in the data, ridges and valleys are not represented with sufficient accuracy. Therefore, seasonal predictions of atmospheric variables require consideration of representative gradients. We present first results of seasonal forecasts and re-forecasts processed by the NCEP (National Centers for Environmental Prediction) Climate Forecast System version 2 (CFSv2). These are prepared for monthly time steps in order to be used for ensemble runs of water balance simulation using the Alpine Water balance And Runoff Estimation model (AWARE). This model has been designed for monthly seasonal predictions in ice- and snowmelt dominated catchments. The study area is the Inn catchment in Tyrol/Austria, including its headwaters in Switzerland. Results are evaluated for both anomalies of meteorological input data (temperature and precipitation), as well as balance components including snow water equivalent and runoff, both simulated with AWARE. Based on model skill evaluations derived from forecasts and observations, the model chain CFSv2 - AWARE proves helpful to analyse possible future hydrological system states of mountainous catchments with emphasis on spatio-temporal snow cover evolution.

  12. Modelling eWork in Europe: Estimates, Models and Forecasts from the EMERGENCE Project. IES Report.

    ERIC Educational Resources Information Center

    Bates, P.; Huws, U.

    A study combined results of a survey of employers in 18 European countries to establish the extent to which they are currently using eWork with European official statistics to develop models, estimates, and forecasts of the numbers of eWorkers in Europe. These four types of "individual" eWork were identified: telehomeworking;…

  13. Using constructed analogs to improve the skill of National Multi-Model Ensemble March-April-May precipitation forecasts in equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Shukla, Shraddhanand; Funk, Christopher; Hoell, Andrew

    2014-09-01

    In this study we implement and evaluate a simple ‘hybrid’ forecast approach that uses constructed analogs (CA) to improve the National Multi-Model Ensemble’s (NMME) March-April-May (MAM) precipitation forecasts over equatorial eastern Africa (hereafter referred to as EA, 2°S to 8°N and 36°E to 46°E). Due to recent declines in MAM rainfall, increases in population, land degradation, and limited technological advances, this region has become a recent epicenter of food insecurity. Timely and skillful precipitation forecasts for EA could help decision makers better manage their limited resources, mitigate socio-economic losses, and potentially save human lives. The ‘hybrid approach’ described in this study uses the CA method to translate dynamical precipitation and sea surface temperature (SST) forecasts over the Indian and Pacific Oceans (specifically 30°S to 30°N and 30°E to 270°E) into terrestrial MAM precipitation forecasts over the EA region. In doing so, this approach benefits from the post-1999 teleconnection that exists between precipitation and SSTs over the Indian and tropical Pacific Oceans (Indo-Pacific) and EA MAM rainfall. The coupled atmosphere-ocean dynamical forecasts used in this study were drawn from the NMME. We demonstrate that while the MAM precipitation forecasts (initialized in February) skill of the NMME models over the EA region itself is negligible, the ranked probability skill score of hybrid CA forecasts based on Indo-Pacific NMME precipitation and SST forecasts reach up to 0.45.

  14. Using constructed analogs to improve the skill of National Multi-Model Ensemble March–April–May precipitation forecasts in equatorial East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; Funk, Christopher C.; Hoell, Andrew

    2014-01-01

    In this study we implement and evaluate a simple 'hybrid' forecast approach that uses constructed analogs (CA) to improve the National Multi-Model Ensemble's (NMME) March–April–May (MAM) precipitation forecasts over equatorial eastern Africa (hereafter referred to as EA, 2°S to 8°N and 36°E to 46°E). Due to recent declines in MAM rainfall, increases in population, land degradation, and limited technological advances, this region has become a recent epicenter of food insecurity. Timely and skillful precipitation forecasts for EA could help decision makers better manage their limited resources, mitigate socio-economic losses, and potentially save human lives. The 'hybrid approach' described in this study uses the CA method to translate dynamical precipitation and sea surface temperature (SST) forecasts over the Indian and Pacific Oceans (specifically 30°S to 30°N and 30°E to 270°E) into terrestrial MAM precipitation forecasts over the EA region. In doing so, this approach benefits from the post-1999 teleconnection that exists between precipitation and SSTs over the Indian and tropical Pacific Oceans (Indo-Pacific) and EA MAM rainfall. The coupled atmosphere-ocean dynamical forecasts used in this study were drawn from the NMME. We demonstrate that while the MAM precipitation forecasts (initialized in February) skill of the NMME models over the EA region itself is negligible, the ranked probability skill score of hybrid CA forecasts based on Indo-Pacific NMME precipitation and SST forecasts reach up to 0.45.

  15. Forecast performance assessment of a kinematic and a magnetohydrodynamic solar wind model

    NASA Astrophysics Data System (ADS)

    Norquist, Donald C.

    2013-01-01

    evaluation of operational models guides forecasters on use of their products, focuses model developers in making improvements, and informs other modelers considering use of the output for forcing data. Two operational solar wind models, the Enlil magnetohydrodynamic model, and the Wang-Sheeley-Arge kinematic model, were executed daily in 2007-2011 from solar photosphere magnetograms compiled from the Global Oscillation Network Group telescope system. The original (uncorrected) magnetic field specification and a zero point-corrected (ZPC) version were used as inner boundary conditions (IBCs) in separate 7 day forecast executions. Forecasts of solar wind radial speed (Vsw) and interplanetary magnetic field (IMF) polarity were compared with observations from the Advanced Composition Explorer satellite. Forecast verification metrics were computed by forecast day, year, and uncorrected or corrected IBCs. High speed events (HSEs) and IMF polarity changes (IPCs) predicted and observed were compared. Neither model exhibited a significant systematic error except in 2009, when both failed to represent the slow solar wind. Using the ZPC initial conditions resulted in smaller forecast-observation differences in the years with greater Vsw variance. This was due to in part to reduced variance in the Vsw predictions from the ZPC IBCs. Differences were nil or worse in the other years. The time-varying component of the forecast-observation differences was smallest at forecast days 3 to 5, followed by a sharp rise. Impact of ZPCs on IMF polarity predictions was small. HSE prediction performance depended on detection algorithm used. Both models under predicted the number of forecast periods having IPCs.

  16. Tools and Products of Real-Time Modeling: Opportunities for Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2009-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the last element. Specifically, we will discuss present capabilities, and the potential to derive further tools. These capabilities will be interpreted in the context of a broad-based, bootstrapping activity for modern Space Weather forecasting.

  17. A spatial model to forecast raccoon rabies emergence.

    PubMed

    Recuenco, Sergio; Blanton, Jesse D; Rupprecht, Charles E

    2012-02-01

    Although raccoons are widely distributed throughout North America, the raccoon rabies virus variant is enzootic only in the eastern United States, based on current surveillance data. This variant of rabies virus is now responsible for >60% of all cases of animal rabies reported in the United States each year. Ongoing national efforts via an oral rabies vaccination (ORV) program are aimed at preventing the spread of raccoon rabies. However, from an epidemiologic perspective, the relative susceptibility of naïve geographic localities, adjacent to defined enzootic areas, to support an outbreak, is unknown. In the current study, we tested the ability of a spatial risk model to forecast raccoon rabies spread in presumably rabies-free and enzootic areas. Demographic, environmental, and geographical features of three adjacent states (Ohio, West Virginia, and Pennsylvania), which include distinct raccoon rabies free, as well as enzootic areas, were modeled by using a Poisson Regression Model, which had been developed from previous studies of enzootic raccoon rabies in New York State. We estimated susceptibility to raccoon rabies emergence at the census tract level and compared the results with historical surveillance data. Approximately 70% of the disease-free region had moderate to very high susceptibility, compared with 23% in the enzootic region. Areas of high susceptibility for raccoon rabies lie west of current ORV intervention areas, especially in southern Ohio and western West Virginia. Predicted high susceptibility areas matched historical surveillance data. We discuss model implications to the spatial dynamics and spread of raccoon rabies, and its application for designing more efficient disease control interventions.

  18. Training the next generation of scientists in Weather Forecasting: new approaches with real models

    NASA Astrophysics Data System (ADS)

    Carver, Glenn; Váňa, Filip; Siemen, Stephan; Kertesz, Sandor; Keeley, Sarah

    2014-05-01

    The European Centre for Medium Range Weather Forecasts operationally produce medium range forecasts using what is internationally acknowledged as the world leading global weather forecast model. Future development of this scientifically advanced model relies on a continued availability of experts in the field of meteorological science and with high-level software skills. ECMWF therefore has a vested interest in young scientists and University graduates developing the necessary skills in numerical weather prediction including both scientific and technical aspects. The OpenIFS project at ECMWF maintains a portable version of the ECMWF forecast model (known as IFS) for use in education and research at Universities, National Meteorological Services and other research and education organisations. OpenIFS models can be run on desktop or high performance computers to produce weather forecasts in a similar way to the operational forecasts at ECMWF. ECMWF also provide the Metview desktop application, a modern, graphical, and easy to use tool for analysing and visualising forecasts that is routinely used by scientists and forecasters at ECMWF and other institutions. The combination of Metview with the OpenIFS models has the potential to deliver classroom-friendly tools allowing students to apply their theoretical knowledge to real-world examples using a world-leading weather forecasting model. In this paper we will describe how the OpenIFS model has been used for teaching. We describe the use of Linux based 'virtual machines' pre-packaged on USB sticks that support a technically easy and safe way of providing 'classroom-on-a-stick' learning environments for advanced training in numerical weather prediction. We welcome discussions with interested parties.

  19. Residential Saudi load forecasting using analytical model and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Al-Harbi, Ahmad Abdulaziz

    In recent years, load forecasting has become one of the main fields of study and research. Short Term Load Forecasting (STLF) is an important part of electrical power system operation and planning. This work investigates the applicability of different approaches; Artificial Neural Networks (ANNs) and hybrid analytical models to forecast residential load in Kingdom of Saudi Arabia (KSA). These two techniques are based on model human modes behavior formulation. These human modes represent social, religious, official occasions and environmental parameters impact. The analysis is carried out on residential areas for three regions in two countries exposed to distinct people activities and weather conditions. The collected data are for Al-Khubar and Yanbu industrial city in KSA, in addition to Seattle, USA to show the validity of the proposed models applied on residential load. For each region, two models are proposed. First model is next hour load forecasting while second model is next day load forecasting. Both models are analyzed using the two techniques. The obtained results for ANN next hour models yield very accurate results for all areas while relatively reasonable results are achieved when using hybrid analytical model. For next day load forecasting, the two approaches yield satisfactory results. Comparative studies were conducted to prove the effectiveness of the models proposed.

  20. A simple model for forecast of coastal algal blooms

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Hodgkiss, I. J.

    2007-08-01

    In eutrophic sub-tropical coastal waters around Hong Kong and South China, algal blooms (more often called red tides) due to the rapid growth of microscopic phytoplankton are often observed. Under favourable environmental conditions, these blooms can occur and subside over rather short time scales—in the order of days to a few weeks. Very often, these blooms are observed in weakly flushed coastal waters under calm wind conditions—with or without stratification. Based on high-frequency field observations of harmful algal blooms at two coastal mariculture zones in Hong Kong, a mathematical model has been developed to forecast algal blooms. The model accounts for algal growth, decay, settling and vertical turbulent mixing, and adopts the same assumptions as the classical Riley, Stommel and Bumpus model (Riley, G.A., Stommel, H., Bumpus, D.F., 1949. Quantitative ecology of the plankton of the western North Atlantic. Bulletin of the Bingham Oceanographic Collection Yale University 12, 1-169). It is shown that for algal blooms to occur, a vertical stability criterion, E < 4 μl2/ π2, must be satisfied, where E, μ, l are the vertical turbulent diffusivity, algal growth rate, and euphotic layer depth respectively. In addition, a minimum nutrient threshold concentration must be reached. Moreover, with a nutrient competition consideration, the type of bloom (caused by motile or non-motile species) can be classified. The model requires as input simple and readily available field measurements of water column transparency and nutrient concentration, and representative maximum algal growth rate of the motile and non-motile species. In addition, with the use of three-dimensional hydrodynamic circulation models, simple relations are derived to estimate the vertical mixing coefficient as a function of tidal range, wind speed, and density stratification. The model gives a quick assessment of the likelihood of algal bloom occurrence, and has been validated against field

  1. Modelling and forecasting monthly and daily river discharge data using hybrid models and considering autoregressive heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Szolgayova, Elena

    2010-05-01

    Hybrid modelling, used for simulation and forecasting of hydrological time series, involving both process-based and data-driven types of models combines the available domain knowledge and process physics with the recent advances in data driven tools. In this way, complex hydrological processes can be modelled and forecasted by decomposing the problem into several smaller sub - problems and using process physics based models where these are most appropriate, and data dictated tools (such as ANN, time series models or traditional statistics) for the residual data, when necessary. The fitting and forecasting performance of such models have to be explored case based. So far, only a few attempts to apply various nonlinear time series models within such a framework were reported in the hydrological modelling literature. This contribution presents results concerning the possibility to use GARCH type of models for such purposes. More specifically, error time series from two hydrological conceptual models were analyzed (applied on time series measured from the Hron and Morava Rivers in Slovakia), concentrating on the improvement of the modelling and forecasting performance of these models. The goal of investigation was to try to expand the knowledge in the time series modelling of hydrological model error time series with the aim to test and develop appropriate methods for various time steps from the GARCH family of models. In order to achieve this, following steps were taken: 1. The presence of heteroscedasticity was verified in time series. 2. A model from the GARCH family was fitted on the data, comparing the fit with a fit of an ARMA model. 3. One - step - ahead forecasts from the fitted models were produced, performing comparisons. The investigation of model properties and performances was thoroughly tested under various conditions of their future practical applications. In general, heteroscedasticity was present in the majority of the error time series of the

  2. Distortion Representation of Forecast Errors for Model Skill Assessment and Objective Analysis. Revision 1.12

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.; Nehrkorn, Thomas; Grassotti, Christopher

    1997-01-01

    We proposed a novel characterization of errors for numerical weather predictions. In its simplest form we decompose the error into a part attributable to phase errors and a remainder. The phase error is represented in the same fashion as a velocity field and is required to vary slowly and smoothly with position. A general distortion representation allows for the displacement and amplification or bias correction of forecast anomalies. Characterizing and decomposing forecast error in this way has two important applications, which we term the assessment application and the objective analysis application. For the assessment application, our approach results in new objective measures of forecast skill which are more in line with subjective measures of forecast skill and which are useful in validating models and diagnosing their shortcomings. With regard to the objective analysis application, meteorological analysis schemes balance forecast error and observational error to obtain an optimal analysis. Presently, representations of the error covariance matrix used to measure the forecast error are severely limited. For the objective analysis application our approach will improve analyses by providing a more realistic measure of the forecast error. We expect, a priori, that our approach should greatly improve the utility of remotely sensed data which have relatively high horizontal resolution, but which are indirectly related to the conventional atmospheric variables. In this project, we are initially focusing on the assessment application, restricted to a realistic but univariate 2-dimensional situation. Specifically, we study the forecast errors of the sea level pressure (SLP) and 500 hPa geopotential height fields for forecasts of the short and medium range. Since the forecasts are generated by the GEOS (Goddard Earth Observing System) data assimilation system with and without ERS 1 scatterometer data, these preliminary studies serve several purposes. They (1) provide a

  3. Snowmelt runoff modeling in simulation and forecasting modes with the Martinec-Mango model

    NASA Technical Reports Server (NTRS)

    Shafer, B.; Jones, E. B.; Frick, D. M. (Principal Investigator)

    1982-01-01

    The Martinec-Rango snowmelt runoff model was applied to two watersheds in the Rio Grande basin, Colorado-the South Fork Rio Grande, a drainage encompassing 216 sq mi without reservoirs or diversions and the Rio Grande above Del Norte, a drainage encompassing 1,320 sq mi without major reservoirs. The model was successfully applied to both watersheds when run in a simulation mode for the period 1973-79. This period included both high and low runoff seasons. Central to the adaptation of the model to run in a forecast mode was the need to develop a technique to forecast the shape of the snow cover depletion curves between satellite data points. Four separate approaches were investigated-simple linear estimation, multiple regression, parabolic exponential, and type curve. Only the parabolic exponential and type curve methods were run on the South Fork and Rio Grande watersheds for the 1980 runoff season using satellite snow cover updates when available. Although reasonable forecasts were obtained in certain situations, neither method seemed ready for truly operational forecasts, possibly due to a large amount of estimated climatic data for one or two primary base stations during the 1980 season.

  4. Forecasting Skill

    DTIC Science & Technology

    1981-01-01

    and in synoptic meteorology, many feel the improvements in forecasting the weather (clouds, winds , precipitation, and obstructions to vision) have...and maximum temperature) are each awarded marks 2, 1, or 0 according to whether the forecast is correct, 8 - *- -**■*- ———"—- - -■ t0m 1 MM—IB I...rate of improve- ment of 10% as roughly comparable to the improvement rate obtained by the numerical models. The following types of forecasts seem to

  5. Toward Improving Water Supply Forecasts on the Carson River with a Physically Based Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Boyle, D. P.; Lamorey, G.; Bassett, S.; Coors, S.; Mann, M.

    2005-12-01

    Researchers at the Desert Research Institute and the USBR are conducting research aimed at improving water supply forecasts on the Carson River as part of the Water 2025 initiative. The primary goal of the effort is to improve short, seasonal, and long term streamflow forecasts through the use of a physically based hydrologic model (MMS-PRMS) coupled with an operational river routing model (Riverware). Streamflow from high-altitude headwater basins is simulated with MMS-PRMS model and routed with the Riverware model through the Carson valley where a number of ungauged agricultural diversions and returns complicate the real system. The water supply forecasts made with the coupled model are evaluated through comparison with forecasts made by the National Weather Service, the Natural Resources Conservation Service, and historic streamflow using multiple objective measures

  6. Short-term Forecasting of the Prevalence of Trachoma: Expert Opinion, Statistical Regression, versus Transmission Models

    PubMed Central

    Liu, Fengchen; Porco, Travis C.; Amza, Abdou; Kadri, Boubacar; Nassirou, Baido; West, Sheila K.; Bailey, Robin L.; Keenan, Jeremy D.; Solomon, Anthony W.; Emerson, Paul M.; Gambhir, Manoj; Lietman, Thomas M.

    2015-01-01

    Background Trachoma programs rely on guidelines made in large part using expert opinion of what will happen with and without intervention. Large community-randomized trials offer an opportunity to actually compare forecasting methods in a masked fashion. Methods The Program for the Rapid Elimination of Trachoma trials estimated longitudinal prevalence of ocular chlamydial infection from 24 communities treated annually with mass azithromycin. Given antibiotic coverage and biannual assessments from baseline through 30 months, forecasts of the prevalence of infection in each of the 24 communities at 36 months were made by three methods: the sum of 15 experts’ opinion, statistical regression of the square-root-transformed prevalence, and a stochastic hidden Markov model of infection transmission (Susceptible-Infectious-Susceptible, or SIS model). All forecasters were masked to the 36-month results and to the other forecasts. Forecasts of the 24 communities were scored by the likelihood of the observed results and compared using Wilcoxon’s signed-rank statistic. Findings Regression and SIS hidden Markov models had significantly better likelihood than community expert opinion (p = 0.004 and p = 0.01, respectively). All forecasts scored better when perturbed to decrease Fisher’s information. Each individual expert’s forecast was poorer than the sum of experts. Interpretation Regression and SIS models performed significantly better than expert opinion, although all forecasts were overly confident. Further model refinements may score better, although would need to be tested and compared in new masked studies. Construction of guidelines that rely on forecasting future prevalence could consider use of mathematical and statistical models. PMID:26302380

  7. Using Science Data and Models for Space Weather Forecasting - Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Pulkkinen, Antti; Zheng, Yihua; Maddox, Marlo; Berrios, David; Taktakishvili, Sandro; Kuznetsova, Masha; Chulaki, Anna; Lee, Hyesook; Mullinix, Rick; Rastaetter, Lutz

    2012-01-01

    Space research, and, consequently, space weather forecasting are immature disciplines. Scientific knowledge is accumulated frequently, which changes our understanding or how solar eruptions occur, and of how they impact targets near or on the Earth, or targets throughout the heliosphere. Along with continuous progress in understanding, space research and forecasting models are advancing rapidly in capability, often providing substantially increases in space weather value over time scales of less than a year. Furthermore, the majority of space environment information available today is, particularly in the solar and heliospheric domains, derived from research missions. An optimal forecasting environment needs to be flexible enough to benefit from this rapid development, and flexible enough to adapt to evolving data sources, many of which may also stem from non-US entities. This presentation will analyze the experiences obtained by developing and operating both a forecasting service for NASA, and an experimental forecasting system for Geomagnetically Induced Currents.

  8. Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    NASA Astrophysics Data System (ADS)

    WöHling, Thomas; Vrugt, Jasper A.

    2008-12-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multiobjective optimization and Bayesian model averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multiobjective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM and used to generate four different model ensembles. These ensembles are postprocessed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multiobjective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  9. Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM (1,1) model.

    PubMed

    An, Yan; Zou, Zhihong; Zhao, Yanfei

    2015-03-01

    An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating sequence was set in turn as an initial condition to determine which alternative would yield the highest forecasting accuracy. To test the forecasting performance, the optimized models with different initial conditions were then used to simulate dissolved oxygen concentrations in the Guanting reservoir inlet and outlet (China). The empirical results show that the optimized model can remarkably improve forecasting accuracy, and the particle swarm optimization technique is a good tool to solve parameter optimization problems. What's more, the optimized model with an initial condition that performs well in in-sample simulation may not do as well as in out-of-sample forecasting.

  10. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks

    PubMed Central

    Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai

    2016-01-01

    Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012. PMID:27281032

  11. Applying Forecast Models from the Center for Integrated Space Weather Modeling

    NASA Astrophysics Data System (ADS)

    Gehmeyr, M.; Baker, D. N.; Millward, G.; Odstrcil, D.

    2007-12-01

    The Center for Integrated Space Weather Modeling (CISM) has developed three forecast models (FMs) for the Sun-Earth chain. They have been matured by various degrees toward the operational stage. The Sun-Earth FM suite comprises empirical and physical models: the Planetary Equivalent Amplitude (AP-FM), the Solar Wind (SW- FM), and the Geospace (GS-FM) models. We give a brief overview of these forecast models and touch briefly on the associated validation studies. We demonstrate the utility of the models: AP-FM supporting the operations of the AIM (Aeronomy of Ice in the Mesosphere) mission soon after launch; SW-FM providing assistance with the interpretation of the STEREO beacon data; and GS-FM combining model and observed data to characterize the aurora borealis. We will then discuss space weather tools in a more general sense, point out where the current capabilities and shortcomings are, and conclude with a look forward to what areas need improvement to facilitate better real-time forecasts.

  12. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models

    NASA Astrophysics Data System (ADS)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2015-10-01

    Reliable river flow forecasts play a key role in flood risk mitigation. Among different approaches of river flow forecasting, data driven approaches have become increasingly popular in recent years due to their minimum information requirements and ability to simulate nonlinear and non-stationary characteristics of hydrological processes. In this study, attempts are made to apply four different types of data driven approaches, namely traditional artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), wavelet neural networks (WNN), and, hybrid ANFIS with multi resolution analysis using wavelets (WNF). Developed models applied for real time flood forecasting at Casino station on Richmond River, Australia which is highly prone to flooding. Hourly rainfall and runoff data were used to drive the models which have been used for forecasting with 1, 6, 12, 24, 36 and 48 h lead-time. The performance of models further improved by adding an upstream river flow data (Wiangaree station), as another effective input. All models perform satisfactorily up to 12 h lead-time. However, the hybrid wavelet-based models significantly outperforming the ANFIS and ANN models in the longer lead-time forecasting. The results confirm the robustness of the proposed structure of the hybrid models for real time runoff forecasting in the study area.

  13. Threat Theory: A Model for Forecasting the Threat Environment of the Future

    DTIC Science & Technology

    1993-05-14

    AD-A2 7 4 021 / Threat Theory: A Model for Forecasting the Threat Environment of the Future A Monograph by Lieutenant Colonel Larry D. Bruns Military...5. FUNDING NUMBERS THREAT THEORY. A MODEL FOR FORECASTING THREAT ENVIRONMENT OF THE FUTURE 6. AUTHOR(S) LTC LARRY D. BRUNS, USA 7. PERFORMING...PRICE CODE FORCE DEVELOPMENT 17. SECURITY CLASSIFICATION II8. SECURITY CLASSIFICATION 19. SECURITY CL.ASSIFICATION 20. LIMITATION Of ABSTRACT OF REPORT

  14. Forecasting turbulent modes with nonparametric diffusion models: Learning from noisy data

    NASA Astrophysics Data System (ADS)

    Berry, Tyrus; Harlim, John

    2016-04-01

    In this paper, we apply a recently developed nonparametric modeling approach, the "diffusion forecast", to predict the time-evolution of Fourier modes of turbulent dynamical systems. While the diffusion forecasting method assumes the availability of a noise-free training data set observing the full state space of the dynamics, in real applications we often have only partial observations which are corrupted by noise. To alleviate these practical issues, following the theory of embedology, the diffusion model is built using the delay-embedding coordinates of the data. We show that this delay embedding biases the geometry of the data in a way which extracts the most stable component of the dynamics and reduces the influence of independent additive observation noise. The resulting diffusion forecast model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and when the observation noise vanishes. As in any standard forecasting problem, the forecasting skill depends crucially on the accuracy of the initial conditions. We introduce a novel Bayesian method for filtering the discrete-time noisy observations which works with the diffusion forecast to determine the forecast initial densities. Numerically, we compare this nonparametric approach with standard stochastic parametric models on a wide-range of well-studied turbulent modes, including the Lorenz-96 model in weakly chaotic to fully turbulent regimes and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. We show that when the only available data is the low-dimensional set of noisy modes that are being modeled, the diffusion forecast is indeed competitive to the perfect model.

  15. An Economic Model for Selective Admissions

    ERIC Educational Resources Information Center

    Haglund, Alma

    1978-01-01

    The author presents an economic model for selective admissions to postsecondary nursing programs. Primary determinants of the admissions model are employment needs, availability of educational resources, and personal resources (ability and learning potential). As there are more applicants than resources, selective admission practices are…

  16. Evaluation of the Mesoscale Meteorological Model (MM5)-Community Multi-Scale Air Quality Model (CMAQ) performance in hindcast and forecast of ground-level ozone.

    PubMed

    Nghiem, Le Hoang; Kim Oanh, Nguyen Thi

    2008-10-01

    This paper presents the first attempt to apply the Mesoscale Meteorological Model (MM5)-Community Multi-Scale Air Quality Model (CMAQ) model system to simulate ground-level ozone (O3) over the continental Southeast Asia (CSEA) region for both hindcast and forecast purposes. Hindcast simulation was done over the CSEA domain for two historical O3 episodes, January 26-29, 2004 (January episode, northeast monsoon) and March 24-26, 2004 (March episode, southwest monsoon). Experimental forecast was done for next-day hourly O3 during January 2006 over the central part of Thailand (CENTHAI). Available data from 20 ambient monitoring stations in Thailand and 3 stations in Ho Chi Minh City, Vietnam, were used for the episode analysis and for the model performance evaluation. The year 2000 anthropogenic emission inventory prepared by the Center for Global and Regional Environmental Research at the University of Iowa was projected to the simulation year on the basis of the regional average economic growth rate. Hourly emission in urban areas was prepared using ambient carbon monoxide concentration as a surrogate for the emission intensity. Biogenic emissions were estimated based on data from the Global Emissions Inventory Activity. Hindcast simulations (CSEA) were performed with 0.5 degree x 0.5 degree resolution, whereas forecast simulations (CENTHAI) were done with 0.1 degree x 0.1 degree hourly emission input data. MM5-CMAQ model system performance during the selected episodes satisfactorily met U.S. Environmental Protection Agency criteria for O3 for most simulated days. The experiment forecast for next-day hourly O3 in January 2006 yielded promising results. Modeled plumes of ozone in both hindcast and forecast cases agreed with the main wind fields and extended over considerable downwind distances from large urban areas.

  17. Demonstration of successful malaria forecasts for Botswana using an operational seasonal climate model

    NASA Astrophysics Data System (ADS)

    MacLeod, Dave A.; Jones, Anne; Di Giuseppe, Francesca; Caminade, Cyril; Morse, Andrew P.

    2015-04-01

    The severity and timing of seasonal malaria epidemics is strongly linked with temperature and rainfall. Advance warning of meteorological conditions from seasonal climate models can therefore potentially anticipate unusually strong epidemic events, building resilience and adapting to possible changes in the frequency of such events. Here we present validation of a process-based, dynamic malaria model driven by hindcasts from a state-of-the-art seasonal climate model from the European Centre for Medium-Range Weather Forecasts. We validate the climate and malaria models against observed meteorological and incidence data for Botswana over the period 1982-2006 the longest record of observed incidence data which has been used to validate a modeling system of this kind. We consider the impact of climate model biases, the relationship between climate and epidemiological predictability and the potential for skillful malaria forecasts. Forecast skill is demonstrated for upper tercile malaria incidence for the Botswana malaria season (January-May), using forecasts issued at the start of November; the forecast system anticipates six out of the seven upper tercile malaria seasons in the observational period. The length of the validation time series gives confidence in the conclusion that it is possible to make reliable forecasts of seasonal malaria risk, forming a key part of a health early warning system for Botswana and contributing to efforts to adapt to climate change.

  18. High resolution operational air quality forecast for Poland and Central Europe with the GEM-AQ model - EcoForecast System

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna

    2013-04-01

    The air quality forecast is an important component of the environmental assessment system. The "Clean Air for Europe" (CAFE) Directive 2008/50/EC stipulates a need for numerical modelling in order to support public information services to interpret measurements of pollutants concentrations and to prepare and evaluate air quality plans. Most European countries have developed model-based air quality modelling and information services. We will present the design strategy, development and implementation of a regional high resolution forecasting system that was implemented in Poland. The new national high resolution air quality forecasting system has evolved from a semi-operational chemical weather system EcoForecast.EU which is based on the GEM-AQ model (Kaminski et al., 2008). GEM-AQ is a comprehensive chemical weather model where air quality processes (chemistry and aerosols), troposphere and stratospheric chemistry are implemented on-line in the operational weather prediction model, the Global Environmental Multiscale (GEM) model (Cote et al, 1998), developed at Environment Canada. For these applications, the model is run on a global variable resolution grid with horizontal spacing of 15 km over Europe. In the vertical there are 28 hybrid levels, with the top at 10 hPa. A high resolution nested forecast at 5 km resolution over Poland (and surrounding countries) was implemented in December 2012. The forecast is published once a day at www.EcoForecast.EU. The air quality forecast is presented for ozone, nitrogen dioxide, sulphur dioxide, carbon monoxide, PM10 and PM2.5 as maps of daily maxima and daily averages. We will present results from the on-going model evaluation study over Central Europe (2010-2012). Modelling results were evaluated and compared with available observation of ozone and primary pollutants from air quality monitoring stations and from meteorological synoptic stations. Ozone exposure indices, as defined in the CAFE Directive, will be shown for the

  19. The Influence of Seasonal Forecast Accuracy on Farmer Behavior: An Agent-Based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Jacobi, J. H.; Nay, J.; Gilligan, J. M.

    2013-12-01

    Seasonal climates dictate the livelihoods of farmers in developing countries. While farmers in developed countries often have seasonal forecasts on which to base their cropping decisions, developing world farmers usually make plans for the season without such information. Climate change increases the seasonal uncertainty, making things more difficult for farmers. Providing seasonal forecasts to these farmers is seen as a way to help buffer these typically marginal groups from the effects of climate change, though how to do so and the efficacy of such an effort is still uncertain. In Sri Lanka, an effort is underway to provide such forecasts to farmers. The accuracy of these forecasts is likely to have large impacts on how farmers accept and respond to the information they receive. We present an agent-based model to explore how the accuracy of seasonal rainfall forecasts affects the growing decisions and behavior of farmers in Sri Lanka. Using a decision function based on prospect theory, this model simulates farmers' behavior in the face of a wet, dry, or normal forecast. Farmers can either choose to grow paddy rice or plant a cash crop. Prospect theory is used to evaluate outcomes of the growing season; the farmer's memory of the level of success under a certain set of conditions affects next season's decision. Results from this study have implications for policy makers and seasonal forecasters.

  20. A novel hybrid forecasting model for PM₁₀ and SO₂ daily concentrations.

    PubMed

    Wang, Ping; Liu, Yong; Qin, Zuodong; Zhang, Guisheng

    2015-02-01

    Air-quality forecasting in urban areas is difficult because of the uncertainties in describing both the emission and meteorological fields. The use of incomplete information in the training phase restricts practical air-quality forecasting. In this paper, we propose a hybrid artificial neural network and a hybrid support vector machine, which effectively enhance the forecasting accuracy of an artificial neural network (ANN) and support vector machine (SVM) by revising the error term of the traditional methods. The hybrid methodology can be described in two stages. First, we applied the ANN or SVM forecasting system with historical data and exogenous parameters, such as meteorological variables. Then, the forecasting target was revised by the Taylor expansion forecasting model using the residual information of the error term in the previous stage. The innovation involved in this approach is that it sufficiently and validly utilizes the useful residual information on an incomplete input variable condition. The proposed method was evaluated by experiments using a 2-year dataset of daily PM₁₀ (particles with a diameter of 10 μm or less) concentrations and SO₂ (sulfur dioxide) concentrations from four air pollution monitoring stations located in Taiyuan, China. The theoretical analysis and experimental results demonstrated that the forecasting accuracy of the proposed model is very promising.

  1. Two levels ARIMAX and regression models for forecasting time series data with calendar variation effects

    NASA Astrophysics Data System (ADS)

    Suhartono, Lee, Muhammad Hisyam; Prastyo, Dedy Dwi

    2015-12-01

    The aim of this research is to develop a calendar variation model for forecasting retail sales data with the Eid ul-Fitr effect. The proposed model is based on two methods, namely two levels ARIMAX and regression methods. Two levels ARIMAX and regression models are built by using ARIMAX for the first level and regression for the second level. Monthly men's jeans and women's trousers sales in a retail company for the period January 2002 to September 2009 are used as case study. In general, two levels of calendar variation model yields two models, namely the first model to reconstruct the sales pattern that already occurred, and the second model to forecast the effect of increasing sales due to Eid ul-Fitr that affected sales at the same and the previous months. The results show that the proposed two level calendar variation model based on ARIMAX and regression methods yields better forecast compared to the seasonal ARIMA model and Neural Networks.

  2. Verification of Advances in a Coupled Snow-runoff Modeling Framework for Operational Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.

    2011-12-01

    The National Oceanic and Atmospheric Administration's (NOAA's) River Forecast Centers (RFCs) issue hydrologic forecasts related to flood events, reservoir operations for water supply, streamflow regulation, and recreation on the nation's streams and rivers. The RFCs use the National Weather Service River Forecast System (NWSRFS) for streamflow forecasting which relies on a coupled snow model (i.e. SNOW17) and rainfall-runoff model (i.e. SAC-SMA) in snow-dominated regions of the US. Errors arise in various steps of the forecasting system from input data, model structure, model parameters, and initial states. The goal of the current study is to undertake verification of potential improvements in the SNOW17-SAC-SMA modeling framework developed for operational streamflow forecasts. We undertake verification for a range of parameters sets (i.e. RFC, DREAM (Differential Evolution Adaptive Metropolis)) as well as a data assimilation (DA) framework developed for the coupled models. Verification is also undertaken for various initial conditions to observe the influence of variability in initial conditions on the forecast. The study basin is the North Fork America River Basin (NFARB) located on the western side of the Sierra Nevada Mountains in northern California. Hindcasts are verified using both deterministic (i.e. Nash Sutcliffe efficiency, root mean square error, and joint distribution) and probabilistic (i.e. reliability diagram, discrimination diagram, containing ratio, and Quantile plots) statistics. Our presentation includes comparison of the performance of different optimized parameters and the DA framework as well as assessment of the impact associated with the initial conditions used for streamflow forecasts for the NFARB.

  3. Day-Ahead Crude Oil Price Forecasting Using a Novel Morphological Component Analysis Based Model

    PubMed Central

    Zhu, Qing; Zou, Yingchao; Lai, Kin Keung

    2014-01-01

    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations. PMID:25061614

  4. Forecasting sales of new vehicle with limited data using Bass diffusion model and Grey theory

    NASA Astrophysics Data System (ADS)

    Abu, Noratikah; Ismail, Zuhaimy

    2015-02-01

    New product forecasting is a process that determines a reasonable estimate of sales attainable under a given set of conditions. There are several new products forecasting method in practices and Bass Diffusion Model (BDM) is one of the most common new product diffusion model used in many industries to forecast new product and technology. Hence, this paper proposed a combining BDM with Grey theory to forecast sales of new vehicle in Malaysia that certainly have limited data to build a model on. The aims of this paper is to examine the accuracy of different new product forecasting models and thus identify which is the best among the basic BDM and combining BDM with Grey theory. The results show that combining BDM with Grey theory performs better than the basic BDM based on in-sample and out-sample mean absolute percentage error (MAPE). Results also reveals combining model forecast more effectively and accurately even with insufficient previous data on the new vehicle in Malaysia.

  5. Forecasting the weather at the TAL sites during STS-40 using the grid point forecast output from the NMC MRF model

    NASA Technical Reports Server (NTRS)

    Hafele, Gene M.

    1992-01-01

    The NOAA's Spaceflight Meteorology Group has used the point forecast output from the Global Profile Archive and Global Profile Archive since 1990, and found this product to allow forecasters to examine the MRF model in a vertical profile, and thereby determine how different model parameters behave over time. Attention is presently given to the use of these resources in the illustrative case of the STS-40 mission, over northwestern Spain.

  6. Agent-based modeling in ecological economics.

    PubMed

    Heckbert, Scott; Baynes, Tim; Reeson, Andrew

    2010-01-01

    Interconnected social and environmental systems are the domain of ecological economics, and models can be used to explore feedbacks and adaptations inherent in these systems. Agent-based modeling (ABM) represents autonomous entities, each with dynamic behavior and heterogeneous characteristics. Agents interact with each other and their environment, resulting in emergent outcomes at the macroscale that can be used to quantitatively analyze complex systems. ABM is contributing to research questions in ecological economics in the areas of natural resource management and land-use change, urban systems modeling, market dynamics, changes in consumer attitudes, innovation, and diffusion of technology and management practices, commons dilemmas and self-governance, and psychological aspects to human decision making and behavior change. Frontiers for ABM research in ecological economics involve advancing the empirical calibration and validation of models through mixed methods, including surveys, interviews, participatory modeling, and, notably, experimental economics to test specific decision-making hypotheses. Linking ABM with other modeling techniques at the level of emergent properties will further advance efforts to understand dynamics of social-environmental systems.

  7. Alaska North Slope regional gas hydrate production modeling forecasts

    USGS Publications Warehouse

    Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.

    2011-01-01

    A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside

  8. Seasonal forecasting of global hydrologic extremes using the North American Multi-model Ensemble system

    NASA Astrophysics Data System (ADS)

    Wood, Eric F.; Yuan, Xing; Roundy, Joshua K.; Sheffield, Justin

    2015-04-01

    Seasonal hydrologic extremes in the form of droughts and wet spells have devastating impacts on human and natural systems. Improving our understanding and predictive capability of hydrologic extremes, and facilitating adaptations through establishing climate service systems at regional to global scales, are among the grand challenges proposed by the World Climate Research Programme (WCRP), and are the core themes of the Regional Hydroclimate Projects (RHP) under the Global Energy and Water Exchanges Project (GEWEX). An experimental global seasonal hydrologic forecasting system has been developed, which is based on coupled climate forecast models participating in the North American Multi-Model Ensemble (NMME) project and an advanced land surface hydrologic model. The system is evaluated over major GEWEX/RHP river basins by comparing with Ensemble Streamflow Prediction (ESP). The multi-model seasonal forecast system provides higher detectability for soil moisture droughts, more reliable low and high flow ensemble forecasts, and better "real-time" prediction for the 2012 North American extreme drought. The association of the onset of extreme hydrologic events with oceanic and land precursors is also investigated based on the joint distribution of forecasts and observations. Climate models have a higher probability of missing the onset of hydrologic extremes when there is no oceanic precursor. But oceanic precursor alone is insufficient to guarantee a correct forecast, a land precursor is also critical in avoiding a false alarm for forecasting extremes. This study is targeted at providing the scientific underpinning for the predictability of hydrologic extremes over GEWEX/RHP basins, and serves as a prototype for seasonal hydrologic forecasts within the Global Framework for Climate Services (GFCS).

  9. Understanding and modeling the economics of ECM

    NASA Astrophysics Data System (ADS)

    Wells, Wayne E.; Edinbarough, Immanuel A.

    2004-12-01

    Traditional economic analysis methods for manufacturing decisions include only the clearly identified immediate cost and revenue streams. Environmental issues have generally been seen as costs, in the form of waste material losses, conformance tests and pre-discharge treatments. The components of the waste stream often purchased as raw materials, become liabilities at the "end of the pipe" and their intrinsic material value is seldom recognized. A new mathematical treatment of manufacturing economics is proposed in which the costs of separation are compared with the intrinsic value of the waste materials to show how their recovery can provide an economic advantage to the manufacturer. The model is based on a unique combination of thermodynamic analysis, economic modeling and linear optimization. This paper describes the proposed model, and examines case studies in which the changed decision rules have yielded significant savings while protecting the environment. The premise proposed is that by including the value of the waste materials in the profit objective of the firm and applying the appropriate technological solution, manufacturing processes can become closed systems in which losses approach zero and environmental problems are converted into economic savings.

  10. Evaluation of glass model precipitation forecasts for North America during SOP-1

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Firestone, J.

    1984-01-01

    A study has been made of the accuracy of the GLAS fourth order forecast model's precipitation forecasts over North America during the first Special Observing Period (SOP-1) of FGGE and of the impact of the FGGE special observing systems on these forecasts. Fourteen 120 h predictions were generated using the coarse 4 deg latitude by 5 deg longitude version of the GLAS model from both the FGGE and NOSAT assimilation cycles. These forecasts were then verified against a detailed set of precipitation observations. Separate verifications were performed for precipitation accumulations or = .01 in., or = .1 in., and or = 1 in. occuring in 6, 12 and 24 time periods. In addition, three different methods of verification were applied. In the first method, model precipitation forecasts are verified against the greatest precipitation amount observed within a 4 deg latitude by 5 deg longitude gridbox centered on each gridpoint. For the prediction at a gridpoint to be verified only one observation within the gridbox is required. In the second method, a weighted mean of the closest observations to the gridpoint is used, provided that at least two observations on opposite sides of a gridpoint are available. For the third method, the model precipitation forecasts were interpolated to the observation locations.

  11. Forecast-skill-based simulation of streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Zhao, Tongtiegang; Zhao, Jianshi

    2014-09-01

    Streamflow forecasts are updated periodically in real time, thereby facilitating forecast evolution. This study proposes a forecast-skill-based model of forecast evolution that is able to simulate dynamically updated streamflow forecasts. The proposed model applies stochastic models that deal with streamflow variability to generate streamflow scenarios, which represent cases without forecast skill of future streamflow. The model then employs a coefficient of prediction to determine forecast skill and to quantify the streamflow variability ratio explained by the forecast. By updating the coefficients of prediction periodically, the model efficiently captures the evolution of streamflow forecast. Simulated forecast uncertainty increases with increasing lead time; and simulated uncertainty during a specific future period decreases over time. We combine the statistical model with an optimization model and design a hypothetical case study of reservoir operation. The results indicate the significance of forecast skill in forecast-based reservoir operation. Shortage index reduces as forecast skill increases and ensemble forecast outperforms deterministic forecast at a similar forecast skill level. Moreover, an effective forecast horizon exists beyond which more forecast information does not contribute to reservoir operation and higher forecast skill results in longer effective forecast horizon. The results illustrate that the statistical model is efficient in simulating forecast evolution and facilitates analysis of forecast-based decision making.

  12. Climate information based streamflow and rainfall forecasts for Huai River Basin using Hierarchical Bayesian Modeling

    NASA Astrophysics Data System (ADS)

    Chen, X.; Hao, Z.; Devineni, N.; Lall, U.

    2013-09-01

    A Hierarchal Bayesian model for forecasting regional summer rainfall and streamflow season-ahead using exogenous climate variables for East Central China is presented. The model provides estimates of the posterior forecasted probability distribution for 12 rainfall and 2 streamflow stations considering parameter uncertainty, and cross-site correlation. The model has a multilevel structure with regression coefficients modeled from a common multivariate normal distribution results in partial-pooling of information across multiple stations and better representation of parameter and posterior distribution uncertainty. Covariance structure of the residuals across stations is explicitly modeled. Model performance is tested under leave-10-out cross-validation. Frequentist and Bayesian performance metrics used include Receiver Operating Characteristic, Reduction of Error, Coefficient of Efficiency, Rank Probability Skill Scores, and coverage by posterior credible intervals. The ability of the model to reliably forecast regional summer rainfall and streamflow season-ahead offers potential for developing adaptive water risk management strategies.

  13. Comparative Validation of Realtime Solar Wind Forecasting Using the UCSD Heliospheric Tomography Model

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Taktakishvili, Alexandra; Jackson, Bernard; Clover, John; Bisi, Mario; Odstrcil, Dusan

    2011-01-01

    The University of California, San Diego 3D Heliospheric Tomography Model reconstructs the evolution of heliospheric structures, and can make forecasts of solar wind density and velocity up to 72 hours in the future. The latest model version, installed and running in realtime at the Community Coordinated Modeling Center(CCMC), analyzes scintillations of meter wavelength radio point sources recorded by the Solar-Terrestrial Environment Laboratory(STELab) together with realtime measurements of solar wind speed and density recorded by the Advanced Composition Explorer(ACE) Solar Wind Electron Proton Alpha Monitor(SWEPAM).The solution is reconstructed using tomographic techniques and a simple kinematic wind model. Since installation, the CCMC has been recording the model forecasts and comparing them with ACE measurements, and with forecasts made using other heliospheric models hosted by the CCMC. We report the preliminary results of this validation work and comparison with alternative models.

  14. Climate information based streamflow and rainfall forecasts for Huai River basin using hierarchical Bayesian modeling

    NASA Astrophysics Data System (ADS)

    Chen, X.; Hao, Z.; Devineni, N.; Lall, U.

    2014-04-01

    A Hierarchal Bayesian model is presented for one season-ahead forecasts of summer rainfall and streamflow using exogenous climate variables for east central China. The model provides estimates of the posterior forecasted probability distribution for 12 rainfall and 2 streamflow stations considering parameter uncertainty, and cross-site correlation. The model has a multi-level structure with regression coefficients modeled from a common multi-variate normal distribution resulting in partial pooling of information across multiple stations and better representation of parameter and posterior distribution uncertainty. Covariance structure of the residuals across stations is explicitly modeled. Model performance is tested under leave-10-out cross-validation. Frequentist and Bayesian performance metrics used include receiver operating characteristic, reduction of error, coefficient of efficiency, rank probability skill scores, and coverage by posterior credible intervals. The ability of the model to reliably forecast season-ahead regional summer rainfall and streamflow offers potential for developing adaptive water risk management strategies.

  15. Forecasting Model for IPTV Service in Korea Using Bootstrap Ridge Regression Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Chul; Kee, Seho; Kim, Jae Bum; Kim, Yun Bae

    The telecom firms in Korea are taking new step to prepare for the next generation of convergence services, IPTV. In this paper we described our analysis on the effective method for demand forecasting about IPTV broadcasting. We have tried according to 3 types of scenarios based on some aspects of IPTV potential market and made a comparison among the results. The forecasting method used in this paper is the multi generation substitution model with bootstrap ridge regression analysis.

  16. An empirical model to forecast solar wind velocity through statistical modeling

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Ridley, A. J.

    2013-12-01

    The accurate prediction of the solar wind velocity has been a major challenge in the space weather community. Previous studies proposed many empirical and semi-empirical models to forecast the solar wind velocity based on either the historical observations, e.g. the persistence model, or the instantaneous observations of the sun, e.g. the Wang-Sheeley-Arge model. In this study, we use the one-minute WIND data from January 1995 to August 2012 to investigate and compare the performances of 4 models often used in literature, here referred to as the null model, the persistence model, the one-solar-rotation-ago model, and the Wang-Sheeley-Arge model. It is found that, measured by root mean square error, the persistence model gives the most accurate predictions within two days. Beyond two days, the Wang-Sheeley-Arge model serves as the best model, though it only slightly outperforms the null model and the one-solar-rotation-ago model. Finally, we apply the least-square regression to linearly combine the null model, the persistence model, and the one-solar-rotation-ago model to propose a 'general persistence model'. By comparing its performance against the 4 aforementioned models, it is found that the accuracy of the general persistence model outperforms the other 4 models within five days. Due to its great simplicity and superb performance, we believe that the general persistence model can serve as a benchmark in the forecast of solar wind velocity and has the potential to be modified to arrive at better models.

  17. Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model.

    PubMed

    Funk, Sebastian; Camacho, Anton; Kucharski, Adam J; Eggo, Rosalind M; Edmunds, W John

    2016-12-16

    Real-time forecasts of infectious diseases can help public health planning, especially during outbreaks. If forecasts are generated from mechanistic models, they can be further used to target resources or to compare the impact of possible interventions. However, paremeterising such models is often difficult in real time, when information on behavioural changes, interventions and routes of transmission are not readily available. Here, we present a semi-mechanistic model of infectious disease dynamics that was used in real time during the 2013-2016 West African Ebola epidemic, and show fits to a Ebola Forecasting Challenge conducted in late 2015 with simulated data mimicking the true epidemic. We assess the performance of the model in different situations and identify strengths and shortcomings of our approach. Models such as the one presented here which combine the power of mechanistic models with the flexibility to include uncertainty about the precise outbreak dynamics may be an important tool in combating future outbreaks.

  18. Combining forecast weights: Why and how?

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim

    2012-09-01

    This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.

  19. A Stochastic Deterministic Air Quality Forecasting System : Combining Time Series Models with Data-Assimilation

    NASA Astrophysics Data System (ADS)

    Kumar, U.; De Ridder, K.; Lefebvre, W.; Janssen, S.

    2012-04-01

    A new air quality forecast system has been developed in which all the corrections for the air quality model output by assimilating observations have been carried out in post-processing mode. In order to make more accurate forecasts of the air pollutants, time series models have been used in combination with data-assimilation. The approach has been validated for one day ahead forecasts of daily mean PM10 and daily mean NO2. First, the air quality model AURORA has been applied over the domain Belgium including part of its neighbouring areas with grid resolution of 3×3 km2 for a total of 121×71 grids. The observations data from AIRBASE archive has been used for the assimilation purpose. Only the background stations (urban or rural) data has been used. For data-assimilation, optimal interpolation in conjunction with Hollingsworth-Lönnberg method has been applied. The time series of the residuals, i.e., observations minus model output (for the daily mean PM10 and NO2) has been collected for the grids where monitoring stations were available. These time series were tested for their suitability for time series modelling applications. We applied the ARIMA(p,d,q) (Autoregressive Integrated Moving Average) as time series modelling technique to forecast the residuals in the future (one day ahead). In the next step, these forecasted residuals were assimilated with forecasted AURORA model output in order to get improved forecasted fields. The validation was carried out by leaving three stations out in one run of data-assimilation/time series forecasting. Thus, the validation results for one day ahead forecasts at the 15 stations for the duration 1-Mar-07 to 31-Dec-07 reveal that there has been substantial improvement in root mean square error (RMSE), a reduction ranging from 2% to 30%, has been observed. Similarly, correlation has also increased upto 30%. The results show that the approach presented here has tremendous potential to be applied in air quality forecasts.

  20. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III

    2008-01-01

    NASA prefers to land the space shuttle at Kennedy Space Center (KSC). When weather conditions violate Flight Rules at KSC, NASA will usually divert the shuttle landing to Edwards Air Force Base (EAFB) in Southern California. But forecasting surface winds at EAFB is a challenge for the Spaceflight Meteorology Group (SMG) forecasters due to the complex terrain that surrounds EAFB, One particular phenomena identified by SMG is that makes it difficult to forecast the EAFB surface winds is called "wind cycling". This occurs when wind speeds and directions oscillate among towers near the EAFB runway leading to a challenging deorbit bum forecast for shuttle landings. The large-scale numerical weather prediction models cannot properly resolve the wind field due to their coarse horizontal resolutions, so a properly tuned high-resolution mesoscale model is needed. The Weather Research and Forecasting (WRF) model meets this requirement. The AMU assessed the different WRF model options to determine which configuration best predicted surface wind speed and direction at EAFB, To do so, the AMU compared the WRF model performance using two hot start initializations with the Advanced Research WRF and Non-hydrostatic Mesoscale Model dynamical cores and compared model performance while varying the physics options.

  1. Bayesian Hierarchical Models to Augment the Mediterranean Forecast System

    DTIC Science & Technology

    2006-09-30

    case for SSH uncertainty. Relative minima in SST initial condition uncertainty occur east of Majorca, in the northern Tyrrhenian Sea , and in the...demonstrate forecast uncertainties during difficult to predict regime transitions in the Mediterranean Sea (e.g. the Fall transition, deep water formation...variance, or “spread” at each MFS-Wind-BHM output grid location in a blow-up of the western Mediterranean Sea , centered on the Gulf of Lions (Fig 1

  2. Bayesian Hierarchical Models to Augment the Mediterranean Forecast System

    DTIC Science & Technology

    2016-06-07

    demonstrate forecast uncertainties during difficult to predict regime transitions in the Mediterranean Sea (e.g. the Fall transition, deep water ...corresponds to a strong Mistral event, and deep- water formation (DWF) response, in the Gulf of Lions. The blue SVW clusters provide a pictorial... water formation experiments were presented in a seminar at ONR headquarters in May 2006. Prof. Pinardi (U. Bologna/INGV) traveled to Washington to

  3. Bayesian Hierarchical Models to Augment the Mediterranean Forecast System

    DTIC Science & Technology

    2016-06-07

    demonstrate forecast uncertainties during difficult to predict regime transitions in the Mediterranean Sea (e.g. the Fall transition, deep water formation...event, and deep- water formation (DWF) response, in the Gulf of Lions. The blue SVW clusters provide a pictorial representation of SVW ensemble...Preliminary results of the MFS-Wind-BHM deep water formation experiments were presented in a seminar at ONR headquarters in May 2006. Prof. Pinardi

  4. A four-stage hybrid model for hydrological time series forecasting.

    PubMed

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.

  5. Multi-Model Long-Range Ensemble Forecast for Decision Support in Hydroelectric Operations

    NASA Astrophysics Data System (ADS)

    Kunkel, M. L.; Parkinson, S.; Blestrud, D.; Holbrook, V. P.

    2014-12-01

    Idaho Power Company (IPC) is a hydroelectric based utility serving over a million customers in southern Idaho and eastern Oregon. Hydropower makes up ~50% of our power generation and accurate predictions of streamflow and precipitation drive our long-term planning and decision support for operations. We investigate the use of a multi-model ensemble approach for mid and long-range streamflow and precipitation forecasts throughout the Snake River Basin. Forecast are prepared using an Idaho Power developed ensemble forecasting technique for 89 locations throughout the Snake River Basin for periods of 3 to 18 months in advance. A series of multivariable linear regression, multivariable non-linear regression and multivariable Kalman filter techniques are combined in an ensemble forecast based upon two data types, historical data (streamflow, precipitation, climate indices [i.e. PDO, ENSO, AO, etc…]) and single value decomposition derived values based upon atmospheric heights and sea surface temperatures.

  6. A physical and economic model of the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Schneider, Erich Alfred

    A model of the nuclear fuel cycle that is suitable for use in strategic planning and economic forecasting is presented. The model, to be made available as a stand-alone software package, requires only a small set of fuel cycle and reactor specific input parameters. Critical design criteria include ease of use by nonspecialists, suppression of errors to within a range dictated by unit cost uncertainties, and limitation of runtime to under one minute on a typical desktop computer. Collision probability approximations to the neutron transport equation that lead to a computationally efficient decoupling of the spatial and energy variables are presented and implemented. The energy dependent flux, governed by coupled integral equations, is treated by multigroup or continuous thermalization methods. The model's output includes a comprehensive nuclear materials flowchart that begins with ore requirements, calculates the buildup of 24 actinides as well as fission products, and concludes with spent fuel or reprocessed material composition. The costs, direct and hidden, of the fuel cycle under study are also computed. In addition to direct disposal and plutonium recycling strategies in current use, the model addresses hypothetical cycles. These include cycles chosen for minor actinide burning and for their low weapons-usable content.

  7. Comparing Price Forecast Accuracy of Natural Gas Models andFutures Markets

    SciTech Connect

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-06-30

    The purpose of this article is to compare the accuracy of forecasts for natural gas prices as reported by the Energy Information Administration's Short-Term Energy Outlook (STEO) and the futures market for the period from 1998 to 2003. The analysis tabulates the existing data and develops a statistical comparison of the error between STEO and U.S. wellhead natural gas prices and between Henry Hub and U.S. wellhead spot prices. The results indicate that, on average, Henry Hub is a better predictor of natural gas prices with an average error of 0.23 and a standard deviation of 1.22 than STEO with an average error of -0.52 and a standard deviation of 1.36. This analysis suggests that as the futures market continues to report longer forward prices (currently out to five years), it may be of interest to economic modelers to compare the accuracy of their models to the futures market. The authors would especially like to thank Doug Hale of the Energy Information Administration for supporting and reviewing this work.

  8. Enhancing the quality of hydrologic model calibrations and their transfer to operational flood forecasters

    NASA Astrophysics Data System (ADS)

    Aggett, Graeme; Spies, Ryan; Szfranski, Bill; Hahn, Claudia; Weil, Page

    2016-04-01

    An adequate forecasting model may not perform well if it is inadequately calibrated. Model calibration is often constrained by the lack of adequate calibration data, especially for small river basins with high spatial rainfall variability. Rainfall/snow station networks may not be dense enough to accurately estimate the catchment rainfall/SWE. High discharges during flood events are subject to significant error due to flow gauging difficulty. Dynamic changes in catchment conditions (e.g., urbanization; losses in karstic systems) invariably introduce non-homogeneity in the water level and flow data. This presentation will highlight some of the challenges in reliable calibration of National Weather Service (i.e. US) operational flood forecast models, emphasizing the various challenges in different physiographic/climatic domains. It will also highlight the benefit of using various data visualization techniques to transfer information about model calibration to operational forecasters so they may understand the influence of the calibration on model performance under various conditions.

  9. A global aerosol model forecast for the ACE-Asia field experiment

    NASA Astrophysics Data System (ADS)

    Chin, Mian; Ginoux, Paul; Lucchesi, Robert; Huebert, Barry; Weber, Rodney; Anderson, Tad; Masonis, Sarah; Blomquist, Byron; Bandy, Alan; Thornton, Donald

    2003-12-01

    We present the results of aerosol forecast during the ACE-Asia field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The model provides direct information on aerosol optical thickness and concentrations for effective flight planning, while feedbacks from measurements constantly evaluate the model for successful model improvements. We verify the model forecast skill by comparing model-predicted aerosol quantities and meteorological variables with those measured by the C-130 aircraft. The GEOS DAS meteorological forecast system shows excellent skills in predicting winds, relative humidity, and temperature, with skill scores usually in the range of 0.7-0.99. The model is also skillful in forecasting pollution aerosols, with most scores above 0.5. The model correctly predicted the dust outbreak events and their trans-Pacific transport, but it constantly missed the high dust concentrations observed in the boundary layer. We attribute this "missing" dust source to desertification regions in the Inner Mongolia Province in China, which have developed in recent years but were not included in the model during forecasting. After incorporating the desertification sources, the model is able to reproduce the observed boundary layer high dust concentrations over the Yellow Sea. We demonstrate that our global model can not only account for the large-scale intercontinental transport but also produce the small-scale spatial and temporal variations that are adequate for aircraft measurements planning.

  10. Reserve growth in oil pools of Alberta: Model and forecast

    USGS Publications Warehouse

    Verma, M.; Cook, T.

    2010-01-01

    Reserve growth is recognized as a major component of additions to reserves in most oil provinces around the world, particularly in mature provinces. It takes place as a result of the discovery of new pools/reservoirs and extensions of known pools within existing fields, improved knowledge of reservoirs over time leading to a change in estimates of original oil-in-place, and improvement in recovery factor through the application of new technology, such as enhanced oil recovery methods, horizontal/multilateral drilling, and 4D seismic. A reserve growth study was conducted on oil pools in Alberta, Canada, with the following objectives: 1) evaluate historical oil reserve data in order to assess the potential for future reserve growth; 2) develop reserve growth models/ functions to help forecast hydrocarbon volumes; 3) study reserve growth sensitivity to various parameters (for example, pool size, porosity, and oil gravity); and 4) compare reserve growth in oil pools and fields in Alberta with those from other large petroleum provinces around the world. The reported known recoverable oil exclusive of Athabasca oil sands in Alberta increased from 4.5 billion barrels of oil (BBO) in 1960 to 17 BBO in 2005. Some of the pools that were included in the existing database were excluded from the present study for lack of adequate data. Therefore, the known recoverable oil increased from 4.2 to 13.9 BBO over the period from 1960 through 2005, with new discoveries contributing 3.7 BBO and reserve growth adding 6 BBO. This reserve growth took place mostly in pools with more than 125,000 barrels of known recoverable oil. Pools with light oil accounted for most of the total known oil volume, therefore reflecting the overall pool growth. Smaller pools, in contrast, shrank in their total recoverable volumes over the years. Pools with heavy oil (gravity less than 20o API) make up only a small share (3.8 percent) of the total recoverable oil; they showed a 23-fold growth compared to

  11. Rolling forecasting model of PM2.5 concentration based on support vector machine and particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-Jiang; Dai, Li-Jie; Ma, Lei-Ming

    2016-10-01

    The data of current PM2.5 model forecasting greatly deviate from the measured concentration. In order to solve this problem, Support Vector Machine (SVM) and Particle Swarm Optimization (PSO) are combined to build a rolling forecasting model. The important parameters (C and γ) of SVM are optimized by PSO. The data (from February to July in 2015), consisting of measured PM2.5 concentration, PM2.5 model forecasting concentration and five main model forecasting meteorological factors, are provided by Shanghai Meteorological Bureau in Pudong New Area. The rolling model is used to forecast hourly PM2.5 concentration in 12 hours in advance and the nighttime average concentration (mean value from 9 pm to next day 8 am) during the upcoming day. The training data and the optimal parameters of SVM model are different in every forecasting, that is to say, different models (dynamic models) are built in every forecasting. SVM model is compared with Radical Basis Function Neural Network (RBFNN), Multi-variable Linear Regression (MLR) and WRF-CHEM. Experimental results show that the proposed model improves the forecasting accuracy of hourly PM2.5 concentration in 12 hours in advance and nighttime average concentration during the upcoming day. SVM model performs better than MLR, RBFNN and WRF-CHEM. SVM model greatly improves the forecasting accuracy of PM2.5 concentration one hour in advance, according with the result concluded from previous research. The rolling forecasting model can be applied to the field of PM2.5 concentration forecasting, and can offer help to meteorological administration in PM2.5 concentration monitoring and forecasting.

  12. Numerical modelling for real-time forecasting of marine oil pollution and hazard assessment

    NASA Astrophysics Data System (ADS)

    De Dominicis, Michela; Pinardi, Nadia; Bruciaferri, Diego; Liubartseva, Svitlana

    2015-04-01

    (MEDESS4MS) system, which is an integrated operational multi-model oil spill prediction service, that can be used by different users to run simulations of oil spills at sea, even in real time, through a web portal. The MEDESS4MS system gathers different oil spill modelling systems and data from meteorological and ocean forecasting systems, as well as operational information on response equipment, together with environmental and socio-economic sensitivity maps. MEDSLIK-II has been also used to provide an assessment of hazard stemming from operational oil ship discharges in the Southern Adriatic and Northern Ionian (SANI) Seas. Operational pollution resulting from ships consists of a movable hazard with a magnitude that changes dynamically as a result of a number of external parameters varying in space and time (temperature, wind, sea currents). Simulations of oil releases have been performed with realistic oceanographic currents and the results show that the oil pollution hazard distribution has an inherent spatial and temporal variability related to the specific flow field variability.

  13. Determining economic benefits of satellite data in short-range forecasting

    NASA Technical Reports Server (NTRS)

    Suchman, D.; Auvine, B.; Hinton, B.

    1981-01-01

    The chances of enhanced short term weather predictions and economic benefits from the use of GOES satellite data were examined. Results for a meteorological consulting firm before and after the introduction of GOES data were chosen as the method, and monetary benefits were selected as the measure. Services were provided for use by road and street departments, commodities dealers, and marine clients of the consulting firm. The Man-computer Interactive Data Access Program (McIDAS) was employed to furnish 1/2 hour visual or IR imagery for remote access. The commodities clients reconnected the GOES real-time imagery once the study was completed, while the consulting firm, which was personnel and not equipment intensive, did not. Further development of the flexibility of access to the GOES data and improvements in the projected grids are indicated.

  14. Improving urban streamflow forecasting using a high-resolution large scale modeling framework

    NASA Astrophysics Data System (ADS)

    Read, Laura; Hogue, Terri; Gochis, David; Salas, Fernando

    2016-04-01

    Urban flood forecasting is a critical component in effective water management, emergency response, regional planning, and disaster mitigation. As populations across the world continue to move to cities (~1.8% growth per year), and studies indicate that significant flood damages are occurring outside the floodplain in urban areas, the ability to model and forecast flow over the urban landscape becomes critical to maintaining infrastructure and society. In this work, we use the Weather Research and Forecasting- Hydrological (WRF-Hydro) modeling framework as a platform for testing improvements to representation of urban land cover, impervious surfaces, and urban infrastructure. The three improvements we evaluate include: updating the land cover to the latest 30-meter National Land Cover Dataset, routing flow over a high-resolution 30-meter grid, and testing a methodology for integrating an urban drainage network into the routing regime. We evaluate performance of these improvements in the WRF-Hydro model for specific flood events in the Denver-Metro Colorado domain, comparing to historic gaged streamflow for retrospective forecasts. Denver-Metro provides an interesting case study as it is a rapidly growing urban/peri-urban region with an active history of flooding events that have caused significant loss of life and property. Considering that the WRF-Hydro model will soon be implemented nationally in the U.S. to provide flow forecasts on the National Hydrography Dataset Plus river reaches - increasing capability from 3,600 forecast points to 2.7 million, we anticipate that this work will support validation of this service in urban areas for operational forecasting. Broadly, this research aims to provide guidance for integrating complex urban infrastructure with a large-scale, high resolution coupled land-surface and distributed hydrologic model.

  15. Adaption of the Air Weather Service Fog Model to Forecast Radiation Fog Events in the Southeast United States

    DTIC Science & Technology

    1997-03-01

    ADAPTATION OF THE AIR WEATHER SERVICE FO MODEL TO FORECAST RADIATION FOG EVENT IN THE SOUTHEAST UNITED STATES THESIS Andrew C. Goodnite, Captain...ENP/97M-06 ADAPTATION OF THE AIR WEATHER SERVICE FOG MODEL TO FORECAST RADIATION FOG EVENTS IN THE SOUTHEAST UNITED STATES THESIS Andrew C. Goodnite...AIR WEATHER SERVICE FOG MODEL TO FORECAST RADIATION FOG EVENTS IN THE SOUTHEAST UNITED STATES THESIS Presented to the Faculty of the Graduate School of

  16. Forecasting asthma-related hospital admissions in London using negative binomial models.

    PubMed

    Soyiri, Ireneous N; Reidpath, Daniel D; Sarran, Christophe

    2013-05-01

    Health forecasting can improve health service provision and individual patient outcomes. Environmental factors are known to impact chronic respiratory conditions such as asthma, but little is known about the extent to which these factors can be used for forecasting. Using weather, air quality and hospital asthma admissions, in London (2005-2006), two related negative binomial models were developed and compared with a naive seasonal model. In the first approach, predictive forecasting models were fitted with 7-day averages of each potential predictor, and then a subsequent multivariable model is constructed. In the second strategy, an exhaustive search of the best fitting models between possible combinations of lags (0-14 days) of all the environmental effects on asthma admission was conducted. Three models were considered: a base model (seasonal effects), contrasted with a 7-day average model and a selected lags model (weather and air quality effects). Season is the best predictor of asthma admissions. The 7-day average and seasonal models were trivial to implement. The selected lags model was computationally intensive, but of no real value over much more easily implemented models. Seasonal factors can predict daily hospital asthma admissions in London, and there is a little evidence that additional weather and air quality information would add to forecast accuracy.

  17. Investigation into a displacement bias in numerical weather prediction models' forecasts of mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Yost, Charles

    Although often hard to correctly forecast, mesoscale convective systems (MCSs) are responsible for a majority of warm-season, localized extreme rain events. This study investigates displacement errors often observed by forecasters and researchers in the Global Forecast System (GFS) and the North American Mesoscale (NAM) models, in addition to the European Centre for Medium Range Weather Forecasts (ECMWF) and the 4-km convection allowing NSSL-WRF models. Using archived radar data and Stage IV precipitation data from April to August of 2009 to 2011, MCSs were recorded and sorted into unique six-hour intervals. The locations of these MCSs were compared to the associated predicted precipitation field in all models using the Method for Object-Based Diagnostic Evaluation (MODE) tool, produced by the Developmental Testbed Center and verified through manual analysis. A northward bias exists in the location of the forecasts in all lead times of the GFS, NAM, and ECMWF models. The MODE tool found that 74%, 68%, and 65% of the forecasts were too far to the north of the observed rainfall in the GFS, NAM and ECMWF models respectively. The higher-resolution NSSL-WRF model produced a near neutral location forecast error with 52% of the cases too far to the south. The GFS model consistently moved the MCSs too quickly with 65% of the cases located to the east of the observed MCS. The mean forecast displacement error from the GFS and NAM were on average 266 km and 249 km, respectively, while the ECMWF and NSSL-WRF produced a much lower average of 179 km and 158 km. A case study of the Dubuque, IA MCS on 28 July 2011 was analyzed to identify the root cause of this bias. This MCS shattered several rainfall records and required over 50 people to be rescued from mobile home parks from around the area. This devastating MCS, which was a classic Training Line/Adjoining Stratiform archetype, had numerous northward-biased forecasts from all models, which are examined here. As common with

  18. Wheat forecast economics effect study. [value of improved information on crop inventories, production, imports and exports

    NASA Technical Reports Server (NTRS)

    Mehra, R. K.; Rouhani, R.; Jones, S.; Schick, I.

    1980-01-01

    A model to assess the value of improved information regarding the inventories, productions, exports, and imports of crop on a worldwide basis is discussed. A previously proposed model is interpreted in a stochastic control setting and the underlying assumptions of the model are revealed. In solving the stochastic optimization problem, the Markov programming approach is much more powerful and exact as compared to the dynamic programming-simulation approach of the original model. The convergence of a dual variable Markov programming algorithm is shown to be fast and efficient. A computer program for the general model of multicountry-multiperiod is developed. As an example, the case of one country-two periods is treated and the results are presented in detail. A comparison with the original model results reveals certain interesting aspects of the algorithms and the dependence of the value of information on the incremental cost function.

  19. The effect of model resolution and satellite sounding data on GLAS model forecasts

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Halem, M.; Ghil, M.

    1982-01-01

    The effect of horizontal model resolution on satellite data impact has been studied for two versions of the GLAS second-order general circulation model: the C-model with a 4-deg latitude by 5-deg longitude resolution and the F-model with a 2.5-deg latitude and 3-deg longitude resolution. It is found that the 48-72 h forecast skill of the GLAS model was significantly improved by the increased resolution. Initial state differences between the SAT and NOSAT cycles using the F-model were on the average smaller than the corresponding differences with the C-model. However, the F-model cycle differences exhibited a smaller scale structure and, in some cases, larger gradients.

  20. Modeling and Forecasting Livestock Feed Resources in India Using Climate Variables

    PubMed Central

    Suresh, K. P.; Kiran, G. Ravi; Giridhar, K.; Sampath, K. T.

    2012-01-01

    The availability and efficient use of the feed resources in India are the primary drivers to maximize productivity of Indian livestock. Feed security is vital to the livestock management, extent of use, conservation and productivity enhancement. Assessment and forecasting of livestock feed resources are most important for effective planning and policy making. In the present study, 40 years of data on crop production, land use pattern, rainfall, its deviation from normal, area under crop and yield of crop were collected and modeled to forecast the likely production of feed resources for the next 20 years. The higher order auto-regressive (AR) models were used to develop efficient forecasting models. Use of climatic variables (actual rainfall and its deviation from normal) in combination with non-climatic factors like area under each crop, yield of crop, lag period etc., increased the efficiency of forecasting models. From the best fitting models, the current total dry matter (DM) availability in India was estimated to be 510.6 million tonnes (mt) comprising of 47.2 mt from concentrates, 319.6 mt from crop residues and 143.8 mt from greens. The availability of DM from dry fodder, green fodder and concentrates is forecasted at 409.4, 135.6 and 61.2 mt, respectively, for 2030. PMID:25049586

  1. Multi and Single Model Ensemble Forecasting in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Thoppil, P.; Rowley, C.; Coelho, E.

    2012-04-01

    The Navy Coastal Ocean Model (NCOM) has been configured for the Gulf of Mexico and used to investigate forecast error via ensemble forecasting methods. The models assimilate observations via the Navy Coupled Ocean Data Assimilation (NCODA) system. The model has ~3 km horizontal grid resolution, 46 levels in the vertical, boundary forcing from a global ocean model also based on NCOM, surface forcing from the Navy's Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), as well as tidal forcing and river runoff. A deterministic control run provides the forecast error which is used (via an ensemble transform) to perturb the ensemble members. The atmospheric forcing is also perturbed via a space-time deformation technique. 32 ensemble members are generated and each produces a 72 hours forecast. These are the so called single model ensembles. Other Navy forecast systems that include the Gulf of Mexico (global and regional) that differ primarily in horizontal and vertical resolution and boundary conditions (surface and lateral) are used to calculate the so called multi (or super) ensemble. For both cases statistics calculated across the ensemble members are shown and discussed. Limits of predictability are described and discussed, especially with respect to the Loop Current Eddy Shedding episode of early July 2010 (Eddy Franklin). Overall system performance is quantified and discussed, with emphasis on (but not limited to) the Deep Water Horizon oil spill timeframe. Longer term predictability (30 day) is also investigated and discussed.

  2. FOGCAST: Probabilistic fog forecasting based on operational (high-resolution) NWP models

    NASA Astrophysics Data System (ADS)

    Masbou, M.; Hacker, M.; Bentzien, S.

    2013-12-01

    The presence of fog and low clouds in the lower atmosphere can have a critical impact on both airborne and ground transports and is often connected with serious accidents. The improvement of localization, duration and variations in visibility therefore holds an immense operational value. Fog is generally a small scale phenomenon and mostly affected by local advective transport, radiation, turbulent mixing at the surface as well as its microphysical structure. Sophisticated three-dimensional fog models, based on advanced microphysical parameterization schemes and high vertical resolution, have been already developed and give promising results. Nevertheless, the computational time is beyond the range of an operational setup. Therefore, mesoscale numerical weather prediction models are generally used for forecasting all kinds of weather situations. In spite of numerous improvements, a large uncertainty of small scale weather events inherent in deterministic prediction cannot be evaluated adequately. Probabilistic guidance is necessary to assess these uncertainties and give reliable forecasts. In this study, fog forecasts are obtained by a diagnosis scheme similar to Fog Stability Index (FSI) based on COSMO-DE model outputs. COSMO-DE I the German-focused high-resolution operational weather prediction model of the German Meteorological Service. The FSI and the respective fog occurrence probability is optimized and calibrated with statistical postprocessing in terms of logistic regression. In a second step, the predictor number of the FOGCAST model has been optimized by use of the LASSO-method (Least Absolute Shrinkage and Selection Operator). The results will present objective out-of-sample verification based on the Brier score and is performed for station data over Germany. Furthermore, the probabilistic fog forecast approach, FOGCAST, serves as a benchmark for the evaluation of more sophisticated 3D fog models. Several versions have been set up based on different

  3. Web-based hydrological modeling system for flood forecasting and risk mapping

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Cheng, Qiuming

    2008-10-01

    Mechanism of flood forecasting is a complex system, which involves precipitation, drainage characterizes, land use/cover types, ground water and runoff discharge. The application of flood forecasting model require the efficient management of large spatial and temporal datasets, which involves data acquisition, storage, pre-processing and manipulation, analysis and display of model results. The extensive datasets usually involve multiple organizations, but no single organization can collect and maintain all the multidisciplinary data. The possible usage of the available datasets remains limited primarily because of the difficulty associated with combining data from diverse and distributed data sources. Difficulty in linking data, analysis tools and model is one of the barriers to be overcome in developing real-time flood forecasting and risk prediction system. The current revolution in technology and online availability of spatial data, particularly, with the construction of Canadian Geospatial Data Infrastructure (CGDI), a lot of spatial data and information can be accessed in real-time from distributed sources over the Internet to facilitate Canadians' need for information sharing in support of decision-making. This has resulted in research studies demonstrating the suitability of the web as a medium for implementation of flood forecasting and flood risk prediction. Web-based hydrological modeling system can provide the framework within which spatially distributed real-time data accessed remotely to prepare model input files, model calculation and evaluate model results for flood forecasting and flood risk prediction. This paper will develop a prototype web-base hydrological modeling system for on-line flood forecasting and risk mapping in the Oak Ridges Moraine (ORM) area, southern Ontario, Canada, integrating information retrieval, analysis and model analysis for near real time river runoff prediction, flood frequency prediction, flood risk and flood inundation

  4. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    NASA Astrophysics Data System (ADS)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  5. Application of tank, NAM, ARMA and neural network models to flood forecasting

    NASA Astrophysics Data System (ADS)

    Tingsanchali, Tawatchai; Gautam, Mahesh Raj

    2000-10-01

    Two lumped conceptual hydrological models, namely tank and NAM and a neural network model are applied to flood forecasting in two river basins in Thailand, the Wichianburi on the Pasak River and the Tha Wang Pha on the Nan River using the flood forecasting procedure developed in this study. The tank and NAM models were calibrated and verified and found to give similar results. The results were found to improve significantly by coupling stochastic and deterministic models (tank and NAM) for updating forecast output. The neural network (NN) model was compared with the tank and NAM models. The NN model does not require knowledge of catchment characteristics and internal hydrological processes. The training process or calibration is relatively simple and less time consuming compared with the extensive calibration effort required by the tank and NAM models. The NN model gives good forecasts based on available rainfall, evaporation and runoff data. The black-box nature of the NN model and the need for selecting parameters based on trial and error or rule-of-thumb, however, characterizes its inherent weakness. The performance of the three models was evaluated statistically.

  6. Distortion Representation of Forecast Errors for Model Skill Assessment and Objective Analysis

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.; Nehrkorn, Thomas; Grassotti, Christopher

    1998-01-01

    We proposed a novel characterization of errors for numerical weather predictions. A general distortion representation allows for the displacement and amplification or bias correction of forecast anomalies. Characterizing and decomposing forecast error in this way has several important applications, including the model assessment application and the objective analysis application. In this project, we have focused on the assessment application, restricted to a realistic but univariate 2-dimensional situation. Specifically, we study the forecast errors of the sea level pressure (SLP), the 500 hPa geopotential height, and the 315 K potential vorticity fields for forecasts of the short and medium range. The forecasts are generated by the Goddard Earth Observing System (GEOS) data assimilation system with and without ERS-1 scatterometer data. A great deal of novel work has been accomplished under the current contract. In broad terms, we have developed and tested an efficient algorithm for determining distortions. The algorithm and constraints are now ready for application to larger data sets to be used to determine the statistics of the distortion as outlined above, and to be applied in data analysis by using GEOS water vapor imagery to correct short-term forecast errors.

  7. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    PubMed

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  8. The systematic study of the stability of forecasts in the rate- and state-dependent model

    NASA Astrophysics Data System (ADS)

    De Gaetano, D.; McCloskey, J.; Nalbant, S. S.

    2011-12-01

    Numerous observations have shown a general spatial correlation between positive Coulomb failure stress changes due to an earthquake and the locations of aftershocks. However this correlation does not give any indication of the rate from which we can infer the magnitude using the Gutenberg-Richter law. Dieterich's rate- and state-dependent model can be used to obtain a forecast of the observed aftershock rate for the space and time evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches. The seismicity rate changes on this model depend on eight parameters: the stressing rate, the amplitude of the stress perturbation, the physical constitutive properties of faults, the spatial parameters (location and radii of the cells), the start and duration of each of the temporal windows as well as the background seismicity rate. The background seismicity is declustered using the epidemic type aftershock sequence model. We use the 1992 Landers earthquake as a case study, using the Southern California Earthquake Data Centre (SCEDC) catalogue, to examine if Dieterich's rate- and state-dependent model can forecast the aftershock seismicity rate. We perform a systematic study on a range of values on all the parameters to test the forecasting ability of this model. The results obtained suggest variable success in forecasting, when varying the values for the parameters, with the spatial and temporal parameters being the most sensitive. The Omori-Utsu law describes the aftershock rate as a power law in time following the main shock and depends on only three parameters: the aftershock productivity, the elapsed time since the main shock and the constant time shift, all of which can be estimated in the early part of the aftershock sequence and then extrapolated to give a long term rate forecast. All parameters are estimated using maximum likelihood methods. We compare the Dieterich and the Omori-Utsu forecasts using the Akaike information

  9. A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network

    NASA Astrophysics Data System (ADS)

    Humphrey, Greer B.; Gibbs, Matthew S.; Dandy, Graeme C.; Maier, Holger R.

    2016-09-01

    Monthly streamflow forecasts are needed to support water resources decision making in the South East of South Australia, where baseflow represents a significant proportion of the total streamflow and soil moisture and groundwater are important predictors of runoff. To address this requirement, the utility of a hybrid monthly streamflow forecasting approach is explored, whereby simulated soil moisture from the GR4J conceptual rainfall-runoff model is used to represent initial catchment conditions in a Bayesian artificial neural network (ANN) statistical forecasting model. To assess the performance of this hybrid forecasting method, a comparison is undertaken of the relative performances of the Bayesian ANN, the GR4J conceptual model and the hybrid streamflow forecasting approach for producing 1-month ahead streamflow forecasts at three key locations in the South East of South Australia. Particular attention is paid to the quantification of uncertainty in each of the forecast models and the potential for reducing forecast uncertainty by using the hybrid approach is considered. Case study results suggest that the hybrid models developed in this study are able to take advantage of the complementary strengths of both the ANN models and the GR4J conceptual models. This was particularly the case when forecasting high flows, where the hybrid models were shown to outperform the two individual modelling approaches in terms of the accuracy of the median forecasts, as well as reliability and resolution of the forecast distributions. In addition, the forecast distributions generated by the hybrid models were up to 8 times more precise than those based on climatology; thus, providing a significant improvement on the information currently available to decision makers.

  10. Using Sensor Web Processes and Protocols to Assimilate Satellite Data into a Forecast Model

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Conover, Helen; Zavodsky, Bradley; Maskey, Manil; Jedlovec, Gary; Regner, Kathryn; Li, Xiang; Lu, Jessica; Botts, Mike; Berthiau, Gregoire

    2008-01-01

    The goal of the Sensor Management Applied Research Technologies (SMART) On-Demand Modeling project is to develop and demonstrate the readiness of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities to integrate both space-based Earth observations and forecast model output into new data acquisition and assimilation strategies. The project is developing sensor web-enabled processing plans to assimilate Atmospheric Infrared Sounding (AIRS) satellite temperature and moisture retrievals into a regional Weather Research and Forecast (WRF) model over the southeastern United States.

  11. Sparse High Dimensional Models in Economics

    PubMed Central

    Fan, Jianqing; Lv, Jinchi; Qi, Lei

    2010-01-01

    This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed. PMID:22022635

  12. Stratospheric wind errors, initial states and forecast skill in the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J.

    1983-01-01

    Relations between stratospheric wind errors, initial states and 500 mb skill are investigated using the GLAS general circulation model initialized with FGGE data. Erroneous stratospheric winds are seen in all current general circulation models, appearing also as weak shear above the subtropical jet and as cold polar stratospheres. In this study it is shown that the more anticyclonic large-scale flows are correlated with large forecast stratospheric winds. In addition, it is found that for North America the resulting errors are correlated with initial state jet stream accelerations while for East Asia the forecast winds are correlated with initial state jet strength. Using 500 mb skill scores over Europe at day 5 to measure forecast performance, it is found that both poor forecast skill and excessive stratospheric winds are correlated with more anticyclonic large-scale flows over North America. It is hypothesized that the resulting erroneous kinetic energy contributes to the poor forecast skill, and that the problem is caused by a failure in the modeling of the stratospheric energy cycle in current general circulation models independent of vertical resolution.

  13. Developing Snow Model Forcing Data From WRF Model Output to Aid in Water Resource Forecasting

    NASA Astrophysics Data System (ADS)

    Havens, S.; Marks, D. G.; Watson, K. A.; Masarik, M.; Flores, A. N.; Kormos, P.; Hedrick, A. R.

    2015-12-01

    Traditional operational modeling tools used by water managers in the west are challenged by more frequently occurring uncharacteristic stream flow patterns caused by climate change. Water managers are now turning to new models based on the physical processes within a watershed to combat the increasing number of events that do not follow the historical patterns. The USDA-ARS has provided near real time snow water equivalent (SWE) maps using iSnobal since WY2012 for the Boise River Basin in southwest Idaho and since WY2013 for the Tuolumne Basin in California that feeds the Hetch Hetchy reservoir. The goal of these projects is to not only provide current snowpack estimates but to use the Weather Research and Forecasting (WRF) model to drive iSnobal in order to produce a forecasted stream flow when coupled to a hydrology model. The first step is to develop methods on how to create snow model forcing data from WRF outputs. Using a reanalysis 1km WRF dataset from WY2009 over the Boise River Basin, WRF model results like surface air temperature, relative humidity, wind, precipitation, cloud cover, and incoming long wave radiation must be downscaled for use in iSnobal. iSnobal results forced with WRF output are validated at point locations throughout the basin, as well as compared with iSnobal results forced with traditional weather station data. The presentation will explore the differences in forcing data derived from WRF outputs and weather stations and how this affects the snowpack distribution.

  14. Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Hoeth, Brian; Blottman, Peter F.

    2007-01-01

    Mesoscale weather conditions can significantly affect the space launch and landing operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). During the summer months, land-sea interactions that occur across KSC and CCAFS lead to the formation of a sea breeze, which can then spawn deep convection. These convective processes often last 60 minutes or less and pose a significant challenge to the forecasters at the National Weather Service (NWS) Spaceflight Meteorology Group (SMG). The main challenge is that a "GO" forecast for thunderstorms and precipitation is required at the 90 minute deorbit decision for End Of Mission (EOM) and at the 30 minute Return To Launch Site (RTLS) decision at the Shuttle Landing Facility. Convective initiation, timing, and mode also present a forecast challenge for the NWS in Melbourne, FL (MLB). The NWS MLB issues such tactical forecast information as Terminal Aerodrome Forecasts (TAFs), Spot Forecasts for fire weather and hazardous materials incident support, and severe/hazardous weather Watches, Warnings, and Advisories. Lastly, these forecasting challenges can also affect the 45th Weather Squadron (45 WS), which provides comprehensive weather forecasts for shuttle launch, as well as ground operations, at KSC and CCAFS. The need for accurate mesoscale model forecasts to aid in their decision making is crucial. Both the SMG and the MLB are currently implementing the Weather Research and Forecasting Environmental Modeling System (WRF EMS) software into their operations. The WRF EMS software allows users to employ both dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model- the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many

  15. An assessment of a North American Multi-Model Ensemble (NMME) based global drought early warning forecast system

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.

    2013-12-01

    One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset

  16. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    NASA Technical Reports Server (NTRS)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  17. Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis

    DTIC Science & Technology

    2015-09-01

    ARL‐TR‐7447 ● SEP 2015          US Army Research Laboratory      Improving  Weather  Research and Forecasting  Model Initial Conditions via... Weather  Research and Forecasting  Model Initial Conditions via Surface Pressure  Analysis     by Brian P Reen   Computational and Information Sciences...Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis 5a. CONTRACT NUMBER  5b. GRANT NUMBER  5c. PROGRAM

  18. The effect of horizontal resolution on systematic errors of the GLA forecast model

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang; Chen, Jau-Ming; Pfaendtner, James

    1990-01-01

    Systematic prediction errors of the Goddard Laboratory for Atmospheres (GLA) forecast system are reduced when the higher-resolution (2 x 2.5 deg) model version is used. Based on a budget analysis of the 200-mb eddy streamfunction, the improvement of stationary eddy forecasting is seen to be caused by the following mechanism: by increasing the horizontal spatial resolution of the forecast model, atmospheric diabatic heating over the three tropical continents is changed in a way that intensifies the planetary-scale divergent circulations associated with the three pairs of divergent-convergent centers over these continents. The intensified divergent circulation results in an enhancement of vorticity sources in the Northern Hemisphere. The additional vorticity is advected eastward by a stationary wave train along 30 deg N, thereby reducing systematic errors in the lower-resolution (4 x 5 deg) GLA model.

  19. Development of S-ARIMA Model for Forecasting Demand in a Beverage Supply Chain

    NASA Astrophysics Data System (ADS)

    Mircetic, Dejan; Nikolicic, Svetlana; Maslaric, Marinko; Ralevic, Nebojsa; Debelic, Borna

    2016-11-01

    Demand forecasting is one of the key activities in planning the freight flows in supply chains, and accordingly it is essential for planning and scheduling of logistic activities within observed supply chain. Accurate demand forecasting models directly influence the decrease of logistics costs, since they provide an assessment of customer demand. Customer demand is a key component for planning all logistic processes in supply chain, and therefore determining levels of customer demand is of great interest for supply chain managers. In this paper we deal with exactly this kind of problem, and we develop the seasonal Autoregressive IntegratedMoving Average (SARIMA) model for forecasting demand patterns of a major product of an observed beverage company. The model is easy to understand, flexible to use and appropriate for assisting the expert in decision making process about consumer demand in particular periods.

  20. Airborne castanea pollen forecasting model for ecological and allergological implementation.

    PubMed

    Astray, G; Fernández-González, M; Rodríguez-Rajo, F J; López, D; Mejuto, J C

    2016-04-01

    Castanea sativa Miller belongs to the natural vegetation of many European deciduous forests prompting impacts in the forestry, ecology, allergological and chestnut food industry fields. The study of the Castanea flowering represents an important tool for evaluating the ecological conservation of North-Western Spain woodland and the possible changes in the chestnut distribution due to recent climatic change. The Castanea pollen production and dispersal capacity may cause hypersensitivity reactions in the sensitive human population due to the relationship between patients with chestnut pollen allergy and a potential cross reactivity risk with other pollens or plant foods. In addition to Castanea pollen's importance as a pollinosis agent, its study is also essential in North-Western Spain due to the economic impact of the industry around the chestnut tree cultivation and its beekeeping interest. The aim of this research is to develop an Artificial Neural Networks for predict the Castanea pollen concentration in the atmosphere of the North-West Spain area by means a 20years data set. It was detected an increasing trend of the total annual Castanea pollen concentrations in the atmosphere during the study period. The Artificial Neural Networks (ANNs) implemented in this study show a great ability to predict Castanea pollen concentration one, two and three days ahead. The model to predict the Castanea pollen concentration one day ahead shows a high linear correlation coefficient of 0.784 (individual ANN) and 0.738 (multiple ANN). The results obtained improved those obtained by the classical methodology used to predict the airborne pollen concentrations such as time series analysis or other models based on the correlation of pollen levels with meteorological variables.

  1. Investigating Surface Bias Errors in the Weather Research and Forecasting (WRF) Model using a Geographic Information System (GIS)

    DTIC Science & Technology

    2015-02-01

    ARL-TR-7212 ● FEB 2015 US Army Research Laboratory Investigating Surface Bias Errors in the Weather Research and Forecasting ...ARL-TR-7212 ● FEB 2015 US Army Research Laboratory Investigating Surface Bias Errors in the Weather Research and Forecasting (WRF) Model...SUBTITLE Investigating surface bias errors in the Weather Research and Forecasting (WRF) Model using a Geographic Information System (GIS) 5a

  2. Assimilation of AIRS radiances for short term regional forecasts using community models

    NASA Astrophysics Data System (ADS)

    Lim, Agnes Huei Ni

    With the hyperspectral sounder's capability of providing information about temperature and humidity of the atmosphere at increased vertical resolution, the assimilation of these radiances has proven to improve numerical weather prediction in global models. The current two hyperspectral infrared sounders in orbit, AIRS and IASI, each contributed to a 12% error reduction in the ECMWF global forecasts, emerging as the single space-borne sensor to contribute the largest forecast improvement in global models (Cardinali, 2009). In this study, regional assimilation of clear sky AIRS radiances was carried out using a community available data assimilation system GSI coupled with the WRF forecast model. As the systems used were not optimized, tuning was necessary prior to carrying out the assimilation. Components of the assimilation system that required tuning included the background error covariance matrix, the satellite radiance bias correction and quality control procedures for AIRS radiances. In addition, the forecast model vertical resolution had been increased with more levels included in the stratosphere. Adopting procedures used by NCEP's operational regional data assimilation, experiments with and without AIRS radiances were carried out for a period of 16 days to access the impact of including AIRS radiances. Diagnostics from the assimilation system showed that analyses had larger temperature biases for experiments ending at 06 and 18 UTC. In addition, biases were still significant after assimilation for satellite channels that were sensitive to surface properties and water vapor. Forecasts were verified with a wide range of datasets ranging from model analyses, radiosondes, observed satellite radiances and 24 hour accumulated precipitation. With assimilation of clear sky AIRS radiances, largest improvement in bias was observed when forecasts were verified with radiosondes and satellite observations. The 00 and 12 UTC forecast were typically of better quality than

  3. Sensitivity of NCEP GFS Forecast of Hurricane Sandy to Model Biases

    NASA Astrophysics Data System (ADS)

    Yang, F.

    2014-12-01

    Hurricane Sandy was the most destructive hurricane of the 2012 Atlantic hurricane season. It developed from a tropical depression on October 22 and became a Category three storm at its peak intensity on October 25. Early on October 29 Sandy became a post-tropical cyclone with hurricane-force winds and made landfall along the New Jersey seashores. While all NWP models correctly predicted that the storm will strike the New Jersey Seashore within 72 hours of its landfall, most models struggled to predict its path at longer forecast lead times. The United States GFS (Global Forecast Systems) predicted a northeast instead of northwest path from the forecast cycles before October 25 and a path biased toward the north from the cycles before October 27. This study investigates the impact of GFS biases in environmental flow and surface forcing on the predicted Sandy storm path and intensity. A set of sensitivity experiments were carried out to explore the cause of forecast biases. In particular, the sensitivity of forecasts to model resolution and different physics parameterization options were examined.

  4. Current challenges using models to forecast seawater intrusion: lessons from the Eastern Shore of Virginia, USA

    USGS Publications Warehouse

    Sanford, Ward E.; Pope, Jason P.

    2010-01-01

    A three-dimensional model of the aquifer system of the Eastern Shore of Virginia, USA was calibrated to reproduce historical water levels and forecast the potential for saltwater intrusion. Future scenarios were simulated with two pumping schemes to predict potential areas of saltwater intrusion. Simulations suggest that only a few wells would be threatened with detectable salinity increases before 2050. The objective was to examine whether salinity increases can be accurately forecast for individual wells with such a model, and to address what the challenges are in making such model forecasts given current (2009) simulation capabilities. The analysis suggests that even with current computer capabilities, accurate simulations of concentrations within a regional-scale (many km) transition zone are computationally prohibitive. The relative paucity of data that is typical for such regions relative to what is needed for accurate transport simulations suggests that even with an infinitely powerful computer, accurate forecasting for a single well would still be elusive. Useful approaches may include local-grid refinement near wells and geophysical surveys, but it is important to keep expectations for simulated forecasts at wells in line with chloride concentration and other data that can be obtained at that local scale.

  5. Space Weather Forecasting and Research at the Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    Aronne, M.

    2015-12-01

    The Space Weather Research Center (SWRC), within the Community Coordinated Modeling Center (CCMC), provides experimental research forecasts and analysis for NASA's robotic mission operators. Space weather conditions are monitored to provide advance warning and forecasts based on observations and modeling using the integrated Space Weather Analysis Network (iSWA). Space weather forecasters come from a variety of backgrounds, ranging from modelers to astrophysicists to undergraduate students. This presentation will discuss space weather operations and research from an undergraduate perspective. The Space Weather Research, Education, and Development Initiative (SW REDI) is the starting point for many undergraduate opportunities in space weather forecasting and research. Space weather analyst interns play an active role year-round as entry-level space weather analysts. Students develop the technical and professional skills to forecast space weather through a summer internship that includes a two week long space weather boot camp, mentorship, poster session, and research opportunities. My unique development of research projects includes studying high speed stream events as well as a study of 20 historic, high-impact solar energetic particle events. This unique opportunity to combine daily real-time analysis with related research prepares students for future careers in Heliophysics.

  6. Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels

    EIA Publications

    2003-01-01

    This paper presents a short-term monthly forecasting model of West Texas Intermediate crude oil spot price using Organization for Economic Cooperation and Development (OECD) petroleum inventory levels.

  7. Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Chamberlin, Christopher; Titov, Vasily V.; Tang, Liujuan; Bernard, Eddie N.

    2013-06-01

    During the devastating 11 March 2011 Japanese tsunami, data from two tsunami detectors were used to determine the tsunami source within 1.5 h of earthquake origin time. For the first time, multiple near-field tsunami measurements of the 2011 Japanese tsunami were used to demonstrate the accuracy of the National Oceanic and Atmospheric Administration (NOAA) real-time flooding forecast system in the far field. To test the accuracy of the same forecast system in the near field, a total of 11 numerical models with grids telescoped to 2 arcsec (~60 m) were developed to hindcast the propagation and coastal inundation of the 2011 Japanese tsunami along the entire east coastline of Japan. Using the NOAA tsunami source computed in near real-time, the model results of tsunami propagation are validated with tsunami time series measured at different water depths offshore and near shore along Japan's coastline. The computed tsunami runup height and spatial distribution are highly consistent with post-tsunami survey data collected along the Japanese coastline. The computed inundation penetration also agrees well with survey data, giving a modeling accuracy of 85.5 % for the inundation areas along 800 km of coastline between Ibaraki Prefecture (north of Kashima) and Aomori Prefecture (south of Rokkasho). The inundation model results highlighted the variability of tsunami impact in response to different offshore bathymetry and flooded terrain. Comparison of tsunami sources inferred from different indirect methods shows the crucial importance of deep-ocean tsunami measurements for real-time tsunami forecasts. The agreement between model results and observations along Japan's coastline demonstrate the ability and potential of NOAA's methodology for real-time near-field tsunami flooding forecasts. An accurate tsunami flooding forecast within 30 min may now be possible using the NOAA forecast methodology with carefully placed tsunameters and large-scale high-resolution inundation

  8. Coupling Climate Models and Forward-Looking Economic Models

    NASA Astrophysics Data System (ADS)

    Judd, K.; Brock, W. A.

    2010-12-01

    Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward

  9. Lake Michigan lake trout PCB model forecast post audit (oral presentation)

    EPA Science Inventory

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents an...

  10. First Results from the Physics-Based Forecasting-Targeted Inner Heliosphere Model Euhforia

    NASA Astrophysics Data System (ADS)

    Pomoell, J.

    2015-12-01

    In this work, we present the first results of the new physics-based forecasting-targeted inner heliosphere model Euhforia ('European heliospheric forecasting information asset') that we are developing. Euhforia consists of a coronal model and a magnetohydrodynamic (MHD) heliosphere model with CMEs. The aim of the baseline coronal model is to produce realistic plasma conditions at the interface radius r = 0.1 AU between the two models thus providing the necessary input to the time-dependent, three-dimensional MHD heliosphere model. It uses GONG synoptic line-of-sight magnetograms as input for a potential (PFSS) field extrapolation of the low-coronal magnetic field coupled to a current sheet (CS) model of the extended coronal magnetic field. The plasma variables at the interface radius are determined by employing semi-empirical considerations based on the properties of the PFSS+CS field such as the flux tube expansion factor and distance to nearest coronal hole. The heliosphere model computes the time-dependent evolution of the MHD variables from the interface radius typically up to 2 AU. Coronal mass ejections (CMEs) are injected at the interface radius using a hydrodynamic cone-like model using parameters constrained from fits to coronal imaging observations. In order to account for the modification of the heliosphere due to the presence of earlier CMEs, the standard run scenario includes CMEs launched five days prior to the start of the forecast, while the duration of the forecast extends up to seven days. In addition to presenting results of the modeling, we will highlight our on-going efforts to advance beyond the baseline in the forecasting pipeline. In particular we discuss our path towards using magnetized CMEs, application of a time-dependent coronal model as well as modeling the transport of solar energetic particles (SEPs) in the heliosphere.

  11. Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Hoeth, Brian; Blottman, Peter F.

    2007-01-01

    Mesoscale weather conditions can significantly affect the space launch and landing operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). During the summer months, land-sea interactions that occur across KSC and CCAFS lead to the formation of a sea breeze, which can then spawn deep convection. These convective processes often last 60 minutes or less and pose a significant challenge to the forecasters at the National Weather Service (NWS) Spaceflight Meteorology Group (SMG). The main challenge is that a "GO" forecast for thunderstorms and precipitation at the Shuttle Landing Facility is required at the 90 minute deorbit decision for End Of Mission (EOM) and at the 30 minute Return To Launch Site (RTLS) decision. Convective initiation, timing, and mode also present a forecast challenge for the NWS in Melbourne, FL (MLB). The NWS MLB issues such tactical forecast information as Terminal Aerodrome Forecasts (TAF5), Spot Forecasts for fire weather and hazardous materials incident support, and severe/hazardous weather Watches, Warnings, and Advisories. Lastly, these forecasting challenges can also affect the 45th Weather Squadron (45 WS), which provides comprehensive weather forecasts for shuttle launch, as well as ground operations, at KSC and CCAFS. The need for accurate mesoscale model forecasts to aid in their decision making is crucial. This study specifically addresses the skill of different model configurations in forecasting warm season convective initiation. Numerous factors influence the development of convection over the Florida peninsula. These factors include sea breezes, river and lake breezes, the prevailing low-level flow, and convergent flow due to convex coastlines that enhance the sea breeze. The interaction of these processes produces the warm season convective patterns seen over the Florida peninsula. However, warm season convection remains one of the most poorly forecast meteorological parameters. To determine which

  12. Assessment of the weather research and forecasting model generalized parameterization schemes for advancement of precipitation forecasting in monsoon-driven river basins

    NASA Astrophysics Data System (ADS)

    Sikder, Safat; Hossain, Faisal

    2016-09-01

    Some of the world's largest and flood-prone river basins experience a seasonal flood regime driven by the monsoon weather system. Highly populated river basins with extensive rain-fed agricultural productivity such as the Ganges, Indus, Brahmaputra, Irrawaddy, and Mekong are examples of monsoon-driven river basins. It is therefore appropriate to investigate how precipitation forecasts from numerical models can advance flood forecasting in these basins. In this study, the Weather Research and Forecasting model was used to evaluate downscaling of coarse-resolution global precipitation forecasts from a numerical weather prediction model. Sensitivity studies were conducted using the TOPSIS analysis to identify the likely best set of microphysics and cumulus parameterization schemes, and spatial resolution from a total set of 15 combinations. This identified best set can pinpoint specific parameterizations needing further development to advance flood forecasting in monsoon-dominated regimes. It was found that the Betts-Miller-Janjic cumulus parameterization scheme with WRF Single-Moment 5-class, WRF Single-Moment 6-class, and Thompson microphysics schemes exhibited the most skill in the Ganges-Brahmaputra-Meghna basins. Finer spatial resolution (3 km) without cumulus parameterization schemes did not yield significant improvements. The short-listed set of the likely best microphysics-cumulus parameterization configurations was found to also hold true for the Indus basin. The lesson learned from this study is that a common set of model parameterization and spatial resolution exists for monsoon-driven seasonal flood regimes at least in South Asian river basins.

  13. Sensitivity Analysis of a Spatio-Temporal Avalanche Forecasting Model Based on Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Matasci, G.; Pozdnoukhov, A.; Kanevski, M.

    2009-04-01

    The recent progress in environmental monitoring technologies allows capturing extensive amount of data that can be used to assist in avalanche forecasting. While it is not straightforward to directly obtain the stability factors with the available technologies, the snow-pack profiles and especially meteorological parameters are becoming more and more available at finer spatial and temporal scales. Being very useful for improving physical modelling, these data are also of particular interest regarding their use involving the contemporary data-driven techniques of machine learning. Such, the use of support vector machine classifier opens ways to discriminate the ``safe'' and ``dangerous'' conditions in the feature space of factors related to avalanche activity based on historical observations. The input space of factors is constructed from the number of direct and indirect snowpack and weather observations pre-processed with heuristic and physical models into a high-dimensional spatially varying vector of input parameters. The particular system presented in this work is implemented for the avalanche-prone site of Ben Nevis, Lochaber region in Scotland. A data-driven model for spatio-temporal avalanche danger forecasting provides an avalanche danger map for this local (5x5 km) region at the resolution of 10m based on weather and avalanche observations made by forecasters on a daily basis at the site. We present the further work aimed at overcoming the ``black-box'' type modelling, a disadvantage the machine learning methods are often criticized for. It explores what the data-driven method of support vector machine has to offer to improve the interpretability of the forecast, uncovers the properties of the developed system with respect to highlighting which are the important features that led to the particular prediction (both in time and space), and presents the analysis of sensitivity of the prediction with respect to the varying input parameters. The purpose of the

  14. Earth Observation Based Canadian Crop Yield Forecasting -- Impact of Spatial Modeling Scale

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Daneshfar, B.; Chipanshi, A.; Champagne, C.; Davidson, A. M.

    2015-12-01

    Earth Observation (EO) based yield modelling has long been in development as an alternative method to the traditional survey based methods in forecasting the regional and global crop yield. However, it is only in last decade or so, with availability of high quality regional EO data in near real time (NRT), EO-based crop yield forecasting has become practical enough to be applied towards operational crop yield reporting. The Canadian Crop Yield Forecaster (CCYF) is one of such modelling tool that designed to provide regional and national crop yield outlooks during and shortly after the growing season. The CCYF integrates climate, remote sensing and other earth observation information (e.g., historical yields, soil and crop maps) using a physical based soil moisture budget model and a statistical based yield forecasting model. One of the major challenges for CCYF and many other EO-based crop yield forecasting systems is to determine a proper spatial modelling scale that could be easily aggregated to various required yield reporting units, yet still retain the statistical sensitivity of crop yield to variations in climate, soil and remote sensing vegetation indices. In this study, we have compared yield modelling using CCYF at three different administrative scales, i.e. township, Census Agricultural Regions (CARs) and province for four crops (spring wheat, canola, corn and soybeans) in the agricultural regions of Manitoba, Canada. Due to the shorter available historical yield records at the township scale, different modelling scheme is applied for township scale modelling compared to the other two larger scales. The modelling at provincial scale did not capture the yield variability, while the modelling at CAR level provided reasonable results for some CARs while failed for others. The modelling at township scale captured most of the yield variability, yet its performance and implementation is restricted by the availability of the yield data at this scale.

  15. Using ensemble rainfall predictions in a countrywide flood forecasting model in Scotland

    NASA Astrophysics Data System (ADS)

    Cranston, M. D.; Maxey, R.; Tavendale, A. C. W.; Buchanan, P.

    2012-04-01

    Improving flood predictions for all sources of flooding is at the centre of flood risk management policy in Scotland. With the introduction of the Flood Risk Management (Scotland) Act providing a new statutory basis for SEPA's flood warning responsibilities, the pressures on delivering hydrological science developments in support of this legislation has increased. Specifically, flood forecasting capabilities need to develop in support of the need to reduce the impact of flooding through the provision of actively disseminated, reliable and timely flood warnings. Flood forecasting in Scotland has developed significantly in recent years (Cranston and Tavendale, 2012). The development of hydrological models to predict flooding at a catchment scale has relied upon the application of rainfall runoff models utilising raingauge, radar and quantitative precipitation forecasts in the short lead time (less than 6 hours). Single or deterministic forecasts based on highly uncertain rainfall predictions have led to the greatest operational difficulties when communicating flood risk with emergency responders, therefore the emergence of probability-based estimates offers the greatest opportunity for managing uncertain predictions. This paper presents operational application of a physical-conceptual distributed hydrological model on a countrywide basis across Scotland. Developed by CEH Wallingford for SEPA in 2011, Grid-to-Grid (G2G) principally runs in deterministic mode and employs radar and raingauge estimates of rainfall together with weather model predictions to produce forecast river flows, as gridded time-series at a resolution of 1km and for up to 5 days ahead (Cranston, et al., 2012). However the G2G model is now being run operationally using ensemble predictions of rainfall from the MOGREPS-R system to provide probabilistic flood forecasts. By presenting a range of flood predictions on a national scale through this approach, hydrologists are now able to consider an

  16. Real-Time Flood Forecasting System Using Channel Flow Routing Model with Updating by Particle Filter

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Chikamori, H.; Nagai, A.

    2008-12-01

    A real-time flood forecasting system using channel flow routing model was developed for runoff forecasting at water gauged and ungaged points along river channels. The system is based on a flood runoff model composed of upstream part models, tributary part models and downstream part models. The upstream part models and tributary part models are lumped rainfall-runoff models, and the downstream part models consist of a lumped rainfall-runoff model for hillslopes adjacent to a river channel and a kinematic flow routing model for a river channel. The flow forecast of this model is updated by Particle filtering of the downstream part model as well as by the extended Kalman filtering of the upstream part model and the tributary part models. The Particle filtering is a simple and powerful updating algorithm for non-linear and non-gaussian system, so that it can be easily applied to the downstream part model without complicated linearization. The presented flood runoff model has an advantage in simlecity of updating procedure to the grid-based distributed models, which is because of less number of state variables. This system was applied to the Gono-kawa River Basin in Japan, and flood forecasting accuracy of the system with both Particle filtering and extended Kalman filtering and that of the system with only extended Kalman filtering were compared. In this study, water gauging stations in the objective basin were divided into two types of stations, that is, reference stations and verification stations. Reference stations ware regarded as ordinary water gauging stations and observed data at these stations are used for calibration and updating of the model. Verification stations ware considered as ungaged or arbitrary points and observed data at these stations are used not for calibration nor updating but for only evaluation of forecasting accuracy. The result confirms that Particle filtering of the downstream part model improves forecasting accuracy of runoff at

  17. A hybrid model of self organizing maps and least square support vector machine for river flow forecasting

    NASA Astrophysics Data System (ADS)

    Ismail, S.; Shabri, A.; Samsudin, R.

    2012-11-01

    Successful river flow forecasting is a major goal and an essential procedure that is necessary in water resource planning and management. There are many forecasting techniques used for river flow forecasting. This study proposed a hybrid model based on a combination of two methods: Self Organizing Map (SOM) and Least Squares Support Vector Machine (LSSVM) model, referred to as the SOM-LSSVM model for river flow forecasting. The hybrid model uses the SOM algorithm to cluster the entire dataset into several disjointed clusters, where the monthly river flows data with similar input pattern are grouped together from a high dimensional input space onto a low dimensional output layer. By doing this, the data with similar input patterns will be mapped to neighbouring neurons in the SOM's output layer. After the dataset has been decomposed into several disjointed clusters, an individual LSSVM is applied to forecast the river flow. The feasibility of this proposed model is evaluated with respect to the actual river flow data from the Bernam River located in Selangor, Malaysia. The performance of the SOM-LSSVM was compared with other single models such as ARIMA, ANN and LSSVM. The performance of these models was then evaluated using various performance indicators. The experimental results show that the SOM-LSSVM model outperforms the other models and performs better than ANN, LSSVM as well as ARIMA for river flow forecasting. It also indicates that the proposed model can forecast more precisely, and provides a promising alternative technique for river flow forecasting.

  18. Characteristics of surface cyclone forecasts in the Aviation Run of the Global Spectral Model

    SciTech Connect

    Grumm, R.H. )

    1993-03-01

    Results are presented of an evaluation of the performance of the Aviation Run (AVN) of the NMC Global Spectral Model (GSM) in predicting surface cyclones, which was conducted during the autumn of 1990 through the winter of 1992. The results indicated that the finer-resolution T126 GSM produces stronger and deeper cyclones than the old T80 GSM. The errors in AVN position forecasts of surface cyclones were smaller than those found in the NMC Nested Grid Model (NGM). The geographical distribution of the pressure errors were similar to those found in the NGM over eastern North America and the adjacent western Atlantic Ocean. The AVN tended to underpredict the 1000-500-mb thickness over surface cyclones, especially during the first 36 h of the forecast cycle. The T126 AVN forecasts are accurate enough to provide guidance for basic weather forecasts to three days, as has been done for the two-day forecasts for the past 25-30 yr. 19 refs.

  19. The impact of observations on Mesoscale Model forecasts of three-hourly rainfall accumulations

    NASA Astrophysics Data System (ADS)

    Anderson, S. R.; Graham, R. J.; Bader, M. J.

    2000-09-01

    The aim of data-impact studies at the UK Met. Office is to investigate how observations affect the accuracy of model forecasts. Results from such experiments provide useful evidence on which to base the design of observational networks. This project, using a case study approach, investigated the relative benefit of different observation types within The Met. Office's Mesoscale Model domain on forecasts of three-hourly precipitation accumulation over the UK up to 12 hours ahead. The method used assesses the impact of assimilating single observation types, or a limited combination of types, where impact is measured against a control forecast obtained after a dummy assimilation using no observations. In experiments for 13 case studies, the observation types that most frequently provided a beneficial impact when presented alone to the assimilation were sonde data, surface data and data from the Moisture Observation Processing System (MOPS).

  20. River flow forecasting using a rainfall disaggregation model incorporating small-scale topographic effects

    NASA Astrophysics Data System (ADS)

    Misumi, R.; Bell, V. A.; Moore, R. J.

    2001-09-01

    River flow forecasting using rainfall predictions from a mesoscale weather prediction model in combination with a physically-based rainfall disaggregation model incorporating small-scale topographic variability is demonstrated. Rainfall predicted by the UK Met Office Mesoscale Model on a 16.8 km grid is disaggregated onto a 2 km grid using a rainfall model which adds the effect of small-scale topography. River flow is calculated by a distributed rainfall-runoff model using the output from the rainfall model. A thunderstorm event on 7 June 1996 over the Brue catchment in Somerset, England is used to evaluate the models. The rainfall model successfully forecasts the band-shaped rainfall field within the catchment and the error in the total amount of flow during the storm is only -12%. An error of -40% in the peak flow is attributed to the treatment of convective clouds in the model.

  1. Exploiting the interpretability and forecasting ability of the RBF-AR model for nonlinear time series

    NASA Astrophysics Data System (ADS)

    Gan, Min; Chen, C. L. Philip; Chen, Long; Zhang, Chun-Yang

    2016-06-01

    In this paper, we explore the radial basis function network-based state-dependent autoregressive (RBF-AR) model by modelling and forecasting an ecological time series: the famous Canadian lynx data. The interpretability of the state-dependent coefficients of the RBF-AR model is studied. It is found that the RBF-AR model can account for the phenomena of phase and density dependencies in the Canadian lynx cycle. The post-sample forecasting performance of one-step and two-step ahead predictors of the RBF-AR model is compared with that of other competitive time-series models including various parametric and non-parametric models. The results show the usefulness of the RBF-AR model in this ecological time-series modelling.

  2. Economic tour package model using heuristic

    NASA Astrophysics Data System (ADS)

    Rahman, Syariza Abdul; Benjamin, Aida Mauziah; Bakar, Engku Muhammad Nazri Engku Abu

    2014-07-01

    A tour-package is a prearranged tour that includes products and services such as food, activities, accommodation, and transportation, which are sold at a single price. Since the competitiveness within tourism industry is very high, many of the tour agents try to provide attractive tour-packages in order to meet tourist satisfaction as much as possible. Some of the criteria that are considered by the tourist are the number of places to be visited and the cost of the tour-packages. Previous studies indicate that tourists tend to choose economical tour-packages and aiming to visit as many places as they can cover. Thus, this study proposed tour-package model using heuristic approach. The aim is to find economical tour-packages and at the same time to propose as many places as possible to be visited by tourist in a given geographical area particularly in Langkawi Island. The proposed model considers only one starting point where the tour starts and ends at an identified hotel. This study covers 31 most attractive places in Langkawi Island from various categories of tourist attractions. Besides, the allocation of period for lunch and dinner are included in the proposed itineraries where it covers 11 popular restaurants around Langkawi Island. In developing the itinerary, the proposed heuristic approach considers time window for each site (hotel/restaurant/place) so that it represents real world implementation. We present three itineraries with different time constraints (1-day, 2-day and 3-day tour-package). The aim of economic model is to minimize the tour-package cost as much as possible by considering entrance fee of each visited place. We compare the proposed model with our uneconomic model from our previous study. The uneconomic model has no limitation to the cost with the aim to maximize the number of places to be visited. Comparison between the uneconomic and economic itinerary has shown that the proposed model have successfully achieved the objective that

  3. Multi-model ensemble forecasts of tropical cyclones in 2010 and 2011 based on the Kalman Filter method

    NASA Astrophysics Data System (ADS)

    He, Chengfei; Zhi, Xiefei; You, Qinglong; Song, Bin; Fraedrich, Klaus

    2015-08-01

    This study conducted 24- to 72-h multi-model ensemble forecasts to explore the tracks and intensities (central mean sea level pressure) of tropical cyclones (TCs). Forecast data for the northwestern Pacific basin in 2010 and 2011 were selected from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts (ECMWF), Japan Meteorological Agency, and National Centers for Environmental Prediction datasets of the Observing System Research and Predictability Experiment Interactive Grand Global Ensemble project. The Kalman Filter was employed to conduct the TC forecasts, along with the ensemble mean and super-ensemble for comparison. The following results were obtained: (1) The statistical-dynamic Kalman Filter, in which recent observations are given more importance and model weighting coefficients are adjusted over time, produced quite different results from that of the super-ensemble. (2) The Kalman Filter reduced the TC mean absolute track forecast error by approximately 50, 80 and 100 km in the 24-, 48- and 72-h forecasts, respectively, compared with the best individual model (ECMWF). Also, the intensity forecasts were improved by the Kalman Filter to some extent in terms of average intensity deviation (AID) and correlation coefficients with reanalysis intensity data. Overall, the Kalman Filter technique performed better compared to multi-models, the ensemble mean, and the super-ensemble in 3-day forecasts. The implication of this study is that this technique appears to be a very promising statistical-dynamic method for multi-model ensemble forecasts of TCs.

  4. Forecasting societies' adaptive capacities through a demographic metabolism model

    NASA Astrophysics Data System (ADS)

    Lutz, Wolfgang; Muttarak, Raya

    2017-03-01

    In seeking to understand how future societies will be affected by climate change we cannot simply assume they will be identical to those of today, because climate and societies are both dynamic. Here we propose that the concept of demographic metabolism and the associated methods of multi-dimensional population projections provide an effective analytical toolbox to forecast important aspects of societal change that affect adaptive capacity. We present an example of how the changing educational composition of future populations can influence societies' adaptive capacity. Multi-dimensional population projections form the human core of the Shared Socioeconomic Pathways scenarios, and knowledge and analytical tools from demography have great value in assessing the likely implications of climate change on future human well-being.

  5. SEP modeling and forecasts based on the ENLIL global heliospheric model

    NASA Astrophysics Data System (ADS)

    Mays, M. Leila; Luhmann, Janet; Odstrcil, Dusan; Bain, Hazel; Li, Yan; Kuznetsova, Maria

    2015-04-01

    Understanding gradual SEP events (often driven by CMEs) well enough to forecast their properties at a given location requires a realistic picture of the global background solar wind through which the shocks and SEPs propagate. The global 3D MHD WSA-ENLIL model (Odstrcil et al., 2004) provides a time-dependent background heliospheric description, into which a cone-shaped CME can be inserted. It is clear from our preliminary runs that the CMEs sometimes generate multiple shocks, some of which fade while others merge and/or strengthen as they propagate. In order to completely characterize the SEP profiles observed at various locations with the aid of these simulations it is essential to include all of the relevant CMEs and allow enough time for the events to propagate and interact. From ENLIL v2.8 simulations one can extract the magnetic topologies of observer-connected magnetic field lines and all plasma and shock properties along those field lines. ENLIL "likelihood/all-clear" forecasting maps provide expected intensity, timing/duration of events at locations throughout the heliosphere with "possible SEP affected areas" color-coded based on shock strength. Accurate descriptions of the heliosphere, and hence modeled SEPs, are achieved by ENLIL only when the background solar wind is well-reproduced and CME parameters are accurate. ENLIL derived information is also useful to drive SEP models such as the Solar Energetic Particle Model (SEPMOD) which calculates the time series of ~10-100 MeV protons at a specific observer location using a passive test particle population (Luhmann et al. 2007, 2010). In this presentation we demonstrate SEP event modeling which utilizes routine ENLIL runs important for space weather forecasting and research. Making SEP models available for research and operational users is one of Community Coordinated Modeling Center's (CCMC) top priorities. Heliospheric model outputs are a necessary ingredient for SEP simulations. The CCMC is making steps

  6. Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time

    NASA Astrophysics Data System (ADS)

    Prasad, Kanchan; Gorai, Amit Kumar; Goyal, Pramila

    2016-03-01

    This study aims to develop adaptive neuro-fuzzy inference system (ANFIS) for forecasting of daily air pollution concentrations of five air pollutants [sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3) and particular matters (PM10)] in the atmosphere of a Megacity (Howrah). Air pollution in the city (Howrah) is rising in parallel with the economics and thus observing, forecasting and controlling the air pollution becomes increasingly important due to the health impact. ANFIS serve as a basis for constructing a set of fuzzy IF-THEN rules, with appropriate membership functions to generate the stipulated input-output pairs. The ANFIS model predictor considers the value of meteorological factors (pressure, temperature, relative humidity, dew point, visibility, wind speed, and precipitation) and previous day's pollutant concentration in different combinations as the inputs to predict the 1-day advance and same day air pollution concentration. The concentration value of five air pollutants and seven meteorological parameters of the Howrah city during the period 2009 to 2011 were used for development of the ANFIS model. Collinearity tests were conducted to eliminate the redundant input variables. A forward selection (FS) method is used for selecting the different subsets of input variables. Application of collinearity tests and FS techniques reduces the numbers of input variables and subsets which helps in reducing the computational cost and time. The performances of the models were evaluated on the basis of four statistical indices (coefficient of determination, normalized mean square error, index of agreement, and fractional bias).

  7. Forecasting in the presence of expectations

    NASA Astrophysics Data System (ADS)

    Allen, R.; Zivin, J. G.; Shrader, J.

    2016-05-01

    Physical processes routinely influence economic outcomes, and actions by economic agents can, in turn, influence physical processes. This feedback creates challenges for forecasting and inference, creating the potential for complementarity between models from different academic disciplines. Using the example of prediction of water availability during a drought, we illustrate the potential biases in forecasts that only take part of a coupled system into account. In particular, we show that forecasts can alter the feedbacks between supply and demand, leading to inaccurate prediction about future states of the system. Although the example is specific to drought, the problem of feedback between expectations and forecast quality is not isolated to the particular model-it is relevant to areas as diverse as population assessments for conservation, balancing the electrical grid, and setting macroeconomic policy.

  8. Comparison of Short-term and Long-term Earthquake Forecast Models for Southern California

    NASA Astrophysics Data System (ADS)

    Helmstetter, A.; Kagan, Y. Y.; Jackson, D. D.

    2004-12-01

    Many earthquakes are triggered in part by preceding events. Aftershocks are the most obvious examples, but many large earthquakes are preceded by smaller ones. The large fluctuations of seismicity rate due to earthquake interactions thus provide a way to improve earthquake forecasting significantly. We have developed a model to estimate daily earthquake probabilities in Southern California, using the Epidemic Type Earthquake Sequence model [Kagan and Knopoff, 1987; Ogata, 1988]. The forecasted seismicity rate is the sum of a constant external loading and of the aftershocks of all past earthquakes. The background rate is estimated by smoothing past seismicity. Each earthquake triggers aftershocks with a rate that increases exponentially with its magnitude and which decreases with time following Omori's law. We use an isotropic kernel to model the spatial distribution of aftershocks for small (M≤5.5) mainshocks, and a smoothing of the location of early aftershocks for larger mainshocks. The model also assumes that all earthquake magnitudes follow the Gutenberg-Richter law with a unifom b-value. We use a maximum likelihood method to estimate the model parameters and tests the short-term and long-term forecasts. A retrospective test using a daily update of the forecasts between 1985/1/1 and 2004/3/10 shows that the short-term model decreases the uncertainty of an earthquake occurrence by a factor of about 10.

  9. Value-at-Risk forecasts by a spatiotemporal model in Chinese stock market

    NASA Astrophysics Data System (ADS)

    Gong, Pu; Weng, Yingliang

    2016-01-01

    This paper generalizes a recently proposed spatial autoregressive model and introduces a spatiotemporal model for forecasting stock returns. We support the view that stock returns are affected not only by the absolute values of factors such as firm size, book-to-market ratio and momentum but also by the relative values of factors like trading volume ranking and market capitalization ranking in each period. This article studies a new method for constructing stocks' reference groups; the method is called quartile method. Applying the method empirically to the Shanghai Stock Exchange 50 Index, we compare the daily volatility forecasting performance and the out-of-sample forecasting performance of Value-at-Risk (VaR) estimated by different models. The empirical results show that the spatiotemporal model performs surprisingly well in terms of capturing spatial dependences among individual stocks, and it produces more accurate VaR forecasts than the other three models introduced in the previous literature. Moreover, the findings indicate that both allowing for serial correlation in the disturbances and using time-varying spatial weight matrices can greatly improve the predictive accuracy of a spatial autoregressive model.

  10. Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models

    NASA Astrophysics Data System (ADS)

    Kogan, Felix; Kussul, Nataliia; Adamenko, Tatiana; Skakun, Sergii; Kravchenko, Oleksii; Kryvobok, Oleksii; Shelestov, Andrii; Kolotii, Andrii; Kussul, Olga; Lavrenyuk, Alla

    2013-08-01

    Ukraine is one of the most developed agriculture countries and one of the biggest crop producers in the world. Timely and accurate crop yield forecasts for Ukraine at regional level become a key element in providing support to policy makers in food security. In this paper, feasibility and relative efficiency of using moderate resolution satellite data to winter wheat forecasting in Ukraine at oblast level is assessed. Oblast is a sub-national administrative unit that corresponds to the NUTS2 level of the Nomenclature of Territorial Units for Statistics (NUTS) of the European Union. NDVI values were derived from the MODIS sensor at the 250 m spatial resolution. For each oblast NDVI values were averaged for a cropland map (Rainfed croplands class) derived from the ESA GlobCover map, and were used as predictors in the regression models. Using a leave-one-out cross-validation procedure, the best time for making reliable yield forecasts in terms of root mean square error was identified. For most oblasts, NDVI values taken in April-May provided the minimum RMSE value when comparing to the official statistics, thus enabling forecasts 2-3 months prior to harvest. The NDVI-based approach was compared to the following approaches: empirical model based on meteorological observations (with forecasts in April-May that provide minimum RMSE value) and WOFOST crop growth simulation model implemented in the CGMS system (with forecasts in June that provide minimum RMSE value). All three approaches were run to produce winter wheat yield forecasts for independent datasets for 2010 and 2011, i.e. on data that were not used within model calibration process. The most accurate predictions for 2010 were achieved using the CGMS system with the RMSE value of 0.3 t ha-1 in June and 0.4 t ha-1 in April, while performance of three approaches for 2011 was almost the same (0.5-0.6 t ha-1 in April). Both NDVI-based approach and CGMS system overestimated winter wheat yield comparing to official

  11. Forecasting solar irradiation using WRF model and refining statistics for Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, E. B.; Lima, F. J. L.; Martins, F. R.

    2015-12-01

    Solar energy is referred to as variable generation sources because their electricity production varies based on the availability of sun irradiance. To accommodate this variability, electricity grid operators use a variety of tools to maintain a reliable electricity supply, one of them is to forecast solar irradiation, and to adjust other electricity sources as needed. This work reports an approach to forecast solar irradiation in the Brazilian Northeastern region (NEB) by using statistically post-processing data from mesoscale model outputs. The method assimilates the diversity of climate characteristics occurring in the region presenting the largest solar energy potentials in Brazil. Untreated solar irradiance forecasts for 24h in advance were obtained using the WRF model runs. Cluster analysis technique was employed to find out areas presenting similar climate characteristics and to reduce uncertainties. Comparison analysis between WRF model outputs and site-specific measured data were performed to evaluate the model skill in forecasting the surface solar irradiation. After that, post-processing of WRF outputs using artificial neural networks (ANNs) and multiple regression methods refined the short-term solar irradiation forecasts. A set of pre-selected variables of the WRF model outputs representing the forecasted atmospheric conditions were used as predictors by the ANNs. Several predictors were tested in the adjustment and simulation of the ANNs. We found the best ANNs architecture and a group of 10 predictors, with which more in-depth analyzes were carried out, including performance evaluation for fall and spring of 2011 (rainy and dry season in NEB). The site-specific measured solar radiation data came from 110 stations distributed throughout the NEB. Data for the rainy season were acquired from March to May, and for the dry season from September to November. We concluded that the untreated numerical forecasts of solar irradiation provided by WRF exhibited a

  12. Evaluation of the operational Air-Quality forecast model for Austria ALARO-CAMx

    NASA Astrophysics Data System (ADS)

    Flandorfer, Claudia; Hirtl, Marcus

    2016-04-01

    The Air-Quality model for Austria (AQA) is operated at ZAMG by order of the regional governments of Vienna, Lower Austria, and Burgenland since 2005. The emphasis of this modeling system is on predicting ozone peaks in the North-east Austrian flatlands. The modeling system is currently a combination of the meteorological model ALARO and the photochemical dispersion model CAMx. Two modeling domains are used with the highest resolution (5 km) in the alpine region. Various extensions with external data sources have been conducted in the past to improve the daily forecasts of the model, e.g. data assimilation of O3- and PM10-observations from the Austrian measurement network (with optimum interpolation method technique), MACC-II boundary conditions; combination of high resolved emission inventories for Austria with TNO and EMEP data. The biogenic emissions are provided by the SMOKE model. The model runs 2 times per day for a period of 48 hours. ZAMG provides daily forecasts of O3, PM10 and NO2 to the regional governments of Austria. The evaluation of these forecasts is done for January to September 2015, with the main focus on the summer peaks of ozone. The measurements of the Air-Quality stations are compared with the punctual forecasts at the sites of the stations and the area forecasts for every province of Austria. Several heat waves occurred between June and September 2015 (new temperature records for St. Pölten and Linz). During these periods the information threshold for ozone has been exceeded 19 times, mostly in the Eastern regions of Austria. Values above the alert threshold have been measured at some stations in Lower Austria and Vienna at the beginning of July. For the evaluation, the results for the periods with exceedances in Eastern Austria will be discussed in detail.

  13. Forecasting Stock Exchange Movements Using Artificial Neural Network Models and Hybrid Models

    NASA Astrophysics Data System (ADS)

    Güreşen, Erkam; Kayakutlu, Gülgün

    Forecasting stock exchange rates is an important financial problem that is receiving increasing attention. During the last few years, a number of neural network models and hybrid models have been proposed for obtaining accurate prediction results, in an attempt to outperform the traditional linear and nonlinear approaches. This paper evaluates the effectiveness of neural network models; recurrent neural network (RNN), dynamic artificial neural network (DAN2) and the hybrid neural networks which use generalized autoregressive conditional heteroscedasticity (GARCH) and exponential generalized autoregressive conditional heteroscedasticity (EGARCH) to extract new input variables. The comparison for each model is done in two view points: MSE and MAD using real exchange daily rate values of Istanbul Stock Exchange (ISE) index XU10).

  14. Improving the long-lead predictability of El Niño using a novel forecasting scheme based on a dynamic components model

    NASA Astrophysics Data System (ADS)

    Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodó, Xavier

    2016-05-01

    El Niño (EN) is a dominant feature of climate variability on inter-annual time scales driving changes in the climate throughout the globe, and having wide-spread natural and socio-economic consequences. In this sense, its forecast is an important task, and predictions are issued on a regular basis by a wide array of prediction schemes and climate centres around the world. This study explores a novel method for EN forecasting. In the state-of-the-art the advantageous statistical technique of unobserved components time series modeling, also known as structural time series modeling, has not been applied. Therefore, we have developed such a model where the statistical analysis, including parameter estimation and forecasting, is based on state space methods, and includes the celebrated Kalman filter. The distinguishing feature of this dynamic model is the decomposition of a time series into a range of stochastically time-varying components such as level (or trend), seasonal, cycles of different frequencies, irregular, and regression effects incorporated as explanatory covariates. These components are modeled separately and ultimately combined in a single forecasting scheme. Customary statistical models for EN prediction essentially use SST and wind stress in the equatorial Pacific. In addition to these, we introduce a new domain of regression variables accounting for the state of the subsurface ocean temperature in the western and central equatorial Pacific, motivated by our analysis, as well as by recent and classical research, showing that subsurface processes and heat accumulation there are fundamental for the genesis of EN. An important feature of the scheme is that different regression predictors are used at different lead months, thus capturing the dynamical evolution of the system and rendering more efficient forecasts. The new model has been tested with the prediction of all warm events that occurred in the period 1996-2015. Retrospective forecasts of these

  15. Improving the long-lead predictability of El Niño using a novel forecasting scheme based on a dynamic components model

    NASA Astrophysics Data System (ADS)

    Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodó, Xavier

    2017-02-01

    El Niño (EN) is a dominant feature of climate variability on inter-annual time scales driving changes in the climate throughout the globe, and having wide-spread natural and socio-economic consequences. In this sense, its forecast is an important task, and predictions are issued on a regular basis by a wide array of prediction schemes and climate centres around the world. This study explores a novel method for EN forecasting. In the state-of-the-art the advantageous statistical technique of unobserved components time series modeling, also known as structural time series modeling, has not been applied. Therefore, we have developed such a model where the statistical analysis, including parameter estimation and forecasting, is based on state space methods, and includes the celebrated Kalman filter. The distinguishing feature of this dynamic model is the decomposition of a time series into a range of stochastically time-varying components such as level (or trend), seasonal, cycles of different frequencies, irregular, and regression effects incorporated as explanatory covariates. These components are modeled separately and ultimately combined in a single forecasting scheme. Customary statistical models for EN prediction essentially use SST and wind stress in the equatorial Pacific. In addition to these, we introduce a new domain of regression variables accounting for the state of the subsurface ocean temperature in the western and central equatorial Pacific, motivated by our analysis, as well as by recent and classical research, showing that subsurface processes and heat accumulation there are fundamental for the genesis of EN. An important feature of the scheme is that different regression predictors are used at different lead months, thus capturing the dynamical evolution of the system and rendering more efficient forecasts. The new model has been tested with the prediction of all warm events that occurred in the period 1996-2015. Retrospective forecasts of these

  16. Evaluation of the DEIMS (Defense Economic Impact Modeling System) System.

    DTIC Science & Technology

    1984-07-01

    4-241 for the Office of Economic Adjustment, Office of the Secretary of Defense. S!iii ii ° . .0 C, p -7 .--7 TABLE OF CONTENTS Preface i Conference...34L , 1•" ou P •R May 8, 1984 FORECASTING THE IMPACT OF DEFENSE SPENDING CONFERENCE SaiEDULE 8:00 am Registration (coffee and danish) i 8:45 WELCOME... p . • .financial support from the Office of Economic Adjustment and • "the Office of the Director, Program Analysis and Evaluation, Office of the

  17. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    SciTech Connect

    Dyson, Brian; Chang, N.-B. . E-mail: nchang@even.tamuk.edu

    2005-07-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues.

  18. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling.

    PubMed

    Dyson, Brian; Chang, Ni-Bin

    2005-01-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach--system dynamics modeling--for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool--Stella. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues.

  19. SOLERAS - Solar-Powered Water Desalination Project at Yanbu: Forecasting models for operating and maintenance cost of the pilot plant

    SciTech Connect

    Al-Idrisi, M.; Hamad, G.

    1987-04-01

    This study was conducted in cooperation with the Department of Industrial Engineering of King Abdulaziz University. The main objective of this study is to meet some of the goals of the Solar Energy Water Desalination Plant (SEWDP) plan in the area of economic evaluation. The first part of this project focused on describing the existing trend in the operation and maintenance (OandM) cost for the SOLERAS Solar Energy Water Desalination Plant in Yanbu. The second part used the information obtained on existing trends to find suitable forecasting models. These models, which are found here, are sensitive to changes in costs trends. Nevertheless, the study presented here has established the foundation for (OandM) costs estimating in the plant. The methodologies used in this study should continue as more data on operation and maintenance costs become available, because, in the long run, the trend in costs will help determine where cost effectiveness might be improved. 7 refs., 24 figs., 15 tabs.

  20. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas

    NASA Astrophysics Data System (ADS)

    Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Lecci, Rita; Mossa, Michele

    2017-01-01

    SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, providing short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields to the nested system. The model is configured to provide hydrodynamics and active tracer forecasts both in open ocean and coastal waters of southeastern Italy using a variable horizontal resolution from the open sea (3-4 km) to coastal areas (50-500 m). Given that the coastal fields are driven by a combination of both local (also known as coastal) and deep-ocean forcings propagating along the shelf, the performance of SANIFS was verified both in forecast and simulation mode, first (i) on the large and shelf-coastal scales by comparing with a large-scale survey CTD (conductivity-temperature-depth) in the Gulf of Taranto and then (ii) on the coastal-harbour scale (Mar Grande of Taranto) by comparison with CTD, ADCP (acoustic doppler current profiler) and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 6.5 km). The SANIFS forecasts at a lead time of 1 day were compared with the MFS forecasts, highlighting that SANIFS is able to retain the large-scale dynamics of MFS. The large-scale dynamics of MFS are correctly propagated to the shelf-coastal scale, improving the forecast accuracy (+17 % for temperature and +6 % for salinity compared to MFS). Moreover, the added value of SANIFS was assessed on the coastal-harbour scale, which is not covered by the coarse resolution of MFS, where the fields forecasted by SANIFS

  1. The Verhulst Model with Remedy and Its Application in Forecasting Quantity of Student Taking Entrance Examination to College

    ERIC Educational Resources Information Center

    Liu, Bin; Bi, Qing-sheng

    2010-01-01

    The Verhulst model can be used to forecast the sequence, which is characterized as non-monotone and fluctuant sequence or saturated S-form sequence. According to the situation of national enrollment scale of college, this paper forecasts the quantity of students taking entrance examination to college with a Verhulst model with remedy based on data…

  2. Visibility Modeling and Forecasting for Abu Dhabi using Time Series Analysis Method

    NASA Astrophysics Data System (ADS)

    Eibedingil, I. G.; Abula, B.; Afshari, A.; Temimi, M.

    2015-12-01

    Land-Atmosphere interactions-their strength, directionality and evolution-are one of the main sources of uncertainty in contemporary climate modeling. A particularly crucial role in sustaining and modulating land-atmosphere interaction is the one of aerosols and dusts. Aerosols are tiny particles suspended in the air ranging from a few nanometers to a few hundred micrometers in diameter. Furthermore, the amount of dust and fog in the atmosphere is an important measure of visibility, which is another dimension of land-atmosphere interactions. Visibility affects all form of traffic, aviation, land and sailing. Being able to predict the change of visibility in the air in advance enables relevant authorities to take necessary actions before the disaster falls. Time Series Analysis (TAS) method is an emerging technique for modeling and forecasting the behavior of land-atmosphere interactions, including visibility. This research assess the dynamics and evolution of visibility around Abu Dhabi International Airport (+24.4320 latitude, +54.6510 longitude, and 27m elevation) using mean daily visibility and mean daily wind speed. TAS has been first used to model and forecast the visibility, and then the Transfer Function Model has been applied, considering the wind speed as an exogenous variable. By considering the Akaike Information Criterion (AIC) and Mean Absolute Percentage Error (MAPE) as a statistical criteria, two forecasting models namely univarite time series model and transfer function model, were developed to forecast the visibility around Abu Dhabi International Airport for three weeks. Transfer function model improved the MAPE of the forecast significantly.

  3. Recent results from the GISS model of the global atmosphere. [circulation simulation for weather forecasting

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.

    1975-01-01

    Large numerical atmospheric circulation models are in increasingly widespread use both for operational weather forecasting and for meteorological research. The results presented here are from a model developed at the Goddard Institute for Space Studies (GISS) and described in detail by Somerville et al. (1974). This model is representative of a class of models, recently surveyed by the Global Atmospheric Research Program (1974), designed to simulate the time-dependent, three-dimensional, large-scale dynamics of the earth's atmosphere.

  4. Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models

    NASA Astrophysics Data System (ADS)

    Bai, Yun; Chen, Zhiqiang; Xie, Jingjing; Li, Chuan

    2016-01-01

    Inflow forecasting applies data supports for the operations and managements of reservoirs. A multiscale deep feature learning (MDFL) method with hybrid models is proposed in this paper to deal with the daily reservoir inflow forecasting. Ensemble empirical mode decomposition and Fourier spectrum are first employed to extract multiscale (trend, period and random) features, which are then represented by three deep belief networks (DBNs), respectively. The weights of each DBN are subsequently applied to initialize a neural network (D-NN). The outputs of the three-scale D-NNs are finally reconstructed using a sum-up strategy toward the forecasting results. A historical daily inflow series (from 1/1/2000 to 31/12/2012) of the Three Gorges reservoir, China, is investigated by the proposed MDFL with hybrid models. For comparison, four peer models are adopted for the same task. The results show that, the present model overwhelms all the peer models in terms of mean absolute percentage error (MAPE = 11.2896%), normalized root-mean-square error (NRMSE = 0.2292), determination coefficient criteria (R2 = 0.8905), and peak percent threshold statistics (PPTS(5) = 10.0229%). The addressed method integrates the deep framework with multiscale and hybrid observations, and therefore being good at exploring sophisticated natures in the reservoir inflow forecasting.

  5. Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.

    PubMed

    Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe

    2016-07-20

    Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.

  6. Forecast of geomagnetic storms using CME parameters and the WSA-ENLIL model

    NASA Astrophysics Data System (ADS)

    Moon, Y.; Lee, J.; Jang, S.; Na, H.; Lee, J.

    2013-12-01

    Intense geomagnetic storms are caused by coronal mass ejections (CMEs) from the Sun and their forecast is quite important in protecting space- and ground-based technological systems. The onset and strength of geomagnetic storms depend on the kinematic and magnetic properties of CMEs. Current forecast techniques mostly use solar wind in-situ measurements that provide only a short lead time. On the other hand, techniques using CME observations near the Sun have the potential to provide 1-3 days of lead time before the storm occurs. Therefore, one of the challenging issues is to forecast interplanetary magnetic field (IMF) southward components and hence geomagnetic storm strength with a lead-time on the order of 1-3 days. We are going to answer the following three questions: (1) when does a CME arrive at the Earth? (2) what is the probability that a CME can induce a geomagnetic storm? and (3) how strong is the storm? To address the first question, we forecast the arrival time and other physical parameters of CMEs at the Earth using the WSA-ENLIL model with three CME cone types. The second question is answered by examining the geoeffective and non-geoeffective CMEs depending on CME observations (speed, source location, earthward direction, magnetic field orientation, and cone-model output). The third question is addressed by examining the relationship between CME parameters and geomagnetic indices (or IMF southward component). The forecast method will be developed with a three-stage approach, which will make a prediction within four hours after the solar coronagraph data become available. We expect that this study will enable us to forecast the onset and strength of a geomagnetic storm a few days in advance using only CME parameters and the physics-based models.

  7. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system

    PubMed Central

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-01-01

    The finite resolution of general circulation models of the coupled atmosphere–ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere–ocean climate system in operational forecast mode, and the latest seasonal forecasting system—System 4—has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981–2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden–Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid

  8. Calibrated Ensemble Forecasts using Quantile Regression Forests and Ensemble Model Output Statistics.

    NASA Astrophysics Data System (ADS)

    Taillardat, Maxime; Mestre, Olivier; Zamo, Michaël; Naveau, Philippe

    2016-04-01

    Ensembles used for probabilistic weather forecasting tend to be biased and underdispersive. This presentation proposes a statistical method for postprocessing ensembles based on Quantile Regression Forests (QRF), a generalization of random forests for quantile regression. This method does not fit a parametric probability density function like in Ensemble Model Output Statistics (EMOS) but provides an estimation of desired quantiles. This is a non-parametric approach which eliminates any assumption on the variable subject to calibration. This method can estimate quantiles using not only members of the ensemble but any predictor available including statistics on other variables for example. The method is applied to the Météo-France 35-members ensemble forecast (PEARP) for surface temperature and wind-speed for available lead times from 3 up to 54 hours and compared to EMOS. All postprocessed ensembles are much better calibrated than the PEARP raw ensemble and experiments on real data also show that QRF performs better than EMOS, and can bring a real gain for forecasters compared to EMOS. QRF provides sharp and reliable probabilistic forecasts. At last, classical scoring rules to verify predictive forecasts are completed by the introduction of entropy as a general measure of reliability.

  9. Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics

    PubMed Central

    Yang, Wan; Karspeck, Alicia; Shaman, Jeffrey

    2014-01-01

    A variety of filtering methods enable the recursive estimation of system state variables and inference of model parameters. These methods have found application in a range of disciplines and settings, including engineering design and forecasting, and, over the last two decades, have been applied to infectious disease epidemiology. For any system of interest, the ideal filter depends on the nonlinearity and complexity of the model to which it is applied, the quality and abundance of observations being entrained, and the ultimate application (e.g. forecast, parameter estimation, etc.). Here, we compare the performance of six state-of-the-art filter methods when used to model and forecast influenza activity. Three particle filters—a basic particle filter (PF) with resampling and regularization, maximum likelihood estimation via iterated filtering (MIF), and particle Markov chain Monte Carlo (pMCMC)—and three ensemble filters—the ensemble Kalman filter (EnKF), the ensemble adjustment Kalman filter (EAKF), and the rank histogram filter (RHF)—were used in conjunction with a humidity-forced susceptible-infectious-recovered-susceptible (SIRS) model and weekly estimates of influenza incidence. The modeling frameworks, first validated with synthetic influenza epidemic data, were then applied to fit and retrospectively forecast the historical incidence time series of seven influenza epidemics during 2003–2012, for 115 cities in the United States. Results suggest that when using the SIRS model the ensemble filters and the basic PF are more capable of faithfully recreating historical influenza incidence time series, while the MIF and pMCMC do not perform as well for multimodal outbreaks. For forecast of the week with the highest influenza activity, the accuracies of the six model-filter frameworks are comparable; the three particle filters perform slightly better predicting peaks 1–5 weeks in the future; the ensemble filters are more accurate predicting peaks in the

  10. Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics.

    PubMed

    Yang, Wan; Karspeck, Alicia; Shaman, Jeffrey

    2014-04-01

    A variety of filtering methods enable the recursive estimation of system state variables and inference of model parameters. These methods have found application in a range of disciplines and settings, including engineering design and forecasting, and, over the last two decades, have been applied to infectious disease epidemiology. For any system of interest, the ideal filter depends on the nonlinearity and complexity of the model to which it is applied, the quality and abundance of observations being entrained, and the ultimate application (e.g. forecast, parameter estimation, etc.). Here, we compare the performance of six state-of-the-art filter methods when used to model and forecast influenza activity. Three particle filters--a basic particle filter (PF) with resampling and regularization, maximum likelihood estimation via iterated filtering (MIF), and particle Markov chain Monte Carlo (pMCMC)--and three ensemble filters--the ensemble Kalman filter (EnKF), the ensemble adjustment Kalman filter (EAKF), and the rank histogram filter (RHF)--were used in conjunction with a humidity-forced susceptible-infectious-recovered-susceptible (SIRS) model and weekly estimates of influenza incidence. The modeling frameworks, first validated with synthetic influenza epidemic data, were then applied to fit and retrospectively forecast the historical incidence time series of seven influenza epidemics during 2003-2012, for 115 cities in the United States. Results suggest that when using the SIRS model the ensemble filters and the basic PF are more capable of faithfully recreating historical influenza incidence time series, while the MIF and pMCMC do not perform as well for multimodal outbreaks. For forecast of the week with the highest influenza activity, the accuracies of the six model-filter frameworks are comparable; the three particle filters perform slightly better predicting peaks 1-5 weeks in the future; the ensemble filters are more accurate predicting peaks in the past.

  11. Development of nonlinear empirical models to forecast daily PM2.5 and ozone levels in three large Chinese cities

    NASA Astrophysics Data System (ADS)

    Lv, Baolei; Cobourn, W. Geoffrey; Bai, Yuqi

    2016-12-01

    Empirical regression models for next-day forecasting of PM2.5 and O3 air pollution concentrations have been developed and evaluated for three large Chinese cities, Beijing, Nanjing and Guangzhou. The forecast models are empirical nonlinear regression models designed for use in an automated data retrieval and forecasting platform. The PM2.5 model includes an upwind air quality variable, PM24, to account for regional transport of PM2.5, and a persistence variable (previous day PM2.5 concentration). The models were evaluated in the hindcast mode with a two-year air quality and meteorological data set using a leave-one-month-out cross validation method, and in the forecast mode with a one-year air quality and forecasted weather dataset that included forecasted air trajectories. The PM2.5 models performed well in the hindcast mode, with coefficient of determination (R2) values of 0.54, 0.65 and 0.64, and normalized mean error (NME) values of 0.40, 0.26 and 0.23 respectively, for the three cities. The O3 models also performed well in the hindcast mode, with R2 values of 0.75, 0.55 and 0.73, and NME values of 0.29, 0.26 and 0.24 in the three cities. The O3 models performed better in summertime than in winter in Beijing and Guangzhou, and captured the O3 variations well all the year round in Nanjing. The overall forecast performance of the PM2.5 and O3 models during the test year varied from fair to good, depending on location. The forecasts were somewhat degraded compared with hindcasts from the same year, depending on the accuracy of the forecasted meteorological input data. For the O3 models, the model forecast accuracy was strongly dependent on the maximum temperature forecasts. For the critical forecasts, involving air quality standard exceedences, the PM2.5 model forecasts were fair to good, and the O3 model forecasts were poor to fair.

  12. Diabatic forcing and intialization with assimilation of cloud water and rainwater in a forecast model

    NASA Technical Reports Server (NTRS)

    Raymond, William H.; Olson, William S.; Callan, Geary

    1995-01-01

    In this study, diabatic forcing, and liquid water assimilation techniques are tested in a semi-implicit hydrostatic regional forecast model containing explicit representations of grid-scale cloud water and rainwater. Diabatic forcing, in conjunction with diabatic contributions in the initialization, is found to help the forecast retain the diabatic signal found in the liquid water or heating rate data, consequently reducing the spinup time associated with grid-scale precipitation processes. Both observational Special Sensor Microwave/Imager (SSM/I) and model-generated data are used. A physical retrieval method incorporating SSM/I radiance data is utilized to estimate the 3D distribution of precipitating storms. In the retrieval method the relationship between precipitation distributions and upwelling microwave radiances is parameterized, based upon cloud ensemble-radiative model simulations. Regression formulae relating vertically integrated liquid and ice-phase precipitation amounts to latent heating rates are also derived from the cloud ensemble simulations. Thus, retrieved SSM/I precipitation structures can be used in conjunction with the regression-formulas to infer the 3D distribution of latent heating rates. These heating rates are used directly in the forecast model to help initiate Tropical Storm Emily (21 September 1987). The 14-h forecast of Emily's development yields atmospheric precipitation water contents that compare favorably with coincident SSM/I estimates.

  13. Evaluation of Weather Research and Forecasting Model Predictions Using Micrometeorological Tower Observations

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Bhattacharya, Bimal K.; Pal, P. K.

    2015-11-01

    Here we assess the predictive skill of short-range weather forecasts from the Weather Research and Forecasting (WRF) model with the help of micrometeorological tower observations. WRF model forecasts at a 3-h temporal resolution and 5000-m spatial resolution are compared with ground observations collected at micrometeorological towers during the year 2011 over the Indian landmass. Results show good agreement between the WRF model forecast and tower observed surface temperature and relative humidity, 10-m wind speed, and surface pressure. The WRF model simulations of surface energy fluxes, such as incoming shortwave, longwave radiation, and ground heat flux are also compared with micrometeorological tower measurements. Relatively high errors in incoming shortwave radiation flux may be attributed to the lack of accurate cloud prediction and the non-inclusion of aerosol load. The cyclic pattern of errors in surface relative humidity is found to be tightly and oppositely coupled with the incoming longwave radiation flux. Errors in soil heat fluxes during daytime hours are dominated by errors in the incoming shortwave radiation flux.

  14. Forecasting Marine Corps Enlisted Manpower Inventory Levels With Univariate Time Series Models

    DTIC Science & Technology

    2006-03-01

    1 B. PURPOSE.........................................................................................................2 C. SCOPE AND METHODOLGY ...Jenkins technique is a sophisticated approach by which to analyze time series data and extrapolate a forecast. This methodology provides a framework...Model by more accurately predicting the personnel resources available for assignment to future manpower requirements. The primary research question

  15. Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin

    NASA Astrophysics Data System (ADS)

    Tucci, Carlos Eduardo Morelli; Clarke, Robin Thomas; Collischonn, Walter; da Silva Dias, Pedro Leite; de Oliveira, Gilvan Sampaio

    2003-07-01

    This paper describes a procedure for predicting seasonal flow in the Rio Uruguay drainage basin (area 75,000 km2, lying in Brazilian territory), using sequences of future daily rainfall given by the global climate model (GCM) of the Brazilian agency for climate prediction (Centro de Previsão de Tempo e Clima, or CPTEC). Sequences of future daily rainfall given by this model were used as input to a rainfall-runoff model appropriate for large drainage basins. Forecasts of flow in the Rio Uruguay were made for the period 1995-2001 of the full record, which began in 1940. Analysis showed that GCM forecasts underestimated rainfall over almost all the basin, particularly in winter, although interannual variability in regional rainfall was reproduced relatively well. A statistical procedure was used to correct for the underestimation of rainfall. When the corrected rainfall sequences were transformed to flow by the hydrologic model, forecasts of flow in the Rio Uruguay basin were better than forecasts based on historic mean or median flows by 37% for monthly flows and by 54% for 3-monthly flows.

  16. Novel Modeling Tools for Propagating Climate Change Variability and Uncertainty into Hydrodynamic Forecasts

    EPA Science Inventory

    Understanding impacts of climate change on hydrodynamic processes and ecosystem response within the Great Lakes is an important and challenging task. Variability in future climate conditions, uncertainty in rainfall-runoff model forecasts, the potential for land use change, and t...

  17. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach

    SciTech Connect

    Brown, C. W.; Hood, Raleigh R.; Long, Wen; Jacobs, John M.; Ramers, D. L.; Wazniak, C.; Wiggert, J. D.; Wood, R.; Xu, J.

    2013-09-01

    The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates daily nowcasts and three-day forecasts of several environmental variables, such as sea-surface temperature and salinity, the concentrations of chlorophyll, nitrate, and dissolved oxygen, and the likelihood of encountering several noxious species, including harmful algal blooms and water-borne pathogens, for the purpose of monitoring the Bay's ecosystem. While the physical and biogeochemical variables are forecast mechanistically using the Regional Ocean Modeling System configured for the Chesapeake Bay, the species predictions are generated using a novel mechanistic empirical approach, whereby real-time output from the coupled physical biogeochemical model drives multivariate empirical habitat models of the target species. The predictions, in the form of digital images, are available via the World Wide Web to interested groups to guide recreational, management, and research activities. Though full validation of the integrated forecasts for all species is still a work in progress, we argue that the mechanistic–empirical approach can be used to generate a wide variety of short-term ecological forecasts, and that it can be applied in any marine system where sufficient data exist to develop empirical habitat models. This paper provides an overview of this system, its predictions, and the approach taken.

  18. Year of Coordinated Observations, Modeling and Forecasting: Addressing the Challenge of Organized Tropical Convection

    NASA Technical Reports Server (NTRS)

    Waliser, Duane E.

    2006-01-01

    The multi-scale organization of tropical convection and scale interaction are grand challenges in the prediction of weather and climate. As part of a international effort UN Year of Planet Earth, this proposed effort to observe, model and forecast the effects of organized tropical convection is reviewed. This viewgraph presentation reviews the proposal.

  19. Verifications of the medium-range forecasts of KIAPS integrated model

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Hee; Lee, Juwon; Choi, In-Jin

    2016-04-01

    The Korea Institute of Atmospheric Prediction System, KIAPS, was established to carry out a national project in developing a new global forecast system from 2011 to 2019. The initial version of KIAPS Integrated Model, KIM, consisted of a spectral element dynamical core on a cubed sphere and a standard physics package from existing models such as the GRIMs, WRF, and GFS. Then KIM2.0 was released with the advanced or newly developed physics, dynamics, and data assimilation. Last July, its semi-real time forecast for 5 days has been operated every 00 and 12 UTC with the fully coupled 3D Var data assimilation system. Performance of KIM forecasts is evaluated both for the period of the selected testbed cases and for the semi-real time operational period, to examine the model improvement along with the upgrade and to figure out the model bias. Standardized statistical verification is also conducted including verification against analyses and observations (e.g., sonde and precipitation data). These will be summarized in this presentation. Additionally, surface verification using SYNOP observations and spatial verification for precipitation applied to meet the need for more informative forecast evaluations will be discussed.

  20. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    NASA Astrophysics Data System (ADS)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  1. The systematic study of the stability of forecasts in the rate- and state-dependent model.

    NASA Astrophysics Data System (ADS)

    De Gaetano, D.; McCloskey, J.; Nalbant, S.

    2012-04-01

    Numerous observations have shown a general spatial correlation between positive Coulomb failure stress changes due to an earthquake and the locations of aftershocks. However this correlation does not give any indication of the rate from which we can infer the magnitude using the Gutenberg-Richter law. Dieterich's rate- and state-dependent model can be used to obtain a forecast of the observed aftershock rate for the space and time evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches. The seismicity rate changes on this model depend on eight parameters: the stressing rate, the amplitude of the stress perturbation, the physical constitutive properties of faults, the spatial parameters (location and radii of the cells), the start and duration of each of the temporal windows as well as the background seismicity rate. The background seismicity is obtained from the epidemic type aftershock sequence model. We use the 1992 Landers earthquake as a case study, using the Southern California Earthquake Data Centre (SCEDC) catalogue, to examine if Dieterich's rate- and state-dependent model can forecast the aftershock seismicity rate. A systematic study is performed on a range of values on all the parameters to test the forecasting ability of this model. The results obtained suggest variable success in forecasting, when varying the values for the parameters, with the spatial and temporal parameters being the most sensitive. Dieterich's rate- and state-dependent model is compared with a well studied null hypothesis, the Omori-Utsu law. This law describes the aftershock rate as a power law in time following the main shock and depends on only three parameters: the aftershock productivity, the elapsed time since the main shock and the constant time shift, all of which can be estimated in the early part of the aftershock sequence and then extrapolated to give a long term rate forecast. All parameters are estimated using maximum

  2. A Time Series Model for Assessing the Trend and Forecasting the Road Traffic Accident Mortality

    PubMed Central

    Yousefzadeh-Chabok, Shahrokh; Ranjbar-Taklimie, Fatemeh; Malekpouri, Reza; Razzaghi, Alireza

    2016-01-01

    Background Road traffic accident (RTA) is one of the main causes of trauma and known as a growing public health concern worldwide, especially in developing countries. Assessing the trend of fatalities in the past years and forecasting it enables us to make the appropriate planning for prevention and control. Objectives This study aimed to assess the trend of RTAs and forecast it in the next years by using time series modeling. Materials and Methods In this historical analytical study, the RTA mortalities in Zanjan Province, Iran, were evaluated during 2007 - 2013. The time series analyses including Box-Jenkins models were used to assess the trend of accident fatalities in previous years and forecast it for the next 4 years. Results The mean age of the victims was 37.22 years (SD = 20.01). From a total of 2571 deaths, 77.5% (n = 1992) were males and 22.5% (n = 579) were females. The study models showed a descending trend of fatalities in the study years. The SARIMA (1, 1, 3) (0, 1, 0) 12 model was recognized as a best fit model in forecasting the trend of fatalities. Forecasting model also showed a descending trend of traffic accident mortalities in the next 4 years. Conclusions There was a decreasing trend in the study and the future years. It seems that implementation of some interventions in the recent decade has had a positive effect on the decline of RTA fatalities. Nevertheless, there is still a need to pay more attention in order to prevent the occurrence and the mortalities related to traffic accidents. PMID:27800467

  3. eWaterCycle: Recent progress in a global operational hydrological forecasting model

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; Sutanudjaja, E.; Bierkens, M. F.; Drost, N.; Hut, R.

    2015-12-01

    Earlier this year, the eWaterCycle project launched its operational forecasting system (forecast.ewatercycle.org). The forecasts are ensemble based, and cover fourteen days. Near-real-time satellite data on soil moisture are assimilated in the forecasts. Presently, the model runs with a spatial resolution of 10km x 10km, and the plan is to move to 1km x 1km in the near future. The eWaterCycle forecast systems runs on a combination of a supercomputer and a cloud platform. Interactive visualization allows users to zoom in on any area of interest and select different variables. The project builds on close cooperation between hydrologists and computer scientists. What makes eWaterCycle relatively unique is that it was built with existing software, which is largely open source and uses existing standards. The Basic Model Interface (BMI) of the Community Surface Dynamics Modeling System (CSDMS) is an important tool that connects different modules. This allows for easy change and exchange of modules within the project. Only a few parts of the software needed to be re-engineerd for allowing it to run smoothly in a High-Performance Computing environment. After a general introduction to the modeling framework, the presentation will focus on recent advances, especially with respect to quality control of runoff predictions. Different parts of the world show different predictive error. As the model does not use explicit calibration procedures, it is of interest to see where the model performs well and where it performs not so well. The next natural question is then why this is the case and how to move forward without ending up with ad hoc improvement measures.

  4. A model output statistics system to forecast the 2 metre temperature at the "Wettermast Hamburg" site

    NASA Astrophysics Data System (ADS)

    Finn, Tobias Sebastian; Ament, Felix

    2016-04-01

    The model output statistics (MOS) method is frequently used to downscale and improve numerical weather models for specific measurement sites. One of these is the "Wettermast Hamburg" (http://wettermast-hamburg.zmaw.de/) in the south-east of Hamburg. It is operated by the Meteorological Institute of the University of Hamburg. The MOS approach was used to develop a not yet existing 2 metre temperature forecasting system for this site. The forecast system is based on the 0 UTC control run of the legacy "global ensemble forecast system". The multiple linear equations were calculated using a training period of 2 years (01.03.2012-28.02.2014), while the developed models were evaluated using the following year (01.03.2014-28.02.2015). During the development process it was found that a combination of forward and backward selection together with the "Bayesian information criterion", a warm-cold splitting and a five-fold cross-validation was the best automated method to minimize the risk of overfitting. To further reduce the risk, the number of predictors were limited to 6. Also the first 3 possible predictors were selected by hand. In co